Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
  1// SPDX-License-Identifier: GPL-2.0
  2
  3#include <linux/atomic.h>
  4#include <linux/bug.h>
  5#include <linux/delay.h>
  6#include <linux/export.h>
  7#include <linux/init.h>
  8#include <linux/kernel.h>
  9#include <linux/list.h>
 10#include <linux/moduleparam.h>
 11#include <linux/percpu.h>
 12#include <linux/preempt.h>
 13#include <linux/random.h>
 14#include <linux/sched.h>
 15#include <linux/uaccess.h>
 16
 17#include "atomic.h"
 18#include "encoding.h"
 19#include "kcsan.h"
 20
 21static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
 22unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
 23unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
 24static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
 25static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
 26
 27#ifdef MODULE_PARAM_PREFIX
 28#undef MODULE_PARAM_PREFIX
 29#endif
 30#define MODULE_PARAM_PREFIX "kcsan."
 31module_param_named(early_enable, kcsan_early_enable, bool, 0);
 32module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
 33module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
 34module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
 35module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
 36
 37bool kcsan_enabled;
 38
 39/* Per-CPU kcsan_ctx for interrupts */
 40static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
 41	.disable_count		= 0,
 42	.atomic_next		= 0,
 43	.atomic_nest_count	= 0,
 44	.in_flat_atomic		= false,
 45	.access_mask		= 0,
 46	.scoped_accesses	= {LIST_POISON1, NULL},
 47};
 48
 49/*
 50 * Helper macros to index into adjacent slots, starting from address slot
 51 * itself, followed by the right and left slots.
 52 *
 53 * The purpose is 2-fold:
 54 *
 55 *	1. if during insertion the address slot is already occupied, check if
 56 *	   any adjacent slots are free;
 57 *	2. accesses that straddle a slot boundary due to size that exceeds a
 58 *	   slot's range may check adjacent slots if any watchpoint matches.
 59 *
 60 * Note that accesses with very large size may still miss a watchpoint; however,
 61 * given this should be rare, this is a reasonable trade-off to make, since this
 62 * will avoid:
 63 *
 64 *	1. excessive contention between watchpoint checks and setup;
 65 *	2. larger number of simultaneous watchpoints without sacrificing
 66 *	   performance.
 67 *
 68 * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
 69 *
 70 *   slot=0:  [ 1,  2,  0]
 71 *   slot=9:  [10, 11,  9]
 72 *   slot=63: [64, 65, 63]
 73 */
 74#define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
 75
 76/*
 77 * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
 78 * slot (middle) is fine if we assume that races occur rarely. The set of
 79 * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
 80 * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
 81 */
 82#define SLOT_IDX_FAST(slot, i) (slot + i)
 83
 84/*
 85 * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
 86 * able to safely update and access a watchpoint without introducing locking
 87 * overhead, we encode each watchpoint as a single atomic long. The initial
 88 * zero-initialized state matches INVALID_WATCHPOINT.
 89 *
 90 * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
 91 * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
 92 */
 93static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
 94
 95/*
 96 * Instructions to skip watching counter, used in should_watch(). We use a
 97 * per-CPU counter to avoid excessive contention.
