Loading...
1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/log2.h>
16#include <linux/list.h>
17#include <linux/rculist.h>
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/sort.h>
23#include <linux/rbtree.h>
24
25#define DM_MSG_PREFIX "thin"
26
27/*
28 * Tunable constants
29 */
30#define ENDIO_HOOK_POOL_SIZE 1024
31#define MAPPING_POOL_SIZE 1024
32#define COMMIT_PERIOD HZ
33#define NO_SPACE_TIMEOUT_SECS 60
34
35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40/*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47/*
48 * Device id is restricted to 24 bits.
49 */
50#define MAX_DEV_ID ((1 << 24) - 1)
51
52/*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110/*----------------------------------------------------------------*/
111
112/*
113 * Key building.
114 */
115enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118};
119
120static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122{
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127}
128
129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131{
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133}
134
135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137{
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139}
140
141/*----------------------------------------------------------------*/
142
143#define THROTTLE_THRESHOLD (1 * HZ)
144
145struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149};
150
151static void throttle_init(struct throttle *t)
152{
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155}
156
157static void throttle_work_start(struct throttle *t)
158{
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160}
161
162static void throttle_work_update(struct throttle *t)
163{
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168}
169
170static void throttle_work_complete(struct throttle *t)
171{
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176}
177
178static void throttle_lock(struct throttle *t)
179{
180 down_read(&t->lock);
181}
182
183static void throttle_unlock(struct throttle *t)
184{
185 up_read(&t->lock);
186}
187
188/*----------------------------------------------------------------*/
189
190/*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195struct dm_thin_new_mapping;
196
197/*
198 * The pool runs in 4 modes. Ordered in degraded order for comparisons.
199 */
200enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203 PM_READ_ONLY, /* metadata may not be changed */
204 PM_FAIL, /* all I/O fails */
205};
206
207struct pool_features {
208 enum pool_mode mode;
209
210 bool zero_new_blocks:1;
211 bool discard_enabled:1;
212 bool discard_passdown:1;
213 bool error_if_no_space:1;
214};
215
216struct thin_c;
217typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
218typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
219typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
220
221#define CELL_SORT_ARRAY_SIZE 8192
222
223struct pool {
224 struct list_head list;
225 struct dm_target *ti; /* Only set if a pool target is bound */
226
227 struct mapped_device *pool_md;
228 struct block_device *md_dev;
229 struct dm_pool_metadata *pmd;
230
231 dm_block_t low_water_blocks;
232 uint32_t sectors_per_block;
233 int sectors_per_block_shift;
234
235 struct pool_features pf;
236 bool low_water_triggered:1; /* A dm event has been sent */
237 bool suspended:1;
238 bool out_of_data_space:1;
239
240 struct dm_bio_prison *prison;
241 struct dm_kcopyd_client *copier;
242
243 struct workqueue_struct *wq;
244 struct throttle throttle;
245 struct work_struct worker;
246 struct delayed_work waker;
247 struct delayed_work no_space_timeout;
248
249 unsigned long last_commit_jiffies;
250 unsigned ref_count;
251
252 spinlock_t lock;
253 struct bio_list deferred_flush_bios;
254 struct list_head prepared_mappings;
255 struct list_head prepared_discards;
256 struct list_head prepared_discards_pt2;
257 struct list_head active_thins;
258
259 struct dm_deferred_set *shared_read_ds;
260 struct dm_deferred_set *all_io_ds;
261
262 struct dm_thin_new_mapping *next_mapping;
263 mempool_t *mapping_pool;
264
265 process_bio_fn process_bio;
266 process_bio_fn process_discard;
267
268 process_cell_fn process_cell;
269 process_cell_fn process_discard_cell;
270
271 process_mapping_fn process_prepared_mapping;
272 process_mapping_fn process_prepared_discard;
273 process_mapping_fn process_prepared_discard_pt2;
274
275 struct dm_bio_prison_cell **cell_sort_array;
276};
277
278static enum pool_mode get_pool_mode(struct pool *pool);
279static void metadata_operation_failed(struct pool *pool, const char *op, int r);
280
281/*
282 * Target context for a pool.
283 */
284struct pool_c {
285 struct dm_target *ti;
286 struct pool *pool;
287 struct dm_dev *data_dev;
288 struct dm_dev *metadata_dev;
289 struct dm_target_callbacks callbacks;
290
291 dm_block_t low_water_blocks;
292 struct pool_features requested_pf; /* Features requested during table load */
293 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
294};
295
296/*
297 * Target context for a thin.
298 */
299struct thin_c {
300 struct list_head list;
301 struct dm_dev *pool_dev;
302 struct dm_dev *origin_dev;
303 sector_t origin_size;
304 dm_thin_id dev_id;
305
306 struct pool *pool;
307 struct dm_thin_device *td;
308 struct mapped_device *thin_md;
309
310 bool requeue_mode:1;
311 spinlock_t lock;
312 struct list_head deferred_cells;
313 struct bio_list deferred_bio_list;
314 struct bio_list retry_on_resume_list;
315 struct rb_root sort_bio_list; /* sorted list of deferred bios */
316
317 /*
318 * Ensures the thin is not destroyed until the worker has finished
319 * iterating the active_thins list.
320 */
321 atomic_t refcount;
322 struct completion can_destroy;
323};
324
325/*----------------------------------------------------------------*/
326
327static bool block_size_is_power_of_two(struct pool *pool)
328{
329 return pool->sectors_per_block_shift >= 0;
330}
331
332static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
333{
334 return block_size_is_power_of_two(pool) ?
335 (b << pool->sectors_per_block_shift) :
336 (b * pool->sectors_per_block);
337}
338
339/*----------------------------------------------------------------*/
340
341struct discard_op {
342 struct thin_c *tc;
343 struct blk_plug plug;
344 struct bio *parent_bio;
345 struct bio *bio;
346};
347
348static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
349{
350 BUG_ON(!parent);
351
352 op->tc = tc;
353 blk_start_plug(&op->plug);
354 op->parent_bio = parent;
355 op->bio = NULL;
356}
357
358static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
359{
360 struct thin_c *tc = op->tc;
361 sector_t s = block_to_sectors(tc->pool, data_b);
362 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
363
364 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
365 GFP_NOWAIT, 0, &op->bio);
366}
367
368static void end_discard(struct discard_op *op, int r)
369{
370 if (op->bio) {
371 /*
372 * Even if one of the calls to issue_discard failed, we
373 * need to wait for the chain to complete.
374 */
375 bio_chain(op->bio, op->parent_bio);
376 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
377 submit_bio(op->bio);
378 }
379
380 blk_finish_plug(&op->plug);
381
382 /*
383 * Even if r is set, there could be sub discards in flight that we
384 * need to wait for.
385 */
386 if (r && !op->parent_bio->bi_error)
387 op->parent_bio->bi_error = r;
388 bio_endio(op->parent_bio);
389}
390
391/*----------------------------------------------------------------*/
392
393/*
394 * wake_worker() is used when new work is queued and when pool_resume is
395 * ready to continue deferred IO processing.
396 */
397static void wake_worker(struct pool *pool)
398{
399 queue_work(pool->wq, &pool->worker);
400}
401
402/*----------------------------------------------------------------*/
403
404static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
405 struct dm_bio_prison_cell **cell_result)
406{
407 int r;
408 struct dm_bio_prison_cell *cell_prealloc;
409
410 /*
411 * Allocate a cell from the prison's mempool.
412 * This might block but it can't fail.
413 */
414 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
415
416 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
417 if (r)
418 /*
419 * We reused an old cell; we can get rid of
420 * the new one.
421 */
422 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
423
424 return r;
425}
426
427static void cell_release(struct pool *pool,
428 struct dm_bio_prison_cell *cell,
429 struct bio_list *bios)
430{
431 dm_cell_release(pool->prison, cell, bios);
432 dm_bio_prison_free_cell(pool->prison, cell);
433}
434
435static void cell_visit_release(struct pool *pool,
436 void (*fn)(void *, struct dm_bio_prison_cell *),
437 void *context,
438 struct dm_bio_prison_cell *cell)
439{
440 dm_cell_visit_release(pool->prison, fn, context, cell);
441 dm_bio_prison_free_cell(pool->prison, cell);
442}
443
444static void cell_release_no_holder(struct pool *pool,
445 struct dm_bio_prison_cell *cell,
446 struct bio_list *bios)
447{
448 dm_cell_release_no_holder(pool->prison, cell, bios);
449 dm_bio_prison_free_cell(pool->prison, cell);
450}
451
452static void cell_error_with_code(struct pool *pool,
453 struct dm_bio_prison_cell *cell, int error_code)
454{
455 dm_cell_error(pool->prison, cell, error_code);
456 dm_bio_prison_free_cell(pool->prison, cell);
457}
458
459static int get_pool_io_error_code(struct pool *pool)
460{
461 return pool->out_of_data_space ? -ENOSPC : -EIO;
462}
463
464static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
465{
466 int error = get_pool_io_error_code(pool);
467
468 cell_error_with_code(pool, cell, error);
469}
470
471static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
472{
473 cell_error_with_code(pool, cell, 0);
474}
475
476static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
477{
478 cell_error_with_code(pool, cell, DM_ENDIO_REQUEUE);
479}
480
481/*----------------------------------------------------------------*/
482
483/*
484 * A global list of pools that uses a struct mapped_device as a key.
485 */
486static struct dm_thin_pool_table {
487 struct mutex mutex;
488 struct list_head pools;
489} dm_thin_pool_table;
490
491static void pool_table_init(void)
492{
493 mutex_init(&dm_thin_pool_table.mutex);
494 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
495}
496
497static void __pool_table_insert(struct pool *pool)
498{
499 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
500 list_add(&pool->list, &dm_thin_pool_table.pools);
501}
502
503static void __pool_table_remove(struct pool *pool)
504{
505 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
506 list_del(&pool->list);
507}
508
509static struct pool *__pool_table_lookup(struct mapped_device *md)
510{
511 struct pool *pool = NULL, *tmp;
512
513 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
514
515 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
516 if (tmp->pool_md == md) {
517 pool = tmp;
518 break;
519 }
520 }
521
522 return pool;
523}
524
525static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
526{
527 struct pool *pool = NULL, *tmp;
528
529 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
530
531 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
532 if (tmp->md_dev == md_dev) {
533 pool = tmp;
534 break;
535 }
536 }
537
538 return pool;
539}
540
541/*----------------------------------------------------------------*/
542
543struct dm_thin_endio_hook {
544 struct thin_c *tc;
545 struct dm_deferred_entry *shared_read_entry;
546 struct dm_deferred_entry *all_io_entry;
547 struct dm_thin_new_mapping *overwrite_mapping;
548 struct rb_node rb_node;
549 struct dm_bio_prison_cell *cell;
550};
551
552static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
553{
554 bio_list_merge(bios, master);
555 bio_list_init(master);
556}
557
558static void error_bio_list(struct bio_list *bios, int error)
559{
560 struct bio *bio;
561
562 while ((bio = bio_list_pop(bios))) {
563 bio->bi_error = error;
564 bio_endio(bio);
565 }
566}
567
568static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master, int error)
569{
570 struct bio_list bios;
571 unsigned long flags;
572
573 bio_list_init(&bios);
574
575 spin_lock_irqsave(&tc->lock, flags);
576 __merge_bio_list(&bios, master);
577 spin_unlock_irqrestore(&tc->lock, flags);
578
579 error_bio_list(&bios, error);
580}
581
582static void requeue_deferred_cells(struct thin_c *tc)
583{
584 struct pool *pool = tc->pool;
585 unsigned long flags;
586 struct list_head cells;
587 struct dm_bio_prison_cell *cell, *tmp;
588
589 INIT_LIST_HEAD(&cells);
590
591 spin_lock_irqsave(&tc->lock, flags);
592 list_splice_init(&tc->deferred_cells, &cells);
593 spin_unlock_irqrestore(&tc->lock, flags);
594
595 list_for_each_entry_safe(cell, tmp, &cells, user_list)
596 cell_requeue(pool, cell);
597}
598
599static void requeue_io(struct thin_c *tc)
600{
601 struct bio_list bios;
602 unsigned long flags;
603
604 bio_list_init(&bios);
605
606 spin_lock_irqsave(&tc->lock, flags);
607 __merge_bio_list(&bios, &tc->deferred_bio_list);
608 __merge_bio_list(&bios, &tc->retry_on_resume_list);
609 spin_unlock_irqrestore(&tc->lock, flags);
610
611 error_bio_list(&bios, DM_ENDIO_REQUEUE);
612 requeue_deferred_cells(tc);
613}
614
615static void error_retry_list_with_code(struct pool *pool, int error)
616{
617 struct thin_c *tc;
618
619 rcu_read_lock();
620 list_for_each_entry_rcu(tc, &pool->active_thins, list)
621 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
622 rcu_read_unlock();
623}
624
625static void error_retry_list(struct pool *pool)
626{
627 int error = get_pool_io_error_code(pool);
628
629 error_retry_list_with_code(pool, error);
630}
631
632/*
633 * This section of code contains the logic for processing a thin device's IO.
634 * Much of the code depends on pool object resources (lists, workqueues, etc)
635 * but most is exclusively called from the thin target rather than the thin-pool
636 * target.
637 */
638
639static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
640{
641 struct pool *pool = tc->pool;
642 sector_t block_nr = bio->bi_iter.bi_sector;
643
644 if (block_size_is_power_of_two(pool))
645 block_nr >>= pool->sectors_per_block_shift;
646 else
647 (void) sector_div(block_nr, pool->sectors_per_block);
648
649 return block_nr;
650}
651
652/*
653 * Returns the _complete_ blocks that this bio covers.
654 */
655static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
656 dm_block_t *begin, dm_block_t *end)
657{
658 struct pool *pool = tc->pool;
659 sector_t b = bio->bi_iter.bi_sector;
660 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
661
662 b += pool->sectors_per_block - 1ull; /* so we round up */
663
664 if (block_size_is_power_of_two(pool)) {
665 b >>= pool->sectors_per_block_shift;
666 e >>= pool->sectors_per_block_shift;
667 } else {
668 (void) sector_div(b, pool->sectors_per_block);
669 (void) sector_div(e, pool->sectors_per_block);
670 }
671
672 if (e < b)
673 /* Can happen if the bio is within a single block. */
674 e = b;
675
676 *begin = b;
677 *end = e;
678}
679
680static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
681{
682 struct pool *pool = tc->pool;
683 sector_t bi_sector = bio->bi_iter.bi_sector;
684
685 bio->bi_bdev = tc->pool_dev->bdev;
686 if (block_size_is_power_of_two(pool))
687 bio->bi_iter.bi_sector =
688 (block << pool->sectors_per_block_shift) |
689 (bi_sector & (pool->sectors_per_block - 1));
690 else
691 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
692 sector_div(bi_sector, pool->sectors_per_block);
693}
694
695static void remap_to_origin(struct thin_c *tc, struct bio *bio)
696{
697 bio->bi_bdev = tc->origin_dev->bdev;
698}
699
700static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
701{
702 return (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA)) &&
703 dm_thin_changed_this_transaction(tc->td);
704}
705
706static void inc_all_io_entry(struct pool *pool, struct bio *bio)
707{
708 struct dm_thin_endio_hook *h;
709
710 if (bio_op(bio) == REQ_OP_DISCARD)
711 return;
712
713 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
714 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
715}
716
717static void issue(struct thin_c *tc, struct bio *bio)
718{
719 struct pool *pool = tc->pool;
720 unsigned long flags;
721
722 if (!bio_triggers_commit(tc, bio)) {
723 generic_make_request(bio);
724 return;
725 }
726
727 /*
728 * Complete bio with an error if earlier I/O caused changes to
729 * the metadata that can't be committed e.g, due to I/O errors
730 * on the metadata device.
731 */
732 if (dm_thin_aborted_changes(tc->td)) {
733 bio_io_error(bio);
734 return;
735 }
736
737 /*
738 * Batch together any bios that trigger commits and then issue a
739 * single commit for them in process_deferred_bios().
740 */
741 spin_lock_irqsave(&pool->lock, flags);
742 bio_list_add(&pool->deferred_flush_bios, bio);
743 spin_unlock_irqrestore(&pool->lock, flags);
744}
745
746static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
747{
748 remap_to_origin(tc, bio);
749 issue(tc, bio);
750}
751
752static void remap_and_issue(struct thin_c *tc, struct bio *bio,
753 dm_block_t block)
754{
755 remap(tc, bio, block);
756 issue(tc, bio);
757}
758
759/*----------------------------------------------------------------*/
760
761/*
762 * Bio endio functions.
763 */
764struct dm_thin_new_mapping {
765 struct list_head list;
766
767 bool pass_discard:1;
768 bool maybe_shared:1;
769
770 /*
771 * Track quiescing, copying and zeroing preparation actions. When this
772 * counter hits zero the block is prepared and can be inserted into the
773 * btree.
774 */
775 atomic_t prepare_actions;
776
777 int err;
778 struct thin_c *tc;
779 dm_block_t virt_begin, virt_end;
780 dm_block_t data_block;
781 struct dm_bio_prison_cell *cell;
782
783 /*
784 * If the bio covers the whole area of a block then we can avoid
785 * zeroing or copying. Instead this bio is hooked. The bio will
786 * still be in the cell, so care has to be taken to avoid issuing
787 * the bio twice.
788 */
789 struct bio *bio;
790 bio_end_io_t *saved_bi_end_io;
791};
792
793static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
794{
795 struct pool *pool = m->tc->pool;
796
797 if (atomic_dec_and_test(&m->prepare_actions)) {
798 list_add_tail(&m->list, &pool->prepared_mappings);
799 wake_worker(pool);
800 }
801}
802
803static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
804{
805 unsigned long flags;
806 struct pool *pool = m->tc->pool;
807
808 spin_lock_irqsave(&pool->lock, flags);
809 __complete_mapping_preparation(m);
810 spin_unlock_irqrestore(&pool->lock, flags);
811}
812
813static void copy_complete(int read_err, unsigned long write_err, void *context)
814{
815 struct dm_thin_new_mapping *m = context;
816
817 m->err = read_err || write_err ? -EIO : 0;
818 complete_mapping_preparation(m);
819}
820
821static void overwrite_endio(struct bio *bio)
822{
823 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
824 struct dm_thin_new_mapping *m = h->overwrite_mapping;
825
826 bio->bi_end_io = m->saved_bi_end_io;
827
828 m->err = bio->bi_error;
829 complete_mapping_preparation(m);
830}
831
832/*----------------------------------------------------------------*/
833
834/*
835 * Workqueue.
836 */
837
838/*
839 * Prepared mapping jobs.
840 */
841
842/*
843 * This sends the bios in the cell, except the original holder, back
844 * to the deferred_bios list.
845 */
846static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
847{
848 struct pool *pool = tc->pool;
849 unsigned long flags;
850
851 spin_lock_irqsave(&tc->lock, flags);
852 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
853 spin_unlock_irqrestore(&tc->lock, flags);
854
855 wake_worker(pool);
856}
857
858static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
859
860struct remap_info {
861 struct thin_c *tc;
862 struct bio_list defer_bios;
863 struct bio_list issue_bios;
864};
865
866static void __inc_remap_and_issue_cell(void *context,
867 struct dm_bio_prison_cell *cell)
868{
869 struct remap_info *info = context;
870 struct bio *bio;
871
872 while ((bio = bio_list_pop(&cell->bios))) {
873 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
874 bio_op(bio) == REQ_OP_DISCARD)
875 bio_list_add(&info->defer_bios, bio);
876 else {
877 inc_all_io_entry(info->tc->pool, bio);
878
879 /*
880 * We can't issue the bios with the bio prison lock
881 * held, so we add them to a list to issue on
882 * return from this function.
883 */
884 bio_list_add(&info->issue_bios, bio);
885 }
886 }
887}
888
889static void inc_remap_and_issue_cell(struct thin_c *tc,
890 struct dm_bio_prison_cell *cell,
891 dm_block_t block)
892{
893 struct bio *bio;
894 struct remap_info info;
895
896 info.tc = tc;
897 bio_list_init(&info.defer_bios);
898 bio_list_init(&info.issue_bios);
899
900 /*
901 * We have to be careful to inc any bios we're about to issue
902 * before the cell is released, and avoid a race with new bios
903 * being added to the cell.
904 */
905 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
906 &info, cell);
907
908 while ((bio = bio_list_pop(&info.defer_bios)))
909 thin_defer_bio(tc, bio);
910
911 while ((bio = bio_list_pop(&info.issue_bios)))
912 remap_and_issue(info.tc, bio, block);
913}
914
915static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
916{
917 cell_error(m->tc->pool, m->cell);
918 list_del(&m->list);
919 mempool_free(m, m->tc->pool->mapping_pool);
920}
921
922static void process_prepared_mapping(struct dm_thin_new_mapping *m)
923{
924 struct thin_c *tc = m->tc;
925 struct pool *pool = tc->pool;
926 struct bio *bio = m->bio;
927 int r;
928
929 if (m->err) {
930 cell_error(pool, m->cell);
931 goto out;
932 }
933
934 /*
935 * Commit the prepared block into the mapping btree.
936 * Any I/O for this block arriving after this point will get
937 * remapped to it directly.
938 */
939 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
940 if (r) {
941 metadata_operation_failed(pool, "dm_thin_insert_block", r);
942 cell_error(pool, m->cell);
943 goto out;
944 }
945
946 /*
947 * Release any bios held while the block was being provisioned.
948 * If we are processing a write bio that completely covers the block,
949 * we already processed it so can ignore it now when processing
950 * the bios in the cell.
951 */
952 if (bio) {
953 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
954 bio_endio(bio);
955 } else {
956 inc_all_io_entry(tc->pool, m->cell->holder);
957 remap_and_issue(tc, m->cell->holder, m->data_block);
958 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
959 }
960
961out:
962 list_del(&m->list);
963 mempool_free(m, pool->mapping_pool);
964}
965
966/*----------------------------------------------------------------*/
967
968static void free_discard_mapping(struct dm_thin_new_mapping *m)
969{
970 struct thin_c *tc = m->tc;
971 if (m->cell)
972 cell_defer_no_holder(tc, m->cell);
973 mempool_free(m, tc->pool->mapping_pool);
974}
975
976static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
977{
978 bio_io_error(m->bio);
979 free_discard_mapping(m);
980}
981
982static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
983{
984 bio_endio(m->bio);
985 free_discard_mapping(m);
986}
987
988static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
989{
990 int r;
991 struct thin_c *tc = m->tc;
992
993 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
994 if (r) {
995 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
996 bio_io_error(m->bio);
997 } else
998 bio_endio(m->bio);
999
1000 cell_defer_no_holder(tc, m->cell);
1001 mempool_free(m, tc->pool->mapping_pool);
1002}
1003
1004/*----------------------------------------------------------------*/
1005
1006static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1007 struct bio *discard_parent)
1008{
1009 /*
1010 * We've already unmapped this range of blocks, but before we
1011 * passdown we have to check that these blocks are now unused.
1012 */
1013 int r = 0;
1014 bool used = true;
1015 struct thin_c *tc = m->tc;
1016 struct pool *pool = tc->pool;
1017 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1018 struct discard_op op;
1019
1020 begin_discard(&op, tc, discard_parent);
1021 while (b != end) {
1022 /* find start of unmapped run */
1023 for (; b < end; b++) {
1024 r = dm_pool_block_is_used(pool->pmd, b, &used);
1025 if (r)
1026 goto out;
1027
1028 if (!used)
1029 break;
1030 }
1031
1032 if (b == end)
1033 break;
1034
1035 /* find end of run */
1036 for (e = b + 1; e != end; e++) {
1037 r = dm_pool_block_is_used(pool->pmd, e, &used);
1038 if (r)
1039 goto out;
1040
1041 if (used)
1042 break;
1043 }
1044
1045 r = issue_discard(&op, b, e);
1046 if (r)
1047 goto out;
1048
1049 b = e;
1050 }
1051out:
1052 end_discard(&op, r);
1053}
1054
1055static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1056{
1057 unsigned long flags;
1058 struct pool *pool = m->tc->pool;
1059
1060 spin_lock_irqsave(&pool->lock, flags);
1061 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1062 spin_unlock_irqrestore(&pool->lock, flags);
1063 wake_worker(pool);
1064}
1065
1066static void passdown_endio(struct bio *bio)
1067{
1068 /*
1069 * It doesn't matter if the passdown discard failed, we still want
1070 * to unmap (we ignore err).
1071 */
1072 queue_passdown_pt2(bio->bi_private);
1073}
1074
1075static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1076{
1077 int r;
1078 struct thin_c *tc = m->tc;
1079 struct pool *pool = tc->pool;
1080 struct bio *discard_parent;
1081 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1082
1083 /*
1084 * Only this thread allocates blocks, so we can be sure that the
1085 * newly unmapped blocks will not be allocated before the end of
1086 * the function.
1087 */
1088 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1089 if (r) {
1090 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1091 bio_io_error(m->bio);
1092 cell_defer_no_holder(tc, m->cell);
1093 mempool_free(m, pool->mapping_pool);
1094 return;
1095 }
1096
1097 discard_parent = bio_alloc(GFP_NOIO, 1);
1098 if (!discard_parent) {
1099 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1100 dm_device_name(tc->pool->pool_md));
1101 queue_passdown_pt2(m);
1102
1103 } else {
1104 discard_parent->bi_end_io = passdown_endio;
1105 discard_parent->bi_private = m;
1106
1107 if (m->maybe_shared)
1108 passdown_double_checking_shared_status(m, discard_parent);
1109 else {
1110 struct discard_op op;
1111
1112 begin_discard(&op, tc, discard_parent);
1113 r = issue_discard(&op, m->data_block, data_end);
1114 end_discard(&op, r);
1115 }
1116 }
1117
1118 /*
1119 * Increment the unmapped blocks. This prevents a race between the
1120 * passdown io and reallocation of freed blocks.
1121 */
1122 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1123 if (r) {
1124 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1125 bio_io_error(m->bio);
1126 cell_defer_no_holder(tc, m->cell);
1127 mempool_free(m, pool->mapping_pool);
1128 return;
1129 }
1130}
1131
1132static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1133{
1134 int r;
1135 struct thin_c *tc = m->tc;
1136 struct pool *pool = tc->pool;
1137
1138 /*
1139 * The passdown has completed, so now we can decrement all those
1140 * unmapped blocks.
1141 */
1142 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1143 m->data_block + (m->virt_end - m->virt_begin));
1144 if (r) {
1145 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1146 bio_io_error(m->bio);
1147 } else
1148 bio_endio(m->bio);
1149
1150 cell_defer_no_holder(tc, m->cell);
1151 mempool_free(m, pool->mapping_pool);
1152}
1153
1154static void process_prepared(struct pool *pool, struct list_head *head,
1155 process_mapping_fn *fn)
1156{
1157 unsigned long flags;
1158 struct list_head maps;
1159 struct dm_thin_new_mapping *m, *tmp;
1160
1161 INIT_LIST_HEAD(&maps);
1162 spin_lock_irqsave(&pool->lock, flags);
1163 list_splice_init(head, &maps);
1164 spin_unlock_irqrestore(&pool->lock, flags);
1165
1166 list_for_each_entry_safe(m, tmp, &maps, list)
1167 (*fn)(m);
1168}
1169
1170/*
1171 * Deferred bio jobs.
1172 */
1173static int io_overlaps_block(struct pool *pool, struct bio *bio)
1174{
1175 return bio->bi_iter.bi_size ==
1176 (pool->sectors_per_block << SECTOR_SHIFT);
1177}
1178
1179static int io_overwrites_block(struct pool *pool, struct bio *bio)
1180{
1181 return (bio_data_dir(bio) == WRITE) &&
1182 io_overlaps_block(pool, bio);
1183}
1184
1185static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1186 bio_end_io_t *fn)
1187{
1188 *save = bio->bi_end_io;
1189 bio->bi_end_io = fn;
1190}
1191
1192static int ensure_next_mapping(struct pool *pool)
1193{
1194 if (pool->next_mapping)
1195 return 0;
1196
1197 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
1198
1199 return pool->next_mapping ? 0 : -ENOMEM;
1200}
1201
1202static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1203{
1204 struct dm_thin_new_mapping *m = pool->next_mapping;
1205
1206 BUG_ON(!pool->next_mapping);
1207
1208 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1209 INIT_LIST_HEAD(&m->list);
1210 m->bio = NULL;
1211
1212 pool->next_mapping = NULL;
1213
1214 return m;
1215}
1216
1217static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1218 sector_t begin, sector_t end)
1219{
1220 int r;
1221 struct dm_io_region to;
1222
1223 to.bdev = tc->pool_dev->bdev;
1224 to.sector = begin;
1225 to.count = end - begin;
1226
1227 r = dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1228 if (r < 0) {
1229 DMERR_LIMIT("dm_kcopyd_zero() failed");
1230 copy_complete(1, 1, m);
1231 }
1232}
1233
1234static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1235 dm_block_t data_begin,
1236 struct dm_thin_new_mapping *m)
1237{
1238 struct pool *pool = tc->pool;
1239 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1240
1241 h->overwrite_mapping = m;
1242 m->bio = bio;
1243 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1244 inc_all_io_entry(pool, bio);
1245 remap_and_issue(tc, bio, data_begin);
1246}
1247
1248/*
1249 * A partial copy also needs to zero the uncopied region.
1250 */
1251static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1252 struct dm_dev *origin, dm_block_t data_origin,
1253 dm_block_t data_dest,
1254 struct dm_bio_prison_cell *cell, struct bio *bio,
1255 sector_t len)
1256{
1257 int r;
1258 struct pool *pool = tc->pool;
1259 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1260
1261 m->tc = tc;
1262 m->virt_begin = virt_block;
1263 m->virt_end = virt_block + 1u;
1264 m->data_block = data_dest;
1265 m->cell = cell;
1266
1267 /*
1268 * quiesce action + copy action + an extra reference held for the
1269 * duration of this function (we may need to inc later for a
1270 * partial zero).
1271 */
1272 atomic_set(&m->prepare_actions, 3);
1273
1274 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1275 complete_mapping_preparation(m); /* already quiesced */
1276
1277 /*
1278 * IO to pool_dev remaps to the pool target's data_dev.
1279 *
1280 * If the whole block of data is being overwritten, we can issue the
1281 * bio immediately. Otherwise we use kcopyd to clone the data first.
1282 */
1283 if (io_overwrites_block(pool, bio))
1284 remap_and_issue_overwrite(tc, bio, data_dest, m);
1285 else {
1286 struct dm_io_region from, to;
1287
1288 from.bdev = origin->bdev;
1289 from.sector = data_origin * pool->sectors_per_block;
1290 from.count = len;
1291
1292 to.bdev = tc->pool_dev->bdev;
1293 to.sector = data_dest * pool->sectors_per_block;
1294 to.count = len;
1295
1296 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1297 0, copy_complete, m);
1298 if (r < 0) {
1299 DMERR_LIMIT("dm_kcopyd_copy() failed");
1300 copy_complete(1, 1, m);
1301
1302 /*
1303 * We allow the zero to be issued, to simplify the
1304 * error path. Otherwise we'd need to start
1305 * worrying about decrementing the prepare_actions
1306 * counter.
