Loading...
1/*
2 * Copyright (C) 2016 Oracle. All Rights Reserved.
3 *
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it would be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_shared.h"
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_trans.h"
32#include "xfs_inode_item.h"
33#include "xfs_bmap.h"
34#include "xfs_bmap_util.h"
35#include "xfs_error.h"
36#include "xfs_dir2.h"
37#include "xfs_dir2_priv.h"
38#include "xfs_ioctl.h"
39#include "xfs_trace.h"
40#include "xfs_log.h"
41#include "xfs_icache.h"
42#include "xfs_pnfs.h"
43#include "xfs_btree.h"
44#include "xfs_refcount_btree.h"
45#include "xfs_refcount.h"
46#include "xfs_bmap_btree.h"
47#include "xfs_trans_space.h"
48#include "xfs_bit.h"
49#include "xfs_alloc.h"
50#include "xfs_quota_defs.h"
51#include "xfs_quota.h"
52#include "xfs_btree.h"
53#include "xfs_bmap_btree.h"
54#include "xfs_reflink.h"
55#include "xfs_iomap.h"
56#include "xfs_rmap_btree.h"
57#include "xfs_sb.h"
58#include "xfs_ag_resv.h"
59
60/*
61 * Copy on Write of Shared Blocks
62 *
63 * XFS must preserve "the usual" file semantics even when two files share
64 * the same physical blocks. This means that a write to one file must not
65 * alter the blocks in a different file; the way that we'll do that is
66 * through the use of a copy-on-write mechanism. At a high level, that
67 * means that when we want to write to a shared block, we allocate a new
68 * block, write the data to the new block, and if that succeeds we map the
69 * new block into the file.
70 *
71 * XFS provides a "delayed allocation" mechanism that defers the allocation
72 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
73 * possible. This reduces fragmentation by enabling the filesystem to ask
74 * for bigger chunks less often, which is exactly what we want for CoW.
75 *
76 * The delalloc mechanism begins when the kernel wants to make a block
77 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
78 * create a delalloc mapping, which is a regular in-core extent, but without
79 * a real startblock. (For delalloc mappings, the startblock encodes both
80 * a flag that this is a delalloc mapping, and a worst-case estimate of how
81 * many blocks might be required to put the mapping into the BMBT.) delalloc
82 * mappings are a reservation against the free space in the filesystem;
83 * adjacent mappings can also be combined into fewer larger mappings.
84 *
85 * As an optimization, the CoW extent size hint (cowextsz) creates
86 * outsized aligned delalloc reservations in the hope of landing out of
87 * order nearby CoW writes in a single extent on disk, thereby reducing
88 * fragmentation and improving future performance.
89 *
90 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
91 * C: ------DDDDDDD--------- (CoW fork)
92 *
93 * When dirty pages are being written out (typically in writepage), the
94 * delalloc reservations are converted into unwritten mappings by
95 * allocating blocks and replacing the delalloc mapping with real ones.
96 * A delalloc mapping can be replaced by several unwritten ones if the
97 * free space is fragmented.
98 *
99 * D: --RRRRRRSSSRRRRRRRR---
100 * C: ------UUUUUUU---------
101 *
102 * We want to adapt the delalloc mechanism for copy-on-write, since the
103 * write paths are similar. The first two steps (creating the reservation
104 * and allocating the blocks) are exactly the same as delalloc except that
105 * the mappings must be stored in a separate CoW fork because we do not want
106 * to disturb the mapping in the data fork until we're sure that the write
107 * succeeded. IO completion in this case is the process of removing the old
108 * mapping from the data fork and moving the new mapping from the CoW fork to
109 * the data fork. This will be discussed shortly.
110 *
111 * For now, unaligned directio writes will be bounced back to the page cache.
112 * Block-aligned directio writes will use the same mechanism as buffered
113 * writes.
