Loading...
1/*
2 * linux/fs/jbd2/journal.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
18 *
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
23 */
24
25#include <linux/module.h>
26#include <linux/time.h>
27#include <linux/fs.h>
28#include <linux/jbd2.h>
29#include <linux/errno.h>
30#include <linux/slab.h>
31#include <linux/init.h>
32#include <linux/mm.h>
33#include <linux/freezer.h>
34#include <linux/pagemap.h>
35#include <linux/kthread.h>
36#include <linux/poison.h>
37#include <linux/proc_fs.h>
38#include <linux/seq_file.h>
39#include <linux/math64.h>
40#include <linux/hash.h>
41#include <linux/log2.h>
42#include <linux/vmalloc.h>
43#include <linux/backing-dev.h>
44#include <linux/bitops.h>
45#include <linux/ratelimit.h>
46
47#define CREATE_TRACE_POINTS
48#include <trace/events/jbd2.h>
49
50#include <linux/uaccess.h>
51#include <asm/page.h>
52
53#ifdef CONFIG_JBD2_DEBUG
54ushort jbd2_journal_enable_debug __read_mostly;
55EXPORT_SYMBOL(jbd2_journal_enable_debug);
56
57module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
58MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
59#endif
60
61EXPORT_SYMBOL(jbd2_journal_extend);
62EXPORT_SYMBOL(jbd2_journal_stop);
63EXPORT_SYMBOL(jbd2_journal_lock_updates);
64EXPORT_SYMBOL(jbd2_journal_unlock_updates);
65EXPORT_SYMBOL(jbd2_journal_get_write_access);
66EXPORT_SYMBOL(jbd2_journal_get_create_access);
67EXPORT_SYMBOL(jbd2_journal_get_undo_access);
68EXPORT_SYMBOL(jbd2_journal_set_triggers);
69EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
70EXPORT_SYMBOL(jbd2_journal_forget);
71#if 0
72EXPORT_SYMBOL(journal_sync_buffer);
73#endif
74EXPORT_SYMBOL(jbd2_journal_flush);
75EXPORT_SYMBOL(jbd2_journal_revoke);
76
77EXPORT_SYMBOL(jbd2_journal_init_dev);
78EXPORT_SYMBOL(jbd2_journal_init_inode);
79EXPORT_SYMBOL(jbd2_journal_check_used_features);
80EXPORT_SYMBOL(jbd2_journal_check_available_features);
81EXPORT_SYMBOL(jbd2_journal_set_features);
82EXPORT_SYMBOL(jbd2_journal_load);
83EXPORT_SYMBOL(jbd2_journal_destroy);
84EXPORT_SYMBOL(jbd2_journal_abort);
85EXPORT_SYMBOL(jbd2_journal_errno);
86EXPORT_SYMBOL(jbd2_journal_ack_err);
87EXPORT_SYMBOL(jbd2_journal_clear_err);
88EXPORT_SYMBOL(jbd2_log_wait_commit);
89EXPORT_SYMBOL(jbd2_log_start_commit);
90EXPORT_SYMBOL(jbd2_journal_start_commit);
91EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
92EXPORT_SYMBOL(jbd2_journal_wipe);
93EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
94EXPORT_SYMBOL(jbd2_journal_invalidatepage);
95EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
96EXPORT_SYMBOL(jbd2_journal_force_commit);
97EXPORT_SYMBOL(jbd2_journal_inode_add_write);
98EXPORT_SYMBOL(jbd2_journal_inode_add_wait);
99EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
100EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
101EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
102EXPORT_SYMBOL(jbd2_inode_cache);
103
104static void __journal_abort_soft (journal_t *journal, int errno);
105static int jbd2_journal_create_slab(size_t slab_size);
106
107#ifdef CONFIG_JBD2_DEBUG
108void __jbd2_debug(int level, const char *file, const char *func,
109 unsigned int line, const char *fmt, ...)
110{
111 struct va_format vaf;
112 va_list args;
113
114 if (level > jbd2_journal_enable_debug)
115 return;
116 va_start(args, fmt);
117 vaf.fmt = fmt;
118 vaf.va = &args;
119 printk(KERN_DEBUG "%s: (%s, %u): %pV\n", file, func, line, &vaf);
120 va_end(args);
121}
122EXPORT_SYMBOL(__jbd2_debug);
123#endif
124
125/* Checksumming functions */
126static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
127{
128 if (!jbd2_journal_has_csum_v2or3_feature(j))
129 return 1;
130
131 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
132}
133
134static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
135{
136 __u32 csum;
137 __be32 old_csum;
138
139 old_csum = sb->s_checksum;
140 sb->s_checksum = 0;
141 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
142 sb->s_checksum = old_csum;
143
144 return cpu_to_be32(csum);
145}
146
147static int jbd2_superblock_csum_verify(journal_t *j, journal_superblock_t *sb)
148{
149 if (!jbd2_journal_has_csum_v2or3(j))
150 return 1;
151
152 return sb->s_checksum == jbd2_superblock_csum(j, sb);
153}
154
155static void jbd2_superblock_csum_set(journal_t *j, journal_superblock_t *sb)
156{
157 if (!jbd2_journal_has_csum_v2or3(j))
158 return;
159
160 sb->s_checksum = jbd2_superblock_csum(j, sb);
161}
162
163/*
164 * Helper function used to manage commit timeouts
165 */
166
167static void commit_timeout(unsigned long __data)
168{
169 struct task_struct * p = (struct task_struct *) __data;
170
171 wake_up_process(p);
172}
173
174/*
175 * kjournald2: The main thread function used to manage a logging device
176 * journal.
177 *
178 * This kernel thread is responsible for two things:
179 *
180 * 1) COMMIT: Every so often we need to commit the current state of the
181 * filesystem to disk. The journal thread is responsible for writing
182 * all of the metadata buffers to disk.
183 *
184 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
185 * of the data in that part of the log has been rewritten elsewhere on
186 * the disk. Flushing these old buffers to reclaim space in the log is
187 * known as checkpointing, and this thread is responsible for that job.
188 */
189
190static int kjournald2(void *arg)
191{
192 journal_t *journal = arg;
193 transaction_t *transaction;
194
195 /*
196 * Set up an interval timer which can be used to trigger a commit wakeup
197 * after the commit interval expires
198 */
199 setup_timer(&journal->j_commit_timer, commit_timeout,
200 (unsigned long)current);
201
202 set_freezable();
203
204 /* Record that the journal thread is running */
205 journal->j_task = current;
206 wake_up(&journal->j_wait_done_commit);
207
208 /*
209 * And now, wait forever for commit wakeup events.
210 */
211 write_lock(&journal->j_state_lock);
212
213loop:
214 if (journal->j_flags & JBD2_UNMOUNT)
215 goto end_loop;
216
217 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
218 journal->j_commit_sequence, journal->j_commit_request);
219
220 if (journal->j_commit_sequence != journal->j_commit_request) {
221 jbd_debug(1, "OK, requests differ\n");
222 write_unlock(&journal->j_state_lock);
223 del_timer_sync(&journal->j_commit_timer);
224 jbd2_journal_commit_transaction(journal);
225 write_lock(&journal->j_state_lock);
226 goto loop;
227 }
228
229 wake_up(&journal->j_wait_done_commit);
230 if (freezing(current)) {
231 /*
232 * The simpler the better. Flushing journal isn't a
233 * good idea, because that depends on threads that may
234 * be already stopped.
235 */
236 jbd_debug(1, "Now suspending kjournald2\n");
237 write_unlock(&journal->j_state_lock);
238 try_to_freeze();
239 write_lock(&journal->j_state_lock);
240 } else {
241 /*
242 * We assume on resume that commits are already there,
243 * so we don't sleep
244 */
245 DEFINE_WAIT(wait);
246 int should_sleep = 1;
247
248 prepare_to_wait(&journal->j_wait_commit, &wait,
249 TASK_INTERRUPTIBLE);
250 if (journal->j_commit_sequence != journal->j_commit_request)
251 should_sleep = 0;
252 transaction = journal->j_running_transaction;
253 if (transaction && time_after_eq(jiffies,
254 transaction->t_expires))
255 should_sleep = 0;
256 if (journal->j_flags & JBD2_UNMOUNT)
257 should_sleep = 0;
258 if (should_sleep) {
259 write_unlock(&journal->j_state_lock);
260 schedule();
261 write_lock(&journal->j_state_lock);
262 }
263 finish_wait(&journal->j_wait_commit, &wait);
264 }
265
266 jbd_debug(1, "kjournald2 wakes\n");
267
268 /*
269 * Were we woken up by a commit wakeup event?
270 */
271 transaction = journal->j_running_transaction;
272 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
273 journal->j_commit_request = transaction->t_tid;
274 jbd_debug(1, "woke because of timeout\n");
275 }
276 goto loop;
277
278end_loop:
279 write_unlock(&journal->j_state_lock);
280 del_timer_sync(&journal->j_commit_timer);
281 journal->j_task = NULL;
282 wake_up(&journal->j_wait_done_commit);
283 jbd_debug(1, "Journal thread exiting.\n");
284 return 0;
285}
286
287static int jbd2_journal_start_thread(journal_t *journal)
288{
289 struct task_struct *t;
290
291 t = kthread_run(kjournald2, journal, "jbd2/%s",
292 journal->j_devname);
293 if (IS_ERR(t))
294 return PTR_ERR(t);
295
296 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
297 return 0;
298}
299
300static void journal_kill_thread(journal_t *journal)
301{
302 write_lock(&journal->j_state_lock);
303 journal->j_flags |= JBD2_UNMOUNT;
304
305 while (journal->j_task) {
306 write_unlock(&journal->j_state_lock);
307 wake_up(&journal->j_wait_commit);
308 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
309 write_lock(&journal->j_state_lock);
310 }
311 write_unlock(&journal->j_state_lock);
312}
313
314/*
315 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
316 *
317 * Writes a metadata buffer to a given disk block. The actual IO is not
318 * performed but a new buffer_head is constructed which labels the data
319 * to be written with the correct destination disk block.
320 *
321 * Any magic-number escaping which needs to be done will cause a
322 * copy-out here. If the buffer happens to start with the
323 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
324 * magic number is only written to the log for descripter blocks. In
325 * this case, we copy the data and replace the first word with 0, and we
326 * return a result code which indicates that this buffer needs to be
327 * marked as an escaped buffer in the corresponding log descriptor
328 * block. The missing word can then be restored when the block is read
329 * during recovery.
330 *
331 * If the source buffer has already been modified by a new transaction
332 * since we took the last commit snapshot, we use the frozen copy of
333 * that data for IO. If we end up using the existing buffer_head's data
334 * for the write, then we have to make sure nobody modifies it while the
335 * IO is in progress. do_get_write_access() handles this.
336 *
337 * The function returns a pointer to the buffer_head to be used for IO.
338 *
339 *
340 * Return value:
341 * <0: Error
342 * >=0: Finished OK
343 *
344 * On success:
345 * Bit 0 set == escape performed on the data
346 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
347 */
348
349int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
350 struct journal_head *jh_in,
351 struct buffer_head **bh_out,
352 sector_t blocknr)
353{
354 int need_copy_out = 0;
355 int done_copy_out = 0;
356 int do_escape = 0;
357 char *mapped_data;
358 struct buffer_head *new_bh;
359 struct page *new_page;
360 unsigned int new_offset;
361 struct buffer_head *bh_in = jh2bh(jh_in);
362 journal_t *journal = transaction->t_journal;
363
364 /*
365 * The buffer really shouldn't be locked: only the current committing
366 * transaction is allowed to write it, so nobody else is allowed
367 * to do any IO.
368 *
369 * akpm: except if we're journalling data, and write() output is
370 * also part of a shared mapping, and another thread has
371 * decided to launch a writepage() against this buffer.
372 */
373 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
374
375 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
376
377 /* keep subsequent assertions sane */
378 atomic_set(&new_bh->b_count, 1);
379
380 jbd_lock_bh_state(bh_in);
381repeat:
382 /*
383 * If a new transaction has already done a buffer copy-out, then
384 * we use that version of the data for the commit.
385 */
386 if (jh_in->b_frozen_data) {
387 done_copy_out = 1;
388 new_page = virt_to_page(jh_in->b_frozen_data);
389 new_offset = offset_in_page(jh_in->b_frozen_data);
390 } else {
391 new_page = jh2bh(jh_in)->b_page;
392 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
393 }
394
395 mapped_data = kmap_atomic(new_page);
396 /*
397 * Fire data frozen trigger if data already wasn't frozen. Do this
398 * before checking for escaping, as the trigger may modify the magic
399 * offset. If a copy-out happens afterwards, it will have the correct
400 * data in the buffer.
401 */
402 if (!done_copy_out)
403 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
404 jh_in->b_triggers);
405
406 /*
407 * Check for escaping
408 */
409 if (*((__be32 *)(mapped_data + new_offset)) ==
410 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
411 need_copy_out = 1;
412 do_escape = 1;
413 }
414 kunmap_atomic(mapped_data);
415
416 /*
417 * Do we need to do a data copy?
418 */
419 if (need_copy_out && !done_copy_out) {
420 char *tmp;
421
422 jbd_unlock_bh_state(bh_in);
423 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
424 if (!tmp) {
425 brelse(new_bh);
426 return -ENOMEM;
427 }
428 jbd_lock_bh_state(bh_in);
429 if (jh_in->b_frozen_data) {
430 jbd2_free(tmp, bh_in->b_size);
431 goto repeat;
432 }
433
434 jh_in->b_frozen_data = tmp;
435 mapped_data = kmap_atomic(new_page);
436 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
437 kunmap_atomic(mapped_data);
438
439 new_page = virt_to_page(tmp);
440 new_offset = offset_in_page(tmp);
441 done_copy_out = 1;
442
443 /*
444 * This isn't strictly necessary, as we're using frozen
445 * data for the escaping, but it keeps consistency with
446 * b_frozen_data usage.
447 */
448 jh_in->b_frozen_triggers = jh_in->b_triggers;
449 }
450
451 /*
452 * Did we need to do an escaping? Now we've done all the
453 * copying, we can finally do so.
454 */
455 if (do_escape) {
456 mapped_data = kmap_atomic(new_page);
457 *((unsigned int *)(mapped_data + new_offset)) = 0;
458 kunmap_atomic(mapped_data);
459 }
460
461 set_bh_page(new_bh, new_page, new_offset);
462 new_bh->b_size = bh_in->b_size;
463 new_bh->b_bdev = journal->j_dev;
464 new_bh->b_blocknr = blocknr;
465 new_bh->b_private = bh_in;
466 set_buffer_mapped(new_bh);
467 set_buffer_dirty(new_bh);
468
469 *bh_out = new_bh;
470
471 /*
472 * The to-be-written buffer needs to get moved to the io queue,
473 * and the original buffer whose contents we are shadowing or
474 * copying is moved to the transaction's shadow queue.
475 */
476 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
477 spin_lock(&journal->j_list_lock);
478 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
479 spin_unlock(&journal->j_list_lock);
480 set_buffer_shadow(bh_in);
481 jbd_unlock_bh_state(bh_in);
482
483 return do_escape | (done_copy_out << 1);
484}
485
486/*
487 * Allocation code for the journal file. Manage the space left in the
488 * journal, so that we can begin checkpointing when appropriate.
489 */
490
491/*
492 * Called with j_state_lock locked for writing.
493 * Returns true if a transaction commit was started.
494 */
495int __jbd2_log_start_commit(journal_t *journal, tid_t target)
496{
497 /* Return if the txn has already requested to be committed */
498 if (journal->j_commit_request == target)
499 return 0;
500
501 /*
502 * The only transaction we can possibly wait upon is the
503 * currently running transaction (if it exists). Otherwise,
504 * the target tid must be an old one.
505 */
506 if (journal->j_running_transaction &&
507 journal->j_running_transaction->t_tid == target) {
508 /*
509 * We want a new commit: OK, mark the request and wakeup the
510 * commit thread. We do _not_ do the commit ourselves.
511 */
512
513 journal->j_commit_request = target;
514 jbd_debug(1, "JBD2: requesting commit %d/%d\n",
515 journal->j_commit_request,
516 journal->j_commit_sequence);
517 journal->j_running_transaction->t_requested = jiffies;
518 wake_up(&journal->j_wait_commit);
519 return 1;
520 } else if (!tid_geq(journal->j_commit_request, target))
521 /* This should never happen, but if it does, preserve
522 the evidence before kjournald goes into a loop and
523 increments j_commit_sequence beyond all recognition. */
524 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
525 journal->j_commit_request,
526 journal->j_commit_sequence,
527 target, journal->j_running_transaction ?
528 journal->j_running_transaction->t_tid : 0);
529 return 0;
530}
531
532int jbd2_log_start_commit(journal_t *journal, tid_t tid)
533{
534 int ret;
535
536 write_lock(&journal->j_state_lock);
537 ret = __jbd2_log_start_commit(journal, tid);
538 write_unlock(&journal->j_state_lock);
539 return ret;
540}
541
542/*
543 * Force and wait any uncommitted transactions. We can only force the running
544 * transaction if we don't have an active handle, otherwise, we will deadlock.
545 * Returns: <0 in case of error,
546 * 0 if nothing to commit,
547 * 1 if transaction was successfully committed.
548 */
549static int __jbd2_journal_force_commit(journal_t *journal)
550{
551 transaction_t *transaction = NULL;
552 tid_t tid;
553 int need_to_start = 0, ret = 0;
554
555 read_lock(&journal->j_state_lock);
556 if (journal->j_running_transaction && !current->journal_info) {
557 transaction = journal->j_running_transaction;
558 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
559 need_to_start = 1;
560 } else if (journal->j_committing_transaction)
561 transaction = journal->j_committing_transaction;
562
563 if (!transaction) {
564 /* Nothing to commit */
565 read_unlock(&journal->j_state_lock);
566 return 0;
567 }
568 tid = transaction->t_tid;
569 read_unlock(&journal->j_state_lock);
570 if (need_to_start)
571 jbd2_log_start_commit(journal, tid);
572 ret = jbd2_log_wait_commit(journal, tid);
573 if (!ret)
574 ret = 1;
575
576 return ret;
577}
578
579/**
580 * Force and wait upon a commit if the calling process is not within
581 * transaction. This is used for forcing out undo-protected data which contains
582 * bitmaps, when the fs is running out of space.
583 *
584 * @journal: journal to force
585 * Returns true if progress was made.
586 */
587int jbd2_journal_force_commit_nested(journal_t *journal)
588{
589 int ret;
590
591 ret = __jbd2_journal_force_commit(journal);
592 return ret > 0;
593}
594
595/**
596 * int journal_force_commit() - force any uncommitted transactions
597 * @journal: journal to force
598 *
599 * Caller want unconditional commit. We can only force the running transaction
600 * if we don't have an active handle, otherwise, we will deadlock.
601 */
602int jbd2_journal_force_commit(journal_t *journal)
603{
604 int ret;
605
606 J_ASSERT(!current->journal_info);
607 ret = __jbd2_journal_force_commit(journal);
608 if (ret > 0)
609 ret = 0;
610 return ret;
611}
612
613/*
614 * Start a commit of the current running transaction (if any). Returns true
615 * if a transaction is going to be committed (or is currently already
616 * committing), and fills its tid in at *ptid
617 */
618int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
619{
620 int ret = 0;
621
622 write_lock(&journal->j_state_lock);
623 if (journal->j_running_transaction) {
624 tid_t tid = journal->j_running_transaction->t_tid;
625
626 __jbd2_log_start_commit(journal, tid);
627 /* There's a running transaction and we've just made sure
628 * it's commit has been scheduled. */
629 if (ptid)
630 *ptid = tid;
631 ret = 1;
632 } else if (journal->j_committing_transaction) {
633 /*
634 * If commit has been started, then we have to wait for
635 * completion of that transaction.
636 */
637 if (ptid)
638 *ptid = journal->j_committing_transaction->t_tid;
639 ret = 1;
640 }
641 write_unlock(&journal->j_state_lock);
642 return ret;
643}
644
645/*
646 * Return 1 if a given transaction has not yet sent barrier request
647 * connected with a transaction commit. If 0 is returned, transaction
648 * may or may not have sent the barrier. Used to avoid sending barrier
649 * twice in common cases.
650 */
651int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
652{
653 int ret = 0;
654 transaction_t *commit_trans;
655
656 if (!(journal->j_flags & JBD2_BARRIER))
657 return 0;
658 read_lock(&journal->j_state_lock);
659 /* Transaction already committed? */
660 if (tid_geq(journal->j_commit_sequence, tid))
661 goto out;
662 commit_trans = journal->j_committing_transaction;
663 if (!commit_trans || commit_trans->t_tid != tid) {
664 ret = 1;
665 goto out;
666 }
667 /*
668 * Transaction is being committed and we already proceeded to
669 * submitting a flush to fs partition?
670 */
671 if (journal->j_fs_dev != journal->j_dev) {
672 if (!commit_trans->t_need_data_flush ||
673 commit_trans->t_state >= T_COMMIT_DFLUSH)
674 goto out;
675 } else {
676 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
677 goto out;
678 }
679 ret = 1;
680out:
681 read_unlock(&journal->j_state_lock);
682 return ret;
683}
684EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
685
686/*
687 * Wait for a specified commit to complete.