1307 */
1308 }
1309
1310 /*
1311 * Do we need to zero a tail region?
1312 */
1313 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1314 atomic_inc(&m->prepare_actions);
1315 ll_zero(tc, m,
1316 data_dest * pool->sectors_per_block + len,
1317 (data_dest + 1) * pool->sectors_per_block);
1318 }
1319 }
1320
1321 complete_mapping_preparation(m); /* drop our ref */
1322}
1323
1324static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1325 dm_block_t data_origin, dm_block_t data_dest,
1326 struct dm_bio_prison_cell *cell, struct bio *bio)
1327{
1328 schedule_copy(tc, virt_block, tc->pool_dev,
1329 data_origin, data_dest, cell, bio,
1330 tc->pool->sectors_per_block);
1331}
1332
1333static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1334 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1335 struct bio *bio)
1336{
1337 struct pool *pool = tc->pool;
1338 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1339
1340 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1341 m->tc = tc;
1342 m->virt_begin = virt_block;
1343 m->virt_end = virt_block + 1u;
1344 m->data_block = data_block;
1345 m->cell = cell;
1346
1347 /*
1348 * If the whole block of data is being overwritten or we are not
1349 * zeroing pre-existing data, we can issue the bio immediately.
1350 * Otherwise we use kcopyd to zero the data first.
1351 */
1352 if (pool->pf.zero_new_blocks) {
1353 if (io_overwrites_block(pool, bio))
1354 remap_and_issue_overwrite(tc, bio, data_block, m);
1355 else
1356 ll_zero(tc, m, data_block * pool->sectors_per_block,
1357 (data_block + 1) * pool->sectors_per_block);
1358 } else
1359 process_prepared_mapping(m);
1360}
1361
1362static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1363 dm_block_t data_dest,
1364 struct dm_bio_prison_cell *cell, struct bio *bio)
1365{
1366 struct pool *pool = tc->pool;
1367 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1368 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1369
1370 if (virt_block_end <= tc->origin_size)
1371 schedule_copy(tc, virt_block, tc->origin_dev,
1372 virt_block, data_dest, cell, bio,
1373 pool->sectors_per_block);
1374
1375 else if (virt_block_begin < tc->origin_size)
1376 schedule_copy(tc, virt_block, tc->origin_dev,
1377 virt_block, data_dest, cell, bio,
1378 tc->origin_size - virt_block_begin);
1379
1380 else
1381 schedule_zero(tc, virt_block, data_dest, cell, bio);
1382}
1383
1384static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1385
1386static void check_for_space(struct pool *pool)
1387{
1388 int r;
1389 dm_block_t nr_free;
1390
1391 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1392 return;
1393
1394 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1395 if (r)
1396 return;
1397
1398 if (nr_free)
1399 set_pool_mode(pool, PM_WRITE);
1400}
1401
1402/*
1403 * A non-zero return indicates read_only or fail_io mode.
1404 * Many callers don't care about the return value.
1405 */
1406static int commit(struct pool *pool)
1407{
1408 int r;
1409
1410 if (get_pool_mode(pool) >= PM_READ_ONLY)
1411 return -EINVAL;
1412
1413 r = dm_pool_commit_metadata(pool->pmd);
1414 if (r)
1415 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1416 else
1417 check_for_space(pool);
1418
1419 return r;
1420}
1421
1422static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1423{
1424 unsigned long flags;
1425
1426 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1427 DMWARN("%s: reached low water mark for data device: sending event.",
1428 dm_device_name(pool->pool_md));
1429 spin_lock_irqsave(&pool->lock, flags);
1430 pool->low_water_triggered = true;
1431 spin_unlock_irqrestore(&pool->lock, flags);
1432 dm_table_event(pool->ti->table);
1433 }
1434}
1435
1436static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1437{
1438 int r;
1439 dm_block_t free_blocks;
1440 struct pool *pool = tc->pool;
1441
1442 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1443 return -EINVAL;
1444
1445 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1446 if (r) {
1447 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1448 return r;
1449 }
1450
1451 check_low_water_mark(pool, free_blocks);
1452
1453 if (!free_blocks) {
1454 /*
1455 * Try to commit to see if that will free up some
1456 * more space.
1457 */
1458 r = commit(pool);
1459 if (r)
1460 return r;
1461
1462 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1463 if (r) {
1464 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1465 return r;
1466 }
1467
1468 if (!free_blocks) {
1469 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1470 return -ENOSPC;
1471 }
1472 }
1473
1474 r = dm_pool_alloc_data_block(pool->pmd, result);
1475 if (r) {
1476 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1477 return r;
1478 }
1479
1480 return 0;
1481}
1482
1483/*
1484 * If we have run out of space, queue bios until the device is
1485 * resumed, presumably after having been reloaded with more space.
1486 */
1487static void retry_on_resume(struct bio *bio)
1488{
1489 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1490 struct thin_c *tc = h->tc;
1491 unsigned long flags;
1492
1493 spin_lock_irqsave(&tc->lock, flags);
1494 bio_list_add(&tc->retry_on_resume_list, bio);
1495 spin_unlock_irqrestore(&tc->lock, flags);
1496}
1497
1498static int should_error_unserviceable_bio(struct pool *pool)
1499{
1500 enum pool_mode m = get_pool_mode(pool);
1501
1502 switch (m) {
1503 case PM_WRITE:
1504 /* Shouldn't get here */
1505 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1506 return -EIO;
1507
1508 case PM_OUT_OF_DATA_SPACE:
1509 return pool->pf.error_if_no_space ? -ENOSPC : 0;
1510
1511 case PM_READ_ONLY:
1512 case PM_FAIL:
1513 return -EIO;
1514 default:
1515 /* Shouldn't get here */
1516 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1517 return -EIO;
1518 }
1519}
1520
1521static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1522{
1523 int error = should_error_unserviceable_bio(pool);
1524
1525 if (error) {
1526 bio->bi_error = error;
1527 bio_endio(bio);
1528 } else
1529 retry_on_resume(bio);
1530}
1531
1532static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1533{
1534 struct bio *bio;
1535 struct bio_list bios;
1536 int error;
1537
1538 error = should_error_unserviceable_bio(pool);
1539 if (error) {
1540 cell_error_with_code(pool, cell, error);
1541 return;
1542 }
1543
1544 bio_list_init(&bios);
1545 cell_release(pool, cell, &bios);
1546
1547 while ((bio = bio_list_pop(&bios)))
1548 retry_on_resume(bio);
1549}
1550
1551static void process_discard_cell_no_passdown(struct thin_c *tc,
1552 struct dm_bio_prison_cell *virt_cell)
1553{
1554 struct pool *pool = tc->pool;
1555 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1556
1557 /*
1558 * We don't need to lock the data blocks, since there's no
1559 * passdown. We only lock data blocks for allocation and breaking sharing.
1560 */
1561 m->tc = tc;
1562 m->virt_begin = virt_cell->key.block_begin;
1563 m->virt_end = virt_cell->key.block_end;
1564 m->cell = virt_cell;
1565 m->bio = virt_cell->holder;
1566
1567 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1568 pool->process_prepared_discard(m);
1569}
1570
1571static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1572 struct bio *bio)
1573{
1574 struct pool *pool = tc->pool;
1575
1576 int r;
1577 bool maybe_shared;
1578 struct dm_cell_key data_key;
1579 struct dm_bio_prison_cell *data_cell;
1580 struct dm_thin_new_mapping *m;
1581 dm_block_t virt_begin, virt_end, data_begin;
1582
1583 while (begin != end) {
1584 r = ensure_next_mapping(pool);
1585 if (r)
1586 /* we did our best */
1587 return;
1588
1589 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1590 &data_begin, &maybe_shared);
1591 if (r)
1592 /*
1593 * Silently fail, letting any mappings we've
1594 * created complete.
1595 */
1596 break;
1597
1598 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1599 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1600 /* contention, we'll give up with this range */
1601 begin = virt_end;
1602 continue;
1603 }
1604
1605 /*
1606 * IO may still be going to the destination block. We must
1607 * quiesce before we can do the removal.
1608 */
1609 m = get_next_mapping(pool);
1610 m->tc = tc;
1611 m->maybe_shared = maybe_shared;
1612 m->virt_begin = virt_begin;
1613 m->virt_end = virt_end;
1614 m->data_block = data_begin;
1615 m->cell = data_cell;
1616 m->bio = bio;
1617
1618 /*
1619 * The parent bio must not complete before sub discard bios are
1620 * chained to it (see end_discard's bio_chain)!
1621 *
1622 * This per-mapping bi_remaining increment is paired with
1623 * the implicit decrement that occurs via bio_endio() in
1624 * end_discard().
1625 */
1626 bio_inc_remaining(bio);
1627 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1628 pool->process_prepared_discard(m);
1629
1630 begin = virt_end;
1631 }
1632}
1633
1634static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1635{
1636 struct bio *bio = virt_cell->holder;
1637 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1638
1639 /*
1640 * The virt_cell will only get freed once the origin bio completes.
1641 * This means it will remain locked while all the individual
1642 * passdown bios are in flight.
1643 */
1644 h->cell = virt_cell;
1645 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1646
1647 /*
1648 * We complete the bio now, knowing that the bi_remaining field
1649 * will prevent completion until the sub range discards have
1650 * completed.
1651 */
1652 bio_endio(bio);
1653}
1654
1655static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1656{
1657 dm_block_t begin, end;
1658 struct dm_cell_key virt_key;
1659 struct dm_bio_prison_cell *virt_cell;
1660
1661 get_bio_block_range(tc, bio, &begin, &end);
1662 if (begin == end) {
1663 /*
1664 * The discard covers less than a block.
1665 */
1666 bio_endio(bio);
1667 return;
1668 }
1669
1670 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1671 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1672 /*
1673 * Potential starvation issue: We're relying on the
1674 * fs/application being well behaved, and not trying to
1675 * send IO to a region at the same time as discarding it.
1676 * If they do this persistently then it's possible this
1677 * cell will never be granted.
1678 */
1679 return;
1680
1681 tc->pool->process_discard_cell(tc, virt_cell);
1682}
1683
1684static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1685 struct dm_cell_key *key,
1686 struct dm_thin_lookup_result *lookup_result,
1687 struct dm_bio_prison_cell *cell)
1688{
1689 int r;
1690 dm_block_t data_block;
1691 struct pool *pool = tc->pool;
1692
1693 r = alloc_data_block(tc, &data_block);
1694 switch (r) {
1695 case 0:
1696 schedule_internal_copy(tc, block, lookup_result->block,
1697 data_block, cell, bio);
1698 break;
1699
1700 case -ENOSPC:
1701 retry_bios_on_resume(pool, cell);
1702 break;
1703
1704 default:
1705 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1706 __func__, r);
1707 cell_error(pool, cell);
1708 break;
1709 }
1710}
1711
1712static void __remap_and_issue_shared_cell(void *context,
1713 struct dm_bio_prison_cell *cell)
1714{
1715 struct remap_info *info = context;
1716 struct bio *bio;
1717
1718 while ((bio = bio_list_pop(&cell->bios))) {
1719 if ((bio_data_dir(bio) == WRITE) ||
1720 (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
1721 bio_op(bio) == REQ_OP_DISCARD))
1722 bio_list_add(&info->defer_bios, bio);
1723 else {
1724 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));;
1725
1726 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1727 inc_all_io_entry(info->tc->pool, bio);
1728 bio_list_add(&info->issue_bios, bio);
1729 }
1730 }
1731}
1732
1733static void remap_and_issue_shared_cell(struct thin_c *tc,
1734 struct dm_bio_prison_cell *cell,
1735 dm_block_t block)
1736{
1737 struct bio *bio;
1738 struct remap_info info;
1739
1740 info.tc = tc;
1741 bio_list_init(&info.defer_bios);
1742 bio_list_init(&info.issue_bios);
1743
1744 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1745 &info, cell);
1746
1747 while ((bio = bio_list_pop(&info.defer_bios)))
1748 thin_defer_bio(tc, bio);
1749
1750 while ((bio = bio_list_pop(&info.issue_bios)))
1751 remap_and_issue(tc, bio, block);
1752}
1753
1754static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1755 dm_block_t block,
1756 struct dm_thin_lookup_result *lookup_result,
1757 struct dm_bio_prison_cell *virt_cell)
1758{
1759 struct dm_bio_prison_cell *data_cell;
1760 struct pool *pool = tc->pool;
1761 struct dm_cell_key key;
1762
1763 /*
1764 * If cell is already occupied, then sharing is already in the process
1765 * of being broken so we have nothing further to do here.
1766 */
1767 build_data_key(tc->td, lookup_result->block, &key);
1768 if (bio_detain(pool, &key, bio, &data_cell)) {
1769 cell_defer_no_holder(tc, virt_cell);
1770 return;
1771 }
1772
1773 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1774 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1775 cell_defer_no_holder(tc, virt_cell);
1776 } else {
1777 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1778
1779 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1780 inc_all_io_entry(pool, bio);
1781 remap_and_issue(tc, bio, lookup_result->block);
1782
1783 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1784 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1785 }
1786}
1787
1788static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1789 struct dm_bio_prison_cell *cell)
1790{
1791 int r;
1792 dm_block_t data_block;
1793 struct pool *pool = tc->pool;
1794
1795 /*
1796 * Remap empty bios (flushes) immediately, without provisioning.
1797 */
1798 if (!bio->bi_iter.bi_size) {
1799 inc_all_io_entry(pool, bio);
1800 cell_defer_no_holder(tc, cell);
1801
1802 remap_and_issue(tc, bio, 0);
1803 return;
1804 }
1805
1806 /*
1807 * Fill read bios with zeroes and complete them immediately.
1808 */
1809 if (bio_data_dir(bio) == READ) {
1810 zero_fill_bio(bio);
1811 cell_defer_no_holder(tc, cell);
1812 bio_endio(bio);
1813 return;
1814 }
1815
1816 r = alloc_data_block(tc, &data_block);
1817 switch (r) {
1818 case 0:
1819 if (tc->origin_dev)
1820 schedule_external_copy(tc, block, data_block, cell, bio);
1821 else
1822 schedule_zero(tc, block, data_block, cell, bio);
1823 break;
1824
1825 case -ENOSPC:
1826 retry_bios_on_resume(pool, cell);
1827 break;
1828
1829 default:
1830 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1831 __func__, r);
1832 cell_error(pool, cell);
1833 break;
1834 }
1835}
1836
1837static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1838{
1839 int r;
1840 struct pool *pool = tc->pool;
1841 struct bio *bio = cell->holder;
1842 dm_block_t block = get_bio_block(tc, bio);
1843 struct dm_thin_lookup_result lookup_result;
1844
1845 if (tc->requeue_mode) {
1846 cell_requeue(pool, cell);
1847 return;
1848 }
1849
1850 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1851 switch (r) {
1852 case 0:
1853 if (lookup_result.shared)
1854 process_shared_bio(tc, bio, block, &lookup_result, cell);
1855 else {
1856 inc_all_io_entry(pool, bio);
1857 remap_and_issue(tc, bio, lookup_result.block);
1858 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1859 }
1860 break;
1861
1862 case -ENODATA:
1863 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1864 inc_all_io_entry(pool, bio);
1865 cell_defer_no_holder(tc, cell);
1866
1867 if (bio_end_sector(bio) <= tc->origin_size)
1868 remap_to_origin_and_issue(tc, bio);
1869
1870 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1871 zero_fill_bio(bio);
1872 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1873 remap_to_origin_and_issue(tc, bio);
1874
1875 } else {
1876 zero_fill_bio(bio);
1877 bio_endio(bio);
1878 }
1879 } else
1880 provision_block(tc, bio, block, cell);
1881 break;
1882
1883 default:
1884 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1885 __func__, r);
1886 cell_defer_no_holder(tc, cell);
1887 bio_io_error(bio);
1888 break;
1889 }
1890}
1891
1892static void process_bio(struct thin_c *tc, struct bio *bio)
1893{
1894 struct pool *pool = tc->pool;
1895 dm_block_t block = get_bio_block(tc, bio);
1896 struct dm_bio_prison_cell *cell;
1897 struct dm_cell_key key;
1898
1899 /*
1900 * If cell is already occupied, then the block is already
1901 * being provisioned so we have nothing further to do here.
1902 */
1903 build_virtual_key(tc->td, block, &key);
1904 if (bio_detain(pool, &key, bio, &cell))
1905 return;
1906
1907 process_cell(tc, cell);
1908}
1909
1910static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
1911 struct dm_bio_prison_cell *cell)
1912{
1913 int r;
1914 int rw = bio_data_dir(bio);
1915 dm_block_t block = get_bio_block(tc, bio);
1916 struct dm_thin_lookup_result lookup_result;
1917
1918 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1919 switch (r) {
1920 case 0:
1921 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
1922 handle_unserviceable_bio(tc->pool, bio);
1923 if (cell)
1924 cell_defer_no_holder(tc, cell);
1925 } else {
1926 inc_all_io_entry(tc->pool, bio);
1927 remap_and_issue(tc, bio, lookup_result.block);
1928 if (cell)
1929 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1930 }
1931 break;
1932
1933 case -ENODATA:
1934 if (cell)
1935 cell_defer_no_holder(tc, cell);
1936 if (rw != READ) {
1937 handle_unserviceable_bio(tc->pool, bio);
1938 break;
1939 }
1940
1941 if (tc->origin_dev) {
1942 inc_all_io_entry(tc->pool, bio);
1943 remap_to_origin_and_issue(tc, bio);
1944 break;
1945 }
1946
1947 zero_fill_bio(bio);
1948 bio_endio(bio);
1949 break;
1950
1951 default:
1952 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1953 __func__, r);
1954 if (cell)
1955 cell_defer_no_holder(tc, cell);
1956 bio_io_error(bio);
1957 break;
1958 }
1959}
1960
1961static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
1962{
1963 __process_bio_read_only(tc, bio, NULL);
1964}
1965
1966static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1967{
1968 __process_bio_read_only(tc, cell->holder, cell);
1969}
1970
1971static void process_bio_success(struct thin_c *tc, struct bio *bio)
1972{
1973 bio_endio(bio);
1974}
1975
1976static void process_bio_fail(struct thin_c *tc, struct bio *bio)
1977{
1978 bio_io_error(bio);
1979}
1980
1981static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1982{
1983 cell_success(tc->pool, cell);
1984}
1985
1986static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1987{
1988 cell_error(tc->pool, cell);
1989}
1990
1991/*
1992 * FIXME: should we also commit due to size of transaction, measured in
1993 * metadata blocks?
1994 */
1995static int need_commit_due_to_time(struct pool *pool)
1996{
1997 return !time_in_range(jiffies, pool->last_commit_jiffies,
1998 pool->last_commit_jiffies + COMMIT_PERIOD);
1999}
2000
2001#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2002#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2003
2004static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2005{
2006 struct rb_node **rbp, *parent;
2007 struct dm_thin_endio_hook *pbd;
2008 sector_t bi_sector = bio->bi_iter.bi_sector;
2009
2010 rbp = &tc->sort_bio_list.rb_node;
2011 parent = NULL;
2012 while (*rbp) {
2013 parent = *rbp;
2014 pbd = thin_pbd(parent);
2015
2016 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2017 rbp = &(*rbp)->rb_left;
2018 else
2019 rbp = &(*rbp)->rb_right;
2020 }
2021
2022 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2023 rb_link_node(&pbd->rb_node, parent, rbp);
2024 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2025}
2026
2027static void __extract_sorted_bios(struct thin_c *tc)
2028{
2029 struct rb_node *node;
2030 struct dm_thin_endio_hook *pbd;
2031 struct bio *bio;
2032
2033 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2034 pbd = thin_pbd(node);
2035 bio = thin_bio(pbd);
2036
2037 bio_list_add(&tc->deferred_bio_list, bio);
2038 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2039 }
2040
2041 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2042}
2043
2044static void __sort_thin_deferred_bios(struct thin_c *tc)
2045{
2046 struct bio *bio;
2047 struct bio_list bios;
2048
2049 bio_list_init(&bios);
2050 bio_list_merge(&bios, &tc->deferred_bio_list);
2051 bio_list_init(&tc->deferred_bio_list);
2052
2053 /* Sort deferred_bio_list using rb-tree */
2054 while ((bio = bio_list_pop(&bios)))
2055 __thin_bio_rb_add(tc, bio);
2056
2057 /*
2058 * Transfer the sorted bios in sort_bio_list back to
2059 * deferred_bio_list to allow lockless submission of
2060 * all bios.
2061 */
2062 __extract_sorted_bios(tc);
2063}
2064
2065static void process_thin_deferred_bios(struct thin_c *tc)
2066{
2067 struct pool *pool = tc->pool;
2068 unsigned long flags;
2069 struct bio *bio;
2070 struct bio_list bios;
2071 struct blk_plug plug;
2072 unsigned count = 0;
2073
2074 if (tc->requeue_mode) {
2075 error_thin_bio_list(tc, &tc->deferred_bio_list, DM_ENDIO_REQUEUE);
2076 return;
2077 }
2078
2079 bio_list_init(&bios);
2080
2081 spin_lock_irqsave(&tc->lock, flags);
2082
2083 if (bio_list_empty(&tc->deferred_bio_list)) {
2084 spin_unlock_irqrestore(&tc->lock, flags);
2085 return;
2086 }
2087
2088 __sort_thin_deferred_bios(tc);
2089
2090 bio_list_merge(&bios, &tc->deferred_bio_list);
2091 bio_list_init(&tc->deferred_bio_list);
2092
2093 spin_unlock_irqrestore(&tc->lock, flags);
2094
2095 blk_start_plug(&plug);
2096 while ((bio = bio_list_pop(&bios))) {
2097 /*
2098 * If we've got no free new_mapping structs, and processing
2099 * this bio might require one, we pause until there are some
2100 * prepared mappings to process.
2101 */
2102 if (ensure_next_mapping(pool)) {
2103 spin_lock_irqsave(&tc->lock, flags);
2104 bio_list_add(&tc->deferred_bio_list, bio);
2105 bio_list_merge(&tc->deferred_bio_list, &bios);
2106 spin_unlock_irqrestore(&tc->lock, flags);
2107 break;
2108 }
2109
2110 if (bio_op(bio) == REQ_OP_DISCARD)
2111 pool->process_discard(tc, bio);
2112 else
2113 pool->process_bio(tc, bio);
2114
2115 if ((count++ & 127) == 0) {
2116 throttle_work_update(&pool->throttle);
2117 dm_pool_issue_prefetches(pool->pmd);
2118 }
2119 }
2120 blk_finish_plug(&plug);
2121}
2122
2123static int cmp_cells(const void *lhs, const void *rhs)
2124{
2125 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2126 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2127
2128 BUG_ON(!lhs_cell->holder);
2129 BUG_ON(!rhs_cell->holder);
2130
2131 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2132 return -1;
2133
2134 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2135 return 1;
2136
2137 return 0;
2138}
2139
2140static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2141{
2142 unsigned count = 0;
2143 struct dm_bio_prison_cell *cell, *tmp;
2144
2145 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2146 if (count >= CELL_SORT_ARRAY_SIZE)
2147 break;
2148
2149 pool->cell_sort_array[count++] = cell;
2150 list_del(&cell->user_list);
2151 }
2152
2153 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2154
2155 return count;
2156}
2157
2158static void process_thin_deferred_cells(struct thin_c *tc)
2159{
2160 struct pool *pool = tc->pool;
2161 unsigned long flags;
2162 struct list_head cells;
2163 struct dm_bio_prison_cell *cell;
2164 unsigned i, j, count;
2165
2166 INIT_LIST_HEAD(&cells);
2167
2168 spin_lock_irqsave(&tc->lock, flags);
2169 list_splice_init(&tc->deferred_cells, &cells);
2170 spin_unlock_irqrestore(&tc->lock, flags);
2171
2172 if (list_empty(&cells))
2173 return;
2174
2175 do {
2176 count = sort_cells(tc->pool, &cells);
2177
2178 for (i = 0; i < count; i++) {
2179 cell = pool->cell_sort_array[i];
2180 BUG_ON(!cell->holder);
2181
2182 /*
2183 * If we've got no free new_mapping structs, and processing
2184 * this bio might require one, we pause until there are some
2185 * prepared mappings to process.
2186 */
2187 if (ensure_next_mapping(pool)) {
2188 for (j = i; j < count; j++)
2189 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2190
2191 spin_lock_irqsave(&tc->lock, flags);
2192 list_splice(&cells, &tc->deferred_cells);
2193 spin_unlock_irqrestore(&tc->lock, flags);
2194 return;
2195 }
2196
2197 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2198 pool->process_discard_cell(tc, cell);
2199 else
2200 pool->process_cell(tc, cell);
2201 }
2202 } while (!list_empty(&cells));
2203}
2204
2205static void thin_get(struct thin_c *tc);
2206static void thin_put(struct thin_c *tc);
2207
2208/*
2209 * We can't hold rcu_read_lock() around code that can block. So we
2210 * find a thin with the rcu lock held; bump a refcount; then drop
2211 * the lock.
2212 */
2213static struct thin_c *get_first_thin(struct pool *pool)
2214{
2215 struct thin_c *tc = NULL;
2216
2217 rcu_read_lock();
2218 if (!list_empty(&pool->active_thins)) {
2219 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2220 thin_get(tc);
2221 }
2222 rcu_read_unlock();
2223
2224 return tc;
2225}
2226
2227static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2228{
2229 struct thin_c *old_tc = tc;
2230
2231 rcu_read_lock();
2232 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2233 thin_get(tc);
2234 thin_put(old_tc);
2235 rcu_read_unlock();
2236 return tc;
2237 }
2238 thin_put(old_tc);
2239 rcu_read_unlock();
2240
2241 return NULL;
2242}
2243
2244static void process_deferred_bios(struct pool *pool)
2245{
2246 unsigned long flags;
2247 struct bio *bio;
2248 struct bio_list bios;
2249 struct thin_c *tc;
2250
2251 tc = get_first_thin(pool);
2252 while (tc) {
2253 process_thin_deferred_cells(tc);
2254 process_thin_deferred_bios(tc);
2255 tc = get_next_thin(pool, tc);
2256 }
2257
2258 /*
2259 * If there are any deferred flush bios, we must commit
2260 * the metadata before issuing them.
2261 */
2262 bio_list_init(&bios);
2263 spin_lock_irqsave(&pool->lock, flags);
2264 bio_list_merge(&bios, &pool->deferred_flush_bios);
2265 bio_list_init(&pool->deferred_flush_bios);
2266 spin_unlock_irqrestore(&pool->lock, flags);
2267
2268 if (bio_list_empty(&bios) &&
2269 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2270 return;
2271
2272 if (commit(pool)) {
2273 while ((bio = bio_list_pop(&bios)))
2274 bio_io_error(bio);
2275 return;
2276 }
2277 pool->last_commit_jiffies = jiffies;
2278
2279 while ((bio = bio_list_pop(&bios)))
2280 generic_make_request(bio);
2281}
2282
2283static void do_worker(struct work_struct *ws)
2284{
2285 struct pool *pool = container_of(ws, struct pool, worker);
2286
2287 throttle_work_start(&pool->throttle);
2288 dm_pool_issue_prefetches(pool->pmd);
2289 throttle_work_update(&pool->throttle);
2290 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2291 throttle_work_update(&pool->throttle);
2292 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2293 throttle_work_update(&pool->throttle);
2294 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2295 throttle_work_update(&pool->throttle);
2296 process_deferred_bios(pool);
2297 throttle_work_complete(&pool->throttle);
2298}
2299
2300/*
2301 * We want to commit periodically so that not too much
2302 * unwritten data builds up.
2303 */
2304static void do_waker(struct work_struct *ws)
2305{
2306 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2307 wake_worker(pool);
2308 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2309}
2310
2311static void notify_of_pool_mode_change_to_oods(struct pool *pool);
2312
2313/*
2314 * We're holding onto IO to allow userland time to react. After the
2315 * timeout either the pool will have been resized (and thus back in
2316 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2317 */
2318static void do_no_space_timeout(struct work_struct *ws)
2319{
2320 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2321 no_space_timeout);
2322
2323 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2324 pool->pf.error_if_no_space = true;
2325 notify_of_pool_mode_change_to_oods(pool);
2326 error_retry_list_with_code(pool, -ENOSPC);
2327 }
2328}
2329
2330/*----------------------------------------------------------------*/
2331
2332struct pool_work {
2333 struct work_struct worker;
2334 struct completion complete;
2335};
2336
2337static struct pool_work *to_pool_work(struct work_struct *ws)
2338{
2339 return container_of(ws, struct pool_work, worker);
2340}
2341
2342static void pool_work_complete(struct pool_work *pw)
2343{
2344 complete(&pw->complete);
2345}
2346
2347static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2348 void (*fn)(struct work_struct *))
2349{
2350 INIT_WORK_ONSTACK(&pw->worker, fn);
2351 init_completion(&pw->complete);
2352 queue_work(pool->wq, &pw->worker);
2353 wait_for_completion(&pw->complete);
2354}
2355
2356/*----------------------------------------------------------------*/
2357
2358struct noflush_work {
2359 struct pool_work pw;
2360 struct thin_c *tc;
2361};
2362
2363static struct noflush_work *to_noflush(struct work_struct *ws)
2364{
2365 return container_of(to_pool_work(ws), struct noflush_work, pw);
2366}
2367
2368static void do_noflush_start(struct work_struct *ws)
2369{
2370 struct noflush_work *w = to_noflush(ws);
2371 w->tc->requeue_mode = true;
2372 requeue_io(w->tc);
2373 pool_work_complete(&w->pw);
2374}
2375
2376static void do_noflush_stop(struct work_struct *ws)
2377{
2378 struct noflush_work *w = to_noflush(ws);
2379 w->tc->requeue_mode = false;
2380 pool_work_complete(&w->pw);
2381}
2382
2383static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2384{
2385 struct noflush_work w;
2386
2387 w.tc = tc;
2388 pool_work_wait(&w.pw, tc->pool, fn);
2389}
2390
2391/*----------------------------------------------------------------*/
2392
2393static enum pool_mode get_pool_mode(struct pool *pool)
2394{
2395 return pool->pf.mode;
2396}
2397
2398static void notify_of_pool_mode_change(struct pool *pool, const char *new_mode)
2399{
2400 dm_table_event(pool->ti->table);
2401 DMINFO("%s: switching pool to %s mode",
2402 dm_device_name(pool->pool_md), new_mode);
2403}
2404
2405static void notify_of_pool_mode_change_to_oods(struct pool *pool)
2406{
2407 if (!pool->pf.error_if_no_space)
2408 notify_of_pool_mode_change(pool, "out-of-data-space (queue IO)");
2409 else
2410 notify_of_pool_mode_change(pool, "out-of-data-space (error IO)");
2411}
2412
2413static bool passdown_enabled(struct pool_c *pt)
2414{
2415 return pt->adjusted_pf.discard_passdown;
2416}
2417
2418static void set_discard_callbacks(struct pool *pool)
2419{
2420 struct pool_c *pt = pool->ti->private;
2421
2422 if (passdown_enabled(pt)) {
2423 pool->process_discard_cell = process_discard_cell_passdown;
2424 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2425 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2426 } else {
2427 pool->process_discard_cell = process_discard_cell_no_passdown;
2428 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2429 }
2430}
2431
2432static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2433{
2434 struct pool_c *pt = pool->ti->private;
2435 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2436 enum pool_mode old_mode = get_pool_mode(pool);
2437 unsigned long no_space_timeout = ACCESS_ONCE(no_space_timeout_secs) * HZ;
2438
2439 /*
2440 * Never allow the pool to transition to PM_WRITE mode if user
2441 * intervention is required to verify metadata and data consistency.