114 *
115 * Just prior to submitting the actual disk write requests, we convert
116 * the extents representing the range of the file actually being written
117 * (as opposed to extra pieces created for the cowextsize hint) to real
118 * extents. This will become important in the next step:
119 *
120 * D: --RRRRRRSSSRRRRRRRR---
121 * C: ------UUrrUUU---------
122 *
123 * CoW remapping must be done after the data block write completes,
124 * because we don't want to destroy the old data fork map until we're sure
125 * the new block has been written. Since the new mappings are kept in a
126 * separate fork, we can simply iterate these mappings to find the ones
127 * that cover the file blocks that we just CoW'd. For each extent, simply
128 * unmap the corresponding range in the data fork, map the new range into
129 * the data fork, and remove the extent from the CoW fork. Because of
130 * the presence of the cowextsize hint, however, we must be careful
131 * only to remap the blocks that we've actually written out -- we must
132 * never remap delalloc reservations nor CoW staging blocks that have
133 * yet to be written. This corresponds exactly to the real extents in
134 * the CoW fork:
135 *
136 * D: --RRRRRRrrSRRRRRRRR---
137 * C: ------UU--UUU---------
138 *
139 * Since the remapping operation can be applied to an arbitrary file
140 * range, we record the need for the remap step as a flag in the ioend
141 * instead of declaring a new IO type. This is required for direct io
142 * because we only have ioend for the whole dio, and we have to be able to
143 * remember the presence of unwritten blocks and CoW blocks with a single
144 * ioend structure. Better yet, the more ground we can cover with one
145 * ioend, the better.
146 */
147
148/*
149 * Given an AG extent, find the lowest-numbered run of shared blocks
150 * within that range and return the range in fbno/flen. If
151 * find_end_of_shared is true, return the longest contiguous extent of
152 * shared blocks. If there are no shared extents, fbno and flen will
153 * be set to NULLAGBLOCK and 0, respectively.
154 */
155int
156xfs_reflink_find_shared(
157 struct xfs_mount *mp,
158 xfs_agnumber_t agno,
159 xfs_agblock_t agbno,
160 xfs_extlen_t aglen,
161 xfs_agblock_t *fbno,
162 xfs_extlen_t *flen,
163 bool find_end_of_shared)
164{
165 struct xfs_buf *agbp;
166 struct xfs_btree_cur *cur;
167 int error;
168
169 error = xfs_alloc_read_agf(mp, NULL, agno, 0, &agbp);
170 if (error)
171 return error;
172
173 cur = xfs_refcountbt_init_cursor(mp, NULL, agbp, agno, NULL);
174
175 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
176 find_end_of_shared);
177
178 xfs_btree_del_cursor(cur, error ? XFS_BTREE_ERROR : XFS_BTREE_NOERROR);
179
180 xfs_buf_relse(agbp);
181 return error;
182}
183
184/*
185 * Trim the mapping to the next block where there's a change in the
186 * shared/unshared status. More specifically, this means that we
187 * find the lowest-numbered extent of shared blocks that coincides with
188 * the given block mapping. If the shared extent overlaps the start of
189 * the mapping, trim the mapping to the end of the shared extent. If
190 * the shared region intersects the mapping, trim the mapping to the
191 * start of the shared extent. If there are no shared regions that
192 * overlap, just return the original extent.
193 */
194int
195xfs_reflink_trim_around_shared(
196 struct xfs_inode *ip,
197 struct xfs_bmbt_irec *irec,
198 bool *shared,
199 bool *trimmed)
200{
201 xfs_agnumber_t agno;
202 xfs_agblock_t agbno;
203 xfs_extlen_t aglen;
204 xfs_agblock_t fbno;
205 xfs_extlen_t flen;
206 int error = 0;
207
208 /* Holes, unwritten, and delalloc extents cannot be shared */
209 if (!xfs_is_reflink_inode(ip) ||
210 ISUNWRITTEN(irec) ||
211 irec->br_startblock == HOLESTARTBLOCK ||
212 irec->br_startblock == DELAYSTARTBLOCK ||
213 isnullstartblock(irec->br_startblock)) {
214 *shared = false;
215 return 0;
216 }
217
218 trace_xfs_reflink_trim_around_shared(ip, irec);
219
220 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
221 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
222 aglen = irec->br_blockcount;
223
224 error = xfs_reflink_find_shared(ip->i_mount, agno, agbno,
225 aglen, &fbno, &flen, true);
226 if (error)
227 return error;
228
229 *shared = *trimmed = false;
230 if (fbno == NULLAGBLOCK) {
231 /* No shared blocks at all. */
232 return 0;
233 } else if (fbno == agbno) {
234 /*
235 * The start of this extent is shared. Truncate the
236 * mapping at the end of the shared region so that a
237 * subsequent iteration starts at the start of the
238 * unshared region.