688 * The caller may not hold the journal lock.
689 */
690int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
691{
692 int err = 0;
693
694 jbd2_might_wait_for_commit(journal);
695 read_lock(&journal->j_state_lock);
696#ifdef CONFIG_JBD2_DEBUG
697 if (!tid_geq(journal->j_commit_request, tid)) {
698 printk(KERN_ERR
699 "%s: error: j_commit_request=%d, tid=%d\n",
700 __func__, journal->j_commit_request, tid);
701 }
702#endif
703 while (tid_gt(tid, journal->j_commit_sequence)) {
704 jbd_debug(1, "JBD2: want %d, j_commit_sequence=%d\n",
705 tid, journal->j_commit_sequence);
706 read_unlock(&journal->j_state_lock);
707 wake_up(&journal->j_wait_commit);
708 wait_event(journal->j_wait_done_commit,
709 !tid_gt(tid, journal->j_commit_sequence));
710 read_lock(&journal->j_state_lock);
711 }
712 read_unlock(&journal->j_state_lock);
713
714 if (unlikely(is_journal_aborted(journal)))
715 err = -EIO;
716 return err;
717}
718
719/*
720 * When this function returns the transaction corresponding to tid
721 * will be completed. If the transaction has currently running, start
722 * committing that transaction before waiting for it to complete. If
723 * the transaction id is stale, it is by definition already completed,
724 * so just return SUCCESS.
725 */
726int jbd2_complete_transaction(journal_t *journal, tid_t tid)
727{
728 int need_to_wait = 1;
729
730 read_lock(&journal->j_state_lock);
731 if (journal->j_running_transaction &&
732 journal->j_running_transaction->t_tid == tid) {
733 if (journal->j_commit_request != tid) {
734 /* transaction not yet started, so request it */
735 read_unlock(&journal->j_state_lock);
736 jbd2_log_start_commit(journal, tid);
737 goto wait_commit;
738 }
739 } else if (!(journal->j_committing_transaction &&
740 journal->j_committing_transaction->t_tid == tid))
741 need_to_wait = 0;
742 read_unlock(&journal->j_state_lock);
743 if (!need_to_wait)
744 return 0;
745wait_commit:
746 return jbd2_log_wait_commit(journal, tid);
747}
748EXPORT_SYMBOL(jbd2_complete_transaction);
749
750/*
751 * Log buffer allocation routines:
752 */
753
754int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
755{
756 unsigned long blocknr;
757
758 write_lock(&journal->j_state_lock);
759 J_ASSERT(journal->j_free > 1);
760
761 blocknr = journal->j_head;
762 journal->j_head++;
763 journal->j_free--;
764 if (journal->j_head == journal->j_last)
765 journal->j_head = journal->j_first;
766 write_unlock(&journal->j_state_lock);
767 return jbd2_journal_bmap(journal, blocknr, retp);
768}
769
770/*
771 * Conversion of logical to physical block numbers for the journal
772 *
773 * On external journals the journal blocks are identity-mapped, so
774 * this is a no-op. If needed, we can use j_blk_offset - everything is
775 * ready.
776 */
777int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
778 unsigned long long *retp)
779{
780 int err = 0;
781 unsigned long long ret;
782
783 if (journal->j_inode) {
784 ret = bmap(journal->j_inode, blocknr);
785 if (ret)
786 *retp = ret;
787 else {
788 printk(KERN_ALERT "%s: journal block not found "
789 "at offset %lu on %s\n",
790 __func__, blocknr, journal->j_devname);
791 err = -EIO;
792 __journal_abort_soft(journal, err);
793 }
794 } else {
795 *retp = blocknr; /* +journal->j_blk_offset */
796 }
797 return err;
798}
799
800/*
801 * We play buffer_head aliasing tricks to write data/metadata blocks to
802 * the journal without copying their contents, but for journal
803 * descriptor blocks we do need to generate bona fide buffers.
804 *
805 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
806 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
807 * But we don't bother doing that, so there will be coherency problems with
808 * mmaps of blockdevs which hold live JBD-controlled filesystems.
809 */
810struct buffer_head *
811jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
812{
813 journal_t *journal = transaction->t_journal;
814 struct buffer_head *bh;
815 unsigned long long blocknr;
816 journal_header_t *header;
817 int err;
818
819 err = jbd2_journal_next_log_block(journal, &blocknr);
820
821 if (err)
822 return NULL;
823
824 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
825 if (!bh)
826 return NULL;
827 lock_buffer(bh);
828 memset(bh->b_data, 0, journal->j_blocksize);
829 header = (journal_header_t *)bh->b_data;
830 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
831 header->h_blocktype = cpu_to_be32(type);
832 header->h_sequence = cpu_to_be32(transaction->t_tid);
833 set_buffer_uptodate(bh);
834 unlock_buffer(bh);
835 BUFFER_TRACE(bh, "return this buffer");
836 return bh;
837}
838
839void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
840{
841 struct jbd2_journal_block_tail *tail;
842 __u32 csum;
843
844 if (!jbd2_journal_has_csum_v2or3(j))
845 return;
846
847 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
848 sizeof(struct jbd2_journal_block_tail));
849 tail->t_checksum = 0;
850 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
851 tail->t_checksum = cpu_to_be32(csum);
852}
853
854/*
855 * Return tid of the oldest transaction in the journal and block in the journal
856 * where the transaction starts.
857 *
858 * If the journal is now empty, return which will be the next transaction ID
859 * we will write and where will that transaction start.
860 *
861 * The return value is 0 if journal tail cannot be pushed any further, 1 if
862 * it can.
863 */
864int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
865 unsigned long *block)
866{
867 transaction_t *transaction;
868 int ret;
869
870 read_lock(&journal->j_state_lock);
871 spin_lock(&journal->j_list_lock);
872 transaction = journal->j_checkpoint_transactions;
873 if (transaction) {
874 *tid = transaction->t_tid;
875 *block = transaction->t_log_start;
876 } else if ((transaction = journal->j_committing_transaction) != NULL) {
877 *tid = transaction->t_tid;
878 *block = transaction->t_log_start;
879 } else if ((transaction = journal->j_running_transaction) != NULL) {
880 *tid = transaction->t_tid;
881 *block = journal->j_head;
882 } else {
883 *tid = journal->j_transaction_sequence;
884 *block = journal->j_head;
885 }
886 ret = tid_gt(*tid, journal->j_tail_sequence);
887 spin_unlock(&journal->j_list_lock);
888 read_unlock(&journal->j_state_lock);
889
890 return ret;
891}
892
893/*
894 * Update information in journal structure and in on disk journal superblock
895 * about log tail. This function does not check whether information passed in
896 * really pushes log tail further. It's responsibility of the caller to make
897 * sure provided log tail information is valid (e.g. by holding
898 * j_checkpoint_mutex all the time between computing log tail and calling this
899 * function as is the case with jbd2_cleanup_journal_tail()).
900 *
901 * Requires j_checkpoint_mutex
902 */
903int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
904{
905 unsigned long freed;
906 int ret;
907
908 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
909
910 /*
911 * We cannot afford for write to remain in drive's caches since as
912 * soon as we update j_tail, next transaction can start reusing journal
913 * space and if we lose sb update during power failure we'd replay
914 * old transaction with possibly newly overwritten data.
915 */
916 ret = jbd2_journal_update_sb_log_tail(journal, tid, block, REQ_FUA);
917 if (ret)
918 goto out;
919
920 write_lock(&journal->j_state_lock);
921 freed = block - journal->j_tail;
922 if (block < journal->j_tail)
923 freed += journal->j_last - journal->j_first;
924
925 trace_jbd2_update_log_tail(journal, tid, block, freed);
926 jbd_debug(1,
927 "Cleaning journal tail from %d to %d (offset %lu), "
928 "freeing %lu\n",
929 journal->j_tail_sequence, tid, block, freed);
930
931 journal->j_free += freed;
932 journal->j_tail_sequence = tid;
933 journal->j_tail = block;
934 write_unlock(&journal->j_state_lock);
935
936out:
937 return ret;
938}
939
940/*
941 * This is a variaon of __jbd2_update_log_tail which checks for validity of
942 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
943 * with other threads updating log tail.
944 */
945void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
946{
947 mutex_lock(&journal->j_checkpoint_mutex);
948 if (tid_gt(tid, journal->j_tail_sequence))
949 __jbd2_update_log_tail(journal, tid, block);
950 mutex_unlock(&journal->j_checkpoint_mutex);
951}
952
953struct jbd2_stats_proc_session {
954 journal_t *journal;
955 struct transaction_stats_s *stats;
956 int start;
957 int max;
958};
959
960static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
961{
962 return *pos ? NULL : SEQ_START_TOKEN;
963}
964
965static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
966{
967 return NULL;
968}
969
970static int jbd2_seq_info_show(struct seq_file *seq, void *v)
971{
972 struct jbd2_stats_proc_session *s = seq->private;
973
974 if (v != SEQ_START_TOKEN)
975 return 0;
976 seq_printf(seq, "%lu transactions (%lu requested), "
977 "each up to %u blocks\n",
978 s->stats->ts_tid, s->stats->ts_requested,
979 s->journal->j_max_transaction_buffers);
980 if (s->stats->ts_tid == 0)
981 return 0;
982 seq_printf(seq, "average: \n %ums waiting for transaction\n",
983 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
984 seq_printf(seq, " %ums request delay\n",
985 (s->stats->ts_requested == 0) ? 0 :
986 jiffies_to_msecs(s->stats->run.rs_request_delay /
987 s->stats->ts_requested));
988 seq_printf(seq, " %ums running transaction\n",
989 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
990 seq_printf(seq, " %ums transaction was being locked\n",
991 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
992 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
993 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
994 seq_printf(seq, " %ums logging transaction\n",
995 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
996 seq_printf(seq, " %lluus average transaction commit time\n",
997 div_u64(s->journal->j_average_commit_time, 1000));
998 seq_printf(seq, " %lu handles per transaction\n",
999 s->stats->run.rs_handle_count / s->stats->ts_tid);
1000 seq_printf(seq, " %lu blocks per transaction\n",
1001 s->stats->run.rs_blocks / s->stats->ts_tid);
1002 seq_printf(seq, " %lu logged blocks per transaction\n",
1003 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1004 return 0;
1005}
1006
1007static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1008{
1009}
1010
1011static const struct seq_operations jbd2_seq_info_ops = {
1012 .start = jbd2_seq_info_start,
1013 .next = jbd2_seq_info_next,
1014 .stop = jbd2_seq_info_stop,
1015 .show = jbd2_seq_info_show,
1016};
1017
1018static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1019{
1020 journal_t *journal = PDE_DATA(inode);
1021 struct jbd2_stats_proc_session *s;
1022 int rc, size;
1023
1024 s = kmalloc(sizeof(*s), GFP_KERNEL);
1025 if (s == NULL)
1026 return -ENOMEM;
1027 size = sizeof(struct transaction_stats_s);
1028 s->stats = kmalloc(size, GFP_KERNEL);
1029 if (s->stats == NULL) {
1030 kfree(s);
1031 return -ENOMEM;
1032 }
1033 spin_lock(&journal->j_history_lock);
1034 memcpy(s->stats, &journal->j_stats, size);
1035 s->journal = journal;
1036 spin_unlock(&journal->j_history_lock);
1037
1038 rc = seq_open(file, &jbd2_seq_info_ops);
1039 if (rc == 0) {
1040 struct seq_file *m = file->private_data;
1041 m->private = s;
1042 } else {
1043 kfree(s->stats);
1044 kfree(s);
1045 }
1046 return rc;
1047
1048}
1049
1050static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1051{
1052 struct seq_file *seq = file->private_data;
1053 struct jbd2_stats_proc_session *s = seq->private;
1054 kfree(s->stats);
1055 kfree(s);
1056 return seq_release(inode, file);
1057}
1058
1059static const struct file_operations jbd2_seq_info_fops = {
1060 .owner = THIS_MODULE,
1061 .open = jbd2_seq_info_open,
1062 .read = seq_read,
1063 .llseek = seq_lseek,
1064 .release = jbd2_seq_info_release,
1065};
1066
1067static struct proc_dir_entry *proc_jbd2_stats;
1068
1069static void jbd2_stats_proc_init(journal_t *journal)
1070{
1071 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1072 if (journal->j_proc_entry) {
1073 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1074 &jbd2_seq_info_fops, journal);
1075 }
1076}
1077
1078static void jbd2_stats_proc_exit(journal_t *journal)
1079{
1080 remove_proc_entry("info", journal->j_proc_entry);
1081 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1082}
1083
1084/*
1085 * Management for journal control blocks: functions to create and
1086 * destroy journal_t structures, and to initialise and read existing
1087 * journal blocks from disk. */
1088
1089/* First: create and setup a journal_t object in memory. We initialise
1090 * very few fields yet: that has to wait until we have created the
1091 * journal structures from from scratch, or loaded them from disk. */
1092
1093static journal_t *journal_init_common(struct block_device *bdev,
1094 struct block_device *fs_dev,
1095 unsigned long long start, int len, int blocksize)
1096{
1097 static struct lock_class_key jbd2_trans_commit_key;
1098 journal_t *journal;
1099 int err;
1100 struct buffer_head *bh;
1101 int n;
1102
1103 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1104 if (!journal)
1105 return NULL;
1106
1107 init_waitqueue_head(&journal->j_wait_transaction_locked);
1108 init_waitqueue_head(&journal->j_wait_done_commit);
1109 init_waitqueue_head(&journal->j_wait_commit);
1110 init_waitqueue_head(&journal->j_wait_updates);
1111 init_waitqueue_head(&journal->j_wait_reserved);
1112 mutex_init(&journal->j_barrier);
1113 mutex_init(&journal->j_checkpoint_mutex);
1114 spin_lock_init(&journal->j_revoke_lock);
1115 spin_lock_init(&journal->j_list_lock);
1116 rwlock_init(&journal->j_state_lock);
1117
1118 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1119 journal->j_min_batch_time = 0;
1120 journal->j_max_batch_time = 15000; /* 15ms */
1121 atomic_set(&journal->j_reserved_credits, 0);
1122
1123 /* The journal is marked for error until we succeed with recovery! */
1124 journal->j_flags = JBD2_ABORT;
1125
1126 /* Set up a default-sized revoke table for the new mount. */
1127 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1128 if (err)
1129 goto err_cleanup;
1130
1131 spin_lock_init(&journal->j_history_lock);
1132
1133 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1134 &jbd2_trans_commit_key, 0);
1135
1136 /* journal descriptor can store up to n blocks -bzzz */
1137 journal->j_blocksize = blocksize;
1138 journal->j_dev = bdev;
1139 journal->j_fs_dev = fs_dev;
1140 journal->j_blk_offset = start;
1141 journal->j_maxlen = len;
1142 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1143 journal->j_wbufsize = n;
1144 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1145 GFP_KERNEL);
1146 if (!journal->j_wbuf)
1147 goto err_cleanup;
1148
1149 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1150 if (!bh) {
1151 pr_err("%s: Cannot get buffer for journal superblock\n",
1152 __func__);
1153 goto err_cleanup;
1154 }
1155 journal->j_sb_buffer = bh;
1156 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1157
1158 return journal;
1159
1160err_cleanup:
1161 kfree(journal->j_wbuf);
1162 jbd2_journal_destroy_revoke(journal);
1163 kfree(journal);
1164 return NULL;
1165}
1166
1167/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1168 *
1169 * Create a journal structure assigned some fixed set of disk blocks to
1170 * the journal. We don't actually touch those disk blocks yet, but we
1171 * need to set up all of the mapping information to tell the journaling
1172 * system where the journal blocks are.
1173 *
1174 */
1175
1176/**
1177 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1178 * @bdev: Block device on which to create the journal
1179 * @fs_dev: Device which hold journalled filesystem for this journal.
1180 * @start: Block nr Start of journal.
1181 * @len: Length of the journal in blocks.
1182 * @blocksize: blocksize of journalling device
1183 *
1184 * Returns: a newly created journal_t *
1185 *
1186 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1187 * range of blocks on an arbitrary block device.
1188 *
1189 */
1190journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1191 struct block_device *fs_dev,
1192 unsigned long long start, int len, int blocksize)
1193{
1194 journal_t *journal;
1195
1196 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1197 if (!journal)
1198 return NULL;
1199
1200 bdevname(journal->j_dev, journal->j_devname);
1201 strreplace(journal->j_devname, '/', '!');
1202 jbd2_stats_proc_init(journal);
1203
1204 return journal;
1205}
1206
1207/**
1208 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1209 * @inode: An inode to create the journal in
1210 *
1211 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1212 * the journal. The inode must exist already, must support bmap() and
1213 * must have all data blocks preallocated.
1214 */
1215journal_t *jbd2_journal_init_inode(struct inode *inode)
1216{
1217 journal_t *journal;
1218 char *p;
1219 unsigned long long blocknr;
1220
1221 blocknr = bmap(inode, 0);
1222 if (!blocknr) {
1223 pr_err("%s: Cannot locate journal superblock\n",
1224 __func__);
1225 return NULL;
1226 }
1227
1228 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1229 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1230 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1231
1232 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1233 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1234 inode->i_sb->s_blocksize);
1235 if (!journal)
1236 return NULL;
1237
1238 journal->j_inode = inode;
1239 bdevname(journal->j_dev, journal->j_devname);
1240 p = strreplace(journal->j_devname, '/', '!');
1241 sprintf(p, "-%lu", journal->j_inode->i_ino);
1242 jbd2_stats_proc_init(journal);
1243
1244 return journal;
1245}
1246
1247/*
1248 * If the journal init or create aborts, we need to mark the journal
1249 * superblock as being NULL to prevent the journal destroy from writing
1250 * back a bogus superblock.
1251 */
1252static void journal_fail_superblock (journal_t *journal)
1253{
1254 struct buffer_head *bh = journal->j_sb_buffer;
1255 brelse(bh);
1256 journal->j_sb_buffer = NULL;
1257}
1258
1259/*
1260 * Given a journal_t structure, initialise the various fields for
1261 * startup of a new journaling session. We use this both when creating
1262 * a journal, and after recovering an old journal to reset it for
1263 * subsequent use.
1264 */
1265
1266static int journal_reset(journal_t *journal)
1267{
1268 journal_superblock_t *sb = journal->j_superblock;
1269 unsigned long long first, last;
1270
1271 first = be32_to_cpu(sb->s_first);
1272 last = be32_to_cpu(sb->s_maxlen);
1273 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1274 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1275 first, last);
1276 journal_fail_superblock(journal);
1277 return -EINVAL;
1278 }
1279
1280 journal->j_first = first;
1281 journal->j_last = last;
1282
1283 journal->j_head = first;
1284 journal->j_tail = first;
1285 journal->j_free = last - first;
1286
1287 journal->j_tail_sequence = journal->j_transaction_sequence;
1288 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1289 journal->j_commit_request = journal->j_commit_sequence;
1290
1291 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1292
1293 /*
1294 * As a special case, if the on-disk copy is already marked as needing
1295 * no recovery (s_start == 0), then we can safely defer the superblock
1296 * update until the next commit by setting JBD2_FLUSHED. This avoids
1297 * attempting a write to a potential-readonly device.
1298 */
1299 if (sb->s_start == 0) {
1300 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1301 "(start %ld, seq %d, errno %d)\n",
1302 journal->j_tail, journal->j_tail_sequence,
1303 journal->j_errno);
1304 journal->j_flags |= JBD2_FLUSHED;
1305 } else {
1306 /* Lock here to make assertions happy... */
1307 mutex_lock(&journal->j_checkpoint_mutex);
1308 /*
1309 * Update log tail information. We use REQ_FUA since new
1310 * transaction will start reusing journal space and so we
1311 * must make sure information about current log tail is on
1312 * disk before that.
1313 */
1314 jbd2_journal_update_sb_log_tail(journal,
1315 journal->j_tail_sequence,
1316 journal->j_tail,
1317 REQ_FUA);
1318 mutex_unlock(&journal->j_checkpoint_mutex);
1319 }
1320 return jbd2_journal_start_thread(journal);
1321}
1322
1323static int jbd2_write_superblock(journal_t *journal, int write_flags)
1324{
1325 struct buffer_head *bh = journal->j_sb_buffer;
1326 journal_superblock_t *sb = journal->j_superblock;
1327 int ret;
1328
1329 trace_jbd2_write_superblock(journal, write_flags);
1330 if (!(journal->j_flags & JBD2_BARRIER))
1331 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1332 lock_buffer(bh);
1333 if (buffer_write_io_error(bh)) {
1334 /*
1335 * Oh, dear. A previous attempt to write the journal
1336 * superblock failed. This could happen because the
1337 * USB device was yanked out. Or it could happen to
1338 * be a transient write error and maybe the block will
1339 * be remapped. Nothing we can do but to retry the
1340 * write and hope for the best.