2442 */
2443 if (new_mode == PM_WRITE && needs_check) {
2444 DMERR("%s: unable to switch pool to write mode until repaired.",
2445 dm_device_name(pool->pool_md));
2446 if (old_mode != new_mode)
2447 new_mode = old_mode;
2448 else
2449 new_mode = PM_READ_ONLY;
2450 }
2451 /*
2452 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2453 * not going to recover without a thin_repair. So we never let the
2454 * pool move out of the old mode.
2455 */
2456 if (old_mode == PM_FAIL)
2457 new_mode = old_mode;
2458
2459 switch (new_mode) {
2460 case PM_FAIL:
2461 if (old_mode != new_mode)
2462 notify_of_pool_mode_change(pool, "failure");
2463 dm_pool_metadata_read_only(pool->pmd);
2464 pool->process_bio = process_bio_fail;
2465 pool->process_discard = process_bio_fail;
2466 pool->process_cell = process_cell_fail;
2467 pool->process_discard_cell = process_cell_fail;
2468 pool->process_prepared_mapping = process_prepared_mapping_fail;
2469 pool->process_prepared_discard = process_prepared_discard_fail;
2470
2471 error_retry_list(pool);
2472 break;
2473
2474 case PM_READ_ONLY:
2475 if (old_mode != new_mode)
2476 notify_of_pool_mode_change(pool, "read-only");
2477 dm_pool_metadata_read_only(pool->pmd);
2478 pool->process_bio = process_bio_read_only;
2479 pool->process_discard = process_bio_success;
2480 pool->process_cell = process_cell_read_only;
2481 pool->process_discard_cell = process_cell_success;
2482 pool->process_prepared_mapping = process_prepared_mapping_fail;
2483 pool->process_prepared_discard = process_prepared_discard_success;
2484
2485 error_retry_list(pool);
2486 break;
2487
2488 case PM_OUT_OF_DATA_SPACE:
2489 /*
2490 * Ideally we'd never hit this state; the low water mark
2491 * would trigger userland to extend the pool before we
2492 * completely run out of data space. However, many small
2493 * IOs to unprovisioned space can consume data space at an
2494 * alarming rate. Adjust your low water mark if you're
2495 * frequently seeing this mode.
2496 */
2497 if (old_mode != new_mode)
2498 notify_of_pool_mode_change_to_oods(pool);
2499 pool->out_of_data_space = true;
2500 pool->process_bio = process_bio_read_only;
2501 pool->process_discard = process_discard_bio;
2502 pool->process_cell = process_cell_read_only;
2503 pool->process_prepared_mapping = process_prepared_mapping;
2504 set_discard_callbacks(pool);
2505
2506 if (!pool->pf.error_if_no_space && no_space_timeout)
2507 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2508 break;
2509
2510 case PM_WRITE:
2511 if (old_mode != new_mode)
2512 notify_of_pool_mode_change(pool, "write");
2513 pool->out_of_data_space = false;
2514 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2515 dm_pool_metadata_read_write(pool->pmd);
2516 pool->process_bio = process_bio;
2517 pool->process_discard = process_discard_bio;
2518 pool->process_cell = process_cell;
2519 pool->process_prepared_mapping = process_prepared_mapping;
2520 set_discard_callbacks(pool);
2521 break;
2522 }
2523
2524 pool->pf.mode = new_mode;
2525 /*
2526 * The pool mode may have changed, sync it so bind_control_target()
2527 * doesn't cause an unexpected mode transition on resume.
2528 */
2529 pt->adjusted_pf.mode = new_mode;
2530}
2531
2532static void abort_transaction(struct pool *pool)
2533{
2534 const char *dev_name = dm_device_name(pool->pool_md);
2535
2536 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2537 if (dm_pool_abort_metadata(pool->pmd)) {
2538 DMERR("%s: failed to abort metadata transaction", dev_name);
2539 set_pool_mode(pool, PM_FAIL);
2540 }
2541
2542 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2543 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2544 set_pool_mode(pool, PM_FAIL);
2545 }
2546}
2547
2548static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2549{
2550 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2551 dm_device_name(pool->pool_md), op, r);
2552
2553 abort_transaction(pool);
2554 set_pool_mode(pool, PM_READ_ONLY);
2555}
2556
2557/*----------------------------------------------------------------*/
2558
2559/*
2560 * Mapping functions.
2561 */
2562
2563/*
2564 * Called only while mapping a thin bio to hand it over to the workqueue.
2565 */
2566static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2567{
2568 unsigned long flags;
2569 struct pool *pool = tc->pool;
2570
2571 spin_lock_irqsave(&tc->lock, flags);
2572 bio_list_add(&tc->deferred_bio_list, bio);
2573 spin_unlock_irqrestore(&tc->lock, flags);
2574
2575 wake_worker(pool);
2576}
2577
2578static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2579{
2580 struct pool *pool = tc->pool;
2581
2582 throttle_lock(&pool->throttle);
2583 thin_defer_bio(tc, bio);
2584 throttle_unlock(&pool->throttle);
2585}
2586
2587static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2588{
2589 unsigned long flags;
2590 struct pool *pool = tc->pool;
2591
2592 throttle_lock(&pool->throttle);
2593 spin_lock_irqsave(&tc->lock, flags);
2594 list_add_tail(&cell->user_list, &tc->deferred_cells);
2595 spin_unlock_irqrestore(&tc->lock, flags);
2596 throttle_unlock(&pool->throttle);
2597
2598 wake_worker(pool);
2599}
2600
2601static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2602{
2603 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2604
2605 h->tc = tc;
2606 h->shared_read_entry = NULL;
2607 h->all_io_entry = NULL;
2608 h->overwrite_mapping = NULL;
2609 h->cell = NULL;
2610}
2611
2612/*
2613 * Non-blocking function called from the thin target's map function.
2614 */
2615static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2616{
2617 int r;
2618 struct thin_c *tc = ti->private;
2619 dm_block_t block = get_bio_block(tc, bio);
2620 struct dm_thin_device *td = tc->td;
2621 struct dm_thin_lookup_result result;
2622 struct dm_bio_prison_cell *virt_cell, *data_cell;
2623 struct dm_cell_key key;
2624
2625 thin_hook_bio(tc, bio);
2626
2627 if (tc->requeue_mode) {
2628 bio->bi_error = DM_ENDIO_REQUEUE;
2629 bio_endio(bio);
2630 return DM_MAPIO_SUBMITTED;
2631 }
2632
2633 if (get_pool_mode(tc->pool) == PM_FAIL) {
2634 bio_io_error(bio);
2635 return DM_MAPIO_SUBMITTED;
2636 }
2637
2638 if (bio->bi_opf & (REQ_PREFLUSH | REQ_FUA) ||
2639 bio_op(bio) == REQ_OP_DISCARD) {
2640 thin_defer_bio_with_throttle(tc, bio);
2641 return DM_MAPIO_SUBMITTED;
2642 }
2643
2644 /*
2645 * We must hold the virtual cell before doing the lookup, otherwise
2646 * there's a race with discard.
2647 */
2648 build_virtual_key(tc->td, block, &key);
2649 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2650 return DM_MAPIO_SUBMITTED;
2651
2652 r = dm_thin_find_block(td, block, 0, &result);
2653
2654 /*
2655 * Note that we defer readahead too.
2656 */
2657 switch (r) {
2658 case 0:
2659 if (unlikely(result.shared)) {
2660 /*
2661 * We have a race condition here between the
2662 * result.shared value returned by the lookup and
2663 * snapshot creation, which may cause new
2664 * sharing.
2665 *
2666 * To avoid this always quiesce the origin before
2667 * taking the snap. You want to do this anyway to
2668 * ensure a consistent application view
2669 * (i.e. lockfs).
2670 *
2671 * More distant ancestors are irrelevant. The
2672 * shared flag will be set in their case.
2673 */
2674 thin_defer_cell(tc, virt_cell);
2675 return DM_MAPIO_SUBMITTED;
2676 }
2677
2678 build_data_key(tc->td, result.block, &key);
2679 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2680 cell_defer_no_holder(tc, virt_cell);
2681 return DM_MAPIO_SUBMITTED;
2682 }
2683
2684 inc_all_io_entry(tc->pool, bio);
2685 cell_defer_no_holder(tc, data_cell);
2686 cell_defer_no_holder(tc, virt_cell);
2687
2688 remap(tc, bio, result.block);
2689 return DM_MAPIO_REMAPPED;
2690
2691 case -ENODATA:
2692 case -EWOULDBLOCK:
2693 thin_defer_cell(tc, virt_cell);
2694 return DM_MAPIO_SUBMITTED;
2695
2696 default:
2697 /*
2698 * Must always call bio_io_error on failure.
2699 * dm_thin_find_block can fail with -EINVAL if the
2700 * pool is switched to fail-io mode.
2701 */
2702 bio_io_error(bio);
2703 cell_defer_no_holder(tc, virt_cell);
2704 return DM_MAPIO_SUBMITTED;
2705 }
2706}
2707
2708static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2709{
2710 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2711 struct request_queue *q;
2712
2713 if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2714 return 1;
2715
2716 q = bdev_get_queue(pt->data_dev->bdev);
2717 return bdi_congested(&q->backing_dev_info, bdi_bits);
2718}
2719
2720static void requeue_bios(struct pool *pool)
2721{
2722 unsigned long flags;
2723 struct thin_c *tc;
2724
2725 rcu_read_lock();
2726 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2727 spin_lock_irqsave(&tc->lock, flags);
2728 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2729 bio_list_init(&tc->retry_on_resume_list);
2730 spin_unlock_irqrestore(&tc->lock, flags);
2731 }
2732 rcu_read_unlock();
2733}
2734
2735/*----------------------------------------------------------------
2736 * Binding of control targets to a pool object
2737 *--------------------------------------------------------------*/
2738static bool data_dev_supports_discard(struct pool_c *pt)
2739{
2740 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2741
2742 return q && blk_queue_discard(q);
2743}
2744
2745static bool is_factor(sector_t block_size, uint32_t n)
2746{
2747 return !sector_div(block_size, n);
2748}
2749
2750/*
2751 * If discard_passdown was enabled verify that the data device
2752 * supports discards. Disable discard_passdown if not.
2753 */
2754static void disable_passdown_if_not_supported(struct pool_c *pt)
2755{
2756 struct pool *pool = pt->pool;
2757 struct block_device *data_bdev = pt->data_dev->bdev;
2758 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2759 const char *reason = NULL;
2760 char buf[BDEVNAME_SIZE];
2761
2762 if (!pt->adjusted_pf.discard_passdown)
2763 return;
2764
2765 if (!data_dev_supports_discard(pt))
2766 reason = "discard unsupported";
2767
2768 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2769 reason = "max discard sectors smaller than a block";
2770
2771 if (reason) {
2772 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2773 pt->adjusted_pf.discard_passdown = false;
2774 }
2775}
2776
2777static int bind_control_target(struct pool *pool, struct dm_target *ti)
2778{
2779 struct pool_c *pt = ti->private;
2780
2781 /*
2782 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2783 */
2784 enum pool_mode old_mode = get_pool_mode(pool);
2785 enum pool_mode new_mode = pt->adjusted_pf.mode;
2786
2787 /*
2788 * Don't change the pool's mode until set_pool_mode() below.
2789 * Otherwise the pool's process_* function pointers may
2790 * not match the desired pool mode.
2791 */
2792 pt->adjusted_pf.mode = old_mode;
2793
2794 pool->ti = ti;
2795 pool->pf = pt->adjusted_pf;
2796 pool->low_water_blocks = pt->low_water_blocks;
2797
2798 set_pool_mode(pool, new_mode);
2799
2800 return 0;
2801}
2802
2803static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2804{
2805 if (pool->ti == ti)
2806 pool->ti = NULL;
2807}
2808
2809/*----------------------------------------------------------------
2810 * Pool creation
2811 *--------------------------------------------------------------*/
2812/* Initialize pool features. */
2813static void pool_features_init(struct pool_features *pf)
2814{
2815 pf->mode = PM_WRITE;
2816 pf->zero_new_blocks = true;
2817 pf->discard_enabled = true;
2818 pf->discard_passdown = true;
2819 pf->error_if_no_space = false;
2820}
2821
2822static void __pool_destroy(struct pool *pool)
2823{
2824 __pool_table_remove(pool);
2825
2826 vfree(pool->cell_sort_array);
2827 if (dm_pool_metadata_close(pool->pmd) < 0)
2828 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2829
2830 dm_bio_prison_destroy(pool->prison);
2831 dm_kcopyd_client_destroy(pool->copier);
2832
2833 if (pool->wq)
2834 destroy_workqueue(pool->wq);
2835
2836 if (pool->next_mapping)
2837 mempool_free(pool->next_mapping, pool->mapping_pool);
2838 mempool_destroy(pool->mapping_pool);
2839 dm_deferred_set_destroy(pool->shared_read_ds);
2840 dm_deferred_set_destroy(pool->all_io_ds);
2841 kfree(pool);
2842}
2843
2844static struct kmem_cache *_new_mapping_cache;
2845
2846static struct pool *pool_create(struct mapped_device *pool_md,
2847 struct block_device *metadata_dev,
2848 unsigned long block_size,
2849 int read_only, char **error)
2850{
2851 int r;
2852 void *err_p;
2853 struct pool *pool;
2854 struct dm_pool_metadata *pmd;
2855 bool format_device = read_only ? false : true;
2856
2857 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2858 if (IS_ERR(pmd)) {
2859 *error = "Error creating metadata object";
2860 return (struct pool *)pmd;
2861 }
2862
2863 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
2864 if (!pool) {
2865 *error = "Error allocating memory for pool";
2866 err_p = ERR_PTR(-ENOMEM);
2867 goto bad_pool;
2868 }
2869
2870 pool->pmd = pmd;
2871 pool->sectors_per_block = block_size;
2872 if (block_size & (block_size - 1))
2873 pool->sectors_per_block_shift = -1;
2874 else
2875 pool->sectors_per_block_shift = __ffs(block_size);
2876 pool->low_water_blocks = 0;
2877 pool_features_init(&pool->pf);
2878 pool->prison = dm_bio_prison_create();
2879 if (!pool->prison) {
2880 *error = "Error creating pool's bio prison";
2881 err_p = ERR_PTR(-ENOMEM);
2882 goto bad_prison;
2883 }
2884
2885 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2886 if (IS_ERR(pool->copier)) {
2887 r = PTR_ERR(pool->copier);
2888 *error = "Error creating pool's kcopyd client";
2889 err_p = ERR_PTR(r);
2890 goto bad_kcopyd_client;
2891 }
2892
2893 /*
2894 * Create singlethreaded workqueue that will service all devices
2895 * that use this metadata.
2896 */
2897 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2898 if (!pool->wq) {
2899 *error = "Error creating pool's workqueue";
2900 err_p = ERR_PTR(-ENOMEM);
2901 goto bad_wq;
2902 }
2903
2904 throttle_init(&pool->throttle);
2905 INIT_WORK(&pool->worker, do_worker);
2906 INIT_DELAYED_WORK(&pool->waker, do_waker);
2907 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2908 spin_lock_init(&pool->lock);
2909 bio_list_init(&pool->deferred_flush_bios);
2910 INIT_LIST_HEAD(&pool->prepared_mappings);
2911 INIT_LIST_HEAD(&pool->prepared_discards);
2912 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2913 INIT_LIST_HEAD(&pool->active_thins);
2914 pool->low_water_triggered = false;
2915 pool->suspended = true;
2916 pool->out_of_data_space = false;
2917
2918 pool->shared_read_ds = dm_deferred_set_create();
2919 if (!pool->shared_read_ds) {
2920 *error = "Error creating pool's shared read deferred set";
2921 err_p = ERR_PTR(-ENOMEM);
2922 goto bad_shared_read_ds;
2923 }
2924
2925 pool->all_io_ds = dm_deferred_set_create();
2926 if (!pool->all_io_ds) {
2927 *error = "Error creating pool's all io deferred set";
2928 err_p = ERR_PTR(-ENOMEM);
2929 goto bad_all_io_ds;
2930 }
2931
2932 pool->next_mapping = NULL;
2933 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
2934 _new_mapping_cache);
2935 if (!pool->mapping_pool) {
2936 *error = "Error creating pool's mapping mempool";
2937 err_p = ERR_PTR(-ENOMEM);
2938 goto bad_mapping_pool;
2939 }
2940
2941 pool->cell_sort_array = vmalloc(sizeof(*pool->cell_sort_array) * CELL_SORT_ARRAY_SIZE);
2942 if (!pool->cell_sort_array) {
2943 *error = "Error allocating cell sort array";
2944 err_p = ERR_PTR(-ENOMEM);
2945 goto bad_sort_array;
2946 }
2947
2948 pool->ref_count = 1;
2949 pool->last_commit_jiffies = jiffies;
2950 pool->pool_md = pool_md;
2951 pool->md_dev = metadata_dev;
2952 __pool_table_insert(pool);
2953
2954 return pool;
2955
2956bad_sort_array:
2957 mempool_destroy(pool->mapping_pool);
2958bad_mapping_pool:
2959 dm_deferred_set_destroy(pool->all_io_ds);
2960bad_all_io_ds:
2961 dm_deferred_set_destroy(pool->shared_read_ds);
2962bad_shared_read_ds:
2963 destroy_workqueue(pool->wq);
2964bad_wq:
2965 dm_kcopyd_client_destroy(pool->copier);
2966bad_kcopyd_client:
2967 dm_bio_prison_destroy(pool->prison);
2968bad_prison:
2969 kfree(pool);
2970bad_pool:
2971 if (dm_pool_metadata_close(pmd))
2972 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2973
2974 return err_p;
2975}
2976
2977static void __pool_inc(struct pool *pool)
2978{
2979 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2980 pool->ref_count++;
2981}
2982
2983static void __pool_dec(struct pool *pool)
2984{
2985 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
2986 BUG_ON(!pool->ref_count);
2987 if (!--pool->ref_count)
2988 __pool_destroy(pool);
2989}
2990
2991static struct pool *__pool_find(struct mapped_device *pool_md,
2992 struct block_device *metadata_dev,
2993 unsigned long block_size, int read_only,
2994 char **error, int *created)
2995{
2996 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
2997
2998 if (pool) {
2999 if (pool->pool_md != pool_md) {
3000 *error = "metadata device already in use by a pool";
3001 return ERR_PTR(-EBUSY);
3002 }
3003 __pool_inc(pool);
3004
3005 } else {
3006 pool = __pool_table_lookup(pool_md);
3007 if (pool) {
3008 if (pool->md_dev != metadata_dev) {
3009 *error = "different pool cannot replace a pool";
3010 return ERR_PTR(-EINVAL);
3011 }
3012 __pool_inc(pool);
3013
3014 } else {
3015 pool = pool_create(pool_md, metadata_dev, block_size, read_only, error);
3016 *created = 1;
3017 }
3018 }
3019
3020 return pool;
3021}
3022
3023/*----------------------------------------------------------------
3024 * Pool target methods
3025 *--------------------------------------------------------------*/
3026static void pool_dtr(struct dm_target *ti)
3027{
3028 struct pool_c *pt = ti->private;
3029
3030 mutex_lock(&dm_thin_pool_table.mutex);
3031
3032 unbind_control_target(pt->pool, ti);
3033 __pool_dec(pt->pool);
3034 dm_put_device(ti, pt->metadata_dev);
3035 dm_put_device(ti, pt->data_dev);
3036 kfree(pt);
3037
3038 mutex_unlock(&dm_thin_pool_table.mutex);
3039}
3040
3041static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3042 struct dm_target *ti)
3043{
3044 int r;
3045 unsigned argc;
3046 const char *arg_name;
3047
3048 static struct dm_arg _args[] = {
3049 {0, 4, "Invalid number of pool feature arguments"},
3050 };
3051
3052 /*
3053 * No feature arguments supplied.
3054 */
3055 if (!as->argc)
3056 return 0;
3057
3058 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3059 if (r)
3060 return -EINVAL;
3061
3062 while (argc && !r) {
3063 arg_name = dm_shift_arg(as);
3064 argc--;
3065
3066 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3067 pf->zero_new_blocks = false;
3068
3069 else if (!strcasecmp(arg_name, "ignore_discard"))
3070 pf->discard_enabled = false;
3071
3072 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3073 pf->discard_passdown = false;
3074
3075 else if (!strcasecmp(arg_name, "read_only"))
3076 pf->mode = PM_READ_ONLY;
3077
3078 else if (!strcasecmp(arg_name, "error_if_no_space"))
3079 pf->error_if_no_space = true;
3080
3081 else {
3082 ti->error = "Unrecognised pool feature requested";
3083 r = -EINVAL;
3084 break;
3085 }
3086 }
3087
3088 return r;
3089}
3090
3091static void metadata_low_callback(void *context)
3092{
3093 struct pool *pool = context;
3094
3095 DMWARN("%s: reached low water mark for metadata device: sending event.",
3096 dm_device_name(pool->pool_md));
3097
3098 dm_table_event(pool->ti->table);
3099}
3100
3101static sector_t get_dev_size(struct block_device *bdev)
3102{
3103 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3104}
3105
3106static void warn_if_metadata_device_too_big(struct block_device *bdev)
3107{
3108 sector_t metadata_dev_size = get_dev_size(bdev);
3109 char buffer[BDEVNAME_SIZE];
3110
3111 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3112 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3113 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3114}
3115
3116static sector_t get_metadata_dev_size(struct block_device *bdev)
3117{
3118 sector_t metadata_dev_size = get_dev_size(bdev);
3119
3120 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3121 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3122
3123 return metadata_dev_size;
3124}
3125
3126static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3127{
3128 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3129
3130 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3131
3132 return metadata_dev_size;
3133}
3134
3135/*
3136 * When a metadata threshold is crossed a dm event is triggered, and
3137 * userland should respond by growing the metadata device. We could let
3138 * userland set the threshold, like we do with the data threshold, but I'm
3139 * not sure they know enough to do this well.
3140 */
3141static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3142{
3143 /*
3144 * 4M is ample for all ops with the possible exception of thin
3145 * device deletion which is harmless if it fails (just retry the
3146 * delete after you've grown the device).
3147 */
3148 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3149 return min((dm_block_t)1024ULL /* 4M */, quarter);
3150}
3151
3152/*
3153 * thin-pool <metadata dev> <data dev>
3154 * <data block size (sectors)>
3155 * <low water mark (blocks)>
3156 * [<#feature args> [<arg>]*]
3157 *
3158 * Optional feature arguments are:
3159 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3160 * ignore_discard: disable discard
3161 * no_discard_passdown: don't pass discards down to the data device
3162 * read_only: Don't allow any changes to be made to the pool metadata.
3163 * error_if_no_space: error IOs, instead of queueing, if no space.
3164 */
3165static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3166{
3167 int r, pool_created = 0;
3168 struct pool_c *pt;
3169 struct pool *pool;
3170 struct pool_features pf;
3171 struct dm_arg_set as;
3172 struct dm_dev *data_dev;
3173 unsigned long block_size;
3174 dm_block_t low_water_blocks;
3175 struct dm_dev *metadata_dev;
3176 fmode_t metadata_mode;
3177
3178 /*
3179 * FIXME Remove validation from scope of lock.
3180 */
3181 mutex_lock(&dm_thin_pool_table.mutex);
3182
3183 if (argc < 4) {
3184 ti->error = "Invalid argument count";
3185 r = -EINVAL;
3186 goto out_unlock;
3187 }
3188
3189 as.argc = argc;
3190 as.argv = argv;
3191
3192 /*
3193 * Set default pool features.
3194 */
3195 pool_features_init(&pf);
3196
3197 dm_consume_args(&as, 4);
3198 r = parse_pool_features(&as, &pf, ti);
3199 if (r)
3200 goto out_unlock;
3201
3202 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3203 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3204 if (r) {
3205 ti->error = "Error opening metadata block device";
3206 goto out_unlock;
3207 }
3208 warn_if_metadata_device_too_big(metadata_dev->bdev);
3209
3210 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3211 if (r) {
3212 ti->error = "Error getting data device";
3213 goto out_metadata;
3214 }
3215
3216 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3217 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3218 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3219 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3220 ti->error = "Invalid block size";
3221 r = -EINVAL;
3222 goto out;
3223 }
3224
3225 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3226 ti->error = "Invalid low water mark";
3227 r = -EINVAL;
3228 goto out;
3229 }
3230
3231 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3232 if (!pt) {
3233 r = -ENOMEM;
3234 goto out;
3235 }
3236
3237 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
3238 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3239 if (IS_ERR(pool)) {
3240 r = PTR_ERR(pool);
3241 goto out_free_pt;
3242 }
3243
3244 /*
3245 * 'pool_created' reflects whether this is the first table load.
3246 * Top level discard support is not allowed to be changed after
3247 * initial load. This would require a pool reload to trigger thin
3248 * device changes.
3249 */
3250 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3251 ti->error = "Discard support cannot be disabled once enabled";
3252 r = -EINVAL;
3253 goto out_flags_changed;
3254 }
3255
3256 pt->pool = pool;
3257 pt->ti = ti;
3258 pt->metadata_dev = metadata_dev;
3259 pt->data_dev = data_dev;
3260 pt->low_water_blocks = low_water_blocks;
3261 pt->adjusted_pf = pt->requested_pf = pf;
3262 ti->num_flush_bios = 1;
3263
3264 /*
3265 * Only need to enable discards if the pool should pass
3266 * them down to the data device. The thin device's discard
3267 * processing will cause mappings to be removed from the btree.
3268 */
3269 ti->discard_zeroes_data_unsupported = true;
3270 if (pf.discard_enabled && pf.discard_passdown) {
3271 ti->num_discard_bios = 1;
3272
3273 /*
3274 * Setting 'discards_supported' circumvents the normal
3275 * stacking of discard limits (this keeps the pool and
3276 * thin devices' discard limits consistent).
3277 */
3278 ti->discards_supported = true;
3279 }
3280 ti->private = pt;
3281
3282 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3283 calc_metadata_threshold(pt),
3284 metadata_low_callback,
3285 pool);
3286 if (r)
3287 goto out_flags_changed;
3288
3289 pt->callbacks.congested_fn = pool_is_congested;
3290 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3291
3292 mutex_unlock(&dm_thin_pool_table.mutex);
3293
3294 return 0;
3295
3296out_flags_changed:
3297 __pool_dec(pool);
3298out_free_pt:
3299 kfree(pt);
3300out:
3301 dm_put_device(ti, data_dev);
3302out_metadata:
3303 dm_put_device(ti, metadata_dev);
3304out_unlock:
3305 mutex_unlock(&dm_thin_pool_table.mutex);
3306
3307 return r;
3308}
3309
3310static int pool_map(struct dm_target *ti, struct bio *bio)
3311{
3312 int r;
3313 struct pool_c *pt = ti->private;
3314 struct pool *pool = pt->pool;
3315 unsigned long flags;
3316
3317 /*
3318 * As this is a singleton target, ti->begin is always zero.
3319 */
3320 spin_lock_irqsave(&pool->lock, flags);
3321 bio->bi_bdev = pt->data_dev->bdev;
3322 r = DM_MAPIO_REMAPPED;
3323 spin_unlock_irqrestore(&pool->lock, flags);
3324
3325 return r;
3326}
3327
3328static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3329{
3330 int r;
3331 struct pool_c *pt = ti->private;
3332 struct pool *pool = pt->pool;
3333 sector_t data_size = ti->len;
3334 dm_block_t sb_data_size;
3335
3336 *need_commit = false;
3337
3338 (void) sector_div(data_size, pool->sectors_per_block);
3339
3340 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3341 if (r) {
3342 DMERR("%s: failed to retrieve data device size",
3343 dm_device_name(pool->pool_md));
3344 return r;
3345 }
3346
3347 if (data_size < sb_data_size) {
3348 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3349 dm_device_name(pool->pool_md),
3350 (unsigned long long)data_size, sb_data_size);
3351 return -EINVAL;
3352
3353 } else if (data_size > sb_data_size) {
3354 if (dm_pool_metadata_needs_check(pool->pmd)) {
3355 DMERR("%s: unable to grow the data device until repaired.",
3356 dm_device_name(pool->pool_md));
3357 return 0;
3358 }
3359
3360 if (sb_data_size)
3361 DMINFO("%s: growing the data device from %llu to %llu blocks",
3362 dm_device_name(pool->pool_md),
3363 sb_data_size, (unsigned long long)data_size);
3364 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3365 if (r) {
3366 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3367 return r;
3368 }
3369
3370 *need_commit = true;
3371 }
3372
3373 return 0;
3374}
3375
3376static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3377{
3378 int r;
3379 struct pool_c *pt = ti->private;
3380 struct pool *pool = pt->pool;
3381 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3382
3383 *need_commit = false;
3384
3385 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3386
3387 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3388 if (r) {
3389 DMERR("%s: failed to retrieve metadata device size",
3390 dm_device_name(pool->pool_md));
3391 return r;
3392 }
3393
3394 if (metadata_dev_size < sb_metadata_dev_size) {
3395 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3396 dm_device_name(pool->pool_md),
3397 metadata_dev_size, sb_metadata_dev_size);
3398 return -EINVAL;
3399
3400 } else if (metadata_dev_size > sb_metadata_dev_size) {
3401 if (dm_pool_metadata_needs_check(pool->pmd)) {
3402 DMERR("%s: unable to grow the metadata device until repaired.",
3403 dm_device_name(pool->pool_md));
3404 return 0;
3405 }
3406
3407 warn_if_metadata_device_too_big(pool->md_dev);
3408 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3409 dm_device_name(pool->pool_md),
3410 sb_metadata_dev_size, metadata_dev_size);
3411 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3412 if (r) {
3413 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3414 return r;
3415 }
3416
3417 *need_commit = true;
3418 }
3419
3420 return 0;
3421}
3422
3423/*
3424 * Retrieves the number of blocks of the data device from
3425 * the superblock and compares it to the actual device size,
3426 * thus resizing the data device in case it has grown.
3427 *
3428 * This both copes with opening preallocated data devices in the ctr
3429 * being followed by a resume
3430 * -and-
3431 * calling the resume method individually after userspace has
3432 * grown the data device in reaction to a table event.
3433 */
3434static int pool_preresume(struct dm_target *ti)
3435{
3436 int r;
3437 bool need_commit1, need_commit2;
3438 struct pool_c *pt = ti->private;
3439 struct pool *pool = pt->pool;
3440
3441 /*
3442 * Take control of the pool object.