239 */
240 irec->br_blockcount = flen;
241 *shared = true;
242 if (flen != aglen)
243 *trimmed = true;
244 return 0;
245 } else {
246 /*
247 * There's a shared extent midway through this extent.
248 * Truncate the mapping at the start of the shared
249 * extent so that a subsequent iteration starts at the
250 * start of the shared region.
251 */
252 irec->br_blockcount = fbno - agbno;
253 *trimmed = true;
254 return 0;
255 }
256}
257
258/*
259 * Trim the passed in imap to the next shared/unshared extent boundary, and
260 * if imap->br_startoff points to a shared extent reserve space for it in the
261 * COW fork. In this case *shared is set to true, else to false.
262 *
263 * Note that imap will always contain the block numbers for the existing blocks
264 * in the data fork, as the upper layers need them for read-modify-write
265 * operations.
266 */
267int
268xfs_reflink_reserve_cow(
269 struct xfs_inode *ip,
270 struct xfs_bmbt_irec *imap,
271 bool *shared)
272{
273 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
274 struct xfs_bmbt_irec got;
275 int error = 0;
276 bool eof = false, trimmed;
277 xfs_extnum_t idx;
278
279 /*
280 * Search the COW fork extent list first. This serves two purposes:
281 * first this implement the speculative preallocation using cowextisze,
282 * so that we also unshared block adjacent to shared blocks instead
283 * of just the shared blocks themselves. Second the lookup in the
284 * extent list is generally faster than going out to the shared extent
285 * tree.
286 */
287
288 if (!xfs_iext_lookup_extent(ip, ifp, imap->br_startoff, &idx, &got))
289 eof = true;
290 if (!eof && got.br_startoff <= imap->br_startoff) {
291 trace_xfs_reflink_cow_found(ip, imap);
292 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
293
294 *shared = true;
295 return 0;
296 }
297
298 /* Trim the mapping to the nearest shared extent boundary. */
299 error = xfs_reflink_trim_around_shared(ip, imap, shared, &trimmed);
300 if (error)
301 return error;
302
303 /* Not shared? Just report the (potentially capped) extent. */
304 if (!*shared)
305 return 0;
306
307 /*
308 * Fork all the shared blocks from our write offset until the end of
309 * the extent.
