Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * S390 kdump implementation
  3 *
  4 * Copyright IBM Corp. 2011
  5 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  6 */
  7
  8#include <linux/crash_dump.h>
  9#include <asm/lowcore.h>
 10#include <linux/kernel.h>
 11#include <linux/module.h>
 
 12#include <linux/gfp.h>
 13#include <linux/slab.h>
 14#include <linux/bootmem.h>
 15#include <linux/elf.h>
 16#include <asm/asm-offsets.h>
 17#include <linux/memblock.h>
 18#include <asm/os_info.h>
 19#include <asm/elf.h>
 20#include <asm/ipl.h>
 21#include <asm/sclp.h>
 22
 23#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
 24#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
 25#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
 26
 27static struct memblock_region oldmem_region;
 28
 29static struct memblock_type oldmem_type = {
 30	.cnt = 1,
 31	.max = 1,
 32	.total_size = 0,
 33	.regions = &oldmem_region,
 
 34};
 35
 36struct save_area {
 37	struct list_head list;
 38	u64 psw[2];
 39	u64 ctrs[16];
 40	u64 gprs[16];
 41	u32 acrs[16];
 42	u64 fprs[16];
 43	u32 fpc;
 44	u32 prefix;
 45	u64 todpreg;
 46	u64 timer;
 47	u64 todcmp;
 48	u64 vxrs_low[16];
 49	__vector128 vxrs_high[16];
 50};
 51
 52static LIST_HEAD(dump_save_areas);
 53
 54/*
 55 * Allocate a save area
 56 */
 57struct save_area * __init save_area_alloc(bool is_boot_cpu)
 58{
 59	struct save_area *sa;
 60
 61	sa = (void *) memblock_alloc(sizeof(*sa), 8);
 
 
 