1341 */
1342 printk(KERN_ERR "JBD2: previous I/O error detected "
1343 "for journal superblock update for %s.\n",
1344 journal->j_devname);
1345 clear_buffer_write_io_error(bh);
1346 set_buffer_uptodate(bh);
1347 }
1348 jbd2_superblock_csum_set(journal, sb);
1349 get_bh(bh);
1350 bh->b_end_io = end_buffer_write_sync;
1351 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1352 wait_on_buffer(bh);
1353 if (buffer_write_io_error(bh)) {
1354 clear_buffer_write_io_error(bh);
1355 set_buffer_uptodate(bh);
1356 ret = -EIO;
1357 }
1358 if (ret) {
1359 printk(KERN_ERR "JBD2: Error %d detected when updating "
1360 "journal superblock for %s.\n", ret,
1361 journal->j_devname);
1362 jbd2_journal_abort(journal, ret);
1363 }
1364
1365 return ret;
1366}
1367
1368/**
1369 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1370 * @journal: The journal to update.
1371 * @tail_tid: TID of the new transaction at the tail of the log
1372 * @tail_block: The first block of the transaction at the tail of the log
1373 * @write_op: With which operation should we write the journal sb
1374 *
1375 * Update a journal's superblock information about log tail and write it to
1376 * disk, waiting for the IO to complete.
1377 */
1378int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1379 unsigned long tail_block, int write_op)
1380{
1381 journal_superblock_t *sb = journal->j_superblock;
1382 int ret;
1383
1384 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1385 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1386 tail_block, tail_tid);
1387
1388 sb->s_sequence = cpu_to_be32(tail_tid);
1389 sb->s_start = cpu_to_be32(tail_block);
1390
1391 ret = jbd2_write_superblock(journal, write_op);
1392 if (ret)
1393 goto out;
1394
1395 /* Log is no longer empty */
1396 write_lock(&journal->j_state_lock);
1397 WARN_ON(!sb->s_sequence);
1398 journal->j_flags &= ~JBD2_FLUSHED;
1399 write_unlock(&journal->j_state_lock);
1400
1401out:
1402 return ret;
1403}
1404
1405/**
1406 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1407 * @journal: The journal to update.
1408 * @write_op: With which operation should we write the journal sb
1409 *
1410 * Update a journal's dynamic superblock fields to show that journal is empty.
1411 * Write updated superblock to disk waiting for IO to complete.
1412 */
1413static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1414{
1415 journal_superblock_t *sb = journal->j_superblock;
1416
1417 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1418 read_lock(&journal->j_state_lock);
1419 /* Is it already empty? */
1420 if (sb->s_start == 0) {
1421 read_unlock(&journal->j_state_lock);
1422 return;
1423 }
1424 jbd_debug(1, "JBD2: Marking journal as empty (seq %d)\n",
1425 journal->j_tail_sequence);
1426
1427 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1428 sb->s_start = cpu_to_be32(0);
1429 read_unlock(&journal->j_state_lock);
1430
1431 jbd2_write_superblock(journal, write_op);
1432
1433 /* Log is no longer empty */
1434 write_lock(&journal->j_state_lock);
1435 journal->j_flags |= JBD2_FLUSHED;
1436 write_unlock(&journal->j_state_lock);
1437}
1438
1439
1440/**
1441 * jbd2_journal_update_sb_errno() - Update error in the journal.
1442 * @journal: The journal to update.
1443 *
1444 * Update a journal's errno. Write updated superblock to disk waiting for IO
1445 * to complete.
1446 */
1447void jbd2_journal_update_sb_errno(journal_t *journal)
1448{
1449 journal_superblock_t *sb = journal->j_superblock;
1450
1451 read_lock(&journal->j_state_lock);
1452 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n",
1453 journal->j_errno);
1454 sb->s_errno = cpu_to_be32(journal->j_errno);
1455 read_unlock(&journal->j_state_lock);
1456
1457 jbd2_write_superblock(journal, REQ_FUA);
1458}
1459EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1460
1461/*
1462 * Read the superblock for a given journal, performing initial
1463 * validation of the format.
1464 */
1465static int journal_get_superblock(journal_t *journal)
1466{
1467 struct buffer_head *bh;
1468 journal_superblock_t *sb;
1469 int err = -EIO;
1470
1471 bh = journal->j_sb_buffer;
1472
1473 J_ASSERT(bh != NULL);
1474 if (!buffer_uptodate(bh)) {
1475 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1476 wait_on_buffer(bh);
1477 if (!buffer_uptodate(bh)) {
1478 printk(KERN_ERR
1479 "JBD2: IO error reading journal superblock\n");
1480 goto out;
1481 }
1482 }
1483
1484 if (buffer_verified(bh))
1485 return 0;
1486
1487 sb = journal->j_superblock;
1488
1489 err = -EINVAL;
1490
1491 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1492 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1493 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1494 goto out;
1495 }
1496
1497 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1498 case JBD2_SUPERBLOCK_V1:
1499 journal->j_format_version = 1;
1500 break;
1501 case JBD2_SUPERBLOCK_V2:
1502 journal->j_format_version = 2;
1503 break;
1504 default:
1505 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1506 goto out;
1507 }
1508
1509 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1510 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1511 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1512 printk(KERN_WARNING "JBD2: journal file too short\n");
1513 goto out;
1514 }
1515
1516 if (be32_to_cpu(sb->s_first) == 0 ||
1517 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1518 printk(KERN_WARNING
1519 "JBD2: Invalid start block of journal: %u\n",
1520 be32_to_cpu(sb->s_first));
1521 goto out;
1522 }
1523
1524 if (jbd2_has_feature_csum2(journal) &&
1525 jbd2_has_feature_csum3(journal)) {
1526 /* Can't have checksum v2 and v3 at the same time! */
1527 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1528 "at the same time!\n");
1529 goto out;
1530 }
1531
1532 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1533 jbd2_has_feature_checksum(journal)) {
1534 /* Can't have checksum v1 and v2 on at the same time! */
1535 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1536 "at the same time!\n");
1537 goto out;
1538 }
1539
1540 if (!jbd2_verify_csum_type(journal, sb)) {
1541 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1542 goto out;
1543 }
1544
1545 /* Load the checksum driver */
1546 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1547 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1548 if (IS_ERR(journal->j_chksum_driver)) {
1549 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1550 err = PTR_ERR(journal->j_chksum_driver);
1551 journal->j_chksum_driver = NULL;
1552 goto out;
1553 }
1554 }
1555
1556 /* Check superblock checksum */
1557 if (!jbd2_superblock_csum_verify(journal, sb)) {
1558 printk(KERN_ERR "JBD2: journal checksum error\n");
1559 err = -EFSBADCRC;
1560 goto out;
1561 }
1562
1563 /* Precompute checksum seed for all metadata */
1564 if (jbd2_journal_has_csum_v2or3(journal))
1565 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1566 sizeof(sb->s_uuid));
1567
1568 set_buffer_verified(bh);
1569
1570 return 0;
1571
1572out:
1573 journal_fail_superblock(journal);
1574 return err;
1575}
1576
1577/*
1578 * Load the on-disk journal superblock and read the key fields into the
1579 * journal_t.
1580 */
1581
1582static int load_superblock(journal_t *journal)
1583{
1584 int err;
1585 journal_superblock_t *sb;
1586
1587 err = journal_get_superblock(journal);
1588 if (err)
1589 return err;
1590
1591 sb = journal->j_superblock;
1592
1593 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1594 journal->j_tail = be32_to_cpu(sb->s_start);
1595 journal->j_first = be32_to_cpu(sb->s_first);
1596 journal->j_last = be32_to_cpu(sb->s_maxlen);
1597 journal->j_errno = be32_to_cpu(sb->s_errno);
1598
1599 return 0;
1600}
1601
1602
1603/**
1604 * int jbd2_journal_load() - Read journal from disk.
1605 * @journal: Journal to act on.
1606 *
1607 * Given a journal_t structure which tells us which disk blocks contain
1608 * a journal, read the journal from disk to initialise the in-memory
1609 * structures.
1610 */
1611int jbd2_journal_load(journal_t *journal)
1612{
1613 int err;
1614 journal_superblock_t *sb;
1615
1616 err = load_superblock(journal);
1617 if (err)
1618 return err;
1619
1620 sb = journal->j_superblock;
1621 /* If this is a V2 superblock, then we have to check the
1622 * features flags on it. */
1623
1624 if (journal->j_format_version >= 2) {
1625 if ((sb->s_feature_ro_compat &
1626 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1627 (sb->s_feature_incompat &
1628 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1629 printk(KERN_WARNING
1630 "JBD2: Unrecognised features on journal\n");
1631 return -EINVAL;
1632 }
1633 }
1634
1635 /*
1636 * Create a slab for this blocksize
1637 */
1638 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1639 if (err)
1640 return err;
1641
1642 /* Let the recovery code check whether it needs to recover any
1643 * data from the journal. */
1644 if (jbd2_journal_recover(journal))
1645 goto recovery_error;
1646
1647 if (journal->j_failed_commit) {
1648 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1649 "is corrupt.\n", journal->j_failed_commit,
1650 journal->j_devname);
1651 return -EFSCORRUPTED;
1652 }
1653
1654 /* OK, we've finished with the dynamic journal bits:
1655 * reinitialise the dynamic contents of the superblock in memory
1656 * and reset them on disk. */
1657 if (journal_reset(journal))
1658 goto recovery_error;
1659
1660 journal->j_flags &= ~JBD2_ABORT;
1661 journal->j_flags |= JBD2_LOADED;
1662 return 0;
1663
1664recovery_error:
1665 printk(KERN_WARNING "JBD2: recovery failed\n");
1666 return -EIO;
1667}
1668
1669/**
1670 * void jbd2_journal_destroy() - Release a journal_t structure.
1671 * @journal: Journal to act on.
1672 *
1673 * Release a journal_t structure once it is no longer in use by the
1674 * journaled object.
1675 * Return <0 if we couldn't clean up the journal.
1676 */
1677int jbd2_journal_destroy(journal_t *journal)
1678{
1679 int err = 0;
1680
1681 /* Wait for the commit thread to wake up and die. */
1682 journal_kill_thread(journal);
1683
1684 /* Force a final log commit */
1685 if (journal->j_running_transaction)
1686 jbd2_journal_commit_transaction(journal);
1687
1688 /* Force any old transactions to disk */
1689
1690 /* Totally anal locking here... */
1691 spin_lock(&journal->j_list_lock);
1692 while (journal->j_checkpoint_transactions != NULL) {
1693 spin_unlock(&journal->j_list_lock);
1694 mutex_lock(&journal->j_checkpoint_mutex);
1695 err = jbd2_log_do_checkpoint(journal);
1696 mutex_unlock(&journal->j_checkpoint_mutex);
1697 /*
1698 * If checkpointing failed, just free the buffers to avoid
1699 * looping forever
1700 */
1701 if (err) {
1702 jbd2_journal_destroy_checkpoint(journal);
1703 spin_lock(&journal->j_list_lock);
1704 break;
1705 }
1706 spin_lock(&journal->j_list_lock);
1707 }
1708
1709 J_ASSERT(journal->j_running_transaction == NULL);
1710 J_ASSERT(journal->j_committing_transaction == NULL);
1711 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1712 spin_unlock(&journal->j_list_lock);
1713
1714 if (journal->j_sb_buffer) {
1715 if (!is_journal_aborted(journal)) {
1716 mutex_lock(&journal->j_checkpoint_mutex);
1717
1718 write_lock(&journal->j_state_lock);
1719 journal->j_tail_sequence =
1720 ++journal->j_transaction_sequence;
1721 write_unlock(&journal->j_state_lock);
1722
1723 jbd2_mark_journal_empty(journal,
1724 REQ_PREFLUSH | REQ_FUA);
1725 mutex_unlock(&journal->j_checkpoint_mutex);
1726 } else
1727 err = -EIO;
1728 brelse(journal->j_sb_buffer);
1729 }
1730
1731 if (journal->j_proc_entry)
1732 jbd2_stats_proc_exit(journal);
1733 iput(journal->j_inode);
1734 if (journal->j_revoke)
1735 jbd2_journal_destroy_revoke(journal);
1736 if (journal->j_chksum_driver)
1737 crypto_free_shash(journal->j_chksum_driver);
1738 kfree(journal->j_wbuf);
1739 kfree(journal);
1740
1741 return err;
1742}
1743
1744
1745/**
1746 *int jbd2_journal_check_used_features () - Check if features specified are used.
1747 * @journal: Journal to check.
1748 * @compat: bitmask of compatible features
1749 * @ro: bitmask of features that force read-only mount
1750 * @incompat: bitmask of incompatible features
1751 *
1752 * Check whether the journal uses all of a given set of
1753 * features. Return true (non-zero) if it does.
1754 **/
1755
1756int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1757 unsigned long ro, unsigned long incompat)
1758{
1759 journal_superblock_t *sb;
1760
1761 if (!compat && !ro && !incompat)
1762 return 1;
1763 /* Load journal superblock if it is not loaded yet. */
1764 if (journal->j_format_version == 0 &&
1765 journal_get_superblock(journal) != 0)
1766 return 0;
1767 if (journal->j_format_version == 1)
1768 return 0;
1769
1770 sb = journal->j_superblock;
1771
1772 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1773 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1774 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1775 return 1;
1776
1777 return 0;
1778}
1779
1780/**
1781 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1782 * @journal: Journal to check.
1783 * @compat: bitmask of compatible features
1784 * @ro: bitmask of features that force read-only mount
1785 * @incompat: bitmask of incompatible features
1786 *
1787 * Check whether the journaling code supports the use of
1788 * all of a given set of features on this journal. Return true
1789 * (non-zero) if it can. */
1790
1791int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1792 unsigned long ro, unsigned long incompat)
1793{
1794 if (!compat && !ro && !incompat)
1795 return 1;
1796
1797 /* We can support any known requested features iff the
1798 * superblock is in version 2. Otherwise we fail to support any
1799 * extended sb features. */
1800
1801 if (journal->j_format_version != 2)
1802 return 0;
1803
1804 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1805 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1806 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1807 return 1;
1808
1809 return 0;
1810}
1811
1812/**
1813 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1814 * @journal: Journal to act on.
1815 * @compat: bitmask of compatible features
1816 * @ro: bitmask of features that force read-only mount
1817 * @incompat: bitmask of incompatible features
1818 *
1819 * Mark a given journal feature as present on the
1820 * superblock. Returns true if the requested features could be set.
1821 *
1822 */
1823
1824int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1825 unsigned long ro, unsigned long incompat)
1826{
1827#define INCOMPAT_FEATURE_ON(f) \
1828 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1829#define COMPAT_FEATURE_ON(f) \
1830 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1831 journal_superblock_t *sb;
1832
1833 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1834 return 1;
1835
1836 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1837 return 0;
1838
1839 /* If enabling v2 checksums, turn on v3 instead */
1840 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1841 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1842 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1843 }
1844
1845 /* Asking for checksumming v3 and v1? Only give them v3. */
1846 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1847 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1848 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1849
1850 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1851 compat, ro, incompat);
1852
1853 sb = journal->j_superblock;
1854
1855 /* If enabling v3 checksums, update superblock */
1856 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1857 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1858 sb->s_feature_compat &=
1859 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1860
1861 /* Load the checksum driver */
1862 if (journal->j_chksum_driver == NULL) {
1863 journal->j_chksum_driver = crypto_alloc_shash("crc32c",
1864 0, 0);
1865 if (IS_ERR(journal->j_chksum_driver)) {
1866 printk(KERN_ERR "JBD2: Cannot load crc32c "
1867 "driver.\n");
1868 journal->j_chksum_driver = NULL;
1869 return 0;
1870 }
1871
1872 /* Precompute checksum seed for all metadata */
1873 journal->j_csum_seed = jbd2_chksum(journal, ~0,
1874 sb->s_uuid,
1875 sizeof(sb->s_uuid));
1876 }
1877 }
1878
1879 /* If enabling v1 checksums, downgrade superblock */
1880 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1881 sb->s_feature_incompat &=
1882 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1883 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1884
1885 sb->s_feature_compat |= cpu_to_be32(compat);
1886 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1887 sb->s_feature_incompat |= cpu_to_be32(incompat);
1888
1889 return 1;
1890#undef COMPAT_FEATURE_ON
1891#undef INCOMPAT_FEATURE_ON
1892}
1893
1894/*
1895 * jbd2_journal_clear_features () - Clear a given journal feature in the
1896 * superblock
1897 * @journal: Journal to act on.
1898 * @compat: bitmask of compatible features
1899 * @ro: bitmask of features that force read-only mount
1900 * @incompat: bitmask of incompatible features
1901 *
1902 * Clear a given journal feature as present on the
1903 * superblock.
1904 */
1905void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1906 unsigned long ro, unsigned long incompat)
1907{
1908 journal_superblock_t *sb;
1909
1910 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1911 compat, ro, incompat);
1912
1913 sb = journal->j_superblock;
1914
1915 sb->s_feature_compat &= ~cpu_to_be32(compat);
1916 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1917 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1918}
1919EXPORT_SYMBOL(jbd2_journal_clear_features);
1920
1921/**
1922 * int jbd2_journal_flush () - Flush journal
1923 * @journal: Journal to act on.
1924 *
1925 * Flush all data for a given journal to disk and empty the journal.
1926 * Filesystems can use this when remounting readonly to ensure that
1927 * recovery does not need to happen on remount.
1928 */
1929
1930int jbd2_journal_flush(journal_t *journal)
1931{
1932 int err = 0;
1933 transaction_t *transaction = NULL;
1934
1935 write_lock(&journal->j_state_lock);
1936
1937 /* Force everything buffered to the log... */
1938 if (journal->j_running_transaction) {
1939 transaction = journal->j_running_transaction;
1940 __jbd2_log_start_commit(journal, transaction->t_tid);
1941 } else if (journal->j_committing_transaction)
1942 transaction = journal->j_committing_transaction;
1943
1944 /* Wait for the log commit to complete... */
1945 if (transaction) {
1946 tid_t tid = transaction->t_tid;
1947
1948 write_unlock(&journal->j_state_lock);
1949 jbd2_log_wait_commit(journal, tid);
1950 } else {
1951 write_unlock(&journal->j_state_lock);
1952 }
1953
1954 /* ...and flush everything in the log out to disk. */
1955 spin_lock(&journal->j_list_lock);
1956 while (!err && journal->j_checkpoint_transactions != NULL) {
1957 spin_unlock(&journal->j_list_lock);
1958 mutex_lock(&journal->j_checkpoint_mutex);
1959 err = jbd2_log_do_checkpoint(journal);
1960 mutex_unlock(&journal->j_checkpoint_mutex);
1961 spin_lock(&journal->j_list_lock);
1962 }
1963 spin_unlock(&journal->j_list_lock);
1964
1965 if (is_journal_aborted(journal))
1966 return -EIO;
1967
1968 mutex_lock(&journal->j_checkpoint_mutex);
1969 if (!err) {
1970 err = jbd2_cleanup_journal_tail(journal);
1971 if (err < 0) {
1972 mutex_unlock(&journal->j_checkpoint_mutex);
1973 goto out;
1974 }
1975 err = 0;
1976 }
1977
1978 /* Finally, mark the journal as really needing no recovery.
1979 * This sets s_start==0 in the underlying superblock, which is
1980 * the magic code for a fully-recovered superblock. Any future
1981 * commits of data to the journal will restore the current
1982 * s_start value. */
1983 jbd2_mark_journal_empty(journal, REQ_FUA);
1984 mutex_unlock(&journal->j_checkpoint_mutex);
1985 write_lock(&journal->j_state_lock);
1986 J_ASSERT(!journal->j_running_transaction);
1987 J_ASSERT(!journal->j_committing_transaction);
1988 J_ASSERT(!journal->j_checkpoint_transactions);
1989 J_ASSERT(journal->j_head == journal->j_tail);
1990 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1991 write_unlock(&journal->j_state_lock);
1992out:
1993 return err;
1994}
1995
1996/**
1997 * int jbd2_journal_wipe() - Wipe journal contents
1998 * @journal: Journal to act on.
1999 * @write: flag (see below)
2000 *
2001 * Wipe out all of the contents of a journal, safely. This will produce
2002 * a warning if the journal contains any valid recovery information.
2003 * Must be called between journal_init_*() and jbd2_journal_load().
2004 *
2005 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2006 * we merely suppress recovery.
2007 */
2008
2009int jbd2_journal_wipe(journal_t *journal, int write)
2010{
2011 int err = 0;
2012
2013 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2014
2015 err = load_superblock(journal);
2016 if (err)
2017 return err;
2018
2019 if (!journal->j_tail)
2020 goto no_recovery;
2021
2022 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2023 write ? "Clearing" : "Ignoring");
2024
2025 err = jbd2_journal_skip_recovery(journal);
2026 if (write) {
2027 /* Lock to make assertions happy... */
2028 mutex_lock(&journal->j_checkpoint_mutex);
2029 jbd2_mark_journal_empty(journal, REQ_FUA);
2030 mutex_unlock(&journal->j_checkpoint_mutex);
2031 }
2032
2033 no_recovery:
2034 return err;
2035}
2036
2037/*
2038 * Journal abort has very specific semantics, which we describe
2039 * for journal abort.