3443 */
3444 r = bind_control_target(pool, ti);
3445 if (r)
3446 return r;
3447
3448 r = maybe_resize_data_dev(ti, &need_commit1);
3449 if (r)
3450 return r;
3451
3452 r = maybe_resize_metadata_dev(ti, &need_commit2);
3453 if (r)
3454 return r;
3455
3456 if (need_commit1 || need_commit2)
3457 (void) commit(pool);
3458
3459 return 0;
3460}
3461
3462static void pool_suspend_active_thins(struct pool *pool)
3463{
3464 struct thin_c *tc;
3465
3466 /* Suspend all active thin devices */
3467 tc = get_first_thin(pool);
3468 while (tc) {
3469 dm_internal_suspend_noflush(tc->thin_md);
3470 tc = get_next_thin(pool, tc);
3471 }
3472}
3473
3474static void pool_resume_active_thins(struct pool *pool)
3475{
3476 struct thin_c *tc;
3477
3478 /* Resume all active thin devices */
3479 tc = get_first_thin(pool);
3480 while (tc) {
3481 dm_internal_resume(tc->thin_md);
3482 tc = get_next_thin(pool, tc);
3483 }
3484}
3485
3486static void pool_resume(struct dm_target *ti)
3487{
3488 struct pool_c *pt = ti->private;
3489 struct pool *pool = pt->pool;
3490 unsigned long flags;
3491
3492 /*
3493 * Must requeue active_thins' bios and then resume
3494 * active_thins _before_ clearing 'suspend' flag.
3495 */
3496 requeue_bios(pool);
3497 pool_resume_active_thins(pool);
3498
3499 spin_lock_irqsave(&pool->lock, flags);
3500 pool->low_water_triggered = false;
3501 pool->suspended = false;
3502 spin_unlock_irqrestore(&pool->lock, flags);
3503
3504 do_waker(&pool->waker.work);
3505}
3506
3507static void pool_presuspend(struct dm_target *ti)
3508{
3509 struct pool_c *pt = ti->private;
3510 struct pool *pool = pt->pool;
3511 unsigned long flags;
3512
3513 spin_lock_irqsave(&pool->lock, flags);
3514 pool->suspended = true;
3515 spin_unlock_irqrestore(&pool->lock, flags);
3516
3517 pool_suspend_active_thins(pool);
3518}
3519
3520static void pool_presuspend_undo(struct dm_target *ti)
3521{
3522 struct pool_c *pt = ti->private;
3523 struct pool *pool = pt->pool;
3524 unsigned long flags;
3525
3526 pool_resume_active_thins(pool);
3527
3528 spin_lock_irqsave(&pool->lock, flags);
3529 pool->suspended = false;
3530 spin_unlock_irqrestore(&pool->lock, flags);
3531}
3532
3533static void pool_postsuspend(struct dm_target *ti)
3534{
3535 struct pool_c *pt = ti->private;
3536 struct pool *pool = pt->pool;
3537
3538 cancel_delayed_work_sync(&pool->waker);
3539 cancel_delayed_work_sync(&pool->no_space_timeout);
3540 flush_workqueue(pool->wq);
3541 (void) commit(pool);
3542}
3543
3544static int check_arg_count(unsigned argc, unsigned args_required)
3545{
3546 if (argc != args_required) {
3547 DMWARN("Message received with %u arguments instead of %u.",
3548 argc, args_required);
3549 return -EINVAL;
3550 }
3551
3552 return 0;
3553}
3554
3555static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3556{
3557 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3558 *dev_id <= MAX_DEV_ID)
3559 return 0;
3560
3561 if (warning)
3562 DMWARN("Message received with invalid device id: %s", arg);
3563
3564 return -EINVAL;
3565}
3566
3567static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3568{
3569 dm_thin_id dev_id;
3570 int r;
3571
3572 r = check_arg_count(argc, 2);
3573 if (r)
3574 return r;
3575
3576 r = read_dev_id(argv[1], &dev_id, 1);
3577 if (r)
3578 return r;
3579
3580 r = dm_pool_create_thin(pool->pmd, dev_id);
3581 if (r) {
3582 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3583 argv[1]);
3584 return r;
3585 }
3586
3587 return 0;
3588}
3589
3590static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3591{
3592 dm_thin_id dev_id;
3593 dm_thin_id origin_dev_id;
3594 int r;
3595
3596 r = check_arg_count(argc, 3);
3597 if (r)
3598 return r;
3599
3600 r = read_dev_id(argv[1], &dev_id, 1);
3601 if (r)
3602 return r;
3603
3604 r = read_dev_id(argv[2], &origin_dev_id, 1);
3605 if (r)
3606 return r;
3607
3608 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3609 if (r) {
3610 DMWARN("Creation of new snapshot %s of device %s failed.",
3611 argv[1], argv[2]);
3612 return r;
3613 }
3614
3615 return 0;
3616}
3617
3618static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3619{
3620 dm_thin_id dev_id;
3621 int r;
3622
3623 r = check_arg_count(argc, 2);
3624 if (r)
3625 return r;
3626
3627 r = read_dev_id(argv[1], &dev_id, 1);
3628 if (r)
3629 return r;
3630
3631 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3632 if (r)
3633 DMWARN("Deletion of thin device %s failed.", argv[1]);
3634
3635 return r;
3636}
3637
3638static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3639{
3640 dm_thin_id old_id, new_id;
3641 int r;
3642
3643 r = check_arg_count(argc, 3);
3644 if (r)
3645 return r;
3646
3647 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3648 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3649 return -EINVAL;
3650 }
3651
3652 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3653 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3654 return -EINVAL;
3655 }
3656
3657 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3658 if (r) {
3659 DMWARN("Failed to change transaction id from %s to %s.",
3660 argv[1], argv[2]);
3661 return r;
3662 }
3663
3664 return 0;
3665}
3666
3667static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3668{
3669 int r;
3670
3671 r = check_arg_count(argc, 1);
3672 if (r)
3673 return r;
3674
3675 (void) commit(pool);
3676
3677 r = dm_pool_reserve_metadata_snap(pool->pmd);
3678 if (r)
3679 DMWARN("reserve_metadata_snap message failed.");
3680
3681 return r;
3682}
3683
3684static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3685{
3686 int r;
3687
3688 r = check_arg_count(argc, 1);
3689 if (r)
3690 return r;
3691
3692 r = dm_pool_release_metadata_snap(pool->pmd);
3693 if (r)
3694 DMWARN("release_metadata_snap message failed.");
3695
3696 return r;
3697}
3698
3699/*
3700 * Messages supported:
3701 * create_thin <dev_id>
3702 * create_snap <dev_id> <origin_id>
3703 * delete <dev_id>
3704 * set_transaction_id <current_trans_id> <new_trans_id>
3705 * reserve_metadata_snap
3706 * release_metadata_snap
3707 */
3708static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
3709{
3710 int r = -EINVAL;
3711 struct pool_c *pt = ti->private;
3712 struct pool *pool = pt->pool;
3713
3714 if (get_pool_mode(pool) >= PM_READ_ONLY) {
3715 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3716 dm_device_name(pool->pool_md));
3717 return -EOPNOTSUPP;
3718 }
3719
3720 if (!strcasecmp(argv[0], "create_thin"))
3721 r = process_create_thin_mesg(argc, argv, pool);
3722
3723 else if (!strcasecmp(argv[0], "create_snap"))
3724 r = process_create_snap_mesg(argc, argv, pool);
3725
3726 else if (!strcasecmp(argv[0], "delete"))
3727 r = process_delete_mesg(argc, argv, pool);
3728
3729 else if (!strcasecmp(argv[0], "set_transaction_id"))
3730 r = process_set_transaction_id_mesg(argc, argv, pool);
3731
3732 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3733 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3734
3735 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3736 r = process_release_metadata_snap_mesg(argc, argv, pool);
3737
3738 else
3739 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3740
3741 if (!r)
3742 (void) commit(pool);
3743
3744 return r;
3745}
3746
3747static void emit_flags(struct pool_features *pf, char *result,
3748 unsigned sz, unsigned maxlen)
3749{
3750 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3751 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3752 pf->error_if_no_space;
3753 DMEMIT("%u ", count);
3754
3755 if (!pf->zero_new_blocks)
3756 DMEMIT("skip_block_zeroing ");
3757
3758 if (!pf->discard_enabled)
3759 DMEMIT("ignore_discard ");
3760
3761 if (!pf->discard_passdown)
3762 DMEMIT("no_discard_passdown ");
3763
3764 if (pf->mode == PM_READ_ONLY)
3765 DMEMIT("read_only ");
3766
3767 if (pf->error_if_no_space)
3768 DMEMIT("error_if_no_space ");
3769}
3770
3771/*
3772 * Status line is:
3773 * <transaction id> <used metadata sectors>/<total metadata sectors>
3774 * <used data sectors>/<total data sectors> <held metadata root>
3775 * <pool mode> <discard config> <no space config> <needs_check>
3776 */
3777static void pool_status(struct dm_target *ti, status_type_t type,
3778 unsigned status_flags, char *result, unsigned maxlen)
3779{
3780 int r;
3781 unsigned sz = 0;
3782 uint64_t transaction_id;
3783 dm_block_t nr_free_blocks_data;
3784 dm_block_t nr_free_blocks_metadata;
3785 dm_block_t nr_blocks_data;
3786 dm_block_t nr_blocks_metadata;
3787 dm_block_t held_root;
3788 char buf[BDEVNAME_SIZE];
3789 char buf2[BDEVNAME_SIZE];
3790 struct pool_c *pt = ti->private;
3791 struct pool *pool = pt->pool;
3792
3793 switch (type) {
3794 case STATUSTYPE_INFO:
3795 if (get_pool_mode(pool) == PM_FAIL) {
3796 DMEMIT("Fail");
3797 break;
3798 }
3799
3800 /* Commit to ensure statistics aren't out-of-date */
3801 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3802 (void) commit(pool);
3803
3804 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3805 if (r) {
3806 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3807 dm_device_name(pool->pool_md), r);
3808 goto err;
3809 }
3810
3811 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3812 if (r) {
3813 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3814 dm_device_name(pool->pool_md), r);
3815 goto err;
3816 }
3817
3818 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3819 if (r) {
3820 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3821 dm_device_name(pool->pool_md), r);
3822 goto err;
3823 }
3824
3825 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3826 if (r) {
3827 DMERR("%s: dm_pool_get_free_block_count returned %d",
3828 dm_device_name(pool->pool_md), r);
3829 goto err;
3830 }
3831
3832 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3833 if (r) {
3834 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3835 dm_device_name(pool->pool_md), r);
3836 goto err;
3837 }
3838
3839 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3840 if (r) {
3841 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3842 dm_device_name(pool->pool_md), r);
3843 goto err;
3844 }
3845
3846 DMEMIT("%llu %llu/%llu %llu/%llu ",
3847 (unsigned long long)transaction_id,
3848 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3849 (unsigned long long)nr_blocks_metadata,
3850 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3851 (unsigned long long)nr_blocks_data);
3852
3853 if (held_root)
3854 DMEMIT("%llu ", held_root);
3855 else
3856 DMEMIT("- ");
3857
3858 if (pool->pf.mode == PM_OUT_OF_DATA_SPACE)
3859 DMEMIT("out_of_data_space ");
3860 else if (pool->pf.mode == PM_READ_ONLY)
3861 DMEMIT("ro ");
3862 else
3863 DMEMIT("rw ");
3864
3865 if (!pool->pf.discard_enabled)
3866 DMEMIT("ignore_discard ");
3867 else if (pool->pf.discard_passdown)
3868 DMEMIT("discard_passdown ");
3869 else
3870 DMEMIT("no_discard_passdown ");
3871
3872 if (pool->pf.error_if_no_space)
3873 DMEMIT("error_if_no_space ");
3874 else
3875 DMEMIT("queue_if_no_space ");
3876
3877 if (dm_pool_metadata_needs_check(pool->pmd))
3878 DMEMIT("needs_check ");
3879 else
3880 DMEMIT("- ");
3881
3882 break;
3883
3884 case STATUSTYPE_TABLE:
3885 DMEMIT("%s %s %lu %llu ",
3886 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
3887 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
3888 (unsigned long)pool->sectors_per_block,
3889 (unsigned long long)pt->low_water_blocks);
3890 emit_flags(&pt->requested_pf, result, sz, maxlen);
3891 break;
3892 }
3893 return;
3894
3895err:
3896 DMEMIT("Error");
3897}
3898
3899static int pool_iterate_devices(struct dm_target *ti,
3900 iterate_devices_callout_fn fn, void *data)
3901{
3902 struct pool_c *pt = ti->private;
3903
3904 return fn(ti, pt->data_dev, 0, ti->len, data);
3905}
3906
3907static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
3908{
3909 struct pool_c *pt = ti->private;
3910 struct pool *pool = pt->pool;
3911 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3912
3913 /*
3914 * If max_sectors is smaller than pool->sectors_per_block adjust it
3915 * to the highest possible power-of-2 factor of pool->sectors_per_block.
3916 * This is especially beneficial when the pool's data device is a RAID
3917 * device that has a full stripe width that matches pool->sectors_per_block
3918 * -- because even though partial RAID stripe-sized IOs will be issued to a
3919 * single RAID stripe; when aggregated they will end on a full RAID stripe
3920 * boundary.. which avoids additional partial RAID stripe writes cascading
3921 */
3922 if (limits->max_sectors < pool->sectors_per_block) {
3923 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
3924 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
3925 limits->max_sectors--;
3926 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
3927 }
3928 }
3929
3930 /*
3931 * If the system-determined stacked limits are compatible with the
3932 * pool's blocksize (io_opt is a factor) do not override them.
3933 */
3934 if (io_opt_sectors < pool->sectors_per_block ||
3935 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
3936 if (is_factor(pool->sectors_per_block, limits->max_sectors))
3937 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
3938 else
3939 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
3940 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
3941 }
3942
3943 /*
3944 * pt->adjusted_pf is a staging area for the actual features to use.
3945 * They get transferred to the live pool in bind_control_target()
3946 * called from pool_preresume().
3947 */
3948 if (!pt->adjusted_pf.discard_enabled) {
3949 /*
3950 * Must explicitly disallow stacking discard limits otherwise the
3951 * block layer will stack them if pool's data device has support.
3952 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
3953 * user to see that, so make sure to set all discard limits to 0.
3954 */
3955 limits->discard_granularity = 0;
3956 return;
3957 }
3958
3959 disable_passdown_if_not_supported(pt);
3960
3961 /*
3962 * The pool uses the same discard limits as the underlying data
3963 * device. DM core has already set this up.
3964 */
3965}
3966
3967static struct target_type pool_target = {
3968 .name = "thin-pool",
3969 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
3970 DM_TARGET_IMMUTABLE,
3971 .version = {1, 19, 0},
3972 .module = THIS_MODULE,
3973 .ctr = pool_ctr,
3974 .dtr = pool_dtr,
3975 .map = pool_map,
3976 .presuspend = pool_presuspend,
3977 .presuspend_undo = pool_presuspend_undo,
3978 .postsuspend = pool_postsuspend,
3979 .preresume = pool_preresume,
3980 .resume = pool_resume,
3981 .message = pool_message,
3982 .status = pool_status,
3983 .iterate_devices = pool_iterate_devices,
3984 .io_hints = pool_io_hints,
3985};
3986
3987/*----------------------------------------------------------------
3988 * Thin target methods
3989 *--------------------------------------------------------------*/
3990static void thin_get(struct thin_c *tc)
3991{
3992 atomic_inc(&tc->refcount);
3993}
3994
3995static void thin_put(struct thin_c *tc)
3996{
3997 if (atomic_dec_and_test(&tc->refcount))
3998 complete(&tc->can_destroy);
3999}
4000
4001static void thin_dtr(struct dm_target *ti)
4002{
4003 struct thin_c *tc = ti->private;
4004 unsigned long flags;
4005
4006 spin_lock_irqsave(&tc->pool->lock, flags);
4007 list_del_rcu(&tc->list);
4008 spin_unlock_irqrestore(&tc->pool->lock, flags);
4009 synchronize_rcu();
4010
4011 thin_put(tc);
4012 wait_for_completion(&tc->can_destroy);
4013
4014 mutex_lock(&dm_thin_pool_table.mutex);
4015
4016 __pool_dec(tc->pool);
4017 dm_pool_close_thin_device(tc->td);
4018 dm_put_device(ti, tc->pool_dev);
4019 if (tc->origin_dev)
4020 dm_put_device(ti, tc->origin_dev);
4021 kfree(tc);
4022
4023 mutex_unlock(&dm_thin_pool_table.mutex);
4024}
4025
4026/*
4027 * Thin target parameters:
4028 *
4029 * <pool_dev> <dev_id> [origin_dev]
4030 *
4031 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4032 * dev_id: the internal device identifier
4033 * origin_dev: a device external to the pool that should act as the origin
4034 *
4035 * If the pool device has discards disabled, they get disabled for the thin
4036 * device as well.
4037 */
4038static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4039{
4040 int r;
4041 struct thin_c *tc;
4042 struct dm_dev *pool_dev, *origin_dev;
4043 struct mapped_device *pool_md;
4044 unsigned long flags;
4045
4046 mutex_lock(&dm_thin_pool_table.mutex);
4047
4048 if (argc != 2 && argc != 3) {
4049 ti->error = "Invalid argument count";
4050 r = -EINVAL;
4051 goto out_unlock;
4052 }
4053
4054 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4055 if (!tc) {
4056 ti->error = "Out of memory";
4057 r = -ENOMEM;
4058 goto out_unlock;
4059 }
4060 tc->thin_md = dm_table_get_md(ti->table);
4061 spin_lock_init(&tc->lock);
4062 INIT_LIST_HEAD(&tc->deferred_cells);
4063 bio_list_init(&tc->deferred_bio_list);
4064 bio_list_init(&tc->retry_on_resume_list);
4065 tc->sort_bio_list = RB_ROOT;
4066
4067 if (argc == 3) {
4068 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4069 if (r) {
4070 ti->error = "Error opening origin device";
4071 goto bad_origin_dev;
4072 }
4073 tc->origin_dev = origin_dev;
4074 }
4075
4076 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4077 if (r) {
4078 ti->error = "Error opening pool device";
4079 goto bad_pool_dev;
4080 }
4081 tc->pool_dev = pool_dev;
4082
4083 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4084 ti->error = "Invalid device id";
4085 r = -EINVAL;
4086 goto bad_common;
4087 }
4088
4089 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4090 if (!pool_md) {
4091 ti->error = "Couldn't get pool mapped device";
4092 r = -EINVAL;
4093 goto bad_common;
4094 }
4095
4096 tc->pool = __pool_table_lookup(pool_md);
4097 if (!tc->pool) {
4098 ti->error = "Couldn't find pool object";
4099 r = -EINVAL;
4100 goto bad_pool_lookup;
4101 }
4102 __pool_inc(tc->pool);
4103
4104 if (get_pool_mode(tc->pool) == PM_FAIL) {
4105 ti->error = "Couldn't open thin device, Pool is in fail mode";
4106 r = -EINVAL;
4107 goto bad_pool;
4108 }
4109
4110 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4111 if (r) {
4112 ti->error = "Couldn't open thin internal device";
4113 goto bad_pool;
4114 }
4115
4116 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4117 if (r)
4118 goto bad;
4119
4120 ti->num_flush_bios = 1;
4121 ti->flush_supported = true;
4122 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4123
4124 /* In case the pool supports discards, pass them on. */
4125 ti->discard_zeroes_data_unsupported = true;
4126 if (tc->pool->pf.discard_enabled) {
4127 ti->discards_supported = true;
4128 ti->num_discard_bios = 1;
4129 ti->split_discard_bios = false;
4130 }
4131
4132 mutex_unlock(&dm_thin_pool_table.mutex);
4133
4134 spin_lock_irqsave(&tc->pool->lock, flags);
4135 if (tc->pool->suspended) {
4136 spin_unlock_irqrestore(&tc->pool->lock, flags);
4137 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4138 ti->error = "Unable to activate thin device while pool is suspended";
4139 r = -EINVAL;
4140 goto bad;
4141 }
4142 atomic_set(&tc->refcount, 1);
4143 init_completion(&tc->can_destroy);
4144 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4145 spin_unlock_irqrestore(&tc->pool->lock, flags);
4146 /*
4147 * This synchronize_rcu() call is needed here otherwise we risk a
4148 * wake_worker() call finding no bios to process (because the newly
4149 * added tc isn't yet visible). So this reduces latency since we
4150 * aren't then dependent on the periodic commit to wake_worker().
4151 */
4152 synchronize_rcu();
4153
4154 dm_put(pool_md);
4155
4156 return 0;
4157
4158bad:
4159 dm_pool_close_thin_device(tc->td);
4160bad_pool:
4161 __pool_dec(tc->pool);
4162bad_pool_lookup:
4163 dm_put(pool_md);
4164bad_common:
4165 dm_put_device(ti, tc->pool_dev);
4166bad_pool_dev:
4167 if (tc->origin_dev)
4168 dm_put_device(ti, tc->origin_dev);
4169bad_origin_dev:
4170 kfree(tc);
4171out_unlock:
4172 mutex_unlock(&dm_thin_pool_table.mutex);
4173
4174 return r;
4175}
4176
4177static int thin_map(struct dm_target *ti, struct bio *bio)
4178{
4179 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4180
4181 return thin_bio_map(ti, bio);
4182}
4183
4184static int thin_endio(struct dm_target *ti, struct bio *bio, int err)
4185{
4186 unsigned long flags;
4187 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4188 struct list_head work;
4189 struct dm_thin_new_mapping *m, *tmp;
4190 struct pool *pool = h->tc->pool;
4191
4192 if (h->shared_read_entry) {
4193 INIT_LIST_HEAD(&work);
4194 dm_deferred_entry_dec(h->shared_read_entry, &work);
4195
4196 spin_lock_irqsave(&pool->lock, flags);
4197 list_for_each_entry_safe(m, tmp, &work, list) {
4198 list_del(&m->list);
4199 __complete_mapping_preparation(m);
4200 }
4201 spin_unlock_irqrestore(&pool->lock, flags);
4202 }
4203
4204 if (h->all_io_entry) {
4205 INIT_LIST_HEAD(&work);
4206 dm_deferred_entry_dec(h->all_io_entry, &work);
4207 if (!list_empty(&work)) {
4208 spin_lock_irqsave(&pool->lock, flags);
4209 list_for_each_entry_safe(m, tmp, &work, list)
4210 list_add_tail(&m->list, &pool->prepared_discards);
4211 spin_unlock_irqrestore(&pool->lock, flags);
4212 wake_worker(pool);
4213 }
4214 }
4215
4216 if (h->cell)
4217 cell_defer_no_holder(h->tc, h->cell);
4218
4219 return 0;
4220}
4221
4222static void thin_presuspend(struct dm_target *ti)
4223{
4224 struct thin_c *tc = ti->private;
4225
4226 if (dm_noflush_suspending(ti))
4227 noflush_work(tc, do_noflush_start);
4228}
4229
4230static void thin_postsuspend(struct dm_target *ti)
4231{
4232 struct thin_c *tc = ti->private;
4233
4234 /*
4235 * The dm_noflush_suspending flag has been cleared by now, so
4236 * unfortunately we must always run this.
4237 */
4238 noflush_work(tc, do_noflush_stop);
4239}
4240
4241static int thin_preresume(struct dm_target *ti)
4242{
4243 struct thin_c *tc = ti->private;
4244
4245 if (tc->origin_dev)
4246 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4247
4248 return 0;
4249}
4250
4251/*
4252 * <nr mapped sectors> <highest mapped sector>
4253 */
4254static void thin_status(struct dm_target *ti, status_type_t type,
4255 unsigned status_flags, char *result, unsigned maxlen)
4256{
4257 int r;
4258 ssize_t sz = 0;
4259 dm_block_t mapped, highest;
4260 char buf[BDEVNAME_SIZE];
4261 struct thin_c *tc = ti->private;
4262
4263 if (get_pool_mode(tc->pool) == PM_FAIL) {
4264 DMEMIT("Fail");
4265 return;
4266 }
4267
4268 if (!tc->td)
4269 DMEMIT("-");
4270 else {
4271 switch (type) {
4272 case STATUSTYPE_INFO:
4273 r = dm_thin_get_mapped_count(tc->td, &mapped);
4274 if (r) {
4275 DMERR("dm_thin_get_mapped_count returned %d", r);
4276 goto err;
4277 }
4278
4279 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4280 if (r < 0) {
4281 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4282 goto err;
4283 }
4284
4285 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4286 if (r)
4287 DMEMIT("%llu", ((highest + 1) *
4288 tc->pool->sectors_per_block) - 1);
4289 else
4290 DMEMIT("-");
4291 break;
4292
4293 case STATUSTYPE_TABLE:
4294 DMEMIT("%s %lu",
4295 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4296 (unsigned long) tc->dev_id);
4297 if (tc->origin_dev)
4298 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4299 break;
4300 }
4301 }
4302
4303 return;
4304
4305err:
4306 DMEMIT("Error");
4307}
4308
4309static int thin_iterate_devices(struct dm_target *ti,
4310 iterate_devices_callout_fn fn, void *data)
4311{
4312 sector_t blocks;
4313 struct thin_c *tc = ti->private;
4314 struct pool *pool = tc->pool;
4315
4316 /*
4317 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4318 * we follow a more convoluted path through to the pool's target.
4319 */
4320 if (!pool->ti)
4321 return 0; /* nothing is bound */
4322
4323 blocks = pool->ti->len;
4324 (void) sector_div(blocks, pool->sectors_per_block);
4325 if (blocks)
4326 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4327
4328 return 0;
4329}
4330
4331static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4332{
4333 struct thin_c *tc = ti->private;
4334 struct pool *pool = tc->pool;
4335
4336 if (!pool->pf.discard_enabled)
4337 return;
4338
4339 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4340 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4341}
4342
4343static struct target_type thin_target = {
4344 .name = "thin",
4345 .version = {1, 19, 0},
4346 .module = THIS_MODULE,
4347 .ctr = thin_ctr,
4348 .dtr = thin_dtr,
4349 .map = thin_map,
4350 .end_io = thin_endio,
4351 .preresume = thin_preresume,
4352 .presuspend = thin_presuspend,
4353 .postsuspend = thin_postsuspend,
4354 .status = thin_status,
4355 .iterate_devices = thin_iterate_devices,
4356 .io_hints = thin_io_hints,
4357};
4358
4359/*----------------------------------------------------------------*/
4360
4361static int __init dm_thin_init(void)
4362{
4363 int r;
4364
4365 pool_table_init();
4366
4367 r = dm_register_target(&thin_target);
4368 if (r)
4369 return r;
4370
4371 r = dm_register_target(&pool_target);
4372 if (r)
4373 goto bad_pool_target;
4374
4375 r = -ENOMEM;
4376
4377 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4378 if (!_new_mapping_cache)
4379 goto bad_new_mapping_cache;
4380
4381 return 0;
4382
4383bad_new_mapping_cache:
4384 dm_unregister_target(&pool_target);
4385bad_pool_target:
4386 dm_unregister_target(&thin_target);
4387
4388 return r;
4389}
4390
4391static void dm_thin_exit(void)
4392{
4393 dm_unregister_target(&thin_target);
4394 dm_unregister_target(&pool_target);
4395
4396 kmem_cache_destroy(_new_mapping_cache);
4397}
4398
4399module_init(dm_thin_init);
4400module_exit(dm_thin_exit);
4401
4402module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4403MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4404
4405MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4406MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4407MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2011-2012 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8#include "dm-bio-prison-v1.h"
9#include "dm.h"
10
11#include <linux/device-mapper.h>
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/log2.h>
16#include <linux/list.h>
17#include <linux/rculist.h>
18#include <linux/init.h>
19#include <linux/module.h>
20#include <linux/slab.h>
21#include <linux/vmalloc.h>
22#include <linux/sort.h>
23#include <linux/rbtree.h>
24
25#define DM_MSG_PREFIX "thin"
26
27/*
28 * Tunable constants
29 */
30#define ENDIO_HOOK_POOL_SIZE 1024
31#define MAPPING_POOL_SIZE 1024
32#define COMMIT_PERIOD HZ
33#define NO_SPACE_TIMEOUT_SECS 60
34
35static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38 "A percentage of time allocated for copy on write");
39
40/*
41 * The block size of the device holding pool data must be
42 * between 64KB and 1GB.
43 */
44#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47/*
48 * Device id is restricted to 24 bits.
49 */
50#define MAX_DEV_ID ((1 << 24) - 1)
51
52/*
53 * How do we handle breaking sharing of data blocks?
54 * =================================================
55 *
56 * We use a standard copy-on-write btree to store the mappings for the
57 * devices (note I'm talking about copy-on-write of the metadata here, not
58 * the data). When you take an internal snapshot you clone the root node
59 * of the origin btree. After this there is no concept of an origin or a
60 * snapshot. They are just two device trees that happen to point to the
61 * same data blocks.
62 *
63 * When we get a write in we decide if it's to a shared data block using
64 * some timestamp magic. If it is, we have to break sharing.
65 *
66 * Let's say we write to a shared block in what was the origin. The
67 * steps are:
68 *
69 * i) plug io further to this physical block. (see bio_prison code).
70 *
71 * ii) quiesce any read io to that shared data block. Obviously
72 * including all devices that share this block. (see dm_deferred_set code)
73 *
74 * iii) copy the data block to a newly allocate block. This step can be
75 * missed out if the io covers the block. (schedule_copy).
76 *
77 * iv) insert the new mapping into the origin's btree
78 * (process_prepared_mapping). This act of inserting breaks some
79 * sharing of btree nodes between the two devices. Breaking sharing only
80 * effects the btree of that specific device. Btrees for the other
81 * devices that share the block never change. The btree for the origin
82 * device as it was after the last commit is untouched, ie. we're using
83 * persistent data structures in the functional programming sense.
84 *
85 * v) unplug io to this physical block, including the io that triggered
86 * the breaking of sharing.
87 *
88 * Steps (ii) and (iii) occur in parallel.
89 *
90 * The metadata _doesn't_ need to be committed before the io continues. We
91 * get away with this because the io is always written to a _new_ block.
92 * If there's a crash, then:
93 *
94 * - The origin mapping will point to the old origin block (the shared
95 * one). This will contain the data as it was before the io that triggered
96 * the breaking of sharing came in.
97 *
98 * - The snap mapping still points to the old block. As it would after
99 * the commit.
100 *
101 * The downside of this scheme is the timestamp magic isn't perfect, and
102 * will continue to think that data block in the snapshot device is shared
103 * even after the write to the origin has broken sharing. I suspect data
104 * blocks will typically be shared by many different devices, so we're
105 * breaking sharing n + 1 times, rather than n, where n is the number of
106 * devices that reference this data block. At the moment I think the
107 * benefits far, far outweigh the disadvantages.
108 */
109
110/*----------------------------------------------------------------*/
111
112/*
113 * Key building.