 62	if (is_boot_cpu)
 63		list_add(&sa->list, &dump_save_areas);
 64	else
 65		list_add_tail(&sa->list, &dump_save_areas);
 66	return sa;
 67}
 68
 69/*
 70 * Return the address of the save area for the boot CPU
 71 */
 72struct save_area * __init save_area_boot_cpu(void)
 73{
 74	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
 75}
 76
 77/*
 78 * Copy CPU registers into the save area
 79 */
 80void __init save_area_add_regs(struct save_area *sa, void *regs)
 81{
 82	struct lowcore *lc;
 83
 84	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
 85	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
 86	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
 87	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
 88	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
 89	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
 90	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
 91	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
 92	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
 93	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
 94	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
 95}
 96
 97/*
 98 * Copy vector registers into the save area
 99 */
100void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
101{
102	int i;
103
104	/* Copy lower halves of vector registers 0-15 */
105	for (i = 0; i < 16; i++)
106		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
107	/* Copy vector registers 16-31 */
108	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
109}
110
111/*
112 * Return physical address for virtual address
113 */
114static inline void *load_real_addr(void *addr)
115{
116	unsigned long real_addr;
117
118	asm volatile(
119		   "	lra     %0,0(%1)\n"
120		   "	jz	0f\n"
121		   "	la	%0,0\n"
122		   "0:"
123		   : "=a" (real_addr) : "a" (addr) : "cc");
124	return (void *)real_addr;
125}
126
127/*
128 * Copy memory of the old, dumped system to a kernel space virtual address
129 */
130int copy_oldmem_kernel(void *dst, void *src, size_t count)
131{
132	unsigned long from, len;
133	void *ra;
134	int rc;
135
136	while (count) {
137		from = __pa(src);
138		if (!OLDMEM_BASE && from < sclp.hsa_size) {
139			/* Copy from zfcpdump HSA area */
140			len = min(count, sclp.hsa_size - from);
141			rc = memcpy_hsa_kernel(dst, from, len);
142			if (rc)
143				return rc;
144		} else {
145			/* Check for swapped kdump oldmem areas */
146			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
147				from -= OLDMEM_BASE;
148				len = min(count, OLDMEM_SIZE - from);
149			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
150				len = min(count, OLDMEM_SIZE - from);
151				from += OLDMEM_BASE;
152			} else {
153				len = count;
154			}
155			if (is_vmalloc_or_module_addr(dst)) {
156				ra = load_real_addr(dst);
157				len = min(PAGE_SIZE - offset_in_page(ra), len);
158			} else {
159				ra = dst;
160			}
161			if (memcpy_real(ra, (void *) from, len))
162				return -EFAULT;
163		}
164		dst += len;
165		src += len;
166		count -= len;
167	}
168	return 0;
169}
170
171/*
172 * Copy memory of the old, dumped system to a user space virtual address
173 */
174static int copy_oldmem_user(void __user *dst, void *src, size_t count)
175{
176	unsigned long from, len;
177	int rc;
178
179	while (count) {
180		from = __pa(src);
181		if (!OLDMEM_BASE && from < sclp.hsa_size) {
182			/* Copy from zfcpdump HSA area */
183			len = min(count, sclp.hsa_size - from);
184			rc = memcpy_hsa_user(dst, from, len);
185			if (rc)
186				return rc;
187		} else {
188			/* Check for swapped kdump oldmem areas */
189			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
190				from -= OLDMEM_BASE;
191				len = min(count, OLDMEM_SIZE - from);
192			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
193				len = min(count, OLDMEM_SIZE - from);
194				from += OLDMEM_BASE;
195			} else {
196				len = count;
197			}
198			rc = copy_to_user_real(dst, (void *) from, count);
199			if (rc)
200				return rc;
201		}
202		dst += len;
203		src += len;
204		count -= len;
205	}
206	return 0;
207}
208
209/*
210 * Copy one page from "oldmem"
211 */
212ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
213			 unsigned long offset, int userbuf)
214{
215	void *src;
216	int rc;
217
218	if (!csize)
219		return 0;
220	src = (void *) (pfn << PAGE_SHIFT) + offset;
221	if (userbuf)
222		rc = copy_oldmem_user((void __force __user *) buf, src, csize);
223	else
224		rc = copy_oldmem_kernel((void *) buf, src, csize);
225	return rc;
226}
227
228/*
229 * Remap "oldmem" for kdump
230 *
231 * For the kdump reserved memory this functions performs a swap operation:
232 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
233 */
234static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
235					unsigned long from, unsigned long pfn,
236					unsigned long size, pgprot_t prot)
237{
238	unsigned long size_old;
239	int rc;
240
241	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
242		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
243		rc = remap_pfn_range(vma, from,
244				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
245				     size_old, prot);
246		if (rc || size == size_old)
247			return rc;
248		size -= size_old;
249		from += size_old;
250		pfn += size_old >> PAGE_SHIFT;
251	}
252	return remap_pfn_range(vma, from, pfn, size, prot);
253}
254
255/*
256 * Remap "oldmem" for zfcpdump
257 *
258 * We only map available memory above HSA size. Memory below HSA size
259 * is read on demand using the copy_oldmem_page() function.
260 */
261static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
262					   unsigned long from,
263					   unsigned long pfn,
264					   unsigned long size, pgprot_t prot)
265{
266	unsigned long hsa_end = sclp.hsa_size;
267	unsigned long size_hsa;
268
269	if (pfn < hsa_end >> PAGE_SHIFT) {
270		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
271		if (size == size_hsa)
272			return 0;
273		size -= size_hsa;
274		from += size_hsa;
275		pfn += size_hsa >> PAGE_SHIFT;
276	}
277	return remap_pfn_range(vma, from, pfn, size, prot);
278}
279
280/*
281 * Remap "oldmem" for kdump or zfcpdump
282 */
283int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
284			   unsigned long pfn, unsigned long size, pgprot_t prot)
285{
286	if (OLDMEM_BASE)
287		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
288	else
289		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
290						       prot);
291}
292
293/*
294 * Alloc memory and panic in case of ENOMEM
295 */
296static void *kzalloc_panic(int len)
297{
298	void *rc;
299
300	rc = kzalloc(len, GFP_KERNEL);
301	if (!rc)
302		panic("s390 kdump kzalloc (%d) failed", len);
303	return rc;
304}
305
306/*
307 * Initialize ELF note
308 */
309static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
310			  const char *name)
311{
312	Elf64_Nhdr *note;
313	u64 len;
314
315	note = (Elf64_Nhdr *)buf;
316	note->n_namesz = strlen(name) + 1;
317	note->n_descsz = d_len;
318	note->n_type = type;
319	len = sizeof(Elf64_Nhdr);
320
321	memcpy(buf + len, name, note->n_namesz);
322	len = roundup(len + note->n_namesz, 4);
323
324	memcpy(buf + len, desc, note->n_descsz);
325	len = roundup(len + note->n_descsz, 4);
326
327	return PTR_ADD(buf, len);
328}
329
330static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
331{
332	const char *note_name = "LINUX";
 