310 */
311 error = xfs_qm_dqattach_locked(ip, 0);
312 if (error)
313 return error;
314
315 error = xfs_bmapi_reserve_delalloc(ip, XFS_COW_FORK, imap->br_startoff,
316 imap->br_blockcount, 0, &got, &idx, eof);
317 if (error == -ENOSPC || error == -EDQUOT)
318 trace_xfs_reflink_cow_enospc(ip, imap);
319 if (error)
320 return error;
321
322 trace_xfs_reflink_cow_alloc(ip, &got);
323 return 0;
324}
325
326/* Convert part of an unwritten CoW extent to a real one. */
327STATIC int
328xfs_reflink_convert_cow_extent(
329 struct xfs_inode *ip,
330 struct xfs_bmbt_irec *imap,
331 xfs_fileoff_t offset_fsb,
332 xfs_filblks_t count_fsb,
333 struct xfs_defer_ops *dfops)
334{
335 struct xfs_bmbt_irec irec = *imap;
336 xfs_fsblock_t first_block;
337 int nimaps = 1;
338
339 if (imap->br_state == XFS_EXT_NORM)
340 return 0;
341
342 xfs_trim_extent(&irec, offset_fsb, count_fsb);
343 trace_xfs_reflink_convert_cow(ip, &irec);
344 if (irec.br_blockcount == 0)
345 return 0;
346 return xfs_bmapi_write(NULL, ip, irec.br_startoff, irec.br_blockcount,
347 XFS_BMAPI_COWFORK | XFS_BMAPI_CONVERT, &first_block,
348 0, &irec, &nimaps, dfops);
349}
350
351/* Convert all of the unwritten CoW extents in a file's range to real ones. */
352int
353xfs_reflink_convert_cow(
354 struct xfs_inode *ip,
355 xfs_off_t offset,
356 xfs_off_t count)
357{
358 struct xfs_bmbt_irec got;
359 struct xfs_defer_ops dfops;
360 struct xfs_mount *mp = ip->i_mount;
361 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
362 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
363 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
364 xfs_extnum_t idx;
365 bool found;
366 int error = 0;
367
368 xfs_ilock(ip, XFS_ILOCK_EXCL);
369
370 /* Convert all the extents to real from unwritten. */
371 for (found = xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got);
372 found && got.br_startoff < end_fsb;
373 found = xfs_iext_get_extent(ifp, ++idx, &got)) {
374 error = xfs_reflink_convert_cow_extent(ip, &got, offset_fsb,
375 end_fsb - offset_fsb, &dfops);
376 if (error)
377 break;
378 }
379
380 /* Finish up. */
381 xfs_iunlock(ip, XFS_ILOCK_EXCL);
382 return error;
383}
384
385/* Allocate all CoW reservations covering a range of blocks in a file. */
386static int
387__xfs_reflink_allocate_cow(
388 struct xfs_inode *ip,
389 xfs_fileoff_t *offset_fsb,
390 xfs_fileoff_t end_fsb)
391{
392 struct xfs_mount *mp = ip->i_mount;
393 struct xfs_bmbt_irec imap;
394 struct xfs_defer_ops dfops;
395 struct xfs_trans *tp;
396 xfs_fsblock_t first_block;
397 int nimaps = 1, error;
398 bool shared;
399
400 xfs_defer_init(&dfops, &first_block);
401
402 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0,
403 XFS_TRANS_RESERVE, &tp);
404 if (error)
405 return error;
406
407 xfs_ilock(ip, XFS_ILOCK_EXCL);
408
409 /* Read extent from the source file. */
410 nimaps = 1;
411 error = xfs_bmapi_read(ip, *offset_fsb, end_fsb - *offset_fsb,
412 &imap, &nimaps, 0);
413 if (error)
414 goto out_unlock;
415 ASSERT(nimaps == 1);
416
417 /* Make sure there's a CoW reservation for it. */
418 error = xfs_reflink_reserve_cow(ip, &imap, &shared);
419 if (error)
420 goto out_trans_cancel;
421
422 if (!shared) {
423 *offset_fsb = imap.br_startoff + imap.br_blockcount;
424 goto out_trans_cancel;
425 }
426
427 /* Allocate the entire reservation as unwritten blocks. */
428 xfs_trans_ijoin(tp, ip, 0);
429 error = xfs_bmapi_write(tp, ip, imap.br_startoff, imap.br_blockcount,
430 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC, &first_block,
431 XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK),
432 &imap, &nimaps, &dfops);
433 if (error)
434 goto out_trans_cancel;
435
436 /* Finish up. */
437 error = xfs_defer_finish(&tp, &dfops, NULL);
438 if (error)
439 goto out_trans_cancel;
440
441 error = xfs_trans_commit(tp);
442
443 *offset_fsb = imap.br_startoff + imap.br_blockcount;
444out_unlock:
445 xfs_iunlock(ip, XFS_ILOCK_EXCL);
446 return error;
447out_trans_cancel:
448 xfs_defer_cancel(&dfops);
449 xfs_trans_cancel(tp);
450 goto out_unlock;
451}
452
453/* Allocate all CoW reservations covering a part of a file. */
454int
455xfs_reflink_allocate_cow_range(
456 struct xfs_inode *ip,
457 xfs_off_t offset,
458 xfs_off_t count)
459{
460 struct xfs_mount *mp = ip->i_mount;
461 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
462 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
463 int error;
464
465 ASSERT(xfs_is_reflink_inode(ip));
466
467 trace_xfs_reflink_allocate_cow_range(ip, offset, count);
468
469 /*
470 * Make sure that the dquots are there.