114 */
115enum lock_space {
116 VIRTUAL,
117 PHYSICAL
118};
119
120static void build_key(struct dm_thin_device *td, enum lock_space ls,
121 dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122{
123 key->virtual = (ls == VIRTUAL);
124 key->dev = dm_thin_dev_id(td);
125 key->block_begin = b;
126 key->block_end = e;
127}
128
129static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130 struct dm_cell_key *key)
131{
132 build_key(td, PHYSICAL, b, b + 1llu, key);
133}
134
135static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136 struct dm_cell_key *key)
137{
138 build_key(td, VIRTUAL, b, b + 1llu, key);
139}
140
141/*----------------------------------------------------------------*/
142
143#define THROTTLE_THRESHOLD (1 * HZ)
144
145struct throttle {
146 struct rw_semaphore lock;
147 unsigned long threshold;
148 bool throttle_applied;
149};
150
151static void throttle_init(struct throttle *t)
152{
153 init_rwsem(&t->lock);
154 t->throttle_applied = false;
155}
156
157static void throttle_work_start(struct throttle *t)
158{
159 t->threshold = jiffies + THROTTLE_THRESHOLD;
160}
161
162static void throttle_work_update(struct throttle *t)
163{
164 if (!t->throttle_applied && jiffies > t->threshold) {
165 down_write(&t->lock);
166 t->throttle_applied = true;
167 }
168}
169
170static void throttle_work_complete(struct throttle *t)
171{
172 if (t->throttle_applied) {
173 t->throttle_applied = false;
174 up_write(&t->lock);
175 }
176}
177
178static void throttle_lock(struct throttle *t)
179{
180 down_read(&t->lock);
181}
182
183static void throttle_unlock(struct throttle *t)
184{
185 up_read(&t->lock);
186}
187
188/*----------------------------------------------------------------*/
189
190/*
191 * A pool device ties together a metadata device and a data device. It
192 * also provides the interface for creating and destroying internal
193 * devices.
194 */
195struct dm_thin_new_mapping;
196
197/*
198 * The pool runs in various modes. Ordered in degraded order for comparisons.
199 */
200enum pool_mode {
201 PM_WRITE, /* metadata may be changed */
202 PM_OUT_OF_DATA_SPACE, /* metadata may be changed, though data may not be allocated */
203
204 /*
205 * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206 */
207 PM_OUT_OF_METADATA_SPACE,
208 PM_READ_ONLY, /* metadata may not be changed */
209
210 PM_FAIL, /* all I/O fails */
211};
212
213struct pool_features {
214 enum pool_mode mode;
215
216 bool zero_new_blocks:1;
217 bool discard_enabled:1;
218 bool discard_passdown:1;
219 bool error_if_no_space:1;
220};
221
222struct thin_c;
223typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227#define CELL_SORT_ARRAY_SIZE 8192
228
229struct pool {
230 struct list_head list;
231 struct dm_target *ti; /* Only set if a pool target is bound */
232
233 struct mapped_device *pool_md;
234 struct block_device *data_dev;
235 struct block_device *md_dev;
236 struct dm_pool_metadata *pmd;
237
238 dm_block_t low_water_blocks;
239 uint32_t sectors_per_block;
240 int sectors_per_block_shift;
241
242 struct pool_features pf;
243 bool low_water_triggered:1; /* A dm event has been sent */
244 bool suspended:1;
245 bool out_of_data_space:1;
246
247 struct dm_bio_prison *prison;
248 struct dm_kcopyd_client *copier;
249
250 struct work_struct worker;
251 struct workqueue_struct *wq;
252 struct throttle throttle;
253 struct delayed_work waker;
254 struct delayed_work no_space_timeout;
255
256 unsigned long last_commit_jiffies;
257 unsigned ref_count;
258
259 spinlock_t lock;
260 struct bio_list deferred_flush_bios;
261 struct bio_list deferred_flush_completions;
262 struct list_head prepared_mappings;
263 struct list_head prepared_discards;
264 struct list_head prepared_discards_pt2;
265 struct list_head active_thins;
266
267 struct dm_deferred_set *shared_read_ds;
268 struct dm_deferred_set *all_io_ds;
269
270 struct dm_thin_new_mapping *next_mapping;
271
272 process_bio_fn process_bio;
273 process_bio_fn process_discard;
274
275 process_cell_fn process_cell;
276 process_cell_fn process_discard_cell;
277
278 process_mapping_fn process_prepared_mapping;
279 process_mapping_fn process_prepared_discard;
280 process_mapping_fn process_prepared_discard_pt2;
281
282 struct dm_bio_prison_cell **cell_sort_array;
283
284 mempool_t mapping_pool;
285
286 struct bio flush_bio;
287};
288
289static void metadata_operation_failed(struct pool *pool, const char *op, int r);
290
291static enum pool_mode get_pool_mode(struct pool *pool)
292{
293 return pool->pf.mode;
294}
295
296static void notify_of_pool_mode_change(struct pool *pool)
297{
298 const char *descs[] = {
299 "write",
300 "out-of-data-space",
301 "read-only",
302 "read-only",
303 "fail"
304 };
305 const char *extra_desc = NULL;
306 enum pool_mode mode = get_pool_mode(pool);
307
308 if (mode == PM_OUT_OF_DATA_SPACE) {
309 if (!pool->pf.error_if_no_space)
310 extra_desc = " (queue IO)";
311 else
312 extra_desc = " (error IO)";
313 }
314
315 dm_table_event(pool->ti->table);
316 DMINFO("%s: switching pool to %s%s mode",
317 dm_device_name(pool->pool_md),
318 descs[(int)mode], extra_desc ? : "");
319}
320
321/*
322 * Target context for a pool.
323 */
324struct pool_c {
325 struct dm_target *ti;
326 struct pool *pool;
327 struct dm_dev *data_dev;
328 struct dm_dev *metadata_dev;
329
330 dm_block_t low_water_blocks;
331 struct pool_features requested_pf; /* Features requested during table load */
332 struct pool_features adjusted_pf; /* Features used after adjusting for constituent devices */
333};
334
335/*
336 * Target context for a thin.
337 */
338struct thin_c {
339 struct list_head list;
340 struct dm_dev *pool_dev;
341 struct dm_dev *origin_dev;
342 sector_t origin_size;
343 dm_thin_id dev_id;
344
345 struct pool *pool;
346 struct dm_thin_device *td;
347 struct mapped_device *thin_md;
348
349 bool requeue_mode:1;
350 spinlock_t lock;
351 struct list_head deferred_cells;
352 struct bio_list deferred_bio_list;
353 struct bio_list retry_on_resume_list;
354 struct rb_root sort_bio_list; /* sorted list of deferred bios */
355
356 /*
357 * Ensures the thin is not destroyed until the worker has finished
358 * iterating the active_thins list.
359 */
360 refcount_t refcount;
361 struct completion can_destroy;
362};
363
364/*----------------------------------------------------------------*/
365
366static bool block_size_is_power_of_two(struct pool *pool)
367{
368 return pool->sectors_per_block_shift >= 0;
369}
370
371static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
372{
373 return block_size_is_power_of_two(pool) ?
374 (b << pool->sectors_per_block_shift) :
375 (b * pool->sectors_per_block);
376}
377
378/*----------------------------------------------------------------*/
379
380struct discard_op {
381 struct thin_c *tc;
382 struct blk_plug plug;
383 struct bio *parent_bio;
384 struct bio *bio;
385};
386
387static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
388{
389 BUG_ON(!parent);
390
391 op->tc = tc;
392 blk_start_plug(&op->plug);
393 op->parent_bio = parent;
394 op->bio = NULL;
395}
396
397static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
398{
399 struct thin_c *tc = op->tc;
400 sector_t s = block_to_sectors(tc->pool, data_b);
401 sector_t len = block_to_sectors(tc->pool, data_e - data_b);
402
403 return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
404 GFP_NOWAIT, 0, &op->bio);
405}
406
407static void end_discard(struct discard_op *op, int r)
408{
409 if (op->bio) {
410 /*
411 * Even if one of the calls to issue_discard failed, we
412 * need to wait for the chain to complete.
413 */
414 bio_chain(op->bio, op->parent_bio);
415 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
416 submit_bio(op->bio);
417 }
418
419 blk_finish_plug(&op->plug);
420
421 /*
422 * Even if r is set, there could be sub discards in flight that we
423 * need to wait for.
424 */
425 if (r && !op->parent_bio->bi_status)
426 op->parent_bio->bi_status = errno_to_blk_status(r);
427 bio_endio(op->parent_bio);
428}
429
430/*----------------------------------------------------------------*/
431
432/*
433 * wake_worker() is used when new work is queued and when pool_resume is
434 * ready to continue deferred IO processing.
435 */
436static void wake_worker(struct pool *pool)
437{
438 queue_work(pool->wq, &pool->worker);
439}
440
441/*----------------------------------------------------------------*/
442
443static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
444 struct dm_bio_prison_cell **cell_result)
445{
446 int r;
447 struct dm_bio_prison_cell *cell_prealloc;
448
449 /*
450 * Allocate a cell from the prison's mempool.
451 * This might block but it can't fail.
452 */
453 cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
454
455 r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
456 if (r)
457 /*
458 * We reused an old cell; we can get rid of
459 * the new one.
460 */
461 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
462
463 return r;
464}
465
466static void cell_release(struct pool *pool,
467 struct dm_bio_prison_cell *cell,
468 struct bio_list *bios)
469{
470 dm_cell_release(pool->prison, cell, bios);
471 dm_bio_prison_free_cell(pool->prison, cell);
472}
473
474static void cell_visit_release(struct pool *pool,
475 void (*fn)(void *, struct dm_bio_prison_cell *),
476 void *context,
477 struct dm_bio_prison_cell *cell)
478{
479 dm_cell_visit_release(pool->prison, fn, context, cell);
480 dm_bio_prison_free_cell(pool->prison, cell);
481}
482
483static void cell_release_no_holder(struct pool *pool,
484 struct dm_bio_prison_cell *cell,
485 struct bio_list *bios)
486{
487 dm_cell_release_no_holder(pool->prison, cell, bios);
488 dm_bio_prison_free_cell(pool->prison, cell);
489}
490
491static void cell_error_with_code(struct pool *pool,
492 struct dm_bio_prison_cell *cell, blk_status_t error_code)
493{
494 dm_cell_error(pool->prison, cell, error_code);
495 dm_bio_prison_free_cell(pool->prison, cell);
496}
497
498static blk_status_t get_pool_io_error_code(struct pool *pool)
499{
500 return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
501}
502
503static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
504{
505 cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
506}
507
508static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
509{
510 cell_error_with_code(pool, cell, 0);
511}
512
513static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
514{
515 cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
516}
517
518/*----------------------------------------------------------------*/
519
520/*
521 * A global list of pools that uses a struct mapped_device as a key.
522 */
523static struct dm_thin_pool_table {
524 struct mutex mutex;
525 struct list_head pools;
526} dm_thin_pool_table;
527
528static void pool_table_init(void)
529{
530 mutex_init(&dm_thin_pool_table.mutex);
531 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
532}
533
534static void pool_table_exit(void)
535{
536 mutex_destroy(&dm_thin_pool_table.mutex);
537}
538
539static void __pool_table_insert(struct pool *pool)
540{
541 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
542 list_add(&pool->list, &dm_thin_pool_table.pools);
543}
544
545static void __pool_table_remove(struct pool *pool)
546{
547 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
548 list_del(&pool->list);
549}
550
551static struct pool *__pool_table_lookup(struct mapped_device *md)
552{
553 struct pool *pool = NULL, *tmp;
554
555 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
556
557 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
558 if (tmp->pool_md == md) {
559 pool = tmp;
560 break;
561 }
562 }
563
564 return pool;
565}
566
567static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
568{
569 struct pool *pool = NULL, *tmp;
570
571 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
572
573 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
574 if (tmp->md_dev == md_dev) {
575 pool = tmp;
576 break;
577 }
578 }
579
580 return pool;
581}
582
583/*----------------------------------------------------------------*/
584
585struct dm_thin_endio_hook {
586 struct thin_c *tc;
587 struct dm_deferred_entry *shared_read_entry;
588 struct dm_deferred_entry *all_io_entry;
589 struct dm_thin_new_mapping *overwrite_mapping;
590 struct rb_node rb_node;
591 struct dm_bio_prison_cell *cell;
592};
593
594static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
595{
596 bio_list_merge(bios, master);
597 bio_list_init(master);
598}
599
600static void error_bio_list(struct bio_list *bios, blk_status_t error)
601{
602 struct bio *bio;
603
604 while ((bio = bio_list_pop(bios))) {
605 bio->bi_status = error;
606 bio_endio(bio);
607 }
608}
609
610static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
611 blk_status_t error)
612{
613 struct bio_list bios;
614
615 bio_list_init(&bios);
616
617 spin_lock_irq(&tc->lock);
618 __merge_bio_list(&bios, master);
619 spin_unlock_irq(&tc->lock);
620
621 error_bio_list(&bios, error);
622}
623
624static void requeue_deferred_cells(struct thin_c *tc)
625{
626 struct pool *pool = tc->pool;
627 struct list_head cells;
628 struct dm_bio_prison_cell *cell, *tmp;
629
630 INIT_LIST_HEAD(&cells);
631
632 spin_lock_irq(&tc->lock);
633 list_splice_init(&tc->deferred_cells, &cells);
634 spin_unlock_irq(&tc->lock);
635
636 list_for_each_entry_safe(cell, tmp, &cells, user_list)
637 cell_requeue(pool, cell);
638}
639
640static void requeue_io(struct thin_c *tc)
641{
642 struct bio_list bios;
643
644 bio_list_init(&bios);
645
646 spin_lock_irq(&tc->lock);
647 __merge_bio_list(&bios, &tc->deferred_bio_list);
648 __merge_bio_list(&bios, &tc->retry_on_resume_list);
649 spin_unlock_irq(&tc->lock);
650
651 error_bio_list(&bios, BLK_STS_DM_REQUEUE);
652 requeue_deferred_cells(tc);
653}
654
655static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
656{
657 struct thin_c *tc;
658
659 rcu_read_lock();
660 list_for_each_entry_rcu(tc, &pool->active_thins, list)
661 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
662 rcu_read_unlock();
663}
664
665static void error_retry_list(struct pool *pool)
666{
667 error_retry_list_with_code(pool, get_pool_io_error_code(pool));
668}
669
670/*
671 * This section of code contains the logic for processing a thin device's IO.
672 * Much of the code depends on pool object resources (lists, workqueues, etc)
673 * but most is exclusively called from the thin target rather than the thin-pool
674 * target.
675 */
676
677static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
678{
679 struct pool *pool = tc->pool;
680 sector_t block_nr = bio->bi_iter.bi_sector;
681
682 if (block_size_is_power_of_two(pool))
683 block_nr >>= pool->sectors_per_block_shift;
684 else
685 (void) sector_div(block_nr, pool->sectors_per_block);
686
687 return block_nr;
688}
689
690/*
691 * Returns the _complete_ blocks that this bio covers.
692 */
693static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
694 dm_block_t *begin, dm_block_t *end)
695{
696 struct pool *pool = tc->pool;
697 sector_t b = bio->bi_iter.bi_sector;
698 sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
699
700 b += pool->sectors_per_block - 1ull; /* so we round up */
701
702 if (block_size_is_power_of_two(pool)) {
703 b >>= pool->sectors_per_block_shift;
704 e >>= pool->sectors_per_block_shift;
705 } else {
706 (void) sector_div(b, pool->sectors_per_block);
707 (void) sector_div(e, pool->sectors_per_block);
708 }
709
710 if (e < b)
711 /* Can happen if the bio is within a single block. */
712 e = b;
713
714 *begin = b;
715 *end = e;
716}
717
718static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
719{
720 struct pool *pool = tc->pool;
721 sector_t bi_sector = bio->bi_iter.bi_sector;
722
723 bio_set_dev(bio, tc->pool_dev->bdev);
724 if (block_size_is_power_of_two(pool))
725 bio->bi_iter.bi_sector =
726 (block << pool->sectors_per_block_shift) |
727 (bi_sector & (pool->sectors_per_block - 1));
728 else
729 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
730 sector_div(bi_sector, pool->sectors_per_block);
731}
732
733static void remap_to_origin(struct thin_c *tc, struct bio *bio)
734{
735 bio_set_dev(bio, tc->origin_dev->bdev);
736}
737
738static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
739{
740 return op_is_flush(bio->bi_opf) &&
741 dm_thin_changed_this_transaction(tc->td);
742}
743
744static void inc_all_io_entry(struct pool *pool, struct bio *bio)
745{
746 struct dm_thin_endio_hook *h;
747
748 if (bio_op(bio) == REQ_OP_DISCARD)
749 return;
750
751 h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
752 h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
753}
754
755static void issue(struct thin_c *tc, struct bio *bio)
756{
757 struct pool *pool = tc->pool;
758
759 if (!bio_triggers_commit(tc, bio)) {
760 submit_bio_noacct(bio);
761 return;
762 }
763
764 /*
765 * Complete bio with an error if earlier I/O caused changes to
766 * the metadata that can't be committed e.g, due to I/O errors
767 * on the metadata device.
768 */
769 if (dm_thin_aborted_changes(tc->td)) {
770 bio_io_error(bio);
771 return;
772 }
773
774 /*
775 * Batch together any bios that trigger commits and then issue a
776 * single commit for them in process_deferred_bios().
777 */
778 spin_lock_irq(&pool->lock);
779 bio_list_add(&pool->deferred_flush_bios, bio);
780 spin_unlock_irq(&pool->lock);
781}
782
783static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
784{
785 remap_to_origin(tc, bio);
786 issue(tc, bio);
787}
788
789static void remap_and_issue(struct thin_c *tc, struct bio *bio,
790 dm_block_t block)
791{
792 remap(tc, bio, block);
793 issue(tc, bio);
794}
795
796/*----------------------------------------------------------------*/
797
798/*
799 * Bio endio functions.
800 */
801struct dm_thin_new_mapping {
802 struct list_head list;
803
804 bool pass_discard:1;
805 bool maybe_shared:1;
806
807 /*
808 * Track quiescing, copying and zeroing preparation actions. When this
809 * counter hits zero the block is prepared and can be inserted into the
810 * btree.
811 */
812 atomic_t prepare_actions;
813
814 blk_status_t status;
815 struct thin_c *tc;
816 dm_block_t virt_begin, virt_end;
817 dm_block_t data_block;
818 struct dm_bio_prison_cell *cell;
819
820 /*
821 * If the bio covers the whole area of a block then we can avoid
822 * zeroing or copying. Instead this bio is hooked. The bio will
823 * still be in the cell, so care has to be taken to avoid issuing
824 * the bio twice.
825 */
826 struct bio *bio;
827 bio_end_io_t *saved_bi_end_io;
828};
829
830static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
831{
832 struct pool *pool = m->tc->pool;
833
834 if (atomic_dec_and_test(&m->prepare_actions)) {
835 list_add_tail(&m->list, &pool->prepared_mappings);
836 wake_worker(pool);
837 }
838}
839
840static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
841{
842 unsigned long flags;
843 struct pool *pool = m->tc->pool;
844
845 spin_lock_irqsave(&pool->lock, flags);
846 __complete_mapping_preparation(m);
847 spin_unlock_irqrestore(&pool->lock, flags);
848}
849
850static void copy_complete(int read_err, unsigned long write_err, void *context)
851{
852 struct dm_thin_new_mapping *m = context;
853
854 m->status = read_err || write_err ? BLK_STS_IOERR : 0;
855 complete_mapping_preparation(m);
856}
857
858static void overwrite_endio(struct bio *bio)
859{
860 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
861 struct dm_thin_new_mapping *m = h->overwrite_mapping;
862
863 bio->bi_end_io = m->saved_bi_end_io;
864
865 m->status = bio->bi_status;
866 complete_mapping_preparation(m);
867}
868
869/*----------------------------------------------------------------*/
870
871/*
872 * Workqueue.
873 */
874
875/*
876 * Prepared mapping jobs.
877 */
878
879/*
880 * This sends the bios in the cell, except the original holder, back
881 * to the deferred_bios list.
882 */
883static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
884{
885 struct pool *pool = tc->pool;
886 unsigned long flags;
887 int has_work;
888
889 spin_lock_irqsave(&tc->lock, flags);
890 cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
891 has_work = !bio_list_empty(&tc->deferred_bio_list);
892 spin_unlock_irqrestore(&tc->lock, flags);
893
894 if (has_work)
895 wake_worker(pool);
896}
897
898static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
899
900struct remap_info {
901 struct thin_c *tc;
902 struct bio_list defer_bios;
903 struct bio_list issue_bios;
904};
905
906static void __inc_remap_and_issue_cell(void *context,
907 struct dm_bio_prison_cell *cell)
908{
909 struct remap_info *info = context;
910 struct bio *bio;
911
912 while ((bio = bio_list_pop(&cell->bios))) {
913 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
914 bio_list_add(&info->defer_bios, bio);
915 else {
916 inc_all_io_entry(info->tc->pool, bio);
917
918 /*
919 * We can't issue the bios with the bio prison lock
920 * held, so we add them to a list to issue on
921 * return from this function.
922 */
923 bio_list_add(&info->issue_bios, bio);
924 }
925 }
926}
927
928static void inc_remap_and_issue_cell(struct thin_c *tc,
929 struct dm_bio_prison_cell *cell,
930 dm_block_t block)
931{
932 struct bio *bio;
933 struct remap_info info;
934
935 info.tc = tc;
936 bio_list_init(&info.defer_bios);
937 bio_list_init(&info.issue_bios);
938
939 /*
940 * We have to be careful to inc any bios we're about to issue
941 * before the cell is released, and avoid a race with new bios
942 * being added to the cell.
943 */
944 cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
945 &info, cell);
946
947 while ((bio = bio_list_pop(&info.defer_bios)))
948 thin_defer_bio(tc, bio);
949
950 while ((bio = bio_list_pop(&info.issue_bios)))
951 remap_and_issue(info.tc, bio, block);
952}
953
954static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
955{
956 cell_error(m->tc->pool, m->cell);
957 list_del(&m->list);
958 mempool_free(m, &m->tc->pool->mapping_pool);
959}
960
961static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
962{
963 struct pool *pool = tc->pool;
964
965 /*
966 * If the bio has the REQ_FUA flag set we must commit the metadata
967 * before signaling its completion.
968 */
969 if (!bio_triggers_commit(tc, bio)) {
970 bio_endio(bio);
971 return;
972 }
973
974 /*
975 * Complete bio with an error if earlier I/O caused changes to the
976 * metadata that can't be committed, e.g, due to I/O errors on the
977 * metadata device.
978 */
979 if (dm_thin_aborted_changes(tc->td)) {
980 bio_io_error(bio);
981 return;
982 }
983
984 /*
985 * Batch together any bios that trigger commits and then issue a
986 * single commit for them in process_deferred_bios().
987 */
988 spin_lock_irq(&pool->lock);
989 bio_list_add(&pool->deferred_flush_completions, bio);
990 spin_unlock_irq(&pool->lock);
991}
992
993static void process_prepared_mapping(struct dm_thin_new_mapping *m)
994{
995 struct thin_c *tc = m->tc;
996 struct pool *pool = tc->pool;
997 struct bio *bio = m->bio;
998 int r;
999
1000 if (m->status) {
1001 cell_error(pool, m->cell);
1002 goto out;
1003 }
1004
1005 /*
1006 * Commit the prepared block into the mapping btree.
1007 * Any I/O for this block arriving after this point will get
1008 * remapped to it directly.
1009 */
1010 r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1011 if (r) {
1012 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1013 cell_error(pool, m->cell);
1014 goto out;
1015 }
1016
1017 /*
1018 * Release any bios held while the block was being provisioned.
1019 * If we are processing a write bio that completely covers the block,
1020 * we already processed it so can ignore it now when processing
1021 * the bios in the cell.
1022 */
1023 if (bio) {
1024 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1025 complete_overwrite_bio(tc, bio);
1026 } else {
1027 inc_all_io_entry(tc->pool, m->cell->holder);
1028 remap_and_issue(tc, m->cell->holder, m->data_block);
1029 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1030 }
1031
1032out:
1033 list_del(&m->list);
1034 mempool_free(m, &pool->mapping_pool);
1035}
1036
1037/*----------------------------------------------------------------*/
1038
1039static void free_discard_mapping(struct dm_thin_new_mapping *m)
1040{
1041 struct thin_c *tc = m->tc;
1042 if (m->cell)
1043 cell_defer_no_holder(tc, m->cell);
1044 mempool_free(m, &tc->pool->mapping_pool);
1045}
1046
1047static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1048{
1049 bio_io_error(m->bio);
1050 free_discard_mapping(m);
1051}
1052
1053static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1054{
1055 bio_endio(m->bio);
1056 free_discard_mapping(m);
1057}
1058
1059static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1060{
1061 int r;
1062 struct thin_c *tc = m->tc;
1063
1064 r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1065 if (r) {
1066 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1067 bio_io_error(m->bio);
1068 } else
1069 bio_endio(m->bio);
1070
1071 cell_defer_no_holder(tc, m->cell);
1072 mempool_free(m, &tc->pool->mapping_pool);
1073}
1074
1075/*----------------------------------------------------------------*/
1076
1077static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1078 struct bio *discard_parent)
1079{
1080 /*
1081 * We've already unmapped this range of blocks, but before we
1082 * passdown we have to check that these blocks are now unused.
1083 */
1084 int r = 0;
1085 bool shared = true;
1086 struct thin_c *tc = m->tc;
1087 struct pool *pool = tc->pool;
1088 dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1089 struct discard_op op;
1090
1091 begin_discard(&op, tc, discard_parent);
1092 while (b != end) {
1093 /* find start of unmapped run */
1094 for (; b < end; b++) {
1095 r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1096 if (r)
1097 goto out;
1098
1099 if (!shared)
1100 break;
1101 }
1102
1103 if (b == end)
1104 break;
1105
1106 /* find end of run */
1107 for (e = b + 1; e != end; e++) {
1108 r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1109 if (r)
1110 goto out;
1111
1112 if (shared)
1113 break;
1114 }
1115
1116 r = issue_discard(&op, b, e);
1117 if (r)
1118 goto out;
1119
1120 b = e;
1121 }
1122out:
1123 end_discard(&op, r);
1124}
1125
1126static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1127{
1128 unsigned long flags;
1129 struct pool *pool = m->tc->pool;
1130
1131 spin_lock_irqsave(&pool->lock, flags);
1132 list_add_tail(&m->list, &pool->prepared_discards_pt2);
1133 spin_unlock_irqrestore(&pool->lock, flags);
1134 wake_worker(pool);
1135}
1136
1137static void passdown_endio(struct bio *bio)
1138{
1139 /*
1140 * It doesn't matter if the passdown discard failed, we still want
1141 * to unmap (we ignore err).
1142 */
1143 queue_passdown_pt2(bio->bi_private);
1144 bio_put(bio);
1145}
1146
1147static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1148{
1149 int r;
1150 struct thin_c *tc = m->tc;
1151 struct pool *pool = tc->pool;
1152 struct bio *discard_parent;
1153 dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1154
1155 /*
1156 * Only this thread allocates blocks, so we can be sure that the
1157 * newly unmapped blocks will not be allocated before the end of
1158 * the function.
1159 */
1160 r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1161 if (r) {
1162 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1163 bio_io_error(m->bio);
1164 cell_defer_no_holder(tc, m->cell);
1165 mempool_free(m, &pool->mapping_pool);
1166 return;
1167 }
1168
1169 /*
1170 * Increment the unmapped blocks. This prevents a race between the
1171 * passdown io and reallocation of freed blocks.
1172 */
1173 r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1174 if (r) {
1175 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1176 bio_io_error(m->bio);
1177 cell_defer_no_holder(tc, m->cell);
1178 mempool_free(m, &pool->mapping_pool);
1179 return;
1180 }
1181
1182 discard_parent = bio_alloc(GFP_NOIO, 1);
1183 if (!discard_parent) {
1184 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1185 dm_device_name(tc->pool->pool_md));
1186 queue_passdown_pt2(m);
1187
1188 } else {
1189 discard_parent->bi_end_io = passdown_endio;
1190 discard_parent->bi_private = m;
1191
1192 if (m->maybe_shared)
1193 passdown_double_checking_shared_status(m, discard_parent);
1194 else {
1195 struct discard_op op;
1196
1197 begin_discard(&op, tc, discard_parent);
1198 r = issue_discard(&op, m->data_block, data_end);
1199 end_discard(&op, r);
1200 }
1201 }
1202}
1203
1204static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1205{
1206 int r;
1207 struct thin_c *tc = m->tc;
1208 struct pool *pool = tc->pool;
1209
1210 /*
1211 * The passdown has completed, so now we can decrement all those
1212 * unmapped blocks.
1213 */
1214 r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1215 m->data_block + (m->virt_end - m->virt_begin));
1216 if (r) {
1217 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1218 bio_io_error(m->bio);
1219 } else
1220 bio_endio(m->bio);
1221
1222 cell_defer_no_holder(tc, m->cell);
1223 mempool_free(m, &pool->mapping_pool);
1224}
1225
1226static void process_prepared(struct pool *pool, struct list_head *head,
1227 process_mapping_fn *fn)
1228{
1229 struct list_head maps;
1230 struct dm_thin_new_mapping *m, *tmp;
1231
1232 INIT_LIST_HEAD(&maps);
1233 spin_lock_irq(&pool->lock);
1234 list_splice_init(head, &maps);
1235 spin_unlock_irq(&pool->lock);
1236
1237 list_for_each_entry_safe(m, tmp, &maps, list)
1238 (*fn)(m);
1239}
1240
1241/*
1242 * Deferred bio jobs.
1243 */
1244static int io_overlaps_block(struct pool *pool, struct bio *bio)
1245{
1246 return bio->bi_iter.bi_size ==
1247 (pool->sectors_per_block << SECTOR_SHIFT);
1248}
1249
1250static int io_overwrites_block(struct pool *pool, struct bio *bio)
1251{
1252 return (bio_data_dir(bio) == WRITE) &&
1253 io_overlaps_block(pool, bio);
1254}
1255
1256static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1257 bio_end_io_t *fn)
1258{
1259 *save = bio->bi_end_io;
1260 bio->bi_end_io = fn;
1261}
1262
1263static int ensure_next_mapping(struct pool *pool)
1264{
1265 if (pool->next_mapping)
1266 return 0;
1267
1268 pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1269
1270 return pool->next_mapping ? 0 : -ENOMEM;
1271}
1272
1273static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1274{
1275 struct dm_thin_new_mapping *m = pool->next_mapping;
1276
1277 BUG_ON(!pool->next_mapping);
1278
1279 memset(m, 0, sizeof(struct dm_thin_new_mapping));
1280 INIT_LIST_HEAD(&m->list);
1281 m->bio = NULL;
1282
1283 pool->next_mapping = NULL;
1284
1285 return m;
1286}
1287
1288static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1289 sector_t begin, sector_t end)
1290{
1291 struct dm_io_region to;
1292
1293 to.bdev = tc->pool_dev->bdev;
1294 to.sector = begin;
1295 to.count = end - begin;
1296
1297 dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1298}
1299
1300static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1301 dm_block_t data_begin,
1302 struct dm_thin_new_mapping *m)
1303{
1304 struct pool *pool = tc->pool;
1305 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1306
1307 h->overwrite_mapping = m;
1308 m->bio = bio;
1309 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1310 inc_all_io_entry(pool, bio);
1311 remap_and_issue(tc, bio, data_begin);
1312}
1313
1314/*
1315 * A partial copy also needs to zero the uncopied region.