333
334	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
335		note_name = KEXEC_CORE_NOTE_NAME;
336	return nt_init_name(buf, type, desc, d_len, note_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
337}
338
339/*
340 * Fill ELF notes for one CPU with save area registers
341 */
342static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
343{
344	struct elf_prstatus nt_prstatus;
345	elf_fpregset_t nt_fpregset;
346
347	/* Prepare prstatus note */
348	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
349	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
350	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
351	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
352	nt_prstatus.pr_pid = cpu;
353	/* Prepare fpregset (floating point) note */
354	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
355	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
356	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
357	/* Create ELF notes for the CPU */
358	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
359	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
360	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
361	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
362	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
363	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
364	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
365	if (MACHINE_HAS_VX) {
366		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
367			      &sa->vxrs_high, sizeof(sa->vxrs_high));
368		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
369			      &sa->vxrs_low, sizeof(sa->vxrs_low));
370	}
371	return ptr;
372}
373
374/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375 * Initialize prpsinfo note (new kernel)
376 */
377static void *nt_prpsinfo(void *ptr)
378{
379	struct elf_prpsinfo prpsinfo;
380
381	memset(&prpsinfo, 0, sizeof(prpsinfo));
382	prpsinfo.pr_sname = 'R';
383	strcpy(prpsinfo.pr_fname, "vmlinux");
384	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
385}
386
387/*
388 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
389 */
390static void *get_vmcoreinfo_old(unsigned long *size)
391{
392	char nt_name[11], *vmcoreinfo;
393	Elf64_Nhdr note;
394	void *addr;
395
396	if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
397		return NULL;
398	memset(nt_name, 0, sizeof(nt_name));
399	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
400		return NULL;
401	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
402			       sizeof(nt_name) - 1))
403		return NULL;
404	if (strcmp(nt_name, "VMCOREINFO") != 0)
405		return NULL;
406	vmcoreinfo = kzalloc_panic(note.n_descsz);
407	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
 
 
 
408		return NULL;
 
409	*size = note.n_descsz;
410	return vmcoreinfo;
411}
412
413/*
414 * Initialize vmcoreinfo note (new kernel)
415 */
416static void *nt_vmcoreinfo(void *ptr)
417{
 
418	unsigned long size;
419	void *vmcoreinfo;
420
421	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
422	if (!vmcoreinfo)
423		vmcoreinfo = get_vmcoreinfo_old(&size);
 
 
424	if (!vmcoreinfo)
425		return ptr;
426	return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427}
428
429/*
430 * Initialize ELF header (new kernel)
431 */
432static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
433{
434	memset(ehdr, 0, sizeof(*ehdr));
435	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
436	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
437	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
438	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
439	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
440	ehdr->e_type = ET_CORE;
441	ehdr->e_machine = EM_S390;
442	ehdr->e_version = EV_CURRENT;
443	ehdr->e_phoff = sizeof(Elf64_Ehdr);
444	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
445	ehdr->e_phentsize = sizeof(Elf64_Phdr);
446	ehdr->e_phnum = mem_chunk_cnt + 1;
447	return ehdr + 1;
448}
449
450/*
451 * Return CPU count for ELF header (new kernel)
452 */
453static int get_cpu_cnt(void)
454{
455	struct save_area *sa;
456	int cpus = 0;
457
458	list_for_each_entry(sa, &dump_save_areas, list)
459		if (sa->prefix != 0)
460			cpus++;
461	return cpus;
462}
463
464/*
465 * Return memory chunk count for ELF header (new kernel)
466 */
467static int get_mem_chunk_cnt(void)
468{
469	int cnt = 0;
470	u64 idx;
471
472	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
473			   MEMBLOCK_NONE, NULL, NULL, NULL)
474		cnt++;
475	return cnt;
476}
477
478/*
479 * Initialize ELF loads (new kernel)
480 */
481static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
482{
483	phys_addr_t start, end;
484	u64 idx;
485
486	for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
487			   MEMBLOCK_NONE, &start, &end, NULL) {
488		phdr->p_filesz = end - start;
489		phdr->p_type = PT_LOAD;
490		phdr->p_offset = start;
491		phdr->p_vaddr = start;
492		phdr->p_paddr = start;
493		phdr->p_memsz = end - start;
494		phdr->p_flags = PF_R | PF_W | PF_X;
495		phdr->p_align = PAGE_SIZE;
496		phdr++;
497	}
498}
499
500/*
501 * Initialize notes (new kernel)
502 */
503static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
504{
505	struct save_area *sa;
506	void *ptr_start = ptr;
507	int cpu;
508
509	ptr = nt_prpsinfo(ptr);
510
511	cpu = 1;
512	list_for_each_entry(sa, &dump_save_areas, list)
513		if (sa->prefix != 0)
514			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
515	ptr = nt_vmcoreinfo(ptr);
 