2040 *
2041 * Two internal functions, which provide abort to the jbd layer
2042 * itself are here.
2043 */
2044
2045/*
2046 * Quick version for internal journal use (doesn't lock the journal).
2047 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2048 * and don't attempt to make any other journal updates.
2049 */
2050void __jbd2_journal_abort_hard(journal_t *journal)
2051{
2052 transaction_t *transaction;
2053
2054 if (journal->j_flags & JBD2_ABORT)
2055 return;
2056
2057 printk(KERN_ERR "Aborting journal on device %s.\n",
2058 journal->j_devname);
2059
2060 write_lock(&journal->j_state_lock);
2061 journal->j_flags |= JBD2_ABORT;
2062 transaction = journal->j_running_transaction;
2063 if (transaction)
2064 __jbd2_log_start_commit(journal, transaction->t_tid);
2065 write_unlock(&journal->j_state_lock);
2066}
2067
2068/* Soft abort: record the abort error status in the journal superblock,
2069 * but don't do any other IO. */
2070static void __journal_abort_soft (journal_t *journal, int errno)
2071{
2072 if (journal->j_flags & JBD2_ABORT)
2073 return;
2074
2075 if (!journal->j_errno)
2076 journal->j_errno = errno;
2077
2078 __jbd2_journal_abort_hard(journal);
2079
2080 if (errno) {
2081 jbd2_journal_update_sb_errno(journal);
2082 write_lock(&journal->j_state_lock);
2083 journal->j_flags |= JBD2_REC_ERR;
2084 write_unlock(&journal->j_state_lock);
2085 }
2086}
2087
2088/**
2089 * void jbd2_journal_abort () - Shutdown the journal immediately.
2090 * @journal: the journal to shutdown.
2091 * @errno: an error number to record in the journal indicating
2092 * the reason for the shutdown.
2093 *
2094 * Perform a complete, immediate shutdown of the ENTIRE
2095 * journal (not of a single transaction). This operation cannot be
2096 * undone without closing and reopening the journal.
2097 *
2098 * The jbd2_journal_abort function is intended to support higher level error
2099 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2100 * mode.
2101 *
2102 * Journal abort has very specific semantics. Any existing dirty,
2103 * unjournaled buffers in the main filesystem will still be written to
2104 * disk by bdflush, but the journaling mechanism will be suspended
2105 * immediately and no further transaction commits will be honoured.
2106 *
2107 * Any dirty, journaled buffers will be written back to disk without
2108 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2109 * filesystem, but we _do_ attempt to leave as much data as possible
2110 * behind for fsck to use for cleanup.
2111 *
2112 * Any attempt to get a new transaction handle on a journal which is in
2113 * ABORT state will just result in an -EROFS error return. A
2114 * jbd2_journal_stop on an existing handle will return -EIO if we have
2115 * entered abort state during the update.
2116 *
2117 * Recursive transactions are not disturbed by journal abort until the
2118 * final jbd2_journal_stop, which will receive the -EIO error.
2119 *
2120 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2121 * which will be recorded (if possible) in the journal superblock. This
2122 * allows a client to record failure conditions in the middle of a
2123 * transaction without having to complete the transaction to record the
2124 * failure to disk. ext3_error, for example, now uses this
2125 * functionality.
2126 *
2127 * Errors which originate from within the journaling layer will NOT
2128 * supply an errno; a null errno implies that absolutely no further
2129 * writes are done to the journal (unless there are any already in
2130 * progress).
2131 *
2132 */
2133
2134void jbd2_journal_abort(journal_t *journal, int errno)
2135{
2136 __journal_abort_soft(journal, errno);
2137}
2138
2139/**
2140 * int jbd2_journal_errno () - returns the journal's error state.
2141 * @journal: journal to examine.
2142 *
2143 * This is the errno number set with jbd2_journal_abort(), the last
2144 * time the journal was mounted - if the journal was stopped
2145 * without calling abort this will be 0.
2146 *
2147 * If the journal has been aborted on this mount time -EROFS will
2148 * be returned.
2149 */
2150int jbd2_journal_errno(journal_t *journal)
2151{
2152 int err;
2153
2154 read_lock(&journal->j_state_lock);
2155 if (journal->j_flags & JBD2_ABORT)
2156 err = -EROFS;
2157 else
2158 err = journal->j_errno;
2159 read_unlock(&journal->j_state_lock);
2160 return err;
2161}
2162
2163/**
2164 * int jbd2_journal_clear_err () - clears the journal's error state
2165 * @journal: journal to act on.
2166 *
2167 * An error must be cleared or acked to take a FS out of readonly
2168 * mode.
2169 */
2170int jbd2_journal_clear_err(journal_t *journal)
2171{
2172 int err = 0;
2173
2174 write_lock(&journal->j_state_lock);
2175 if (journal->j_flags & JBD2_ABORT)
2176 err = -EROFS;
2177 else
2178 journal->j_errno = 0;
2179 write_unlock(&journal->j_state_lock);
2180 return err;
2181}
2182
2183/**
2184 * void jbd2_journal_ack_err() - Ack journal err.
2185 * @journal: journal to act on.
2186 *
2187 * An error must be cleared or acked to take a FS out of readonly
2188 * mode.
2189 */
2190void jbd2_journal_ack_err(journal_t *journal)
2191{
2192 write_lock(&journal->j_state_lock);
2193 if (journal->j_errno)
2194 journal->j_flags |= JBD2_ACK_ERR;
2195 write_unlock(&journal->j_state_lock);
2196}
2197
2198int jbd2_journal_blocks_per_page(struct inode *inode)
2199{
2200 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2201}
2202
2203/*
2204 * helper functions to deal with 32 or 64bit block numbers.
2205 */
2206size_t journal_tag_bytes(journal_t *journal)
2207{
2208 size_t sz;
2209
2210 if (jbd2_has_feature_csum3(journal))
2211 return sizeof(journal_block_tag3_t);
2212
2213 sz = sizeof(journal_block_tag_t);
2214
2215 if (jbd2_has_feature_csum2(journal))
2216 sz += sizeof(__u16);
2217
2218 if (jbd2_has_feature_64bit(journal))
2219 return sz;
2220 else
2221 return sz - sizeof(__u32);
2222}
2223
2224/*
2225 * JBD memory management
2226 *
2227 * These functions are used to allocate block-sized chunks of memory
2228 * used for making copies of buffer_head data. Very often it will be
2229 * page-sized chunks of data, but sometimes it will be in
2230 * sub-page-size chunks. (For example, 16k pages on Power systems
2231 * with a 4k block file system.) For blocks smaller than a page, we
2232 * use a SLAB allocator. There are slab caches for each block size,
2233 * which are allocated at mount time, if necessary, and we only free
2234 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2235 * this reason we don't need to a mutex to protect access to
2236 * jbd2_slab[] allocating or releasing memory; only in
2237 * jbd2_journal_create_slab().
2238 */
2239#define JBD2_MAX_SLABS 8
2240static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2241
2242static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2243 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2244 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2245};
2246
2247
2248static void jbd2_journal_destroy_slabs(void)
2249{
2250 int i;
2251
2252 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2253 if (jbd2_slab[i])
2254 kmem_cache_destroy(jbd2_slab[i]);
2255 jbd2_slab[i] = NULL;
2256 }
2257}
2258
2259static int jbd2_journal_create_slab(size_t size)
2260{
2261 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2262 int i = order_base_2(size) - 10;
2263 size_t slab_size;
2264
2265 if (size == PAGE_SIZE)
2266 return 0;
2267
2268 if (i >= JBD2_MAX_SLABS)
2269 return -EINVAL;
2270
2271 if (unlikely(i < 0))
2272 i = 0;
2273 mutex_lock(&jbd2_slab_create_mutex);
2274 if (jbd2_slab[i]) {
2275 mutex_unlock(&jbd2_slab_create_mutex);
2276 return 0; /* Already created */
2277 }
2278
2279 slab_size = 1 << (i+10);
2280 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2281 slab_size, 0, NULL);
2282 mutex_unlock(&jbd2_slab_create_mutex);
2283 if (!jbd2_slab[i]) {
2284 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2285 return -ENOMEM;
2286 }
2287 return 0;
2288}
2289
2290static struct kmem_cache *get_slab(size_t size)
2291{
2292 int i = order_base_2(size) - 10;
2293
2294 BUG_ON(i >= JBD2_MAX_SLABS);
2295 if (unlikely(i < 0))
2296 i = 0;
2297 BUG_ON(jbd2_slab[i] == NULL);
2298 return jbd2_slab[i];
2299}
2300
2301void *jbd2_alloc(size_t size, gfp_t flags)
2302{
2303 void *ptr;
2304
2305 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2306
2307 if (size < PAGE_SIZE)
2308 ptr = kmem_cache_alloc(get_slab(size), flags);
2309 else
2310 ptr = (void *)__get_free_pages(flags, get_order(size));
2311
2312 /* Check alignment; SLUB has gotten this wrong in the past,
2313 * and this can lead to user data corruption! */
2314 BUG_ON(((unsigned long) ptr) & (size-1));
2315
2316 return ptr;
2317}
2318
2319void jbd2_free(void *ptr, size_t size)
2320{
2321 if (size < PAGE_SIZE)
2322 kmem_cache_free(get_slab(size), ptr);
2323 else
2324 free_pages((unsigned long)ptr, get_order(size));
2325};
2326
2327/*
2328 * Journal_head storage management
2329 */
2330static struct kmem_cache *jbd2_journal_head_cache;
2331#ifdef CONFIG_JBD2_DEBUG
2332static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2333#endif
2334
2335static int jbd2_journal_init_journal_head_cache(void)
2336{
2337 int retval;
2338
2339 J_ASSERT(jbd2_journal_head_cache == NULL);
2340 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2341 sizeof(struct journal_head),
2342 0, /* offset */
2343 SLAB_TEMPORARY | SLAB_DESTROY_BY_RCU,
2344 NULL); /* ctor */
2345 retval = 0;
2346 if (!jbd2_journal_head_cache) {
2347 retval = -ENOMEM;
2348 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2349 }
2350 return retval;
2351}
2352
2353static void jbd2_journal_destroy_journal_head_cache(void)
2354{
2355 if (jbd2_journal_head_cache) {
2356 kmem_cache_destroy(jbd2_journal_head_cache);
2357 jbd2_journal_head_cache = NULL;
2358 }
2359}
2360
2361/*
2362 * journal_head splicing and dicing
2363 */
2364static struct journal_head *journal_alloc_journal_head(void)
2365{
2366 struct journal_head *ret;
2367
2368#ifdef CONFIG_JBD2_DEBUG
2369 atomic_inc(&nr_journal_heads);
2370#endif
2371 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2372 if (!ret) {
2373 jbd_debug(1, "out of memory for journal_head\n");
2374 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2375 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2376 GFP_NOFS | __GFP_NOFAIL);
2377 }
2378 return ret;
2379}
2380
2381static void journal_free_journal_head(struct journal_head *jh)
2382{
2383#ifdef CONFIG_JBD2_DEBUG
2384 atomic_dec(&nr_journal_heads);
2385 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2386#endif
2387 kmem_cache_free(jbd2_journal_head_cache, jh);
2388}
2389
2390/*
2391 * A journal_head is attached to a buffer_head whenever JBD has an
2392 * interest in the buffer.
2393 *
2394 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2395 * is set. This bit is tested in core kernel code where we need to take
2396 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2397 * there.
2398 *
2399 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2400 *
2401 * When a buffer has its BH_JBD bit set it is immune from being released by
2402 * core kernel code, mainly via ->b_count.
2403 *
2404 * A journal_head is detached from its buffer_head when the journal_head's
2405 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2406 * transaction (b_cp_transaction) hold their references to b_jcount.
2407 *
2408 * Various places in the kernel want to attach a journal_head to a buffer_head
2409 * _before_ attaching the journal_head to a transaction. To protect the
2410 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2411 * journal_head's b_jcount refcount by one. The caller must call
2412 * jbd2_journal_put_journal_head() to undo this.
2413 *
2414 * So the typical usage would be:
2415 *
2416 * (Attach a journal_head if needed. Increments b_jcount)
2417 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2418 * ...
2419 * (Get another reference for transaction)
2420 * jbd2_journal_grab_journal_head(bh);
2421 * jh->b_transaction = xxx;
2422 * (Put original reference)
2423 * jbd2_journal_put_journal_head(jh);
2424 */
2425
2426/*
2427 * Give a buffer_head a journal_head.
2428 *
2429 * May sleep.
2430 */
2431struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2432{
2433 struct journal_head *jh;
2434 struct journal_head *new_jh = NULL;
2435
2436repeat:
2437 if (!buffer_jbd(bh))
2438 new_jh = journal_alloc_journal_head();
2439
2440 jbd_lock_bh_journal_head(bh);
2441 if (buffer_jbd(bh)) {
2442 jh = bh2jh(bh);
2443 } else {
2444 J_ASSERT_BH(bh,
2445 (atomic_read(&bh->b_count) > 0) ||
2446 (bh->b_page && bh->b_page->mapping));
2447
2448 if (!new_jh) {
2449 jbd_unlock_bh_journal_head(bh);
2450 goto repeat;
2451 }
2452
2453 jh = new_jh;
2454 new_jh = NULL; /* We consumed it */
2455 set_buffer_jbd(bh);
2456 bh->b_private = jh;
2457 jh->b_bh = bh;
2458 get_bh(bh);
2459 BUFFER_TRACE(bh, "added journal_head");
2460 }
2461 jh->b_jcount++;
2462 jbd_unlock_bh_journal_head(bh);
2463 if (new_jh)
2464 journal_free_journal_head(new_jh);
2465 return bh->b_private;
2466}
2467
2468/*
2469 * Grab a ref against this buffer_head's journal_head. If it ended up not
2470 * having a journal_head, return NULL
2471 */
2472struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2473{
2474 struct journal_head *jh = NULL;
2475
2476 jbd_lock_bh_journal_head(bh);
2477 if (buffer_jbd(bh)) {
2478 jh = bh2jh(bh);
2479 jh->b_jcount++;
2480 }
2481 jbd_unlock_bh_journal_head(bh);
2482 return jh;
2483}
2484
2485static void __journal_remove_journal_head(struct buffer_head *bh)
2486{
2487 struct journal_head *jh = bh2jh(bh);
2488
2489 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2490 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2491 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2492 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2493 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2494 J_ASSERT_BH(bh, buffer_jbd(bh));
2495 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2496 BUFFER_TRACE(bh, "remove journal_head");
2497 if (jh->b_frozen_data) {
2498 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2499 jbd2_free(jh->b_frozen_data, bh->b_size);
2500 }
2501 if (jh->b_committed_data) {
2502 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2503 jbd2_free(jh->b_committed_data, bh->b_size);
2504 }
2505 bh->b_private = NULL;
2506 jh->b_bh = NULL; /* debug, really */
2507 clear_buffer_jbd(bh);
2508 journal_free_journal_head(jh);
2509}
2510
2511/*
2512 * Drop a reference on the passed journal_head. If it fell to zero then
2513 * release the journal_head from the buffer_head.
2514 */
2515void jbd2_journal_put_journal_head(struct journal_head *jh)
2516{
2517 struct buffer_head *bh = jh2bh(jh);
2518
2519 jbd_lock_bh_journal_head(bh);
2520 J_ASSERT_JH(jh, jh->b_jcount > 0);
2521 --jh->b_jcount;
2522 if (!jh->b_jcount) {
2523 __journal_remove_journal_head(bh);
2524 jbd_unlock_bh_journal_head(bh);
2525 __brelse(bh);
2526 } else
2527 jbd_unlock_bh_journal_head(bh);
2528}
2529
2530/*
2531 * Initialize jbd inode head
2532 */
2533void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2534{
2535 jinode->i_transaction = NULL;
2536 jinode->i_next_transaction = NULL;
2537 jinode->i_vfs_inode = inode;
2538 jinode->i_flags = 0;
2539 INIT_LIST_HEAD(&jinode->i_list);
2540}
2541
2542/*
2543 * Function to be called before we start removing inode from memory (i.e.,
2544 * clear_inode() is a fine place to be called from). It removes inode from
2545 * transaction's lists.
2546 */
2547void jbd2_journal_release_jbd_inode(journal_t *journal,
2548 struct jbd2_inode *jinode)
2549{
2550 if (!journal)
2551 return;
2552restart:
2553 spin_lock(&journal->j_list_lock);
2554 /* Is commit writing out inode - we have to wait */
2555 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2556 wait_queue_head_t *wq;
2557 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2558 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2559 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2560 spin_unlock(&journal->j_list_lock);
2561 schedule();
2562 finish_wait(wq, &wait.wait);
2563 goto restart;
2564 }
2565
2566 if (jinode->i_transaction) {
2567 list_del(&jinode->i_list);
2568 jinode->i_transaction = NULL;
2569 }
2570 spin_unlock(&journal->j_list_lock);
2571}
2572
2573
2574#ifdef CONFIG_PROC_FS
2575
2576#define JBD2_STATS_PROC_NAME "fs/jbd2"
2577
2578static void __init jbd2_create_jbd_stats_proc_entry(void)
2579{
2580 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2581}
2582
2583static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2584{
2585 if (proc_jbd2_stats)
2586 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2587}
2588
2589#else
2590
2591#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2592#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2593
2594#endif
2595
2596struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2597
2598static int __init jbd2_journal_init_handle_cache(void)
2599{
2600 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2601 if (jbd2_handle_cache == NULL) {
2602 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2603 return -ENOMEM;
2604 }
2605 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2606 if (jbd2_inode_cache == NULL) {
2607 printk(KERN_EMERG "JBD2: failed to create inode cache\n");
2608 kmem_cache_destroy(jbd2_handle_cache);
2609 return -ENOMEM;
2610 }
2611 return 0;
2612}
2613
2614static void jbd2_journal_destroy_handle_cache(void)
2615{
2616 if (jbd2_handle_cache)
2617 kmem_cache_destroy(jbd2_handle_cache);
2618 if (jbd2_inode_cache)
2619 kmem_cache_destroy(jbd2_inode_cache);
2620
2621}
2622
2623/*
2624 * Module startup and shutdown
2625 */
2626
2627static int __init journal_init_caches(void)
2628{
2629 int ret;
2630
2631 ret = jbd2_journal_init_revoke_caches();
2632 if (ret == 0)
2633 ret = jbd2_journal_init_journal_head_cache();
2634 if (ret == 0)
2635 ret = jbd2_journal_init_handle_cache();
2636 if (ret == 0)
2637 ret = jbd2_journal_init_transaction_cache();
2638 return ret;
2639}
2640
2641static void jbd2_journal_destroy_caches(void)
2642{
2643 jbd2_journal_destroy_revoke_caches();
2644 jbd2_journal_destroy_journal_head_cache();
2645 jbd2_journal_destroy_handle_cache();
2646 jbd2_journal_destroy_transaction_cache();
2647 jbd2_journal_destroy_slabs();
2648}
2649
2650static int __init journal_init(void)
2651{
2652 int ret;
2653
2654 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2655
2656 ret = journal_init_caches();
2657 if (ret == 0) {
2658 jbd2_create_jbd_stats_proc_entry();
2659 } else {
2660 jbd2_journal_destroy_caches();
2661 }
2662 return ret;
2663}
2664
2665static void __exit journal_exit(void)
2666{
2667#ifdef CONFIG_JBD2_DEBUG
2668 int n = atomic_read(&nr_journal_heads);
2669 if (n)
2670 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2671#endif
2672 jbd2_remove_jbd_stats_proc_entry();
2673 jbd2_journal_destroy_caches();
2674}
2675
2676MODULE_LICENSE("GPL");
2677module_init(journal_init);
2678module_exit(journal_exit);
2679
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/journal.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
15 *
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
20 */
21
22#include <linux/module.h>
23#include <linux/time.h>
24#include <linux/fs.h>
25#include <linux/jbd2.h>
26#include <linux/errno.h>
27#include <linux/slab.h>
28#include <linux/init.h>
29#include <linux/mm.h>
30#include <linux/freezer.h>
31#include <linux/pagemap.h>
32#include <linux/kthread.h>
33#include <linux/poison.h>
34#include <linux/proc_fs.h>
35#include <linux/seq_file.h>
36#include <linux/math64.h>
37#include <linux/hash.h>
38#include <linux/log2.h>
39#include <linux/vmalloc.h>
40#include <linux/backing-dev.h>
41#include <linux/bitops.h>
42#include <linux/ratelimit.h>
43#include <linux/sched/mm.h>
44
45#define CREATE_TRACE_POINTS
46#include <trace/events/jbd2.h>
47
48#include <linux/uaccess.h>
49#include <asm/page.h>
50
51#ifdef CONFIG_JBD2_DEBUG
52ushort jbd2_journal_enable_debug __read_mostly;
53EXPORT_SYMBOL(jbd2_journal_enable_debug);
54
55module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57#endif
58
59EXPORT_SYMBOL(jbd2_journal_extend);
60EXPORT_SYMBOL(jbd2_journal_stop);
61EXPORT_SYMBOL(jbd2_journal_lock_updates);
62EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63EXPORT_SYMBOL(jbd2_journal_get_write_access);
64EXPORT_SYMBOL(jbd2_journal_get_create_access);
65EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66EXPORT_SYMBOL(jbd2_journal_set_triggers);
67EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68EXPORT_SYMBOL(jbd2_journal_forget);
69EXPORT_SYMBOL(jbd2_journal_flush);
70EXPORT_SYMBOL(jbd2_journal_revoke);
71
72EXPORT_SYMBOL(jbd2_journal_init_dev);
73EXPORT_SYMBOL(jbd2_journal_init_inode);
74EXPORT_SYMBOL(jbd2_journal_check_used_features);
75EXPORT_SYMBOL(jbd2_journal_check_available_features);
76EXPORT_SYMBOL(jbd2_journal_set_features);
77EXPORT_SYMBOL(jbd2_journal_load);
78EXPORT_SYMBOL(jbd2_journal_destroy);
79EXPORT_SYMBOL(jbd2_journal_abort);
80EXPORT_SYMBOL(jbd2_journal_errno);
81EXPORT_SYMBOL(jbd2_journal_ack_err);
82EXPORT_SYMBOL(jbd2_journal_clear_err);
83EXPORT_SYMBOL(jbd2_log_wait_commit);
84EXPORT_SYMBOL(jbd2_log_start_commit);
85EXPORT_SYMBOL(jbd2_journal_start_commit);
86EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87EXPORT_SYMBOL(jbd2_journal_wipe);
88EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91EXPORT_SYMBOL(jbd2_journal_force_commit);
92EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97EXPORT_SYMBOL(jbd2_inode_cache);
98
99static int jbd2_journal_create_slab(size_t slab_size);
100
101#ifdef CONFIG_JBD2_DEBUG
102void __jbd2_debug(int level, const char *file, const char *func,
103 unsigned int line, const char *fmt, ...)