 98 */
 99static DEFINE_PER_CPU(long, kcsan_skip);
100
101static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
102						      size_t size,
103						      bool expect_write,
104						      long *encoded_watchpoint)
105{
106	const int slot = watchpoint_slot(addr);
107	const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
108	atomic_long_t *watchpoint;
109	unsigned long wp_addr_masked;
110	size_t wp_size;
111	bool is_write;
112	int i;
113
114	BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
115
116	for (i = 0; i < NUM_SLOTS; ++i) {
117		watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
118		*encoded_watchpoint = atomic_long_read(watchpoint);
119		if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
120				       &wp_size, &is_write))
121			continue;
122
123		if (expect_write && !is_write)
124			continue;
125
126		/* Check if the watchpoint matches the access. */
127		if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
128			return watchpoint;
129	}
130
131	return NULL;
132}
133
134static inline atomic_long_t *
135insert_watchpoint(unsigned long addr, size_t size, bool is_write)
136{
137	const int slot = watchpoint_slot(addr);
138	const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
139	atomic_long_t *watchpoint;
140	int i;
141
142	/* Check slot index logic, ensuring we stay within array bounds. */
143	BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
144	BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
145	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
146	BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
147
148	for (i = 0; i < NUM_SLOTS; ++i) {
149		long expect_val = INVALID_WATCHPOINT;
150
151		/* Try to acquire this slot. */
152		watchpoint = &watchpoints[SLOT_IDX(slot, i)];
153		if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
154			return watchpoint;
155	}
156
157	return NULL;
158}
159
160/*
161 * Return true if watchpoint was successfully consumed, false otherwise.
162 *
163 * This may return false if:
164 *
165 *	1. another thread already consumed the watchpoint;
166 *	2. the thread that set up the watchpoint already removed it;
167 *	3. the watchpoint was removed and then re-used.
168 */
169static __always_inline bool
170try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
171{
172	return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
173}
174
175/* Return true if watchpoint was not touched, false if already consumed. */
176static inline bool consume_watchpoint(atomic_long_t *watchpoint)
177{
178	return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
179}
180
181/* Remove the watchpoint -- its slot may be reused after. */
182static inline void remove_watchpoint(atomic_long_t *watchpoint)
183{
184	atomic_long_set(watchpoint, INVALID_WATCHPOINT);
185}
186
187static __always_inline struct kcsan_ctx *get_ctx(void)
188{
189	/*
190	 * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
191	 * also result in calls that generate warnings in uaccess regions.
192	 */
193	return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
194}
195
196/* Check scoped accesses; never inline because this is a slow-path! */
197static noinline void kcsan_check_scoped_accesses(void)
198{
199	struct kcsan_ctx *ctx = get_ctx();
200	struct list_head *prev_save = ctx->scoped_accesses.prev;
201	struct kcsan_scoped_access *scoped_access;
202
203	ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
204	list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
205		__kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
206	ctx->scoped_accesses.prev = prev_save;
207}
208
209/* Rules for generic atomic accesses. Called from fast-path. */
210static __always_inline bool
211is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
212{
213	if (type & KCSAN_ACCESS_ATOMIC)
214		return true;
215
216	/*
217	 * Unless explicitly declared atomic, never consider an assertion access
218	 * as atomic. This allows using them also in atomic regions, such as
219	 * seqlocks, without implicitly changing their semantics.
220	 */
221	if (type & KCSAN_ACCESS_ASSERT)
222		return false;
223
224	if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
225	    (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
226	    IS_ALIGNED((unsigned long)ptr, size))
227		return true; /* Assume aligned writes up to word size are atomic. */
228
229	if (ctx->atomic_next > 0) {
230		/*
231		 * Because we do not have separate contexts for nested
232		 * interrupts, in case atomic_next is set, we simply assume that
233		 * the outer interrupt set atomic_next. In the worst case, we
234		 * will conservatively consider operations as atomic. This is a
235		 * reasonable trade-off to make, since this case should be
236		 * extremely rare; however, even if extremely rare, it could
237		 * lead to false positives otherwise.
238		 */
239		if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
240			--ctx->atomic_next; /* in task, or outer interrupt */
241		return true;
242	}
243
244	return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
245}
246
247static __always_inline bool
248should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
249{
250	/*
251	 * Never set up watchpoints when memory operations are atomic.
252	 *
253	 * Need to check this first, before kcsan_skip check below: (1) atomics
254	 * should not count towards skipped instructions, and (2) to actually
255	 * decrement kcsan_atomic_next for consecutive instruction stream.