471 */
472 error = xfs_qm_dqattach(ip, 0);
473 if (error)
474 return error;
475
476 while (offset_fsb < end_fsb) {
477 error = __xfs_reflink_allocate_cow(ip, &offset_fsb, end_fsb);
478 if (error) {
479 trace_xfs_reflink_allocate_cow_range_error(ip, error,
480 _RET_IP_);
481 return error;
482 }
483 }
484
485 /* Convert the CoW extents to regular. */
486 return xfs_reflink_convert_cow(ip, offset, count);
487}
488
489/*
490 * Find the CoW reservation for a given byte offset of a file.
491 */
492bool
493xfs_reflink_find_cow_mapping(
494 struct xfs_inode *ip,
495 xfs_off_t offset,
496 struct xfs_bmbt_irec *imap)
497{
498 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
499 xfs_fileoff_t offset_fsb;
500 struct xfs_bmbt_irec got;
501 xfs_extnum_t idx;
502
503 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL | XFS_ILOCK_SHARED));
504 ASSERT(xfs_is_reflink_inode(ip));
505
506 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
507 if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got))
508 return false;
509 if (got.br_startoff > offset_fsb)
510 return false;
511
512 trace_xfs_reflink_find_cow_mapping(ip, offset, 1, XFS_IO_OVERWRITE,
513 &got);
514 *imap = got;
515 return true;
516}
517
518/*
519 * Trim an extent to end at the next CoW reservation past offset_fsb.
520 */
521void
522xfs_reflink_trim_irec_to_next_cow(
523 struct xfs_inode *ip,
524 xfs_fileoff_t offset_fsb,
525 struct xfs_bmbt_irec *imap)
526{
527 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
528 struct xfs_bmbt_irec got;
529 xfs_extnum_t idx;
530
531 if (!xfs_is_reflink_inode(ip))
532 return;
533
534 /* Find the extent in the CoW fork. */
535 if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got))
536 return;
537
538 /* This is the extent before; try sliding up one. */
539 if (got.br_startoff < offset_fsb) {
540 if (!xfs_iext_get_extent(ifp, idx + 1, &got))
541 return;
542 }
543
544 if (got.br_startoff >= imap->br_startoff + imap->br_blockcount)
545 return;
546
547 imap->br_blockcount = got.br_startoff - imap->br_startoff;
548 trace_xfs_reflink_trim_irec(ip, imap);
549}
550
551/*
552 * Cancel CoW reservations for some block range of an inode.
553 *
554 * If cancel_real is true this function cancels all COW fork extents for the
555 * inode; if cancel_real is false, real extents are not cleared.