104{
105 struct va_format vaf;
106 va_list args;
107
108 if (level > jbd2_journal_enable_debug)
109 return;
110 va_start(args, fmt);
111 vaf.fmt = fmt;
112 vaf.va = &args;
113 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
114 va_end(args);
115}
116EXPORT_SYMBOL(__jbd2_debug);
117#endif
118
119/* Checksumming functions */
120static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
121{
122 if (!jbd2_journal_has_csum_v2or3_feature(j))
123 return 1;
124
125 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
126}
127
128static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
129{
130 __u32 csum;
131 __be32 old_csum;
132
133 old_csum = sb->s_checksum;
134 sb->s_checksum = 0;
135 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
136 sb->s_checksum = old_csum;
137
138 return cpu_to_be32(csum);
139}
140
141/*
142 * Helper function used to manage commit timeouts
143 */
144
145static void commit_timeout(struct timer_list *t)
146{
147 journal_t *journal = from_timer(journal, t, j_commit_timer);
148
149 wake_up_process(journal->j_task);
150}
151
152/*
153 * kjournald2: The main thread function used to manage a logging device
154 * journal.
155 *
156 * This kernel thread is responsible for two things:
157 *
158 * 1) COMMIT: Every so often we need to commit the current state of the
159 * filesystem to disk. The journal thread is responsible for writing
160 * all of the metadata buffers to disk.
161 *
162 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
163 * of the data in that part of the log has been rewritten elsewhere on
164 * the disk. Flushing these old buffers to reclaim space in the log is
165 * known as checkpointing, and this thread is responsible for that job.
166 */
167
168static int kjournald2(void *arg)
169{
170 journal_t *journal = arg;
171 transaction_t *transaction;
172
173 /*
174 * Set up an interval timer which can be used to trigger a commit wakeup
175 * after the commit interval expires
176 */
177 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
178
179 set_freezable();
180
181 /* Record that the journal thread is running */
182 journal->j_task = current;
183 wake_up(&journal->j_wait_done_commit);
184
185 /*
186 * Make sure that no allocations from this kernel thread will ever
187 * recurse to the fs layer because we are responsible for the
188 * transaction commit and any fs involvement might get stuck waiting for
189 * the trasn. commit.
190 */
191 memalloc_nofs_save();
192
193 /*
194 * And now, wait forever for commit wakeup events.
195 */
196 write_lock(&journal->j_state_lock);
197
198loop:
199 if (journal->j_flags & JBD2_UNMOUNT)
200 goto end_loop;
201
202 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
203 journal->j_commit_sequence, journal->j_commit_request);
204
205 if (journal->j_commit_sequence != journal->j_commit_request) {
206 jbd_debug(1, "OK, requests differ\n");
207 write_unlock(&journal->j_state_lock);
208 del_timer_sync(&journal->j_commit_timer);
209 jbd2_journal_commit_transaction(journal);
210 write_lock(&journal->j_state_lock);
211 goto loop;
212 }
213
214 wake_up(&journal->j_wait_done_commit);
215 if (freezing(current)) {
216 /*
217 * The simpler the better. Flushing journal isn't a
218 * good idea, because that depends on threads that may
219 * be already stopped.
220 */
221 jbd_debug(1, "Now suspending kjournald2\n");
222 write_unlock(&journal->j_state_lock);
223 try_to_freeze();
224 write_lock(&journal->j_state_lock);
225 } else {
226 /*
227 * We assume on resume that commits are already there,
228 * so we don't sleep
229 */
230 DEFINE_WAIT(wait);
231 int should_sleep = 1;
232
233 prepare_to_wait(&journal->j_wait_commit, &wait,
234 TASK_INTERRUPTIBLE);
235 if (journal->j_commit_sequence != journal->j_commit_request)
236 should_sleep = 0;
237 transaction = journal->j_running_transaction;
238 if (transaction && time_after_eq(jiffies,
239 transaction->t_expires))
240 should_sleep = 0;
241 if (journal->j_flags & JBD2_UNMOUNT)
242 should_sleep = 0;
243 if (should_sleep) {
244 write_unlock(&journal->j_state_lock);
245 schedule();
246 write_lock(&journal->j_state_lock);
247 }
248 finish_wait(&journal->j_wait_commit, &wait);
249 }
250
251 jbd_debug(1, "kjournald2 wakes\n");
252
253 /*
254 * Were we woken up by a commit wakeup event?
255 */
256 transaction = journal->j_running_transaction;
257 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
258 journal->j_commit_request = transaction->t_tid;
259 jbd_debug(1, "woke because of timeout\n");
260 }
261 goto loop;
262
263end_loop:
264 del_timer_sync(&journal->j_commit_timer);
265 journal->j_task = NULL;
266 wake_up(&journal->j_wait_done_commit);
267 jbd_debug(1, "Journal thread exiting.\n");
268 write_unlock(&journal->j_state_lock);
269 return 0;
270}
271
272static int jbd2_journal_start_thread(journal_t *journal)
273{
274 struct task_struct *t;
275
276 t = kthread_run(kjournald2, journal, "jbd2/%s",
277 journal->j_devname);
278 if (IS_ERR(t))
279 return PTR_ERR(t);
280
281 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
282 return 0;
283}
284
285static void journal_kill_thread(journal_t *journal)
286{
287 write_lock(&journal->j_state_lock);
288 journal->j_flags |= JBD2_UNMOUNT;
289
290 while (journal->j_task) {
291 write_unlock(&journal->j_state_lock);
292 wake_up(&journal->j_wait_commit);
293 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
294 write_lock(&journal->j_state_lock);
295 }
296 write_unlock(&journal->j_state_lock);
297}
298
299/*
300 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
301 *
302 * Writes a metadata buffer to a given disk block. The actual IO is not
303 * performed but a new buffer_head is constructed which labels the data
304 * to be written with the correct destination disk block.
305 *
306 * Any magic-number escaping which needs to be done will cause a
307 * copy-out here. If the buffer happens to start with the
308 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
309 * magic number is only written to the log for descripter blocks. In
310 * this case, we copy the data and replace the first word with 0, and we
311 * return a result code which indicates that this buffer needs to be
312 * marked as an escaped buffer in the corresponding log descriptor
313 * block. The missing word can then be restored when the block is read
314 * during recovery.
315 *
316 * If the source buffer has already been modified by a new transaction
317 * since we took the last commit snapshot, we use the frozen copy of
318 * that data for IO. If we end up using the existing buffer_head's data
319 * for the write, then we have to make sure nobody modifies it while the
320 * IO is in progress. do_get_write_access() handles this.
321 *
322 * The function returns a pointer to the buffer_head to be used for IO.
323 *
324 *
325 * Return value:
326 * <0: Error
327 * >=0: Finished OK
328 *
329 * On success:
330 * Bit 0 set == escape performed on the data
331 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
332 */
333
334int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
335 struct journal_head *jh_in,
336 struct buffer_head **bh_out,
337 sector_t blocknr)
338{
339 int need_copy_out = 0;
340 int done_copy_out = 0;
341 int do_escape = 0;
342 char *mapped_data;
343 struct buffer_head *new_bh;
344 struct page *new_page;
345 unsigned int new_offset;
346 struct buffer_head *bh_in = jh2bh(jh_in);
347 journal_t *journal = transaction->t_journal;
348
349 /*
350 * The buffer really shouldn't be locked: only the current committing
351 * transaction is allowed to write it, so nobody else is allowed
352 * to do any IO.
353 *
354 * akpm: except if we're journalling data, and write() output is
355 * also part of a shared mapping, and another thread has
356 * decided to launch a writepage() against this buffer.
357 */
358 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
359
360 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
361
362 /* keep subsequent assertions sane */
363 atomic_set(&new_bh->b_count, 1);
364
365 spin_lock(&jh_in->b_state_lock);
366repeat:
367 /*
368 * If a new transaction has already done a buffer copy-out, then
369 * we use that version of the data for the commit.
370 */
371 if (jh_in->b_frozen_data) {
372 done_copy_out = 1;
373 new_page = virt_to_page(jh_in->b_frozen_data);
374 new_offset = offset_in_page(jh_in->b_frozen_data);
375 } else {
376 new_page = jh2bh(jh_in)->b_page;
377 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
378 }
379
380 mapped_data = kmap_atomic(new_page);
381 /*
382 * Fire data frozen trigger if data already wasn't frozen. Do this
383 * before checking for escaping, as the trigger may modify the magic
384 * offset. If a copy-out happens afterwards, it will have the correct
385 * data in the buffer.
386 */
387 if (!done_copy_out)
388 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
389 jh_in->b_triggers);
390
391 /*
392 * Check for escaping
393 */
394 if (*((__be32 *)(mapped_data + new_offset)) ==
395 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
396 need_copy_out = 1;
397 do_escape = 1;
398 }
399 kunmap_atomic(mapped_data);
400
401 /*
402 * Do we need to do a data copy?
403 */
404 if (need_copy_out && !done_copy_out) {
405 char *tmp;
406
407 spin_unlock(&jh_in->b_state_lock);
408 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
409 if (!tmp) {
410 brelse(new_bh);
411 return -ENOMEM;
412 }
413 spin_lock(&jh_in->b_state_lock);
414 if (jh_in->b_frozen_data) {
415 jbd2_free(tmp, bh_in->b_size);
416 goto repeat;
417 }
418
419 jh_in->b_frozen_data = tmp;
420 mapped_data = kmap_atomic(new_page);
421 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
422 kunmap_atomic(mapped_data);
423
424 new_page = virt_to_page(tmp);
425 new_offset = offset_in_page(tmp);
426 done_copy_out = 1;
427
428 /*
429 * This isn't strictly necessary, as we're using frozen
430 * data for the escaping, but it keeps consistency with
431 * b_frozen_data usage.
432 */
433 jh_in->b_frozen_triggers = jh_in->b_triggers;
434 }
435
436 /*
437 * Did we need to do an escaping? Now we've done all the
438 * copying, we can finally do so.
439 */
440 if (do_escape) {
441 mapped_data = kmap_atomic(new_page);
442 *((unsigned int *)(mapped_data + new_offset)) = 0;
443 kunmap_atomic(mapped_data);
444 }
445
446 set_bh_page(new_bh, new_page, new_offset);
447 new_bh->b_size = bh_in->b_size;
448 new_bh->b_bdev = journal->j_dev;
449 new_bh->b_blocknr = blocknr;
450 new_bh->b_private = bh_in;
451 set_buffer_mapped(new_bh);
452 set_buffer_dirty(new_bh);
453
454 *bh_out = new_bh;
455
456 /*
457 * The to-be-written buffer needs to get moved to the io queue,
458 * and the original buffer whose contents we are shadowing or
459 * copying is moved to the transaction's shadow queue.
460 */
461 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
462 spin_lock(&journal->j_list_lock);
463 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
464 spin_unlock(&journal->j_list_lock);
465 set_buffer_shadow(bh_in);
466 spin_unlock(&jh_in->b_state_lock);
467
468 return do_escape | (done_copy_out << 1);
469}
470
471/*
472 * Allocation code for the journal file. Manage the space left in the
473 * journal, so that we can begin checkpointing when appropriate.
474 */
475
476/*
477 * Called with j_state_lock locked for writing.
478 * Returns true if a transaction commit was started.
479 */
480int __jbd2_log_start_commit(journal_t *journal, tid_t target)
481{
482 /* Return if the txn has already requested to be committed */
483 if (journal->j_commit_request == target)
484 return 0;
485
486 /*
487 * The only transaction we can possibly wait upon is the
488 * currently running transaction (if it exists). Otherwise,
489 * the target tid must be an old one.
490 */
491 if (journal->j_running_transaction &&
492 journal->j_running_transaction->t_tid == target) {
493 /*
494 * We want a new commit: OK, mark the request and wakeup the
495 * commit thread. We do _not_ do the commit ourselves.
496 */
497
498 journal->j_commit_request = target;
499 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
500 journal->j_commit_request,
501 journal->j_commit_sequence);
502 journal->j_running_transaction->t_requested = jiffies;
503 wake_up(&journal->j_wait_commit);
504 return 1;
505 } else if (!tid_geq(journal->j_commit_request, target))
506 /* This should never happen, but if it does, preserve
507 the evidence before kjournald goes into a loop and
508 increments j_commit_sequence beyond all recognition. */
509 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
510 journal->j_commit_request,
511 journal->j_commit_sequence,
512 target, journal->j_running_transaction ?
513 journal->j_running_transaction->t_tid : 0);
514 return 0;
515}
516
517int jbd2_log_start_commit(journal_t *journal, tid_t tid)
518{
519 int ret;
520
521 write_lock(&journal->j_state_lock);
522 ret = __jbd2_log_start_commit(journal, tid);
523 write_unlock(&journal->j_state_lock);
524 return ret;
525}
526
527/*
528 * Force and wait any uncommitted transactions. We can only force the running
529 * transaction if we don't have an active handle, otherwise, we will deadlock.
530 * Returns: <0 in case of error,
531 * 0 if nothing to commit,
532 * 1 if transaction was successfully committed.
533 */
534static int __jbd2_journal_force_commit(journal_t *journal)
535{
536 transaction_t *transaction = NULL;
537 tid_t tid;
538 int need_to_start = 0, ret = 0;
539
540 read_lock(&journal->j_state_lock);
541 if (journal->j_running_transaction && !current->journal_info) {
542 transaction = journal->j_running_transaction;
543 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
544 need_to_start = 1;
545 } else if (journal->j_committing_transaction)
546 transaction = journal->j_committing_transaction;
547
548 if (!transaction) {
549 /* Nothing to commit */
550 read_unlock(&journal->j_state_lock);
551 return 0;
552 }
553 tid = transaction->t_tid;
554 read_unlock(&journal->j_state_lock);
555 if (need_to_start)
556 jbd2_log_start_commit(journal, tid);
557 ret = jbd2_log_wait_commit(journal, tid);
558 if (!ret)
559 ret = 1;
560
561 return ret;
562}
563
564/**
565 * Force and wait upon a commit if the calling process is not within
566 * transaction. This is used for forcing out undo-protected data which contains
567 * bitmaps, when the fs is running out of space.
568 *
569 * @journal: journal to force
570 * Returns true if progress was made.
571 */
572int jbd2_journal_force_commit_nested(journal_t *journal)
573{
574 int ret;
575
576 ret = __jbd2_journal_force_commit(journal);
577 return ret > 0;
578}
579
580/**
581 * int journal_force_commit() - force any uncommitted transactions
582 * @journal: journal to force
583 *
584 * Caller want unconditional commit. We can only force the running transaction
585 * if we don't have an active handle, otherwise, we will deadlock.
586 */
587int jbd2_journal_force_commit(journal_t *journal)
588{
589 int ret;
590
591 J_ASSERT(!current->journal_info);
592 ret = __jbd2_journal_force_commit(journal);
593 if (ret > 0)
594 ret = 0;
595 return ret;
596}
597
598/*
599 * Start a commit of the current running transaction (if any). Returns true
600 * if a transaction is going to be committed (or is currently already
601 * committing), and fills its tid in at *ptid
602 */
603int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
604{
605 int ret = 0;
606
607 write_lock(&journal->j_state_lock);
608 if (journal->j_running_transaction) {
609 tid_t tid = journal->j_running_transaction->t_tid;
610
611 __jbd2_log_start_commit(journal, tid);
612 /* There's a running transaction and we've just made sure
613 * it's commit has been scheduled. */
614 if (ptid)
615 *ptid = tid;
616 ret = 1;
617 } else if (journal->j_committing_transaction) {
618 /*
619 * If commit has been started, then we have to wait for
620 * completion of that transaction.
621 */
622 if (ptid)
623 *ptid = journal->j_committing_transaction->t_tid;
624 ret = 1;
625 }
626 write_unlock(&journal->j_state_lock);
627 return ret;
628}
629
630/*
631 * Return 1 if a given transaction has not yet sent barrier request
632 * connected with a transaction commit. If 0 is returned, transaction
633 * may or may not have sent the barrier. Used to avoid sending barrier
634 * twice in common cases.
635 */
636int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
637{
638 int ret = 0;
639 transaction_t *commit_trans;
640
641 if (!(journal->j_flags & JBD2_BARRIER))
642 return 0;
643 read_lock(&journal->j_state_lock);
644 /* Transaction already committed? */
645 if (tid_geq(journal->j_commit_sequence, tid))
646 goto out;
647 commit_trans = journal->j_committing_transaction;
648 if (!commit_trans || commit_trans->t_tid != tid) {
649 ret = 1;
650 goto out;
651 }
652 /*
653 * Transaction is being committed and we already proceeded to
654 * submitting a flush to fs partition?
655 */
656 if (journal->j_fs_dev != journal->j_dev) {
657 if (!commit_trans->t_need_data_flush ||
658 commit_trans->t_state >= T_COMMIT_DFLUSH)
659 goto out;
660 } else {
661 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
662 goto out;
663 }
664 ret = 1;
665out:
666 read_unlock(&journal->j_state_lock);
667 return ret;
668}
669EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
670
671/*
672 * Wait for a specified commit to complete.
673 * The caller may not hold the journal lock.
674 */
675int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
676{
677 int err = 0;
678
679 read_lock(&journal->j_state_lock);
680#ifdef CONFIG_PROVE_LOCKING
681 /*
682 * Some callers make sure transaction is already committing and in that
683 * case we cannot block on open handles anymore. So don't warn in that
684 * case.
685 */
686 if (tid_gt(tid, journal->j_commit_sequence) &&
687 (!journal->j_committing_transaction ||
688 journal->j_committing_transaction->t_tid != tid)) {
689 read_unlock(&journal->j_state_lock);
690 jbd2_might_wait_for_commit(journal);
691 read_lock(&journal->j_state_lock);
692 }
693#endif
694#ifdef CONFIG_JBD2_DEBUG
695 if (!tid_geq(journal->j_commit_request, tid)) {
696 printk(KERN_ERR
697 "%s: error: j_commit_request=%u, tid=%u\n",
698 __func__, journal->j_commit_request, tid);
699 }
700#endif
701 while (tid_gt(tid, journal->j_commit_sequence)) {
702 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
703 tid, journal->j_commit_sequence);
704 read_unlock(&journal->j_state_lock);
705 wake_up(&journal->j_wait_commit);
706 wait_event(journal->j_wait_done_commit,
707 !tid_gt(tid, journal->j_commit_sequence));
708 read_lock(&journal->j_state_lock);
709 }
710 read_unlock(&journal->j_state_lock);
711
712 if (unlikely(is_journal_aborted(journal)))
713 err = -EIO;
714 return err;
715}
716
717/* Return 1 when transaction with given tid has already committed. */
718int jbd2_transaction_committed(journal_t *journal, tid_t tid)
719{
720 int ret = 1;
721
722 read_lock(&journal->j_state_lock);
723 if (journal->j_running_transaction &&
724 journal->j_running_transaction->t_tid == tid)
725 ret = 0;
726 if (journal->j_committing_transaction &&
727 journal->j_committing_transaction->t_tid == tid)
728 ret = 0;
729 read_unlock(&journal->j_state_lock);
730 return ret;
731}
732EXPORT_SYMBOL(jbd2_transaction_committed);
733
734/*
735 * When this function returns the transaction corresponding to tid
736 * will be completed. If the transaction has currently running, start
737 * committing that transaction before waiting for it to complete. If
738 * the transaction id is stale, it is by definition already completed,
739 * so just return SUCCESS.