256	 */
257	if (is_atomic(ptr, size, type, ctx))
258		return false;
259
260	if (this_cpu_dec_return(kcsan_skip) >= 0)
261		return false;
262
263	/*
264	 * NOTE: If we get here, kcsan_skip must always be reset in slow path
265	 * via reset_kcsan_skip() to avoid underflow.
266	 */
267
268	/* this operation should be watched */
269	return true;
270}
271
272static inline void reset_kcsan_skip(void)
273{
274	long skip_count = kcsan_skip_watch -
275			  (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
276				   prandom_u32_max(kcsan_skip_watch) :
277				   0);
278	this_cpu_write(kcsan_skip, skip_count);
279}
280
281static __always_inline bool kcsan_is_enabled(void)
282{
283	return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
284}
285
286static inline unsigned int get_delay(void)
287{
288	unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
289	return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
290				prandom_u32_max(delay) :
291				0);
292}
293
294void kcsan_save_irqtrace(struct task_struct *task)
295{
296#ifdef CONFIG_TRACE_IRQFLAGS
297	task->kcsan_save_irqtrace = task->irqtrace;
298#endif
299}
300
301void kcsan_restore_irqtrace(struct task_struct *task)
302{
303#ifdef CONFIG_TRACE_IRQFLAGS
304	task->irqtrace = task->kcsan_save_irqtrace;
305#endif
306}
307
308/*
309 * Pull everything together: check_access() below contains the performance
310 * critical operations; the fast-path (including check_access) functions should
311 * all be inlinable by the instrumentation functions.
312 *
313 * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
314 * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
315 * be filtered from the stacktrace, as well as give them unique names for the
316 * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
317 * since they do not access any user memory, but instrumentation is still
318 * emitted in UACCESS regions.
319 */
320
321static noinline void kcsan_found_watchpoint(const volatile void *ptr,
322					    size_t size,
323					    int type,
324					    atomic_long_t *watchpoint,
325					    long encoded_watchpoint)
326{
327	unsigned long flags;
328	bool consumed;
329
330	if (!kcsan_is_enabled())
331		return;
332
333	/*
334	 * The access_mask check relies on value-change comparison. To avoid
335	 * reporting a race where e.g. the writer set up the watchpoint, but the
336	 * reader has access_mask!=0, we have to ignore the found watchpoint.
337	 */
338	if (get_ctx()->access_mask != 0)
339		return;
340
341	/*
342	 * Consume the watchpoint as soon as possible, to minimize the chances
343	 * of !consumed. Consuming the watchpoint must always be guarded by
344	 * kcsan_is_enabled() check, as otherwise we might erroneously
345	 * triggering reports when disabled.
346	 */
347	consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
348
349	/* keep this after try_consume_watchpoint */
350	flags = user_access_save();
351
352	if (consumed) {
353		kcsan_save_irqtrace(current);
354		kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
355			     KCSAN_REPORT_CONSUMED_WATCHPOINT,
356			     watchpoint - watchpoints);
357		kcsan_restore_irqtrace(current);
358	} else {
359		/*
360		 * The other thread may not print any diagnostics, as it has
361		 * already removed the watchpoint, or another thread consumed
362		 * the watchpoint before this thread.
363		 */
364		kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
365	}
366
367	if ((type & KCSAN_ACCESS_ASSERT) != 0)
368		kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
369	else
370		kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
371
372	user_access_restore(flags);
373}
374
375static noinline void
376kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
377{
378	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
379	const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
380	atomic_long_t *watchpoint;
381	union {
382		u8 _1;
383		u16 _2;
384		u32 _4;
385		u64 _8;
386	} expect_value;
387	unsigned long access_mask;
388	enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
389	unsigned long ua_flags = user_access_save();
390	unsigned long irq_flags = 0;
391
392	/*
393	 * Always reset kcsan_skip counter in slow-path to avoid underflow; see
394	 * should_watch().