1316 */
1317static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1318 struct dm_dev *origin, dm_block_t data_origin,
1319 dm_block_t data_dest,
1320 struct dm_bio_prison_cell *cell, struct bio *bio,
1321 sector_t len)
1322{
1323 struct pool *pool = tc->pool;
1324 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1325
1326 m->tc = tc;
1327 m->virt_begin = virt_block;
1328 m->virt_end = virt_block + 1u;
1329 m->data_block = data_dest;
1330 m->cell = cell;
1331
1332 /*
1333 * quiesce action + copy action + an extra reference held for the
1334 * duration of this function (we may need to inc later for a
1335 * partial zero).
1336 */
1337 atomic_set(&m->prepare_actions, 3);
1338
1339 if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1340 complete_mapping_preparation(m); /* already quiesced */
1341
1342 /*
1343 * IO to pool_dev remaps to the pool target's data_dev.
1344 *
1345 * If the whole block of data is being overwritten, we can issue the
1346 * bio immediately. Otherwise we use kcopyd to clone the data first.
1347 */
1348 if (io_overwrites_block(pool, bio))
1349 remap_and_issue_overwrite(tc, bio, data_dest, m);
1350 else {
1351 struct dm_io_region from, to;
1352
1353 from.bdev = origin->bdev;
1354 from.sector = data_origin * pool->sectors_per_block;
1355 from.count = len;
1356
1357 to.bdev = tc->pool_dev->bdev;
1358 to.sector = data_dest * pool->sectors_per_block;
1359 to.count = len;
1360
1361 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1362 0, copy_complete, m);
1363
1364 /*
1365 * Do we need to zero a tail region?
1366 */
1367 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1368 atomic_inc(&m->prepare_actions);
1369 ll_zero(tc, m,
1370 data_dest * pool->sectors_per_block + len,
1371 (data_dest + 1) * pool->sectors_per_block);
1372 }
1373 }
1374
1375 complete_mapping_preparation(m); /* drop our ref */
1376}
1377
1378static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1379 dm_block_t data_origin, dm_block_t data_dest,
1380 struct dm_bio_prison_cell *cell, struct bio *bio)
1381{
1382 schedule_copy(tc, virt_block, tc->pool_dev,
1383 data_origin, data_dest, cell, bio,
1384 tc->pool->sectors_per_block);
1385}
1386
1387static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1388 dm_block_t data_block, struct dm_bio_prison_cell *cell,
1389 struct bio *bio)
1390{
1391 struct pool *pool = tc->pool;
1392 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1393
1394 atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1395 m->tc = tc;
1396 m->virt_begin = virt_block;
1397 m->virt_end = virt_block + 1u;
1398 m->data_block = data_block;
1399 m->cell = cell;
1400
1401 /*
1402 * If the whole block of data is being overwritten or we are not
1403 * zeroing pre-existing data, we can issue the bio immediately.
1404 * Otherwise we use kcopyd to zero the data first.
1405 */
1406 if (pool->pf.zero_new_blocks) {
1407 if (io_overwrites_block(pool, bio))
1408 remap_and_issue_overwrite(tc, bio, data_block, m);
1409 else
1410 ll_zero(tc, m, data_block * pool->sectors_per_block,
1411 (data_block + 1) * pool->sectors_per_block);
1412 } else
1413 process_prepared_mapping(m);
1414}
1415
1416static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1417 dm_block_t data_dest,
1418 struct dm_bio_prison_cell *cell, struct bio *bio)
1419{
1420 struct pool *pool = tc->pool;
1421 sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1422 sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1423
1424 if (virt_block_end <= tc->origin_size)
1425 schedule_copy(tc, virt_block, tc->origin_dev,
1426 virt_block, data_dest, cell, bio,
1427 pool->sectors_per_block);
1428
1429 else if (virt_block_begin < tc->origin_size)
1430 schedule_copy(tc, virt_block, tc->origin_dev,
1431 virt_block, data_dest, cell, bio,
1432 tc->origin_size - virt_block_begin);
1433
1434 else
1435 schedule_zero(tc, virt_block, data_dest, cell, bio);
1436}
1437
1438static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1439
1440static void requeue_bios(struct pool *pool);
1441
1442static bool is_read_only_pool_mode(enum pool_mode mode)
1443{
1444 return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1445}
1446
1447static bool is_read_only(struct pool *pool)
1448{
1449 return is_read_only_pool_mode(get_pool_mode(pool));
1450}
1451
1452static void check_for_metadata_space(struct pool *pool)
1453{
1454 int r;
1455 const char *ooms_reason = NULL;
1456 dm_block_t nr_free;
1457
1458 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1459 if (r)
1460 ooms_reason = "Could not get free metadata blocks";
1461 else if (!nr_free)
1462 ooms_reason = "No free metadata blocks";
1463
1464 if (ooms_reason && !is_read_only(pool)) {
1465 DMERR("%s", ooms_reason);
1466 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1467 }
1468}
1469
1470static void check_for_data_space(struct pool *pool)
1471{
1472 int r;
1473 dm_block_t nr_free;
1474
1475 if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1476 return;
1477
1478 r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1479 if (r)
1480 return;
1481
1482 if (nr_free) {
1483 set_pool_mode(pool, PM_WRITE);
1484 requeue_bios(pool);
1485 }
1486}
1487
1488/*
1489 * A non-zero return indicates read_only or fail_io mode.
1490 * Many callers don't care about the return value.
1491 */
1492static int commit(struct pool *pool)
1493{
1494 int r;
1495
1496 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1497 return -EINVAL;
1498
1499 r = dm_pool_commit_metadata(pool->pmd);
1500 if (r)
1501 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1502 else {
1503 check_for_metadata_space(pool);
1504 check_for_data_space(pool);
1505 }
1506
1507 return r;
1508}
1509
1510static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1511{
1512 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1513 DMWARN("%s: reached low water mark for data device: sending event.",
1514 dm_device_name(pool->pool_md));
1515 spin_lock_irq(&pool->lock);
1516 pool->low_water_triggered = true;
1517 spin_unlock_irq(&pool->lock);
1518 dm_table_event(pool->ti->table);
1519 }
1520}
1521
1522static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1523{
1524 int r;
1525 dm_block_t free_blocks;
1526 struct pool *pool = tc->pool;
1527
1528 if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1529 return -EINVAL;
1530
1531 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1532 if (r) {
1533 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1534 return r;
1535 }
1536
1537 check_low_water_mark(pool, free_blocks);
1538
1539 if (!free_blocks) {
1540 /*
1541 * Try to commit to see if that will free up some
1542 * more space.
1543 */
1544 r = commit(pool);
1545 if (r)
1546 return r;
1547
1548 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1549 if (r) {
1550 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1551 return r;
1552 }
1553
1554 if (!free_blocks) {
1555 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1556 return -ENOSPC;
1557 }
1558 }
1559
1560 r = dm_pool_alloc_data_block(pool->pmd, result);
1561 if (r) {
1562 if (r == -ENOSPC)
1563 set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1564 else
1565 metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1566 return r;
1567 }
1568
1569 r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1570 if (r) {
1571 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1572 return r;
1573 }
1574
1575 if (!free_blocks) {
1576 /* Let's commit before we use up the metadata reserve. */
1577 r = commit(pool);
1578 if (r)
1579 return r;
1580 }
1581
1582 return 0;
1583}
1584
1585/*
1586 * If we have run out of space, queue bios until the device is
1587 * resumed, presumably after having been reloaded with more space.
1588 */
1589static void retry_on_resume(struct bio *bio)
1590{
1591 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1592 struct thin_c *tc = h->tc;
1593
1594 spin_lock_irq(&tc->lock);
1595 bio_list_add(&tc->retry_on_resume_list, bio);
1596 spin_unlock_irq(&tc->lock);
1597}
1598
1599static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1600{
1601 enum pool_mode m = get_pool_mode(pool);
1602
1603 switch (m) {
1604 case PM_WRITE:
1605 /* Shouldn't get here */
1606 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1607 return BLK_STS_IOERR;
1608
1609 case PM_OUT_OF_DATA_SPACE:
1610 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1611
1612 case PM_OUT_OF_METADATA_SPACE:
1613 case PM_READ_ONLY:
1614 case PM_FAIL:
1615 return BLK_STS_IOERR;
1616 default:
1617 /* Shouldn't get here */
1618 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1619 return BLK_STS_IOERR;
1620 }
1621}
1622
1623static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1624{
1625 blk_status_t error = should_error_unserviceable_bio(pool);
1626
1627 if (error) {
1628 bio->bi_status = error;
1629 bio_endio(bio);
1630 } else
1631 retry_on_resume(bio);
1632}
1633
1634static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1635{
1636 struct bio *bio;
1637 struct bio_list bios;
1638 blk_status_t error;
1639
1640 error = should_error_unserviceable_bio(pool);
1641 if (error) {
1642 cell_error_with_code(pool, cell, error);
1643 return;
1644 }
1645
1646 bio_list_init(&bios);
1647 cell_release(pool, cell, &bios);
1648
1649 while ((bio = bio_list_pop(&bios)))
1650 retry_on_resume(bio);
1651}
1652
1653static void process_discard_cell_no_passdown(struct thin_c *tc,
1654 struct dm_bio_prison_cell *virt_cell)
1655{
1656 struct pool *pool = tc->pool;
1657 struct dm_thin_new_mapping *m = get_next_mapping(pool);
1658
1659 /*
1660 * We don't need to lock the data blocks, since there's no
1661 * passdown. We only lock data blocks for allocation and breaking sharing.
1662 */
1663 m->tc = tc;
1664 m->virt_begin = virt_cell->key.block_begin;
1665 m->virt_end = virt_cell->key.block_end;
1666 m->cell = virt_cell;
1667 m->bio = virt_cell->holder;
1668
1669 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1670 pool->process_prepared_discard(m);
1671}
1672
1673static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1674 struct bio *bio)
1675{
1676 struct pool *pool = tc->pool;
1677
1678 int r;
1679 bool maybe_shared;
1680 struct dm_cell_key data_key;
1681 struct dm_bio_prison_cell *data_cell;
1682 struct dm_thin_new_mapping *m;
1683 dm_block_t virt_begin, virt_end, data_begin;
1684
1685 while (begin != end) {
1686 r = ensure_next_mapping(pool);
1687 if (r)
1688 /* we did our best */
1689 return;
1690
1691 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1692 &data_begin, &maybe_shared);
1693 if (r)
1694 /*
1695 * Silently fail, letting any mappings we've
1696 * created complete.
1697 */
1698 break;
1699
1700 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1701 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1702 /* contention, we'll give up with this range */
1703 begin = virt_end;
1704 continue;
1705 }
1706
1707 /*
1708 * IO may still be going to the destination block. We must
1709 * quiesce before we can do the removal.
1710 */
1711 m = get_next_mapping(pool);
1712 m->tc = tc;
1713 m->maybe_shared = maybe_shared;
1714 m->virt_begin = virt_begin;
1715 m->virt_end = virt_end;
1716 m->data_block = data_begin;
1717 m->cell = data_cell;
1718 m->bio = bio;
1719
1720 /*
1721 * The parent bio must not complete before sub discard bios are
1722 * chained to it (see end_discard's bio_chain)!
1723 *
1724 * This per-mapping bi_remaining increment is paired with
1725 * the implicit decrement that occurs via bio_endio() in
1726 * end_discard().
1727 */
1728 bio_inc_remaining(bio);
1729 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1730 pool->process_prepared_discard(m);
1731
1732 begin = virt_end;
1733 }
1734}
1735
1736static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1737{
1738 struct bio *bio = virt_cell->holder;
1739 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1740
1741 /*
1742 * The virt_cell will only get freed once the origin bio completes.
1743 * This means it will remain locked while all the individual
1744 * passdown bios are in flight.
1745 */
1746 h->cell = virt_cell;
1747 break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1748
1749 /*
1750 * We complete the bio now, knowing that the bi_remaining field
1751 * will prevent completion until the sub range discards have
1752 * completed.
1753 */
1754 bio_endio(bio);
1755}
1756
1757static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1758{
1759 dm_block_t begin, end;
1760 struct dm_cell_key virt_key;
1761 struct dm_bio_prison_cell *virt_cell;
1762
1763 get_bio_block_range(tc, bio, &begin, &end);
1764 if (begin == end) {
1765 /*
1766 * The discard covers less than a block.
1767 */
1768 bio_endio(bio);
1769 return;
1770 }
1771
1772 build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1773 if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1774 /*
1775 * Potential starvation issue: We're relying on the
1776 * fs/application being well behaved, and not trying to
1777 * send IO to a region at the same time as discarding it.
1778 * If they do this persistently then it's possible this
1779 * cell will never be granted.
1780 */
1781 return;
1782
1783 tc->pool->process_discard_cell(tc, virt_cell);
1784}
1785
1786static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1787 struct dm_cell_key *key,
1788 struct dm_thin_lookup_result *lookup_result,
1789 struct dm_bio_prison_cell *cell)
1790{
1791 int r;
1792 dm_block_t data_block;
1793 struct pool *pool = tc->pool;
1794
1795 r = alloc_data_block(tc, &data_block);
1796 switch (r) {
1797 case 0:
1798 schedule_internal_copy(tc, block, lookup_result->block,
1799 data_block, cell, bio);
1800 break;
1801
1802 case -ENOSPC:
1803 retry_bios_on_resume(pool, cell);
1804 break;
1805
1806 default:
1807 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1808 __func__, r);
1809 cell_error(pool, cell);
1810 break;
1811 }
1812}
1813
1814static void __remap_and_issue_shared_cell(void *context,
1815 struct dm_bio_prison_cell *cell)
1816{
1817 struct remap_info *info = context;
1818 struct bio *bio;
1819
1820 while ((bio = bio_list_pop(&cell->bios))) {
1821 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1822 bio_op(bio) == REQ_OP_DISCARD)
1823 bio_list_add(&info->defer_bios, bio);
1824 else {
1825 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1826
1827 h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1828 inc_all_io_entry(info->tc->pool, bio);
1829 bio_list_add(&info->issue_bios, bio);
1830 }
1831 }
1832}
1833
1834static void remap_and_issue_shared_cell(struct thin_c *tc,
1835 struct dm_bio_prison_cell *cell,
1836 dm_block_t block)
1837{
1838 struct bio *bio;
1839 struct remap_info info;
1840
1841 info.tc = tc;
1842 bio_list_init(&info.defer_bios);
1843 bio_list_init(&info.issue_bios);
1844
1845 cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1846 &info, cell);
1847
1848 while ((bio = bio_list_pop(&info.defer_bios)))
1849 thin_defer_bio(tc, bio);
1850
1851 while ((bio = bio_list_pop(&info.issue_bios)))
1852 remap_and_issue(tc, bio, block);
1853}
1854
1855static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1856 dm_block_t block,
1857 struct dm_thin_lookup_result *lookup_result,
1858 struct dm_bio_prison_cell *virt_cell)
1859{
1860 struct dm_bio_prison_cell *data_cell;
1861 struct pool *pool = tc->pool;
1862 struct dm_cell_key key;
1863
1864 /*
1865 * If cell is already occupied, then sharing is already in the process
1866 * of being broken so we have nothing further to do here.
1867 */
1868 build_data_key(tc->td, lookup_result->block, &key);
1869 if (bio_detain(pool, &key, bio, &data_cell)) {
1870 cell_defer_no_holder(tc, virt_cell);
1871 return;
1872 }
1873
1874 if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1875 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1876 cell_defer_no_holder(tc, virt_cell);
1877 } else {
1878 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1879
1880 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1881 inc_all_io_entry(pool, bio);
1882 remap_and_issue(tc, bio, lookup_result->block);
1883
1884 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1885 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1886 }
1887}
1888
1889static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1890 struct dm_bio_prison_cell *cell)
1891{
1892 int r;
1893 dm_block_t data_block;
1894 struct pool *pool = tc->pool;
1895
1896 /*
1897 * Remap empty bios (flushes) immediately, without provisioning.
1898 */
1899 if (!bio->bi_iter.bi_size) {
1900 inc_all_io_entry(pool, bio);
1901 cell_defer_no_holder(tc, cell);
1902
1903 remap_and_issue(tc, bio, 0);
1904 return;
1905 }
1906
1907 /*
1908 * Fill read bios with zeroes and complete them immediately.
1909 */
1910 if (bio_data_dir(bio) == READ) {
1911 zero_fill_bio(bio);
1912 cell_defer_no_holder(tc, cell);
1913 bio_endio(bio);
1914 return;
1915 }
1916
1917 r = alloc_data_block(tc, &data_block);
1918 switch (r) {
1919 case 0:
1920 if (tc->origin_dev)
1921 schedule_external_copy(tc, block, data_block, cell, bio);
1922 else
1923 schedule_zero(tc, block, data_block, cell, bio);
1924 break;
1925
1926 case -ENOSPC:
1927 retry_bios_on_resume(pool, cell);
1928 break;
1929
1930 default:
1931 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1932 __func__, r);
1933 cell_error(pool, cell);
1934 break;
1935 }
1936}
1937
1938static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1939{
1940 int r;
1941 struct pool *pool = tc->pool;
1942 struct bio *bio = cell->holder;
1943 dm_block_t block = get_bio_block(tc, bio);
1944 struct dm_thin_lookup_result lookup_result;
1945
1946 if (tc->requeue_mode) {
1947 cell_requeue(pool, cell);
1948 return;
1949 }
1950
1951 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1952 switch (r) {
1953 case 0:
1954 if (lookup_result.shared)
1955 process_shared_bio(tc, bio, block, &lookup_result, cell);
1956 else {
1957 inc_all_io_entry(pool, bio);
1958 remap_and_issue(tc, bio, lookup_result.block);
1959 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1960 }
1961 break;
1962
1963 case -ENODATA:
1964 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1965 inc_all_io_entry(pool, bio);
1966 cell_defer_no_holder(tc, cell);
1967
1968 if (bio_end_sector(bio) <= tc->origin_size)
1969 remap_to_origin_and_issue(tc, bio);
1970
1971 else if (bio->bi_iter.bi_sector < tc->origin_size) {
1972 zero_fill_bio(bio);
1973 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1974 remap_to_origin_and_issue(tc, bio);
1975
1976 } else {
1977 zero_fill_bio(bio);
1978 bio_endio(bio);
1979 }
1980 } else
1981 provision_block(tc, bio, block, cell);
1982 break;
1983
1984 default:
1985 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1986 __func__, r);
1987 cell_defer_no_holder(tc, cell);
1988 bio_io_error(bio);
1989 break;
1990 }
1991}
1992
1993static void process_bio(struct thin_c *tc, struct bio *bio)
1994{
1995 struct pool *pool = tc->pool;
1996 dm_block_t block = get_bio_block(tc, bio);
1997 struct dm_bio_prison_cell *cell;
1998 struct dm_cell_key key;
1999
2000 /*
2001 * If cell is already occupied, then the block is already
2002 * being provisioned so we have nothing further to do here.
2003 */
2004 build_virtual_key(tc->td, block, &key);
2005 if (bio_detain(pool, &key, bio, &cell))
2006 return;
2007
2008 process_cell(tc, cell);
2009}
2010
2011static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2012 struct dm_bio_prison_cell *cell)
2013{
2014 int r;
2015 int rw = bio_data_dir(bio);
2016 dm_block_t block = get_bio_block(tc, bio);
2017 struct dm_thin_lookup_result lookup_result;
2018
2019 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2020 switch (r) {
2021 case 0:
2022 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2023 handle_unserviceable_bio(tc->pool, bio);
2024 if (cell)
2025 cell_defer_no_holder(tc, cell);
2026 } else {
2027 inc_all_io_entry(tc->pool, bio);
2028 remap_and_issue(tc, bio, lookup_result.block);
2029 if (cell)
2030 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2031 }
2032 break;
2033
2034 case -ENODATA:
2035 if (cell)
2036 cell_defer_no_holder(tc, cell);
2037 if (rw != READ) {
2038 handle_unserviceable_bio(tc->pool, bio);
2039 break;
2040 }
2041
2042 if (tc->origin_dev) {
2043 inc_all_io_entry(tc->pool, bio);
2044 remap_to_origin_and_issue(tc, bio);
2045 break;
2046 }
2047
2048 zero_fill_bio(bio);
2049 bio_endio(bio);
2050 break;
2051
2052 default:
2053 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2054 __func__, r);
2055 if (cell)
2056 cell_defer_no_holder(tc, cell);
2057 bio_io_error(bio);
2058 break;
2059 }
2060}
2061
2062static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2063{
2064 __process_bio_read_only(tc, bio, NULL);
2065}
2066
2067static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2068{
2069 __process_bio_read_only(tc, cell->holder, cell);
2070}
2071
2072static void process_bio_success(struct thin_c *tc, struct bio *bio)
2073{
2074 bio_endio(bio);
2075}
2076
2077static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2078{
2079 bio_io_error(bio);
2080}
2081
2082static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2083{
2084 cell_success(tc->pool, cell);
2085}
2086
2087static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2088{
2089 cell_error(tc->pool, cell);
2090}
2091
2092/*
2093 * FIXME: should we also commit due to size of transaction, measured in
2094 * metadata blocks?
2095 */
2096static int need_commit_due_to_time(struct pool *pool)
2097{
2098 return !time_in_range(jiffies, pool->last_commit_jiffies,
2099 pool->last_commit_jiffies + COMMIT_PERIOD);
2100}
2101
2102#define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2103#define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2104
2105static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2106{
2107 struct rb_node **rbp, *parent;
2108 struct dm_thin_endio_hook *pbd;
2109 sector_t bi_sector = bio->bi_iter.bi_sector;
2110
2111 rbp = &tc->sort_bio_list.rb_node;
2112 parent = NULL;
2113 while (*rbp) {
2114 parent = *rbp;
2115 pbd = thin_pbd(parent);
2116
2117 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2118 rbp = &(*rbp)->rb_left;
2119 else
2120 rbp = &(*rbp)->rb_right;
2121 }
2122
2123 pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2124 rb_link_node(&pbd->rb_node, parent, rbp);
2125 rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2126}
2127
2128static void __extract_sorted_bios(struct thin_c *tc)
2129{
2130 struct rb_node *node;
2131 struct dm_thin_endio_hook *pbd;
2132 struct bio *bio;
2133
2134 for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2135 pbd = thin_pbd(node);
2136 bio = thin_bio(pbd);
2137
2138 bio_list_add(&tc->deferred_bio_list, bio);
2139 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2140 }
2141
2142 WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2143}
2144
2145static void __sort_thin_deferred_bios(struct thin_c *tc)
2146{
2147 struct bio *bio;
2148 struct bio_list bios;
2149
2150 bio_list_init(&bios);
2151 bio_list_merge(&bios, &tc->deferred_bio_list);
2152 bio_list_init(&tc->deferred_bio_list);
2153
2154 /* Sort deferred_bio_list using rb-tree */
2155 while ((bio = bio_list_pop(&bios)))
2156 __thin_bio_rb_add(tc, bio);
2157
2158 /*
2159 * Transfer the sorted bios in sort_bio_list back to
2160 * deferred_bio_list to allow lockless submission of
2161 * all bios.
2162 */
2163 __extract_sorted_bios(tc);
2164}
2165
2166static void process_thin_deferred_bios(struct thin_c *tc)
2167{
2168 struct pool *pool = tc->pool;
2169 struct bio *bio;
2170 struct bio_list bios;
2171 struct blk_plug plug;
2172 unsigned count = 0;
2173
2174 if (tc->requeue_mode) {
2175 error_thin_bio_list(tc, &tc->deferred_bio_list,
2176 BLK_STS_DM_REQUEUE);
2177 return;
2178 }
2179
2180 bio_list_init(&bios);
2181
2182 spin_lock_irq(&tc->lock);
2183
2184 if (bio_list_empty(&tc->deferred_bio_list)) {
2185 spin_unlock_irq(&tc->lock);
2186 return;
2187 }
2188
2189 __sort_thin_deferred_bios(tc);
2190
2191 bio_list_merge(&bios, &tc->deferred_bio_list);
2192 bio_list_init(&tc->deferred_bio_list);
2193
2194 spin_unlock_irq(&tc->lock);
2195
2196 blk_start_plug(&plug);
2197 while ((bio = bio_list_pop(&bios))) {
2198 /*
2199 * If we've got no free new_mapping structs, and processing
2200 * this bio might require one, we pause until there are some
2201 * prepared mappings to process.
2202 */
2203 if (ensure_next_mapping(pool)) {
2204 spin_lock_irq(&tc->lock);
2205 bio_list_add(&tc->deferred_bio_list, bio);
2206 bio_list_merge(&tc->deferred_bio_list, &bios);
2207 spin_unlock_irq(&tc->lock);
2208 break;
2209 }
2210
2211 if (bio_op(bio) == REQ_OP_DISCARD)
2212 pool->process_discard(tc, bio);
2213 else
2214 pool->process_bio(tc, bio);
2215
2216 if ((count++ & 127) == 0) {
2217 throttle_work_update(&pool->throttle);
2218 dm_pool_issue_prefetches(pool->pmd);
2219 }
2220 }
2221 blk_finish_plug(&plug);
2222}
2223
2224static int cmp_cells(const void *lhs, const void *rhs)
2225{
2226 struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2227 struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2228
2229 BUG_ON(!lhs_cell->holder);
2230 BUG_ON(!rhs_cell->holder);
2231
2232 if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2233 return -1;
2234
2235 if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2236 return 1;
2237
2238 return 0;
2239}
2240
2241static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2242{
2243 unsigned count = 0;
2244 struct dm_bio_prison_cell *cell, *tmp;
2245
2246 list_for_each_entry_safe(cell, tmp, cells, user_list) {
2247 if (count >= CELL_SORT_ARRAY_SIZE)
2248 break;
2249
2250 pool->cell_sort_array[count++] = cell;
2251 list_del(&cell->user_list);
2252 }
2253
2254 sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2255
2256 return count;
2257}
2258
2259static void process_thin_deferred_cells(struct thin_c *tc)
2260{
2261 struct pool *pool = tc->pool;
2262 struct list_head cells;
2263 struct dm_bio_prison_cell *cell;
2264 unsigned i, j, count;
2265
2266 INIT_LIST_HEAD(&cells);
2267
2268 spin_lock_irq(&tc->lock);
2269 list_splice_init(&tc->deferred_cells, &cells);
2270 spin_unlock_irq(&tc->lock);
2271
2272 if (list_empty(&cells))
2273 return;
2274
2275 do {
2276 count = sort_cells(tc->pool, &cells);
2277
2278 for (i = 0; i < count; i++) {
2279 cell = pool->cell_sort_array[i];
2280 BUG_ON(!cell->holder);
2281
2282 /*
2283 * If we've got no free new_mapping structs, and processing
2284 * this bio might require one, we pause until there are some
2285 * prepared mappings to process.
2286 */
2287 if (ensure_next_mapping(pool)) {
2288 for (j = i; j < count; j++)
2289 list_add(&pool->cell_sort_array[j]->user_list, &cells);
2290
2291 spin_lock_irq(&tc->lock);
2292 list_splice(&cells, &tc->deferred_cells);
2293 spin_unlock_irq(&tc->lock);
2294 return;
2295 }
2296
2297 if (bio_op(cell->holder) == REQ_OP_DISCARD)
2298 pool->process_discard_cell(tc, cell);
2299 else
2300 pool->process_cell(tc, cell);
2301 }
2302 } while (!list_empty(&cells));
2303}
2304
2305static void thin_get(struct thin_c *tc);
2306static void thin_put(struct thin_c *tc);
2307
2308/*
2309 * We can't hold rcu_read_lock() around code that can block. So we
2310 * find a thin with the rcu lock held; bump a refcount; then drop
2311 * the lock.
2312 */
2313static struct thin_c *get_first_thin(struct pool *pool)
2314{
2315 struct thin_c *tc = NULL;
2316
2317 rcu_read_lock();
2318 if (!list_empty(&pool->active_thins)) {
2319 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2320 thin_get(tc);
2321 }
2322 rcu_read_unlock();
2323
2324 return tc;
2325}
2326
2327static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2328{
2329 struct thin_c *old_tc = tc;
2330
2331 rcu_read_lock();
2332 list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2333 thin_get(tc);
2334 thin_put(old_tc);
2335 rcu_read_unlock();
2336 return tc;
2337 }
2338 thin_put(old_tc);
2339 rcu_read_unlock();
2340
2341 return NULL;
2342}
2343
2344static void process_deferred_bios(struct pool *pool)
2345{
2346 struct bio *bio;
2347 struct bio_list bios, bio_completions;
2348 struct thin_c *tc;
2349
2350 tc = get_first_thin(pool);
2351 while (tc) {
2352 process_thin_deferred_cells(tc);
2353 process_thin_deferred_bios(tc);
2354 tc = get_next_thin(pool, tc);
2355 }
2356
2357 /*
2358 * If there are any deferred flush bios, we must commit the metadata
2359 * before issuing them or signaling their completion.
2360 */
2361 bio_list_init(&bios);
2362 bio_list_init(&bio_completions);
2363
2364 spin_lock_irq(&pool->lock);
2365 bio_list_merge(&bios, &pool->deferred_flush_bios);
2366 bio_list_init(&pool->deferred_flush_bios);
2367
2368 bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2369 bio_list_init(&pool->deferred_flush_completions);
2370 spin_unlock_irq(&pool->lock);
2371
2372 if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2373 !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2374 return;
2375
2376 if (commit(pool)) {
2377 bio_list_merge(&bios, &bio_completions);
2378
2379 while ((bio = bio_list_pop(&bios)))
2380 bio_io_error(bio);
2381 return;
2382 }
2383 pool->last_commit_jiffies = jiffies;
2384
2385 while ((bio = bio_list_pop(&bio_completions)))
2386 bio_endio(bio);
2387
2388 while ((bio = bio_list_pop(&bios))) {
2389 /*
2390 * The data device was flushed as part of metadata commit,
2391 * so complete redundant flushes immediately.
2392 */
2393 if (bio->bi_opf & REQ_PREFLUSH)
2394 bio_endio(bio);
2395 else
2396 submit_bio_noacct(bio);
2397 }
2398}
2399
2400static void do_worker(struct work_struct *ws)
2401{
2402 struct pool *pool = container_of(ws, struct pool, worker);
2403
2404 throttle_work_start(&pool->throttle);
2405 dm_pool_issue_prefetches(pool->pmd);
2406 throttle_work_update(&pool->throttle);
2407 process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2408 throttle_work_update(&pool->throttle);
2409 process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2410 throttle_work_update(&pool->throttle);
2411 process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2412 throttle_work_update(&pool->throttle);
2413 process_deferred_bios(pool);
2414 throttle_work_complete(&pool->throttle);
2415}
2416
2417/*
2418 * We want to commit periodically so that not too much
2419 * unwritten data builds up.
