Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in 4 modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 
 
 
 
 
 203	PM_READ_ONLY,		/* metadata may not be changed */
 
 204	PM_FAIL,		/* all I/O fails */
 205};
 206
 207struct pool_features {
 208	enum pool_mode mode;
 209
 210	bool zero_new_blocks:1;
 211	bool discard_enabled:1;
 212	bool discard_passdown:1;
 213	bool error_if_no_space:1;
 214};
 215
 216struct thin_c;
 217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 220
 221#define CELL_SORT_ARRAY_SIZE 8192
 222
 223struct pool {
 224	struct list_head list;
 225	struct dm_target *ti;	/* Only set if a pool target is bound */
 226
 227	struct mapped_device *pool_md;
 
 228	struct block_device *md_dev;
 229	struct dm_pool_metadata *pmd;
 230
 231	dm_block_t low_water_blocks;
 232	uint32_t sectors_per_block;
 233	int sectors_per_block_shift;
 234
 235	struct pool_features pf;
 236	bool low_water_triggered:1;	/* A dm event has been sent */
 237	bool suspended:1;
 238	bool out_of_data_space:1;
 239
 240	struct dm_bio_prison *prison;
 241	struct dm_kcopyd_client *copier;
 242
 
 243	struct workqueue_struct *wq;
 244	struct throttle throttle;
 245	struct work_struct worker;
 246	struct delayed_work waker;
 247	struct delayed_work no_space_timeout;
 248
 249	unsigned long last_commit_jiffies;
 250	unsigned ref_count;
 251
 252	spinlock_t lock;
 253	struct bio_list deferred_flush_bios;
 
 254	struct list_head prepared_mappings;
 255	struct list_head prepared_discards;
 256	struct list_head prepared_discards_pt2;
 257	struct list_head active_thins;
 258
 259	struct dm_deferred_set *shared_read_ds;
 260	struct dm_deferred_set *all_io_ds;
 261
 262	struct dm_thin_new_mapping *next_mapping;
 263	mempool_t *mapping_pool;
 264
 265	process_bio_fn process_bio;
 266	process_bio_fn process_discard;
 267
 268	process_cell_fn process_cell;
 269	process_cell_fn process_discard_cell;
 270
 271	process_mapping_fn process_prepared_mapping;
 272	process_mapping_fn process_prepared_discard;
 273	process_mapping_fn process_prepared_discard_pt2;
 274
 275	struct dm_bio_prison_cell **cell_sort_array;
 
 
 
 
 276};
 277
 278static enum pool_mode get_pool_mode(struct pool *pool);
 279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 280
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 281/*
 282 * Target context for a pool.
 283 */
 284struct pool_c {
 285	struct dm_target *ti;
 286	struct pool *pool;
 287	struct dm_dev *data_dev;
 288	struct dm_dev *metadata_dev;
 289	struct dm_target_callbacks callbacks;
 290
 291	dm_block_t low_water_blocks;
 292	struct pool_features requested_pf; /* Features requested during table load */
 293	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 294};
 295
 296/*
 297 * Target context for a thin.
 298 */
 299struct thin_c {
 300	struct list_head list;
 301	struct dm_dev *pool_dev;
 302	struct dm_dev *origin_dev;
 303	sector_t origin_size;
 304	dm_thin_id dev_id;
 305
 306	struct pool *pool;
 307	struct dm_thin_device *td;
 308	struct mapped_device *thin_md;
 309
 310	bool requeue_mode:1;
 311	spinlock_t lock;
 312	struct list_head deferred_cells;
 313	struct bio_list deferred_bio_list;
 314	struct bio_list retry_on_resume_list;
 315	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 316
 317	/*
 318	 * Ensures the thin is not destroyed until the worker has finished
 319	 * iterating the active_thins list.
 320	 */
 321	atomic_t refcount;
 322	struct completion can_destroy;
 323};
 324
 325/*----------------------------------------------------------------*/
 326
 327static bool block_size_is_power_of_two(struct pool *pool)
 328{
 329	return pool->sectors_per_block_shift >= 0;
 330}
 331
 332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 333{
 334	return block_size_is_power_of_two(pool) ?
 335		(b << pool->sectors_per_block_shift) :
 336		(b * pool->sectors_per_block);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341struct discard_op {
 342	struct thin_c *tc;
 343	struct blk_plug plug;
 344	struct bio *parent_bio;
 345	struct bio *bio;
 346};
 347
 348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 349{
 350	BUG_ON(!parent);
 351
 352	op->tc = tc;
 353	blk_start_plug(&op->plug);
 354	op->parent_bio = parent;
 355	op->bio = NULL;
 356}
 357
 358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 359{
 360	struct thin_c *tc = op->tc;
 361	sector_t s = block_to_sectors(tc->pool, data_b);
 362	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 363
 364	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 365				      GFP_NOWAIT, 0, &op->bio);
 366}
 367
 368static void end_discard(struct discard_op *op, int r)
 369{
 370	if (op->bio) {
 371		/*
 372		 * Even if one of the calls to issue_discard failed, we
 373		 * need to wait for the chain to complete.
 374		 */
 375		bio_chain(op->bio, op->parent_bio);
 376		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 377		submit_bio(op->bio);
 378	}
 379
 380	blk_finish_plug(&op->plug);
 381
 382	/*
 383	 * Even if r is set, there could be sub discards in flight that we
 384	 * need to wait for.
 385	 */
 386	if (r && !op->parent_bio->bi_error)
 387		op->parent_bio->bi_error = r;
 388	bio_endio(op->parent_bio);
 389}
 390
 391/*----------------------------------------------------------------*/
 392
 393/*
 394 * wake_worker() is used when new work is queued and when pool_resume is
 395 * ready to continue deferred IO processing.
 396 */
 397static void wake_worker(struct pool *pool)
 398{
 399	queue_work(pool->wq, &pool->worker);
 400}
 401
 402/*----------------------------------------------------------------*/
 403
 404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 405		      struct dm_bio_prison_cell **cell_result)
 406{
 407	int r;
 408	struct dm_bio_prison_cell *cell_prealloc;
 409
 410	/*
 411	 * Allocate a cell from the prison's mempool.
 412	 * This might block but it can't fail.
 413	 */
 414	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 415
 416	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 417	if (r)
 418		/*
 419		 * We reused an old cell; we can get rid of
 420		 * the new one.
 421		 */
 422		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 423
 424	return r;
 425}
 426
 427static void cell_release(struct pool *pool,
 428			 struct dm_bio_prison_cell *cell,
 429			 struct bio_list *bios)
 430{
 431	dm_cell_release(pool->prison, cell, bios);
 432	dm_bio_prison_free_cell(pool->prison, cell);
 433}
 434
 435static void cell_visit_release(struct pool *pool,
 436			       void (*fn)(void *, struct dm_bio_prison_cell *),
 437			       void *context,
 438			       struct dm_bio_prison_cell *cell)
 439{
 440	dm_cell_visit_release(pool->prison, fn, context, cell);
 441	dm_bio_prison_free_cell(pool->prison, cell);
 442}
 443
 444static void cell_release_no_holder(struct pool *pool,
 445				   struct dm_bio_prison_cell *cell,
 446				   struct bio_list *bios)
 447{
 448	dm_cell_release_no_holder(pool->prison, cell, bios);
 449	dm_bio_prison_free_cell(pool->prison, cell);
 450}
 451
 452static void cell_error_with_code(struct pool *pool,
 453				 struct dm_bio_prison_cell *cell, int error_code)
 454{
 455	dm_cell_error(pool->prison, cell, error_code);
 456	dm_bio_prison_free_cell(pool->prison, cell);
 457}
 458
 459static int get_pool_io_error_code(struct pool *pool)
 460{
 461	return pool->out_of_data_space ? -ENOSPC : -EIO;
 462}
 463
 464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 465{
 466	int error = get_pool_io_error_code(pool);
 467
 468	cell_error_with_code(pool, cell, error);
 469}
 470
 471static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 472{
 473	cell_error_with_code(pool, cell, 0);
 474}
 475
 476static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 477{
 478	cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
 479}
 480
 481/*----------------------------------------------------------------*/
 482
 483/*
 484 * A global list of pools that uses a struct mapped_device as a key.
 485 */
 486static struct dm_thin_pool_table {
 487	struct mutex mutex;
 488	struct list_head pools;
 489} dm_thin_pool_table;
 490
 491static void pool_table_init(void)
 492{
 493	mutex_init(&dm_thin_pool_table.mutex);
 494	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 495}
 496
 
 
 
 
 
 497static void __pool_table_insert(struct pool *pool)
 498{
 499	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 500	list_add(&pool->list, &dm_thin_pool_table.pools);
 501}
 502
 503static void __pool_table_remove(struct pool *pool)
 504{
 505	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 506	list_del(&pool->list);
 507}
 508
 509static struct pool *__pool_table_lookup(struct mapped_device *md)
 510{
 511	struct pool *pool = NULL, *tmp;
 512
 513	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 514
 515	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 516		if (tmp->pool_md == md) {
 517			pool = tmp;
 518			break;
 519		}
 520	}
 521
 522	return pool;
 523}
 524
 525static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 526{
 527	struct pool *pool = NULL, *tmp;
 528
 529	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 530
 531	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 532		if (tmp->md_dev == md_dev) {
 533			pool = tmp;
 534			break;
 535		}
 536	}
 537
 538	return pool;
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543struct dm_thin_endio_hook {
 544	struct thin_c *tc;
 545	struct dm_deferred_entry *shared_read_entry;
 546	struct dm_deferred_entry *all_io_entry;
 547	struct dm_thin_new_mapping *overwrite_mapping;
 548	struct rb_node rb_node;
 549	struct dm_bio_prison_cell *cell;
 550};
 551
 552static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 553{
 554	bio_list_merge(bios, master);
 555	bio_list_init(master);
 556}
 557
 558static void error_bio_list(struct bio_list *bios, int error)
 559{
 560	struct bio *bio;
 561
 562	while ((bio = bio_list_pop(bios))) {
 563		bio->bi_error = error;
 564		bio_endio(bio);
 565	}
 566}
 567
 568static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
 
 569{
 570	struct bio_list bios;
 571	unsigned long flags;
 572
 573	bio_list_init(&bios);
 574
 575	spin_lock_irqsave(&tc->lock, flags);
 576	__merge_bio_list(&bios, master);
 577	spin_unlock_irqrestore(&tc->lock, flags);
 578
 579	error_bio_list(&bios, error);
 580}
 581
 582static void requeue_deferred_cells(struct thin_c *tc)
 583{
 584	struct pool *pool = tc->pool;
 585	unsigned long flags;
 586	struct list_head cells;
 587	struct dm_bio_prison_cell *cell, *tmp;
 588
 589	INIT_LIST_HEAD(&cells);
 590
 591	spin_lock_irqsave(&tc->lock, flags);
 592	list_splice_init(&tc->deferred_cells, &cells);
 593	spin_unlock_irqrestore(&tc->lock, flags);
 594
 595	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 596		cell_requeue(pool, cell);
 597}
 598
 599static void requeue_io(struct thin_c *tc)
 600{
 601	struct bio_list bios;
 602	unsigned long flags;
 603
 604	bio_list_init(&bios);
 605
 606	spin_lock_irqsave(&tc->lock, flags);
 607	__merge_bio_list(&bios, &tc->deferred_bio_list);
 608	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 609	spin_unlock_irqrestore(&tc->lock, flags);
 610
 611	error_bio_list(&bios, DM_ENDIO_REQUEUE);
 612	requeue_deferred_cells(tc);
 613}
 614
 615static void error_retry_list_with_code(struct pool *pool, int error)
 616{
 617	struct thin_c *tc;
 618
 619	rcu_read_lock();
 620	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 621		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 622	rcu_read_unlock();
 623}
 624
 625static void error_retry_list(struct pool *pool)
 626{
 627	int error = get_pool_io_error_code(pool);
 628
 629	error_retry_list_with_code(pool, error);
 630}
 631
 632/*
 633 * This section of code contains the logic for processing a thin device's IO.
 634 * Much of the code depends on pool object resources (lists, workqueues, etc)
 635 * but most is exclusively called from the thin target rather than the thin-pool
 636 * target.
 637 */
 638
 639static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 640{
 641	struct pool *pool = tc->pool;
 642	sector_t block_nr = bio->bi_iter.bi_sector;
 643
 644	if (block_size_is_power_of_two(pool))
 645		block_nr >>= pool->sectors_per_block_shift;
 646	else
 647		(void) sector_div(block_nr, pool->sectors_per_block);
 648
 649	return block_nr;
 650}
 651
 652/*
 653 * Returns the _complete_ blocks that this bio covers.
 654 */
 655static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 656				dm_block_t *begin, dm_block_t *end)
 657{
 658	struct pool *pool = tc->pool;
 659	sector_t b = bio->bi_iter.bi_sector;
 660	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 661
 662	b += pool->sectors_per_block - 1ull; /* so we round up */
 663
 664	if (block_size_is_power_of_two(pool)) {
 665		b >>= pool->sectors_per_block_shift;
 666		e >>= pool->sectors_per_block_shift;
 667	} else {
 668		(void) sector_div(b, pool->sectors_per_block);
 669		(void) sector_div(e, pool->sectors_per_block);
 670	}
 671
 672	if (e < b)
 673		/* Can happen if the bio is within a single block. */
 674		e = b;
 675
 676	*begin = b;
 677	*end = e;
 678}
 679
 680static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 681{
 682	struct pool *pool = tc->pool;
 683	sector_t bi_sector = bio->bi_iter.bi_sector;
 684
 685	bio->bi_bdev = tc->pool_dev->bdev;
 686	if (block_size_is_power_of_two(pool))
 687		bio->bi_iter.bi_sector =
 688			(block << pool->sectors_per_block_shift) |
 689			(bi_sector & (pool->sectors_per_block - 1));
 690	else
 691		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 692				 sector_div(bi_sector, pool->sectors_per_block);
 693}
 694
 695static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 696{
 697	bio->bi_bdev = tc->origin_dev->bdev;
 698}
 699
 700static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 701{
 702	return (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
 703		dm_thin_changed_this_transaction(tc->td);
 704}
 705
 706static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 707{
 708	struct dm_thin_endio_hook *h;
 709
 710	if (bio_op(bio) == REQ_OP_DISCARD)
 711		return;
 712
 713	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 714	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 715}
 716
 717static void issue(struct thin_c *tc, struct bio *bio)
 718{
 719	struct pool *pool = tc->pool;
 720	unsigned long flags;
 721
 722	if (!bio_triggers_commit(tc, bio)) {
 723		generic_make_request(bio);
 724		return;
 725	}
 726
 727	/*
 728	 * Complete bio with an error if earlier I/O caused changes to
 729	 * the metadata that can't be committed e.g, due to I/O errors
 730	 * on the metadata device.
 731	 */
 732	if (dm_thin_aborted_changes(tc->td)) {
 733		bio_io_error(bio);
 734		return;
 735	}
 736
 737	/*
 738	 * Batch together any bios that trigger commits and then issue a
 739	 * single commit for them in process_deferred_bios().
 740	 */
 741	spin_lock_irqsave(&pool->lock, flags);
 742	bio_list_add(&pool->deferred_flush_bios, bio);
 743	spin_unlock_irqrestore(&pool->lock, flags);
 744}
 745
 746static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 747{
 748	remap_to_origin(tc, bio);
 749	issue(tc, bio);
 750}
 751
 752static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 753			    dm_block_t block)
 754{
 755	remap(tc, bio, block);
 756	issue(tc, bio);
 757}
 758
 759/*----------------------------------------------------------------*/
 760
 761/*
 762 * Bio endio functions.
 763 */
 764struct dm_thin_new_mapping {
 765	struct list_head list;
 766
 767	bool pass_discard:1;
 768	bool maybe_shared:1;
 769
 770	/*
 771	 * Track quiescing, copying and zeroing preparation actions.  When this
 772	 * counter hits zero the block is prepared and can be inserted into the
 773	 * btree.
 774	 */
 775	atomic_t prepare_actions;
 776
 777	int err;
 778	struct thin_c *tc;
 779	dm_block_t virt_begin, virt_end;
 780	dm_block_t data_block;
 781	struct dm_bio_prison_cell *cell;
 782
 783	/*
 784	 * If the bio covers the whole area of a block then we can avoid
 785	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 786	 * still be in the cell, so care has to be taken to avoid issuing
 787	 * the bio twice.
 788	 */
 789	struct bio *bio;
 790	bio_end_io_t *saved_bi_end_io;
 791};
 792
 793static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 794{
 795	struct pool *pool = m->tc->pool;
 796
 797	if (atomic_dec_and_test(&m->prepare_actions)) {
 798		list_add_tail(&m->list, &pool->prepared_mappings);
 799		wake_worker(pool);
 800	}
 801}
 802
 803static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 804{
 805	unsigned long flags;
 806	struct pool *pool = m->tc->pool;
 807
 808	spin_lock_irqsave(&pool->lock, flags);
 809	__complete_mapping_preparation(m);
 810	spin_unlock_irqrestore(&pool->lock, flags);
 811}
 812
 813static void copy_complete(int read_err, unsigned long write_err, void *context)
 814{
 815	struct dm_thin_new_mapping *m = context;
 816
 817	m->err = read_err || write_err ? -EIO : 0;
 818	complete_mapping_preparation(m);
 819}
 820
 821static void overwrite_endio(struct bio *bio)
 822{
 823	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 824	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 825
 826	bio->bi_end_io = m->saved_bi_end_io;
 827
 828	m->err = bio->bi_error;
 829	complete_mapping_preparation(m);
 830}
 831
 832/*----------------------------------------------------------------*/
 833
 834/*
 835 * Workqueue.
 836 */
 837
 838/*
 839 * Prepared mapping jobs.
 840 */
 841
 842/*
 843 * This sends the bios in the cell, except the original holder, back
 844 * to the deferred_bios list.
 845 */
 846static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 847{
 848	struct pool *pool = tc->pool;
 849	unsigned long flags;
 
 850
 851	spin_lock_irqsave(&tc->lock, flags);
 852	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 
 853	spin_unlock_irqrestore(&tc->lock, flags);
 854
 855	wake_worker(pool);
 
 856}
 857
 858static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 859
 860struct remap_info {
 861	struct thin_c *tc;
 862	struct bio_list defer_bios;
 863	struct bio_list issue_bios;
 864};
 865
 866static void __inc_remap_and_issue_cell(void *context,
 867				       struct dm_bio_prison_cell *cell)
 868{
 869	struct remap_info *info = context;
 870	struct bio *bio;
 871
 872	while ((bio = bio_list_pop(&cell->bios))) {
 873		if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
 874		    bio_op(bio) == REQ_OP_DISCARD)
 875			bio_list_add(&info->defer_bios, bio);
 876		else {
 877			inc_all_io_entry(info->tc->pool, bio);
 878
 879			/*
 880			 * We can't issue the bios with the bio prison lock
 881			 * held, so we add them to a list to issue on
 882			 * return from this function.
 883			 */
 884			bio_list_add(&info->issue_bios, bio);
 885		}
 886	}
 887}
 888
 889static void inc_remap_and_issue_cell(struct thin_c *tc,
 890				     struct dm_bio_prison_cell *cell,
 891				     dm_block_t block)
 892{
 893	struct bio *bio;
 894	struct remap_info info;
 895
 896	info.tc = tc;
 897	bio_list_init(&info.defer_bios);
 898	bio_list_init(&info.issue_bios);
 899
 900	/*
 901	 * We have to be careful to inc any bios we're about to issue
 902	 * before the cell is released, and avoid a race with new bios
 903	 * being added to the cell.
 904	 */
 905	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 906			   &info, cell);
 907
 908	while ((bio = bio_list_pop(&info.defer_bios)))
 909		thin_defer_bio(tc, bio);
 910
 911	while ((bio = bio_list_pop(&info.issue_bios)))
 912		remap_and_issue(info.tc, bio, block);
 913}
 914
 915static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 916{
 917	cell_error(m->tc->pool, m->cell);
 918	list_del(&m->list);
 919	mempool_free(m, m->tc->pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920}
 921
 922static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 923{
 924	struct thin_c *tc = m->tc;
 925	struct pool *pool = tc->pool;
 926	struct bio *bio = m->bio;
 927	int r;
 928
 929	if (m->err) {
 930		cell_error(pool, m->cell);
 931		goto out;
 932	}
 933
 934	/*
 935	 * Commit the prepared block into the mapping btree.
 936	 * Any I/O for this block arriving after this point will get
 937	 * remapped to it directly.
 938	 */
 939	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
 940	if (r) {
 941		metadata_operation_failed(pool, "dm_thin_insert_block", r);
 942		cell_error(pool, m->cell);
 943		goto out;
 944	}
 945
 946	/*
 947	 * Release any bios held while the block was being provisioned.
 948	 * If we are processing a write bio that completely covers the block,
 949	 * we already processed it so can ignore it now when processing
 950	 * the bios in the cell.
 951	 */
 952	if (bio) {
 953		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 954		bio_endio(bio);
 955	} else {
 956		inc_all_io_entry(tc->pool, m->cell->holder);
 957		remap_and_issue(tc, m->cell->holder, m->data_block);
 958		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
 959	}
 960
 961out:
 962	list_del(&m->list);
 963	mempool_free(m, pool->mapping_pool);
 964}
 965
 966/*----------------------------------------------------------------*/
 967
 968static void free_discard_mapping(struct dm_thin_new_mapping *m)
 969{
 970	struct thin_c *tc = m->tc;
 971	if (m->cell)
 972		cell_defer_no_holder(tc, m->cell);
 973	mempool_free(m, tc->pool->mapping_pool);
 974}
 975
 976static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
 977{
 978	bio_io_error(m->bio);
 979	free_discard_mapping(m);
 980}
 981
 982static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
 983{
 984	bio_endio(m->bio);
 985	free_discard_mapping(m);
 986}
 987
 988static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
 989{
 990	int r;
 991	struct thin_c *tc = m->tc;
 992
 993	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
 994	if (r) {
 995		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
 996		bio_io_error(m->bio);
 997	} else
 998		bio_endio(m->bio);
 999
1000	cell_defer_no_holder(tc, m->cell);
1001	mempool_free(m, tc->pool->mapping_pool);
1002}
1003
1004/*----------------------------------------------------------------*/
1005
1006static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1007						   struct bio *discard_parent)
1008{
1009	/*
1010	 * We've already unmapped this range of blocks, but before we
1011	 * passdown we have to check that these blocks are now unused.
1012	 */
1013	int r = 0;
1014	bool used = true;
1015	struct thin_c *tc = m->tc;
1016	struct pool *pool = tc->pool;
1017	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1018	struct discard_op op;
1019
1020	begin_discard(&op, tc, discard_parent);
1021	while (b != end) {
1022		/* find start of unmapped run */
1023		for (; b < end; b++) {
1024			r = dm_pool_block_is_used(pool->pmd, b, &used);
1025			if (r)
1026				goto out;
1027
1028			if (!used)
1029				break;
1030		}
1031
1032		if (b == end)
1033			break;
1034
1035		/* find end of run */
1036		for (e = b + 1; e != end; e++) {
1037			r = dm_pool_block_is_used(pool->pmd, e, &used);
1038			if (r)
1039				goto out;
1040
1041			if (used)
1042				break;
1043		}
1044
1045		r = issue_discard(&op, b, e);
1046		if (r)
1047			goto out;
1048
1049		b = e;
1050	}
1051out:
1052	end_discard(&op, r);
1053}
1054
1055static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1056{
1057	unsigned long flags;
1058	struct pool *pool = m->tc->pool;
1059
1060	spin_lock_irqsave(&pool->lock, flags);
1061	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1062	spin_unlock_irqrestore(&pool->lock, flags);
1063	wake_worker(pool);
1064}
1065
1066static void passdown_endio(struct bio *bio)
1067{
1068	/*
1069	 * It doesn't matter if the passdown discard failed, we still want
1070	 * to unmap (we ignore err).
1071	 */
1072	queue_passdown_pt2(bio->bi_private);
 
1073}
1074
1075static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076{
1077	int r;
1078	struct thin_c *tc = m->tc;
1079	struct pool *pool = tc->pool;
1080	struct bio *discard_parent;
1081	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082
1083	/*
1084	 * Only this thread allocates blocks, so we can be sure that the
1085	 * newly unmapped blocks will not be allocated before the end of
1086	 * the function.
1087	 */
1088	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089	if (r) {
1090		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091		bio_io_error(m->bio);
1092		cell_defer_no_holder(tc, m->cell);
1093		mempool_free(m, pool->mapping_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
1094		return;
1095	}
1096
1097	discard_parent = bio_alloc(GFP_NOIO, 1);
1098	if (!discard_parent) {
1099		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1100		       dm_device_name(tc->pool->pool_md));
1101		queue_passdown_pt2(m);
1102
1103	} else {
1104		discard_parent->bi_end_io = passdown_endio;
1105		discard_parent->bi_private = m;
1106
1107		if (m->maybe_shared)
1108			passdown_double_checking_shared_status(m, discard_parent);
1109		else {
1110			struct discard_op op;
1111
1112			begin_discard(&op, tc, discard_parent);
1113			r = issue_discard(&op, m->data_block, data_end);
1114			end_discard(&op, r);
1115		}
1116	}
1117
1118	/*
1119	 * Increment the unmapped blocks.  This prevents a race between the
1120	 * passdown io and reallocation of freed blocks.
1121	 */
1122	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1123	if (r) {
1124		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1125		bio_io_error(m->bio);
1126		cell_defer_no_holder(tc, m->cell);
1127		mempool_free(m, pool->mapping_pool);
1128		return;
1129	}
1130}
1131
1132static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1133{
1134	int r;
1135	struct thin_c *tc = m->tc;
1136	struct pool *pool = tc->pool;
1137
1138	/*
1139	 * The passdown has completed, so now we can decrement all those
1140	 * unmapped blocks.
1141	 */
1142	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1143				   m->data_block + (m->virt_end - m->virt_begin));
1144	if (r) {
1145		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1146		bio_io_error(m->bio);
1147	} else
1148		bio_endio(m->bio);
1149
1150	cell_defer_no_holder(tc, m->cell);
1151	mempool_free(m, pool->mapping_pool);
1152}
1153
1154static void process_prepared(struct pool *pool, struct list_head *head,
1155			     process_mapping_fn *fn)
1156{
1157	unsigned long flags;
1158	struct list_head maps;
1159	struct dm_thin_new_mapping *m, *tmp;
1160
1161	INIT_LIST_HEAD(&maps);
1162	spin_lock_irqsave(&pool->lock, flags);
1163	list_splice_init(head, &maps);
1164	spin_unlock_irqrestore(&pool->lock, flags);
1165
1166	list_for_each_entry_safe(m, tmp, &maps, list)
1167		(*fn)(m);
1168}
1169
1170/*
1171 * Deferred bio jobs.
1172 */
1173static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174{
1175	return bio->bi_iter.bi_size ==
1176		(pool->sectors_per_block << SECTOR_SHIFT);
1177}
1178
1179static int io_overwrites_block(struct pool *pool, struct bio *bio)
1180{
1181	return (bio_data_dir(bio) == WRITE) &&
1182		io_overlaps_block(pool, bio);
1183}
1184
1185static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1186			       bio_end_io_t *fn)
1187{
1188	*save = bio->bi_end_io;
1189	bio->bi_end_io = fn;
1190}
1191
1192static int ensure_next_mapping(struct pool *pool)
1193{
1194	if (pool->next_mapping)
1195		return 0;
1196
1197	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1198
1199	return pool->next_mapping ? 0 : -ENOMEM;
1200}
1201
1202static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203{
1204	struct dm_thin_new_mapping *m = pool->next_mapping;
1205
1206	BUG_ON(!pool->next_mapping);
1207
1208	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1209	INIT_LIST_HEAD(&m->list);
1210	m->bio = NULL;
1211
1212	pool->next_mapping = NULL;
1213
1214	return m;
1215}
1216
1217static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1218		    sector_t begin, sector_t end)
1219{
1220	int r;
1221	struct dm_io_region to;
1222
1223	to.bdev = tc->pool_dev->bdev;
1224	to.sector = begin;
1225	to.count = end - begin;
1226
1227	r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1228	if (r < 0) {
1229		DMERR_LIMIT("dm_kcopyd_zero() failed");
1230		copy_complete(1, 1, m);
1231	}
1232}
1233
1234static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1235				      dm_block_t data_begin,
1236				      struct dm_thin_new_mapping *m)
1237{
1238	struct pool *pool = tc->pool;
1239	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1240
1241	h->overwrite_mapping = m;
1242	m->bio = bio;
1243	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1244	inc_all_io_entry(pool, bio);
1245	remap_and_issue(tc, bio, data_begin);
1246}
1247
1248/*
1249 * A partial copy also needs to zero the uncopied region.
1250 */
1251static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252			  struct dm_dev *origin, dm_block_t data_origin,
1253			  dm_block_t data_dest,
1254			  struct dm_bio_prison_cell *cell, struct bio *bio,
1255			  sector_t len)
1256{
1257	int r;
1258	struct pool *pool = tc->pool;
1259	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260
1261	m->tc = tc;
1262	m->virt_begin = virt_block;
1263	m->virt_end = virt_block + 1u;
1264	m->data_block = data_dest;
1265	m->cell = cell;
1266
1267	/*
1268	 * quiesce action + copy action + an extra reference held for the
1269	 * duration of this function (we may need to inc later for a
1270	 * partial zero).
1271	 */
1272	atomic_set(&m->prepare_actions, 3);
1273
1274	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275		complete_mapping_preparation(m); /* already quiesced */
1276
1277	/*
1278	 * IO to pool_dev remaps to the pool target's data_dev.
1279	 *
1280	 * If the whole block of data is being overwritten, we can issue the
1281	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1282	 */
1283	if (io_overwrites_block(pool, bio))
1284		remap_and_issue_overwrite(tc, bio, data_dest, m);
1285	else {
1286		struct dm_io_region from, to;
1287
1288		from.bdev = origin->bdev;
1289		from.sector = data_origin * pool->sectors_per_block;
1290		from.count = len;
1291
1292		to.bdev = tc->pool_dev->bdev;
1293		to.sector = data_dest * pool->sectors_per_block;
1294		to.count = len;
1295
1296		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1297				   0, copy_complete, m);
1298		if (r < 0) {
1299			DMERR_LIMIT("dm_kcopyd_copy() failed");
1300			copy_complete(1, 1, m);
1301
1302			/*
1303			 * We allow the zero to be issued, to simplify the
1304			 * error path.  Otherwise we'd need to start
1305			 * worrying about decrementing the prepare_actions
1306			 * counter.
1307			 */
1308		}
1309
1310		/*
1311		 * Do we need to zero a tail region?
1312		 */
1313		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1314			atomic_inc(&m->prepare_actions);
1315			ll_zero(tc, m,
1316				data_dest * pool->sectors_per_block + len,
1317				(data_dest + 1) * pool->sectors_per_block);
1318		}
1319	}
1320
1321	complete_mapping_preparation(m); /* drop our ref */
1322}
1323
1324static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1325				   dm_block_t data_origin, dm_block_t data_dest,
1326				   struct dm_bio_prison_cell *cell, struct bio *bio)
1327{
1328	schedule_copy(tc, virt_block, tc->pool_dev,
1329		      data_origin, data_dest, cell, bio,
1330		      tc->pool->sectors_per_block);
1331}
1332
1333static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1334			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1335			  struct bio *bio)
1336{
1337	struct pool *pool = tc->pool;
1338	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1339
1340	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1341	m->tc = tc;
1342	m->virt_begin = virt_block;
1343	m->virt_end = virt_block + 1u;
1344	m->data_block = data_block;
1345	m->cell = cell;
1346
1347	/*
1348	 * If the whole block of data is being overwritten or we are not
1349	 * zeroing pre-existing data, we can issue the bio immediately.
1350	 * Otherwise we use kcopyd to zero the data first.
1351	 */
1352	if (pool->pf.zero_new_blocks) {
1353		if (io_overwrites_block(pool, bio))
1354			remap_and_issue_overwrite(tc, bio, data_block, m);
1355		else
1356			ll_zero(tc, m, data_block * pool->sectors_per_block,
1357				(data_block + 1) * pool->sectors_per_block);
1358	} else
1359		process_prepared_mapping(m);
1360}
1361
1362static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1363				   dm_block_t data_dest,
1364				   struct dm_bio_prison_cell *cell, struct bio *bio)
1365{
1366	struct pool *pool = tc->pool;
1367	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1368	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1369
1370	if (virt_block_end <= tc->origin_size)
1371		schedule_copy(tc, virt_block, tc->origin_dev,
1372			      virt_block, data_dest, cell, bio,
1373			      pool->sectors_per_block);
1374
1375	else if (virt_block_begin < tc->origin_size)
1376		schedule_copy(tc, virt_block, tc->origin_dev,
1377			      virt_block, data_dest, cell, bio,
1378			      tc->origin_size - virt_block_begin);
1379
1380	else
1381		schedule_zero(tc, virt_block, data_dest, cell, bio);
1382}
1383
1384static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1385
1386static void check_for_space(struct pool *pool)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1387{
1388	int r;
1389	dm_block_t nr_free;
1390
1391	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1392		return;
1393
1394	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1395	if (r)
1396		return;
1397
1398	if (nr_free)
1399		set_pool_mode(pool, PM_WRITE);
 