395	 */
396	reset_kcsan_skip();
397
398	if (!kcsan_is_enabled())
399		goto out;
400
401	/*
402	 * Special atomic rules: unlikely to be true, so we check them here in
403	 * the slow-path, and not in the fast-path in is_atomic(). Call after
404	 * kcsan_is_enabled(), as we may access memory that is not yet
405	 * initialized during early boot.
406	 */
407	if (!is_assert && kcsan_is_atomic_special(ptr))
408		goto out;
409
410	if (!check_encodable((unsigned long)ptr, size)) {
411		kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
412		goto out;
413	}
414
415	/*
416	 * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
417	 * runtime is entered for every memory access, and potentially useful
418	 * information is lost if dirtied by KCSAN.
419	 */
420	kcsan_save_irqtrace(current);
421	if (!kcsan_interrupt_watcher)
422		local_irq_save(irq_flags);
423
424	watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
425	if (watchpoint == NULL) {
426		/*
427		 * Out of capacity: the size of 'watchpoints', and the frequency
428		 * with which should_watch() returns true should be tweaked so
429		 * that this case happens very rarely.
430		 */
431		kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
432		goto out_unlock;
433	}
434
435	kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
436	kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
437
438	/*
439	 * Read the current value, to later check and infer a race if the data
440	 * was modified via a non-instrumented access, e.g. from a device.
441	 */
442	expect_value._8 = 0;
443	switch (size) {
444	case 1:
445		expect_value._1 = READ_ONCE(*(const u8 *)ptr);
446		break;
447	case 2:
448		expect_value._2 = READ_ONCE(*(const u16 *)ptr);
449		break;
450	case 4:
451		expect_value._4 = READ_ONCE(*(const u32 *)ptr);
452		break;
453	case 8:
454		expect_value._8 = READ_ONCE(*(const u64 *)ptr);
455		break;
456	default:
457		break; /* ignore; we do not diff the values */
458	}
459
460	if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
461		kcsan_disable_current();
462		pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
463		       is_write ? "write" : "read", size, ptr,
464		       watchpoint_slot((unsigned long)ptr),
465		       encode_watchpoint((unsigned long)ptr, size, is_write));
466		kcsan_enable_current();
467	}
468
469	/*
470	 * Delay this thread, to increase probability of observing a racy
471	 * conflicting access.
472	 */
473	udelay(get_delay());
474
475	/*
476	 * Re-read value, and check if it is as expected; if not, we infer a
477	 * racy access.
478	 */
479	access_mask = get_ctx()->access_mask;
480	switch (size) {
481	case 1:
482		expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
483		if (access_mask)
484			expect_value._1 &= (u8)access_mask;
485		break;
486	case 2:
487		expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
488		if (access_mask)
489			expect_value._2 &= (u16)access_mask;
490		break;
491	case 4:
492		expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
493		if (access_mask)
494			expect_value._4 &= (u32)access_mask;
495		break;
496	case 8:
497		expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
498		if (access_mask)
499			expect_value._8 &= (u64)access_mask;
500		break;
501	default:
502		break; /* ignore; we do not diff the values */
503	}
504
505	/* Were we able to observe a value-change? */
506	if (expect_value._8 != 0)
507		value_change = KCSAN_VALUE_CHANGE_TRUE;
508
509	/* Check if this access raced with another. */
510	if (!consume_watchpoint(watchpoint)) {
511		/*
512		 * Depending on the access type, map a value_change of MAYBE to
513		 * TRUE (always report) or FALSE (never report).
514		 */
515		if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
516			if (access_mask != 0) {
517				/*
518				 * For access with access_mask, we require a
519				 * value-change, as it is likely that races on
520				 * ~access_mask bits are expected.
521				 */
522				value_change = KCSAN_VALUE_CHANGE_FALSE;
523			} else if (size > 8 || is_assert) {
524				/* Always assume a value-change. */
525				value_change = KCSAN_VALUE_CHANGE_TRUE;
526			}
527		}
528
529		/*
530		 * No need to increment 'data_races' counter, as the racing
531		 * thread already did.