740 */
741int jbd2_complete_transaction(journal_t *journal, tid_t tid)
742{
743 int need_to_wait = 1;
744
745 read_lock(&journal->j_state_lock);
746 if (journal->j_running_transaction &&
747 journal->j_running_transaction->t_tid == tid) {
748 if (journal->j_commit_request != tid) {
749 /* transaction not yet started, so request it */
750 read_unlock(&journal->j_state_lock);
751 jbd2_log_start_commit(journal, tid);
752 goto wait_commit;
753 }
754 } else if (!(journal->j_committing_transaction &&
755 journal->j_committing_transaction->t_tid == tid))
756 need_to_wait = 0;
757 read_unlock(&journal->j_state_lock);
758 if (!need_to_wait)
759 return 0;
760wait_commit:
761 return jbd2_log_wait_commit(journal, tid);
762}
763EXPORT_SYMBOL(jbd2_complete_transaction);
764
765/*
766 * Log buffer allocation routines:
767 */
768
769int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
770{
771 unsigned long blocknr;
772
773 write_lock(&journal->j_state_lock);
774 J_ASSERT(journal->j_free > 1);
775
776 blocknr = journal->j_head;
777 journal->j_head++;
778 journal->j_free--;
779 if (journal->j_head == journal->j_last)
780 journal->j_head = journal->j_first;
781 write_unlock(&journal->j_state_lock);
782 return jbd2_journal_bmap(journal, blocknr, retp);
783}
784
785/*
786 * Conversion of logical to physical block numbers for the journal
787 *
788 * On external journals the journal blocks are identity-mapped, so
789 * this is a no-op. If needed, we can use j_blk_offset - everything is
790 * ready.
791 */
792int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
793 unsigned long long *retp)
794{
795 int err = 0;
796 unsigned long long ret;
797 sector_t block = 0;
798
799 if (journal->j_inode) {
800 block = blocknr;
801 ret = bmap(journal->j_inode, &block);
802
803 if (ret || !block) {
804 printk(KERN_ALERT "%s: journal block not found "
805 "at offset %lu on %s\n",
806 __func__, blocknr, journal->j_devname);
807 err = -EIO;
808 jbd2_journal_abort(journal, err);
809 } else {
810 *retp = block;
811 }
812
813 } else {
814 *retp = blocknr; /* +journal->j_blk_offset */
815 }
816 return err;
817}
818
819/*
820 * We play buffer_head aliasing tricks to write data/metadata blocks to
821 * the journal without copying their contents, but for journal
822 * descriptor blocks we do need to generate bona fide buffers.
823 *
824 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
825 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
826 * But we don't bother doing that, so there will be coherency problems with
827 * mmaps of blockdevs which hold live JBD-controlled filesystems.
828 */
829struct buffer_head *
830jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
831{
832 journal_t *journal = transaction->t_journal;
833 struct buffer_head *bh;
834 unsigned long long blocknr;
835 journal_header_t *header;
836 int err;
837
838 err = jbd2_journal_next_log_block(journal, &blocknr);
839
840 if (err)
841 return NULL;
842
843 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
844 if (!bh)
845 return NULL;
846 atomic_dec(&transaction->t_outstanding_credits);
847 lock_buffer(bh);
848 memset(bh->b_data, 0, journal->j_blocksize);
849 header = (journal_header_t *)bh->b_data;
850 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
851 header->h_blocktype = cpu_to_be32(type);
852 header->h_sequence = cpu_to_be32(transaction->t_tid);
853 set_buffer_uptodate(bh);
854 unlock_buffer(bh);
855 BUFFER_TRACE(bh, "return this buffer");
856 return bh;
857}
858
859void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
860{
861 struct jbd2_journal_block_tail *tail;
862 __u32 csum;
863
864 if (!jbd2_journal_has_csum_v2or3(j))
865 return;
866
867 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
868 sizeof(struct jbd2_journal_block_tail));
869 tail->t_checksum = 0;
870 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
871 tail->t_checksum = cpu_to_be32(csum);
872}
873
874/*
875 * Return tid of the oldest transaction in the journal and block in the journal
876 * where the transaction starts.
877 *
878 * If the journal is now empty, return which will be the next transaction ID
879 * we will write and where will that transaction start.
880 *
881 * The return value is 0 if journal tail cannot be pushed any further, 1 if
882 * it can.
883 */
884int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
885 unsigned long *block)
886{
887 transaction_t *transaction;
888 int ret;
889
890 read_lock(&journal->j_state_lock);
891 spin_lock(&journal->j_list_lock);
892 transaction = journal->j_checkpoint_transactions;
893 if (transaction) {
894 *tid = transaction->t_tid;
895 *block = transaction->t_log_start;
896 } else if ((transaction = journal->j_committing_transaction) != NULL) {
897 *tid = transaction->t_tid;
898 *block = transaction->t_log_start;
899 } else if ((transaction = journal->j_running_transaction) != NULL) {
900 *tid = transaction->t_tid;
901 *block = journal->j_head;
902 } else {
903 *tid = journal->j_transaction_sequence;
904 *block = journal->j_head;
905 }
906 ret = tid_gt(*tid, journal->j_tail_sequence);
907 spin_unlock(&journal->j_list_lock);
908 read_unlock(&journal->j_state_lock);
909
910 return ret;
911}
912
913/*
914 * Update information in journal structure and in on disk journal superblock
915 * about log tail. This function does not check whether information passed in
916 * really pushes log tail further. It's responsibility of the caller to make
917 * sure provided log tail information is valid (e.g. by holding
918 * j_checkpoint_mutex all the time between computing log tail and calling this
919 * function as is the case with jbd2_cleanup_journal_tail()).
920 *
921 * Requires j_checkpoint_mutex
922 */
923int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
924{
925 unsigned long freed;
926 int ret;
927
928 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
929
930 /*
931 * We cannot afford for write to remain in drive's caches since as
932 * soon as we update j_tail, next transaction can start reusing journal
933 * space and if we lose sb update during power failure we'd replay
934 * old transaction with possibly newly overwritten data.
935 */
936 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
937 REQ_SYNC | REQ_FUA);
938 if (ret)
939 goto out;
940
941 write_lock(&journal->j_state_lock);
942 freed = block - journal->j_tail;
943 if (block < journal->j_tail)
944 freed += journal->j_last - journal->j_first;
945
946 trace_jbd2_update_log_tail(journal, tid, block, freed);
947 jbd_debug(1,
948 "Cleaning journal tail from %u to %u (offset %lu), "
949 "freeing %lu\n",
950 journal->j_tail_sequence, tid, block, freed);
951
952 journal->j_free += freed;
953 journal->j_tail_sequence = tid;
954 journal->j_tail = block;
955 write_unlock(&journal->j_state_lock);
956
957out:
958 return ret;
959}
960
961/*
962 * This is a variation of __jbd2_update_log_tail which checks for validity of
963 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
964 * with other threads updating log tail.
965 */
966void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
967{
968 mutex_lock_io(&journal->j_checkpoint_mutex);
969 if (tid_gt(tid, journal->j_tail_sequence))
970 __jbd2_update_log_tail(journal, tid, block);
971 mutex_unlock(&journal->j_checkpoint_mutex);
972}
973
974struct jbd2_stats_proc_session {
975 journal_t *journal;
976 struct transaction_stats_s *stats;
977 int start;
978 int max;
979};
980
981static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
982{
983 return *pos ? NULL : SEQ_START_TOKEN;
984}
985
986static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
987{
988 (*pos)++;
989 return NULL;
990}
991
992static int jbd2_seq_info_show(struct seq_file *seq, void *v)
993{
994 struct jbd2_stats_proc_session *s = seq->private;
995
996 if (v != SEQ_START_TOKEN)
997 return 0;
998 seq_printf(seq, "%lu transactions (%lu requested), "
999 "each up to %u blocks\n",
1000 s->stats->ts_tid, s->stats->ts_requested,
1001 s->journal->j_max_transaction_buffers);
1002 if (s->stats->ts_tid == 0)
1003 return 0;
1004 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1005 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1006 seq_printf(seq, " %ums request delay\n",
1007 (s->stats->ts_requested == 0) ? 0 :
1008 jiffies_to_msecs(s->stats->run.rs_request_delay /
1009 s->stats->ts_requested));
1010 seq_printf(seq, " %ums running transaction\n",
1011 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1012 seq_printf(seq, " %ums transaction was being locked\n",
1013 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1014 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1015 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1016 seq_printf(seq, " %ums logging transaction\n",
1017 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1018 seq_printf(seq, " %lluus average transaction commit time\n",
1019 div_u64(s->journal->j_average_commit_time, 1000));
1020 seq_printf(seq, " %lu handles per transaction\n",
1021 s->stats->run.rs_handle_count / s->stats->ts_tid);
1022 seq_printf(seq, " %lu blocks per transaction\n",
1023 s->stats->run.rs_blocks / s->stats->ts_tid);
1024 seq_printf(seq, " %lu logged blocks per transaction\n",
1025 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1026 return 0;
1027}
1028
1029static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1030{
1031}
1032
1033static const struct seq_operations jbd2_seq_info_ops = {
1034 .start = jbd2_seq_info_start,
1035 .next = jbd2_seq_info_next,
1036 .stop = jbd2_seq_info_stop,
1037 .show = jbd2_seq_info_show,
1038};
1039
1040static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1041{
1042 journal_t *journal = PDE_DATA(inode);
1043 struct jbd2_stats_proc_session *s;
1044 int rc, size;
1045
1046 s = kmalloc(sizeof(*s), GFP_KERNEL);
1047 if (s == NULL)
1048 return -ENOMEM;
1049 size = sizeof(struct transaction_stats_s);
1050 s->stats = kmalloc(size, GFP_KERNEL);
1051 if (s->stats == NULL) {
1052 kfree(s);
1053 return -ENOMEM;
1054 }
1055 spin_lock(&journal->j_history_lock);
1056 memcpy(s->stats, &journal->j_stats, size);
1057 s->journal = journal;
1058 spin_unlock(&journal->j_history_lock);
1059
1060 rc = seq_open(file, &jbd2_seq_info_ops);
1061 if (rc == 0) {
1062 struct seq_file *m = file->private_data;
1063 m->private = s;
1064 } else {
1065 kfree(s->stats);
1066 kfree(s);
1067 }
1068 return rc;
1069
1070}
1071
1072static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1073{
1074 struct seq_file *seq = file->private_data;
1075 struct jbd2_stats_proc_session *s = seq->private;
1076 kfree(s->stats);
1077 kfree(s);
1078 return seq_release(inode, file);
1079}
1080
1081static const struct proc_ops jbd2_info_proc_ops = {
1082 .proc_open = jbd2_seq_info_open,
1083 .proc_read = seq_read,
1084 .proc_lseek = seq_lseek,
1085 .proc_release = jbd2_seq_info_release,
1086};
1087
1088static struct proc_dir_entry *proc_jbd2_stats;
1089
1090static void jbd2_stats_proc_init(journal_t *journal)
1091{
1092 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1093 if (journal->j_proc_entry) {
1094 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1095 &jbd2_info_proc_ops, journal);
1096 }
1097}
1098
1099static void jbd2_stats_proc_exit(journal_t *journal)
1100{
1101 remove_proc_entry("info", journal->j_proc_entry);
1102 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1103}
1104
1105/* Minimum size of descriptor tag */
1106static int jbd2_min_tag_size(void)
1107{
1108 /*
1109 * Tag with 32-bit block numbers does not use last four bytes of the
1110 * structure
1111 */
1112 return sizeof(journal_block_tag_t) - 4;
1113}
1114
1115/*
1116 * Management for journal control blocks: functions to create and
1117 * destroy journal_t structures, and to initialise and read existing
1118 * journal blocks from disk. */
1119
1120/* First: create and setup a journal_t object in memory. We initialise
1121 * very few fields yet: that has to wait until we have created the
1122 * journal structures from from scratch, or loaded them from disk. */
1123
1124static journal_t *journal_init_common(struct block_device *bdev,
1125 struct block_device *fs_dev,
1126 unsigned long long start, int len, int blocksize)
1127{
1128 static struct lock_class_key jbd2_trans_commit_key;
1129 journal_t *journal;
1130 int err;
1131 struct buffer_head *bh;
1132 int n;
1133
1134 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1135 if (!journal)
1136 return NULL;
1137
1138 init_waitqueue_head(&journal->j_wait_transaction_locked);
1139 init_waitqueue_head(&journal->j_wait_done_commit);
1140 init_waitqueue_head(&journal->j_wait_commit);
1141 init_waitqueue_head(&journal->j_wait_updates);
1142 init_waitqueue_head(&journal->j_wait_reserved);
1143 mutex_init(&journal->j_abort_mutex);
1144 mutex_init(&journal->j_barrier);
1145 mutex_init(&journal->j_checkpoint_mutex);
1146 spin_lock_init(&journal->j_revoke_lock);
1147 spin_lock_init(&journal->j_list_lock);
1148 rwlock_init(&journal->j_state_lock);
1149
1150 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1151 journal->j_min_batch_time = 0;
1152 journal->j_max_batch_time = 15000; /* 15ms */
1153 atomic_set(&journal->j_reserved_credits, 0);
1154
1155 /* The journal is marked for error until we succeed with recovery! */
1156 journal->j_flags = JBD2_ABORT;
1157
1158 /* Set up a default-sized revoke table for the new mount. */
1159 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1160 if (err)
1161 goto err_cleanup;
1162
1163 spin_lock_init(&journal->j_history_lock);
1164
1165 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1166 &jbd2_trans_commit_key, 0);
1167
1168 /* journal descriptor can store up to n blocks -bzzz */
1169 journal->j_blocksize = blocksize;
1170 journal->j_dev = bdev;
1171 journal->j_fs_dev = fs_dev;
1172 journal->j_blk_offset = start;
1173 journal->j_maxlen = len;
1174 /* We need enough buffers to write out full descriptor block. */
1175 n = journal->j_blocksize / jbd2_min_tag_size();
1176 journal->j_wbufsize = n;
1177 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1178 GFP_KERNEL);
1179 if (!journal->j_wbuf)
1180 goto err_cleanup;
1181
1182 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1183 if (!bh) {
1184 pr_err("%s: Cannot get buffer for journal superblock\n",
1185 __func__);
1186 goto err_cleanup;
1187 }
1188 journal->j_sb_buffer = bh;
1189 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1190
1191 return journal;
1192
1193err_cleanup:
1194 kfree(journal->j_wbuf);
1195 jbd2_journal_destroy_revoke(journal);
1196 kfree(journal);
1197 return NULL;
1198}
1199
1200/* jbd2_journal_init_dev and jbd2_journal_init_inode:
1201 *
1202 * Create a journal structure assigned some fixed set of disk blocks to
1203 * the journal. We don't actually touch those disk blocks yet, but we
1204 * need to set up all of the mapping information to tell the journaling
1205 * system where the journal blocks are.
1206 *
1207 */
1208
1209/**
1210 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1211 * @bdev: Block device on which to create the journal
1212 * @fs_dev: Device which hold journalled filesystem for this journal.
1213 * @start: Block nr Start of journal.
1214 * @len: Length of the journal in blocks.
1215 * @blocksize: blocksize of journalling device
1216 *
1217 * Returns: a newly created journal_t *
1218 *
1219 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1220 * range of blocks on an arbitrary block device.
1221 *
1222 */
1223journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1224 struct block_device *fs_dev,
1225 unsigned long long start, int len, int blocksize)
1226{
1227 journal_t *journal;
1228
1229 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1230 if (!journal)
1231 return NULL;
1232
1233 bdevname(journal->j_dev, journal->j_devname);
1234 strreplace(journal->j_devname, '/', '!');
1235 jbd2_stats_proc_init(journal);
1236
1237 return journal;
1238}
1239
1240/**
1241 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1242 * @inode: An inode to create the journal in
1243 *
1244 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1245 * the journal. The inode must exist already, must support bmap() and
1246 * must have all data blocks preallocated.
1247 */
1248journal_t *jbd2_journal_init_inode(struct inode *inode)
1249{
1250 journal_t *journal;
1251 sector_t blocknr;
1252 char *p;
1253 int err = 0;
1254
1255 blocknr = 0;
1256 err = bmap(inode, &blocknr);
1257
1258 if (err || !blocknr) {
1259 pr_err("%s: Cannot locate journal superblock\n",
1260 __func__);
1261 return NULL;
1262 }
1263
1264 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1265 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1266 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1267
1268 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1269 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1270 inode->i_sb->s_blocksize);
1271 if (!journal)
1272 return NULL;
1273
1274 journal->j_inode = inode;
1275 bdevname(journal->j_dev, journal->j_devname);
1276 p = strreplace(journal->j_devname, '/', '!');
1277 sprintf(p, "-%lu", journal->j_inode->i_ino);
1278 jbd2_stats_proc_init(journal);
1279
1280 return journal;
1281}
1282
1283/*
1284 * If the journal init or create aborts, we need to mark the journal
1285 * superblock as being NULL to prevent the journal destroy from writing
1286 * back a bogus superblock.
1287 */
1288static void journal_fail_superblock(journal_t *journal)
1289{
1290 struct buffer_head *bh = journal->j_sb_buffer;
1291 brelse(bh);
1292 journal->j_sb_buffer = NULL;
1293}
1294
1295/*
1296 * Given a journal_t structure, initialise the various fields for
1297 * startup of a new journaling session. We use this both when creating
1298 * a journal, and after recovering an old journal to reset it for
1299 * subsequent use.
1300 */
1301
1302static int journal_reset(journal_t *journal)
1303{
1304 journal_superblock_t *sb = journal->j_superblock;
1305 unsigned long long first, last;
1306
1307 first = be32_to_cpu(sb->s_first);
1308 last = be32_to_cpu(sb->s_maxlen);
1309 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1310 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1311 first, last);
1312 journal_fail_superblock(journal);
1313 return -EINVAL;
1314 }
1315
1316 journal->j_first = first;
1317 journal->j_last = last;
1318
1319 journal->j_head = first;
1320 journal->j_tail = first;
1321 journal->j_free = last - first;
1322
1323 journal->j_tail_sequence = journal->j_transaction_sequence;
1324 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1325 journal->j_commit_request = journal->j_commit_sequence;
1326
1327 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1328
1329 /*
1330 * As a special case, if the on-disk copy is already marked as needing
1331 * no recovery (s_start == 0), then we can safely defer the superblock
1332 * update until the next commit by setting JBD2_FLUSHED. This avoids
1333 * attempting a write to a potential-readonly device.
1334 */
1335 if (sb->s_start == 0) {
1336 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1337 "(start %ld, seq %u, errno %d)\n",
1338 journal->j_tail, journal->j_tail_sequence,
1339 journal->j_errno);
1340 journal->j_flags |= JBD2_FLUSHED;
1341 } else {
1342 /* Lock here to make assertions happy... */
1343 mutex_lock_io(&journal->j_checkpoint_mutex);
1344 /*
1345 * Update log tail information. We use REQ_FUA since new
1346 * transaction will start reusing journal space and so we
1347 * must make sure information about current log tail is on
1348 * disk before that.
1349 */
1350 jbd2_journal_update_sb_log_tail(journal,
1351 journal->j_tail_sequence,
1352 journal->j_tail,
1353 REQ_SYNC | REQ_FUA);
1354 mutex_unlock(&journal->j_checkpoint_mutex);
1355 }
1356 return jbd2_journal_start_thread(journal);
1357}
1358
1359/*
1360 * This function expects that the caller will have locked the journal
1361 * buffer head, and will return with it unlocked
1362 */
1363static int jbd2_write_superblock(journal_t *journal, int write_flags)
1364{
1365 struct buffer_head *bh = journal->j_sb_buffer;
1366 journal_superblock_t *sb = journal->j_superblock;
1367 int ret;
1368
1369 /* Buffer got discarded which means block device got invalidated */
1370 if (!buffer_mapped(bh)) {
1371 unlock_buffer(bh);
1372 return -EIO;
1373 }
1374
1375 trace_jbd2_write_superblock(journal, write_flags);
1376 if (!(journal->j_flags & JBD2_BARRIER))
1377 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1378 if (buffer_write_io_error(bh)) {
1379 /*
1380 * Oh, dear. A previous attempt to write the journal
1381 * superblock failed. This could happen because the
1382 * USB device was yanked out. Or it could happen to
1383 * be a transient write error and maybe the block will
1384 * be remapped. Nothing we can do but to retry the
1385 * write and hope for the best.