 
1400}
1401
1402/*
1403 * A non-zero return indicates read_only or fail_io mode.
1404 * Many callers don't care about the return value.
1405 */
1406static int commit(struct pool *pool)
1407{
1408	int r;
1409
1410	if (get_pool_mode(pool) >= PM_READ_ONLY)
1411		return -EINVAL;
1412
1413	r = dm_pool_commit_metadata(pool->pmd);
1414	if (r)
1415		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1416	else
1417		check_for_space(pool);
 
 
1418
1419	return r;
1420}
1421
1422static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1423{
1424	unsigned long flags;
1425
1426	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1427		DMWARN("%s: reached low water mark for data device: sending event.",
1428		       dm_device_name(pool->pool_md));
1429		spin_lock_irqsave(&pool->lock, flags);
1430		pool->low_water_triggered = true;
1431		spin_unlock_irqrestore(&pool->lock, flags);
1432		dm_table_event(pool->ti->table);
1433	}
1434}
1435
1436static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1437{
1438	int r;
1439	dm_block_t free_blocks;
1440	struct pool *pool = tc->pool;
1441
1442	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1443		return -EINVAL;
1444
1445	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1446	if (r) {
1447		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1448		return r;
1449	}
1450
1451	check_low_water_mark(pool, free_blocks);
1452
1453	if (!free_blocks) {
1454		/*
1455		 * Try to commit to see if that will free up some
1456		 * more space.
1457		 */
1458		r = commit(pool);
1459		if (r)
1460			return r;
1461
1462		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1463		if (r) {
1464			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1465			return r;
1466		}
1467
1468		if (!free_blocks) {
1469			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1470			return -ENOSPC;
1471		}
1472	}
1473
1474	r = dm_pool_alloc_data_block(pool->pmd, result);
1475	if (r) {
1476		metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
 
 
 
 
 
 
 
 
 
1477		return r;
1478	}
1479
 
 
 
 
 
 
 
1480	return 0;
1481}
1482
1483/*
1484 * If we have run out of space, queue bios until the device is
1485 * resumed, presumably after having been reloaded with more space.
1486 */
1487static void retry_on_resume(struct bio *bio)
1488{
1489	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490	struct thin_c *tc = h->tc;
1491	unsigned long flags;
1492
1493	spin_lock_irqsave(&tc->lock, flags);
1494	bio_list_add(&tc->retry_on_resume_list, bio);
1495	spin_unlock_irqrestore(&tc->lock, flags);
1496}
1497
1498static int should_error_unserviceable_bio(struct pool *pool)
1499{
1500	enum pool_mode m = get_pool_mode(pool);
1501
1502	switch (m) {
1503	case PM_WRITE:
1504		/* Shouldn't get here */
1505		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1506		return -EIO;
1507
1508	case PM_OUT_OF_DATA_SPACE:
1509		return pool->pf.error_if_no_space ? -ENOSPC : 0;
1510
 
1511	case PM_READ_ONLY:
1512	case PM_FAIL:
1513		return -EIO;
1514	default:
1515		/* Shouldn't get here */
1516		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1517		return -EIO;
1518	}
1519}
1520
1521static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1522{
1523	int error = should_error_unserviceable_bio(pool);
1524
1525	if (error) {
1526		bio->bi_error = error;
1527		bio_endio(bio);
1528	} else
1529		retry_on_resume(bio);
1530}
1531
1532static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1533{
1534	struct bio *bio;
1535	struct bio_list bios;
1536	int error;
1537
1538	error = should_error_unserviceable_bio(pool);
1539	if (error) {
1540		cell_error_with_code(pool, cell, error);
1541		return;
1542	}
1543
1544	bio_list_init(&bios);
1545	cell_release(pool, cell, &bios);
1546
1547	while ((bio = bio_list_pop(&bios)))
1548		retry_on_resume(bio);
1549}
1550
1551static void process_discard_cell_no_passdown(struct thin_c *tc,
1552					     struct dm_bio_prison_cell *virt_cell)
1553{
1554	struct pool *pool = tc->pool;
1555	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1556
1557	/*
1558	 * We don't need to lock the data blocks, since there's no
1559	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1560	 */
1561	m->tc = tc;
1562	m->virt_begin = virt_cell->key.block_begin;
1563	m->virt_end = virt_cell->key.block_end;
1564	m->cell = virt_cell;
1565	m->bio = virt_cell->holder;
1566
1567	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1568		pool->process_prepared_discard(m);
1569}
1570
1571static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1572				 struct bio *bio)
1573{
1574	struct pool *pool = tc->pool;
1575
1576	int r;
1577	bool maybe_shared;
1578	struct dm_cell_key data_key;
1579	struct dm_bio_prison_cell *data_cell;
1580	struct dm_thin_new_mapping *m;
1581	dm_block_t virt_begin, virt_end, data_begin;
1582
1583	while (begin != end) {
1584		r = ensure_next_mapping(pool);
1585		if (r)
1586			/* we did our best */
1587			return;
1588
1589		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1590					      &data_begin, &maybe_shared);
1591		if (r)
1592			/*
1593			 * Silently fail, letting any mappings we've
1594			 * created complete.
1595			 */
1596			break;
1597
1598		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1599		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1600			/* contention, we'll give up with this range */
1601			begin = virt_end;
1602			continue;
1603		}
1604
1605		/*
1606		 * IO may still be going to the destination block.  We must
1607		 * quiesce before we can do the removal.
1608		 */
1609		m = get_next_mapping(pool);
1610		m->tc = tc;
1611		m->maybe_shared = maybe_shared;
1612		m->virt_begin = virt_begin;
1613		m->virt_end = virt_end;
1614		m->data_block = data_begin;
1615		m->cell = data_cell;
1616		m->bio = bio;
1617
1618		/*
1619		 * The parent bio must not complete before sub discard bios are
1620		 * chained to it (see end_discard's bio_chain)!
1621		 *
1622		 * This per-mapping bi_remaining increment is paired with
1623		 * the implicit decrement that occurs via bio_endio() in
1624		 * end_discard().
1625		 */
1626		bio_inc_remaining(bio);
1627		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1628			pool->process_prepared_discard(m);
1629
1630		begin = virt_end;
1631	}
1632}
1633
1634static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1635{
1636	struct bio *bio = virt_cell->holder;
1637	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1638
1639	/*
1640	 * The virt_cell will only get freed once the origin bio completes.
1641	 * This means it will remain locked while all the individual
1642	 * passdown bios are in flight.
1643	 */
1644	h->cell = virt_cell;
1645	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1646
1647	/*
1648	 * We complete the bio now, knowing that the bi_remaining field
1649	 * will prevent completion until the sub range discards have
1650	 * completed.
1651	 */
1652	bio_endio(bio);
1653}
1654
1655static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1656{
1657	dm_block_t begin, end;
1658	struct dm_cell_key virt_key;
1659	struct dm_bio_prison_cell *virt_cell;
1660
1661	get_bio_block_range(tc, bio, &begin, &end);
1662	if (begin == end) {
1663		/*
1664		 * The discard covers less than a block.
1665		 */
1666		bio_endio(bio);
1667		return;
1668	}
1669
1670	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1671	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1672		/*
1673		 * Potential starvation issue: We're relying on the
1674		 * fs/application being well behaved, and not trying to
1675		 * send IO to a region at the same time as discarding it.
1676		 * If they do this persistently then it's possible this
1677		 * cell will never be granted.
1678		 */
1679		return;
1680
1681	tc->pool->process_discard_cell(tc, virt_cell);
1682}
1683
1684static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1685			  struct dm_cell_key *key,
1686			  struct dm_thin_lookup_result *lookup_result,
1687			  struct dm_bio_prison_cell *cell)
1688{
1689	int r;
1690	dm_block_t data_block;
1691	struct pool *pool = tc->pool;
1692
1693	r = alloc_data_block(tc, &data_block);
1694	switch (r) {
1695	case 0:
1696		schedule_internal_copy(tc, block, lookup_result->block,
1697				       data_block, cell, bio);
1698		break;
1699
1700	case -ENOSPC:
1701		retry_bios_on_resume(pool, cell);
1702		break;
1703
1704	default:
1705		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1706			    __func__, r);
1707		cell_error(pool, cell);
1708		break;
1709	}
1710}
1711
1712static void __remap_and_issue_shared_cell(void *context,
1713					  struct dm_bio_prison_cell *cell)
1714{
1715	struct remap_info *info = context;
1716	struct bio *bio;
1717
1718	while ((bio = bio_list_pop(&cell->bios))) {
1719		if ((bio_data_dir(bio) == WRITE) ||
1720		    (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
1721		     bio_op(bio) == REQ_OP_DISCARD))
1722			bio_list_add(&info->defer_bios, bio);
1723		else {
1724			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1725
1726			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1727			inc_all_io_entry(info->tc->pool, bio);
1728			bio_list_add(&info->issue_bios, bio);
1729		}
1730	}
1731}
1732
1733static void remap_and_issue_shared_cell(struct thin_c *tc,
1734					struct dm_bio_prison_cell *cell,
1735					dm_block_t block)
1736{
1737	struct bio *bio;
1738	struct remap_info info;
1739
1740	info.tc = tc;
1741	bio_list_init(&info.defer_bios);
1742	bio_list_init(&info.issue_bios);
1743
1744	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1745			   &info, cell);
1746
1747	while ((bio = bio_list_pop(&info.defer_bios)))
1748		thin_defer_bio(tc, bio);
1749
1750	while ((bio = bio_list_pop(&info.issue_bios)))
1751		remap_and_issue(tc, bio, block);
1752}
1753
1754static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1755			       dm_block_t block,
1756			       struct dm_thin_lookup_result *lookup_result,
1757			       struct dm_bio_prison_cell *virt_cell)
1758{
1759	struct dm_bio_prison_cell *data_cell;
1760	struct pool *pool = tc->pool;
1761	struct dm_cell_key key;
1762
1763	/*
1764	 * If cell is already occupied, then sharing is already in the process
1765	 * of being broken so we have nothing further to do here.
1766	 */
1767	build_data_key(tc->td, lookup_result->block, &key);
1768	if (bio_detain(pool, &key, bio, &data_cell)) {
1769		cell_defer_no_holder(tc, virt_cell);
1770		return;
1771	}
1772
1773	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1774		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1775		cell_defer_no_holder(tc, virt_cell);
1776	} else {
1777		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1778
1779		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1780		inc_all_io_entry(pool, bio);
1781		remap_and_issue(tc, bio, lookup_result->block);
1782
1783		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1784		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1785	}
1786}
1787
1788static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1789			    struct dm_bio_prison_cell *cell)
1790{
1791	int r;
1792	dm_block_t data_block;
1793	struct pool *pool = tc->pool;
1794
1795	/*
1796	 * Remap empty bios (flushes) immediately, without provisioning.
1797	 */
1798	if (!bio->bi_iter.bi_size) {
1799		inc_all_io_entry(pool, bio);
1800		cell_defer_no_holder(tc, cell);
1801
1802		remap_and_issue(tc, bio, 0);
1803		return;
1804	}
1805
1806	/*
1807	 * Fill read bios with zeroes and complete them immediately.
1808	 */
1809	if (bio_data_dir(bio) == READ) {
1810		zero_fill_bio(bio);
1811		cell_defer_no_holder(tc, cell);
1812		bio_endio(bio);
1813		return;
1814	}
1815
1816	r = alloc_data_block(tc, &data_block);
1817	switch (r) {
1818	case 0:
1819		if (tc->origin_dev)
1820			schedule_external_copy(tc, block, data_block, cell, bio);
1821		else
1822			schedule_zero(tc, block, data_block, cell, bio);
1823		break;
1824
1825	case -ENOSPC:
1826		retry_bios_on_resume(pool, cell);
1827		break;
1828
1829	default:
1830		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1831			    __func__, r);
1832		cell_error(pool, cell);
1833		break;
1834	}
1835}
1836
1837static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1838{
1839	int r;
1840	struct pool *pool = tc->pool;
1841	struct bio *bio = cell->holder;
1842	dm_block_t block = get_bio_block(tc, bio);
1843	struct dm_thin_lookup_result lookup_result;
1844
1845	if (tc->requeue_mode) {
1846		cell_requeue(pool, cell);
1847		return;
1848	}
1849
1850	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1851	switch (r) {
1852	case 0:
1853		if (lookup_result.shared)
1854			process_shared_bio(tc, bio, block, &lookup_result, cell);
1855		else {
1856			inc_all_io_entry(pool, bio);
1857			remap_and_issue(tc, bio, lookup_result.block);
1858			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1859		}
1860		break;
1861
1862	case -ENODATA:
1863		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1864			inc_all_io_entry(pool, bio);
1865			cell_defer_no_holder(tc, cell);
1866
1867			if (bio_end_sector(bio) <= tc->origin_size)
1868				remap_to_origin_and_issue(tc, bio);
1869
1870			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1871				zero_fill_bio(bio);
1872				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1873				remap_to_origin_and_issue(tc, bio);
1874
1875			} else {
1876				zero_fill_bio(bio);
1877				bio_endio(bio);
1878			}
1879		} else
1880			provision_block(tc, bio, block, cell);
1881		break;
1882
1883	default:
1884		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1885			    __func__, r);
1886		cell_defer_no_holder(tc, cell);
1887		bio_io_error(bio);
1888		break;
1889	}
1890}
1891
1892static void process_bio(struct thin_c *tc, struct bio *bio)
1893{
1894	struct pool *pool = tc->pool;
1895	dm_block_t block = get_bio_block(tc, bio);
1896	struct dm_bio_prison_cell *cell;
1897	struct dm_cell_key key;
1898
1899	/*
1900	 * If cell is already occupied, then the block is already
1901	 * being provisioned so we have nothing further to do here.
1902	 */
1903	build_virtual_key(tc->td, block, &key);
1904	if (bio_detain(pool, &key, bio, &cell))
1905		return;
1906
1907	process_cell(tc, cell);
1908}
1909
1910static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1911				    struct dm_bio_prison_cell *cell)
1912{
1913	int r;
1914	int rw = bio_data_dir(bio);
1915	dm_block_t block = get_bio_block(tc, bio);
1916	struct dm_thin_lookup_result lookup_result;
1917
1918	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1919	switch (r) {
1920	case 0:
1921		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1922			handle_unserviceable_bio(tc->pool, bio);
1923			if (cell)
1924				cell_defer_no_holder(tc, cell);
1925		} else {
1926			inc_all_io_entry(tc->pool, bio);
1927			remap_and_issue(tc, bio, lookup_result.block);
1928			if (cell)
1929				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1930		}
1931		break;
1932
1933	case -ENODATA:
1934		if (cell)
1935			cell_defer_no_holder(tc, cell);
1936		if (rw != READ) {
1937			handle_unserviceable_bio(tc->pool, bio);
1938			break;
1939		}
1940
1941		if (tc->origin_dev) {
1942			inc_all_io_entry(tc->pool, bio);
1943			remap_to_origin_and_issue(tc, bio);
1944			break;
1945		}
1946
1947		zero_fill_bio(bio);
1948		bio_endio(bio);
1949		break;
1950
1951	default:
1952		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1953			    __func__, r);
1954		if (cell)
1955			cell_defer_no_holder(tc, cell);
1956		bio_io_error(bio);
1957		break;
1958	}
1959}
1960
1961static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1962{
1963	__process_bio_read_only(tc, bio, NULL);
1964}
1965
1966static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1967{
1968	__process_bio_read_only(tc, cell->holder, cell);
1969}
1970
1971static void process_bio_success(struct thin_c *tc, struct bio *bio)
1972{
1973	bio_endio(bio);
1974}
1975
1976static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1977{
1978	bio_io_error(bio);
1979}
1980
1981static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1982{
1983	cell_success(tc->pool, cell);
1984}
1985
1986static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1987{
1988	cell_error(tc->pool, cell);
1989}
1990
1991/*
1992 * FIXME: should we also commit due to size of transaction, measured in
1993 * metadata blocks?
1994 */
1995static int need_commit_due_to_time(struct pool *pool)
1996{
1997	return !time_in_range(jiffies, pool->last_commit_jiffies,
1998			      pool->last_commit_jiffies + COMMIT_PERIOD);
1999}
2000
2001#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2002#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2003
2004static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2005{
2006	struct rb_node **rbp, *parent;
2007	struct dm_thin_endio_hook *pbd;
2008	sector_t bi_sector = bio->bi_iter.bi_sector;
2009
2010	rbp = &tc->sort_bio_list.rb_node;
2011	parent = NULL;
2012	while (*rbp) {
2013		parent = *rbp;
2014		pbd = thin_pbd(parent);
2015
2016		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2017			rbp = &(*rbp)->rb_left;
2018		else
2019			rbp = &(*rbp)->rb_right;
2020	}
2021
2022	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2023	rb_link_node(&pbd->rb_node, parent, rbp);
2024	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2025}
2026
2027static void __extract_sorted_bios(struct thin_c *tc)
2028{
2029	struct rb_node *node;
2030	struct dm_thin_endio_hook *pbd;
2031	struct bio *bio;
2032
2033	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2034		pbd = thin_pbd(node);
2035		bio = thin_bio(pbd);
2036
2037		bio_list_add(&tc->deferred_bio_list, bio);
2038		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2039	}
2040
2041	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2042}
2043
2044static void __sort_thin_deferred_bios(struct thin_c *tc)
2045{
2046	struct bio *bio;
2047	struct bio_list bios;
2048
2049	bio_list_init(&bios);
2050	bio_list_merge(&bios, &tc->deferred_bio_list);
2051	bio_list_init(&tc->deferred_bio_list);
2052
2053	/* Sort deferred_bio_list using rb-tree */
2054	while ((bio = bio_list_pop(&bios)))
2055		__thin_bio_rb_add(tc, bio);
2056
2057	/*
2058	 * Transfer the sorted bios in sort_bio_list back to
2059	 * deferred_bio_list to allow lockless submission of
2060	 * all bios.
2061	 */
2062	__extract_sorted_bios(tc);
2063}
2064
2065static void process_thin_deferred_bios(struct thin_c *tc)
2066{
2067	struct pool *pool = tc->pool;
2068	unsigned long flags;
2069	struct bio *bio;
2070	struct bio_list bios;
2071	struct blk_plug plug;
2072	unsigned count = 0;
2073
2074	if (tc->requeue_mode) {
2075		error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
 
2076		return;
2077	}
2078
2079	bio_list_init(&bios);
2080
2081	spin_lock_irqsave(&tc->lock, flags);
2082
2083	if (bio_list_empty(&tc->deferred_bio_list)) {
2084		spin_unlock_irqrestore(&tc->lock, flags);
2085		return;
2086	}
2087
2088	__sort_thin_deferred_bios(tc);
2089
2090	bio_list_merge(&bios, &tc->deferred_bio_list);
2091	bio_list_init(&tc->deferred_bio_list);
2092
2093	spin_unlock_irqrestore(&tc->lock, flags);
2094
2095	blk_start_plug(&plug);
2096	while ((bio = bio_list_pop(&bios))) {
2097		/*
2098		 * If we've got no free new_mapping structs, and processing
2099		 * this bio might require one, we pause until there are some
2100		 * prepared mappings to process.
2101		 */
2102		if (ensure_next_mapping(pool)) {
2103			spin_lock_irqsave(&tc->lock, flags);
2104			bio_list_add(&tc->deferred_bio_list, bio);
2105			bio_list_merge(&tc->deferred_bio_list, &bios);
2106			spin_unlock_irqrestore(&tc->lock, flags);
2107			break;
2108		}
2109
2110		if (bio_op(bio) == REQ_OP_DISCARD)
2111			pool->process_discard(tc, bio);
2112		else
2113			pool->process_bio(tc, bio);
2114
2115		if ((count++ & 127) == 0) {
2116			throttle_work_update(&pool->throttle);
2117			dm_pool_issue_prefetches(pool->pmd);
2118		}
2119	}
2120	blk_finish_plug(&plug);
2121}
2122
2123static int cmp_cells(const void *lhs, const void *rhs)
2124{
2125	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2126	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2127
2128	BUG_ON(!lhs_cell->holder);
2129	BUG_ON(!rhs_cell->holder);
2130
2131	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2132		return -1;
2133
2134	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2135		return 1;
2136
2137	return 0;
2138}
2139
2140static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2141{
2142	unsigned count = 0;
2143	struct dm_bio_prison_cell *cell, *tmp;
2144
2145	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2146		if (count >= CELL_SORT_ARRAY_SIZE)
2147			break;
2148
2149		pool->cell_sort_array[count++] = cell;
2150		list_del(&cell->user_list);
2151	}
2152
2153	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2154
2155	return count;
2156}
2157
2158static void process_thin_deferred_cells(struct thin_c *tc)
2159{
2160	struct pool *pool = tc->pool;
2161	unsigned long flags;
2162	struct list_head cells;
2163	struct dm_bio_prison_cell *cell;
2164	unsigned i, j, count;
2165
2166	INIT_LIST_HEAD(&cells);
2167
2168	spin_lock_irqsave(&tc->lock, flags);
2169	list_splice_init(&tc->deferred_cells, &cells);
2170	spin_unlock_irqrestore(&tc->lock, flags);
2171
2172	if (list_empty(&cells))
2173		return;
2174
2175	do {
2176		count = sort_cells(tc->pool, &cells);
2177
2178		for (i = 0; i < count; i++) {
2179			cell = pool->cell_sort_array[i];
2180			BUG_ON(!cell->holder);
2181
2182			/*
2183			 * If we've got no free new_mapping structs, and processing
2184			 * this bio might require one, we pause until there are some
2185			 * prepared mappings to process.
2186			 */
2187			if (ensure_next_mapping(pool)) {
2188				for (j = i; j < count; j++)
2189					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2190
2191				spin_lock_irqsave(&tc->lock, flags);
2192				list_splice(&cells, &tc->deferred_cells);
2193				spin_unlock_irqrestore(&tc->lock, flags);
2194				return;
2195			}
2196
2197			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2198				pool->process_discard_cell(tc, cell);
2199			else
2200				pool->process_cell(tc, cell);
2201		}
2202	} while (!list_empty(&cells));
2203}
2204
2205static void thin_get(struct thin_c *tc);
2206static void thin_put(struct thin_c *tc);
2207
2208/*
2209 * We can't hold rcu_read_lock() around code that can block.  So we
2210 * find a thin with the rcu lock held; bump a refcount; then drop
2211 * the lock.
2212 */
2213static struct thin_c *get_first_thin(struct pool *pool)
2214{
2215	struct thin_c *tc = NULL;
2216
2217	rcu_read_lock();
2218	if (!list_empty(&pool->active_thins)) {
2219		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2220		thin_get(tc);
2221	}
2222	rcu_read_unlock();
2223
2224	return tc;
2225}
2226
2227static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2228{
2229	struct thin_c *old_tc = tc;
2230
2231	rcu_read_lock();
2232	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2233		thin_get(tc);
2234		thin_put(old_tc);
2235		rcu_read_unlock();
2236		return tc;
2237	}
2238	thin_put(old_tc);
2239	rcu_read_unlock();
2240
2241	return NULL;
2242}
2243
2244static void process_deferred_bios(struct pool *pool)
2245{
2246	unsigned long flags;
2247	struct bio *bio;
2248	struct bio_list bios;
2249	struct thin_c *tc;
2250
2251	tc = get_first_thin(pool);
2252	while (tc) {
2253		process_thin_deferred_cells(tc);
2254		process_thin_deferred_bios(tc);
2255		tc = get_next_thin(pool, tc);
2256	}
2257
2258	/*
2259	 * If there are any deferred flush bios, we must commit
2260	 * the metadata before issuing them.
2261	 */
2262	bio_list_init(&bios);
2263	spin_lock_irqsave(&pool->lock, flags);
 
 
2264	bio_list_merge(&bios, &pool->deferred_flush_bios);
2265	bio_list_init(&pool->deferred_flush_bios);
2266	spin_unlock_irqrestore(&pool->lock, flags);
2267
2268	if (bio_list_empty(&bios) &&
 
 
 
 
2269	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2270		return;
2271
2272	if (commit(pool)) {
 
 
2273		while ((bio = bio_list_pop(&bios)))
2274			bio_io_error(bio);
2275		return;
2276	}
2277	pool->last_commit_jiffies = jiffies;
2278
2279	while ((bio = bio_list_pop(&bios)))
2280		generic_make_request(bio);
 
 
 
 
 
 
 
 
 
 
 
2281}
2282
2283static void do_worker(struct work_struct *ws)
2284{
2285	struct pool *pool = container_of(ws, struct pool, worker);
2286
2287	throttle_work_start(&pool->throttle);
2288	dm_pool_issue_prefetches(pool->pmd);
2289	throttle_work_update(&pool->throttle);
2290	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2291	throttle_work_update(&pool->throttle);
2292	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2293	throttle_work_update(&pool->throttle);
2294	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2295	throttle_work_update(&pool->throttle);
2296	process_deferred_bios(pool);
2297	throttle_work_complete(&pool->throttle);
2298}
2299
2300/*
2301 * We want to commit periodically so that not too much
2302 * unwritten data builds up.
2303 */
2304static void do_waker(struct work_struct *ws)
2305{
2306	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2307	wake_worker(pool);
2308	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2309}
2310
2311static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2312
2313/*
2314 * We're holding onto IO to allow userland time to react.  After the
2315 * timeout either the pool will have been resized (and thus back in
2316 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2317 */
2318static void do_no_space_timeout(struct work_struct *ws)
2319{
2320	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2321					 no_space_timeout);
2322
2323	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2324		pool->pf.error_if_no_space = true;
2325		notify_of_pool_mode_change_to_oods(pool);
2326		error_retry_list_with_code(pool, -ENOSPC);
2327	}
2328}
2329
2330/*----------------------------------------------------------------*/
2331
2332struct pool_work {
2333	struct work_struct worker;
2334	struct completion complete;
2335};
2336
2337static struct pool_work *to_pool_work(struct work_struct *ws)
2338{
2339	return container_of(ws, struct pool_work, worker);
2340}
2341
2342static void pool_work_complete(struct pool_work *pw)
2343{
2344	complete(&pw->complete);
2345}
2346
2347static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2348			   void (*fn)(struct work_struct *))
2349{
2350	INIT_WORK_ONSTACK(&pw->worker, fn);
2351	init_completion(&pw->complete);
2352	queue_work(pool->wq, &pw->worker);
2353	wait_for_completion(&pw->complete);
2354}
2355
2356/*----------------------------------------------------------------*/
2357
2358struct noflush_work {
2359	struct pool_work pw;
2360	struct thin_c *tc;
2361};
2362
2363static struct noflush_work *to_noflush(struct work_struct *ws)
2364{
2365	return container_of(to_pool_work(ws), struct noflush_work, pw);
2366}
2367
2368static void do_noflush_start(struct work_struct *ws)
2369{
2370	struct noflush_work *w = to_noflush(ws);
2371	w->tc->requeue_mode = true;
2372	requeue_io(w->tc);
2373	pool_work_complete(&w->pw);
2374}
2375
2376static void do_noflush_stop(struct work_struct *ws)
2377{
2378	struct noflush_work *w = to_noflush(ws);
2379	w->tc->requeue_mode = false;
2380	pool_work_complete(&w->pw);
2381}
2382
2383static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2384{
2385	struct noflush_work w;
2386
2387	w.tc = tc;
2388	pool_work_wait(&w.pw, tc->pool, fn);
2389}
2390
2391/*----------------------------------------------------------------*/
2392
2393static enum pool_mode get_pool_mode(struct pool *pool)
2394{
2395	return pool->pf.mode;
2396}
2397
2398static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2399{
2400	dm_table_event(pool->ti->table);
2401	DMINFO("%s: switching pool to %s mode",
2402	       dm_device_name(pool->pool_md), new_mode);
2403}
2404
2405static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2406{
2407	if (!pool->pf.error_if_no_space)
2408		notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2409	else
2410		notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2411}
2412
2413static bool passdown_enabled(struct pool_c *pt)
2414{
2415	return pt->adjusted_pf.discard_passdown;
2416}
2417
2418static void set_discard_callbacks(struct pool *pool)
2419{
2420	struct pool_c *pt = pool->ti->private;
2421
2422	if (passdown_enabled(pt)) {
2423		pool->process_discard_cell = process_discard_cell_passdown;
2424		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2425		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2426	} else {
2427		pool->process_discard_cell = process_discard_cell_no_passdown;
2428		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2429	}
2430}
2431
2432static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2433{
2434	struct pool_c *pt = pool->ti->private;
2435	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2436	enum pool_mode old_mode = get_pool_mode(pool);
2437	unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2438
2439	/*
2440	 * Never allow the pool to transition to PM_WRITE mode if user
2441	 * intervention is required to verify metadata and data consistency.
2442	 */
2443	if (new_mode == PM_WRITE && needs_check) {
2444		DMERR("%s: unable to switch pool to write mode until repaired.",
2445		      dm_device_name(pool->pool_md));
2446		if (old_mode != new_mode)
2447			new_mode = old_mode;
2448		else
2449			new_mode = PM_READ_ONLY;
2450	}
2451	/*
2452	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2453	 * not going to recover without a thin_repair.	So we never let the
2454	 * pool move out of the old mode.
2455	 */
2456	if (old_mode == PM_FAIL)
2457		new_mode = old_mode;
2458
2459	switch (new_mode) {
2460	case PM_FAIL:
2461		if (old_mode != new_mode)
2462			notify_of_pool_mode_change(pool, "failure");
2463		dm_pool_metadata_read_only(pool->pmd);
2464		pool->process_bio = process_bio_fail;
2465		pool->process_discard = process_bio_fail;
2466		pool->process_cell = process_cell_fail;
2467		pool->process_discard_cell = process_cell_fail;
2468		pool->process_prepared_mapping = process_prepared_mapping_fail;
2469		pool->process_prepared_discard = process_prepared_discard_fail;
2470
2471		error_retry_list(pool);
2472		break;
2473
 