516	memset(phdr, 0, sizeof(*phdr));
517	phdr->p_type = PT_NOTE;
518	phdr->p_offset = notes_offset;
519	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
520	phdr->p_memsz = phdr->p_filesz;
521	return ptr;
522}
523
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
524/*
525 * Create ELF core header (new kernel)
526 */
527int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
528{
529	Elf64_Phdr *phdr_notes, *phdr_loads;
530	int mem_chunk_cnt;
531	void *ptr, *hdr;
532	u32 alloc_size;
533	u64 hdr_off;
534
535	/* If we are not in kdump or zfcpdump mode return */
536	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
537		return 0;
538	/* If we cannot get HSA size for zfcpdump return error */
539	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
540		return -ENODEV;
541
542	/* For kdump, exclude previous crashkernel memory */
543	if (OLDMEM_BASE) {
544		oldmem_region.base = OLDMEM_BASE;
545		oldmem_region.size = OLDMEM_SIZE;
546		oldmem_type.total_size = OLDMEM_SIZE;
547	}
548
549	mem_chunk_cnt = get_mem_chunk_cnt();
550
551	alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
552		mem_chunk_cnt * sizeof(Elf64_Phdr);
553	hdr = kzalloc_panic(alloc_size);
 
 
 
 
 
 
 
 
554	/* Init elf header */
555	ptr = ehdr_init(hdr, mem_chunk_cnt);
556	/* Init program headers */
557	phdr_notes = ptr;
558	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
559	phdr_loads = ptr;
560	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
561	/* Init notes */
562	hdr_off = PTR_DIFF(ptr, hdr);
563	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
564	/* Init loads */
565	hdr_off = PTR_DIFF(ptr, hdr);
566	loads_init(phdr_loads, hdr_off);
567	*addr = (unsigned long long) hdr;
568	*size = (unsigned long long) hdr_off;
569	BUG_ON(elfcorehdr_size > alloc_size);
570	return 0;
571}
572
573/*
574 * Free ELF core header (new kernel)
575 */
576void elfcorehdr_free(unsigned long long addr)
577{
578	kfree((void *)(unsigned long)addr);
579}
580
581/*
582 * Read from ELF header
583 */
584ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
585{
586	void *src = (void *)(unsigned long)*ppos;
587
588	memcpy(buf, src, count);
589	*ppos += count;
590	return count;
591}
592
593/*
594 * Read from ELF notes data
595 */
596ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
597{
598	void *src = (void *)(unsigned long)*ppos;
599
600	memcpy(buf, src, count);
601	*ppos += count;
602	return count;
603}
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * S390 kdump implementation
  4 *
  5 * Copyright IBM Corp. 2011
  6 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
  7 */
  8
  9#include <linux/crash_dump.h>
 10#include <asm/lowcore.h>
 11#include <linux/kernel.h>
 12#include <linux/init.h>
 13#include <linux/mm.h>
 14#include <linux/gfp.h>
 15#include <linux/slab.h>
 16#include <linux/memblock.h>
 17#include <linux/elf.h>
 18#include <asm/asm-offsets.h>
 