2420 */
2421static void do_waker(struct work_struct *ws)
2422{
2423 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2424 wake_worker(pool);
2425 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2426}
2427
2428/*
2429 * We're holding onto IO to allow userland time to react. After the
2430 * timeout either the pool will have been resized (and thus back in
2431 * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2432 */
2433static void do_no_space_timeout(struct work_struct *ws)
2434{
2435 struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2436 no_space_timeout);
2437
2438 if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2439 pool->pf.error_if_no_space = true;
2440 notify_of_pool_mode_change(pool);
2441 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2442 }
2443}
2444
2445/*----------------------------------------------------------------*/
2446
2447struct pool_work {
2448 struct work_struct worker;
2449 struct completion complete;
2450};
2451
2452static struct pool_work *to_pool_work(struct work_struct *ws)
2453{
2454 return container_of(ws, struct pool_work, worker);
2455}
2456
2457static void pool_work_complete(struct pool_work *pw)
2458{
2459 complete(&pw->complete);
2460}
2461
2462static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2463 void (*fn)(struct work_struct *))
2464{
2465 INIT_WORK_ONSTACK(&pw->worker, fn);
2466 init_completion(&pw->complete);
2467 queue_work(pool->wq, &pw->worker);
2468 wait_for_completion(&pw->complete);
2469}
2470
2471/*----------------------------------------------------------------*/
2472
2473struct noflush_work {
2474 struct pool_work pw;
2475 struct thin_c *tc;
2476};
2477
2478static struct noflush_work *to_noflush(struct work_struct *ws)
2479{
2480 return container_of(to_pool_work(ws), struct noflush_work, pw);
2481}
2482
2483static void do_noflush_start(struct work_struct *ws)
2484{
2485 struct noflush_work *w = to_noflush(ws);
2486 w->tc->requeue_mode = true;
2487 requeue_io(w->tc);
2488 pool_work_complete(&w->pw);
2489}
2490
2491static void do_noflush_stop(struct work_struct *ws)
2492{
2493 struct noflush_work *w = to_noflush(ws);
2494 w->tc->requeue_mode = false;
2495 pool_work_complete(&w->pw);
2496}
2497
2498static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2499{
2500 struct noflush_work w;
2501
2502 w.tc = tc;
2503 pool_work_wait(&w.pw, tc->pool, fn);
2504}
2505
2506/*----------------------------------------------------------------*/
2507
2508static bool passdown_enabled(struct pool_c *pt)
2509{
2510 return pt->adjusted_pf.discard_passdown;
2511}
2512
2513static void set_discard_callbacks(struct pool *pool)
2514{
2515 struct pool_c *pt = pool->ti->private;
2516
2517 if (passdown_enabled(pt)) {
2518 pool->process_discard_cell = process_discard_cell_passdown;
2519 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2520 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2521 } else {
2522 pool->process_discard_cell = process_discard_cell_no_passdown;
2523 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2524 }
2525}
2526
2527static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2528{
2529 struct pool_c *pt = pool->ti->private;
2530 bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2531 enum pool_mode old_mode = get_pool_mode(pool);
2532 unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2533
2534 /*
2535 * Never allow the pool to transition to PM_WRITE mode if user
2536 * intervention is required to verify metadata and data consistency.
2537 */
2538 if (new_mode == PM_WRITE && needs_check) {
2539 DMERR("%s: unable to switch pool to write mode until repaired.",
2540 dm_device_name(pool->pool_md));
2541 if (old_mode != new_mode)
2542 new_mode = old_mode;
2543 else
2544 new_mode = PM_READ_ONLY;
2545 }
2546 /*
2547 * If we were in PM_FAIL mode, rollback of metadata failed. We're
2548 * not going to recover without a thin_repair. So we never let the
2549 * pool move out of the old mode.
2550 */
2551 if (old_mode == PM_FAIL)
2552 new_mode = old_mode;
2553
2554 switch (new_mode) {
2555 case PM_FAIL:
2556 dm_pool_metadata_read_only(pool->pmd);
2557 pool->process_bio = process_bio_fail;
2558 pool->process_discard = process_bio_fail;
2559 pool->process_cell = process_cell_fail;
2560 pool->process_discard_cell = process_cell_fail;
2561 pool->process_prepared_mapping = process_prepared_mapping_fail;
2562 pool->process_prepared_discard = process_prepared_discard_fail;
2563
2564 error_retry_list(pool);
2565 break;
2566
2567 case PM_OUT_OF_METADATA_SPACE:
2568 case PM_READ_ONLY:
2569 dm_pool_metadata_read_only(pool->pmd);
2570 pool->process_bio = process_bio_read_only;
2571 pool->process_discard = process_bio_success;
2572 pool->process_cell = process_cell_read_only;
2573 pool->process_discard_cell = process_cell_success;
2574 pool->process_prepared_mapping = process_prepared_mapping_fail;
2575 pool->process_prepared_discard = process_prepared_discard_success;
2576
2577 error_retry_list(pool);
2578 break;
2579
2580 case PM_OUT_OF_DATA_SPACE:
2581 /*
2582 * Ideally we'd never hit this state; the low water mark
2583 * would trigger userland to extend the pool before we
2584 * completely run out of data space. However, many small
2585 * IOs to unprovisioned space can consume data space at an
2586 * alarming rate. Adjust your low water mark if you're
2587 * frequently seeing this mode.
2588 */
2589 pool->out_of_data_space = true;
2590 pool->process_bio = process_bio_read_only;
2591 pool->process_discard = process_discard_bio;
2592 pool->process_cell = process_cell_read_only;
2593 pool->process_prepared_mapping = process_prepared_mapping;
2594 set_discard_callbacks(pool);
2595
2596 if (!pool->pf.error_if_no_space && no_space_timeout)
2597 queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2598 break;
2599
2600 case PM_WRITE:
2601 if (old_mode == PM_OUT_OF_DATA_SPACE)
2602 cancel_delayed_work_sync(&pool->no_space_timeout);
2603 pool->out_of_data_space = false;
2604 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2605 dm_pool_metadata_read_write(pool->pmd);
2606 pool->process_bio = process_bio;
2607 pool->process_discard = process_discard_bio;
2608 pool->process_cell = process_cell;
2609 pool->process_prepared_mapping = process_prepared_mapping;
2610 set_discard_callbacks(pool);
2611 break;
2612 }
2613
2614 pool->pf.mode = new_mode;
2615 /*
2616 * The pool mode may have changed, sync it so bind_control_target()
2617 * doesn't cause an unexpected mode transition on resume.
2618 */
2619 pt->adjusted_pf.mode = new_mode;
2620
2621 if (old_mode != new_mode)
2622 notify_of_pool_mode_change(pool);
2623}
2624
2625static void abort_transaction(struct pool *pool)
2626{
2627 const char *dev_name = dm_device_name(pool->pool_md);
2628
2629 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2630 if (dm_pool_abort_metadata(pool->pmd)) {
2631 DMERR("%s: failed to abort metadata transaction", dev_name);
2632 set_pool_mode(pool, PM_FAIL);
2633 }
2634
2635 if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2636 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2637 set_pool_mode(pool, PM_FAIL);
2638 }
2639}
2640
2641static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2642{
2643 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2644 dm_device_name(pool->pool_md), op, r);
2645
2646 abort_transaction(pool);
2647 set_pool_mode(pool, PM_READ_ONLY);
2648}
2649
2650/*----------------------------------------------------------------*/
2651
2652/*
2653 * Mapping functions.
2654 */
2655
2656/*
2657 * Called only while mapping a thin bio to hand it over to the workqueue.
2658 */
2659static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2660{
2661 struct pool *pool = tc->pool;
2662
2663 spin_lock_irq(&tc->lock);
2664 bio_list_add(&tc->deferred_bio_list, bio);
2665 spin_unlock_irq(&tc->lock);
2666
2667 wake_worker(pool);
2668}
2669
2670static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2671{
2672 struct pool *pool = tc->pool;
2673
2674 throttle_lock(&pool->throttle);
2675 thin_defer_bio(tc, bio);
2676 throttle_unlock(&pool->throttle);
2677}
2678
2679static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2680{
2681 struct pool *pool = tc->pool;
2682
2683 throttle_lock(&pool->throttle);
2684 spin_lock_irq(&tc->lock);
2685 list_add_tail(&cell->user_list, &tc->deferred_cells);
2686 spin_unlock_irq(&tc->lock);
2687 throttle_unlock(&pool->throttle);
2688
2689 wake_worker(pool);
2690}
2691
2692static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2693{
2694 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2695
2696 h->tc = tc;
2697 h->shared_read_entry = NULL;
2698 h->all_io_entry = NULL;
2699 h->overwrite_mapping = NULL;
2700 h->cell = NULL;
2701}
2702
2703/*
2704 * Non-blocking function called from the thin target's map function.
2705 */
2706static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2707{
2708 int r;
2709 struct thin_c *tc = ti->private;
2710 dm_block_t block = get_bio_block(tc, bio);
2711 struct dm_thin_device *td = tc->td;
2712 struct dm_thin_lookup_result result;
2713 struct dm_bio_prison_cell *virt_cell, *data_cell;
2714 struct dm_cell_key key;
2715
2716 thin_hook_bio(tc, bio);
2717
2718 if (tc->requeue_mode) {
2719 bio->bi_status = BLK_STS_DM_REQUEUE;
2720 bio_endio(bio);
2721 return DM_MAPIO_SUBMITTED;
2722 }
2723
2724 if (get_pool_mode(tc->pool) == PM_FAIL) {
2725 bio_io_error(bio);
2726 return DM_MAPIO_SUBMITTED;
2727 }
2728
2729 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2730 thin_defer_bio_with_throttle(tc, bio);
2731 return DM_MAPIO_SUBMITTED;
2732 }
2733
2734 /*
2735 * We must hold the virtual cell before doing the lookup, otherwise
2736 * there's a race with discard.
2737 */
2738 build_virtual_key(tc->td, block, &key);
2739 if (bio_detain(tc->pool, &key, bio, &virt_cell))
2740 return DM_MAPIO_SUBMITTED;
2741
2742 r = dm_thin_find_block(td, block, 0, &result);
2743
2744 /*
2745 * Note that we defer readahead too.
2746 */
2747 switch (r) {
2748 case 0:
2749 if (unlikely(result.shared)) {
2750 /*
2751 * We have a race condition here between the
2752 * result.shared value returned by the lookup and
2753 * snapshot creation, which may cause new
2754 * sharing.
2755 *
2756 * To avoid this always quiesce the origin before
2757 * taking the snap. You want to do this anyway to
2758 * ensure a consistent application view
2759 * (i.e. lockfs).
2760 *
2761 * More distant ancestors are irrelevant. The
2762 * shared flag will be set in their case.
2763 */
2764 thin_defer_cell(tc, virt_cell);
2765 return DM_MAPIO_SUBMITTED;
2766 }
2767
2768 build_data_key(tc->td, result.block, &key);
2769 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2770 cell_defer_no_holder(tc, virt_cell);
2771 return DM_MAPIO_SUBMITTED;
2772 }
2773
2774 inc_all_io_entry(tc->pool, bio);
2775 cell_defer_no_holder(tc, data_cell);
2776 cell_defer_no_holder(tc, virt_cell);
2777
2778 remap(tc, bio, result.block);
2779 return DM_MAPIO_REMAPPED;
2780
2781 case -ENODATA:
2782 case -EWOULDBLOCK:
2783 thin_defer_cell(tc, virt_cell);
2784 return DM_MAPIO_SUBMITTED;
2785
2786 default:
2787 /*
2788 * Must always call bio_io_error on failure.
2789 * dm_thin_find_block can fail with -EINVAL if the
2790 * pool is switched to fail-io mode.
2791 */
2792 bio_io_error(bio);
2793 cell_defer_no_holder(tc, virt_cell);
2794 return DM_MAPIO_SUBMITTED;
2795 }
2796}
2797
2798static void requeue_bios(struct pool *pool)
2799{
2800 struct thin_c *tc;
2801
2802 rcu_read_lock();
2803 list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2804 spin_lock_irq(&tc->lock);
2805 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2806 bio_list_init(&tc->retry_on_resume_list);
2807 spin_unlock_irq(&tc->lock);
2808 }
2809 rcu_read_unlock();
2810}
2811
2812/*----------------------------------------------------------------
2813 * Binding of control targets to a pool object
2814 *--------------------------------------------------------------*/
2815static bool data_dev_supports_discard(struct pool_c *pt)
2816{
2817 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2818
2819 return q && blk_queue_discard(q);
2820}
2821
2822static bool is_factor(sector_t block_size, uint32_t n)
2823{
2824 return !sector_div(block_size, n);
2825}
2826
2827/*
2828 * If discard_passdown was enabled verify that the data device
2829 * supports discards. Disable discard_passdown if not.
2830 */
2831static void disable_passdown_if_not_supported(struct pool_c *pt)
2832{
2833 struct pool *pool = pt->pool;
2834 struct block_device *data_bdev = pt->data_dev->bdev;
2835 struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2836 const char *reason = NULL;
2837 char buf[BDEVNAME_SIZE];
2838
2839 if (!pt->adjusted_pf.discard_passdown)
2840 return;
2841
2842 if (!data_dev_supports_discard(pt))
2843 reason = "discard unsupported";
2844
2845 else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2846 reason = "max discard sectors smaller than a block";
2847
2848 if (reason) {
2849 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2850 pt->adjusted_pf.discard_passdown = false;
2851 }
2852}
2853
2854static int bind_control_target(struct pool *pool, struct dm_target *ti)
2855{
2856 struct pool_c *pt = ti->private;
2857
2858 /*
2859 * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2860 */
2861 enum pool_mode old_mode = get_pool_mode(pool);
2862 enum pool_mode new_mode = pt->adjusted_pf.mode;
2863
2864 /*
2865 * Don't change the pool's mode until set_pool_mode() below.
2866 * Otherwise the pool's process_* function pointers may
2867 * not match the desired pool mode.
2868 */
2869 pt->adjusted_pf.mode = old_mode;
2870
2871 pool->ti = ti;
2872 pool->pf = pt->adjusted_pf;
2873 pool->low_water_blocks = pt->low_water_blocks;
2874
2875 set_pool_mode(pool, new_mode);
2876
2877 return 0;
2878}
2879
2880static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2881{
2882 if (pool->ti == ti)
2883 pool->ti = NULL;
2884}
2885
2886/*----------------------------------------------------------------
2887 * Pool creation
2888 *--------------------------------------------------------------*/
2889/* Initialize pool features. */
2890static void pool_features_init(struct pool_features *pf)
2891{
2892 pf->mode = PM_WRITE;
2893 pf->zero_new_blocks = true;
2894 pf->discard_enabled = true;
2895 pf->discard_passdown = true;
2896 pf->error_if_no_space = false;
2897}
2898
2899static void __pool_destroy(struct pool *pool)
2900{
2901 __pool_table_remove(pool);
2902
2903 vfree(pool->cell_sort_array);
2904 if (dm_pool_metadata_close(pool->pmd) < 0)
2905 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2906
2907 dm_bio_prison_destroy(pool->prison);
2908 dm_kcopyd_client_destroy(pool->copier);
2909
2910 if (pool->wq)
2911 destroy_workqueue(pool->wq);
2912
2913 if (pool->next_mapping)
2914 mempool_free(pool->next_mapping, &pool->mapping_pool);
2915 mempool_exit(&pool->mapping_pool);
2916 bio_uninit(&pool->flush_bio);
2917 dm_deferred_set_destroy(pool->shared_read_ds);
2918 dm_deferred_set_destroy(pool->all_io_ds);
2919 kfree(pool);
2920}
2921
2922static struct kmem_cache *_new_mapping_cache;
2923
2924static struct pool *pool_create(struct mapped_device *pool_md,
2925 struct block_device *metadata_dev,
2926 struct block_device *data_dev,
2927 unsigned long block_size,
2928 int read_only, char **error)
2929{
2930 int r;
2931 void *err_p;
2932 struct pool *pool;
2933 struct dm_pool_metadata *pmd;
2934 bool format_device = read_only ? false : true;
2935
2936 pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2937 if (IS_ERR(pmd)) {
2938 *error = "Error creating metadata object";
2939 return (struct pool *)pmd;
2940 }
2941
2942 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2943 if (!pool) {
2944 *error = "Error allocating memory for pool";
2945 err_p = ERR_PTR(-ENOMEM);
2946 goto bad_pool;
2947 }
2948
2949 pool->pmd = pmd;
2950 pool->sectors_per_block = block_size;
2951 if (block_size & (block_size - 1))
2952 pool->sectors_per_block_shift = -1;
2953 else
2954 pool->sectors_per_block_shift = __ffs(block_size);
2955 pool->low_water_blocks = 0;
2956 pool_features_init(&pool->pf);
2957 pool->prison = dm_bio_prison_create();
2958 if (!pool->prison) {
2959 *error = "Error creating pool's bio prison";
2960 err_p = ERR_PTR(-ENOMEM);
2961 goto bad_prison;
2962 }
2963
2964 pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2965 if (IS_ERR(pool->copier)) {
2966 r = PTR_ERR(pool->copier);
2967 *error = "Error creating pool's kcopyd client";
2968 err_p = ERR_PTR(r);
2969 goto bad_kcopyd_client;
2970 }
2971
2972 /*
2973 * Create singlethreaded workqueue that will service all devices
2974 * that use this metadata.
2975 */
2976 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2977 if (!pool->wq) {
2978 *error = "Error creating pool's workqueue";
2979 err_p = ERR_PTR(-ENOMEM);
2980 goto bad_wq;
2981 }
2982
2983 throttle_init(&pool->throttle);
2984 INIT_WORK(&pool->worker, do_worker);
2985 INIT_DELAYED_WORK(&pool->waker, do_waker);
2986 INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
2987 spin_lock_init(&pool->lock);
2988 bio_list_init(&pool->deferred_flush_bios);
2989 bio_list_init(&pool->deferred_flush_completions);
2990 INIT_LIST_HEAD(&pool->prepared_mappings);
2991 INIT_LIST_HEAD(&pool->prepared_discards);
2992 INIT_LIST_HEAD(&pool->prepared_discards_pt2);
2993 INIT_LIST_HEAD(&pool->active_thins);
2994 pool->low_water_triggered = false;
2995 pool->suspended = true;
2996 pool->out_of_data_space = false;
2997 bio_init(&pool->flush_bio, NULL, 0);
2998
2999 pool->shared_read_ds = dm_deferred_set_create();
3000 if (!pool->shared_read_ds) {
3001 *error = "Error creating pool's shared read deferred set";
3002 err_p = ERR_PTR(-ENOMEM);
3003 goto bad_shared_read_ds;
3004 }
3005
3006 pool->all_io_ds = dm_deferred_set_create();
3007 if (!pool->all_io_ds) {
3008 *error = "Error creating pool's all io deferred set";
3009 err_p = ERR_PTR(-ENOMEM);
3010 goto bad_all_io_ds;
3011 }
3012
3013 pool->next_mapping = NULL;
3014 r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3015 _new_mapping_cache);
3016 if (r) {
3017 *error = "Error creating pool's mapping mempool";
3018 err_p = ERR_PTR(r);
3019 goto bad_mapping_pool;
3020 }
3021
3022 pool->cell_sort_array =
3023 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3024 sizeof(*pool->cell_sort_array)));
3025 if (!pool->cell_sort_array) {
3026 *error = "Error allocating cell sort array";
3027 err_p = ERR_PTR(-ENOMEM);
3028 goto bad_sort_array;
3029 }
3030
3031 pool->ref_count = 1;
3032 pool->last_commit_jiffies = jiffies;
3033 pool->pool_md = pool_md;
3034 pool->md_dev = metadata_dev;
3035 pool->data_dev = data_dev;
3036 __pool_table_insert(pool);
3037
3038 return pool;
3039
3040bad_sort_array:
3041 mempool_exit(&pool->mapping_pool);
3042bad_mapping_pool:
3043 dm_deferred_set_destroy(pool->all_io_ds);
3044bad_all_io_ds:
3045 dm_deferred_set_destroy(pool->shared_read_ds);
3046bad_shared_read_ds:
3047 destroy_workqueue(pool->wq);
3048bad_wq:
3049 dm_kcopyd_client_destroy(pool->copier);
3050bad_kcopyd_client:
3051 dm_bio_prison_destroy(pool->prison);
3052bad_prison:
3053 kfree(pool);
3054bad_pool:
3055 if (dm_pool_metadata_close(pmd))
3056 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3057
3058 return err_p;
3059}
3060
3061static void __pool_inc(struct pool *pool)
3062{
3063 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3064 pool->ref_count++;
3065}
3066
3067static void __pool_dec(struct pool *pool)
3068{
3069 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3070 BUG_ON(!pool->ref_count);
3071 if (!--pool->ref_count)
3072 __pool_destroy(pool);
3073}
3074
3075static struct pool *__pool_find(struct mapped_device *pool_md,
3076 struct block_device *metadata_dev,
3077 struct block_device *data_dev,
3078 unsigned long block_size, int read_only,
3079 char **error, int *created)
3080{
3081 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3082
3083 if (pool) {
3084 if (pool->pool_md != pool_md) {
3085 *error = "metadata device already in use by a pool";
3086 return ERR_PTR(-EBUSY);
3087 }
3088 if (pool->data_dev != data_dev) {
3089 *error = "data device already in use by a pool";
3090 return ERR_PTR(-EBUSY);
3091 }
3092 __pool_inc(pool);
3093
3094 } else {
3095 pool = __pool_table_lookup(pool_md);
3096 if (pool) {
3097 if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3098 *error = "different pool cannot replace a pool";
3099 return ERR_PTR(-EINVAL);
3100 }
3101 __pool_inc(pool);
3102
3103 } else {
3104 pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3105 *created = 1;
3106 }
3107 }
3108
3109 return pool;
3110}
3111
3112/*----------------------------------------------------------------
3113 * Pool target methods
3114 *--------------------------------------------------------------*/
3115static void pool_dtr(struct dm_target *ti)
3116{
3117 struct pool_c *pt = ti->private;
3118
3119 mutex_lock(&dm_thin_pool_table.mutex);
3120
3121 unbind_control_target(pt->pool, ti);
3122 __pool_dec(pt->pool);
3123 dm_put_device(ti, pt->metadata_dev);
3124 dm_put_device(ti, pt->data_dev);
3125 kfree(pt);
3126
3127 mutex_unlock(&dm_thin_pool_table.mutex);
3128}
3129
3130static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3131 struct dm_target *ti)
3132{
3133 int r;
3134 unsigned argc;
3135 const char *arg_name;
3136
3137 static const struct dm_arg _args[] = {
3138 {0, 4, "Invalid number of pool feature arguments"},
3139 };
3140
3141 /*
3142 * No feature arguments supplied.
3143 */
3144 if (!as->argc)
3145 return 0;
3146
3147 r = dm_read_arg_group(_args, as, &argc, &ti->error);
3148 if (r)
3149 return -EINVAL;
3150
3151 while (argc && !r) {
3152 arg_name = dm_shift_arg(as);
3153 argc--;
3154
3155 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3156 pf->zero_new_blocks = false;
3157
3158 else if (!strcasecmp(arg_name, "ignore_discard"))
3159 pf->discard_enabled = false;
3160
3161 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3162 pf->discard_passdown = false;
3163
3164 else if (!strcasecmp(arg_name, "read_only"))
3165 pf->mode = PM_READ_ONLY;
3166
3167 else if (!strcasecmp(arg_name, "error_if_no_space"))
3168 pf->error_if_no_space = true;
3169
3170 else {
3171 ti->error = "Unrecognised pool feature requested";
3172 r = -EINVAL;
3173 break;
3174 }
3175 }
3176
3177 return r;
3178}
3179
3180static void metadata_low_callback(void *context)
3181{
3182 struct pool *pool = context;
3183
3184 DMWARN("%s: reached low water mark for metadata device: sending event.",
3185 dm_device_name(pool->pool_md));
3186
3187 dm_table_event(pool->ti->table);
3188}
3189
3190/*
3191 * We need to flush the data device **before** committing the metadata.
3192 *
3193 * This ensures that the data blocks of any newly inserted mappings are
3194 * properly written to non-volatile storage and won't be lost in case of a
3195 * crash.
3196 *
3197 * Failure to do so can result in data corruption in the case of internal or
3198 * external snapshots and in the case of newly provisioned blocks, when block
3199 * zeroing is enabled.
3200 */
3201static int metadata_pre_commit_callback(void *context)
3202{
3203 struct pool *pool = context;
3204 struct bio *flush_bio = &pool->flush_bio;
3205
3206 bio_reset(flush_bio);
3207 bio_set_dev(flush_bio, pool->data_dev);
3208 flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3209
3210 return submit_bio_wait(flush_bio);
3211}
3212
3213static sector_t get_dev_size(struct block_device *bdev)
3214{
3215 return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3216}
3217
3218static void warn_if_metadata_device_too_big(struct block_device *bdev)
3219{
3220 sector_t metadata_dev_size = get_dev_size(bdev);
3221 char buffer[BDEVNAME_SIZE];
3222
3223 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3224 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3225 bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3226}
3227
3228static sector_t get_metadata_dev_size(struct block_device *bdev)
3229{
3230 sector_t metadata_dev_size = get_dev_size(bdev);
3231
3232 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3233 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3234
3235 return metadata_dev_size;
3236}
3237
3238static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3239{
3240 sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3241
3242 sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3243
3244 return metadata_dev_size;
3245}
3246
3247/*
3248 * When a metadata threshold is crossed a dm event is triggered, and
3249 * userland should respond by growing the metadata device. We could let
3250 * userland set the threshold, like we do with the data threshold, but I'm
3251 * not sure they know enough to do this well.
3252 */
3253static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3254{
3255 /*
3256 * 4M is ample for all ops with the possible exception of thin
3257 * device deletion which is harmless if it fails (just retry the
3258 * delete after you've grown the device).
3259 */
3260 dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3261 return min((dm_block_t)1024ULL /* 4M */, quarter);
3262}
3263
3264/*
3265 * thin-pool <metadata dev> <data dev>
3266 * <data block size (sectors)>
3267 * <low water mark (blocks)>
3268 * [<#feature args> [<arg>]*]
3269 *
3270 * Optional feature arguments are:
3271 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3272 * ignore_discard: disable discard
3273 * no_discard_passdown: don't pass discards down to the data device
3274 * read_only: Don't allow any changes to be made to the pool metadata.
3275 * error_if_no_space: error IOs, instead of queueing, if no space.
3276 */
3277static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3278{
3279 int r, pool_created = 0;
3280 struct pool_c *pt;
3281 struct pool *pool;
3282 struct pool_features pf;
3283 struct dm_arg_set as;
3284 struct dm_dev *data_dev;
3285 unsigned long block_size;
3286 dm_block_t low_water_blocks;
3287 struct dm_dev *metadata_dev;
3288 fmode_t metadata_mode;
3289
3290 /*
3291 * FIXME Remove validation from scope of lock.
3292 */
3293 mutex_lock(&dm_thin_pool_table.mutex);
3294
3295 if (argc < 4) {
3296 ti->error = "Invalid argument count";
3297 r = -EINVAL;
3298 goto out_unlock;
3299 }
3300
3301 as.argc = argc;
3302 as.argv = argv;
3303
3304 /* make sure metadata and data are different devices */
3305 if (!strcmp(argv[0], argv[1])) {
3306 ti->error = "Error setting metadata or data device";
3307 r = -EINVAL;
3308 goto out_unlock;
3309 }
3310
3311 /*
3312 * Set default pool features.
3313 */
3314 pool_features_init(&pf);
3315
3316 dm_consume_args(&as, 4);
3317 r = parse_pool_features(&as, &pf, ti);
3318 if (r)
3319 goto out_unlock;
3320
3321 metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3322 r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3323 if (r) {
3324 ti->error = "Error opening metadata block device";
3325 goto out_unlock;
3326 }
3327 warn_if_metadata_device_too_big(metadata_dev->bdev);
3328
3329 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3330 if (r) {
3331 ti->error = "Error getting data device";
3332 goto out_metadata;
3333 }
3334
3335 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3336 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3337 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3338 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3339 ti->error = "Invalid block size";
3340 r = -EINVAL;
3341 goto out;
3342 }
3343
3344 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3345 ti->error = "Invalid low water mark";
3346 r = -EINVAL;
3347 goto out;
3348 }
3349
3350 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3351 if (!pt) {
3352 r = -ENOMEM;
3353 goto out;
3354 }
3355
3356 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3357 block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3358 if (IS_ERR(pool)) {
3359 r = PTR_ERR(pool);
3360 goto out_free_pt;
3361 }
3362
3363 /*
3364 * 'pool_created' reflects whether this is the first table load.
3365 * Top level discard support is not allowed to be changed after
3366 * initial load. This would require a pool reload to trigger thin
3367 * device changes.
3368 */
3369 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3370 ti->error = "Discard support cannot be disabled once enabled";
3371 r = -EINVAL;
3372 goto out_flags_changed;
3373 }
3374
3375 pt->pool = pool;
3376 pt->ti = ti;
3377 pt->metadata_dev = metadata_dev;
3378 pt->data_dev = data_dev;
3379 pt->low_water_blocks = low_water_blocks;
3380 pt->adjusted_pf = pt->requested_pf = pf;
3381 ti->num_flush_bios = 1;
3382
3383 /*
3384 * Only need to enable discards if the pool should pass
3385 * them down to the data device. The thin device's discard
3386 * processing will cause mappings to be removed from the btree.
3387 */
3388 if (pf.discard_enabled && pf.discard_passdown) {
3389 ti->num_discard_bios = 1;
3390
3391 /*
3392 * Setting 'discards_supported' circumvents the normal
3393 * stacking of discard limits (this keeps the pool and
3394 * thin devices' discard limits consistent).
3395 */
3396 ti->discards_supported = true;
3397 }
3398 ti->private = pt;
3399
3400 r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3401 calc_metadata_threshold(pt),
3402 metadata_low_callback,
3403 pool);
3404 if (r)
3405 goto out_flags_changed;
3406
3407 dm_pool_register_pre_commit_callback(pool->pmd,
3408 metadata_pre_commit_callback, pool);
3409
3410 mutex_unlock(&dm_thin_pool_table.mutex);
3411
3412 return 0;
3413
3414out_flags_changed:
3415 __pool_dec(pool);
3416out_free_pt:
3417 kfree(pt);
3418out:
3419 dm_put_device(ti, data_dev);
3420out_metadata:
3421 dm_put_device(ti, metadata_dev);
3422out_unlock:
3423 mutex_unlock(&dm_thin_pool_table.mutex);
3424
3425 return r;
3426}
3427
3428static int pool_map(struct dm_target *ti, struct bio *bio)
3429{
3430 int r;
3431 struct pool_c *pt = ti->private;
3432 struct pool *pool = pt->pool;
3433
3434 /*
3435 * As this is a singleton target, ti->begin is always zero.