2474	case PM_READ_ONLY:
2475		if (old_mode != new_mode)
2476			notify_of_pool_mode_change(pool, "read-only");
2477		dm_pool_metadata_read_only(pool->pmd);
2478		pool->process_bio = process_bio_read_only;
2479		pool->process_discard = process_bio_success;
2480		pool->process_cell = process_cell_read_only;
2481		pool->process_discard_cell = process_cell_success;
2482		pool->process_prepared_mapping = process_prepared_mapping_fail;
2483		pool->process_prepared_discard = process_prepared_discard_success;
2484
2485		error_retry_list(pool);
2486		break;
2487
2488	case PM_OUT_OF_DATA_SPACE:
2489		/*
2490		 * Ideally we'd never hit this state; the low water mark
2491		 * would trigger userland to extend the pool before we
2492		 * completely run out of data space.  However, many small
2493		 * IOs to unprovisioned space can consume data space at an
2494		 * alarming rate.  Adjust your low water mark if you're
2495		 * frequently seeing this mode.
2496		 */
2497		if (old_mode != new_mode)
2498			notify_of_pool_mode_change_to_oods(pool);
2499		pool->out_of_data_space = true;
2500		pool->process_bio = process_bio_read_only;
2501		pool->process_discard = process_discard_bio;
2502		pool->process_cell = process_cell_read_only;
2503		pool->process_prepared_mapping = process_prepared_mapping;
2504		set_discard_callbacks(pool);
2505
2506		if (!pool->pf.error_if_no_space && no_space_timeout)
2507			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2508		break;
2509
2510	case PM_WRITE:
2511		if (old_mode != new_mode)
2512			notify_of_pool_mode_change(pool, "write");
2513		pool->out_of_data_space = false;
2514		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2515		dm_pool_metadata_read_write(pool->pmd);
2516		pool->process_bio = process_bio;
2517		pool->process_discard = process_discard_bio;
2518		pool->process_cell = process_cell;
2519		pool->process_prepared_mapping = process_prepared_mapping;
2520		set_discard_callbacks(pool);
2521		break;
2522	}
2523
2524	pool->pf.mode = new_mode;
2525	/*
2526	 * The pool mode may have changed, sync it so bind_control_target()
2527	 * doesn't cause an unexpected mode transition on resume.
2528	 */
2529	pt->adjusted_pf.mode = new_mode;
 
 
 
2530}
2531
2532static void abort_transaction(struct pool *pool)
2533{
2534	const char *dev_name = dm_device_name(pool->pool_md);
2535
2536	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2537	if (dm_pool_abort_metadata(pool->pmd)) {
2538		DMERR("%s: failed to abort metadata transaction", dev_name);
2539		set_pool_mode(pool, PM_FAIL);
2540	}
2541
2542	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2543		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2544		set_pool_mode(pool, PM_FAIL);
2545	}
2546}
2547
2548static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2549{
2550	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2551		    dm_device_name(pool->pool_md), op, r);
2552
2553	abort_transaction(pool);
2554	set_pool_mode(pool, PM_READ_ONLY);
2555}
2556
2557/*----------------------------------------------------------------*/
2558
2559/*
2560 * Mapping functions.
2561 */
2562
2563/*
2564 * Called only while mapping a thin bio to hand it over to the workqueue.
2565 */
2566static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2567{
2568	unsigned long flags;
2569	struct pool *pool = tc->pool;
2570
2571	spin_lock_irqsave(&tc->lock, flags);
2572	bio_list_add(&tc->deferred_bio_list, bio);
2573	spin_unlock_irqrestore(&tc->lock, flags);
2574
2575	wake_worker(pool);
2576}
2577
2578static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2579{
2580	struct pool *pool = tc->pool;
2581
2582	throttle_lock(&pool->throttle);
2583	thin_defer_bio(tc, bio);
2584	throttle_unlock(&pool->throttle);
2585}
2586
2587static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2588{
2589	unsigned long flags;
2590	struct pool *pool = tc->pool;
2591
2592	throttle_lock(&pool->throttle);
2593	spin_lock_irqsave(&tc->lock, flags);
2594	list_add_tail(&cell->user_list, &tc->deferred_cells);
2595	spin_unlock_irqrestore(&tc->lock, flags);
2596	throttle_unlock(&pool->throttle);
2597
2598	wake_worker(pool);
2599}
2600
2601static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2602{
2603	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2604
2605	h->tc = tc;
2606	h->shared_read_entry = NULL;
2607	h->all_io_entry = NULL;
2608	h->overwrite_mapping = NULL;
2609	h->cell = NULL;
2610}
2611
2612/*
2613 * Non-blocking function called from the thin target's map function.
2614 */
2615static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2616{
2617	int r;
2618	struct thin_c *tc = ti->private;
2619	dm_block_t block = get_bio_block(tc, bio);
2620	struct dm_thin_device *td = tc->td;
2621	struct dm_thin_lookup_result result;
2622	struct dm_bio_prison_cell *virt_cell, *data_cell;
2623	struct dm_cell_key key;
2624
2625	thin_hook_bio(tc, bio);
2626
2627	if (tc->requeue_mode) {
2628		bio->bi_error = DM_ENDIO_REQUEUE;
2629		bio_endio(bio);
2630		return DM_MAPIO_SUBMITTED;
2631	}
2632
2633	if (get_pool_mode(tc->pool) == PM_FAIL) {
2634		bio_io_error(bio);
2635		return DM_MAPIO_SUBMITTED;
2636	}
2637
2638	if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
2639	    bio_op(bio) == REQ_OP_DISCARD) {
2640		thin_defer_bio_with_throttle(tc, bio);
2641		return DM_MAPIO_SUBMITTED;
2642	}
2643
2644	/*
2645	 * We must hold the virtual cell before doing the lookup, otherwise
2646	 * there's a race with discard.
2647	 */
2648	build_virtual_key(tc->td, block, &key);
2649	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2650		return DM_MAPIO_SUBMITTED;
2651
2652	r = dm_thin_find_block(td, block, 0, &result);
2653
2654	/*
2655	 * Note that we defer readahead too.
2656	 */
2657	switch (r) {
2658	case 0:
2659		if (unlikely(result.shared)) {
2660			/*
2661			 * We have a race condition here between the
2662			 * result.shared value returned by the lookup and
2663			 * snapshot creation, which may cause new
2664			 * sharing.
2665			 *
2666			 * To avoid this always quiesce the origin before
2667			 * taking the snap.  You want to do this anyway to
2668			 * ensure a consistent application view
2669			 * (i.e. lockfs).
2670			 *
2671			 * More distant ancestors are irrelevant. The
2672			 * shared flag will be set in their case.
2673			 */
2674			thin_defer_cell(tc, virt_cell);
2675			return DM_MAPIO_SUBMITTED;
2676		}
2677
2678		build_data_key(tc->td, result.block, &key);
2679		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2680			cell_defer_no_holder(tc, virt_cell);
2681			return DM_MAPIO_SUBMITTED;
2682		}
2683
2684		inc_all_io_entry(tc->pool, bio);
2685		cell_defer_no_holder(tc, data_cell);
2686		cell_defer_no_holder(tc, virt_cell);
2687
2688		remap(tc, bio, result.block);
2689		return DM_MAPIO_REMAPPED;
2690
2691	case -ENODATA:
2692	case -EWOULDBLOCK:
2693		thin_defer_cell(tc, virt_cell);
2694		return DM_MAPIO_SUBMITTED;
2695
2696	default:
2697		/*
2698		 * Must always call bio_io_error on failure.
2699		 * dm_thin_find_block can fail with -EINVAL if the
2700		 * pool is switched to fail-io mode.
2701		 */
2702		bio_io_error(bio);
2703		cell_defer_no_holder(tc, virt_cell);
2704		return DM_MAPIO_SUBMITTED;
2705	}
2706}
2707
2708static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2709{
2710	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2711	struct request_queue *q;
2712
2713	if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2714		return 1;
2715
2716	q = bdev_get_queue(pt->data_dev->bdev);
2717	return bdi_congested(&q->backing_dev_info, bdi_bits);
2718}
2719
2720static void requeue_bios(struct pool *pool)
2721{
2722	unsigned long flags;
2723	struct thin_c *tc;
2724
2725	rcu_read_lock();
2726	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2727		spin_lock_irqsave(&tc->lock, flags);
2728		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2729		bio_list_init(&tc->retry_on_resume_list);
2730		spin_unlock_irqrestore(&tc->lock, flags);
2731	}
2732	rcu_read_unlock();
2733}
2734
2735/*----------------------------------------------------------------
2736 * Binding of control targets to a pool object
2737 *--------------------------------------------------------------*/
2738static bool data_dev_supports_discard(struct pool_c *pt)
2739{
2740	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2741
2742	return q && blk_queue_discard(q);
2743}
2744
2745static bool is_factor(sector_t block_size, uint32_t n)
2746{
2747	return !sector_div(block_size, n);
2748}
2749
2750/*
2751 * If discard_passdown was enabled verify that the data device
2752 * supports discards.  Disable discard_passdown if not.
2753 */
2754static void disable_passdown_if_not_supported(struct pool_c *pt)
2755{
2756	struct pool *pool = pt->pool;
2757	struct block_device *data_bdev = pt->data_dev->bdev;
2758	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2759	const char *reason = NULL;
2760	char buf[BDEVNAME_SIZE];
2761
2762	if (!pt->adjusted_pf.discard_passdown)
2763		return;
2764
2765	if (!data_dev_supports_discard(pt))
2766		reason = "discard unsupported";
2767
2768	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2769		reason = "max discard sectors smaller than a block";
2770
2771	if (reason) {
2772		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2773		pt->adjusted_pf.discard_passdown = false;
2774	}
2775}
2776
2777static int bind_control_target(struct pool *pool, struct dm_target *ti)
2778{
2779	struct pool_c *pt = ti->private;
2780
2781	/*
2782	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2783	 */
2784	enum pool_mode old_mode = get_pool_mode(pool);
2785	enum pool_mode new_mode = pt->adjusted_pf.mode;
2786
2787	/*
2788	 * Don't change the pool's mode until set_pool_mode() below.
2789	 * Otherwise the pool's process_* function pointers may
2790	 * not match the desired pool mode.
2791	 */
2792	pt->adjusted_pf.mode = old_mode;
2793
2794	pool->ti = ti;
2795	pool->pf = pt->adjusted_pf;
2796	pool->low_water_blocks = pt->low_water_blocks;
2797
2798	set_pool_mode(pool, new_mode);
2799
2800	return 0;
2801}
2802
2803static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2804{
2805	if (pool->ti == ti)
2806		pool->ti = NULL;
2807}
2808
2809/*----------------------------------------------------------------
2810 * Pool creation
2811 *--------------------------------------------------------------*/
2812/* Initialize pool features. */
2813static void pool_features_init(struct pool_features *pf)
2814{
2815	pf->mode = PM_WRITE;
2816	pf->zero_new_blocks = true;
2817	pf->discard_enabled = true;
2818	pf->discard_passdown = true;
2819	pf->error_if_no_space = false;
2820}
2821
2822static void __pool_destroy(struct pool *pool)
2823{
2824	__pool_table_remove(pool);
2825
2826	vfree(pool->cell_sort_array);
2827	if (dm_pool_metadata_close(pool->pmd) < 0)
2828		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2829
2830	dm_bio_prison_destroy(pool->prison);
2831	dm_kcopyd_client_destroy(pool->copier);
2832
2833	if (pool->wq)
2834		destroy_workqueue(pool->wq);
2835
2836	if (pool->next_mapping)
2837		mempool_free(pool->next_mapping, pool->mapping_pool);
2838	mempool_destroy(pool->mapping_pool);
 
2839	dm_deferred_set_destroy(pool->shared_read_ds);
2840	dm_deferred_set_destroy(pool->all_io_ds);
2841	kfree(pool);
2842}
2843
2844static struct kmem_cache *_new_mapping_cache;
2845
2846static struct pool *pool_create(struct mapped_device *pool_md,
2847				struct block_device *metadata_dev,
 
2848				unsigned long block_size,
2849				int read_only, char **error)
2850{
2851	int r;
2852	void *err_p;
2853	struct pool *pool;
2854	struct dm_pool_metadata *pmd;
2855	bool format_device = read_only ? false : true;
2856
2857	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2858	if (IS_ERR(pmd)) {
2859		*error = "Error creating metadata object";
2860		return (struct pool *)pmd;
2861	}
2862
2863	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2864	if (!pool) {
2865		*error = "Error allocating memory for pool";
2866		err_p = ERR_PTR(-ENOMEM);
2867		goto bad_pool;
2868	}
2869
2870	pool->pmd = pmd;
2871	pool->sectors_per_block = block_size;
2872	if (block_size & (block_size - 1))
2873		pool->sectors_per_block_shift = -1;
2874	else
2875		pool->sectors_per_block_shift = __ffs(block_size);
2876	pool->low_water_blocks = 0;
2877	pool_features_init(&pool->pf);
2878	pool->prison = dm_bio_prison_create();
2879	if (!pool->prison) {
2880		*error = "Error creating pool's bio prison";
2881		err_p = ERR_PTR(-ENOMEM);
2882		goto bad_prison;
2883	}
2884
2885	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2886	if (IS_ERR(pool->copier)) {
2887		r = PTR_ERR(pool->copier);
2888		*error = "Error creating pool's kcopyd client";
2889		err_p = ERR_PTR(r);
2890		goto bad_kcopyd_client;
2891	}
2892
2893	/*
2894	 * Create singlethreaded workqueue that will service all devices
2895	 * that use this metadata.
2896	 */
2897	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2898	if (!pool->wq) {
2899		*error = "Error creating pool's workqueue";
2900		err_p = ERR_PTR(-ENOMEM);
2901		goto bad_wq;
2902	}
2903
2904	throttle_init(&pool->throttle);
2905	INIT_WORK(&pool->worker, do_worker);
2906	INIT_DELAYED_WORK(&pool->waker, do_waker);
2907	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2908	spin_lock_init(&pool->lock);
2909	bio_list_init(&pool->deferred_flush_bios);
 
2910	INIT_LIST_HEAD(&pool->prepared_mappings);
2911	INIT_LIST_HEAD(&pool->prepared_discards);
2912	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2913	INIT_LIST_HEAD(&pool->active_thins);
2914	pool->low_water_triggered = false;
2915	pool->suspended = true;
2916	pool->out_of_data_space = false;
 
2917
2918	pool->shared_read_ds = dm_deferred_set_create();
2919	if (!pool->shared_read_ds) {
2920		*error = "Error creating pool's shared read deferred set";
2921		err_p = ERR_PTR(-ENOMEM);
2922		goto bad_shared_read_ds;
2923	}
2924
2925	pool->all_io_ds = dm_deferred_set_create();
2926	if (!pool->all_io_ds) {
2927		*error = "Error creating pool's all io deferred set";
2928		err_p = ERR_PTR(-ENOMEM);
2929		goto bad_all_io_ds;
2930	}
2931
2932	pool->next_mapping = NULL;
2933	pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2934						      _new_mapping_cache);
2935	if (!pool->mapping_pool) {
2936		*error = "Error creating pool's mapping mempool";
2937		err_p = ERR_PTR(-ENOMEM);
2938		goto bad_mapping_pool;
2939	}
2940
2941	pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
 
 
2942	if (!pool->cell_sort_array) {
2943		*error = "Error allocating cell sort array";
2944		err_p = ERR_PTR(-ENOMEM);
2945		goto bad_sort_array;
2946	}
2947
2948	pool->ref_count = 1;
2949	pool->last_commit_jiffies = jiffies;
2950	pool->pool_md = pool_md;
2951	pool->md_dev = metadata_dev;
 
2952	__pool_table_insert(pool);
2953
2954	return pool;
2955
2956bad_sort_array:
2957	mempool_destroy(pool->mapping_pool);
2958bad_mapping_pool:
2959	dm_deferred_set_destroy(pool->all_io_ds);
2960bad_all_io_ds:
2961	dm_deferred_set_destroy(pool->shared_read_ds);
2962bad_shared_read_ds:
2963	destroy_workqueue(pool->wq);
2964bad_wq:
2965	dm_kcopyd_client_destroy(pool->copier);
2966bad_kcopyd_client:
2967	dm_bio_prison_destroy(pool->prison);
2968bad_prison:
2969	kfree(pool);
2970bad_pool:
2971	if (dm_pool_metadata_close(pmd))
2972		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2973
2974	return err_p;
2975}
2976
2977static void __pool_inc(struct pool *pool)
2978{
2979	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2980	pool->ref_count++;
2981}
2982
2983static void __pool_dec(struct pool *pool)
2984{
2985	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2986	BUG_ON(!pool->ref_count);
2987	if (!--pool->ref_count)
2988		__pool_destroy(pool);
2989}
2990
2991static struct pool *__pool_find(struct mapped_device *pool_md,
2992				struct block_device *metadata_dev,
 
2993				unsigned long block_size, int read_only,
2994				char **error, int *created)
2995{
2996	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2997
2998	if (pool) {
2999		if (pool->pool_md != pool_md) {
3000			*error = "metadata device already in use by a pool";
3001			return ERR_PTR(-EBUSY);
3002		}
 
 
 
 
3003		__pool_inc(pool);
3004
3005	} else {
3006		pool = __pool_table_lookup(pool_md);
3007		if (pool) {
3008			if (pool->md_dev != metadata_dev) {
3009				*error = "different pool cannot replace a pool";
3010				return ERR_PTR(-EINVAL);
3011			}
3012			__pool_inc(pool);
3013
3014		} else {
3015			pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3016			*created = 1;
3017		}
3018	}
3019
3020	return pool;
3021}
3022
3023/*----------------------------------------------------------------
3024 * Pool target methods
3025 *--------------------------------------------------------------*/
3026static void pool_dtr(struct dm_target *ti)
3027{
3028	struct pool_c *pt = ti->private;
3029
3030	mutex_lock(&dm_thin_pool_table.mutex);
3031
3032	unbind_control_target(pt->pool, ti);
3033	__pool_dec(pt->pool);
3034	dm_put_device(ti, pt->metadata_dev);
3035	dm_put_device(ti, pt->data_dev);
3036	kfree(pt);
3037
3038	mutex_unlock(&dm_thin_pool_table.mutex);
3039}
3040
3041static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3042			       struct dm_target *ti)
3043{
3044	int r;
3045	unsigned argc;
3046	const char *arg_name;
3047
3048	static struct dm_arg _args[] = {
3049		{0, 4, "Invalid number of pool feature arguments"},
3050	};
3051
3052	/*
3053	 * No feature arguments supplied.
3054	 */
3055	if (!as->argc)
3056		return 0;
3057
3058	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3059	if (r)
3060		return -EINVAL;
3061
3062	while (argc && !r) {
3063		arg_name = dm_shift_arg(as);
3064		argc--;
3065
3066		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3067			pf->zero_new_blocks = false;
3068
3069		else if (!strcasecmp(arg_name, "ignore_discard"))
3070			pf->discard_enabled = false;
3071
3072		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3073			pf->discard_passdown = false;
3074
3075		else if (!strcasecmp(arg_name, "read_only"))
3076			pf->mode = PM_READ_ONLY;
3077
3078		else if (!strcasecmp(arg_name, "error_if_no_space"))
3079			pf->error_if_no_space = true;
3080
3081		else {
3082			ti->error = "Unrecognised pool feature requested";
3083			r = -EINVAL;
3084			break;
3085		}
3086	}
3087
3088	return r;
3089}
3090
3091static void metadata_low_callback(void *context)
3092{
3093	struct pool *pool = context;
3094
3095	DMWARN("%s: reached low water mark for metadata device: sending event.",
3096	       dm_device_name(pool->pool_md));
3097
3098	dm_table_event(pool->ti->table);
3099}
3100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3101static sector_t get_dev_size(struct block_device *bdev)
3102{
3103	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3104}
3105
3106static void warn_if_metadata_device_too_big(struct block_device *bdev)
3107{
3108	sector_t metadata_dev_size = get_dev_size(bdev);
3109	char buffer[BDEVNAME_SIZE];
3110
3111	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3112		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3113		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3114}
3115
3116static sector_t get_metadata_dev_size(struct block_device *bdev)
3117{
3118	sector_t metadata_dev_size = get_dev_size(bdev);
3119
3120	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3121		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3122
3123	return metadata_dev_size;
3124}
3125
3126static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3127{
3128	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3129
3130	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3131
3132	return metadata_dev_size;
3133}
3134
3135/*
3136 * When a metadata threshold is crossed a dm event is triggered, and
3137 * userland should respond by growing the metadata device.  We could let
3138 * userland set the threshold, like we do with the data threshold, but I'm
3139 * not sure they know enough to do this well.
3140 */
3141static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3142{
3143	/*
3144	 * 4M is ample for all ops with the possible exception of thin
3145	 * device deletion which is harmless if it fails (just retry the
3146	 * delete after you've grown the device).
3147	 */
3148	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3149	return min((dm_block_t)1024ULL /* 4M */, quarter);
3150}
3151
3152/*
3153 * thin-pool <metadata dev> <data dev>
3154 *	     <data block size (sectors)>
3155 *	     <low water mark (blocks)>
3156 *	     [<#feature args> [<arg>]*]
3157 *
3158 * Optional feature arguments are:
3159 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3160 *	     ignore_discard: disable discard
3161 *	     no_discard_passdown: don't pass discards down to the data device
3162 *	     read_only: Don't allow any changes to be made to the pool metadata.
3163 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3164 */
3165static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3166{
3167	int r, pool_created = 0;
3168	struct pool_c *pt;
3169	struct pool *pool;
3170	struct pool_features pf;
3171	struct dm_arg_set as;
3172	struct dm_dev *data_dev;
3173	unsigned long block_size;
3174	dm_block_t low_water_blocks;
3175	struct dm_dev *metadata_dev;
3176	fmode_t metadata_mode;
3177
3178	/*
3179	 * FIXME Remove validation from scope of lock.
3180	 */
3181	mutex_lock(&dm_thin_pool_table.mutex);
3182
3183	if (argc < 4) {
3184		ti->error = "Invalid argument count";
3185		r = -EINVAL;
3186		goto out_unlock;
3187	}
3188
3189	as.argc = argc;
3190	as.argv = argv;
3191
 
 
 
 
 
 
 
3192	/*
3193	 * Set default pool features.
3194	 */
3195	pool_features_init(&pf);
3196
3197	dm_consume_args(&as, 4);
3198	r = parse_pool_features(&as, &pf, ti);
3199	if (r)
3200		goto out_unlock;
3201
3202	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3203	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3204	if (r) {
3205		ti->error = "Error opening metadata block device";
3206		goto out_unlock;
3207	}
3208	warn_if_metadata_device_too_big(metadata_dev->bdev);
3209
3210	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3211	if (r) {
3212		ti->error = "Error getting data device";
3213		goto out_metadata;
3214	}
3215
3216	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3217	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3218	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3219	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3220		ti->error = "Invalid block size";
3221		r = -EINVAL;
3222		goto out;
3223	}
3224
3225	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3226		ti->error = "Invalid low water mark";
3227		r = -EINVAL;
3228		goto out;
3229	}
3230
3231	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3232	if (!pt) {
3233		r = -ENOMEM;
3234		goto out;
3235	}
3236
3237	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3238			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3239	if (IS_ERR(pool)) {
3240		r = PTR_ERR(pool);
3241		goto out_free_pt;
3242	}
3243
3244	/*
3245	 * 'pool_created' reflects whether this is the first table load.
3246	 * Top level discard support is not allowed to be changed after
3247	 * initial load.  This would require a pool reload to trigger thin
3248	 * device changes.
3249	 */
3250	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3251		ti->error = "Discard support cannot be disabled once enabled";
3252		r = -EINVAL;
3253		goto out_flags_changed;
3254	}
3255
3256	pt->pool = pool;
3257	pt->ti = ti;
3258	pt->metadata_dev = metadata_dev;
3259	pt->data_dev = data_dev;
3260	pt->low_water_blocks = low_water_blocks;
3261	pt->adjusted_pf = pt->requested_pf = pf;
3262	ti->num_flush_bios = 1;
3263
3264	/*
3265	 * Only need to enable discards if the pool should pass
3266	 * them down to the data device.  The thin device's discard
3267	 * processing will cause mappings to be removed from the btree.
3268	 */
3269	ti->discard_zeroes_data_unsupported = true;
3270	if (pf.discard_enabled && pf.discard_passdown) {
3271		ti->num_discard_bios = 1;
3272
3273		/*
3274		 * Setting 'discards_supported' circumvents the normal
3275		 * stacking of discard limits (this keeps the pool and
3276		 * thin devices' discard limits consistent).
3277		 */
3278		ti->discards_supported = true;
3279	}
3280	ti->private = pt;
3281
3282	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283						calc_metadata_threshold(pt),
3284						metadata_low_callback,
3285						pool);
3286	if (r)
3287		goto out_flags_changed;
3288
3289	pt->callbacks.congested_fn = pool_is_congested;
3290	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291
3292	mutex_unlock(&dm_thin_pool_table.mutex);
3293
3294	return 0;
3295
3296out_flags_changed:
3297	__pool_dec(pool);
3298out_free_pt:
3299	kfree(pt);
3300out:
3301	dm_put_device(ti, data_dev);
3302out_metadata:
3303	dm_put_device(ti, metadata_dev);
3304out_unlock:
3305	mutex_unlock(&dm_thin_pool_table.mutex);
3306
3307	return r;
3308}
3309
3310static int pool_map(struct dm_target *ti, struct bio *bio)
3311{
3312	int r;
3313	struct pool_c *pt = ti->private;
3314	struct pool *pool = pt->pool;
3315	unsigned long flags;
3316
3317	/*
3318	 * As this is a singleton target, ti->begin is always zero.
3319	 */
3320	spin_lock_irqsave(&pool->lock, flags);
3321	bio->bi_bdev = pt->data_dev->bdev;
3322	r = DM_MAPIO_REMAPPED;
3323	spin_unlock_irqrestore(&pool->lock, flags);
3324
3325	return r;
3326}
3327
3328static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329{
3330	int r;
3331	struct pool_c *pt = ti->private;
3332	struct pool *pool = pt->pool;
3333	sector_t data_size = ti->len;
3334	dm_block_t sb_data_size;
3335
3336	*need_commit = false;
3337
3338	(void) sector_div(data_size, pool->sectors_per_block);
3339
3340	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341	if (r) {
3342		DMERR("%s: failed to retrieve data device size",
3343		      dm_device_name(pool->pool_md));
3344		return r;
3345	}
3346
3347	if (data_size < sb_data_size) {
3348		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349		      dm_device_name(pool->pool_md),
3350		      (unsigned long long)data_size, sb_data_size);
3351		return -EINVAL;
3352
3353	} else if (data_size > sb_data_size) {
3354		if (dm_pool_metadata_needs_check(pool->pmd)) {
3355			DMERR("%s: unable to grow the data device until repaired.",
3356			      dm_device_name(pool->pool_md));
3357			return 0;
3358		}
3359
3360		if (sb_data_size)
3361			DMINFO("%s: growing the data device from %llu to %llu blocks",
3362			       dm_device_name(pool->pool_md),
3363			       sb_data_size, (unsigned long long)data_size);
3364		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365		if (r) {
3366			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367			return r;
3368		}
3369
3370		*need_commit = true;
3371	}
3372
3373	return 0;
3374}
3375
3376static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377{
3378	int r;
3379	struct pool_c *pt = ti->private;
3380	struct pool *pool = pt->pool;
3381	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382
3383	*need_commit = false;
3384
3385	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386
3387	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388	if (r) {
3389		DMERR("%s: failed to retrieve metadata device size",
3390		      dm_device_name(pool->pool_md));
3391		return r;
3392	}
3393
3394	if (metadata_dev_size < sb_metadata_dev_size) {
3395		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396		      dm_device_name(pool->pool_md),
3397		      metadata_dev_size, sb_metadata_dev_size);
3398		return -EINVAL;
3399
3400	} else if (metadata_dev_size > sb_metadata_dev_size) {
3401		if (dm_pool_metadata_needs_check(pool->pmd)) {
3402			DMERR("%s: unable to grow the metadata device until repaired.",
3403			      dm_device_name(pool->pool_md));
3404			return 0;
3405		}
3406
3407		warn_if_metadata_device_too_big(pool->md_dev);
3408		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409		       dm_device_name(pool->pool_md),
3410		       sb_metadata_dev_size, metadata_dev_size);
 
 
 