532		 *
533		 * Count 'assert_failures' for each failed ASSERT access,
534		 * therefore both this thread and the racing thread may
535		 * increment this counter.
536		 */
537		if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
538			kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
539
540		kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
541			     watchpoint - watchpoints);
542	} else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
543		/* Inferring a race, since the value should not have changed. */
544
545		kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
546		if (is_assert)
547			kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
548
549		if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
550			kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
551				     KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
552				     watchpoint - watchpoints);
553	}
554
555	/*
556	 * Remove watchpoint; must be after reporting, since the slot may be
557	 * reused after this point.
558	 */
559	remove_watchpoint(watchpoint);
560	kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
561out_unlock:
562	if (!kcsan_interrupt_watcher)
563		local_irq_restore(irq_flags);
564	kcsan_restore_irqtrace(current);
565out:
566	user_access_restore(ua_flags);
567}
568
569static __always_inline void check_access(const volatile void *ptr, size_t size,
570					 int type)
571{
572	const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
573	atomic_long_t *watchpoint;
574	long encoded_watchpoint;
575
576	/*
577	 * Do nothing for 0 sized check; this comparison will be optimized out
578	 * for constant sized instrumentation (__tsan_{read,write}N).
579	 */
580	if (unlikely(size == 0))
581		return;
582
583	/*
584	 * Avoid user_access_save in fast-path: find_watchpoint is safe without
585	 * user_access_save, as the address that ptr points to is only used to
586	 * check if a watchpoint exists; ptr is never dereferenced.
587	 */
588	watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
589				     &encoded_watchpoint);
590	/*
591	 * It is safe to check kcsan_is_enabled() after find_watchpoint in the
592	 * slow-path, as long as no state changes that cause a race to be
593	 * detected and reported have occurred until kcsan_is_enabled() is
594	 * checked.
595	 */
596
597	if (unlikely(watchpoint != NULL))
598		kcsan_found_watchpoint(ptr, size, type, watchpoint,
599				       encoded_watchpoint);
600	else {
601		struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
602
603		if (unlikely(should_watch(ptr, size, type, ctx)))
604			kcsan_setup_watchpoint(ptr, size, type);
605		else if (unlikely(ctx->scoped_accesses.prev))
606			kcsan_check_scoped_accesses();
607	}
608}
609
610/* === Public interface ===================================================== */
611
612void __init kcsan_init(void)
613{
614	BUG_ON(!in_task());
615
616	kcsan_debugfs_init();
617
618	/*
619	 * We are in the init task, and no other tasks should be running;
620	 * WRITE_ONCE without memory barrier is sufficient.
621	 */
622	if (kcsan_early_enable)
623		WRITE_ONCE(kcsan_enabled, true);
624}
625
626/* === Exported interface =================================================== */
627
628void kcsan_disable_current(void)
629{
630	++get_ctx()->disable_count;
631}
632EXPORT_SYMBOL(kcsan_disable_current);
633
634void kcsan_enable_current(void)
635{
636	if (get_ctx()->disable_count-- == 0) {
637		/*
638		 * Warn if kcsan_enable_current() calls are unbalanced with
639		 * kcsan_disable_current() calls, which causes disable_count to
640		 * become negative and should not happen.
641		 */
642		kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
643		kcsan_disable_current(); /* disable to generate warning */
644		WARN(1, "Unbalanced %s()", __func__);
645		kcsan_enable_current();
646	}
647}
648EXPORT_SYMBOL(kcsan_enable_current);
649
650void kcsan_enable_current_nowarn(void)
651{
652	if (get_ctx()->disable_count-- == 0)
653		kcsan_disable_current();
654}
655EXPORT_SYMBOL(kcsan_enable_current_nowarn);
656
657void kcsan_nestable_atomic_begin(void)
658{
659	/*
660	 * Do *not* check and warn if we are in a flat atomic region: nestable
661	 * and flat atomic regions are independent from each other.