 19#include <asm/os_info.h>
 20#include <asm/elf.h>
 21#include <asm/ipl.h>
 22#include <asm/sclp.h>
 23
 24#define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
 25#define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
 26#define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
 27
 28static struct memblock_region oldmem_region;
 29
 30static struct memblock_type oldmem_type = {
 31	.cnt = 1,
 32	.max = 1,
 33	.total_size = 0,
 34	.regions = &oldmem_region,
 35	.name = "oldmem",
 36};
 37
 38struct save_area {
 39	struct list_head list;
 40	u64 psw[2];
 41	u64 ctrs[16];
 42	u64 gprs[16];
 43	u32 acrs[16];
 44	u64 fprs[16];
 45	u32 fpc;
 46	u32 prefix;
 47	u64 todpreg;
 48	u64 timer;
 49	u64 todcmp;
 50	u64 vxrs_low[16];
 51	__vector128 vxrs_high[16];
 52};
 53
 54static LIST_HEAD(dump_save_areas);
 55
 56/*
 57 * Allocate a save area
 58 */
 59struct save_area * __init save_area_alloc(bool is_boot_cpu)
 60{
 61	struct save_area *sa;
 62
 63	sa = (void *) memblock_phys_alloc(sizeof(*sa), 8);
 64	if (!sa)
 65		panic("Failed to allocate save area\n");
 66
 67	if (is_boot_cpu)
 68		list_add(&sa->list, &dump_save_areas);
 69	else
 70		list_add_tail(&sa->list, &dump_save_areas);
 71	return sa;
 72}
 73
 74/*
 75 * Return the address of the save area for the boot CPU
 76 */
 77struct save_area * __init save_area_boot_cpu(void)
 78{
 79	return list_first_entry_or_null(&dump_save_areas, struct save_area, list);
 80}
 81
 82/*
 83 * Copy CPU registers into the save area
 84 */
 85void __init save_area_add_regs(struct save_area *sa, void *regs)
 86{
 87	struct lowcore *lc;
 88
 89	lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
 90	memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
 91	memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
 92	memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
 93	memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
 94	memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
 95	memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
 96	memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
 97	memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
 98	memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
 99	memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
100}
101
102/*
103 * Copy vector registers into the save area
104 */
105void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
106{
107	int i;
108
109	/* Copy lower halves of vector registers 0-15 */
110	for (i = 0; i < 16; i++)
111		memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
112	/* Copy vector registers 16-31 */
113	memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
114}
115
116/*
117 * Return physical address for virtual address
118 */
119static inline void *load_real_addr(void *addr)
120{
121	unsigned long real_addr;
122
123	asm volatile(
124		   "	lra     %0,0(%1)\n"
125		   "	jz	0f\n"
126		   "	la	%0,0\n"
127		   "0:"
128		   : "=a" (real_addr) : "a" (addr) : "cc");
129	return (void *)real_addr;
130}
131
132/*
133 * Copy memory of the old, dumped system to a kernel space virtual address
134 */
135int copy_oldmem_kernel(void *dst, void *src, size_t count)
136{
137	unsigned long from, len;
138	void *ra;
139	int rc;
140
141	while (count) {
142		from = __pa(src);
143		if (!OLDMEM_BASE && from < sclp.hsa_size) {
144			/* Copy from zfcpdump HSA area */
145			len = min(count, sclp.hsa_size - from);
146			rc = memcpy_hsa_kernel(dst, from, len);
147			if (rc)
148				return rc;
149		} else {
150			/* Check for swapped kdump oldmem areas */
151			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
152				from -= OLDMEM_BASE;
153				len = min(count, OLDMEM_SIZE - from);
154			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
155				len = min(count, OLDMEM_SIZE - from);
156				from += OLDMEM_BASE;
157			} else {
158				len = count;
159			}
160			if (is_vmalloc_or_module_addr(dst)) {
161				ra = load_real_addr(dst);
162				len = min(PAGE_SIZE - offset_in_page(ra), len);
163			} else {
164				ra = dst;
165			}
166			if (memcpy_real(ra, (void *) from, len))
167				return -EFAULT;
168		}
169		dst += len;
170		src += len;
171		count -= len;
172	}
173	return 0;
174}
175
176/*
177 * Copy memory of the old, dumped system to a user space virtual address
178 */
179static int copy_oldmem_user(void __user *dst, void *src, size_t count)
180{
181	unsigned long from, len;
182	int rc;
183
184	while (count) {
185		from = __pa(src);
186		if (!OLDMEM_BASE && from < sclp.hsa_size) {
187			/* Copy from zfcpdump HSA area */
188			len = min(count, sclp.hsa_size - from);
189			rc = memcpy_hsa_user(dst, from, len);
190			if (rc)
191				return rc;
192		} else {
193			/* Check for swapped kdump oldmem areas */
194			if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
195				from -= OLDMEM_BASE;
196				len = min(count, OLDMEM_SIZE - from);
197			} else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
198				len = min(count, OLDMEM_SIZE - from);
199				from += OLDMEM_BASE;
200			} else {
201				len = count;
202			}
203			rc = copy_to_user_real(dst, (void *) from, count);
204			if (rc)
205				return rc;
206		}
207		dst += len;
208		src += len;
209		count -= len;
210	}
211	return 0;
212}
213
214/*
215 * Copy one page from "oldmem"
216 */
217ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
218			 unsigned long offset, int userbuf)
219{
220	void *src;
221	int rc;
222
223	if (!csize)
224		return 0;
225	src = (void *) (pfn << PAGE_SHIFT) + offset;
226	if (userbuf)
227		rc = copy_oldmem_user((void __force __user *) buf, src, csize);
228	else
229		rc = copy_oldmem_kernel((void *) buf, src, csize);
230	return rc;
231}
232
233/*
234 * Remap "oldmem" for kdump
235 *
236 * For the kdump reserved memory this functions performs a swap operation:
237 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
238 */
239static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
240					unsigned long from, unsigned long pfn,
241					unsigned long size, pgprot_t prot)
242{
243	unsigned long size_old;
244	int rc;
245
246	if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
247		size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
248		rc = remap_pfn_range(vma, from,
249				     pfn + (OLDMEM_BASE >> PAGE_SHIFT),
250				     size_old, prot);
251		if (rc || size == size_old)
252			return rc;
253		size -= size_old;
254		from += size_old;
255		pfn += size_old >> PAGE_SHIFT;
256	}
257	return remap_pfn_range(vma, from, pfn, size, prot);
258}
259
260/*
261 * Remap "oldmem" for zfcpdump
262 *
263 * We only map available memory above HSA size. Memory below HSA size
264 * is read on demand using the copy_oldmem_page() function.
265 */
266static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
267					   unsigned long from,
268					   unsigned long pfn,
269					   unsigned long size, pgprot_t prot)
270{
271	unsigned long hsa_end = sclp.hsa_size;
272	unsigned long size_hsa;
273
274	if (pfn < hsa_end >> PAGE_SHIFT) {
275		size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
276		if (size == size_hsa)
277			return 0;
278		size -= size_hsa;
279		from += size_hsa;
280		pfn += size_hsa >> PAGE_SHIFT;
281	}
282	return remap_pfn_range(vma, from, pfn, size, prot);
283}
284
285/*
286 * Remap "oldmem" for kdump or zfcpdump
287 */
288int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
289			   unsigned long pfn, unsigned long size, pgprot_t prot)
290{
291	if (OLDMEM_BASE)
292		return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
293	else
294		return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
295						       prot);
296}
297
298static const char *nt_name(Elf64_Word type)
 