 
3411		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412		if (r) {
3413			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414			return r;
3415		}
3416
3417		*need_commit = true;
3418	}
3419
3420	return 0;
3421}
3422
3423/*
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3427 *
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3430 * -and-
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3433 */
3434static int pool_preresume(struct dm_target *ti)
3435{
3436	int r;
3437	bool need_commit1, need_commit2;
3438	struct pool_c *pt = ti->private;
3439	struct pool *pool = pt->pool;
3440
3441	/*
3442	 * Take control of the pool object.
3443	 */
3444	r = bind_control_target(pool, ti);
3445	if (r)
3446		return r;
3447
3448	r = maybe_resize_data_dev(ti, &need_commit1);
3449	if (r)
3450		return r;
3451
3452	r = maybe_resize_metadata_dev(ti, &need_commit2);
3453	if (r)
3454		return r;
3455
3456	if (need_commit1 || need_commit2)
3457		(void) commit(pool);
3458
3459	return 0;
3460}
3461
3462static void pool_suspend_active_thins(struct pool *pool)
3463{
3464	struct thin_c *tc;
3465
3466	/* Suspend all active thin devices */
3467	tc = get_first_thin(pool);
3468	while (tc) {
3469		dm_internal_suspend_noflush(tc->thin_md);
3470		tc = get_next_thin(pool, tc);
3471	}
3472}
3473
3474static void pool_resume_active_thins(struct pool *pool)
3475{
3476	struct thin_c *tc;
3477
3478	/* Resume all active thin devices */
3479	tc = get_first_thin(pool);
3480	while (tc) {
3481		dm_internal_resume(tc->thin_md);
3482		tc = get_next_thin(pool, tc);
3483	}
3484}
3485
3486static void pool_resume(struct dm_target *ti)
3487{
3488	struct pool_c *pt = ti->private;
3489	struct pool *pool = pt->pool;
3490	unsigned long flags;
3491
3492	/*
3493	 * Must requeue active_thins' bios and then resume
3494	 * active_thins _before_ clearing 'suspend' flag.
3495	 */
3496	requeue_bios(pool);
3497	pool_resume_active_thins(pool);
3498
3499	spin_lock_irqsave(&pool->lock, flags);
3500	pool->low_water_triggered = false;
3501	pool->suspended = false;
3502	spin_unlock_irqrestore(&pool->lock, flags);
3503
3504	do_waker(&pool->waker.work);
3505}
3506
3507static void pool_presuspend(struct dm_target *ti)
3508{
3509	struct pool_c *pt = ti->private;
3510	struct pool *pool = pt->pool;
3511	unsigned long flags;
3512
3513	spin_lock_irqsave(&pool->lock, flags);
3514	pool->suspended = true;
3515	spin_unlock_irqrestore(&pool->lock, flags);
3516
3517	pool_suspend_active_thins(pool);
3518}
3519
3520static void pool_presuspend_undo(struct dm_target *ti)
3521{
3522	struct pool_c *pt = ti->private;
3523	struct pool *pool = pt->pool;
3524	unsigned long flags;
3525
3526	pool_resume_active_thins(pool);
3527
3528	spin_lock_irqsave(&pool->lock, flags);
3529	pool->suspended = false;
3530	spin_unlock_irqrestore(&pool->lock, flags);
3531}
3532
3533static void pool_postsuspend(struct dm_target *ti)
3534{
3535	struct pool_c *pt = ti->private;
3536	struct pool *pool = pt->pool;
3537
3538	cancel_delayed_work_sync(&pool->waker);
3539	cancel_delayed_work_sync(&pool->no_space_timeout);
3540	flush_workqueue(pool->wq);
3541	(void) commit(pool);
3542}
3543
3544static int check_arg_count(unsigned argc, unsigned args_required)
3545{
3546	if (argc != args_required) {
3547		DMWARN("Message received with %u arguments instead of %u.",
3548		       argc, args_required);
3549		return -EINVAL;
3550	}
3551
3552	return 0;
3553}
3554
3555static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556{
3557	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558	    *dev_id <= MAX_DEV_ID)
3559		return 0;
3560
3561	if (warning)
3562		DMWARN("Message received with invalid device id: %s", arg);
3563
3564	return -EINVAL;
3565}
3566
3567static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568{
3569	dm_thin_id dev_id;
3570	int r;
3571
3572	r = check_arg_count(argc, 2);
3573	if (r)
3574		return r;
3575
3576	r = read_dev_id(argv[1], &dev_id, 1);
3577	if (r)
3578		return r;
3579
3580	r = dm_pool_create_thin(pool->pmd, dev_id);
3581	if (r) {
3582		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583		       argv[1]);
3584		return r;
3585	}
3586
3587	return 0;
3588}
3589
3590static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591{
3592	dm_thin_id dev_id;
3593	dm_thin_id origin_dev_id;
3594	int r;
3595
3596	r = check_arg_count(argc, 3);
3597	if (r)
3598		return r;
3599
3600	r = read_dev_id(argv[1], &dev_id, 1);
3601	if (r)
3602		return r;
3603
3604	r = read_dev_id(argv[2], &origin_dev_id, 1);
3605	if (r)
3606		return r;
3607
3608	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609	if (r) {
3610		DMWARN("Creation of new snapshot %s of device %s failed.",
3611		       argv[1], argv[2]);
3612		return r;
3613	}
3614
3615	return 0;
3616}
3617
3618static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619{
3620	dm_thin_id dev_id;
3621	int r;
3622
3623	r = check_arg_count(argc, 2);
3624	if (r)
3625		return r;
3626
3627	r = read_dev_id(argv[1], &dev_id, 1);
3628	if (r)
3629		return r;
3630
3631	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632	if (r)
3633		DMWARN("Deletion of thin device %s failed.", argv[1]);
3634
3635	return r;
3636}
3637
3638static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639{
3640	dm_thin_id old_id, new_id;
3641	int r;
3642
3643	r = check_arg_count(argc, 3);
3644	if (r)
3645		return r;
3646
3647	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649		return -EINVAL;
3650	}
3651
3652	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654		return -EINVAL;
3655	}
3656
3657	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658	if (r) {
3659		DMWARN("Failed to change transaction id from %s to %s.",
3660		       argv[1], argv[2]);
3661		return r;
3662	}
3663
3664	return 0;
3665}
3666
3667static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668{
3669	int r;
3670
3671	r = check_arg_count(argc, 1);
3672	if (r)
3673		return r;
3674
3675	(void) commit(pool);
3676
3677	r = dm_pool_reserve_metadata_snap(pool->pmd);
3678	if (r)
3679		DMWARN("reserve_metadata_snap message failed.");
3680
3681	return r;
3682}
3683
3684static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685{
3686	int r;
3687
3688	r = check_arg_count(argc, 1);
3689	if (r)
3690		return r;
3691
3692	r = dm_pool_release_metadata_snap(pool->pmd);
3693	if (r)
3694		DMWARN("release_metadata_snap message failed.");
3695
3696	return r;
3697}
3698
3699/*
3700 * Messages supported:
3701 *   create_thin	<dev_id>
3702 *   create_snap	<dev_id> <origin_id>
3703 *   delete		<dev_id>
3704 *   set_transaction_id <current_trans_id> <new_trans_id>
3705 *   reserve_metadata_snap
3706 *   release_metadata_snap
3707 */
3708static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
 
3709{
3710	int r = -EINVAL;
3711	struct pool_c *pt = ti->private;
3712	struct pool *pool = pt->pool;
3713
3714	if (get_pool_mode(pool) >= PM_READ_ONLY) {
3715		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3716		      dm_device_name(pool->pool_md));
3717		return -EOPNOTSUPP;
3718	}
3719
3720	if (!strcasecmp(argv[0], "create_thin"))
3721		r = process_create_thin_mesg(argc, argv, pool);
3722
3723	else if (!strcasecmp(argv[0], "create_snap"))
3724		r = process_create_snap_mesg(argc, argv, pool);
3725
3726	else if (!strcasecmp(argv[0], "delete"))
3727		r = process_delete_mesg(argc, argv, pool);
3728
3729	else if (!strcasecmp(argv[0], "set_transaction_id"))
3730		r = process_set_transaction_id_mesg(argc, argv, pool);
3731
3732	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3733		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3734
3735	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3736		r = process_release_metadata_snap_mesg(argc, argv, pool);
3737
3738	else
3739		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3740
3741	if (!r)
3742		(void) commit(pool);
3743
3744	return r;
3745}
3746
3747static void emit_flags(struct pool_features *pf, char *result,
3748		       unsigned sz, unsigned maxlen)
3749{
3750	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3751		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3752		pf->error_if_no_space;
3753	DMEMIT("%u ", count);
3754
3755	if (!pf->zero_new_blocks)
3756		DMEMIT("skip_block_zeroing ");
3757
3758	if (!pf->discard_enabled)
3759		DMEMIT("ignore_discard ");
3760
3761	if (!pf->discard_passdown)
3762		DMEMIT("no_discard_passdown ");
3763
3764	if (pf->mode == PM_READ_ONLY)
3765		DMEMIT("read_only ");
3766
3767	if (pf->error_if_no_space)
3768		DMEMIT("error_if_no_space ");
3769}
3770
3771/*
3772 * Status line is:
3773 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3774 *    <used data sectors>/<total data sectors> <held metadata root>
3775 *    <pool mode> <discard config> <no space config> <needs_check>
3776 */
3777static void pool_status(struct dm_target *ti, status_type_t type,
3778			unsigned status_flags, char *result, unsigned maxlen)
3779{
3780	int r;
3781	unsigned sz = 0;
3782	uint64_t transaction_id;
3783	dm_block_t nr_free_blocks_data;
3784	dm_block_t nr_free_blocks_metadata;
3785	dm_block_t nr_blocks_data;
3786	dm_block_t nr_blocks_metadata;
3787	dm_block_t held_root;
 
3788	char buf[BDEVNAME_SIZE];
3789	char buf2[BDEVNAME_SIZE];
3790	struct pool_c *pt = ti->private;
3791	struct pool *pool = pt->pool;
3792
3793	switch (type) {
3794	case STATUSTYPE_INFO:
3795		if (get_pool_mode(pool) == PM_FAIL) {
3796			DMEMIT("Fail");
3797			break;
3798		}
3799
3800		/* Commit to ensure statistics aren't out-of-date */
3801		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3802			(void) commit(pool);
3803
3804		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3805		if (r) {
3806			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3807			      dm_device_name(pool->pool_md), r);
3808			goto err;
3809		}
3810
3811		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3812		if (r) {
3813			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3814			      dm_device_name(pool->pool_md), r);
3815			goto err;
3816		}
3817
3818		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3819		if (r) {
3820			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3821			      dm_device_name(pool->pool_md), r);
3822			goto err;
3823		}
3824
3825		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3826		if (r) {
3827			DMERR("%s: dm_pool_get_free_block_count returned %d",
3828			      dm_device_name(pool->pool_md), r);
3829			goto err;
3830		}
3831
3832		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3833		if (r) {
3834			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3835			      dm_device_name(pool->pool_md), r);
3836			goto err;
3837		}
3838
3839		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3840		if (r) {
3841			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3842			      dm_device_name(pool->pool_md), r);
3843			goto err;
3844		}
3845
3846		DMEMIT("%llu %llu/%llu %llu/%llu ",
3847		       (unsigned long long)transaction_id,
3848		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3849		       (unsigned long long)nr_blocks_metadata,
3850		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3851		       (unsigned long long)nr_blocks_data);
3852
3853		if (held_root)
3854			DMEMIT("%llu ", held_root);
3855		else
3856			DMEMIT("- ");
3857
3858		if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
 
3859			DMEMIT("out_of_data_space ");
3860		else if (pool->pf.mode == PM_READ_ONLY)
3861			DMEMIT("ro ");
3862		else
3863			DMEMIT("rw ");
3864
3865		if (!pool->pf.discard_enabled)
3866			DMEMIT("ignore_discard ");
3867		else if (pool->pf.discard_passdown)
3868			DMEMIT("discard_passdown ");
3869		else
3870			DMEMIT("no_discard_passdown ");
3871
3872		if (pool->pf.error_if_no_space)
3873			DMEMIT("error_if_no_space ");
3874		else
3875			DMEMIT("queue_if_no_space ");
3876
3877		if (dm_pool_metadata_needs_check(pool->pmd))
3878			DMEMIT("needs_check ");
3879		else
3880			DMEMIT("- ");
3881
 
 
3882		break;
3883
3884	case STATUSTYPE_TABLE:
3885		DMEMIT("%s %s %lu %llu ",
3886		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3887		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3888		       (unsigned long)pool->sectors_per_block,
3889		       (unsigned long long)pt->low_water_blocks);
3890		emit_flags(&pt->requested_pf, result, sz, maxlen);
3891		break;
3892	}
3893	return;
3894
3895err:
3896	DMEMIT("Error");
3897}
3898
3899static int pool_iterate_devices(struct dm_target *ti,
3900				iterate_devices_callout_fn fn, void *data)
3901{
3902	struct pool_c *pt = ti->private;
3903
3904	return fn(ti, pt->data_dev, 0, ti->len, data);
3905}
3906
3907static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3908{
3909	struct pool_c *pt = ti->private;
3910	struct pool *pool = pt->pool;
3911	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3912
3913	/*
3914	 * If max_sectors is smaller than pool->sectors_per_block adjust it
3915	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3916	 * This is especially beneficial when the pool's data device is a RAID
3917	 * device that has a full stripe width that matches pool->sectors_per_block
3918	 * -- because even though partial RAID stripe-sized IOs will be issued to a
3919	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
3920	 *    boundary.. which avoids additional partial RAID stripe writes cascading
3921	 */
3922	if (limits->max_sectors < pool->sectors_per_block) {
3923		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3924			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3925				limits->max_sectors--;
3926			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3927		}
3928	}
3929
3930	/*
3931	 * If the system-determined stacked limits are compatible with the
3932	 * pool's blocksize (io_opt is a factor) do not override them.
3933	 */
3934	if (io_opt_sectors < pool->sectors_per_block ||
3935	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3936		if (is_factor(pool->sectors_per_block, limits->max_sectors))
3937			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3938		else
3939			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3940		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941	}
3942
3943	/*
3944	 * pt->adjusted_pf is a staging area for the actual features to use.
3945	 * They get transferred to the live pool in bind_control_target()
3946	 * called from pool_preresume().
3947	 */
3948	if (!pt->adjusted_pf.discard_enabled) {
3949		/*
3950		 * Must explicitly disallow stacking discard limits otherwise the
3951		 * block layer will stack them if pool's data device has support.
3952		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3953		 * user to see that, so make sure to set all discard limits to 0.
3954		 */
3955		limits->discard_granularity = 0;
3956		return;
3957	}
3958
3959	disable_passdown_if_not_supported(pt);
3960
3961	/*
3962	 * The pool uses the same discard limits as the underlying data
3963	 * device.  DM core has already set this up.
3964	 */
3965}
3966
3967static struct target_type pool_target = {
3968	.name = "thin-pool",
3969	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3970		    DM_TARGET_IMMUTABLE,
3971	.version = {1, 19, 0},
3972	.module = THIS_MODULE,
3973	.ctr = pool_ctr,
3974	.dtr = pool_dtr,
3975	.map = pool_map,
3976	.presuspend = pool_presuspend,
3977	.presuspend_undo = pool_presuspend_undo,
3978	.postsuspend = pool_postsuspend,
3979	.preresume = pool_preresume,
3980	.resume = pool_resume,
3981	.message = pool_message,
3982	.status = pool_status,
3983	.iterate_devices = pool_iterate_devices,
3984	.io_hints = pool_io_hints,
3985};
3986
3987/*----------------------------------------------------------------
3988 * Thin target methods
3989 *--------------------------------------------------------------*/
3990static void thin_get(struct thin_c *tc)
3991{
3992	atomic_inc(&tc->refcount);
3993}
3994
3995static void thin_put(struct thin_c *tc)
3996{
3997	if (atomic_dec_and_test(&tc->refcount))
3998		complete(&tc->can_destroy);
3999}
4000
4001static void thin_dtr(struct dm_target *ti)
4002{
4003	struct thin_c *tc = ti->private;
4004	unsigned long flags;
4005
4006	spin_lock_irqsave(&tc->pool->lock, flags);
4007	list_del_rcu(&tc->list);
4008	spin_unlock_irqrestore(&tc->pool->lock, flags);
4009	synchronize_rcu();
4010
4011	thin_put(tc);
4012	wait_for_completion(&tc->can_destroy);
4013
4014	mutex_lock(&dm_thin_pool_table.mutex);
4015
4016	__pool_dec(tc->pool);
4017	dm_pool_close_thin_device(tc->td);
4018	dm_put_device(ti, tc->pool_dev);
4019	if (tc->origin_dev)
4020		dm_put_device(ti, tc->origin_dev);
4021	kfree(tc);
4022
4023	mutex_unlock(&dm_thin_pool_table.mutex);
4024}
4025
4026/*
4027 * Thin target parameters:
4028 *
4029 * <pool_dev> <dev_id> [origin_dev]
4030 *
4031 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4032 * dev_id: the internal device identifier
4033 * origin_dev: a device external to the pool that should act as the origin
4034 *
4035 * If the pool device has discards disabled, they get disabled for the thin
4036 * device as well.
4037 */
4038static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4039{
4040	int r;
4041	struct thin_c *tc;
4042	struct dm_dev *pool_dev, *origin_dev;
4043	struct mapped_device *pool_md;
4044	unsigned long flags;
4045
4046	mutex_lock(&dm_thin_pool_table.mutex);
4047
4048	if (argc != 2 && argc != 3) {
4049		ti->error = "Invalid argument count";
4050		r = -EINVAL;
4051		goto out_unlock;
4052	}
4053
4054	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4055	if (!tc) {
4056		ti->error = "Out of memory";
4057		r = -ENOMEM;
4058		goto out_unlock;
4059	}
4060	tc->thin_md = dm_table_get_md(ti->table);
4061	spin_lock_init(&tc->lock);
4062	INIT_LIST_HEAD(&tc->deferred_cells);
4063	bio_list_init(&tc->deferred_bio_list);
4064	bio_list_init(&tc->retry_on_resume_list);
4065	tc->sort_bio_list = RB_ROOT;
4066
4067	if (argc == 3) {
 
 
 
 
 
 
4068		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4069		if (r) {
4070			ti->error = "Error opening origin device";
4071			goto bad_origin_dev;
4072		}
4073		tc->origin_dev = origin_dev;
4074	}
4075
4076	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4077	if (r) {
4078		ti->error = "Error opening pool device";
4079		goto bad_pool_dev;
4080	}
4081	tc->pool_dev = pool_dev;
4082
4083	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4084		ti->error = "Invalid device id";
4085		r = -EINVAL;
4086		goto bad_common;
4087	}
4088
4089	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4090	if (!pool_md) {
4091		ti->error = "Couldn't get pool mapped device";
4092		r = -EINVAL;
4093		goto bad_common;
4094	}
4095
4096	tc->pool = __pool_table_lookup(pool_md);
4097	if (!tc->pool) {
4098		ti->error = "Couldn't find pool object";
4099		r = -EINVAL;
4100		goto bad_pool_lookup;
4101	}
4102	__pool_inc(tc->pool);
4103
4104	if (get_pool_mode(tc->pool) == PM_FAIL) {
4105		ti->error = "Couldn't open thin device, Pool is in fail mode";
4106		r = -EINVAL;
4107		goto bad_pool;
4108	}
4109
4110	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4111	if (r) {
4112		ti->error = "Couldn't open thin internal device";
4113		goto bad_pool;
4114	}
4115
4116	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4117	if (r)
4118		goto bad;
4119
4120	ti->num_flush_bios = 1;
4121	ti->flush_supported = true;
4122	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4123
4124	/* In case the pool supports discards, pass them on. */
4125	ti->discard_zeroes_data_unsupported = true;
4126	if (tc->pool->pf.discard_enabled) {
4127		ti->discards_supported = true;
4128		ti->num_discard_bios = 1;
4129		ti->split_discard_bios = false;
4130	}
4131
4132	mutex_unlock(&dm_thin_pool_table.mutex);
4133
4134	spin_lock_irqsave(&tc->pool->lock, flags);
4135	if (tc->pool->suspended) {
4136		spin_unlock_irqrestore(&tc->pool->lock, flags);
4137		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4138		ti->error = "Unable to activate thin device while pool is suspended";
4139		r = -EINVAL;
4140		goto bad;
4141	}
4142	atomic_set(&tc->refcount, 1);
4143	init_completion(&tc->can_destroy);
4144	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4145	spin_unlock_irqrestore(&tc->pool->lock, flags);
4146	/*
4147	 * This synchronize_rcu() call is needed here otherwise we risk a
4148	 * wake_worker() call finding no bios to process (because the newly
4149	 * added tc isn't yet visible).  So this reduces latency since we
4150	 * aren't then dependent on the periodic commit to wake_worker().
4151	 */
4152	synchronize_rcu();
4153
4154	dm_put(pool_md);
4155
4156	return 0;
4157
4158bad:
4159	dm_pool_close_thin_device(tc->td);
4160bad_pool:
4161	__pool_dec(tc->pool);
4162bad_pool_lookup:
4163	dm_put(pool_md);
4164bad_common:
4165	dm_put_device(ti, tc->pool_dev);
4166bad_pool_dev:
4167	if (tc->origin_dev)
4168		dm_put_device(ti, tc->origin_dev);
4169bad_origin_dev:
4170	kfree(tc);
4171out_unlock:
4172	mutex_unlock(&dm_thin_pool_table.mutex);
4173
4174	return r;
4175}
4176
4177static int thin_map(struct dm_target *ti, struct bio *bio)
4178{
4179	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180
4181	return thin_bio_map(ti, bio);
4182}
4183
4184static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
 
4185{
4186	unsigned long flags;
4187	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4188	struct list_head work;
4189	struct dm_thin_new_mapping *m, *tmp;
4190	struct pool *pool = h->tc->pool;
4191
4192	if (h->shared_read_entry) {
4193		INIT_LIST_HEAD(&work);
4194		dm_deferred_entry_dec(h->shared_read_entry, &work);
4195
4196		spin_lock_irqsave(&pool->lock, flags);
4197		list_for_each_entry_safe(m, tmp, &work, list) {
4198			list_del(&m->list);
4199			__complete_mapping_preparation(m);
4200		}
4201		spin_unlock_irqrestore(&pool->lock, flags);
4202	}
4203
4204	if (h->all_io_entry) {
4205		INIT_LIST_HEAD(&work);
4206		dm_deferred_entry_dec(h->all_io_entry, &work);
4207		if (!list_empty(&work)) {
4208			spin_lock_irqsave(&pool->lock, flags);
4209			list_for_each_entry_safe(m, tmp, &work, list)
4210				list_add_tail(&m->list, &pool->prepared_discards);
4211			spin_unlock_irqrestore(&pool->lock, flags);
4212			wake_worker(pool);
4213		}
4214	}
4215
4216	if (h->cell)
4217		cell_defer_no_holder(h->tc, h->cell);
4218
4219	return 0;
4220}
4221
4222static void thin_presuspend(struct dm_target *ti)
4223{
4224	struct thin_c *tc = ti->private;
4225
4226	if (dm_noflush_suspending(ti))
4227		noflush_work(tc, do_noflush_start);
4228}
4229
4230static void thin_postsuspend(struct dm_target *ti)
4231{
4232	struct thin_c *tc = ti->private;
4233
4234	/*
4235	 * The dm_noflush_suspending flag has been cleared by now, so
4236	 * unfortunately we must always run this.
4237	 */
4238	noflush_work(tc, do_noflush_stop);
4239}
4240
4241static int thin_preresume(struct dm_target *ti)
4242{
4243	struct thin_c *tc = ti->private;
4244
4245	if (tc->origin_dev)
4246		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4247
4248	return 0;
4249}
4250
4251/*
4252 * <nr mapped sectors> <highest mapped sector>
4253 */
4254static void thin_status(struct dm_target *ti, status_type_t type,
4255			unsigned status_flags, char *result, unsigned maxlen)
4256{
4257	int r;
4258	ssize_t sz = 0;
4259	dm_block_t mapped, highest;
4260	char buf[BDEVNAME_SIZE];
4261	struct thin_c *tc = ti->private;
4262
4263	if (get_pool_mode(tc->pool) == PM_FAIL) {
4264		DMEMIT("Fail");
4265		return;
4266	}
4267
4268	if (!tc->td)
4269		DMEMIT("-");
4270	else {
4271		switch (type) {
4272		case STATUSTYPE_INFO:
4273			r = dm_thin_get_mapped_count(tc->td, &mapped);
4274			if (r) {
4275				DMERR("dm_thin_get_mapped_count returned %d", r);
4276				goto err;
4277			}
4278
4279			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4280			if (r < 0) {
4281				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4282				goto err;
4283			}
4284
4285			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4286			if (r)
4287				DMEMIT("%llu", ((highest + 1) *
4288						tc->pool->sectors_per_block) - 1);
4289			else
4290				DMEMIT("-");
4291			break;
4292
4293		case STATUSTYPE_TABLE:
4294			DMEMIT("%s %lu",
4295			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4296			       (unsigned long) tc->dev_id);
4297			if (tc->origin_dev)
4298				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4299			break;
4300		}
4301	}
4302
4303	return;
4304
4305err:
4306	DMEMIT("Error");
4307}
4308
4309static int thin_iterate_devices(struct dm_target *ti,
4310				iterate_devices_callout_fn fn, void *data)
4311{
4312	sector_t blocks;
4313	struct thin_c *tc = ti->private;
4314	struct pool *pool = tc->pool;
4315
4316	/*
4317	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4318	 * we follow a more convoluted path through to the pool's target.
4319	 */
4320	if (!pool->ti)
4321		return 0;	/* nothing is bound */
4322
4323	blocks = pool->ti->len;
4324	(void) sector_div(blocks, pool->sectors_per_block);
4325	if (blocks)
4326		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4327
4328	return 0;
4329}
4330
4331static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4332{
4333	struct thin_c *tc = ti->private;
4334	struct pool *pool = tc->pool;
4335
4336	if (!pool->pf.discard_enabled)
4337		return;
4338
4339	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4340	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4341}
4342
4343static struct target_type thin_target = {
4344	.name = "thin",
4345	.version = {1, 19, 0},
4346	.module	= THIS_MODULE,
4347	.ctr = thin_ctr,
4348	.dtr = thin_dtr,
4349	.map = thin_map,
4350	.end_io = thin_endio,
4351	.preresume = thin_preresume,
4352	.presuspend = thin_presuspend,
4353	.postsuspend = thin_postsuspend,
4354	.status = thin_status,
4355	.iterate_devices = thin_iterate_devices,
4356	.io_hints = thin_io_hints,
4357};
4358
4359/*----------------------------------------------------------------*/
4360
4361static int __init dm_thin_init(void)
4362{
4363	int r;
4364
4365	pool_table_init();
4366
 
 
 
 
4367	r = dm_register_target(&thin_target);
4368	if (r)
4369		return r;
4370
4371	r = dm_register_target(&pool_target);
4372	if (r)
4373		goto bad_pool_target;
4374
4375	r = -ENOMEM;
4376
4377	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4378	if (!_new_mapping_cache)
4379		goto bad_new_mapping_cache;
4380
4381	return 0;
4382
4383bad_new_mapping_cache:
4384	dm_unregister_target(&pool_target);
4385bad_pool_target:
4386	dm_unregister_target(&thin_target);
 
 
4387
4388	return r;
4389}
4390
4391static void dm_thin_exit(void)
4392{
4393	dm_unregister_target(&thin_target);
4394	dm_unregister_target(&pool_target);
4395
4396	kmem_cache_destroy(_new_mapping_cache);
 
 
4397}
4398
4399module_init(dm_thin_init);
4400module_exit(dm_thin_exit);
4401
4402module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4403MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4404
4405MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4406MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407MODULE_LICENSE("GPL");
v5.9
   1/*
   2 * Copyright (C) 2011-2012 Red Hat UK.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm-thin-metadata.h"
   8#include "dm-bio-prison-v1.h"
   9#include "dm.h"
  10
  11#include <linux/device-mapper.h>
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/log2.h>
  16#include <linux/list.h>
  17#include <linux/rculist.h>
  18#include <linux/init.h>
  19#include <linux/module.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22#include <linux/sort.h>
  23#include <linux/rbtree.h>
  24
  25#define	DM_MSG_PREFIX	"thin"
  26
  27/*
  28 * Tunable constants
  29 */
  30#define ENDIO_HOOK_POOL_SIZE 1024
  31#define MAPPING_POOL_SIZE 1024
  32#define COMMIT_PERIOD HZ
  33#define NO_SPACE_TIMEOUT_SECS 60
  34
  35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
  36
  37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
  38		"A percentage of time allocated for copy on write");
  39
  40/*
  41 * The block size of the device holding pool data must be
  42 * between 64KB and 1GB.
  43 */
  44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
  45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
  46
  47/*
  48 * Device id is restricted to 24 bits.
  49 */
  50#define MAX_DEV_ID ((1 << 24) - 1)
  51
  52/*
  53 * How do we handle breaking sharing of data blocks?
  54 * =================================================
  55 *
  56 * We use a standard copy-on-write btree to store the mappings for the
  57 * devices (note I'm talking about copy-on-write of the metadata here, not
  58 * the data).  When you take an internal snapshot you clone the root node
  59 * of the origin btree.  After this there is no concept of an origin or a
  60 * snapshot.  They are just two device trees that happen to point to the
  61 * same data blocks.
  62 *
  63 * When we get a write in we decide if it's to a shared data block using
  64 * some timestamp magic.  If it is, we have to break sharing.
  65 *
  66 * Let's say we write to a shared block in what was the origin.  The
  67 * steps are:
  68 *
  69 * i) plug io further to this physical block. (see bio_prison code).
  70 *
  71 * ii) quiesce any read io to that shared data block.  Obviously
  72 * including all devices that share this block.  (see dm_deferred_set code)
  73 *
  74 * iii) copy the data block to a newly allocate block.  This step can be
  75 * missed out if the io covers the block. (schedule_copy).
  76 *
  77 * iv) insert the new mapping into the origin's btree
  78 * (process_prepared_mapping).  This act of inserting breaks some
  79 * sharing of btree nodes between the two devices.  Breaking sharing only
  80 * effects the btree of that specific device.  Btrees for the other
  81 * devices that share the block never change.  The btree for the origin
  82 * device as it was after the last commit is untouched, ie. we're using
  83 * persistent data structures in the functional programming sense.
  84 *
  85 * v) unplug io to this physical block, including the io that triggered
  86 * the breaking of sharing.
  87 *
  88 * Steps (ii) and (iii) occur in parallel.
  89 *
  90 * The metadata _doesn't_ need to be committed before the io continues.  We
  91 * get away with this because the io is always written to a _new_ block.
  92 * If there's a crash, then:
  93 *
  94 * - The origin mapping will point to the old origin block (the shared
  95 * one).  This will contain the data as it was before the io that triggered
  96 * the breaking of sharing came in.
  97 *
  98 * - The snap mapping still points to the old block.  As it would after
  99 * the commit.
 100 *
 101 * The downside of this scheme is the timestamp magic isn't perfect, and
 102 * will continue to think that data block in the snapshot device is shared
 103 * even after the write to the origin has broken sharing.  I suspect data
 104 * blocks will typically be shared by many different devices, so we're
 105 * breaking sharing n + 1 times, rather than n, where n is the number of
 106 * devices that reference this data block.  At the moment I think the
 107 * benefits far, far outweigh the disadvantages.
 108 */
 109
 110/*----------------------------------------------------------------*/
 111
 112/*
 113 * Key building.
 114 */
 115enum lock_space {
 116	VIRTUAL,
 117	PHYSICAL
 118};
 119
 120static void build_key(struct dm_thin_device *td, enum lock_space ls,
 121		      dm_block_t b, dm_block_t e, struct dm_cell_key *key)
 122{
 123	key->virtual = (ls == VIRTUAL);
 124	key->dev = dm_thin_dev_id(td);
 125	key->block_begin = b;
 126	key->block_end = e;
 127}
 128
 129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
 130			   struct dm_cell_key *key)
 131{
 132	build_key(td, PHYSICAL, b, b + 1llu, key);
 133}
 134
 135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
 136			      struct dm_cell_key *key)
 137{
 138	build_key(td, VIRTUAL, b, b + 1llu, key);
 139}
 140
 141/*----------------------------------------------------------------*/
 142
 143#define THROTTLE_THRESHOLD (1 * HZ)
 144
 145struct throttle {
 146	struct rw_semaphore lock;
 147	unsigned long threshold;
 148	bool throttle_applied;
 149};
 150
 151static void throttle_init(struct throttle *t)
 152{
 153	init_rwsem(&t->lock);
 154	t->throttle_applied = false;
 155}
 156
 157static void throttle_work_start(struct throttle *t)
 158{
 159	t->threshold = jiffies + THROTTLE_THRESHOLD;
 160}
 161
 162static void throttle_work_update(struct throttle *t)
 163{
 164	if (!t->throttle_applied && jiffies > t->threshold) {
 165		down_write(&t->lock);
 166		t->throttle_applied = true;
 167	}
 168}
 169
 170static void throttle_work_complete(struct throttle *t)
 171{
 172	if (t->throttle_applied) {
 173		t->throttle_applied = false;
 174		up_write(&t->lock);
 175	}
 176}
 177
 178static void throttle_lock(struct throttle *t)
 179{
 180	down_read(&t->lock);
 181}
 182
 183static void throttle_unlock(struct throttle *t)
 184{
 185	up_read(&t->lock);
 186}
 187
 188/*----------------------------------------------------------------*/
 189
 190/*
 191 * A pool device ties together a metadata device and a data device.  It
 192 * also provides the interface for creating and destroying internal
 193 * devices.
 194 */
 195struct dm_thin_new_mapping;
 196
 197/*
 198 * The pool runs in various modes.  Ordered in degraded order for comparisons.
 199 */
 200enum pool_mode {
 201	PM_WRITE,		/* metadata may be changed */
 202	PM_OUT_OF_DATA_SPACE,	/* metadata may be changed, though data may not be allocated */
 203
 204	/*
 205	 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
 206	 */
 207	PM_OUT_OF_METADATA_SPACE,
 208	PM_READ_ONLY,		/* metadata may not be changed */
 209
 210	PM_FAIL,		/* all I/O fails */
 211};
 212
 213struct pool_features {
 214	enum pool_mode mode;
 215
 216	bool zero_new_blocks:1;
 217	bool discard_enabled:1;
 218	bool discard_passdown:1;
 219	bool error_if_no_space:1;
 220};
 221
 222struct thin_c;
 223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
 224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
 225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
 226
 227#define CELL_SORT_ARRAY_SIZE 8192
 228
 229struct pool {
 230	struct list_head list;
 231	struct dm_target *ti;	/* Only set if a pool target is bound */
 232
 233	struct mapped_device *pool_md;
 234	struct block_device *data_dev;
 235	struct block_device *md_dev;
 236	struct dm_pool_metadata *pmd;
 237
 238	dm_block_t low_water_blocks;
 239	uint32_t sectors_per_block;
 240	int sectors_per_block_shift;
 241
 242	struct pool_features pf;
 243	bool low_water_triggered:1;	/* A dm event has been sent */
 244	bool suspended:1;
 245	bool out_of_data_space:1;
 246
 247	struct dm_bio_prison *prison;
 248	struct dm_kcopyd_client *copier;
 249
 250	struct work_struct worker;
 251	struct workqueue_struct *wq;
 252	struct throttle throttle;
 