1386 */
1387 printk(KERN_ERR "JBD2: previous I/O error detected "
1388 "for journal superblock update for %s.\n",
1389 journal->j_devname);
1390 clear_buffer_write_io_error(bh);
1391 set_buffer_uptodate(bh);
1392 }
1393 if (jbd2_journal_has_csum_v2or3(journal))
1394 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1395 get_bh(bh);
1396 bh->b_end_io = end_buffer_write_sync;
1397 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1398 wait_on_buffer(bh);
1399 if (buffer_write_io_error(bh)) {
1400 clear_buffer_write_io_error(bh);
1401 set_buffer_uptodate(bh);
1402 ret = -EIO;
1403 }
1404 if (ret) {
1405 printk(KERN_ERR "JBD2: Error %d detected when updating "
1406 "journal superblock for %s.\n", ret,
1407 journal->j_devname);
1408 if (!is_journal_aborted(journal))
1409 jbd2_journal_abort(journal, ret);
1410 }
1411
1412 return ret;
1413}
1414
1415/**
1416 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1417 * @journal: The journal to update.
1418 * @tail_tid: TID of the new transaction at the tail of the log
1419 * @tail_block: The first block of the transaction at the tail of the log
1420 * @write_op: With which operation should we write the journal sb
1421 *
1422 * Update a journal's superblock information about log tail and write it to
1423 * disk, waiting for the IO to complete.
1424 */
1425int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1426 unsigned long tail_block, int write_op)
1427{
1428 journal_superblock_t *sb = journal->j_superblock;
1429 int ret;
1430
1431 if (is_journal_aborted(journal))
1432 return -EIO;
1433
1434 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1435 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1436 tail_block, tail_tid);
1437
1438 lock_buffer(journal->j_sb_buffer);
1439 sb->s_sequence = cpu_to_be32(tail_tid);
1440 sb->s_start = cpu_to_be32(tail_block);
1441
1442 ret = jbd2_write_superblock(journal, write_op);
1443 if (ret)
1444 goto out;
1445
1446 /* Log is no longer empty */
1447 write_lock(&journal->j_state_lock);
1448 WARN_ON(!sb->s_sequence);
1449 journal->j_flags &= ~JBD2_FLUSHED;
1450 write_unlock(&journal->j_state_lock);
1451
1452out:
1453 return ret;
1454}
1455
1456/**
1457 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1458 * @journal: The journal to update.
1459 * @write_op: With which operation should we write the journal sb
1460 *
1461 * Update a journal's dynamic superblock fields to show that journal is empty.
1462 * Write updated superblock to disk waiting for IO to complete.
1463 */
1464static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1465{
1466 journal_superblock_t *sb = journal->j_superblock;
1467
1468 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1469 lock_buffer(journal->j_sb_buffer);
1470 if (sb->s_start == 0) { /* Is it already empty? */
1471 unlock_buffer(journal->j_sb_buffer);
1472 return;
1473 }
1474
1475 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1476 journal->j_tail_sequence);
1477
1478 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1479 sb->s_start = cpu_to_be32(0);
1480
1481 jbd2_write_superblock(journal, write_op);
1482
1483 /* Log is no longer empty */
1484 write_lock(&journal->j_state_lock);
1485 journal->j_flags |= JBD2_FLUSHED;
1486 write_unlock(&journal->j_state_lock);
1487}
1488
1489
1490/**
1491 * jbd2_journal_update_sb_errno() - Update error in the journal.
1492 * @journal: The journal to update.
1493 *
1494 * Update a journal's errno. Write updated superblock to disk waiting for IO
1495 * to complete.
1496 */
1497void jbd2_journal_update_sb_errno(journal_t *journal)
1498{
1499 journal_superblock_t *sb = journal->j_superblock;
1500 int errcode;
1501
1502 lock_buffer(journal->j_sb_buffer);
1503 errcode = journal->j_errno;
1504 if (errcode == -ESHUTDOWN)
1505 errcode = 0;
1506 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1507 sb->s_errno = cpu_to_be32(errcode);
1508
1509 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1510}
1511EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1512
1513static int journal_revoke_records_per_block(journal_t *journal)
1514{
1515 int record_size;
1516 int space = journal->j_blocksize - sizeof(jbd2_journal_revoke_header_t);
1517
1518 if (jbd2_has_feature_64bit(journal))
1519 record_size = 8;
1520 else
1521 record_size = 4;
1522
1523 if (jbd2_journal_has_csum_v2or3(journal))
1524 space -= sizeof(struct jbd2_journal_block_tail);
1525 return space / record_size;
1526}
1527
1528/*
1529 * Read the superblock for a given journal, performing initial
1530 * validation of the format.
1531 */
1532static int journal_get_superblock(journal_t *journal)
1533{
1534 struct buffer_head *bh;
1535 journal_superblock_t *sb;
1536 int err = -EIO;
1537
1538 bh = journal->j_sb_buffer;
1539
1540 J_ASSERT(bh != NULL);
1541 if (!buffer_uptodate(bh)) {
1542 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1543 wait_on_buffer(bh);
1544 if (!buffer_uptodate(bh)) {
1545 printk(KERN_ERR
1546 "JBD2: IO error reading journal superblock\n");
1547 goto out;
1548 }
1549 }
1550
1551 if (buffer_verified(bh))
1552 return 0;
1553
1554 sb = journal->j_superblock;
1555
1556 err = -EINVAL;
1557
1558 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1559 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1560 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1561 goto out;
1562 }
1563
1564 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1565 case JBD2_SUPERBLOCK_V1:
1566 journal->j_format_version = 1;
1567 break;
1568 case JBD2_SUPERBLOCK_V2:
1569 journal->j_format_version = 2;
1570 break;
1571 default:
1572 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1573 goto out;
1574 }
1575
1576 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1577 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1578 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1579 printk(KERN_WARNING "JBD2: journal file too short\n");
1580 goto out;
1581 }
1582
1583 if (be32_to_cpu(sb->s_first) == 0 ||
1584 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1585 printk(KERN_WARNING
1586 "JBD2: Invalid start block of journal: %u\n",
1587 be32_to_cpu(sb->s_first));
1588 goto out;
1589 }
1590
1591 if (jbd2_has_feature_csum2(journal) &&
1592 jbd2_has_feature_csum3(journal)) {
1593 /* Can't have checksum v2 and v3 at the same time! */
1594 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1595 "at the same time!\n");
1596 goto out;
1597 }
1598
1599 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1600 jbd2_has_feature_checksum(journal)) {
1601 /* Can't have checksum v1 and v2 on at the same time! */
1602 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1603 "at the same time!\n");
1604 goto out;
1605 }
1606
1607 if (!jbd2_verify_csum_type(journal, sb)) {
1608 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1609 goto out;
1610 }
1611
1612 /* Load the checksum driver */
1613 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1614 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1615 if (IS_ERR(journal->j_chksum_driver)) {
1616 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1617 err = PTR_ERR(journal->j_chksum_driver);
1618 journal->j_chksum_driver = NULL;
1619 goto out;
1620 }
1621 }
1622
1623 if (jbd2_journal_has_csum_v2or3(journal)) {
1624 /* Check superblock checksum */
1625 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1626 printk(KERN_ERR "JBD2: journal checksum error\n");
1627 err = -EFSBADCRC;
1628 goto out;
1629 }
1630
1631 /* Precompute checksum seed for all metadata */
1632 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1633 sizeof(sb->s_uuid));
1634 }
1635
1636 journal->j_revoke_records_per_block =
1637 journal_revoke_records_per_block(journal);
1638 set_buffer_verified(bh);
1639
1640 return 0;
1641
1642out:
1643 journal_fail_superblock(journal);
1644 return err;
1645}
1646
1647/*
1648 * Load the on-disk journal superblock and read the key fields into the
1649 * journal_t.
1650 */
1651
1652static int load_superblock(journal_t *journal)
1653{
1654 int err;
1655 journal_superblock_t *sb;
1656
1657 err = journal_get_superblock(journal);
1658 if (err)
1659 return err;
1660
1661 sb = journal->j_superblock;
1662
1663 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1664 journal->j_tail = be32_to_cpu(sb->s_start);
1665 journal->j_first = be32_to_cpu(sb->s_first);
1666 journal->j_last = be32_to_cpu(sb->s_maxlen);
1667 journal->j_errno = be32_to_cpu(sb->s_errno);
1668
1669 return 0;
1670}
1671
1672
1673/**
1674 * int jbd2_journal_load() - Read journal from disk.
1675 * @journal: Journal to act on.
1676 *
1677 * Given a journal_t structure which tells us which disk blocks contain
1678 * a journal, read the journal from disk to initialise the in-memory
1679 * structures.
1680 */
1681int jbd2_journal_load(journal_t *journal)
1682{
1683 int err;
1684 journal_superblock_t *sb;
1685
1686 err = load_superblock(journal);
1687 if (err)
1688 return err;
1689
1690 sb = journal->j_superblock;
1691 /* If this is a V2 superblock, then we have to check the
1692 * features flags on it. */
1693
1694 if (journal->j_format_version >= 2) {
1695 if ((sb->s_feature_ro_compat &
1696 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1697 (sb->s_feature_incompat &
1698 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1699 printk(KERN_WARNING
1700 "JBD2: Unrecognised features on journal\n");
1701 return -EINVAL;
1702 }
1703 }
1704
1705 /*
1706 * Create a slab for this blocksize
1707 */
1708 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1709 if (err)
1710 return err;
1711
1712 /* Let the recovery code check whether it needs to recover any
1713 * data from the journal. */
1714 if (jbd2_journal_recover(journal))
1715 goto recovery_error;
1716
1717 if (journal->j_failed_commit) {
1718 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1719 "is corrupt.\n", journal->j_failed_commit,
1720 journal->j_devname);
1721 return -EFSCORRUPTED;
1722 }
1723 /*
1724 * clear JBD2_ABORT flag initialized in journal_init_common
1725 * here to update log tail information with the newest seq.
1726 */
1727 journal->j_flags &= ~JBD2_ABORT;
1728
1729 /* OK, we've finished with the dynamic journal bits:
1730 * reinitialise the dynamic contents of the superblock in memory
1731 * and reset them on disk. */
1732 if (journal_reset(journal))
1733 goto recovery_error;
1734
1735 journal->j_flags |= JBD2_LOADED;
1736 return 0;
1737
1738recovery_error:
1739 printk(KERN_WARNING "JBD2: recovery failed\n");
1740 return -EIO;
1741}
1742
1743/**
1744 * void jbd2_journal_destroy() - Release a journal_t structure.
1745 * @journal: Journal to act on.
1746 *
1747 * Release a journal_t structure once it is no longer in use by the
1748 * journaled object.
1749 * Return <0 if we couldn't clean up the journal.
1750 */
1751int jbd2_journal_destroy(journal_t *journal)
1752{
1753 int err = 0;
1754
1755 /* Wait for the commit thread to wake up and die. */
1756 journal_kill_thread(journal);
1757
1758 /* Force a final log commit */
1759 if (journal->j_running_transaction)
1760 jbd2_journal_commit_transaction(journal);
1761
1762 /* Force any old transactions to disk */
1763
1764 /* Totally anal locking here... */
1765 spin_lock(&journal->j_list_lock);
1766 while (journal->j_checkpoint_transactions != NULL) {
1767 spin_unlock(&journal->j_list_lock);
1768 mutex_lock_io(&journal->j_checkpoint_mutex);
1769 err = jbd2_log_do_checkpoint(journal);
1770 mutex_unlock(&journal->j_checkpoint_mutex);
1771 /*
1772 * If checkpointing failed, just free the buffers to avoid
1773 * looping forever
1774 */
1775 if (err) {
1776 jbd2_journal_destroy_checkpoint(journal);
1777 spin_lock(&journal->j_list_lock);
1778 break;
1779 }
1780 spin_lock(&journal->j_list_lock);
1781 }
1782
1783 J_ASSERT(journal->j_running_transaction == NULL);
1784 J_ASSERT(journal->j_committing_transaction == NULL);
1785 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1786 spin_unlock(&journal->j_list_lock);
1787
1788 if (journal->j_sb_buffer) {
1789 if (!is_journal_aborted(journal)) {
1790 mutex_lock_io(&journal->j_checkpoint_mutex);
1791
1792 write_lock(&journal->j_state_lock);
1793 journal->j_tail_sequence =
1794 ++journal->j_transaction_sequence;
1795 write_unlock(&journal->j_state_lock);
1796
1797 jbd2_mark_journal_empty(journal,
1798 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1799 mutex_unlock(&journal->j_checkpoint_mutex);
1800 } else
1801 err = -EIO;
1802 brelse(journal->j_sb_buffer);
1803 }
1804
1805 if (journal->j_proc_entry)
1806 jbd2_stats_proc_exit(journal);
1807 iput(journal->j_inode);
1808 if (journal->j_revoke)
1809 jbd2_journal_destroy_revoke(journal);
1810 if (journal->j_chksum_driver)
1811 crypto_free_shash(journal->j_chksum_driver);
1812 kfree(journal->j_wbuf);
1813 kfree(journal);
1814
1815 return err;
1816}
1817
1818
1819/**
1820 *int jbd2_journal_check_used_features() - Check if features specified are used.
1821 * @journal: Journal to check.
1822 * @compat: bitmask of compatible features
1823 * @ro: bitmask of features that force read-only mount
1824 * @incompat: bitmask of incompatible features
1825 *
1826 * Check whether the journal uses all of a given set of
1827 * features. Return true (non-zero) if it does.
1828 **/
1829
1830int jbd2_journal_check_used_features(journal_t *journal, unsigned long compat,
1831 unsigned long ro, unsigned long incompat)
1832{
1833 journal_superblock_t *sb;
1834
1835 if (!compat && !ro && !incompat)
1836 return 1;
1837 /* Load journal superblock if it is not loaded yet. */
1838 if (journal->j_format_version == 0 &&
1839 journal_get_superblock(journal) != 0)
1840 return 0;
1841 if (journal->j_format_version == 1)
1842 return 0;
1843
1844 sb = journal->j_superblock;
1845
1846 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1847 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1848 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1849 return 1;
1850
1851 return 0;
1852}
1853
1854/**
1855 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1856 * @journal: Journal to check.
1857 * @compat: bitmask of compatible features
1858 * @ro: bitmask of features that force read-only mount
1859 * @incompat: bitmask of incompatible features
1860 *
1861 * Check whether the journaling code supports the use of
1862 * all of a given set of features on this journal. Return true
1863 * (non-zero) if it can. */
1864
1865int jbd2_journal_check_available_features(journal_t *journal, unsigned long compat,
1866 unsigned long ro, unsigned long incompat)
1867{
1868 if (!compat && !ro && !incompat)
1869 return 1;
1870
1871 /* We can support any known requested features iff the
1872 * superblock is in version 2. Otherwise we fail to support any
1873 * extended sb features. */
1874
1875 if (journal->j_format_version != 2)
1876 return 0;
1877
1878 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1879 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1880 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1881 return 1;
1882
1883 return 0;
1884}
1885
1886/**
1887 * int jbd2_journal_set_features() - Mark a given journal feature in the superblock
1888 * @journal: Journal to act on.
1889 * @compat: bitmask of compatible features
1890 * @ro: bitmask of features that force read-only mount
1891 * @incompat: bitmask of incompatible features
1892 *
1893 * Mark a given journal feature as present on the
1894 * superblock. Returns true if the requested features could be set.
1895 *
1896 */
1897
1898int jbd2_journal_set_features(journal_t *journal, unsigned long compat,
1899 unsigned long ro, unsigned long incompat)
1900{
1901#define INCOMPAT_FEATURE_ON(f) \
1902 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1903#define COMPAT_FEATURE_ON(f) \
1904 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1905 journal_superblock_t *sb;
1906
1907 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1908 return 1;
1909
1910 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1911 return 0;
1912
1913 /* If enabling v2 checksums, turn on v3 instead */
1914 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1915 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1916 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1917 }
1918
1919 /* Asking for checksumming v3 and v1? Only give them v3. */
1920 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1921 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1922 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1923
1924 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1925 compat, ro, incompat);
1926
1927 sb = journal->j_superblock;
1928
1929 /* Load the checksum driver if necessary */
1930 if ((journal->j_chksum_driver == NULL) &&
1931 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1932 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1933 if (IS_ERR(journal->j_chksum_driver)) {
1934 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1935 journal->j_chksum_driver = NULL;
1936 return 0;
1937 }
1938 /* Precompute checksum seed for all metadata */
1939 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1940 sizeof(sb->s_uuid));
1941 }
1942
1943 lock_buffer(journal->j_sb_buffer);
1944
1945 /* If enabling v3 checksums, update superblock */
1946 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1947 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1948 sb->s_feature_compat &=
1949 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1950 }
1951
1952 /* If enabling v1 checksums, downgrade superblock */
1953 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1954 sb->s_feature_incompat &=
1955 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1956 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1957
1958 sb->s_feature_compat |= cpu_to_be32(compat);
1959 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1960 sb->s_feature_incompat |= cpu_to_be32(incompat);
1961 unlock_buffer(journal->j_sb_buffer);
1962 journal->j_revoke_records_per_block =
1963 journal_revoke_records_per_block(journal);
1964
1965 return 1;
1966#undef COMPAT_FEATURE_ON
1967#undef INCOMPAT_FEATURE_ON
1968}
1969
1970/*
1971 * jbd2_journal_clear_features () - Clear a given journal feature in the
1972 * superblock
1973 * @journal: Journal to act on.
1974 * @compat: bitmask of compatible features
1975 * @ro: bitmask of features that force read-only mount
1976 * @incompat: bitmask of incompatible features
1977 *
1978 * Clear a given journal feature as present on the
1979 * superblock.
1980 */
1981void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1982 unsigned long ro, unsigned long incompat)
1983{
1984 journal_superblock_t *sb;
1985
1986 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1987 compat, ro, incompat);
1988
1989 sb = journal->j_superblock;
1990
1991 sb->s_feature_compat &= ~cpu_to_be32(compat);
1992 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1993 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1994 journal->j_revoke_records_per_block =
1995 journal_revoke_records_per_block(journal);
1996}
1997EXPORT_SYMBOL(jbd2_journal_clear_features);
1998
1999/**
2000 * int jbd2_journal_flush () - Flush journal
2001 * @journal: Journal to act on.
2002 *
2003 * Flush all data for a given journal to disk and empty the journal.
2004 * Filesystems can use this when remounting readonly to ensure that
2005 * recovery does not need to happen on remount.
2006 */
2007
2008int jbd2_journal_flush(journal_t *journal)
2009{
2010 int err = 0;
2011 transaction_t *transaction = NULL;
2012
2013 write_lock(&journal->j_state_lock);
2014
2015 /* Force everything buffered to the log... */
2016 if (journal->j_running_transaction) {
2017 transaction = journal->j_running_transaction;
2018 __jbd2_log_start_commit(journal, transaction->t_tid);
2019 } else if (journal->j_committing_transaction)
2020 transaction = journal->j_committing_transaction;
2021
2022 /* Wait for the log commit to complete... */
2023 if (transaction) {
2024 tid_t tid = transaction->t_tid;
2025
2026 write_unlock(&journal->j_state_lock);
2027 jbd2_log_wait_commit(journal, tid);
2028 } else {
2029 write_unlock(&journal->j_state_lock);
2030 }
2031
2032 /* ...and flush everything in the log out to disk. */
2033 spin_lock(&journal->j_list_lock);
2034 while (!err && journal->j_checkpoint_transactions != NULL) {
2035 spin_unlock(&journal->j_list_lock);
2036 mutex_lock_io(&journal->j_checkpoint_mutex);
2037 err = jbd2_log_do_checkpoint(journal);
2038 mutex_unlock(&journal->j_checkpoint_mutex);
2039 spin_lock(&journal->j_list_lock);
2040 }
2041 spin_unlock(&journal->j_list_lock);
2042
2043 if (is_journal_aborted(journal))
2044 return -EIO;
2045
2046 mutex_lock_io(&journal->j_checkpoint_mutex);
2047 if (!err) {
2048 err = jbd2_cleanup_journal_tail(journal);
2049 if (err < 0) {
2050 mutex_unlock(&journal->j_checkpoint_mutex);
2051 goto out;
2052 }
2053 err = 0;
2054 }
2055
2056 /* Finally, mark the journal as really needing no recovery.
2057 * This sets s_start==0 in the underlying superblock, which is
2058 * the magic code for a fully-recovered superblock. Any future
2059 * commits of data to the journal will restore the current
2060 * s_start value. */
2061 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2062 mutex_unlock(&journal->j_checkpoint_mutex);
2063 write_lock(&journal->j_state_lock);
2064 J_ASSERT(!journal->j_running_transaction);
2065 J_ASSERT(!journal->j_committing_transaction);
2066 J_ASSERT(!journal->j_checkpoint_transactions);
2067 J_ASSERT(journal->j_head == journal->j_tail);
2068 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2069 write_unlock(&journal->j_state_lock);
2070out:
2071 return err;
2072}
2073
2074/**
2075 * int jbd2_journal_wipe() - Wipe journal contents
2076 * @journal: Journal to act on.
2077 * @write: flag (see below)
2078 *
2079 * Wipe out all of the contents of a journal, safely. This will produce
2080 * a warning if the journal contains any valid recovery information.
2081 * Must be called between journal_init_*() and jbd2_journal_load().