662	 * See include/linux/kcsan.h: struct kcsan_ctx comments for more
663	 * comments.
664	 */
665
666	++get_ctx()->atomic_nest_count;
667}
668EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
669
670void kcsan_nestable_atomic_end(void)
671{
672	if (get_ctx()->atomic_nest_count-- == 0) {
673		/*
674		 * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
675		 * kcsan_nestable_atomic_begin() calls, which causes
676		 * atomic_nest_count to become negative and should not happen.
677		 */
678		kcsan_nestable_atomic_begin(); /* restore to 0 */
679		kcsan_disable_current(); /* disable to generate warning */
680		WARN(1, "Unbalanced %s()", __func__);
681		kcsan_enable_current();
682	}
683}
684EXPORT_SYMBOL(kcsan_nestable_atomic_end);
685
686void kcsan_flat_atomic_begin(void)
687{
688	get_ctx()->in_flat_atomic = true;
689}
690EXPORT_SYMBOL(kcsan_flat_atomic_begin);
691
692void kcsan_flat_atomic_end(void)
693{
694	get_ctx()->in_flat_atomic = false;
695}
696EXPORT_SYMBOL(kcsan_flat_atomic_end);
697
698void kcsan_atomic_next(int n)
699{
700	get_ctx()->atomic_next = n;
701}
702EXPORT_SYMBOL(kcsan_atomic_next);
703
704void kcsan_set_access_mask(unsigned long mask)
705{
706	get_ctx()->access_mask = mask;
707}
708EXPORT_SYMBOL(kcsan_set_access_mask);
709
710struct kcsan_scoped_access *
711kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
712			  struct kcsan_scoped_access *sa)
713{
714	struct kcsan_ctx *ctx = get_ctx();
715
716	__kcsan_check_access(ptr, size, type);
717
718	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
719
720	INIT_LIST_HEAD(&sa->list);
721	sa->ptr = ptr;
722	sa->size = size;
723	sa->type = type;
724
725	if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
726		INIT_LIST_HEAD(&ctx->scoped_accesses);
727	list_add(&sa->list, &ctx->scoped_accesses);
728
729	ctx->disable_count--;
730	return sa;
731}
732EXPORT_SYMBOL(kcsan_begin_scoped_access);
733
734void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
735{
736	struct kcsan_ctx *ctx = get_ctx();
737
738	if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
739		return;
740
741	ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
742
743	list_del(&sa->list);
744	if (list_empty(&ctx->scoped_accesses))
745		/*
746		 * Ensure we do not enter kcsan_check_scoped_accesses()
747		 * slow-path if unnecessary, and avoids requiring list_empty()
748		 * in the fast-path (to avoid a READ_ONCE() and potential
749		 * uaccess warning).
750		 */
751		ctx->scoped_accesses.prev = NULL;
752
753	ctx->disable_count--;
754
755	__kcsan_check_access(sa->ptr, sa->size, sa->type);
756}
757EXPORT_SYMBOL(kcsan_end_scoped_access);
758
759void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
760{
761	check_access(ptr, size, type);
762}
763EXPORT_SYMBOL(__kcsan_check_access);
764
765/*
766 * KCSAN uses the same instrumentation that is emitted by supported compilers
767 * for ThreadSanitizer (TSAN).
768 *
769 * When enabled, the compiler emits instrumentation calls (the functions
770 * prefixed with "__tsan" below) for all loads and stores that it generated;
771 * inline asm is not instrumented.
772 *
773 * Note that, not all supported compiler versions distinguish aligned/unaligned
774 * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
775 * version to the generic version, which can handle both.