 253	struct delayed_work waker;
 254	struct delayed_work no_space_timeout;
 255
 256	unsigned long last_commit_jiffies;
 257	unsigned ref_count;
 258
 259	spinlock_t lock;
 260	struct bio_list deferred_flush_bios;
 261	struct bio_list deferred_flush_completions;
 262	struct list_head prepared_mappings;
 263	struct list_head prepared_discards;
 264	struct list_head prepared_discards_pt2;
 265	struct list_head active_thins;
 266
 267	struct dm_deferred_set *shared_read_ds;
 268	struct dm_deferred_set *all_io_ds;
 269
 270	struct dm_thin_new_mapping *next_mapping;
 
 271
 272	process_bio_fn process_bio;
 273	process_bio_fn process_discard;
 274
 275	process_cell_fn process_cell;
 276	process_cell_fn process_discard_cell;
 277
 278	process_mapping_fn process_prepared_mapping;
 279	process_mapping_fn process_prepared_discard;
 280	process_mapping_fn process_prepared_discard_pt2;
 281
 282	struct dm_bio_prison_cell **cell_sort_array;
 283
 284	mempool_t mapping_pool;
 285
 286	struct bio flush_bio;
 287};
 288
 
 289static void metadata_operation_failed(struct pool *pool, const char *op, int r);
 290
 291static enum pool_mode get_pool_mode(struct pool *pool)
 292{
 293	return pool->pf.mode;
 294}
 295
 296static void notify_of_pool_mode_change(struct pool *pool)
 297{
 298	const char *descs[] = {
 299		"write",
 300		"out-of-data-space",
 301		"read-only",
 302		"read-only",
 303		"fail"
 304	};
 305	const char *extra_desc = NULL;
 306	enum pool_mode mode = get_pool_mode(pool);
 307
 308	if (mode == PM_OUT_OF_DATA_SPACE) {
 309		if (!pool->pf.error_if_no_space)
 310			extra_desc = " (queue IO)";
 311		else
 312			extra_desc = " (error IO)";
 313	}
 314
 315	dm_table_event(pool->ti->table);
 316	DMINFO("%s: switching pool to %s%s mode",
 317	       dm_device_name(pool->pool_md),
 318	       descs[(int)mode], extra_desc ? : "");
 319}
 320
 321/*
 322 * Target context for a pool.
 323 */
 324struct pool_c {
 325	struct dm_target *ti;
 326	struct pool *pool;
 327	struct dm_dev *data_dev;
 328	struct dm_dev *metadata_dev;
 
 329
 330	dm_block_t low_water_blocks;
 331	struct pool_features requested_pf; /* Features requested during table load */
 332	struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
 333};
 334
 335/*
 336 * Target context for a thin.
 337 */
 338struct thin_c {
 339	struct list_head list;
 340	struct dm_dev *pool_dev;
 341	struct dm_dev *origin_dev;
 342	sector_t origin_size;
 343	dm_thin_id dev_id;
 344
 345	struct pool *pool;
 346	struct dm_thin_device *td;
 347	struct mapped_device *thin_md;
 348
 349	bool requeue_mode:1;
 350	spinlock_t lock;
 351	struct list_head deferred_cells;
 352	struct bio_list deferred_bio_list;
 353	struct bio_list retry_on_resume_list;
 354	struct rb_root sort_bio_list; /* sorted list of deferred bios */
 355
 356	/*
 357	 * Ensures the thin is not destroyed until the worker has finished
 358	 * iterating the active_thins list.
 359	 */
 360	refcount_t refcount;
 361	struct completion can_destroy;
 362};
 363
 364/*----------------------------------------------------------------*/
 365
 366static bool block_size_is_power_of_two(struct pool *pool)
 367{
 368	return pool->sectors_per_block_shift >= 0;
 369}
 370
 371static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
 372{
 373	return block_size_is_power_of_two(pool) ?
 374		(b << pool->sectors_per_block_shift) :
 375		(b * pool->sectors_per_block);
 376}
 377
 378/*----------------------------------------------------------------*/
 379
 380struct discard_op {
 381	struct thin_c *tc;
 382	struct blk_plug plug;
 383	struct bio *parent_bio;
 384	struct bio *bio;
 385};
 386
 387static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
 388{
 389	BUG_ON(!parent);
 390
 391	op->tc = tc;
 392	blk_start_plug(&op->plug);
 393	op->parent_bio = parent;
 394	op->bio = NULL;
 395}
 396
 397static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
 398{
 399	struct thin_c *tc = op->tc;
 400	sector_t s = block_to_sectors(tc->pool, data_b);
 401	sector_t len = block_to_sectors(tc->pool, data_e - data_b);
 402
 403	return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
 404				      GFP_NOWAIT, 0, &op->bio);
 405}
 406
 407static void end_discard(struct discard_op *op, int r)
 408{
 409	if (op->bio) {
 410		/*
 411		 * Even if one of the calls to issue_discard failed, we
 412		 * need to wait for the chain to complete.
 413		 */
 414		bio_chain(op->bio, op->parent_bio);
 415		bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
 416		submit_bio(op->bio);
 417	}
 418
 419	blk_finish_plug(&op->plug);
 420
 421	/*
 422	 * Even if r is set, there could be sub discards in flight that we
 423	 * need to wait for.
 424	 */
 425	if (r && !op->parent_bio->bi_status)
 426		op->parent_bio->bi_status = errno_to_blk_status(r);
 427	bio_endio(op->parent_bio);
 428}
 429
 430/*----------------------------------------------------------------*/
 431
 432/*
 433 * wake_worker() is used when new work is queued and when pool_resume is
 434 * ready to continue deferred IO processing.
 435 */
 436static void wake_worker(struct pool *pool)
 437{
 438	queue_work(pool->wq, &pool->worker);
 439}
 440
 441/*----------------------------------------------------------------*/
 442
 443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
 444		      struct dm_bio_prison_cell **cell_result)
 445{
 446	int r;
 447	struct dm_bio_prison_cell *cell_prealloc;
 448
 449	/*
 450	 * Allocate a cell from the prison's mempool.
 451	 * This might block but it can't fail.
 452	 */
 453	cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
 454
 455	r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
 456	if (r)
 457		/*
 458		 * We reused an old cell; we can get rid of
 459		 * the new one.
 460		 */
 461		dm_bio_prison_free_cell(pool->prison, cell_prealloc);
 462
 463	return r;
 464}
 465
 466static void cell_release(struct pool *pool,
 467			 struct dm_bio_prison_cell *cell,
 468			 struct bio_list *bios)
 469{
 470	dm_cell_release(pool->prison, cell, bios);
 471	dm_bio_prison_free_cell(pool->prison, cell);
 472}
 473
 474static void cell_visit_release(struct pool *pool,
 475			       void (*fn)(void *, struct dm_bio_prison_cell *),
 476			       void *context,
 477			       struct dm_bio_prison_cell *cell)
 478{
 479	dm_cell_visit_release(pool->prison, fn, context, cell);
 480	dm_bio_prison_free_cell(pool->prison, cell);
 481}
 482
 483static void cell_release_no_holder(struct pool *pool,
 484				   struct dm_bio_prison_cell *cell,
 485				   struct bio_list *bios)
 486{
 487	dm_cell_release_no_holder(pool->prison, cell, bios);
 488	dm_bio_prison_free_cell(pool->prison, cell);
 489}
 490
 491static void cell_error_with_code(struct pool *pool,
 492		struct dm_bio_prison_cell *cell, blk_status_t error_code)
 493{
 494	dm_cell_error(pool->prison, cell, error_code);
 495	dm_bio_prison_free_cell(pool->prison, cell);
 496}
 497
 498static blk_status_t get_pool_io_error_code(struct pool *pool)
 499{
 500	return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
 501}
 502
 503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
 504{
 505	cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
 
 
 506}
 507
 508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
 509{
 510	cell_error_with_code(pool, cell, 0);
 511}
 512
 513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
 514{
 515	cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
 516}
 517
 518/*----------------------------------------------------------------*/
 519
 520/*
 521 * A global list of pools that uses a struct mapped_device as a key.
 522 */
 523static struct dm_thin_pool_table {
 524	struct mutex mutex;
 525	struct list_head pools;
 526} dm_thin_pool_table;
 527
 528static void pool_table_init(void)
 529{
 530	mutex_init(&dm_thin_pool_table.mutex);
 531	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
 532}
 533
 534static void pool_table_exit(void)
 535{
 536	mutex_destroy(&dm_thin_pool_table.mutex);
 537}
 538
 539static void __pool_table_insert(struct pool *pool)
 540{
 541	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 542	list_add(&pool->list, &dm_thin_pool_table.pools);
 543}
 544
 545static void __pool_table_remove(struct pool *pool)
 546{
 547	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 548	list_del(&pool->list);
 549}
 550
 551static struct pool *__pool_table_lookup(struct mapped_device *md)
 552{
 553	struct pool *pool = NULL, *tmp;
 554
 555	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 556
 557	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 558		if (tmp->pool_md == md) {
 559			pool = tmp;
 560			break;
 561		}
 562	}
 563
 564	return pool;
 565}
 566
 567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
 568{
 569	struct pool *pool = NULL, *tmp;
 570
 571	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
 572
 573	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
 574		if (tmp->md_dev == md_dev) {
 575			pool = tmp;
 576			break;
 577		}
 578	}
 579
 580	return pool;
 581}
 582
 583/*----------------------------------------------------------------*/
 584
 585struct dm_thin_endio_hook {
 586	struct thin_c *tc;
 587	struct dm_deferred_entry *shared_read_entry;
 588	struct dm_deferred_entry *all_io_entry;
 589	struct dm_thin_new_mapping *overwrite_mapping;
 590	struct rb_node rb_node;
 591	struct dm_bio_prison_cell *cell;
 592};
 593
 594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
 595{
 596	bio_list_merge(bios, master);
 597	bio_list_init(master);
 598}
 599
 600static void error_bio_list(struct bio_list *bios, blk_status_t error)
 601{
 602	struct bio *bio;
 603
 604	while ((bio = bio_list_pop(bios))) {
 605		bio->bi_status = error;
 606		bio_endio(bio);
 607	}
 608}
 609
 610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
 611		blk_status_t error)
 612{
 613	struct bio_list bios;
 
 614
 615	bio_list_init(&bios);
 616
 617	spin_lock_irq(&tc->lock);
 618	__merge_bio_list(&bios, master);
 619	spin_unlock_irq(&tc->lock);
 620
 621	error_bio_list(&bios, error);
 622}
 623
 624static void requeue_deferred_cells(struct thin_c *tc)
 625{
 626	struct pool *pool = tc->pool;
 
 627	struct list_head cells;
 628	struct dm_bio_prison_cell *cell, *tmp;
 629
 630	INIT_LIST_HEAD(&cells);
 631
 632	spin_lock_irq(&tc->lock);
 633	list_splice_init(&tc->deferred_cells, &cells);
 634	spin_unlock_irq(&tc->lock);
 635
 636	list_for_each_entry_safe(cell, tmp, &cells, user_list)
 637		cell_requeue(pool, cell);
 638}
 639
 640static void requeue_io(struct thin_c *tc)
 641{
 642	struct bio_list bios;
 
 643
 644	bio_list_init(&bios);
 645
 646	spin_lock_irq(&tc->lock);
 647	__merge_bio_list(&bios, &tc->deferred_bio_list);
 648	__merge_bio_list(&bios, &tc->retry_on_resume_list);
 649	spin_unlock_irq(&tc->lock);
 650
 651	error_bio_list(&bios, BLK_STS_DM_REQUEUE);
 652	requeue_deferred_cells(tc);
 653}
 654
 655static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
 656{
 657	struct thin_c *tc;
 658
 659	rcu_read_lock();
 660	list_for_each_entry_rcu(tc, &pool->active_thins, list)
 661		error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
 662	rcu_read_unlock();
 663}
 664
 665static void error_retry_list(struct pool *pool)
 666{
 667	error_retry_list_with_code(pool, get_pool_io_error_code(pool));
 
 
 668}
 669
 670/*
 671 * This section of code contains the logic for processing a thin device's IO.
 672 * Much of the code depends on pool object resources (lists, workqueues, etc)
 673 * but most is exclusively called from the thin target rather than the thin-pool
 674 * target.
 675 */
 676
 677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
 678{
 679	struct pool *pool = tc->pool;
 680	sector_t block_nr = bio->bi_iter.bi_sector;
 681
 682	if (block_size_is_power_of_two(pool))
 683		block_nr >>= pool->sectors_per_block_shift;
 684	else
 685		(void) sector_div(block_nr, pool->sectors_per_block);
 686
 687	return block_nr;
 688}
 689
 690/*
 691 * Returns the _complete_ blocks that this bio covers.
 692 */
 693static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
 694				dm_block_t *begin, dm_block_t *end)
 695{
 696	struct pool *pool = tc->pool;
 697	sector_t b = bio->bi_iter.bi_sector;
 698	sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
 699
 700	b += pool->sectors_per_block - 1ull; /* so we round up */
 701
 702	if (block_size_is_power_of_two(pool)) {
 703		b >>= pool->sectors_per_block_shift;
 704		e >>= pool->sectors_per_block_shift;
 705	} else {
 706		(void) sector_div(b, pool->sectors_per_block);
 707		(void) sector_div(e, pool->sectors_per_block);
 708	}
 709
 710	if (e < b)
 711		/* Can happen if the bio is within a single block. */
 712		e = b;
 713
 714	*begin = b;
 715	*end = e;
 716}
 717
 718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
 719{
 720	struct pool *pool = tc->pool;
 721	sector_t bi_sector = bio->bi_iter.bi_sector;
 722
 723	bio_set_dev(bio, tc->pool_dev->bdev);
 724	if (block_size_is_power_of_two(pool))
 725		bio->bi_iter.bi_sector =
 726			(block << pool->sectors_per_block_shift) |
 727			(bi_sector & (pool->sectors_per_block - 1));
 728	else
 729		bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
 730				 sector_div(bi_sector, pool->sectors_per_block);
 731}
 732
 733static void remap_to_origin(struct thin_c *tc, struct bio *bio)
 734{
 735	bio_set_dev(bio, tc->origin_dev->bdev);
 736}
 737
 738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
 739{
 740	return op_is_flush(bio->bi_opf) &&
 741		dm_thin_changed_this_transaction(tc->td);
 742}
 743
 744static void inc_all_io_entry(struct pool *pool, struct bio *bio)
 745{
 746	struct dm_thin_endio_hook *h;
 747
 748	if (bio_op(bio) == REQ_OP_DISCARD)
 749		return;
 750
 751	h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 752	h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
 753}
 754
 755static void issue(struct thin_c *tc, struct bio *bio)
 756{
 757	struct pool *pool = tc->pool;
 
 758
 759	if (!bio_triggers_commit(tc, bio)) {
 760		submit_bio_noacct(bio);
 761		return;
 762	}
 763
 764	/*
 765	 * Complete bio with an error if earlier I/O caused changes to
 766	 * the metadata that can't be committed e.g, due to I/O errors
 767	 * on the metadata device.
 768	 */
 769	if (dm_thin_aborted_changes(tc->td)) {
 770		bio_io_error(bio);
 771		return;
 772	}
 773
 774	/*
 775	 * Batch together any bios that trigger commits and then issue a
 776	 * single commit for them in process_deferred_bios().
 777	 */
 778	spin_lock_irq(&pool->lock);
 779	bio_list_add(&pool->deferred_flush_bios, bio);
 780	spin_unlock_irq(&pool->lock);
 781}
 782
 783static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
 784{
 785	remap_to_origin(tc, bio);
 786	issue(tc, bio);
 787}
 788
 789static void remap_and_issue(struct thin_c *tc, struct bio *bio,
 790			    dm_block_t block)
 791{
 792	remap(tc, bio, block);
 793	issue(tc, bio);
 794}
 795
 796/*----------------------------------------------------------------*/
 797
 798/*
 799 * Bio endio functions.
 800 */
 801struct dm_thin_new_mapping {
 802	struct list_head list;
 803
 804	bool pass_discard:1;
 805	bool maybe_shared:1;
 806
 807	/*
 808	 * Track quiescing, copying and zeroing preparation actions.  When this
 809	 * counter hits zero the block is prepared and can be inserted into the
 810	 * btree.
 811	 */
 812	atomic_t prepare_actions;
 813
 814	blk_status_t status;
 815	struct thin_c *tc;
 816	dm_block_t virt_begin, virt_end;
 817	dm_block_t data_block;
 818	struct dm_bio_prison_cell *cell;
 819
 820	/*
 821	 * If the bio covers the whole area of a block then we can avoid
 822	 * zeroing or copying.  Instead this bio is hooked.  The bio will
 823	 * still be in the cell, so care has to be taken to avoid issuing
 824	 * the bio twice.
 825	 */
 826	struct bio *bio;
 827	bio_end_io_t *saved_bi_end_io;
 828};
 829
 830static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
 831{
 832	struct pool *pool = m->tc->pool;
 833
 834	if (atomic_dec_and_test(&m->prepare_actions)) {
 835		list_add_tail(&m->list, &pool->prepared_mappings);
 836		wake_worker(pool);
 837	}
 838}
 839
 840static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
 841{
 842	unsigned long flags;
 843	struct pool *pool = m->tc->pool;
 844
 845	spin_lock_irqsave(&pool->lock, flags);
 846	__complete_mapping_preparation(m);
 847	spin_unlock_irqrestore(&pool->lock, flags);
 848}
 849
 850static void copy_complete(int read_err, unsigned long write_err, void *context)
 851{
 852	struct dm_thin_new_mapping *m = context;
 853
 854	m->status = read_err || write_err ? BLK_STS_IOERR : 0;
 855	complete_mapping_preparation(m);
 856}
 857
 858static void overwrite_endio(struct bio *bio)
 859{
 860	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
 861	struct dm_thin_new_mapping *m = h->overwrite_mapping;
 862
 863	bio->bi_end_io = m->saved_bi_end_io;
 864
 865	m->status = bio->bi_status;
 866	complete_mapping_preparation(m);
 867}
 868
 869/*----------------------------------------------------------------*/
 870
 871/*
 872 * Workqueue.
 873 */
 874
 875/*
 876 * Prepared mapping jobs.
 877 */
 878
 879/*
 880 * This sends the bios in the cell, except the original holder, back
 881 * to the deferred_bios list.
 882 */
 883static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
 884{
 885	struct pool *pool = tc->pool;
 886	unsigned long flags;
 887	int has_work;
 888
 889	spin_lock_irqsave(&tc->lock, flags);
 890	cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
 891	has_work = !bio_list_empty(&tc->deferred_bio_list);
 892	spin_unlock_irqrestore(&tc->lock, flags);
 893
 894	if (has_work)
 895		wake_worker(pool);
 896}
 897
 898static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
 899
 900struct remap_info {
 901	struct thin_c *tc;
 902	struct bio_list defer_bios;
 903	struct bio_list issue_bios;
 904};
 905
 906static void __inc_remap_and_issue_cell(void *context,
 907				       struct dm_bio_prison_cell *cell)
 908{
 909	struct remap_info *info = context;
 910	struct bio *bio;
 911
 912	while ((bio = bio_list_pop(&cell->bios))) {
 913		if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
 
 914			bio_list_add(&info->defer_bios, bio);
 915		else {
 916			inc_all_io_entry(info->tc->pool, bio);
 917
 918			/*
 919			 * We can't issue the bios with the bio prison lock
 920			 * held, so we add them to a list to issue on
 921			 * return from this function.
 922			 */
 923			bio_list_add(&info->issue_bios, bio);
 924		}
 925	}
 926}
 927
 928static void inc_remap_and_issue_cell(struct thin_c *tc,
 929				     struct dm_bio_prison_cell *cell,
 930				     dm_block_t block)
 931{
 932	struct bio *bio;
 933	struct remap_info info;
 934
 935	info.tc = tc;
 936	bio_list_init(&info.defer_bios);
 937	bio_list_init(&info.issue_bios);
 938
 939	/*
 940	 * We have to be careful to inc any bios we're about to issue
 941	 * before the cell is released, and avoid a race with new bios
 942	 * being added to the cell.
 943	 */
 944	cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
 945			   &info, cell);
 946
 947	while ((bio = bio_list_pop(&info.defer_bios)))
 948		thin_defer_bio(tc, bio);
 949
 950	while ((bio = bio_list_pop(&info.issue_bios)))
 951		remap_and_issue(info.tc, bio, block);
 952}
 953
 954static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
 955{
 956	cell_error(m->tc->pool, m->cell);
 957	list_del(&m->list);
 958	mempool_free(m, &m->tc->pool->mapping_pool);
 959}
 960
 961static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
 962{
 963	struct pool *pool = tc->pool;
 964
 965	/*
 966	 * If the bio has the REQ_FUA flag set we must commit the metadata
 967	 * before signaling its completion.
 968	 */
 969	if (!bio_triggers_commit(tc, bio)) {
 970		bio_endio(bio);
 971		return;
 972	}
 973
 974	/*
 975	 * Complete bio with an error if earlier I/O caused changes to the
 976	 * metadata that can't be committed, e.g, due to I/O errors on the
 977	 * metadata device.
 978	 */
 979	if (dm_thin_aborted_changes(tc->td)) {
 980		bio_io_error(bio);
 981		return;
 982	}
 983
 984	/*
 985	 * Batch together any bios that trigger commits and then issue a
 986	 * single commit for them in process_deferred_bios().
 987	 */
 988	spin_lock_irq(&pool->lock);
 989	bio_list_add(&pool->deferred_flush_completions, bio);
 990	spin_unlock_irq(&pool->lock);
 991}
 992
 993static void process_prepared_mapping(struct dm_thin_new_mapping *m)
 994{
 995	struct thin_c *tc = m->tc;
 996	struct pool *pool = tc->pool;
 997	struct bio *bio = m->bio;
 998	int r;
 999
1000	if (m->status) {
1001		cell_error(pool, m->cell);
1002		goto out;
1003	}
1004
1005	/*
1006	 * Commit the prepared block into the mapping btree.
1007	 * Any I/O for this block arriving after this point will get
1008	 * remapped to it directly.
1009	 */
1010	r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011	if (r) {
1012		metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013		cell_error(pool, m->cell);
1014		goto out;
1015	}
1016
1017	/*
1018	 * Release any bios held while the block was being provisioned.
1019	 * If we are processing a write bio that completely covers the block,
1020	 * we already processed it so can ignore it now when processing
1021	 * the bios in the cell.
1022	 */
1023	if (bio) {
1024		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025		complete_overwrite_bio(tc, bio);
1026	} else {
1027		inc_all_io_entry(tc->pool, m->cell->holder);
1028		remap_and_issue(tc, m->cell->holder, m->data_block);
1029		inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030	}
1031
1032out:
1033	list_del(&m->list);
1034	mempool_free(m, &pool->mapping_pool);
1035}
1036
1037/*----------------------------------------------------------------*/
1038
1039static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040{
1041	struct thin_c *tc = m->tc;
1042	if (m->cell)
1043		cell_defer_no_holder(tc, m->cell);
1044	mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049	bio_io_error(m->bio);
1050	free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055	bio_endio(m->bio);
1056	free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061	int r;
1062	struct thin_c *tc = m->tc;
1063
1064	r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065	if (r) {
1066		metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067		bio_io_error(m->bio);
1068	} else
1069		bio_endio(m->bio);
1070
1071	cell_defer_no_holder(tc, m->cell);
1072	mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078						   struct bio *discard_parent)
1079{
1080	/*
1081	 * We've already unmapped this range of blocks, but before we
1082	 * passdown we have to check that these blocks are now unused.
1083	 */
1084	int r = 0;
1085	bool shared = true;
1086	struct thin_c *tc = m->tc;
1087	struct pool *pool = tc->pool;
1088	dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089	struct discard_op op;
1090
1091	begin_discard(&op, tc, discard_parent);
1092	while (b != end) {
1093		/* find start of unmapped run */
1094		for (; b < end; b++) {
1095			r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096			if (r)
1097				goto out;
1098
1099			if (!shared)
1100				break;
1101		}
1102
1103		if (b == end)
1104			break;
1105
1106		/* find end of run */
1107		for (e = b + 1; e != end; e++) {
1108			r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109			if (r)
1110				goto out;
1111
1112			if (shared)
1113				break;
1114		}
1115
1116		r = issue_discard(&op, b, e);
1117		if (r)
1118			goto out;
1119
1120		b = e;
1121	}
1122out:
1123	end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127{
1128	unsigned long flags;
1129	struct pool *pool = m->tc->pool;
1130
1131	spin_lock_irqsave(&pool->lock, flags);
1132	list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133	spin_unlock_irqrestore(&pool->lock, flags);
1134	wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139	/*
1140	 * It doesn't matter if the passdown discard failed, we still want
1141	 * to unmap (we ignore err).
1142	 */
1143	queue_passdown_pt2(bio->bi_private);
1144	bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149	int r;
1150	struct thin_c *tc = m->tc;
1151	struct pool *pool = tc->pool;
1152	struct bio *discard_parent;
1153	dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155	/*
1156	 * Only this thread allocates blocks, so we can be sure that the
1157	 * newly unmapped blocks will not be allocated before the end of
1158	 * the function.
1159	 */
1160	r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161	if (r) {
1162		metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163		bio_io_error(m->bio);
1164		cell_defer_no_holder(tc, m->cell);
1165		mempool_free(m, &pool->mapping_pool);
1166		return;
1167	}
1168
1169	/*
1170	 * Increment the unmapped blocks.  This prevents a race between the
1171	 * passdown io and reallocation of freed blocks.
1172	 */
1173	r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174	if (r) {
1175		metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176		bio_io_error(m->bio);
1177		cell_defer_no_holder(tc, m->cell);
1178		mempool_free(m, &pool->mapping_pool);
1179		return;
1180	}
1181
1182	discard_parent = bio_alloc(GFP_NOIO, 1);
1183	if (!discard_parent) {
1184		DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185		       dm_device_name(tc->pool->pool_md));
1186		queue_passdown_pt2(m);
1187
1188	} else {
1189		discard_parent->bi_end_io = passdown_endio;
1190		discard_parent->bi_private = m;
1191
1192		if (m->maybe_shared)
1193			passdown_double_checking_shared_status(m, discard_parent);
1194		else {
1195			struct discard_op op;
1196
1197			begin_discard(&op, tc, discard_parent);
1198			r = issue_discard(&op, m->data_block, data_end);
1199			end_discard(&op, r);
1200		}
1201	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1202}
1203
1204static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205{
1206	int r;
1207	struct thin_c *tc = m->tc;
1208	struct pool *pool = tc->pool;
1209
1210	/*
1211	 * The passdown has completed, so now we can decrement all those
1212	 * unmapped blocks.
1213	 */
1214	r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215				   m->data_block + (m->virt_end - m->virt_begin));
1216	if (r) {
1217		metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218		bio_io_error(m->bio);
1219	} else
1220		bio_endio(m->bio);
1221
1222	cell_defer_no_holder(tc, m->cell);
1223	mempool_free(m, &pool->mapping_pool);
1224}
1225
1226static void process_prepared(struct pool *pool, struct list_head *head,
1227			     process_mapping_fn *fn)
1228{
 
1229	struct list_head maps;
1230	struct dm_thin_new_mapping *m, *tmp;
1231
1232	INIT_LIST_HEAD(&maps);
1233	spin_lock_irq(&pool->lock);
1234	list_splice_init(head, &maps);
1235	spin_unlock_irq(&pool->lock);
1236
1237	list_for_each_entry_safe(m, tmp, &maps, list)
1238		(*fn)(m);
1239}
1240
1241/*
1242 * Deferred bio jobs.
1243 */
1244static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245{
1246	return bio->bi_iter.bi_size ==
1247		(pool->sectors_per_block << SECTOR_SHIFT);
1248}
1249
1250static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251{
1252	return (bio_data_dir(bio) == WRITE) &&
1253		io_overlaps_block(pool, bio);
1254}
1255
1256static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1257			       bio_end_io_t *fn)
1258{
1259	*save = bio->bi_end_io;
1260	bio->bi_end_io = fn;
1261}
1262
1263static int ensure_next_mapping(struct pool *pool)
1264{
1265	if (pool->next_mapping)
1266		return 0;
1267
1268	pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269
1270	return pool->next_mapping ? 0 : -ENOMEM;
1271}
1272
1273static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274{
1275	struct dm_thin_new_mapping *m = pool->next_mapping;
1276
1277	BUG_ON(!pool->next_mapping);
1278
1279	memset(m, 0, sizeof(struct dm_thin_new_mapping));
1280	INIT_LIST_HEAD(&m->list);
1281	m->bio = NULL;
1282
1283	pool->next_mapping = NULL;
1284
1285	return m;
1286}
1287
1288static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1289		    sector_t begin, sector_t end)
1290{
 
1291	struct dm_io_region to;
1292
1293	to.bdev = tc->pool_dev->bdev;
1294	to.sector = begin;
1295	to.count = end - begin;
1296
1297	dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
 
 
 
 
1298}
1299
1300static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301				      dm_block_t data_begin,
1302				      struct dm_thin_new_mapping *m)
1303{
1304	struct pool *pool = tc->pool;
1305	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306
1307	h->overwrite_mapping = m;
1308	m->bio = bio;
1309	save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310	inc_all_io_entry(pool, bio);
1311	remap_and_issue(tc, bio, data_begin);
1312}
1313
1314/*
1315 * A partial copy also needs to zero the uncopied region.
1316 */
1317static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318			  struct dm_dev *origin, dm_block_t data_origin,
1319			  dm_block_t data_dest,
1320			  struct dm_bio_prison_cell *cell, struct bio *bio,
1321			  sector_t len)
1322{
 