 
 
299{
300	const char *name = "LINUX";
301
302	if (type == NT_PRPSINFO || type == NT_PRSTATUS || type == NT_PRFPREG)
303		name = KEXEC_CORE_NOTE_NAME;
304	return name;
 
305}
306
307/*
308 * Initialize ELF note
309 */
310static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
311			  const char *name)
312{
313	Elf64_Nhdr *note;
314	u64 len;
315
316	note = (Elf64_Nhdr *)buf;
317	note->n_namesz = strlen(name) + 1;
318	note->n_descsz = d_len;
319	note->n_type = type;
320	len = sizeof(Elf64_Nhdr);
321
322	memcpy(buf + len, name, note->n_namesz);
323	len = roundup(len + note->n_namesz, 4);
324
325	memcpy(buf + len, desc, note->n_descsz);
326	len = roundup(len + note->n_descsz, 4);
327
328	return PTR_ADD(buf, len);
329}
330
331static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
332{
333	return nt_init_name(buf, type, desc, d_len, nt_name(type));
334}
335
336/*
337 * Calculate the size of ELF note
338 */
339static size_t nt_size_name(int d_len, const char *name)
340{
341	size_t size;
342
343	size = sizeof(Elf64_Nhdr);
344	size += roundup(strlen(name) + 1, 4);
345	size += roundup(d_len, 4);
346
347	return size;
348}
349
350static inline size_t nt_size(Elf64_Word type, int d_len)
351{
352	return nt_size_name(d_len, nt_name(type));
353}
354
355/*
356 * Fill ELF notes for one CPU with save area registers
357 */
358static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
359{
360	struct elf_prstatus nt_prstatus;
361	elf_fpregset_t nt_fpregset;
362
363	/* Prepare prstatus note */
364	memset(&nt_prstatus, 0, sizeof(nt_prstatus));
365	memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
366	memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
367	memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
368	nt_prstatus.pr_pid = cpu;
369	/* Prepare fpregset (floating point) note */
370	memset(&nt_fpregset, 0, sizeof(nt_fpregset));
371	memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
372	memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
373	/* Create ELF notes for the CPU */
374	ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
375	ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
376	ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
377	ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
378	ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
379	ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
380	ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
381	if (MACHINE_HAS_VX) {
382		ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
383			      &sa->vxrs_high, sizeof(sa->vxrs_high));
384		ptr = nt_init(ptr, NT_S390_VXRS_LOW,
385			      &sa->vxrs_low, sizeof(sa->vxrs_low));
386	}
387	return ptr;
388}
389
390/*
391 * Calculate size of ELF notes per cpu
392 */
393static size_t get_cpu_elf_notes_size(void)
394{
395	struct save_area *sa = NULL;
396	size_t size;
397
398	size =	nt_size(NT_PRSTATUS, sizeof(struct elf_prstatus));
399	size +=  nt_size(NT_PRFPREG, sizeof(elf_fpregset_t));
400	size +=  nt_size(NT_S390_TIMER, sizeof(sa->timer));
401	size +=  nt_size(NT_S390_TODCMP, sizeof(sa->todcmp));
402	size +=  nt_size(NT_S390_TODPREG, sizeof(sa->todpreg));
403	size +=  nt_size(NT_S390_CTRS, sizeof(sa->ctrs));
404	size +=  nt_size(NT_S390_PREFIX, sizeof(sa->prefix));
405	if (MACHINE_HAS_VX) {
406		size += nt_size(NT_S390_VXRS_HIGH, sizeof(sa->vxrs_high));
407		size += nt_size(NT_S390_VXRS_LOW, sizeof(sa->vxrs_low));
408	}
409
410	return size;
411}
412
413/*
414 * Initialize prpsinfo note (new kernel)
415 */
416static void *nt_prpsinfo(void *ptr)
417{
418	struct elf_prpsinfo prpsinfo;
419
420	memset(&prpsinfo, 0, sizeof(prpsinfo));
421	prpsinfo.pr_sname = 'R';