776 */
777
778#define DEFINE_TSAN_READ_WRITE(size)                                           \
779	void __tsan_read##size(void *ptr);                                     \
780	void __tsan_read##size(void *ptr)                                      \
781	{                                                                      \
782		check_access(ptr, size, 0);                                    \
783	}                                                                      \
784	EXPORT_SYMBOL(__tsan_read##size);                                      \
785	void __tsan_unaligned_read##size(void *ptr)                            \
786		__alias(__tsan_read##size);                                    \
787	EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
788	void __tsan_write##size(void *ptr);                                    \
789	void __tsan_write##size(void *ptr)                                     \
790	{                                                                      \
791		check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
792	}                                                                      \
793	EXPORT_SYMBOL(__tsan_write##size);                                     \
794	void __tsan_unaligned_write##size(void *ptr)                           \
795		__alias(__tsan_write##size);                                   \
796	EXPORT_SYMBOL(__tsan_unaligned_write##size)
797
798DEFINE_TSAN_READ_WRITE(1);
799DEFINE_TSAN_READ_WRITE(2);
800DEFINE_TSAN_READ_WRITE(4);
801DEFINE_TSAN_READ_WRITE(8);
802DEFINE_TSAN_READ_WRITE(16);
803
804void __tsan_read_range(void *ptr, size_t size);
805void __tsan_read_range(void *ptr, size_t size)
806{
807	check_access(ptr, size, 0);
808}
809EXPORT_SYMBOL(__tsan_read_range);
810
811void __tsan_write_range(void *ptr, size_t size);
812void __tsan_write_range(void *ptr, size_t size)
813{
814	check_access(ptr, size, KCSAN_ACCESS_WRITE);
815}
816EXPORT_SYMBOL(__tsan_write_range);
817
818/*
819 * Use of explicit volatile is generally disallowed [1], however, volatile is
820 * still used in various concurrent context, whether in low-level
821 * synchronization primitives or for legacy reasons.
822 * [1] https://lwn.net/Articles/233479/
823 *
824 * We only consider volatile accesses atomic if they are aligned and would pass
825 * the size-check of compiletime_assert_rwonce_type().
826 */
827#define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
828	void __tsan_volatile_read##size(void *ptr);                            \
829	void __tsan_volatile_read##size(void *ptr)                             \
830	{                                                                      \
831		const bool is_atomic = size <= sizeof(long long) &&            \
832				       IS_ALIGNED((unsigned long)ptr, size);   \
833		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
834			return;                                                \
835		check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
836	}                                                                      \
837	EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
838	void __tsan_unaligned_volatile_read##size(void *ptr)                   \
839		__alias(__tsan_volatile_read##size);                           \
840	EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
841	void __tsan_volatile_write##size(void *ptr);                           \
842	void __tsan_volatile_write##size(void *ptr)                            \
843	{                                                                      \
844		const bool is_atomic = size <= sizeof(long long) &&            \
845				       IS_ALIGNED((unsigned long)ptr, size);   \
846		if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
847			return;                                                \
848		check_access(ptr, size,                                        \
849			     KCSAN_ACCESS_WRITE |                              \
850				     (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
851	}                                                                      \
852	EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
853	void __tsan_unaligned_volatile_write##size(void *ptr)                  \
854		__alias(__tsan_volatile_write##size);                          \
855	EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
856
857DEFINE_TSAN_VOLATILE_READ_WRITE(1);
858DEFINE_TSAN_VOLATILE_READ_WRITE(2);
859DEFINE_TSAN_VOLATILE_READ_WRITE(4);
860DEFINE_TSAN_VOLATILE_READ_WRITE(8);
861DEFINE_TSAN_VOLATILE_READ_WRITE(16);
862
863/*
864 * The below are not required by KCSAN, but can still be emitted by the
865 * compiler.
866 */
867void __tsan_func_entry(void *call_pc);
868void __tsan_func_entry(void *call_pc)
869{
870}
871EXPORT_SYMBOL(__tsan_func_entry);
872void __tsan_func_exit(void);
873void __tsan_func_exit(void)
874{
875}
876EXPORT_SYMBOL(__tsan_func_exit);
877void __tsan_init(void);
878void __tsan_init(void)
879{
880}
881EXPORT_SYMBOL(__tsan_init);