2082 *
2083 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2084 * we merely suppress recovery.
2085 */
2086
2087int jbd2_journal_wipe(journal_t *journal, int write)
2088{
2089 int err = 0;
2090
2091 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2092
2093 err = load_superblock(journal);
2094 if (err)
2095 return err;
2096
2097 if (!journal->j_tail)
2098 goto no_recovery;
2099
2100 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2101 write ? "Clearing" : "Ignoring");
2102
2103 err = jbd2_journal_skip_recovery(journal);
2104 if (write) {
2105 /* Lock to make assertions happy... */
2106 mutex_lock_io(&journal->j_checkpoint_mutex);
2107 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2108 mutex_unlock(&journal->j_checkpoint_mutex);
2109 }
2110
2111 no_recovery:
2112 return err;
2113}
2114
2115/**
2116 * void jbd2_journal_abort () - Shutdown the journal immediately.
2117 * @journal: the journal to shutdown.
2118 * @errno: an error number to record in the journal indicating
2119 * the reason for the shutdown.
2120 *
2121 * Perform a complete, immediate shutdown of the ENTIRE
2122 * journal (not of a single transaction). This operation cannot be
2123 * undone without closing and reopening the journal.
2124 *
2125 * The jbd2_journal_abort function is intended to support higher level error
2126 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2127 * mode.
2128 *
2129 * Journal abort has very specific semantics. Any existing dirty,
2130 * unjournaled buffers in the main filesystem will still be written to
2131 * disk by bdflush, but the journaling mechanism will be suspended
2132 * immediately and no further transaction commits will be honoured.
2133 *
2134 * Any dirty, journaled buffers will be written back to disk without
2135 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2136 * filesystem, but we _do_ attempt to leave as much data as possible
2137 * behind for fsck to use for cleanup.
2138 *
2139 * Any attempt to get a new transaction handle on a journal which is in
2140 * ABORT state will just result in an -EROFS error return. A
2141 * jbd2_journal_stop on an existing handle will return -EIO if we have
2142 * entered abort state during the update.
2143 *
2144 * Recursive transactions are not disturbed by journal abort until the
2145 * final jbd2_journal_stop, which will receive the -EIO error.
2146 *
2147 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2148 * which will be recorded (if possible) in the journal superblock. This
2149 * allows a client to record failure conditions in the middle of a
2150 * transaction without having to complete the transaction to record the
2151 * failure to disk. ext3_error, for example, now uses this
2152 * functionality.
2153 *
2154 */
2155
2156void jbd2_journal_abort(journal_t *journal, int errno)
2157{
2158 transaction_t *transaction;
2159
2160 /*
2161 * Lock the aborting procedure until everything is done, this avoid
2162 * races between filesystem's error handling flow (e.g. ext4_abort()),
2163 * ensure panic after the error info is written into journal's
2164 * superblock.
2165 */
2166 mutex_lock(&journal->j_abort_mutex);
2167 /*
2168 * ESHUTDOWN always takes precedence because a file system check
2169 * caused by any other journal abort error is not required after
2170 * a shutdown triggered.
2171 */
2172 write_lock(&journal->j_state_lock);
2173 if (journal->j_flags & JBD2_ABORT) {
2174 int old_errno = journal->j_errno;
2175
2176 write_unlock(&journal->j_state_lock);
2177 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN) {
2178 journal->j_errno = errno;
2179 jbd2_journal_update_sb_errno(journal);
2180 }
2181 mutex_unlock(&journal->j_abort_mutex);
2182 return;
2183 }
2184
2185 /*
2186 * Mark the abort as occurred and start current running transaction
2187 * to release all journaled buffer.
2188 */
2189 pr_err("Aborting journal on device %s.\n", journal->j_devname);
2190
2191 journal->j_flags |= JBD2_ABORT;
2192 journal->j_errno = errno;
2193 transaction = journal->j_running_transaction;
2194 if (transaction)
2195 __jbd2_log_start_commit(journal, transaction->t_tid);
2196 write_unlock(&journal->j_state_lock);
2197
2198 /*
2199 * Record errno to the journal super block, so that fsck and jbd2
2200 * layer could realise that a filesystem check is needed.
2201 */
2202 jbd2_journal_update_sb_errno(journal);
2203 mutex_unlock(&journal->j_abort_mutex);
2204}
2205
2206/**
2207 * int jbd2_journal_errno () - returns the journal's error state.
2208 * @journal: journal to examine.
2209 *
2210 * This is the errno number set with jbd2_journal_abort(), the last
2211 * time the journal was mounted - if the journal was stopped
2212 * without calling abort this will be 0.
2213 *
2214 * If the journal has been aborted on this mount time -EROFS will
2215 * be returned.
2216 */
2217int jbd2_journal_errno(journal_t *journal)
2218{
2219 int err;
2220
2221 read_lock(&journal->j_state_lock);
2222 if (journal->j_flags & JBD2_ABORT)
2223 err = -EROFS;
2224 else
2225 err = journal->j_errno;
2226 read_unlock(&journal->j_state_lock);
2227 return err;
2228}
2229
2230/**
2231 * int jbd2_journal_clear_err () - clears the journal's error state
2232 * @journal: journal to act on.
2233 *
2234 * An error must be cleared or acked to take a FS out of readonly
2235 * mode.
2236 */
2237int jbd2_journal_clear_err(journal_t *journal)
2238{
2239 int err = 0;
2240
2241 write_lock(&journal->j_state_lock);
2242 if (journal->j_flags & JBD2_ABORT)
2243 err = -EROFS;
2244 else
2245 journal->j_errno = 0;
2246 write_unlock(&journal->j_state_lock);
2247 return err;
2248}
2249
2250/**
2251 * void jbd2_journal_ack_err() - Ack journal err.
2252 * @journal: journal to act on.
2253 *
2254 * An error must be cleared or acked to take a FS out of readonly
2255 * mode.
2256 */
2257void jbd2_journal_ack_err(journal_t *journal)
2258{
2259 write_lock(&journal->j_state_lock);
2260 if (journal->j_errno)
2261 journal->j_flags |= JBD2_ACK_ERR;
2262 write_unlock(&journal->j_state_lock);
2263}
2264
2265int jbd2_journal_blocks_per_page(struct inode *inode)
2266{
2267 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2268}
2269
2270/*
2271 * helper functions to deal with 32 or 64bit block numbers.
2272 */
2273size_t journal_tag_bytes(journal_t *journal)
2274{
2275 size_t sz;
2276
2277 if (jbd2_has_feature_csum3(journal))
2278 return sizeof(journal_block_tag3_t);
2279
2280 sz = sizeof(journal_block_tag_t);
2281
2282 if (jbd2_has_feature_csum2(journal))
2283 sz += sizeof(__u16);
2284
2285 if (jbd2_has_feature_64bit(journal))
2286 return sz;
2287 else
2288 return sz - sizeof(__u32);
2289}
2290
2291/*
2292 * JBD memory management
2293 *
2294 * These functions are used to allocate block-sized chunks of memory
2295 * used for making copies of buffer_head data. Very often it will be
2296 * page-sized chunks of data, but sometimes it will be in
2297 * sub-page-size chunks. (For example, 16k pages on Power systems
2298 * with a 4k block file system.) For blocks smaller than a page, we
2299 * use a SLAB allocator. There are slab caches for each block size,
2300 * which are allocated at mount time, if necessary, and we only free
2301 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2302 * this reason we don't need to a mutex to protect access to
2303 * jbd2_slab[] allocating or releasing memory; only in
2304 * jbd2_journal_create_slab().
2305 */
2306#define JBD2_MAX_SLABS 8
2307static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2308
2309static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2310 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2311 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2312};
2313
2314
2315static void jbd2_journal_destroy_slabs(void)
2316{
2317 int i;
2318
2319 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2320 kmem_cache_destroy(jbd2_slab[i]);
2321 jbd2_slab[i] = NULL;
2322 }
2323}
2324
2325static int jbd2_journal_create_slab(size_t size)
2326{
2327 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2328 int i = order_base_2(size) - 10;
2329 size_t slab_size;
2330
2331 if (size == PAGE_SIZE)
2332 return 0;
2333
2334 if (i >= JBD2_MAX_SLABS)
2335 return -EINVAL;
2336
2337 if (unlikely(i < 0))
2338 i = 0;
2339 mutex_lock(&jbd2_slab_create_mutex);
2340 if (jbd2_slab[i]) {
2341 mutex_unlock(&jbd2_slab_create_mutex);
2342 return 0; /* Already created */
2343 }
2344
2345 slab_size = 1 << (i+10);
2346 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2347 slab_size, 0, NULL);
2348 mutex_unlock(&jbd2_slab_create_mutex);
2349 if (!jbd2_slab[i]) {
2350 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2351 return -ENOMEM;
2352 }
2353 return 0;
2354}
2355
2356static struct kmem_cache *get_slab(size_t size)
2357{
2358 int i = order_base_2(size) - 10;
2359
2360 BUG_ON(i >= JBD2_MAX_SLABS);
2361 if (unlikely(i < 0))
2362 i = 0;
2363 BUG_ON(jbd2_slab[i] == NULL);
2364 return jbd2_slab[i];
2365}
2366
2367void *jbd2_alloc(size_t size, gfp_t flags)
2368{
2369 void *ptr;
2370
2371 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2372
2373 if (size < PAGE_SIZE)
2374 ptr = kmem_cache_alloc(get_slab(size), flags);
2375 else
2376 ptr = (void *)__get_free_pages(flags, get_order(size));
2377
2378 /* Check alignment; SLUB has gotten this wrong in the past,
2379 * and this can lead to user data corruption! */
2380 BUG_ON(((unsigned long) ptr) & (size-1));
2381
2382 return ptr;
2383}
2384
2385void jbd2_free(void *ptr, size_t size)
2386{
2387 if (size < PAGE_SIZE)
2388 kmem_cache_free(get_slab(size), ptr);
2389 else
2390 free_pages((unsigned long)ptr, get_order(size));
2391};
2392
2393/*
2394 * Journal_head storage management
2395 */
2396static struct kmem_cache *jbd2_journal_head_cache;
2397#ifdef CONFIG_JBD2_DEBUG
2398static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2399#endif
2400
2401static int __init jbd2_journal_init_journal_head_cache(void)
2402{
2403 J_ASSERT(!jbd2_journal_head_cache);
2404 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2405 sizeof(struct journal_head),
2406 0, /* offset */
2407 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2408 NULL); /* ctor */
2409 if (!jbd2_journal_head_cache) {
2410 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2411 return -ENOMEM;
2412 }
2413 return 0;
2414}
2415
2416static void jbd2_journal_destroy_journal_head_cache(void)
2417{
2418 kmem_cache_destroy(jbd2_journal_head_cache);
2419 jbd2_journal_head_cache = NULL;
2420}
2421
2422/*
2423 * journal_head splicing and dicing
2424 */
2425static struct journal_head *journal_alloc_journal_head(void)
2426{
2427 struct journal_head *ret;
2428
2429#ifdef CONFIG_JBD2_DEBUG
2430 atomic_inc(&nr_journal_heads);
2431#endif
2432 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2433 if (!ret) {
2434 jbd_debug(1, "out of memory for journal_head\n");
2435 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2436 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2437 GFP_NOFS | __GFP_NOFAIL);
2438 }
2439 if (ret)
2440 spin_lock_init(&ret->b_state_lock);
2441 return ret;
2442}
2443
2444static void journal_free_journal_head(struct journal_head *jh)
2445{
2446#ifdef CONFIG_JBD2_DEBUG
2447 atomic_dec(&nr_journal_heads);
2448 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2449#endif
2450 kmem_cache_free(jbd2_journal_head_cache, jh);
2451}
2452
2453/*
2454 * A journal_head is attached to a buffer_head whenever JBD has an
2455 * interest in the buffer.
2456 *
2457 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2458 * is set. This bit is tested in core kernel code where we need to take
2459 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2460 * there.
2461 *
2462 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2463 *
2464 * When a buffer has its BH_JBD bit set it is immune from being released by
2465 * core kernel code, mainly via ->b_count.
2466 *
2467 * A journal_head is detached from its buffer_head when the journal_head's
2468 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2469 * transaction (b_cp_transaction) hold their references to b_jcount.
2470 *
2471 * Various places in the kernel want to attach a journal_head to a buffer_head
2472 * _before_ attaching the journal_head to a transaction. To protect the
2473 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2474 * journal_head's b_jcount refcount by one. The caller must call
2475 * jbd2_journal_put_journal_head() to undo this.
2476 *
2477 * So the typical usage would be:
2478 *
2479 * (Attach a journal_head if needed. Increments b_jcount)
2480 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2481 * ...
2482 * (Get another reference for transaction)
2483 * jbd2_journal_grab_journal_head(bh);
2484 * jh->b_transaction = xxx;
2485 * (Put original reference)
2486 * jbd2_journal_put_journal_head(jh);
2487 */
2488
2489/*
2490 * Give a buffer_head a journal_head.
2491 *
2492 * May sleep.
2493 */
2494struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2495{
2496 struct journal_head *jh;
2497 struct journal_head *new_jh = NULL;
2498
2499repeat:
2500 if (!buffer_jbd(bh))
2501 new_jh = journal_alloc_journal_head();
2502
2503 jbd_lock_bh_journal_head(bh);
2504 if (buffer_jbd(bh)) {
2505 jh = bh2jh(bh);
2506 } else {
2507 J_ASSERT_BH(bh,
2508 (atomic_read(&bh->b_count) > 0) ||
2509 (bh->b_page && bh->b_page->mapping));
2510
2511 if (!new_jh) {
2512 jbd_unlock_bh_journal_head(bh);
2513 goto repeat;
2514 }
2515
2516 jh = new_jh;
2517 new_jh = NULL; /* We consumed it */
2518 set_buffer_jbd(bh);
2519 bh->b_private = jh;
2520 jh->b_bh = bh;
2521 get_bh(bh);
2522 BUFFER_TRACE(bh, "added journal_head");
2523 }
2524 jh->b_jcount++;
2525 jbd_unlock_bh_journal_head(bh);
2526 if (new_jh)
2527 journal_free_journal_head(new_jh);
2528 return bh->b_private;
2529}
2530
2531/*
2532 * Grab a ref against this buffer_head's journal_head. If it ended up not
2533 * having a journal_head, return NULL
2534 */
2535struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2536{
2537 struct journal_head *jh = NULL;
2538
2539 jbd_lock_bh_journal_head(bh);
2540 if (buffer_jbd(bh)) {
2541 jh = bh2jh(bh);
2542 jh->b_jcount++;
2543 }
2544 jbd_unlock_bh_journal_head(bh);
2545 return jh;
2546}
2547
2548static void __journal_remove_journal_head(struct buffer_head *bh)
2549{
2550 struct journal_head *jh = bh2jh(bh);
2551
2552 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2553 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2554 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2555 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2556 J_ASSERT_BH(bh, buffer_jbd(bh));
2557 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2558 BUFFER_TRACE(bh, "remove journal_head");
2559
2560 /* Unlink before dropping the lock */
2561 bh->b_private = NULL;
2562 jh->b_bh = NULL; /* debug, really */
2563 clear_buffer_jbd(bh);
2564}
2565
2566static void journal_release_journal_head(struct journal_head *jh, size_t b_size)
2567{
2568 if (jh->b_frozen_data) {
2569 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2570 jbd2_free(jh->b_frozen_data, b_size);
2571 }
2572 if (jh->b_committed_data) {
2573 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2574 jbd2_free(jh->b_committed_data, b_size);
2575 }
2576 journal_free_journal_head(jh);
2577}
2578
2579/*
2580 * Drop a reference on the passed journal_head. If it fell to zero then
2581 * release the journal_head from the buffer_head.
2582 */
2583void jbd2_journal_put_journal_head(struct journal_head *jh)
2584{
2585 struct buffer_head *bh = jh2bh(jh);
2586
2587 jbd_lock_bh_journal_head(bh);
2588 J_ASSERT_JH(jh, jh->b_jcount > 0);
2589 --jh->b_jcount;
2590 if (!jh->b_jcount) {
2591 __journal_remove_journal_head(bh);
2592 jbd_unlock_bh_journal_head(bh);
2593 journal_release_journal_head(jh, bh->b_size);
2594 __brelse(bh);
2595 } else {
2596 jbd_unlock_bh_journal_head(bh);
2597 }
2598}
2599
2600/*
2601 * Initialize jbd inode head
2602 */
2603void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2604{
2605 jinode->i_transaction = NULL;
2606 jinode->i_next_transaction = NULL;
2607 jinode->i_vfs_inode = inode;
2608 jinode->i_flags = 0;
2609 jinode->i_dirty_start = 0;
2610 jinode->i_dirty_end = 0;
2611 INIT_LIST_HEAD(&jinode->i_list);
2612}
2613
2614/*
2615 * Function to be called before we start removing inode from memory (i.e.,
2616 * clear_inode() is a fine place to be called from). It removes inode from
2617 * transaction's lists.
2618 */
2619void jbd2_journal_release_jbd_inode(journal_t *journal,
2620 struct jbd2_inode *jinode)
2621{
2622 if (!journal)
2623 return;
2624restart:
2625 spin_lock(&journal->j_list_lock);
2626 /* Is commit writing out inode - we have to wait */
2627 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2628 wait_queue_head_t *wq;
2629 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2630 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2631 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2632 spin_unlock(&journal->j_list_lock);
2633 schedule();
2634 finish_wait(wq, &wait.wq_entry);
2635 goto restart;
2636 }
2637
2638 if (jinode->i_transaction) {
2639 list_del(&jinode->i_list);
2640 jinode->i_transaction = NULL;
2641 }
2642 spin_unlock(&journal->j_list_lock);
2643}
2644
2645
2646#ifdef CONFIG_PROC_FS
2647
2648#define JBD2_STATS_PROC_NAME "fs/jbd2"
2649
2650static void __init jbd2_create_jbd_stats_proc_entry(void)
2651{
2652 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2653}
2654
2655static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2656{
2657 if (proc_jbd2_stats)
2658 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2659}
2660
2661#else
2662
2663#define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2664#define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2665
2666#endif
2667
2668struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2669
2670static int __init jbd2_journal_init_inode_cache(void)
2671{
2672 J_ASSERT(!jbd2_inode_cache);
2673 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2674 if (!jbd2_inode_cache) {
2675 pr_emerg("JBD2: failed to create inode cache\n");
2676 return -ENOMEM;
2677 }
2678 return 0;
2679}
2680
2681static int __init jbd2_journal_init_handle_cache(void)
2682{
2683 J_ASSERT(!jbd2_handle_cache);
2684 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2685 if (!jbd2_handle_cache) {
2686 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2687 return -ENOMEM;
2688 }
2689 return 0;
2690}
2691
2692static void jbd2_journal_destroy_inode_cache(void)
2693{
2694 kmem_cache_destroy(jbd2_inode_cache);
2695 jbd2_inode_cache = NULL;
2696}
2697
2698static void jbd2_journal_destroy_handle_cache(void)
2699{
2700 kmem_cache_destroy(jbd2_handle_cache);
2701 jbd2_handle_cache = NULL;
2702}
2703
2704/*
2705 * Module startup and shutdown
2706 */
2707
2708static int __init journal_init_caches(void)
2709{
2710 int ret;
2711
2712 ret = jbd2_journal_init_revoke_record_cache();
2713 if (ret == 0)
2714 ret = jbd2_journal_init_revoke_table_cache();
2715 if (ret == 0)
2716 ret = jbd2_journal_init_journal_head_cache();
2717 if (ret == 0)
2718 ret = jbd2_journal_init_handle_cache();
2719 if (ret == 0)
2720 ret = jbd2_journal_init_inode_cache();
2721 if (ret == 0)
2722 ret = jbd2_journal_init_transaction_cache();
2723 return ret;
2724}
2725
2726static void jbd2_journal_destroy_caches(void)
2727{
2728 jbd2_journal_destroy_revoke_record_cache();
2729 jbd2_journal_destroy_revoke_table_cache();
2730 jbd2_journal_destroy_journal_head_cache();
2731 jbd2_journal_destroy_handle_cache();
2732 jbd2_journal_destroy_inode_cache();
2733 jbd2_journal_destroy_transaction_cache();
2734 jbd2_journal_destroy_slabs();
2735}
2736
2737static int __init journal_init(void)
2738{
2739 int ret;
2740
2741 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2742
2743 ret = journal_init_caches();
2744 if (ret == 0) {
2745 jbd2_create_jbd_stats_proc_entry();
2746 } else {
2747 jbd2_journal_destroy_caches();
2748 }
2749 return ret;
2750}
2751
2752static void __exit journal_exit(void)
2753{
2754#ifdef CONFIG_JBD2_DEBUG
2755 int n = atomic_read(&nr_journal_heads);
2756 if (n)
2757 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2758#endif
2759 jbd2_remove_jbd_stats_proc_entry();
2760 jbd2_journal_destroy_caches();
2761}
2762
2763MODULE_LICENSE("GPL");
2764module_init(journal_init);
2765module_exit(journal_exit);
2766