422	strcpy(prpsinfo.pr_fname, "vmlinux");
423	return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
424}
425
426/*
427 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
428 */
429static void *get_vmcoreinfo_old(unsigned long *size)
430{
431	char nt_name[11], *vmcoreinfo;
432	Elf64_Nhdr note;
433	void *addr;
434
435	if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
436		return NULL;
437	memset(nt_name, 0, sizeof(nt_name));
438	if (copy_oldmem_kernel(&note, addr, sizeof(note)))
439		return NULL;
440	if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
441			       sizeof(nt_name) - 1))
442		return NULL;
443	if (strcmp(nt_name, VMCOREINFO_NOTE_NAME) != 0)
444		return NULL;
445	vmcoreinfo = kzalloc(note.n_descsz, GFP_KERNEL);
446	if (!vmcoreinfo)
447		return NULL;
448	if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz)) {
449		kfree(vmcoreinfo);
450		return NULL;
451	}
452	*size = note.n_descsz;
453	return vmcoreinfo;
454}
455
456/*
457 * Initialize vmcoreinfo note (new kernel)
458 */
459static void *nt_vmcoreinfo(void *ptr)
460{
461	const char *name = VMCOREINFO_NOTE_NAME;
462	unsigned long size;
463	void *vmcoreinfo;
464
465	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
466	if (vmcoreinfo)
467		return nt_init_name(ptr, 0, vmcoreinfo, size, name);
468
469	vmcoreinfo = get_vmcoreinfo_old(&size);
470	if (!vmcoreinfo)
471		return ptr;
472	ptr = nt_init_name(ptr, 0, vmcoreinfo, size, name);
473	kfree(vmcoreinfo);
474	return ptr;
475}
476
477static size_t nt_vmcoreinfo_size(void)
478{
479	const char *name = VMCOREINFO_NOTE_NAME;
480	unsigned long size;
481	void *vmcoreinfo;
482
483	vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
484	if (vmcoreinfo)
485		return nt_size_name(size, name);
486
487	vmcoreinfo = get_vmcoreinfo_old(&size);
488	if (!vmcoreinfo)
489		return 0;
490
491	kfree(vmcoreinfo);
492	return nt_size_name(size, name);
493}
494
495/*
496 * Initialize final note (needed for /proc/vmcore code)
497 */
498static void *nt_final(void *ptr)
499{
500	Elf64_Nhdr *note;
501
502	note = (Elf64_Nhdr *) ptr;
503	note->n_namesz = 0;
504	note->n_descsz = 0;
505	note->n_type = 0;
506	return PTR_ADD(ptr, sizeof(Elf64_Nhdr));
507}
508
509/*
510 * Initialize ELF header (new kernel)
511 */
512static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
513{
514	memset(ehdr, 0, sizeof(*ehdr));
515	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
516	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
517	ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
518	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
519	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
520	ehdr->e_type = ET_CORE;
521	ehdr->e_machine = EM_S390;
522	ehdr->e_version = EV_CURRENT;
523	ehdr->e_phoff = sizeof(Elf64_Ehdr);
524	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
525	ehdr->e_phentsize = sizeof(Elf64_Phdr);
526	ehdr->e_phnum = mem_chunk_cnt + 1;
527	return ehdr + 1;
528}
529
530/*
531 * Return CPU count for ELF header (new kernel)
532 */
533static int get_cpu_cnt(void)
534{
535	struct save_area *sa;
536	int cpus = 0;
537
538	list_for_each_entry(sa, &dump_save_areas, list)
539		if (sa->prefix != 0)
540			cpus++;
541	return cpus;
542}
543
544/*
545 * Return memory chunk count for ELF header (new kernel)
546 */
547static int get_mem_chunk_cnt(void)
548{
549	int cnt = 0;
550	u64 idx;
551
552	for_each_physmem_range(idx, &oldmem_type, NULL, NULL)
 
553		cnt++;
554	return cnt;
555}
556
557/*
558 * Initialize ELF loads (new kernel)
559 */
560static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
561{
562	phys_addr_t start, end;
563	u64 idx;
564
565	for_each_physmem_range(idx, &oldmem_type, &start, &end) {
 