3436 */
3437 spin_lock_irq(&pool->lock);
3438 bio_set_dev(bio, pt->data_dev->bdev);
3439 r = DM_MAPIO_REMAPPED;
3440 spin_unlock_irq(&pool->lock);
3441
3442 return r;
3443}
3444
3445static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3446{
3447 int r;
3448 struct pool_c *pt = ti->private;
3449 struct pool *pool = pt->pool;
3450 sector_t data_size = ti->len;
3451 dm_block_t sb_data_size;
3452
3453 *need_commit = false;
3454
3455 (void) sector_div(data_size, pool->sectors_per_block);
3456
3457 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3458 if (r) {
3459 DMERR("%s: failed to retrieve data device size",
3460 dm_device_name(pool->pool_md));
3461 return r;
3462 }
3463
3464 if (data_size < sb_data_size) {
3465 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3466 dm_device_name(pool->pool_md),
3467 (unsigned long long)data_size, sb_data_size);
3468 return -EINVAL;
3469
3470 } else if (data_size > sb_data_size) {
3471 if (dm_pool_metadata_needs_check(pool->pmd)) {
3472 DMERR("%s: unable to grow the data device until repaired.",
3473 dm_device_name(pool->pool_md));
3474 return 0;
3475 }
3476
3477 if (sb_data_size)
3478 DMINFO("%s: growing the data device from %llu to %llu blocks",
3479 dm_device_name(pool->pool_md),
3480 sb_data_size, (unsigned long long)data_size);
3481 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3482 if (r) {
3483 metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3484 return r;
3485 }
3486
3487 *need_commit = true;
3488 }
3489
3490 return 0;
3491}
3492
3493static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3494{
3495 int r;
3496 struct pool_c *pt = ti->private;
3497 struct pool *pool = pt->pool;
3498 dm_block_t metadata_dev_size, sb_metadata_dev_size;
3499
3500 *need_commit = false;
3501
3502 metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3503
3504 r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3505 if (r) {
3506 DMERR("%s: failed to retrieve metadata device size",
3507 dm_device_name(pool->pool_md));
3508 return r;
3509 }
3510
3511 if (metadata_dev_size < sb_metadata_dev_size) {
3512 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3513 dm_device_name(pool->pool_md),
3514 metadata_dev_size, sb_metadata_dev_size);
3515 return -EINVAL;
3516
3517 } else if (metadata_dev_size > sb_metadata_dev_size) {
3518 if (dm_pool_metadata_needs_check(pool->pmd)) {
3519 DMERR("%s: unable to grow the metadata device until repaired.",
3520 dm_device_name(pool->pool_md));
3521 return 0;
3522 }
3523
3524 warn_if_metadata_device_too_big(pool->md_dev);
3525 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3526 dm_device_name(pool->pool_md),
3527 sb_metadata_dev_size, metadata_dev_size);
3528
3529 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3530 set_pool_mode(pool, PM_WRITE);
3531
3532 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3533 if (r) {
3534 metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3535 return r;
3536 }
3537
3538 *need_commit = true;
3539 }
3540
3541 return 0;
3542}
3543
3544/*
3545 * Retrieves the number of blocks of the data device from
3546 * the superblock and compares it to the actual device size,
3547 * thus resizing the data device in case it has grown.
3548 *
3549 * This both copes with opening preallocated data devices in the ctr
3550 * being followed by a resume
3551 * -and-
3552 * calling the resume method individually after userspace has
3553 * grown the data device in reaction to a table event.
3554 */
3555static int pool_preresume(struct dm_target *ti)
3556{
3557 int r;
3558 bool need_commit1, need_commit2;
3559 struct pool_c *pt = ti->private;
3560 struct pool *pool = pt->pool;
3561
3562 /*
3563 * Take control of the pool object.
3564 */
3565 r = bind_control_target(pool, ti);
3566 if (r)
3567 return r;
3568
3569 r = maybe_resize_data_dev(ti, &need_commit1);
3570 if (r)
3571 return r;
3572
3573 r = maybe_resize_metadata_dev(ti, &need_commit2);
3574 if (r)
3575 return r;
3576
3577 if (need_commit1 || need_commit2)
3578 (void) commit(pool);
3579
3580 return 0;
3581}
3582
3583static void pool_suspend_active_thins(struct pool *pool)
3584{
3585 struct thin_c *tc;
3586
3587 /* Suspend all active thin devices */
3588 tc = get_first_thin(pool);
3589 while (tc) {
3590 dm_internal_suspend_noflush(tc->thin_md);
3591 tc = get_next_thin(pool, tc);
3592 }
3593}
3594
3595static void pool_resume_active_thins(struct pool *pool)
3596{
3597 struct thin_c *tc;
3598
3599 /* Resume all active thin devices */
3600 tc = get_first_thin(pool);
3601 while (tc) {
3602 dm_internal_resume(tc->thin_md);
3603 tc = get_next_thin(pool, tc);
3604 }
3605}
3606
3607static void pool_resume(struct dm_target *ti)
3608{
3609 struct pool_c *pt = ti->private;
3610 struct pool *pool = pt->pool;
3611
3612 /*
3613 * Must requeue active_thins' bios and then resume
3614 * active_thins _before_ clearing 'suspend' flag.
3615 */
3616 requeue_bios(pool);
3617 pool_resume_active_thins(pool);
3618
3619 spin_lock_irq(&pool->lock);
3620 pool->low_water_triggered = false;
3621 pool->suspended = false;
3622 spin_unlock_irq(&pool->lock);
3623
3624 do_waker(&pool->waker.work);
3625}
3626
3627static void pool_presuspend(struct dm_target *ti)
3628{
3629 struct pool_c *pt = ti->private;
3630 struct pool *pool = pt->pool;
3631
3632 spin_lock_irq(&pool->lock);
3633 pool->suspended = true;
3634 spin_unlock_irq(&pool->lock);
3635
3636 pool_suspend_active_thins(pool);
3637}
3638
3639static void pool_presuspend_undo(struct dm_target *ti)
3640{
3641 struct pool_c *pt = ti->private;
3642 struct pool *pool = pt->pool;
3643
3644 pool_resume_active_thins(pool);
3645
3646 spin_lock_irq(&pool->lock);
3647 pool->suspended = false;
3648 spin_unlock_irq(&pool->lock);
3649}
3650
3651static void pool_postsuspend(struct dm_target *ti)
3652{
3653 struct pool_c *pt = ti->private;
3654 struct pool *pool = pt->pool;
3655
3656 cancel_delayed_work_sync(&pool->waker);
3657 cancel_delayed_work_sync(&pool->no_space_timeout);
3658 flush_workqueue(pool->wq);
3659 (void) commit(pool);
3660}
3661
3662static int check_arg_count(unsigned argc, unsigned args_required)
3663{
3664 if (argc != args_required) {
3665 DMWARN("Message received with %u arguments instead of %u.",
3666 argc, args_required);
3667 return -EINVAL;
3668 }
3669
3670 return 0;
3671}
3672
3673static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3674{
3675 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3676 *dev_id <= MAX_DEV_ID)
3677 return 0;
3678
3679 if (warning)
3680 DMWARN("Message received with invalid device id: %s", arg);
3681
3682 return -EINVAL;
3683}
3684
3685static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3686{
3687 dm_thin_id dev_id;
3688 int r;
3689
3690 r = check_arg_count(argc, 2);
3691 if (r)
3692 return r;
3693
3694 r = read_dev_id(argv[1], &dev_id, 1);
3695 if (r)
3696 return r;
3697
3698 r = dm_pool_create_thin(pool->pmd, dev_id);
3699 if (r) {
3700 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3701 argv[1]);
3702 return r;
3703 }
3704
3705 return 0;
3706}
3707
3708static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3709{
3710 dm_thin_id dev_id;
3711 dm_thin_id origin_dev_id;
3712 int r;
3713
3714 r = check_arg_count(argc, 3);
3715 if (r)
3716 return r;
3717
3718 r = read_dev_id(argv[1], &dev_id, 1);
3719 if (r)
3720 return r;
3721
3722 r = read_dev_id(argv[2], &origin_dev_id, 1);
3723 if (r)
3724 return r;
3725
3726 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3727 if (r) {
3728 DMWARN("Creation of new snapshot %s of device %s failed.",
3729 argv[1], argv[2]);
3730 return r;
3731 }
3732
3733 return 0;
3734}
3735
3736static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3737{
3738 dm_thin_id dev_id;
3739 int r;
3740
3741 r = check_arg_count(argc, 2);
3742 if (r)
3743 return r;
3744
3745 r = read_dev_id(argv[1], &dev_id, 1);
3746 if (r)
3747 return r;
3748
3749 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3750 if (r)
3751 DMWARN("Deletion of thin device %s failed.", argv[1]);
3752
3753 return r;
3754}
3755
3756static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3757{
3758 dm_thin_id old_id, new_id;
3759 int r;
3760
3761 r = check_arg_count(argc, 3);
3762 if (r)
3763 return r;
3764
3765 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3766 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3767 return -EINVAL;
3768 }
3769
3770 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3771 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3772 return -EINVAL;
3773 }
3774
3775 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3776 if (r) {
3777 DMWARN("Failed to change transaction id from %s to %s.",
3778 argv[1], argv[2]);
3779 return r;
3780 }
3781
3782 return 0;
3783}
3784
3785static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3786{
3787 int r;
3788
3789 r = check_arg_count(argc, 1);
3790 if (r)
3791 return r;
3792
3793 (void) commit(pool);
3794
3795 r = dm_pool_reserve_metadata_snap(pool->pmd);
3796 if (r)
3797 DMWARN("reserve_metadata_snap message failed.");
3798
3799 return r;
3800}
3801
3802static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3803{
3804 int r;
3805
3806 r = check_arg_count(argc, 1);
3807 if (r)
3808 return r;
3809
3810 r = dm_pool_release_metadata_snap(pool->pmd);
3811 if (r)
3812 DMWARN("release_metadata_snap message failed.");
3813
3814 return r;
3815}
3816
3817/*
3818 * Messages supported:
3819 * create_thin <dev_id>
3820 * create_snap <dev_id> <origin_id>
3821 * delete <dev_id>
3822 * set_transaction_id <current_trans_id> <new_trans_id>
3823 * reserve_metadata_snap
3824 * release_metadata_snap
3825 */
3826static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3827 char *result, unsigned maxlen)
3828{
3829 int r = -EINVAL;
3830 struct pool_c *pt = ti->private;
3831 struct pool *pool = pt->pool;
3832
3833 if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3834 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3835 dm_device_name(pool->pool_md));
3836 return -EOPNOTSUPP;
3837 }
3838
3839 if (!strcasecmp(argv[0], "create_thin"))
3840 r = process_create_thin_mesg(argc, argv, pool);
3841
3842 else if (!strcasecmp(argv[0], "create_snap"))
3843 r = process_create_snap_mesg(argc, argv, pool);
3844
3845 else if (!strcasecmp(argv[0], "delete"))
3846 r = process_delete_mesg(argc, argv, pool);
3847
3848 else if (!strcasecmp(argv[0], "set_transaction_id"))
3849 r = process_set_transaction_id_mesg(argc, argv, pool);
3850
3851 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3852 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3853
3854 else if (!strcasecmp(argv[0], "release_metadata_snap"))
3855 r = process_release_metadata_snap_mesg(argc, argv, pool);
3856
3857 else
3858 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3859
3860 if (!r)
3861 (void) commit(pool);
3862
3863 return r;
3864}
3865
3866static void emit_flags(struct pool_features *pf, char *result,
3867 unsigned sz, unsigned maxlen)
3868{
3869 unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3870 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3871 pf->error_if_no_space;
3872 DMEMIT("%u ", count);
3873
3874 if (!pf->zero_new_blocks)
3875 DMEMIT("skip_block_zeroing ");
3876
3877 if (!pf->discard_enabled)
3878 DMEMIT("ignore_discard ");
3879
3880 if (!pf->discard_passdown)
3881 DMEMIT("no_discard_passdown ");
3882
3883 if (pf->mode == PM_READ_ONLY)
3884 DMEMIT("read_only ");
3885
3886 if (pf->error_if_no_space)
3887 DMEMIT("error_if_no_space ");
3888}
3889
3890/*
3891 * Status line is:
3892 * <transaction id> <used metadata sectors>/<total metadata sectors>
3893 * <used data sectors>/<total data sectors> <held metadata root>
3894 * <pool mode> <discard config> <no space config> <needs_check>
3895 */
3896static void pool_status(struct dm_target *ti, status_type_t type,
3897 unsigned status_flags, char *result, unsigned maxlen)
3898{
3899 int r;
3900 unsigned sz = 0;
3901 uint64_t transaction_id;
3902 dm_block_t nr_free_blocks_data;
3903 dm_block_t nr_free_blocks_metadata;
3904 dm_block_t nr_blocks_data;
3905 dm_block_t nr_blocks_metadata;
3906 dm_block_t held_root;
3907 enum pool_mode mode;
3908 char buf[BDEVNAME_SIZE];
3909 char buf2[BDEVNAME_SIZE];
3910 struct pool_c *pt = ti->private;
3911 struct pool *pool = pt->pool;
3912
3913 switch (type) {
3914 case STATUSTYPE_INFO:
3915 if (get_pool_mode(pool) == PM_FAIL) {
3916 DMEMIT("Fail");
3917 break;
3918 }
3919
3920 /* Commit to ensure statistics aren't out-of-date */
3921 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3922 (void) commit(pool);
3923
3924 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3925 if (r) {
3926 DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3927 dm_device_name(pool->pool_md), r);
3928 goto err;
3929 }
3930
3931 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3932 if (r) {
3933 DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3934 dm_device_name(pool->pool_md), r);
3935 goto err;
3936 }
3937
3938 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3939 if (r) {
3940 DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3941 dm_device_name(pool->pool_md), r);
3942 goto err;
3943 }
3944
3945 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3946 if (r) {
3947 DMERR("%s: dm_pool_get_free_block_count returned %d",
3948 dm_device_name(pool->pool_md), r);
3949 goto err;
3950 }
3951
3952 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3953 if (r) {
3954 DMERR("%s: dm_pool_get_data_dev_size returned %d",
3955 dm_device_name(pool->pool_md), r);
3956 goto err;
3957 }
3958
3959 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3960 if (r) {
3961 DMERR("%s: dm_pool_get_metadata_snap returned %d",
3962 dm_device_name(pool->pool_md), r);
3963 goto err;
3964 }
3965
3966 DMEMIT("%llu %llu/%llu %llu/%llu ",
3967 (unsigned long long)transaction_id,
3968 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3969 (unsigned long long)nr_blocks_metadata,
3970 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3971 (unsigned long long)nr_blocks_data);
3972
3973 if (held_root)
3974 DMEMIT("%llu ", held_root);
3975 else
3976 DMEMIT("- ");
3977
3978 mode = get_pool_mode(pool);
3979 if (mode == PM_OUT_OF_DATA_SPACE)
3980 DMEMIT("out_of_data_space ");
3981 else if (is_read_only_pool_mode(mode))
3982 DMEMIT("ro ");
3983 else
3984 DMEMIT("rw ");
3985
3986 if (!pool->pf.discard_enabled)
3987 DMEMIT("ignore_discard ");
3988 else if (pool->pf.discard_passdown)
3989 DMEMIT("discard_passdown ");
3990 else
3991 DMEMIT("no_discard_passdown ");
3992
3993 if (pool->pf.error_if_no_space)
3994 DMEMIT("error_if_no_space ");
3995 else
3996 DMEMIT("queue_if_no_space ");
3997
3998 if (dm_pool_metadata_needs_check(pool->pmd))
3999 DMEMIT("needs_check ");
4000 else
4001 DMEMIT("- ");
4002
4003 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4004
4005 break;
4006
4007 case STATUSTYPE_TABLE:
4008 DMEMIT("%s %s %lu %llu ",
4009 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4010 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4011 (unsigned long)pool->sectors_per_block,
4012 (unsigned long long)pt->low_water_blocks);
4013 emit_flags(&pt->requested_pf, result, sz, maxlen);
4014 break;
4015 }
4016 return;
4017
4018err:
4019 DMEMIT("Error");
4020}
4021
4022static int pool_iterate_devices(struct dm_target *ti,
4023 iterate_devices_callout_fn fn, void *data)
4024{
4025 struct pool_c *pt = ti->private;
4026
4027 return fn(ti, pt->data_dev, 0, ti->len, data);
4028}
4029
4030static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4031{
4032 struct pool_c *pt = ti->private;
4033 struct pool *pool = pt->pool;
4034 sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4035
4036 /*
4037 * If max_sectors is smaller than pool->sectors_per_block adjust it
4038 * to the highest possible power-of-2 factor of pool->sectors_per_block.
4039 * This is especially beneficial when the pool's data device is a RAID
4040 * device that has a full stripe width that matches pool->sectors_per_block
4041 * -- because even though partial RAID stripe-sized IOs will be issued to a
4042 * single RAID stripe; when aggregated they will end on a full RAID stripe
4043 * boundary.. which avoids additional partial RAID stripe writes cascading
4044 */
4045 if (limits->max_sectors < pool->sectors_per_block) {
4046 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4047 if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4048 limits->max_sectors--;
4049 limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4050 }
4051 }
4052
4053 /*
4054 * If the system-determined stacked limits are compatible with the
4055 * pool's blocksize (io_opt is a factor) do not override them.
4056 */
4057 if (io_opt_sectors < pool->sectors_per_block ||
4058 !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4059 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4060 blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4061 else
4062 blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4063 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4064 }
4065
4066 /*
4067 * pt->adjusted_pf is a staging area for the actual features to use.
4068 * They get transferred to the live pool in bind_control_target()
4069 * called from pool_preresume().
4070 */
4071 if (!pt->adjusted_pf.discard_enabled) {
4072 /*
4073 * Must explicitly disallow stacking discard limits otherwise the
4074 * block layer will stack them if pool's data device has support.
4075 * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4076 * user to see that, so make sure to set all discard limits to 0.
4077 */
4078 limits->discard_granularity = 0;
4079 return;
4080 }
4081
4082 disable_passdown_if_not_supported(pt);
4083
4084 /*
4085 * The pool uses the same discard limits as the underlying data
4086 * device. DM core has already set this up.
4087 */
4088}
4089
4090static struct target_type pool_target = {
4091 .name = "thin-pool",
4092 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4093 DM_TARGET_IMMUTABLE,
4094 .version = {1, 22, 0},
4095 .module = THIS_MODULE,
4096 .ctr = pool_ctr,
4097 .dtr = pool_dtr,
4098 .map = pool_map,
4099 .presuspend = pool_presuspend,
4100 .presuspend_undo = pool_presuspend_undo,
4101 .postsuspend = pool_postsuspend,
4102 .preresume = pool_preresume,
4103 .resume = pool_resume,
4104 .message = pool_message,
4105 .status = pool_status,
4106 .iterate_devices = pool_iterate_devices,
4107 .io_hints = pool_io_hints,
4108};
4109
4110/*----------------------------------------------------------------
4111 * Thin target methods
4112 *--------------------------------------------------------------*/
4113static void thin_get(struct thin_c *tc)
4114{
4115 refcount_inc(&tc->refcount);
4116}
4117
4118static void thin_put(struct thin_c *tc)
4119{
4120 if (refcount_dec_and_test(&tc->refcount))
4121 complete(&tc->can_destroy);
4122}
4123
4124static void thin_dtr(struct dm_target *ti)
4125{
4126 struct thin_c *tc = ti->private;
4127
4128 spin_lock_irq(&tc->pool->lock);
4129 list_del_rcu(&tc->list);
4130 spin_unlock_irq(&tc->pool->lock);
4131 synchronize_rcu();
4132
4133 thin_put(tc);
4134 wait_for_completion(&tc->can_destroy);
4135
4136 mutex_lock(&dm_thin_pool_table.mutex);
4137
4138 __pool_dec(tc->pool);
4139 dm_pool_close_thin_device(tc->td);
4140 dm_put_device(ti, tc->pool_dev);
4141 if (tc->origin_dev)
4142 dm_put_device(ti, tc->origin_dev);
4143 kfree(tc);
4144
4145 mutex_unlock(&dm_thin_pool_table.mutex);
4146}
4147
4148/*
4149 * Thin target parameters:
4150 *
4151 * <pool_dev> <dev_id> [origin_dev]
4152 *
4153 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4154 * dev_id: the internal device identifier
4155 * origin_dev: a device external to the pool that should act as the origin
4156 *
4157 * If the pool device has discards disabled, they get disabled for the thin
4158 * device as well.
4159 */
4160static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4161{
4162 int r;
4163 struct thin_c *tc;
4164 struct dm_dev *pool_dev, *origin_dev;
4165 struct mapped_device *pool_md;
4166
4167 mutex_lock(&dm_thin_pool_table.mutex);
4168
4169 if (argc != 2 && argc != 3) {
4170 ti->error = "Invalid argument count";
4171 r = -EINVAL;
4172 goto out_unlock;
4173 }
4174
4175 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4176 if (!tc) {
4177 ti->error = "Out of memory";
4178 r = -ENOMEM;
4179 goto out_unlock;
4180 }
4181 tc->thin_md = dm_table_get_md(ti->table);
4182 spin_lock_init(&tc->lock);
4183 INIT_LIST_HEAD(&tc->deferred_cells);
4184 bio_list_init(&tc->deferred_bio_list);
4185 bio_list_init(&tc->retry_on_resume_list);
4186 tc->sort_bio_list = RB_ROOT;
4187
4188 if (argc == 3) {
4189 if (!strcmp(argv[0], argv[2])) {
4190 ti->error = "Error setting origin device";
4191 r = -EINVAL;
4192 goto bad_origin_dev;
4193 }
4194
4195 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4196 if (r) {
4197 ti->error = "Error opening origin device";
4198 goto bad_origin_dev;
4199 }
4200 tc->origin_dev = origin_dev;
4201 }
4202
4203 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4204 if (r) {
4205 ti->error = "Error opening pool device";
4206 goto bad_pool_dev;
4207 }
4208 tc->pool_dev = pool_dev;
4209
4210 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4211 ti->error = "Invalid device id";
4212 r = -EINVAL;
4213 goto bad_common;
4214 }
4215
4216 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4217 if (!pool_md) {
4218 ti->error = "Couldn't get pool mapped device";
4219 r = -EINVAL;
4220 goto bad_common;
4221 }
4222
4223 tc->pool = __pool_table_lookup(pool_md);
4224 if (!tc->pool) {
4225 ti->error = "Couldn't find pool object";
4226 r = -EINVAL;
4227 goto bad_pool_lookup;
4228 }
4229 __pool_inc(tc->pool);
4230
4231 if (get_pool_mode(tc->pool) == PM_FAIL) {
4232 ti->error = "Couldn't open thin device, Pool is in fail mode";
4233 r = -EINVAL;
4234 goto bad_pool;
4235 }
4236
4237 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4238 if (r) {
4239 ti->error = "Couldn't open thin internal device";
4240 goto bad_pool;
4241 }
4242
4243 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4244 if (r)
4245 goto bad;
4246
4247 ti->num_flush_bios = 1;
4248 ti->flush_supported = true;
4249 ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4250
4251 /* In case the pool supports discards, pass them on. */
4252 if (tc->pool->pf.discard_enabled) {
4253 ti->discards_supported = true;
4254 ti->num_discard_bios = 1;
4255 }
4256
4257 mutex_unlock(&dm_thin_pool_table.mutex);
4258
4259 spin_lock_irq(&tc->pool->lock);
4260 if (tc->pool->suspended) {
4261 spin_unlock_irq(&tc->pool->lock);
4262 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4263 ti->error = "Unable to activate thin device while pool is suspended";
4264 r = -EINVAL;
4265 goto bad;
4266 }
4267 refcount_set(&tc->refcount, 1);
4268 init_completion(&tc->can_destroy);
4269 list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4270 spin_unlock_irq(&tc->pool->lock);
4271 /*
4272 * This synchronize_rcu() call is needed here otherwise we risk a
4273 * wake_worker() call finding no bios to process (because the newly
4274 * added tc isn't yet visible). So this reduces latency since we
4275 * aren't then dependent on the periodic commit to wake_worker().
4276 */
4277 synchronize_rcu();
4278
4279 dm_put(pool_md);
4280
4281 return 0;
4282
4283bad:
4284 dm_pool_close_thin_device(tc->td);
4285bad_pool:
4286 __pool_dec(tc->pool);
4287bad_pool_lookup:
4288 dm_put(pool_md);
4289bad_common:
4290 dm_put_device(ti, tc->pool_dev);
4291bad_pool_dev:
4292 if (tc->origin_dev)
4293 dm_put_device(ti, tc->origin_dev);
4294bad_origin_dev:
4295 kfree(tc);
4296out_unlock:
4297 mutex_unlock(&dm_thin_pool_table.mutex);
4298
4299 return r;
4300}
4301
4302static int thin_map(struct dm_target *ti, struct bio *bio)
4303{
4304 bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4305
4306 return thin_bio_map(ti, bio);
4307}
4308
4309static int thin_endio(struct dm_target *ti, struct bio *bio,
4310 blk_status_t *err)
4311{
4312 unsigned long flags;
4313 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4314 struct list_head work;
4315 struct dm_thin_new_mapping *m, *tmp;
4316 struct pool *pool = h->tc->pool;
4317
4318 if (h->shared_read_entry) {
4319 INIT_LIST_HEAD(&work);
4320 dm_deferred_entry_dec(h->shared_read_entry, &work);
4321
4322 spin_lock_irqsave(&pool->lock, flags);
4323 list_for_each_entry_safe(m, tmp, &work, list) {
4324 list_del(&m->list);
4325 __complete_mapping_preparation(m);
4326 }
4327 spin_unlock_irqrestore(&pool->lock, flags);
4328 }
4329
4330 if (h->all_io_entry) {
4331 INIT_LIST_HEAD(&work);
4332 dm_deferred_entry_dec(h->all_io_entry, &work);
4333 if (!list_empty(&work)) {
4334 spin_lock_irqsave(&pool->lock, flags);
4335 list_for_each_entry_safe(m, tmp, &work, list)
4336 list_add_tail(&m->list, &pool->prepared_discards);
4337 spin_unlock_irqrestore(&pool->lock, flags);
4338 wake_worker(pool);
4339 }
4340 }
4341
4342 if (h->cell)
4343 cell_defer_no_holder(h->tc, h->cell);
4344
4345 return DM_ENDIO_DONE;
4346}
4347
4348static void thin_presuspend(struct dm_target *ti)
4349{
4350 struct thin_c *tc = ti->private;
4351
4352 if (dm_noflush_suspending(ti))
4353 noflush_work(tc, do_noflush_start);
4354}
4355
4356static void thin_postsuspend(struct dm_target *ti)
4357{
4358 struct thin_c *tc = ti->private;
4359
4360 /*
4361 * The dm_noflush_suspending flag has been cleared by now, so
4362 * unfortunately we must always run this.
4363 */
4364 noflush_work(tc, do_noflush_stop);
4365}
4366
4367static int thin_preresume(struct dm_target *ti)
4368{
4369 struct thin_c *tc = ti->private;
4370
4371 if (tc->origin_dev)
4372 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4373
4374 return 0;
4375}
4376
4377/*
4378 * <nr mapped sectors> <highest mapped sector>
4379 */
4380static void thin_status(struct dm_target *ti, status_type_t type,
4381 unsigned status_flags, char *result, unsigned maxlen)
4382{
4383 int r;
4384 ssize_t sz = 0;
4385 dm_block_t mapped, highest;
4386 char buf[BDEVNAME_SIZE];
4387 struct thin_c *tc = ti->private;
4388
4389 if (get_pool_mode(tc->pool) == PM_FAIL) {
4390 DMEMIT("Fail");
4391 return;
4392 }
4393
4394 if (!tc->td)
4395 DMEMIT("-");
4396 else {
4397 switch (type) {
4398 case STATUSTYPE_INFO:
4399 r = dm_thin_get_mapped_count(tc->td, &mapped);
4400 if (r) {
4401 DMERR("dm_thin_get_mapped_count returned %d", r);
4402 goto err;
4403 }
4404
4405 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4406 if (r < 0) {
4407 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4408 goto err;
4409 }
4410
4411 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4412 if (r)
4413 DMEMIT("%llu", ((highest + 1) *
4414 tc->pool->sectors_per_block) - 1);
4415 else
4416 DMEMIT("-");
4417 break;
4418
4419 case STATUSTYPE_TABLE:
4420 DMEMIT("%s %lu",
4421 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4422 (unsigned long) tc->dev_id);
4423 if (tc->origin_dev)
4424 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4425 break;
4426 }
4427 }
4428
4429 return;
4430
4431err:
4432 DMEMIT("Error");
4433}
4434
4435static int thin_iterate_devices(struct dm_target *ti,
4436 iterate_devices_callout_fn fn, void *data)
4437{
4438 sector_t blocks;
4439 struct thin_c *tc = ti->private;
4440 struct pool *pool = tc->pool;
4441
4442 /*
4443 * We can't call dm_pool_get_data_dev_size() since that blocks. So
4444 * we follow a more convoluted path through to the pool's target.
4445 */
4446 if (!pool->ti)
4447 return 0; /* nothing is bound */
4448
4449 blocks = pool->ti->len;
4450 (void) sector_div(blocks, pool->sectors_per_block);
4451 if (blocks)
4452 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4453
4454 return 0;
4455}
4456
4457static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4458{
4459 struct thin_c *tc = ti->private;
4460 struct pool *pool = tc->pool;
4461
4462 if (!pool->pf.discard_enabled)
4463 return;
4464
4465 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4466 limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4467}
4468
4469static struct target_type thin_target = {
4470 .name = "thin",
4471 .version = {1, 22, 0},
4472 .module = THIS_MODULE,
4473 .ctr = thin_ctr,
4474 .dtr = thin_dtr,
4475 .map = thin_map,
4476 .end_io = thin_endio,
4477 .preresume = thin_preresume,
4478 .presuspend = thin_presuspend,
4479 .postsuspend = thin_postsuspend,
4480 .status = thin_status,
4481 .iterate_devices = thin_iterate_devices,
4482 .io_hints = thin_io_hints,
4483};
4484
4485/*----------------------------------------------------------------*/
4486
4487static int __init dm_thin_init(void)
4488{
4489 int r = -ENOMEM;
4490
4491 pool_table_init();
4492
4493 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4494 if (!_new_mapping_cache)
4495 return r;
4496
4497 r = dm_register_target(&thin_target);
4498 if (r)
4499 goto bad_new_mapping_cache;
4500
4501 r = dm_register_target(&pool_target);
4502 if (r)
4503 goto bad_thin_target;
4504
4505 return 0;
4506
4507bad_thin_target:
4508 dm_unregister_target(&thin_target);
4509bad_new_mapping_cache:
4510 kmem_cache_destroy(_new_mapping_cache);
4511
4512 return r;
4513}
4514
4515static void dm_thin_exit(void)
4516{
4517 dm_unregister_target(&thin_target);
4518 dm_unregister_target(&pool_target);
4519
4520 kmem_cache_destroy(_new_mapping_cache);
4521
4522 pool_table_exit();
4523}
4524
4525module_init(dm_thin_init);
4526module_exit(dm_thin_exit);
4527
4528module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4529MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4530
4531MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4532MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4533MODULE_LICENSE("GPL");