1323	struct pool *pool = tc->pool;
1324	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325
1326	m->tc = tc;
1327	m->virt_begin = virt_block;
1328	m->virt_end = virt_block + 1u;
1329	m->data_block = data_dest;
1330	m->cell = cell;
1331
1332	/*
1333	 * quiesce action + copy action + an extra reference held for the
1334	 * duration of this function (we may need to inc later for a
1335	 * partial zero).
1336	 */
1337	atomic_set(&m->prepare_actions, 3);
1338
1339	if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1340		complete_mapping_preparation(m); /* already quiesced */
1341
1342	/*
1343	 * IO to pool_dev remaps to the pool target's data_dev.
1344	 *
1345	 * If the whole block of data is being overwritten, we can issue the
1346	 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347	 */
1348	if (io_overwrites_block(pool, bio))
1349		remap_and_issue_overwrite(tc, bio, data_dest, m);
1350	else {
1351		struct dm_io_region from, to;
1352
1353		from.bdev = origin->bdev;
1354		from.sector = data_origin * pool->sectors_per_block;
1355		from.count = len;
1356
1357		to.bdev = tc->pool_dev->bdev;
1358		to.sector = data_dest * pool->sectors_per_block;
1359		to.count = len;
1360
1361		dm_kcopyd_copy(pool->copier, &from, 1, &to,
1362			       0, copy_complete, m);
 
 
 
 
 
 
 
 
 
 
 
1363
1364		/*
1365		 * Do we need to zero a tail region?
1366		 */
1367		if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1368			atomic_inc(&m->prepare_actions);
1369			ll_zero(tc, m,
1370				data_dest * pool->sectors_per_block + len,
1371				(data_dest + 1) * pool->sectors_per_block);
1372		}
1373	}
1374
1375	complete_mapping_preparation(m); /* drop our ref */
1376}
1377
1378static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1379				   dm_block_t data_origin, dm_block_t data_dest,
1380				   struct dm_bio_prison_cell *cell, struct bio *bio)
1381{
1382	schedule_copy(tc, virt_block, tc->pool_dev,
1383		      data_origin, data_dest, cell, bio,
1384		      tc->pool->sectors_per_block);
1385}
1386
1387static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1388			  dm_block_t data_block, struct dm_bio_prison_cell *cell,
1389			  struct bio *bio)
1390{
1391	struct pool *pool = tc->pool;
1392	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393
1394	atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1395	m->tc = tc;
1396	m->virt_begin = virt_block;
1397	m->virt_end = virt_block + 1u;
1398	m->data_block = data_block;
1399	m->cell = cell;
1400
1401	/*
1402	 * If the whole block of data is being overwritten or we are not
1403	 * zeroing pre-existing data, we can issue the bio immediately.
1404	 * Otherwise we use kcopyd to zero the data first.
1405	 */
1406	if (pool->pf.zero_new_blocks) {
1407		if (io_overwrites_block(pool, bio))
1408			remap_and_issue_overwrite(tc, bio, data_block, m);
1409		else
1410			ll_zero(tc, m, data_block * pool->sectors_per_block,
1411				(data_block + 1) * pool->sectors_per_block);
1412	} else
1413		process_prepared_mapping(m);
1414}
1415
1416static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1417				   dm_block_t data_dest,
1418				   struct dm_bio_prison_cell *cell, struct bio *bio)
1419{
1420	struct pool *pool = tc->pool;
1421	sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1422	sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423
1424	if (virt_block_end <= tc->origin_size)
1425		schedule_copy(tc, virt_block, tc->origin_dev,
1426			      virt_block, data_dest, cell, bio,
1427			      pool->sectors_per_block);
1428
1429	else if (virt_block_begin < tc->origin_size)
1430		schedule_copy(tc, virt_block, tc->origin_dev,
1431			      virt_block, data_dest, cell, bio,
1432			      tc->origin_size - virt_block_begin);
1433
1434	else
1435		schedule_zero(tc, virt_block, data_dest, cell, bio);
1436}
1437
1438static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439
1440static void requeue_bios(struct pool *pool);
1441
1442static bool is_read_only_pool_mode(enum pool_mode mode)
1443{
1444	return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1445}
1446
1447static bool is_read_only(struct pool *pool)
1448{
1449	return is_read_only_pool_mode(get_pool_mode(pool));
1450}
1451
1452static void check_for_metadata_space(struct pool *pool)
1453{
1454	int r;
1455	const char *ooms_reason = NULL;
1456	dm_block_t nr_free;
1457
1458	r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1459	if (r)
1460		ooms_reason = "Could not get free metadata blocks";
1461	else if (!nr_free)
1462		ooms_reason = "No free metadata blocks";
1463
1464	if (ooms_reason && !is_read_only(pool)) {
1465		DMERR("%s", ooms_reason);
1466		set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1467	}
1468}
1469
1470static void check_for_data_space(struct pool *pool)
1471{
1472	int r;
1473	dm_block_t nr_free;
1474
1475	if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1476		return;
1477
1478	r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1479	if (r)
1480		return;
1481
1482	if (nr_free) {
1483		set_pool_mode(pool, PM_WRITE);
1484		requeue_bios(pool);
1485	}
1486}
1487
1488/*
1489 * A non-zero return indicates read_only or fail_io mode.
1490 * Many callers don't care about the return value.
1491 */
1492static int commit(struct pool *pool)
1493{
1494	int r;
1495
1496	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1497		return -EINVAL;
1498
1499	r = dm_pool_commit_metadata(pool->pmd);
1500	if (r)
1501		metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1502	else {
1503		check_for_metadata_space(pool);
1504		check_for_data_space(pool);
1505	}
1506
1507	return r;
1508}
1509
1510static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511{
 
 
1512	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1513		DMWARN("%s: reached low water mark for data device: sending event.",
1514		       dm_device_name(pool->pool_md));
1515		spin_lock_irq(&pool->lock);
1516		pool->low_water_triggered = true;
1517		spin_unlock_irq(&pool->lock);
1518		dm_table_event(pool->ti->table);
1519	}
1520}
1521
1522static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523{
1524	int r;
1525	dm_block_t free_blocks;
1526	struct pool *pool = tc->pool;
1527
1528	if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1529		return -EINVAL;
1530
1531	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1532	if (r) {
1533		metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1534		return r;
1535	}
1536
1537	check_low_water_mark(pool, free_blocks);
1538
1539	if (!free_blocks) {
1540		/*
1541		 * Try to commit to see if that will free up some
1542		 * more space.
1543		 */
1544		r = commit(pool);
1545		if (r)
1546			return r;
1547
1548		r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1549		if (r) {
1550			metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1551			return r;
1552		}
1553
1554		if (!free_blocks) {
1555			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556			return -ENOSPC;
1557		}
1558	}
1559
1560	r = dm_pool_alloc_data_block(pool->pmd, result);
1561	if (r) {
1562		if (r == -ENOSPC)
1563			set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1564		else
1565			metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1566		return r;
1567	}
1568
1569	r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1570	if (r) {
1571		metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1572		return r;
1573	}
1574
1575	if (!free_blocks) {
1576		/* Let's commit before we use up the metadata reserve. */
1577		r = commit(pool);
1578		if (r)
1579			return r;
1580	}
1581
1582	return 0;
1583}
1584
1585/*
1586 * If we have run out of space, queue bios until the device is
1587 * resumed, presumably after having been reloaded with more space.
1588 */
1589static void retry_on_resume(struct bio *bio)
1590{
1591	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1592	struct thin_c *tc = h->tc;
 
1593
1594	spin_lock_irq(&tc->lock);
1595	bio_list_add(&tc->retry_on_resume_list, bio);
1596	spin_unlock_irq(&tc->lock);
1597}
1598
1599static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600{
1601	enum pool_mode m = get_pool_mode(pool);
1602
1603	switch (m) {
1604	case PM_WRITE:
1605		/* Shouldn't get here */
1606		DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607		return BLK_STS_IOERR;
1608
1609	case PM_OUT_OF_DATA_SPACE:
1610		return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611
1612	case PM_OUT_OF_METADATA_SPACE:
1613	case PM_READ_ONLY:
1614	case PM_FAIL:
1615		return BLK_STS_IOERR;
1616	default:
1617		/* Shouldn't get here */
1618		DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619		return BLK_STS_IOERR;
1620	}
1621}
1622
1623static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624{
1625	blk_status_t error = should_error_unserviceable_bio(pool);
1626
1627	if (error) {
1628		bio->bi_status = error;
1629		bio_endio(bio);
1630	} else
1631		retry_on_resume(bio);
1632}
1633
1634static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635{
1636	struct bio *bio;
1637	struct bio_list bios;
1638	blk_status_t error;
1639
1640	error = should_error_unserviceable_bio(pool);
1641	if (error) {
1642		cell_error_with_code(pool, cell, error);
1643		return;
1644	}
1645
1646	bio_list_init(&bios);
1647	cell_release(pool, cell, &bios);
1648
1649	while ((bio = bio_list_pop(&bios)))
1650		retry_on_resume(bio);
1651}
1652
1653static void process_discard_cell_no_passdown(struct thin_c *tc,
1654					     struct dm_bio_prison_cell *virt_cell)
1655{
1656	struct pool *pool = tc->pool;
1657	struct dm_thin_new_mapping *m = get_next_mapping(pool);
1658
1659	/*
1660	 * We don't need to lock the data blocks, since there's no
1661	 * passdown.  We only lock data blocks for allocation and breaking sharing.
1662	 */
1663	m->tc = tc;
1664	m->virt_begin = virt_cell->key.block_begin;
1665	m->virt_end = virt_cell->key.block_end;
1666	m->cell = virt_cell;
1667	m->bio = virt_cell->holder;
1668
1669	if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1670		pool->process_prepared_discard(m);
1671}
1672
1673static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1674				 struct bio *bio)
1675{
1676	struct pool *pool = tc->pool;
1677
1678	int r;
1679	bool maybe_shared;
1680	struct dm_cell_key data_key;
1681	struct dm_bio_prison_cell *data_cell;
1682	struct dm_thin_new_mapping *m;
1683	dm_block_t virt_begin, virt_end, data_begin;
1684
1685	while (begin != end) {
1686		r = ensure_next_mapping(pool);
1687		if (r)
1688			/* we did our best */
1689			return;
1690
1691		r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1692					      &data_begin, &maybe_shared);
1693		if (r)
1694			/*
1695			 * Silently fail, letting any mappings we've
1696			 * created complete.
1697			 */
1698			break;
1699
1700		build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1701		if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1702			/* contention, we'll give up with this range */
1703			begin = virt_end;
1704			continue;
1705		}
1706
1707		/*
1708		 * IO may still be going to the destination block.  We must
1709		 * quiesce before we can do the removal.
1710		 */
1711		m = get_next_mapping(pool);
1712		m->tc = tc;
1713		m->maybe_shared = maybe_shared;
1714		m->virt_begin = virt_begin;
1715		m->virt_end = virt_end;
1716		m->data_block = data_begin;
1717		m->cell = data_cell;
1718		m->bio = bio;
1719
1720		/*
1721		 * The parent bio must not complete before sub discard bios are
1722		 * chained to it (see end_discard's bio_chain)!
1723		 *
1724		 * This per-mapping bi_remaining increment is paired with
1725		 * the implicit decrement that occurs via bio_endio() in
1726		 * end_discard().
1727		 */
1728		bio_inc_remaining(bio);
1729		if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1730			pool->process_prepared_discard(m);
1731
1732		begin = virt_end;
1733	}
1734}
1735
1736static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737{
1738	struct bio *bio = virt_cell->holder;
1739	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1740
1741	/*
1742	 * The virt_cell will only get freed once the origin bio completes.
1743	 * This means it will remain locked while all the individual
1744	 * passdown bios are in flight.
1745	 */
1746	h->cell = virt_cell;
1747	break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1748
1749	/*
1750	 * We complete the bio now, knowing that the bi_remaining field
1751	 * will prevent completion until the sub range discards have
1752	 * completed.
1753	 */
1754	bio_endio(bio);
1755}
1756
1757static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758{
1759	dm_block_t begin, end;
1760	struct dm_cell_key virt_key;
1761	struct dm_bio_prison_cell *virt_cell;
1762
1763	get_bio_block_range(tc, bio, &begin, &end);
1764	if (begin == end) {
1765		/*
1766		 * The discard covers less than a block.
1767		 */
1768		bio_endio(bio);
1769		return;
1770	}
1771
1772	build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1773	if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774		/*
1775		 * Potential starvation issue: We're relying on the
1776		 * fs/application being well behaved, and not trying to
1777		 * send IO to a region at the same time as discarding it.
1778		 * If they do this persistently then it's possible this
1779		 * cell will never be granted.
1780		 */
1781		return;
1782
1783	tc->pool->process_discard_cell(tc, virt_cell);
1784}
1785
1786static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787			  struct dm_cell_key *key,
1788			  struct dm_thin_lookup_result *lookup_result,
1789			  struct dm_bio_prison_cell *cell)
1790{
1791	int r;
1792	dm_block_t data_block;
1793	struct pool *pool = tc->pool;
1794
1795	r = alloc_data_block(tc, &data_block);
1796	switch (r) {
1797	case 0:
1798		schedule_internal_copy(tc, block, lookup_result->block,
1799				       data_block, cell, bio);
1800		break;
1801
1802	case -ENOSPC:
1803		retry_bios_on_resume(pool, cell);
1804		break;
1805
1806	default:
1807		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808			    __func__, r);
1809		cell_error(pool, cell);
1810		break;
1811	}
1812}
1813
1814static void __remap_and_issue_shared_cell(void *context,
1815					  struct dm_bio_prison_cell *cell)
1816{
1817	struct remap_info *info = context;
1818	struct bio *bio;
1819
1820	while ((bio = bio_list_pop(&cell->bios))) {
1821		if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1822		    bio_op(bio) == REQ_OP_DISCARD)
 
1823			bio_list_add(&info->defer_bios, bio);
1824		else {
1825			struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826
1827			h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1828			inc_all_io_entry(info->tc->pool, bio);
1829			bio_list_add(&info->issue_bios, bio);
1830		}
1831	}
1832}
1833
1834static void remap_and_issue_shared_cell(struct thin_c *tc,
1835					struct dm_bio_prison_cell *cell,
1836					dm_block_t block)
1837{
1838	struct bio *bio;
1839	struct remap_info info;
1840
1841	info.tc = tc;
1842	bio_list_init(&info.defer_bios);
1843	bio_list_init(&info.issue_bios);
1844
1845	cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1846			   &info, cell);
1847
1848	while ((bio = bio_list_pop(&info.defer_bios)))
1849		thin_defer_bio(tc, bio);
1850
1851	while ((bio = bio_list_pop(&info.issue_bios)))
1852		remap_and_issue(tc, bio, block);
1853}
1854
1855static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1856			       dm_block_t block,
1857			       struct dm_thin_lookup_result *lookup_result,
1858			       struct dm_bio_prison_cell *virt_cell)
1859{
1860	struct dm_bio_prison_cell *data_cell;
1861	struct pool *pool = tc->pool;
1862	struct dm_cell_key key;
1863
1864	/*
1865	 * If cell is already occupied, then sharing is already in the process
1866	 * of being broken so we have nothing further to do here.
1867	 */
1868	build_data_key(tc->td, lookup_result->block, &key);
1869	if (bio_detain(pool, &key, bio, &data_cell)) {
1870		cell_defer_no_holder(tc, virt_cell);
1871		return;
1872	}
1873
1874	if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1875		break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1876		cell_defer_no_holder(tc, virt_cell);
1877	} else {
1878		struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1879
1880		h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1881		inc_all_io_entry(pool, bio);
1882		remap_and_issue(tc, bio, lookup_result->block);
1883
1884		remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1885		remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1886	}
1887}
1888
1889static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1890			    struct dm_bio_prison_cell *cell)
1891{
1892	int r;
1893	dm_block_t data_block;
1894	struct pool *pool = tc->pool;
1895
1896	/*
1897	 * Remap empty bios (flushes) immediately, without provisioning.
1898	 */
1899	if (!bio->bi_iter.bi_size) {
1900		inc_all_io_entry(pool, bio);
1901		cell_defer_no_holder(tc, cell);
1902
1903		remap_and_issue(tc, bio, 0);
1904		return;
1905	}
1906
1907	/*
1908	 * Fill read bios with zeroes and complete them immediately.
1909	 */
1910	if (bio_data_dir(bio) == READ) {
1911		zero_fill_bio(bio);
1912		cell_defer_no_holder(tc, cell);
1913		bio_endio(bio);
1914		return;
1915	}
1916
1917	r = alloc_data_block(tc, &data_block);
1918	switch (r) {
1919	case 0:
1920		if (tc->origin_dev)
1921			schedule_external_copy(tc, block, data_block, cell, bio);
1922		else
1923			schedule_zero(tc, block, data_block, cell, bio);
1924		break;
1925
1926	case -ENOSPC:
1927		retry_bios_on_resume(pool, cell);
1928		break;
1929
1930	default:
1931		DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932			    __func__, r);
1933		cell_error(pool, cell);
1934		break;
1935	}
1936}
1937
1938static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939{
1940	int r;
1941	struct pool *pool = tc->pool;
1942	struct bio *bio = cell->holder;
1943	dm_block_t block = get_bio_block(tc, bio);
1944	struct dm_thin_lookup_result lookup_result;
1945
1946	if (tc->requeue_mode) {
1947		cell_requeue(pool, cell);
1948		return;
1949	}
1950
1951	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1952	switch (r) {
1953	case 0:
1954		if (lookup_result.shared)
1955			process_shared_bio(tc, bio, block, &lookup_result, cell);
1956		else {
1957			inc_all_io_entry(pool, bio);
1958			remap_and_issue(tc, bio, lookup_result.block);
1959			inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960		}
1961		break;
1962
1963	case -ENODATA:
1964		if (bio_data_dir(bio) == READ && tc->origin_dev) {
1965			inc_all_io_entry(pool, bio);
1966			cell_defer_no_holder(tc, cell);
1967
1968			if (bio_end_sector(bio) <= tc->origin_size)
1969				remap_to_origin_and_issue(tc, bio);
1970
1971			else if (bio->bi_iter.bi_sector < tc->origin_size) {
1972				zero_fill_bio(bio);
1973				bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1974				remap_to_origin_and_issue(tc, bio);
1975
1976			} else {
1977				zero_fill_bio(bio);
1978				bio_endio(bio);
1979			}
1980		} else
1981			provision_block(tc, bio, block, cell);
1982		break;
1983
1984	default:
1985		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986			    __func__, r);
1987		cell_defer_no_holder(tc, cell);
1988		bio_io_error(bio);
1989		break;
1990	}
1991}
1992
1993static void process_bio(struct thin_c *tc, struct bio *bio)
1994{
1995	struct pool *pool = tc->pool;
1996	dm_block_t block = get_bio_block(tc, bio);
1997	struct dm_bio_prison_cell *cell;
1998	struct dm_cell_key key;
1999
2000	/*
2001	 * If cell is already occupied, then the block is already
2002	 * being provisioned so we have nothing further to do here.
2003	 */
2004	build_virtual_key(tc->td, block, &key);
2005	if (bio_detain(pool, &key, bio, &cell))
2006		return;
2007
2008	process_cell(tc, cell);
2009}
2010
2011static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2012				    struct dm_bio_prison_cell *cell)
2013{
2014	int r;
2015	int rw = bio_data_dir(bio);
2016	dm_block_t block = get_bio_block(tc, bio);
2017	struct dm_thin_lookup_result lookup_result;
2018
2019	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2020	switch (r) {
2021	case 0:
2022		if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2023			handle_unserviceable_bio(tc->pool, bio);
2024			if (cell)
2025				cell_defer_no_holder(tc, cell);
2026		} else {
2027			inc_all_io_entry(tc->pool, bio);
2028			remap_and_issue(tc, bio, lookup_result.block);
2029			if (cell)
2030				inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031		}
2032		break;
2033
2034	case -ENODATA:
2035		if (cell)
2036			cell_defer_no_holder(tc, cell);
2037		if (rw != READ) {
2038			handle_unserviceable_bio(tc->pool, bio);
2039			break;
2040		}
2041
2042		if (tc->origin_dev) {
2043			inc_all_io_entry(tc->pool, bio);
2044			remap_to_origin_and_issue(tc, bio);
2045			break;
2046		}
2047
2048		zero_fill_bio(bio);
2049		bio_endio(bio);
2050		break;
2051
2052	default:
2053		DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2054			    __func__, r);
2055		if (cell)
2056			cell_defer_no_holder(tc, cell);
2057		bio_io_error(bio);
2058		break;
2059	}
2060}
2061
2062static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063{
2064	__process_bio_read_only(tc, bio, NULL);
2065}
2066
2067static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068{
2069	__process_bio_read_only(tc, cell->holder, cell);
2070}
2071
2072static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073{
2074	bio_endio(bio);
2075}
2076
2077static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078{
2079	bio_io_error(bio);
2080}
2081
2082static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083{
2084	cell_success(tc->pool, cell);
2085}
2086
2087static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088{
2089	cell_error(tc->pool, cell);
2090}
2091
2092/*
2093 * FIXME: should we also commit due to size of transaction, measured in
2094 * metadata blocks?
2095 */
2096static int need_commit_due_to_time(struct pool *pool)
2097{
2098	return !time_in_range(jiffies, pool->last_commit_jiffies,
2099			      pool->last_commit_jiffies + COMMIT_PERIOD);
2100}
2101
2102#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104
2105static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106{
2107	struct rb_node **rbp, *parent;
2108	struct dm_thin_endio_hook *pbd;
2109	sector_t bi_sector = bio->bi_iter.bi_sector;
2110
2111	rbp = &tc->sort_bio_list.rb_node;
2112	parent = NULL;
2113	while (*rbp) {
2114		parent = *rbp;
2115		pbd = thin_pbd(parent);
2116
2117		if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2118			rbp = &(*rbp)->rb_left;
2119		else
2120			rbp = &(*rbp)->rb_right;
2121	}
2122
2123	pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2124	rb_link_node(&pbd->rb_node, parent, rbp);
2125	rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2126}
2127
2128static void __extract_sorted_bios(struct thin_c *tc)
2129{
2130	struct rb_node *node;
2131	struct dm_thin_endio_hook *pbd;
2132	struct bio *bio;
2133
2134	for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2135		pbd = thin_pbd(node);
2136		bio = thin_bio(pbd);
2137
2138		bio_list_add(&tc->deferred_bio_list, bio);
2139		rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2140	}
2141
2142	WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2143}
2144
2145static void __sort_thin_deferred_bios(struct thin_c *tc)
2146{
2147	struct bio *bio;
2148	struct bio_list bios;
2149
2150	bio_list_init(&bios);
2151	bio_list_merge(&bios, &tc->deferred_bio_list);
2152	bio_list_init(&tc->deferred_bio_list);
2153
2154	/* Sort deferred_bio_list using rb-tree */
2155	while ((bio = bio_list_pop(&bios)))
2156		__thin_bio_rb_add(tc, bio);
2157
2158	/*
2159	 * Transfer the sorted bios in sort_bio_list back to
2160	 * deferred_bio_list to allow lockless submission of
2161	 * all bios.
2162	 */
2163	__extract_sorted_bios(tc);
2164}
2165
2166static void process_thin_deferred_bios(struct thin_c *tc)
2167{
2168	struct pool *pool = tc->pool;
 
2169	struct bio *bio;
2170	struct bio_list bios;
2171	struct blk_plug plug;
2172	unsigned count = 0;
2173
2174	if (tc->requeue_mode) {
2175		error_thin_bio_list(tc, &tc->deferred_bio_list,
2176				BLK_STS_DM_REQUEUE);
2177		return;
2178	}
2179
2180	bio_list_init(&bios);
2181
2182	spin_lock_irq(&tc->lock);
2183
2184	if (bio_list_empty(&tc->deferred_bio_list)) {
2185		spin_unlock_irq(&tc->lock);
2186		return;
2187	}
2188
2189	__sort_thin_deferred_bios(tc);
2190
2191	bio_list_merge(&bios, &tc->deferred_bio_list);
2192	bio_list_init(&tc->deferred_bio_list);
2193
2194	spin_unlock_irq(&tc->lock);
2195
2196	blk_start_plug(&plug);
2197	while ((bio = bio_list_pop(&bios))) {
2198		/*
2199		 * If we've got no free new_mapping structs, and processing
2200		 * this bio might require one, we pause until there are some
2201		 * prepared mappings to process.
2202		 */
2203		if (ensure_next_mapping(pool)) {
2204			spin_lock_irq(&tc->lock);
2205			bio_list_add(&tc->deferred_bio_list, bio);
2206			bio_list_merge(&tc->deferred_bio_list, &bios);
2207			spin_unlock_irq(&tc->lock);
2208			break;
2209		}
2210
2211		if (bio_op(bio) == REQ_OP_DISCARD)
2212			pool->process_discard(tc, bio);
2213		else
2214			pool->process_bio(tc, bio);
2215
2216		if ((count++ & 127) == 0) {
2217			throttle_work_update(&pool->throttle);
2218			dm_pool_issue_prefetches(pool->pmd);
2219		}
2220	}
2221	blk_finish_plug(&plug);
2222}
2223
2224static int cmp_cells(const void *lhs, const void *rhs)
2225{
2226	struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2227	struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2228
2229	BUG_ON(!lhs_cell->holder);
2230	BUG_ON(!rhs_cell->holder);
2231
2232	if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2233		return -1;
2234
2235	if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2236		return 1;
2237
2238	return 0;
2239}
2240
2241static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2242{
2243	unsigned count = 0;
2244	struct dm_bio_prison_cell *cell, *tmp;
2245
2246	list_for_each_entry_safe(cell, tmp, cells, user_list) {
2247		if (count >= CELL_SORT_ARRAY_SIZE)
2248			break;
2249
2250		pool->cell_sort_array[count++] = cell;
2251		list_del(&cell->user_list);
2252	}
2253
2254	sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2255
2256	return count;
2257}
2258
2259static void process_thin_deferred_cells(struct thin_c *tc)
2260{
2261	struct pool *pool = tc->pool;
 
2262	struct list_head cells;
2263	struct dm_bio_prison_cell *cell;
2264	unsigned i, j, count;
2265
2266	INIT_LIST_HEAD(&cells);
2267
2268	spin_lock_irq(&tc->lock);
2269	list_splice_init(&tc->deferred_cells, &cells);
2270	spin_unlock_irq(&tc->lock);
2271
2272	if (list_empty(&cells))
2273		return;
2274
2275	do {
2276		count = sort_cells(tc->pool, &cells);
2277
2278		for (i = 0; i < count; i++) {
2279			cell = pool->cell_sort_array[i];
2280			BUG_ON(!cell->holder);
2281
2282			/*
2283			 * If we've got no free new_mapping structs, and processing
2284			 * this bio might require one, we pause until there are some
2285			 * prepared mappings to process.
2286			 */
2287			if (ensure_next_mapping(pool)) {
2288				for (j = i; j < count; j++)
2289					list_add(&pool->cell_sort_array[j]->user_list, &cells);
2290
2291				spin_lock_irq(&tc->lock);
2292				list_splice(&cells, &tc->deferred_cells);
2293				spin_unlock_irq(&tc->lock);
2294				return;
2295			}
2296
2297			if (bio_op(cell->holder) == REQ_OP_DISCARD)
2298				pool->process_discard_cell(tc, cell);
2299			else
2300				pool->process_cell(tc, cell);
2301		}
2302	} while (!list_empty(&cells));
2303}
2304
2305static void thin_get(struct thin_c *tc);
2306static void thin_put(struct thin_c *tc);
2307
2308/*
2309 * We can't hold rcu_read_lock() around code that can block.  So we
2310 * find a thin with the rcu lock held; bump a refcount; then drop
2311 * the lock.
2312 */
2313static struct thin_c *get_first_thin(struct pool *pool)
2314{
2315	struct thin_c *tc = NULL;
2316
2317	rcu_read_lock();
2318	if (!list_empty(&pool->active_thins)) {
2319		tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2320		thin_get(tc);
2321	}
2322	rcu_read_unlock();
2323
2324	return tc;
2325}
2326
2327static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2328{
2329	struct thin_c *old_tc = tc;
2330
2331	rcu_read_lock();
2332	list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2333		thin_get(tc);
2334		thin_put(old_tc);
2335		rcu_read_unlock();
2336		return tc;
2337	}
2338	thin_put(old_tc);
2339	rcu_read_unlock();
2340
2341	return NULL;
2342}
2343
2344static void process_deferred_bios(struct pool *pool)
2345{
 
2346	struct bio *bio;
2347	struct bio_list bios, bio_completions;
2348	struct thin_c *tc;
2349
2350	tc = get_first_thin(pool);
2351	while (tc) {
2352		process_thin_deferred_cells(tc);
2353		process_thin_deferred_bios(tc);
2354		tc = get_next_thin(pool, tc);
2355	}
2356
2357	/*
2358	 * If there are any deferred flush bios, we must commit the metadata
2359	 * before issuing them or signaling their completion.
2360	 */
2361	bio_list_init(&bios);
2362	bio_list_init(&bio_completions);
2363
2364	spin_lock_irq(&pool->lock);
2365	bio_list_merge(&bios, &pool->deferred_flush_bios);
2366	bio_list_init(&pool->deferred_flush_bios);
 
2367
2368	bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2369	bio_list_init(&pool->deferred_flush_completions);
2370	spin_unlock_irq(&pool->lock);
2371
2372	if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2373	    !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2374		return;
2375
2376	if (commit(pool)) {
2377		bio_list_merge(&bios, &bio_completions);
2378
2379		while ((bio = bio_list_pop(&bios)))
2380			bio_io_error(bio);
2381		return;
2382	}
2383	pool->last_commit_jiffies = jiffies;
2384
2385	while ((bio = bio_list_pop(&bio_completions)))
2386		bio_endio(bio);
2387
2388	while ((bio = bio_list_pop(&bios))) {
2389		/*
2390		 * The data device was flushed as part of metadata commit,
2391		 * so complete redundant flushes immediately.
2392		 */
2393		if (bio->bi_opf & REQ_PREFLUSH)
2394			bio_endio(bio);
2395		else
2396			submit_bio_noacct(bio);
2397	}
2398}
2399
2400static void do_worker(struct work_struct *ws)
2401{
2402	struct pool *pool = container_of(ws, struct pool, worker);
2403
2404	throttle_work_start(&pool->throttle);
2405	dm_pool_issue_prefetches(pool->pmd);
2406	throttle_work_update(&pool->throttle);
2407	process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2408	throttle_work_update(&pool->throttle);
2409	process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2410	throttle_work_update(&pool->throttle);
2411	process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2412	throttle_work_update(&pool->throttle);
2413	process_deferred_bios(pool);
2414	throttle_work_complete(&pool->throttle);
2415}
2416
2417/*
2418 * We want to commit periodically so that not too much
2419 * unwritten data builds up.
2420 */
2421static void do_waker(struct work_struct *ws)
2422{
2423	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2424	wake_worker(pool);
2425	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2426}
2427
 