566		phdr->p_filesz = end - start;
567		phdr->p_type = PT_LOAD;
568		phdr->p_offset = start;
569		phdr->p_vaddr = start;
570		phdr->p_paddr = start;
571		phdr->p_memsz = end - start;
572		phdr->p_flags = PF_R | PF_W | PF_X;
573		phdr->p_align = PAGE_SIZE;
574		phdr++;
575	}
576}
577
578/*
579 * Initialize notes (new kernel)
580 */
581static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
582{
583	struct save_area *sa;
584	void *ptr_start = ptr;
585	int cpu;
586
587	ptr = nt_prpsinfo(ptr);
588
589	cpu = 1;
590	list_for_each_entry(sa, &dump_save_areas, list)
591		if (sa->prefix != 0)
592			ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
593	ptr = nt_vmcoreinfo(ptr);
594	ptr = nt_final(ptr);
595	memset(phdr, 0, sizeof(*phdr));
596	phdr->p_type = PT_NOTE;
597	phdr->p_offset = notes_offset;
598	phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
599	phdr->p_memsz = phdr->p_filesz;
600	return ptr;
601}
602
603static size_t get_elfcorehdr_size(int mem_chunk_cnt)
604{
605	size_t size;
606
607	size = sizeof(Elf64_Ehdr);
608	/* PT_NOTES */
609	size += sizeof(Elf64_Phdr);
610	/* nt_prpsinfo */
611	size += nt_size(NT_PRPSINFO, sizeof(struct elf_prpsinfo));
612	/* regsets */
613	size += get_cpu_cnt() * get_cpu_elf_notes_size();
614	/* nt_vmcoreinfo */
615	size += nt_vmcoreinfo_size();
616	/* nt_final */
617	size += sizeof(Elf64_Nhdr);
618	/* PT_LOADS */
619	size += mem_chunk_cnt * sizeof(Elf64_Phdr);
620
621	return size;
622}
623
624/*
625 * Create ELF core header (new kernel)
626 */
627int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
628{
629	Elf64_Phdr *phdr_notes, *phdr_loads;
630	int mem_chunk_cnt;
631	void *ptr, *hdr;
632	u32 alloc_size;
633	u64 hdr_off;
634
635	/* If we are not in kdump or zfcpdump mode return */
636	if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
637		return 0;
638	/* If we cannot get HSA size for zfcpdump return error */
639	if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
640		return -ENODEV;
641
642	/* For kdump, exclude previous crashkernel memory */
643	if (OLDMEM_BASE) {
644		oldmem_region.base = OLDMEM_BASE;
645		oldmem_region.size = OLDMEM_SIZE;
646		oldmem_type.total_size = OLDMEM_SIZE;
647	}
648
649	mem_chunk_cnt = get_mem_chunk_cnt();
650
651	alloc_size = get_elfcorehdr_size(mem_chunk_cnt);
652
653	hdr = kzalloc(alloc_size, GFP_KERNEL);
654
655	/* Without elfcorehdr /proc/vmcore cannot be created. Thus creating
656	 * a dump with this crash kernel will fail. Panic now to allow other
657	 * dump mechanisms to take over.
658	 */
659	if (!hdr)
660		panic("s390 kdump allocating elfcorehdr failed");
661
662	/* Init elf header */
663	ptr = ehdr_init(hdr, mem_chunk_cnt);
664	/* Init program headers */
665	phdr_notes = ptr;
666	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
667	phdr_loads = ptr;
668	ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
669	/* Init notes */
670	hdr_off = PTR_DIFF(ptr, hdr);
671	ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
672	/* Init loads */
673	hdr_off = PTR_DIFF(ptr, hdr);
674	loads_init(phdr_loads, hdr_off);
675	*addr = (unsigned long long) hdr;
676	*size = (unsigned long long) hdr_off;
677	BUG_ON(elfcorehdr_size > alloc_size);
678	return 0;
679}
680
681/*
682 * Free ELF core header (new kernel)
683 */
684void elfcorehdr_free(unsigned long long addr)
685{
686	kfree((void *)(unsigned long)addr);
687}
688
689/*
690 * Read from ELF header
691 */
692ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
693{
694	void *src = (void *)(unsigned long)*ppos;
695
696	memcpy(buf, src, count);
697	*ppos += count;
698	return count;
699}
700
701/*
702 * Read from ELF notes data
703 */
704ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
705{
706	void *src = (void *)(unsigned long)*ppos;
707
708	memcpy(buf, src, count);
709	*ppos += count;
710	return count;
711}