 
2428/*
2429 * We're holding onto IO to allow userland time to react.  After the
2430 * timeout either the pool will have been resized (and thus back in
2431 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2432 */
2433static void do_no_space_timeout(struct work_struct *ws)
2434{
2435	struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2436					 no_space_timeout);
2437
2438	if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2439		pool->pf.error_if_no_space = true;
2440		notify_of_pool_mode_change(pool);
2441		error_retry_list_with_code(pool, BLK_STS_NOSPC);
2442	}
2443}
2444
2445/*----------------------------------------------------------------*/
2446
2447struct pool_work {
2448	struct work_struct worker;
2449	struct completion complete;
2450};
2451
2452static struct pool_work *to_pool_work(struct work_struct *ws)
2453{
2454	return container_of(ws, struct pool_work, worker);
2455}
2456
2457static void pool_work_complete(struct pool_work *pw)
2458{
2459	complete(&pw->complete);
2460}
2461
2462static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2463			   void (*fn)(struct work_struct *))
2464{
2465	INIT_WORK_ONSTACK(&pw->worker, fn);
2466	init_completion(&pw->complete);
2467	queue_work(pool->wq, &pw->worker);
2468	wait_for_completion(&pw->complete);
2469}
2470
2471/*----------------------------------------------------------------*/
2472
2473struct noflush_work {
2474	struct pool_work pw;
2475	struct thin_c *tc;
2476};
2477
2478static struct noflush_work *to_noflush(struct work_struct *ws)
2479{
2480	return container_of(to_pool_work(ws), struct noflush_work, pw);
2481}
2482
2483static void do_noflush_start(struct work_struct *ws)
2484{
2485	struct noflush_work *w = to_noflush(ws);
2486	w->tc->requeue_mode = true;
2487	requeue_io(w->tc);
2488	pool_work_complete(&w->pw);
2489}
2490
2491static void do_noflush_stop(struct work_struct *ws)
2492{
2493	struct noflush_work *w = to_noflush(ws);
2494	w->tc->requeue_mode = false;
2495	pool_work_complete(&w->pw);
2496}
2497
2498static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2499{
2500	struct noflush_work w;
2501
2502	w.tc = tc;
2503	pool_work_wait(&w.pw, tc->pool, fn);
2504}
2505
2506/*----------------------------------------------------------------*/
2507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2508static bool passdown_enabled(struct pool_c *pt)
2509{
2510	return pt->adjusted_pf.discard_passdown;
2511}
2512
2513static void set_discard_callbacks(struct pool *pool)
2514{
2515	struct pool_c *pt = pool->ti->private;
2516
2517	if (passdown_enabled(pt)) {
2518		pool->process_discard_cell = process_discard_cell_passdown;
2519		pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2520		pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2521	} else {
2522		pool->process_discard_cell = process_discard_cell_no_passdown;
2523		pool->process_prepared_discard = process_prepared_discard_no_passdown;
2524	}
2525}
2526
2527static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2528{
2529	struct pool_c *pt = pool->ti->private;
2530	bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2531	enum pool_mode old_mode = get_pool_mode(pool);
2532	unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2533
2534	/*
2535	 * Never allow the pool to transition to PM_WRITE mode if user
2536	 * intervention is required to verify metadata and data consistency.
2537	 */
2538	if (new_mode == PM_WRITE && needs_check) {
2539		DMERR("%s: unable to switch pool to write mode until repaired.",
2540		      dm_device_name(pool->pool_md));
2541		if (old_mode != new_mode)
2542			new_mode = old_mode;
2543		else
2544			new_mode = PM_READ_ONLY;
2545	}
2546	/*
2547	 * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2548	 * not going to recover without a thin_repair.	So we never let the
2549	 * pool move out of the old mode.
2550	 */
2551	if (old_mode == PM_FAIL)
2552		new_mode = old_mode;
2553
2554	switch (new_mode) {
2555	case PM_FAIL:
 
 
2556		dm_pool_metadata_read_only(pool->pmd);
2557		pool->process_bio = process_bio_fail;
2558		pool->process_discard = process_bio_fail;
2559		pool->process_cell = process_cell_fail;
2560		pool->process_discard_cell = process_cell_fail;
2561		pool->process_prepared_mapping = process_prepared_mapping_fail;
2562		pool->process_prepared_discard = process_prepared_discard_fail;
2563
2564		error_retry_list(pool);
2565		break;
2566
2567	case PM_OUT_OF_METADATA_SPACE:
2568	case PM_READ_ONLY:
 
 
2569		dm_pool_metadata_read_only(pool->pmd);
2570		pool->process_bio = process_bio_read_only;
2571		pool->process_discard = process_bio_success;
2572		pool->process_cell = process_cell_read_only;
2573		pool->process_discard_cell = process_cell_success;
2574		pool->process_prepared_mapping = process_prepared_mapping_fail;
2575		pool->process_prepared_discard = process_prepared_discard_success;
2576
2577		error_retry_list(pool);
2578		break;
2579
2580	case PM_OUT_OF_DATA_SPACE:
2581		/*
2582		 * Ideally we'd never hit this state; the low water mark
2583		 * would trigger userland to extend the pool before we
2584		 * completely run out of data space.  However, many small
2585		 * IOs to unprovisioned space can consume data space at an
2586		 * alarming rate.  Adjust your low water mark if you're
2587		 * frequently seeing this mode.
2588		 */
 
 
2589		pool->out_of_data_space = true;
2590		pool->process_bio = process_bio_read_only;
2591		pool->process_discard = process_discard_bio;
2592		pool->process_cell = process_cell_read_only;
2593		pool->process_prepared_mapping = process_prepared_mapping;
2594		set_discard_callbacks(pool);
2595
2596		if (!pool->pf.error_if_no_space && no_space_timeout)
2597			queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2598		break;
2599
2600	case PM_WRITE:
2601		if (old_mode == PM_OUT_OF_DATA_SPACE)
2602			cancel_delayed_work_sync(&pool->no_space_timeout);
2603		pool->out_of_data_space = false;
2604		pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2605		dm_pool_metadata_read_write(pool->pmd);
2606		pool->process_bio = process_bio;
2607		pool->process_discard = process_discard_bio;
2608		pool->process_cell = process_cell;
2609		pool->process_prepared_mapping = process_prepared_mapping;
2610		set_discard_callbacks(pool);
2611		break;
2612	}
2613
2614	pool->pf.mode = new_mode;
2615	/*
2616	 * The pool mode may have changed, sync it so bind_control_target()
2617	 * doesn't cause an unexpected mode transition on resume.
2618	 */
2619	pt->adjusted_pf.mode = new_mode;
2620
2621	if (old_mode != new_mode)
2622		notify_of_pool_mode_change(pool);
2623}
2624
2625static void abort_transaction(struct pool *pool)
2626{
2627	const char *dev_name = dm_device_name(pool->pool_md);
2628
2629	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2630	if (dm_pool_abort_metadata(pool->pmd)) {
2631		DMERR("%s: failed to abort metadata transaction", dev_name);
2632		set_pool_mode(pool, PM_FAIL);
2633	}
2634
2635	if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2636		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2637		set_pool_mode(pool, PM_FAIL);
2638	}
2639}
2640
2641static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2642{
2643	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2644		    dm_device_name(pool->pool_md), op, r);
2645
2646	abort_transaction(pool);
2647	set_pool_mode(pool, PM_READ_ONLY);
2648}
2649
2650/*----------------------------------------------------------------*/
2651
2652/*
2653 * Mapping functions.
2654 */
2655
2656/*
2657 * Called only while mapping a thin bio to hand it over to the workqueue.
2658 */
2659static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2660{
 
2661	struct pool *pool = tc->pool;
2662
2663	spin_lock_irq(&tc->lock);
2664	bio_list_add(&tc->deferred_bio_list, bio);
2665	spin_unlock_irq(&tc->lock);
2666
2667	wake_worker(pool);
2668}
2669
2670static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671{
2672	struct pool *pool = tc->pool;
2673
2674	throttle_lock(&pool->throttle);
2675	thin_defer_bio(tc, bio);
2676	throttle_unlock(&pool->throttle);
2677}
2678
2679static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680{
 
2681	struct pool *pool = tc->pool;
2682
2683	throttle_lock(&pool->throttle);
2684	spin_lock_irq(&tc->lock);
2685	list_add_tail(&cell->user_list, &tc->deferred_cells);
2686	spin_unlock_irq(&tc->lock);
2687	throttle_unlock(&pool->throttle);
2688
2689	wake_worker(pool);
2690}
2691
2692static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2693{
2694	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2695
2696	h->tc = tc;
2697	h->shared_read_entry = NULL;
2698	h->all_io_entry = NULL;
2699	h->overwrite_mapping = NULL;
2700	h->cell = NULL;
2701}
2702
2703/*
2704 * Non-blocking function called from the thin target's map function.
2705 */
2706static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2707{
2708	int r;
2709	struct thin_c *tc = ti->private;
2710	dm_block_t block = get_bio_block(tc, bio);
2711	struct dm_thin_device *td = tc->td;
2712	struct dm_thin_lookup_result result;
2713	struct dm_bio_prison_cell *virt_cell, *data_cell;
2714	struct dm_cell_key key;
2715
2716	thin_hook_bio(tc, bio);
2717
2718	if (tc->requeue_mode) {
2719		bio->bi_status = BLK_STS_DM_REQUEUE;
2720		bio_endio(bio);
2721		return DM_MAPIO_SUBMITTED;
2722	}
2723
2724	if (get_pool_mode(tc->pool) == PM_FAIL) {
2725		bio_io_error(bio);
2726		return DM_MAPIO_SUBMITTED;
2727	}
2728
2729	if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
 
2730		thin_defer_bio_with_throttle(tc, bio);
2731		return DM_MAPIO_SUBMITTED;
2732	}
2733
2734	/*
2735	 * We must hold the virtual cell before doing the lookup, otherwise
2736	 * there's a race with discard.
2737	 */
2738	build_virtual_key(tc->td, block, &key);
2739	if (bio_detain(tc->pool, &key, bio, &virt_cell))
2740		return DM_MAPIO_SUBMITTED;
2741
2742	r = dm_thin_find_block(td, block, 0, &result);
2743
2744	/*
2745	 * Note that we defer readahead too.
2746	 */
2747	switch (r) {
2748	case 0:
2749		if (unlikely(result.shared)) {
2750			/*
2751			 * We have a race condition here between the
2752			 * result.shared value returned by the lookup and
2753			 * snapshot creation, which may cause new
2754			 * sharing.
2755			 *
2756			 * To avoid this always quiesce the origin before
2757			 * taking the snap.  You want to do this anyway to
2758			 * ensure a consistent application view
2759			 * (i.e. lockfs).
2760			 *
2761			 * More distant ancestors are irrelevant. The
2762			 * shared flag will be set in their case.
2763			 */
2764			thin_defer_cell(tc, virt_cell);
2765			return DM_MAPIO_SUBMITTED;
2766		}
2767
2768		build_data_key(tc->td, result.block, &key);
2769		if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2770			cell_defer_no_holder(tc, virt_cell);
2771			return DM_MAPIO_SUBMITTED;
2772		}
2773
2774		inc_all_io_entry(tc->pool, bio);
2775		cell_defer_no_holder(tc, data_cell);
2776		cell_defer_no_holder(tc, virt_cell);
2777
2778		remap(tc, bio, result.block);
2779		return DM_MAPIO_REMAPPED;
2780
2781	case -ENODATA:
2782	case -EWOULDBLOCK:
2783		thin_defer_cell(tc, virt_cell);
2784		return DM_MAPIO_SUBMITTED;
2785
2786	default:
2787		/*
2788		 * Must always call bio_io_error on failure.
2789		 * dm_thin_find_block can fail with -EINVAL if the
2790		 * pool is switched to fail-io mode.
2791		 */
2792		bio_io_error(bio);
2793		cell_defer_no_holder(tc, virt_cell);
2794		return DM_MAPIO_SUBMITTED;
2795	}
2796}
2797
 
 
 
 
 
 
 
 
 
 
 
 
2798static void requeue_bios(struct pool *pool)
2799{
 
2800	struct thin_c *tc;
2801
2802	rcu_read_lock();
2803	list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2804		spin_lock_irq(&tc->lock);
2805		bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2806		bio_list_init(&tc->retry_on_resume_list);
2807		spin_unlock_irq(&tc->lock);
2808	}
2809	rcu_read_unlock();
2810}
2811
2812/*----------------------------------------------------------------
2813 * Binding of control targets to a pool object
2814 *--------------------------------------------------------------*/
2815static bool data_dev_supports_discard(struct pool_c *pt)
2816{
2817	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2818
2819	return q && blk_queue_discard(q);
2820}
2821
2822static bool is_factor(sector_t block_size, uint32_t n)
2823{
2824	return !sector_div(block_size, n);
2825}
2826
2827/*
2828 * If discard_passdown was enabled verify that the data device
2829 * supports discards.  Disable discard_passdown if not.
2830 */
2831static void disable_passdown_if_not_supported(struct pool_c *pt)
2832{
2833	struct pool *pool = pt->pool;
2834	struct block_device *data_bdev = pt->data_dev->bdev;
2835	struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2836	const char *reason = NULL;
2837	char buf[BDEVNAME_SIZE];
2838
2839	if (!pt->adjusted_pf.discard_passdown)
2840		return;
2841
2842	if (!data_dev_supports_discard(pt))
2843		reason = "discard unsupported";
2844
2845	else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2846		reason = "max discard sectors smaller than a block";
2847
2848	if (reason) {
2849		DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2850		pt->adjusted_pf.discard_passdown = false;
2851	}
2852}
2853
2854static int bind_control_target(struct pool *pool, struct dm_target *ti)
2855{
2856	struct pool_c *pt = ti->private;
2857
2858	/*
2859	 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2860	 */
2861	enum pool_mode old_mode = get_pool_mode(pool);
2862	enum pool_mode new_mode = pt->adjusted_pf.mode;
2863
2864	/*
2865	 * Don't change the pool's mode until set_pool_mode() below.
2866	 * Otherwise the pool's process_* function pointers may
2867	 * not match the desired pool mode.
2868	 */
2869	pt->adjusted_pf.mode = old_mode;
2870
2871	pool->ti = ti;
2872	pool->pf = pt->adjusted_pf;
2873	pool->low_water_blocks = pt->low_water_blocks;
2874
2875	set_pool_mode(pool, new_mode);
2876
2877	return 0;
2878}
2879
2880static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2881{
2882	if (pool->ti == ti)
2883		pool->ti = NULL;
2884}
2885
2886/*----------------------------------------------------------------
2887 * Pool creation
2888 *--------------------------------------------------------------*/
2889/* Initialize pool features. */
2890static void pool_features_init(struct pool_features *pf)
2891{
2892	pf->mode = PM_WRITE;
2893	pf->zero_new_blocks = true;
2894	pf->discard_enabled = true;
2895	pf->discard_passdown = true;
2896	pf->error_if_no_space = false;
2897}
2898
2899static void __pool_destroy(struct pool *pool)
2900{
2901	__pool_table_remove(pool);
2902
2903	vfree(pool->cell_sort_array);
2904	if (dm_pool_metadata_close(pool->pmd) < 0)
2905		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2906
2907	dm_bio_prison_destroy(pool->prison);
2908	dm_kcopyd_client_destroy(pool->copier);
2909
2910	if (pool->wq)
2911		destroy_workqueue(pool->wq);
2912
2913	if (pool->next_mapping)
2914		mempool_free(pool->next_mapping, &pool->mapping_pool);
2915	mempool_exit(&pool->mapping_pool);
2916	bio_uninit(&pool->flush_bio);
2917	dm_deferred_set_destroy(pool->shared_read_ds);
2918	dm_deferred_set_destroy(pool->all_io_ds);
2919	kfree(pool);
2920}
2921
2922static struct kmem_cache *_new_mapping_cache;
2923
2924static struct pool *pool_create(struct mapped_device *pool_md,
2925				struct block_device *metadata_dev,
2926				struct block_device *data_dev,
2927				unsigned long block_size,
2928				int read_only, char **error)
2929{
2930	int r;
2931	void *err_p;
2932	struct pool *pool;
2933	struct dm_pool_metadata *pmd;
2934	bool format_device = read_only ? false : true;
2935
2936	pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2937	if (IS_ERR(pmd)) {
2938		*error = "Error creating metadata object";
2939		return (struct pool *)pmd;
2940	}
2941
2942	pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2943	if (!pool) {
2944		*error = "Error allocating memory for pool";
2945		err_p = ERR_PTR(-ENOMEM);
2946		goto bad_pool;
2947	}
2948
2949	pool->pmd = pmd;
2950	pool->sectors_per_block = block_size;
2951	if (block_size & (block_size - 1))
2952		pool->sectors_per_block_shift = -1;
2953	else
2954		pool->sectors_per_block_shift = __ffs(block_size);
2955	pool->low_water_blocks = 0;
2956	pool_features_init(&pool->pf);
2957	pool->prison = dm_bio_prison_create();
2958	if (!pool->prison) {
2959		*error = "Error creating pool's bio prison";
2960		err_p = ERR_PTR(-ENOMEM);
2961		goto bad_prison;
2962	}
2963
2964	pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2965	if (IS_ERR(pool->copier)) {
2966		r = PTR_ERR(pool->copier);
2967		*error = "Error creating pool's kcopyd client";
2968		err_p = ERR_PTR(r);
2969		goto bad_kcopyd_client;
2970	}
2971
2972	/*
2973	 * Create singlethreaded workqueue that will service all devices
2974	 * that use this metadata.
2975	 */
2976	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2977	if (!pool->wq) {
2978		*error = "Error creating pool's workqueue";
2979		err_p = ERR_PTR(-ENOMEM);
2980		goto bad_wq;
2981	}
2982
2983	throttle_init(&pool->throttle);
2984	INIT_WORK(&pool->worker, do_worker);
2985	INIT_DELAYED_WORK(&pool->waker, do_waker);
2986	INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2987	spin_lock_init(&pool->lock);
2988	bio_list_init(&pool->deferred_flush_bios);
2989	bio_list_init(&pool->deferred_flush_completions);
2990	INIT_LIST_HEAD(&pool->prepared_mappings);
2991	INIT_LIST_HEAD(&pool->prepared_discards);
2992	INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2993	INIT_LIST_HEAD(&pool->active_thins);
2994	pool->low_water_triggered = false;
2995	pool->suspended = true;
2996	pool->out_of_data_space = false;
2997	bio_init(&pool->flush_bio, NULL, 0);
2998
2999	pool->shared_read_ds = dm_deferred_set_create();
3000	if (!pool->shared_read_ds) {
3001		*error = "Error creating pool's shared read deferred set";
3002		err_p = ERR_PTR(-ENOMEM);
3003		goto bad_shared_read_ds;
3004	}
3005
3006	pool->all_io_ds = dm_deferred_set_create();
3007	if (!pool->all_io_ds) {
3008		*error = "Error creating pool's all io deferred set";
3009		err_p = ERR_PTR(-ENOMEM);
3010		goto bad_all_io_ds;
3011	}
3012
3013	pool->next_mapping = NULL;
3014	r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3015				   _new_mapping_cache);
3016	if (r) {
3017		*error = "Error creating pool's mapping mempool";
3018		err_p = ERR_PTR(r);
3019		goto bad_mapping_pool;
3020	}
3021
3022	pool->cell_sort_array =
3023		vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3024				   sizeof(*pool->cell_sort_array)));
3025	if (!pool->cell_sort_array) {
3026		*error = "Error allocating cell sort array";
3027		err_p = ERR_PTR(-ENOMEM);
3028		goto bad_sort_array;
3029	}
3030
3031	pool->ref_count = 1;
3032	pool->last_commit_jiffies = jiffies;
3033	pool->pool_md = pool_md;
3034	pool->md_dev = metadata_dev;
3035	pool->data_dev = data_dev;
3036	__pool_table_insert(pool);
3037
3038	return pool;
3039
3040bad_sort_array:
3041	mempool_exit(&pool->mapping_pool);
3042bad_mapping_pool:
3043	dm_deferred_set_destroy(pool->all_io_ds);
3044bad_all_io_ds:
3045	dm_deferred_set_destroy(pool->shared_read_ds);
3046bad_shared_read_ds:
3047	destroy_workqueue(pool->wq);
3048bad_wq:
3049	dm_kcopyd_client_destroy(pool->copier);
3050bad_kcopyd_client:
3051	dm_bio_prison_destroy(pool->prison);
3052bad_prison:
3053	kfree(pool);
3054bad_pool:
3055	if (dm_pool_metadata_close(pmd))
3056		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3057
3058	return err_p;
3059}
3060
3061static void __pool_inc(struct pool *pool)
3062{
3063	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3064	pool->ref_count++;
3065}
3066
3067static void __pool_dec(struct pool *pool)
3068{
3069	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3070	BUG_ON(!pool->ref_count);
3071	if (!--pool->ref_count)
3072		__pool_destroy(pool);
3073}
3074
3075static struct pool *__pool_find(struct mapped_device *pool_md,
3076				struct block_device *metadata_dev,
3077				struct block_device *data_dev,
3078				unsigned long block_size, int read_only,
3079				char **error, int *created)
3080{
3081	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3082
3083	if (pool) {
3084		if (pool->pool_md != pool_md) {
3085			*error = "metadata device already in use by a pool";
3086			return ERR_PTR(-EBUSY);
3087		}
3088		if (pool->data_dev != data_dev) {
3089			*error = "data device already in use by a pool";
3090			return ERR_PTR(-EBUSY);
3091		}
3092		__pool_inc(pool);
3093
3094	} else {
3095		pool = __pool_table_lookup(pool_md);
3096		if (pool) {
3097			if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3098				*error = "different pool cannot replace a pool";
3099				return ERR_PTR(-EINVAL);
3100			}
3101			__pool_inc(pool);
3102
3103		} else {
3104			pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3105			*created = 1;
3106		}
3107	}
3108
3109	return pool;
3110}
3111
3112/*----------------------------------------------------------------
3113 * Pool target methods
3114 *--------------------------------------------------------------*/
3115static void pool_dtr(struct dm_target *ti)
3116{
3117	struct pool_c *pt = ti->private;
3118
3119	mutex_lock(&dm_thin_pool_table.mutex);
3120
3121	unbind_control_target(pt->pool, ti);
3122	__pool_dec(pt->pool);
3123	dm_put_device(ti, pt->metadata_dev);
3124	dm_put_device(ti, pt->data_dev);
3125	kfree(pt);
3126
3127	mutex_unlock(&dm_thin_pool_table.mutex);
3128}
3129
3130static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3131			       struct dm_target *ti)
3132{
3133	int r;
3134	unsigned argc;
3135	const char *arg_name;
3136
3137	static const struct dm_arg _args[] = {
3138		{0, 4, "Invalid number of pool feature arguments"},
3139	};
3140
3141	/*
3142	 * No feature arguments supplied.
3143	 */
3144	if (!as->argc)
3145		return 0;
3146
3147	r = dm_read_arg_group(_args, as, &argc, &ti->error);
3148	if (r)
3149		return -EINVAL;
3150
3151	while (argc && !r) {
3152		arg_name = dm_shift_arg(as);
3153		argc--;
3154
3155		if (!strcasecmp(arg_name, "skip_block_zeroing"))
3156			pf->zero_new_blocks = false;
3157
3158		else if (!strcasecmp(arg_name, "ignore_discard"))
3159			pf->discard_enabled = false;
3160
3161		else if (!strcasecmp(arg_name, "no_discard_passdown"))
3162			pf->discard_passdown = false;
3163
3164		else if (!strcasecmp(arg_name, "read_only"))
3165			pf->mode = PM_READ_ONLY;
3166
3167		else if (!strcasecmp(arg_name, "error_if_no_space"))
3168			pf->error_if_no_space = true;
3169
3170		else {
3171			ti->error = "Unrecognised pool feature requested";
3172			r = -EINVAL;
3173			break;
3174		}
3175	}
3176
3177	return r;
3178}
3179
3180static void metadata_low_callback(void *context)
3181{
3182	struct pool *pool = context;
3183
3184	DMWARN("%s: reached low water mark for metadata device: sending event.",
3185	       dm_device_name(pool->pool_md));
3186
3187	dm_table_event(pool->ti->table);
3188}
3189
3190/*
3191 * We need to flush the data device **before** committing the metadata.
3192 *
3193 * This ensures that the data blocks of any newly inserted mappings are
3194 * properly written to non-volatile storage and won't be lost in case of a
3195 * crash.
3196 *
3197 * Failure to do so can result in data corruption in the case of internal or
3198 * external snapshots and in the case of newly provisioned blocks, when block
3199 * zeroing is enabled.
3200 */
3201static int metadata_pre_commit_callback(void *context)
3202{
3203	struct pool *pool = context;
3204	struct bio *flush_bio = &pool->flush_bio;
3205
3206	bio_reset(flush_bio);
3207	bio_set_dev(flush_bio, pool->data_dev);
3208	flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3209
3210	return submit_bio_wait(flush_bio);
3211}
3212
3213static sector_t get_dev_size(struct block_device *bdev)
3214{
3215	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3216}
3217
3218static void warn_if_metadata_device_too_big(struct block_device *bdev)
3219{
3220	sector_t metadata_dev_size = get_dev_size(bdev);
3221	char buffer[BDEVNAME_SIZE];
3222
3223	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3224		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3225		       bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3226}
3227
3228static sector_t get_metadata_dev_size(struct block_device *bdev)
3229{
3230	sector_t metadata_dev_size = get_dev_size(bdev);
3231
3232	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3233		metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3234
3235	return metadata_dev_size;
3236}
3237
3238static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3239{
3240	sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3241
3242	sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3243
3244	return metadata_dev_size;
3245}
3246
3247/*
3248 * When a metadata threshold is crossed a dm event is triggered, and
3249 * userland should respond by growing the metadata device.  We could let
3250 * userland set the threshold, like we do with the data threshold, but I'm
3251 * not sure they know enough to do this well.
3252 */
3253static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3254{
3255	/*
3256	 * 4M is ample for all ops with the possible exception of thin
3257	 * device deletion which is harmless if it fails (just retry the
3258	 * delete after you've grown the device).
3259	 */
3260	dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3261	return min((dm_block_t)1024ULL /* 4M */, quarter);
3262}
3263
3264/*
3265 * thin-pool <metadata dev> <data dev>
3266 *	     <data block size (sectors)>
3267 *	     <low water mark (blocks)>
3268 *	     [<#feature args> [<arg>]*]
3269 *
3270 * Optional feature arguments are:
3271 *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3272 *	     ignore_discard: disable discard
3273 *	     no_discard_passdown: don't pass discards down to the data device
3274 *	     read_only: Don't allow any changes to be made to the pool metadata.
3275 *	     error_if_no_space: error IOs, instead of queueing, if no space.
3276 */
3277static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3278{
3279	int r, pool_created = 0;
3280	struct pool_c *pt;
3281	struct pool *pool;
3282	struct pool_features pf;
3283	struct dm_arg_set as;
3284	struct dm_dev *data_dev;
3285	unsigned long block_size;
3286	dm_block_t low_water_blocks;
3287	struct dm_dev *metadata_dev;
3288	fmode_t metadata_mode;
3289
3290	/*
3291	 * FIXME Remove validation from scope of lock.
3292	 */
3293	mutex_lock(&dm_thin_pool_table.mutex);
3294
3295	if (argc < 4) {
3296		ti->error = "Invalid argument count";
3297		r = -EINVAL;
3298		goto out_unlock;
3299	}
3300
3301	as.argc = argc;
3302	as.argv = argv;
3303
3304	/* make sure metadata and data are different devices */
3305	if (!strcmp(argv[0], argv[1])) {
3306		ti->error = "Error setting metadata or data device";
3307		r = -EINVAL;
3308		goto out_unlock;
3309	}
3310
3311	/*
3312	 * Set default pool features.
3313	 */
3314	pool_features_init(&pf);
3315
3316	dm_consume_args(&as, 4);
3317	r = parse_pool_features(&as, &pf, ti);
3318	if (r)
3319		goto out_unlock;
3320
3321	metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3322	r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3323	if (r) {
3324		ti->error = "Error opening metadata block device";
3325		goto out_unlock;
3326	}
3327	warn_if_metadata_device_too_big(metadata_dev->bdev);
3328
3329	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3330	if (r) {
3331		ti->error = "Error getting data device";
3332		goto out_metadata;
3333	}
3334
3335	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3336	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3337	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3338	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3339		ti->error = "Invalid block size";
3340		r = -EINVAL;
3341		goto out;
3342	}
3343
3344	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3345		ti->error = "Invalid low water mark";
3346		r = -EINVAL;
3347		goto out;
3348	}
3349
3350	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3351	if (!pt) {
3352		r = -ENOMEM;
3353		goto out;
3354	}
3355
3356	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3357			   block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3358	if (IS_ERR(pool)) {
3359		r = PTR_ERR(pool);
3360		goto out_free_pt;
3361	}
3362
3363	/*
3364	 * 'pool_created' reflects whether this is the first table load.
3365	 * Top level discard support is not allowed to be changed after
3366	 * initial load.  This would require a pool reload to trigger thin
3367	 * device changes.
3368	 */
3369	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3370		ti->error = "Discard support cannot be disabled once enabled";
3371		r = -EINVAL;
3372		goto out_flags_changed;
3373	}
3374
3375	pt->pool = pool;
3376	pt->ti = ti;
3377	pt->metadata_dev = metadata_dev;
3378	pt->data_dev = data_dev;
3379	pt->low_water_blocks = low_water_blocks;
3380	pt->adjusted_pf = pt->requested_pf = pf;
3381	ti->num_flush_bios = 1;
3382
3383	/*
3384	 * Only need to enable discards if the pool should pass
3385	 * them down to the data device.  The thin device's discard
3386	 * processing will cause mappings to be removed from the btree.
3387	 */
 
3388	if (pf.discard_enabled && pf.discard_passdown) {
3389		ti->num_discard_bios = 1;
3390
3391		/*
3392		 * Setting 'discards_supported' circumvents the normal
3393		 * stacking of discard limits (this keeps the pool and
3394		 * thin devices' discard limits consistent).
3395		 */
3396		ti->discards_supported = true;
3397	}
3398	ti->private = pt;
3399
3400	r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3401						calc_metadata_threshold(pt),
3402						metadata_low_callback,
3403						pool);
3404	if (r)
3405		goto out_flags_changed;
3406
3407	dm_pool_register_pre_commit_callback(pool->pmd,
3408					     metadata_pre_commit_callback, pool);
3409
3410	mutex_unlock(&dm_thin_pool_table.mutex);
3411
3412	return 0;
3413
3414out_flags_changed:
3415	__pool_dec(pool);
3416out_free_pt:
3417	kfree(pt);
3418out:
3419	dm_put_device(ti, data_dev);
3420out_metadata:
3421	dm_put_device(ti, metadata_dev);
3422out_unlock:
3423	mutex_unlock(&dm_thin_pool_table.mutex);
3424
3425	return r;
3426}
3427
3428static int pool_map(struct dm_target *ti, struct bio *bio)
3429{
3430	int r;
3431	struct pool_c *pt = ti->private;
3432	struct pool *pool = pt->pool;
 
3433
3434	/*
3435	 * As this is a singleton target, ti->begin is always zero.
3436	 */
3437	spin_lock_irq(&pool->lock);
3438	bio_set_dev(bio, pt->data_dev->bdev);
3439	r = DM_MAPIO_REMAPPED;
3440	spin_unlock_irq(&pool->lock);
3441
3442	return r;
3443}
3444
3445static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3446{
3447	int r;
3448	struct pool_c *pt = ti->private;
3449	struct pool *pool = pt->pool;
3450	sector_t data_size = ti->len;
3451	dm_block_t sb_data_size;
3452
3453	*need_commit = false;
3454
3455	(void) sector_div(data_size, pool->sectors_per_block);
3456
3457	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3458	if (r) {
3459		DMERR("%s: failed to retrieve data device size",
3460		      dm_device_name(pool->pool_md));
3461		return r;
3462	}
3463
3464	if (data_size < sb_data_size) {
3465		DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3466		      dm_device_name(pool->pool_md),
3467		      (unsigned long long)data_size, sb_data_size);
3468		return -EINVAL;
3469
3470	} else if (data_size > sb_data_size) {
3471		if (dm_pool_metadata_needs_check(pool->pmd)) {
3472			DMERR("%s: unable to grow the data device until repaired.",
3473			      dm_device_name(pool->pool_md));
3474			return 0;
3475		}
3476
3477		if (sb_data_size)
3478			DMINFO("%s: growing the data device from %llu to %llu blocks",
3479			       dm_device_name(pool->pool_md),
3480			       sb_data_size, (unsigned long long)data_size);
3481		r = dm_pool_resize_data_dev(pool->pmd, data_size);
3482		if (r) {
3483			metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3484			return r;
3485		}
3486
3487		*need_commit = true;
3488	}
3489
3490	return 0;
3491}
3492
3493static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3494{
3495	int r;
3496	struct pool_c *pt = ti->private;
3497	struct pool *pool = pt->pool;
3498	dm_block_t metadata_dev_size, sb_metadata_dev_size;
3499
3500	*need_commit = false;
3501
3502	metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3503
3504	r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3505	if (r) {
3506		DMERR("%s: failed to retrieve metadata device size",
3507		      dm_device_name(pool->pool_md));
3508		return r;
3509	}
3510
3511	if (metadata_dev_size < sb_metadata_dev_size) {
3512		DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3513		      dm_device_name(pool->pool_md),
3514		      metadata_dev_size, sb_metadata_dev_size);
3515		return -EINVAL;
3516
3517	} else if (metadata_dev_size > sb_metadata_dev_size) {
3518		if (dm_pool_metadata_needs_check(pool->pmd)) {
3519			DMERR("%s: unable to grow the metadata device until repaired.",
3520			      dm_device_name(pool->pool_md));
3521			return 0;
3522		}
3523
3524		warn_if_metadata_device_too_big(pool->md_dev);
3525		DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3526		       dm_device_name(pool->pool_md),
3527		       sb_metadata_dev_size, metadata_dev_size);
3528
3529		if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3530			set_pool_mode(pool, PM_WRITE);
3531
3532		r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3533		if (r) {
3534			metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3535			return r;
3536		}
3537
3538		*need_commit = true;
3539	}
3540
3541	return 0;
3542}
3543
3544/*
3545 * Retrieves the number of blocks of the data device from
3546 * the superblock and compares it to the actual device size,
3547 * thus resizing the data device in case it has grown.
3548 *
3549 * This both copes with opening preallocated data devices in the ctr
3550 * being followed by a resume
3551 * -and-
3552 * calling the resume method individually after userspace has
3553 * grown the data device in reaction to a table event.
3554 */
3555static int pool_preresume(struct dm_target *ti)
3556{
3557	int r;
3558	bool need_commit1, need_commit2;
3559	struct pool_c *pt = ti->private;
3560	struct pool *pool = pt->pool;
3561
3562	/*
3563	 * Take control of the pool object.
3564	 */
3565	r = bind_control_target(pool, ti);
3566	if (r)
3567		return r;
3568
3569	r = maybe_resize_data_dev(ti, &need_commit1);
3570	if (r)
3571		return r;
3572
3573	r = maybe_resize_metadata_dev(ti, &need_commit2);
3574	if (r)
3575		return r;
3576
3577	if (need_commit1 || need_commit2)
3578		(void) commit(pool);
3579
3580	return 0;
3581}
3582
3583static void pool_suspend_active_thins(struct pool *pool)
3584{
3585	struct thin_c *tc;
3586
3587	/* Suspend all active thin devices */
3588	tc = get_first_thin(pool);
3589	while (tc) {
3590		dm_internal_suspend_noflush(tc->thin_md);
3591		tc = get_next_thin(pool, tc);
3592	}
3593}
3594
3595static void pool_resume_active_thins(struct pool *pool)
3596{
3597	struct thin_c *tc;
3598
3599	/* Resume all active thin devices */
3600	tc = get_first_thin(pool);
3601	while (tc) {
3602		dm_internal_resume(tc->thin_md);
3603		tc = get_next_thin(pool, tc);
3604	}
3605}
3606
3607static void pool_resume(struct dm_target *ti)
3608{
3609	struct pool_c *pt = ti->private;
3610	struct pool *pool = pt->pool;
 
3611
3612	/*
3613	 * Must requeue active_thins' bios and then resume
3614	 * active_thins _before_ clearing 'suspend' flag.
3615	 */
3616	requeue_bios(pool);
3617	pool_resume_active_thins(pool);
3618
3619	spin_lock_irq(&pool->lock);
3620	pool->low_water_triggered = false;
3621	pool->suspended = false;
3622	spin_unlock_irq(&pool->lock);
3623
3624	do_waker(&pool->waker.work);
3625}
3626
3627static void pool_presuspend(struct dm_target *ti)
3628{
3629	struct pool_c *pt = ti->private;
3630	struct pool *pool = pt->pool;
 
3631
3632	spin_lock_irq(&pool->lock);
3633	pool->suspended = true;
3634	spin_unlock_irq(&pool->lock);
3635
3636	pool_suspend_active_thins(pool);
3637}
3638
3639static void pool_presuspend_undo(struct dm_target *ti)
3640{
3641	struct pool_c *pt = ti->private;
3642	struct pool *pool = pt->pool;
 
3643
3644	pool_resume_active_thins(pool);
3645
3646	spin_lock_irq(&pool->lock);
3647	pool->suspended = false;
3648	spin_unlock_irq(&pool->lock);
3649}
3650
3651static void pool_postsuspend(struct dm_target *ti)
3652{
3653	struct pool_c *pt = ti->private;
3654	struct pool *pool = pt->pool;
3655
3656	cancel_delayed_work_sync(&pool->waker);
3657	cancel_delayed_work_sync(&pool->no_space_timeout);
3658	flush_workqueue(pool->wq);
3659	(void) commit(pool);
3660}
3661
3662static int check_arg_count(unsigned argc, unsigned args_required)
3663{
3664	if (argc != args_required) {
3665		DMWARN("Message received with %u arguments instead of %u.",
3666		       argc, args_required);
3667		return -EINVAL;
3668	}
3669
3670	return 0;
3671}
3672
3673static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3674{
3675	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3676	    *dev_id <= MAX_DEV_ID)
3677		return 0;
3678
3679	if (warning)
3680		DMWARN("Message received with invalid device id: %s", arg);
3681
3682	return -EINVAL;
3683}
3684
3685static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3686{
3687	dm_thin_id dev_id;
3688	int r;
3689
3690	r = check_arg_count(argc, 2);
3691	if (r)
3692		return r;
3693
3694	r = read_dev_id(argv[1], &dev_id, 1);
3695	if (r)
3696		return r;
3697
3698	r = dm_pool_create_thin(pool->pmd, dev_id);
3699	if (r) {
3700		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3701		       argv[1]);
3702		return r;
3703	}
3704
3705	return 0;
3706}
3707
3708static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3709{
3710	dm_thin_id dev_id;
3711	dm_thin_id origin_dev_id;
3712	int r;
3713
3714	r = check_arg_count(argc, 3);
3715	if (r)
3716		return r;
3717
3718	r = read_dev_id(argv[1], &dev_id, 1);
3719	if (r)
3720		return r;
3721
3722	r = read_dev_id(argv[2], &origin_dev_id, 1);
3723	if (r)
3724		return r;
3725
3726	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3727	if (r) {
3728		DMWARN("Creation of new snapshot %s of device %s failed.",
3729		       argv[1], argv[2]);
3730		return r;
3731	}
3732
3733	return 0;
3734}
3735
3736static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3737{
3738	dm_thin_id dev_id;
3739	int r;
3740
3741	r = check_arg_count(argc, 2);
3742	if (r)
3743		return r;
3744
3745	r = read_dev_id(argv[1], &dev_id, 1);
3746	if (r)
3747		return r;
3748
3749	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3750	if (r)
3751		DMWARN("Deletion of thin device %s failed.", argv[1]);
3752
3753	return r;
3754}
3755
3756static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3757{
3758	dm_thin_id old_id, new_id;
3759	int r;
3760
3761	r = check_arg_count(argc, 3);
3762	if (r)
3763		return r;
3764
3765	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3766		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3767		return -EINVAL;
3768	}
3769
3770	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3771		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3772		return -EINVAL;
3773	}
3774
3775	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3776	if (r) {
3777		DMWARN("Failed to change transaction id from %s to %s.",
3778		       argv[1], argv[2]);
3779		return r;
3780	}
3781
3782	return 0;
3783}
3784
3785static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3786{
3787	int r;
3788
3789	r = check_arg_count(argc, 1);
3790	if (r)
3791		return r;
3792
3793	(void) commit(pool);
3794
3795	r = dm_pool_reserve_metadata_snap(pool->pmd);
3796	if (r)
3797		DMWARN("reserve_metadata_snap message failed.");
3798
3799	return r;
3800}
3801
3802static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3803{
3804	int r;
3805
3806	r = check_arg_count(argc, 1);
3807	if (r)
3808		return r;
3809
3810	r = dm_pool_release_metadata_snap(pool->pmd);
3811	if (r)
3812		DMWARN("release_metadata_snap message failed.");
3813
3814	return r;
3815}
3816
3817/*
3818 * Messages supported:
3819 *   create_thin	<dev_id>
3820 *   create_snap	<dev_id> <origin_id>
3821 *   delete		<dev_id>
3822 *   set_transaction_id <current_trans_id> <new_trans_id>
3823 *   reserve_metadata_snap
3824 *   release_metadata_snap
3825 */
3826static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3827			char *result, unsigned maxlen)
3828{
3829	int r = -EINVAL;
3830	struct pool_c *pt = ti->private;
3831	struct pool *pool = pt->pool;
3832
3833	if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3834		DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3835		      dm_device_name(pool->pool_md));
3836		return -EOPNOTSUPP;
3837	}
3838
3839	if (!strcasecmp(argv[0], "create_thin"))
3840		r = process_create_thin_mesg(argc, argv, pool);
3841
3842	else if (!strcasecmp(argv[0], "create_snap"))
3843		r = process_create_snap_mesg(argc, argv, pool);
3844
3845	else if (!strcasecmp(argv[0], "delete"))
3846		r = process_delete_mesg(argc, argv, pool);
3847
3848	else if (!strcasecmp(argv[0], "set_transaction_id"))
3849		r = process_set_transaction_id_mesg(argc, argv, pool);
3850
3851	else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3852		r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3853
3854	else if (!strcasecmp(argv[0], "release_metadata_snap"))
3855		r = process_release_metadata_snap_mesg(argc, argv, pool);
3856
3857	else
3858		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3859
3860	if (!r)
3861		(void) commit(pool);
3862
3863	return r;
3864}
3865
3866static void emit_flags(struct pool_features *pf, char *result,
3867		       unsigned sz, unsigned maxlen)
3868{
3869	unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3870		!pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3871		pf->error_if_no_space;
3872	DMEMIT("%u ", count);
3873
3874	if (!pf->zero_new_blocks)
3875		DMEMIT("skip_block_zeroing ");
3876
3877	if (!pf->discard_enabled)
3878		DMEMIT("ignore_discard ");
3879
3880	if (!pf->discard_passdown)
3881		DMEMIT("no_discard_passdown ");
3882
3883	if (pf->mode == PM_READ_ONLY)
3884		DMEMIT("read_only ");
3885
3886	if (pf->error_if_no_space)
3887		DMEMIT("error_if_no_space ");
3888}
3889
3890/*
3891 * Status line is:
3892 *    <transaction id> <used metadata sectors>/<total metadata sectors>
3893 *    <used data sectors>/<total data sectors> <held metadata root>
3894 *    <pool mode> <discard config> <no space config> <needs_check>
3895 */
3896static void pool_status(struct dm_target *ti, status_type_t type,
3897			unsigned status_flags, char *result, unsigned maxlen)
3898{
3899	int r;
3900	unsigned sz = 0;
3901	uint64_t transaction_id;
3902	dm_block_t nr_free_blocks_data;
3903	dm_block_t nr_free_blocks_metadata;
3904	dm_block_t nr_blocks_data;
3905	dm_block_t nr_blocks_metadata;
3906	dm_block_t held_root;
3907	enum pool_mode mode;
3908	char buf[BDEVNAME_SIZE];
3909	char buf2[BDEVNAME_SIZE];
3910	struct pool_c *pt = ti->private;
3911	struct pool *pool = pt->pool;
3912
3913	switch (type) {
3914	case STATUSTYPE_INFO:
3915		if (get_pool_mode(pool) == PM_FAIL) {
3916			DMEMIT("Fail");
3917			break;
3918		}
3919
3920		/* Commit to ensure statistics aren't out-of-date */
3921		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3922			(void) commit(pool);
3923
3924		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3925		if (r) {
3926			DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3927			      dm_device_name(pool->pool_md), r);
3928			goto err;
3929		}
3930
3931		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3932		if (r) {
3933			DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3934			      dm_device_name(pool->pool_md), r);
3935			goto err;
3936		}
3937
3938		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3939		if (r) {
3940			DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3941			      dm_device_name(pool->pool_md), r);
3942			goto err;
3943		}
3944
3945		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3946		if (r) {
3947			DMERR("%s: dm_pool_get_free_block_count returned %d",
3948			      dm_device_name(pool->pool_md), r);
3949			goto err;
3950		}
3951
3952		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3953		if (r) {
3954			DMERR("%s: dm_pool_get_data_dev_size returned %d",
3955			      dm_device_name(pool->pool_md), r);
3956			goto err;
3957		}
3958
3959		r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3960		if (r) {
3961			DMERR("%s: dm_pool_get_metadata_snap returned %d",
3962			      dm_device_name(pool->pool_md), r);
3963			goto err;
3964		}
3965
3966		DMEMIT("%llu %llu/%llu %llu/%llu ",
3967		       (unsigned long long)transaction_id,
3968		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3969		       (unsigned long long)nr_blocks_metadata,
3970		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3971		       (unsigned long long)nr_blocks_data);
3972
3973		if (held_root)
3974			DMEMIT("%llu ", held_root);
3975		else
3976			DMEMIT("- ");
3977
3978		mode = get_pool_mode(pool);
3979		if (mode == PM_OUT_OF_DATA_SPACE)
3980			DMEMIT("out_of_data_space ");
3981		else if (is_read_only_pool_mode(mode))
3982			DMEMIT("ro ");
3983		else
3984			DMEMIT("rw ");
3985
3986		if (!pool->pf.discard_enabled)
3987			DMEMIT("ignore_discard ");
3988		else if (pool->pf.discard_passdown)
3989			DMEMIT("discard_passdown ");
3990		else
3991			DMEMIT("no_discard_passdown ");
3992
3993		if (pool->pf.error_if_no_space)
3994			DMEMIT("error_if_no_space ");
3995		else
3996			DMEMIT("queue_if_no_space ");
3997
3998		if (dm_pool_metadata_needs_check(pool->pmd))
3999			DMEMIT("needs_check ");
4000		else
4001			DMEMIT("- ");
4002
4003		DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4004
4005		break;
4006
4007	case STATUSTYPE_TABLE:
4008		DMEMIT("%s %s %lu %llu ",
4009		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4010		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4011		       (unsigned long)pool->sectors_per_block,
4012		       (unsigned long long)pt->low_water_blocks);
4013		emit_flags(&pt->requested_pf, result, sz, maxlen);
4014		break;
4015	}
4016	return;
4017
4018err:
4019	DMEMIT("Error");
4020}
4021
4022static int pool_iterate_devices(struct dm_target *ti,
4023				iterate_devices_callout_fn fn, void *data)
4024{
4025	struct pool_c *pt = ti->private;
4026
4027	return fn(ti, pt->data_dev, 0, ti->len, data);
4028}
4029
4030static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4031{
4032	struct pool_c *pt = ti->private;
4033	struct pool *pool = pt->pool;
4034	sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4035
4036	/*
4037	 * If max_sectors is smaller than pool->sectors_per_block adjust it
4038	 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4039	 * This is especially beneficial when the pool's data device is a RAID
4040	 * device that has a full stripe width that matches pool->sectors_per_block
4041	 * -- because even though partial RAID stripe-sized IOs will be issued to a
4042	 *    single RAID stripe; when aggregated they will end on a full RAID stripe
4043	 *    boundary.. which avoids additional partial RAID stripe writes cascading
4044	 */
4045	if (limits->max_sectors < pool->sectors_per_block) {
4046		while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4047			if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4048				limits->max_sectors--;
4049			limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4050		}
4051	}
4052
4053	/*
4054	 * If the system-determined stacked limits are compatible with the
4055	 * pool's blocksize (io_opt is a factor) do not override them.
4056	 */
4057	if (io_opt_sectors < pool->sectors_per_block ||
4058	    !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4059		if (is_factor(pool->sectors_per_block, limits->max_sectors))
4060			blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4061		else
4062			blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4063		blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4064	}
4065
4066	/*
4067	 * pt->adjusted_pf is a staging area for the actual features to use.
4068	 * They get transferred to the live pool in bind_control_target()
4069	 * called from pool_preresume().
4070	 */
4071	if (!pt->adjusted_pf.discard_enabled) {
4072		/*
4073		 * Must explicitly disallow stacking discard limits otherwise the
4074		 * block layer will stack them if pool's data device has support.
4075		 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4076		 * user to see that, so make sure to set all discard limits to 0.
4077		 */
4078		limits->discard_granularity = 0;
4079		return;
4080	}
4081
4082	disable_passdown_if_not_supported(pt);
4083
4084	/*
4085	 * The pool uses the same discard limits as the underlying data
4086	 * device.  DM core has already set this up.
4087	 */
4088}
4089
4090static struct target_type pool_target = {
4091	.name = "thin-pool",
4092	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4093		    DM_TARGET_IMMUTABLE,
4094	.version = {1, 22, 0},
4095	.module = THIS_MODULE,
4096	.ctr = pool_ctr,
4097	.dtr = pool_dtr,
4098	.map = pool_map,
4099	.presuspend = pool_presuspend,
4100	.presuspend_undo = pool_presuspend_undo,
4101	.postsuspend = pool_postsuspend,
4102	.preresume = pool_preresume,
4103	.resume = pool_resume,
4104	.message = pool_message,
4105	.status = pool_status,
4106	.iterate_devices = pool_iterate_devices,
4107	.io_hints = pool_io_hints,
4108};
4109
4110/*----------------------------------------------------------------
4111 * Thin target methods
4112 *--------------------------------------------------------------*/
4113static void thin_get(struct thin_c *tc)
4114{
4115	refcount_inc(&tc->refcount);
4116}
4117
4118static void thin_put(struct thin_c *tc)
4119{
4120	if (refcount_dec_and_test(&tc->refcount))
4121		complete(&tc->can_destroy);
4122}
4123
4124static void thin_dtr(struct dm_target *ti)
4125{
4126	struct thin_c *tc = ti->private;
 
4127
4128	spin_lock_irq(&tc->pool->lock);
4129	list_del_rcu(&tc->list);
4130	spin_unlock_irq(&tc->pool->lock);
4131	synchronize_rcu();
4132
4133	thin_put(tc);
4134	wait_for_completion(&tc->can_destroy);
4135
4136	mutex_lock(&dm_thin_pool_table.mutex);
4137
4138	__pool_dec(tc->pool);
4139	dm_pool_close_thin_device(tc->td);
4140	dm_put_device(ti, tc->pool_dev);
4141	if (tc->origin_dev)
4142		dm_put_device(ti, tc->origin_dev);
4143	kfree(tc);
4144
4145	mutex_unlock(&dm_thin_pool_table.mutex);
4146}
4147
4148/*
4149 * Thin target parameters:
4150 *
4151 * <pool_dev> <dev_id> [origin_dev]
4152 *
4153 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4154 * dev_id: the internal device identifier
4155 * origin_dev: a device external to the pool that should act as the origin
4156 *
4157 * If the pool device has discards disabled, they get disabled for the thin
4158 * device as well.
4159 */
4160static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4161{
4162	int r;
4163	struct thin_c *tc;
4164	struct dm_dev *pool_dev, *origin_dev;
4165	struct mapped_device *pool_md;
 
4166
4167	mutex_lock(&dm_thin_pool_table.mutex);
4168
4169	if (argc != 2 && argc != 3) {
4170		ti->error = "Invalid argument count";
4171		r = -EINVAL;
4172		goto out_unlock;
4173	}
4174
4175	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4176	if (!tc) {
4177		ti->error = "Out of memory";
4178		r = -ENOMEM;
4179		goto out_unlock;
4180	}
4181	tc->thin_md = dm_table_get_md(ti->table);
4182	spin_lock_init(&tc->lock);
4183	INIT_LIST_HEAD(&tc->deferred_cells);
4184	bio_list_init(&tc->deferred_bio_list);
4185	bio_list_init(&tc->retry_on_resume_list);
4186	tc->sort_bio_list = RB_ROOT;
4187
4188	if (argc == 3) {
4189		if (!strcmp(argv[0], argv[2])) {
4190			ti->error = "Error setting origin device";
4191			r = -EINVAL;
4192			goto bad_origin_dev;
4193		}
4194
4195		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4196		if (r) {
4197			ti->error = "Error opening origin device";
4198			goto bad_origin_dev;
4199		}
4200		tc->origin_dev = origin_dev;
4201	}
4202
4203	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4204	if (r) {
4205		ti->error = "Error opening pool device";
4206		goto bad_pool_dev;
4207	}
4208	tc->pool_dev = pool_dev;
4209
4210	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4211		ti->error = "Invalid device id";
4212		r = -EINVAL;
4213		goto bad_common;
4214	}
4215
4216	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4217	if (!pool_md) {
4218		ti->error = "Couldn't get pool mapped device";
4219		r = -EINVAL;
4220		goto bad_common;
4221	}
4222
4223	tc->pool = __pool_table_lookup(pool_md);
4224	if (!tc->pool) {
4225		ti->error = "Couldn't find pool object";
4226		r = -EINVAL;
4227		goto bad_pool_lookup;
4228	}
4229	__pool_inc(tc->pool);
4230
4231	if (get_pool_mode(tc->pool) == PM_FAIL) {
4232		ti->error = "Couldn't open thin device, Pool is in fail mode";
4233		r = -EINVAL;
4234		goto bad_pool;
4235	}
4236
4237	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4238	if (r) {
4239		ti->error = "Couldn't open thin internal device";
4240		goto bad_pool;
4241	}
4242
4243	r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4244	if (r)
4245		goto bad;
4246
4247	ti->num_flush_bios = 1;
4248	ti->flush_supported = true;
4249	ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4250
4251	/* In case the pool supports discards, pass them on. */
 
4252	if (tc->pool->pf.discard_enabled) {
4253		ti->discards_supported = true;
4254		ti->num_discard_bios = 1;
 
4255	}
4256
4257	mutex_unlock(&dm_thin_pool_table.mutex);
4258
4259	spin_lock_irq(&tc->pool->lock);
4260	if (tc->pool->suspended) {
4261		spin_unlock_irq(&tc->pool->lock);
4262		mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4263		ti->error = "Unable to activate thin device while pool is suspended";
4264		r = -EINVAL;
4265		goto bad;
4266	}
4267	refcount_set(&tc->refcount, 1);
4268	init_completion(&tc->can_destroy);
4269	list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4270	spin_unlock_irq(&tc->pool->lock);
4271	/*
4272	 * This synchronize_rcu() call is needed here otherwise we risk a
4273	 * wake_worker() call finding no bios to process (because the newly
4274	 * added tc isn't yet visible).  So this reduces latency since we
4275	 * aren't then dependent on the periodic commit to wake_worker().
4276	 */
4277	synchronize_rcu();
4278
4279	dm_put(pool_md);
4280
4281	return 0;
4282
4283bad:
4284	dm_pool_close_thin_device(tc->td);
4285bad_pool:
4286	__pool_dec(tc->pool);
4287bad_pool_lookup:
4288	dm_put(pool_md);
4289bad_common:
4290	dm_put_device(ti, tc->pool_dev);
4291bad_pool_dev:
4292	if (tc->origin_dev)
4293		dm_put_device(ti, tc->origin_dev);
4294bad_origin_dev:
4295	kfree(tc);
4296out_unlock:
4297	mutex_unlock(&dm_thin_pool_table.mutex);
4298
4299	return r;
4300}
4301
4302static int thin_map(struct dm_target *ti, struct bio *bio)
4303{
4304	bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4305
4306	return thin_bio_map(ti, bio);
4307}
4308
4309static int thin_endio(struct dm_target *ti, struct bio *bio,
4310		blk_status_t *err)
4311{
4312	unsigned long flags;
4313	struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4314	struct list_head work;
4315	struct dm_thin_new_mapping *m, *tmp;
4316	struct pool *pool = h->tc->pool;
4317
4318	if (h->shared_read_entry) {
4319		INIT_LIST_HEAD(&work);
4320		dm_deferred_entry_dec(h->shared_read_entry, &work);
4321
4322		spin_lock_irqsave(&pool->lock, flags);
4323		list_for_each_entry_safe(m, tmp, &work, list) {
4324			list_del(&m->list);
4325			__complete_mapping_preparation(m);
4326		}
4327		spin_unlock_irqrestore(&pool->lock, flags);
4328	}
4329
4330	if (h->all_io_entry) {
4331		INIT_LIST_HEAD(&work);
4332		dm_deferred_entry_dec(h->all_io_entry, &work);
4333		if (!list_empty(&work)) {
4334			spin_lock_irqsave(&pool->lock, flags);
4335			list_for_each_entry_safe(m, tmp, &work, list)
4336				list_add_tail(&m->list, &pool->prepared_discards);
4337			spin_unlock_irqrestore(&pool->lock, flags);
4338			wake_worker(pool);
4339		}
4340	}
4341
4342	if (h->cell)
4343		cell_defer_no_holder(h->tc, h->cell);
4344
4345	return DM_ENDIO_DONE;
4346}
4347
4348static void thin_presuspend(struct dm_target *ti)
4349{
4350	struct thin_c *tc = ti->private;
4351
4352	if (dm_noflush_suspending(ti))
4353		noflush_work(tc, do_noflush_start);
4354}
4355
4356static void thin_postsuspend(struct dm_target *ti)
4357{
4358	struct thin_c *tc = ti->private;
4359
4360	/*
4361	 * The dm_noflush_suspending flag has been cleared by now, so
4362	 * unfortunately we must always run this.
4363	 */
4364	noflush_work(tc, do_noflush_stop);
4365}
4366
4367static int thin_preresume(struct dm_target *ti)
4368{
4369	struct thin_c *tc = ti->private;
4370
4371	if (tc->origin_dev)
4372		tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4373
4374	return 0;
4375}
4376
4377/*
4378 * <nr mapped sectors> <highest mapped sector>
4379 */
4380static void thin_status(struct dm_target *ti, status_type_t type,
4381			unsigned status_flags, char *result, unsigned maxlen)
4382{
4383	int r;
4384	ssize_t sz = 0;
4385	dm_block_t mapped, highest;
4386	char buf[BDEVNAME_SIZE];
4387	struct thin_c *tc = ti->private;
4388
4389	if (get_pool_mode(tc->pool) == PM_FAIL) {
4390		DMEMIT("Fail");
4391		return;
4392	}
4393
4394	if (!tc->td)
4395		DMEMIT("-");
4396	else {
4397		switch (type) {
4398		case STATUSTYPE_INFO:
4399			r = dm_thin_get_mapped_count(tc->td, &mapped);
4400			if (r) {
4401				DMERR("dm_thin_get_mapped_count returned %d", r);
4402				goto err;
4403			}
4404
4405			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4406			if (r < 0) {
4407				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4408				goto err;
4409			}
4410
4411			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4412			if (r)
4413				DMEMIT("%llu", ((highest + 1) *
4414						tc->pool->sectors_per_block) - 1);
4415			else
4416				DMEMIT("-");
4417			break;
4418
4419		case STATUSTYPE_TABLE:
4420			DMEMIT("%s %lu",
4421			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4422			       (unsigned long) tc->dev_id);
4423			if (tc->origin_dev)
4424				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4425			break;
4426		}
4427	}
4428
4429	return;
4430
4431err:
4432	DMEMIT("Error");
4433}
4434
4435static int thin_iterate_devices(struct dm_target *ti,
4436				iterate_devices_callout_fn fn, void *data)
4437{
4438	sector_t blocks;
4439	struct thin_c *tc = ti->private;
4440	struct pool *pool = tc->pool;
4441
4442	/*
4443	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4444	 * we follow a more convoluted path through to the pool's target.
4445	 */
4446	if (!pool->ti)
4447		return 0;	/* nothing is bound */
4448
4449	blocks = pool->ti->len;
4450	(void) sector_div(blocks, pool->sectors_per_block);
4451	if (blocks)
4452		return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4453
4454	return 0;
4455}
4456
4457static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4458{
4459	struct thin_c *tc = ti->private;
4460	struct pool *pool = tc->pool;
4461
4462	if (!pool->pf.discard_enabled)
4463		return;
4464
4465	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4466	limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4467}
4468
4469static struct target_type thin_target = {
4470	.name = "thin",
4471	.version = {1, 22, 0},
4472	.module	= THIS_MODULE,
4473	.ctr = thin_ctr,
4474	.dtr = thin_dtr,
4475	.map = thin_map,
4476	.end_io = thin_endio,
4477	.preresume = thin_preresume,
4478	.presuspend = thin_presuspend,
4479	.postsuspend = thin_postsuspend,
4480	.status = thin_status,
4481	.iterate_devices = thin_iterate_devices,
4482	.io_hints = thin_io_hints,
4483};
4484
4485/*----------------------------------------------------------------*/
4486
4487static int __init dm_thin_init(void)
4488{
4489	int r = -ENOMEM;
4490
4491	pool_table_init();
4492
4493	_new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4494	if (!_new_mapping_cache)
4495		return r;
4496
4497	r = dm_register_target(&thin_target);
4498	if (r)
4499		goto bad_new_mapping_cache;
4500
4501	r = dm_register_target(&pool_target);
4502	if (r)
4503		goto bad_thin_target;
 
 
 
 
 
 
4504
4505	return 0;
4506
4507bad_thin_target:
 
 
4508	dm_unregister_target(&thin_target);
4509bad_new_mapping_cache:
4510	kmem_cache_destroy(_new_mapping_cache);
4511
4512	return r;
4513}
4514
4515static void dm_thin_exit(void)
4516{
4517	dm_unregister_target(&thin_target);
4518	dm_unregister_target(&pool_target);
4519
4520	kmem_cache_destroy(_new_mapping_cache);
4521
4522	pool_table_exit();
4523}
4524
4525module_init(dm_thin_init);
4526module_exit(dm_thin_exit);
4527
4528module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4529MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4530
4531MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4532MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4533MODULE_LICENSE("GPL");