556 */
557int
558xfs_reflink_cancel_cow_blocks(
559 struct xfs_inode *ip,
560 struct xfs_trans **tpp,
561 xfs_fileoff_t offset_fsb,
562 xfs_fileoff_t end_fsb,
563 bool cancel_real)
564{
565 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
566 struct xfs_bmbt_irec got, del;
567 xfs_extnum_t idx;
568 xfs_fsblock_t firstfsb;
569 struct xfs_defer_ops dfops;
570 int error = 0;
571
572 if (!xfs_is_reflink_inode(ip))
573 return 0;
574 if (!xfs_iext_lookup_extent(ip, ifp, offset_fsb, &idx, &got))
575 return 0;
576
577 while (got.br_startoff < end_fsb) {
578 del = got;
579 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
580 trace_xfs_reflink_cancel_cow(ip, &del);
581
582 if (isnullstartblock(del.br_startblock)) {
583 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
584 &idx, &got, &del);
585 if (error)
586 break;
587 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
588 xfs_trans_ijoin(*tpp, ip, 0);
589 xfs_defer_init(&dfops, &firstfsb);
590
591 /* Free the CoW orphan record. */
592 error = xfs_refcount_free_cow_extent(ip->i_mount,
593 &dfops, del.br_startblock,
594 del.br_blockcount);
595 if (error)
596 break;
597
598 xfs_bmap_add_free(ip->i_mount, &dfops,
599 del.br_startblock, del.br_blockcount,
600 NULL);
601
602 /* Update quota accounting */
603 xfs_trans_mod_dquot_byino(*tpp, ip, XFS_TRANS_DQ_BCOUNT,
604 -(long)del.br_blockcount);
605
606 /* Roll the transaction */
607 error = xfs_defer_finish(tpp, &dfops, ip);
608 if (error) {
609 xfs_defer_cancel(&dfops);
610 break;
611 }
612
613 /* Remove the mapping from the CoW fork. */
614 xfs_bmap_del_extent_cow(ip, &idx, &got, &del);
615 }
616
617 if (!xfs_iext_get_extent(ifp, ++idx, &got))
618 break;
619 }
620
621 /* clear tag if cow fork is emptied */
622 if (!ifp->if_bytes)
623 xfs_inode_clear_cowblocks_tag(ip);
624
625 return error;
626}
627
628/*
629 * Cancel CoW reservations for some byte range of an inode.
630 *
631 * If cancel_real is true this function cancels all COW fork extents for the
632 * inode; if cancel_real is false, real extents are not cleared.
633 */
634int
635xfs_reflink_cancel_cow_range(
636 struct xfs_inode *ip,
637 xfs_off_t offset,
638 xfs_off_t count,
639 bool cancel_real)
640{
641 struct xfs_trans *tp;
642 xfs_fileoff_t offset_fsb;
643 xfs_fileoff_t end_fsb;
644 int error;
645
646 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
647 ASSERT(xfs_is_reflink_inode(ip));
648
649 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
650 if (count == NULLFILEOFF)
651 end_fsb = NULLFILEOFF;
652 else
653 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
654
655 /* Start a rolling transaction to remove the mappings */
656 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
657 0, 0, 0, &tp);
658 if (error)
659 goto out;
660
661 xfs_ilock(ip, XFS_ILOCK_EXCL);
662 xfs_trans_ijoin(tp, ip, 0);
663
664 /* Scrape out the old CoW reservations */
665 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
666 cancel_real);
667 if (error)
668 goto out_cancel;
669
670 error = xfs_trans_commit(tp);
671
672 xfs_iunlock(ip, XFS_ILOCK_EXCL);
673 return error;
674
675out_cancel:
676 xfs_trans_cancel(tp);
677 xfs_iunlock(ip, XFS_ILOCK_EXCL);
678out:
679 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
680 return error;
681}
682
683/*
684 * Remap parts of a file's data fork after a successful CoW.
685 */
686int
687xfs_reflink_end_cow(
688 struct xfs_inode *ip,
689 xfs_off_t offset,
690 xfs_off_t count)
691{
692 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
693 struct xfs_bmbt_irec got, del;
694 struct xfs_trans *tp;
695 xfs_fileoff_t offset_fsb;
696 xfs_fileoff_t end_fsb;
697 xfs_fsblock_t firstfsb;
698 struct xfs_defer_ops dfops;
699 int error;
700 unsigned int resblks;
701 xfs_filblks_t rlen;
702 xfs_extnum_t idx;
703
704 trace_xfs_reflink_end_cow(ip, offset, count);
705
706 /* No COW extents? That's easy! */
707 if (ifp->if_bytes == 0)
708 return 0;
709
710 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
711 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
712
713 /* Start a rolling transaction to switch the mappings */
714 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
715 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
716 resblks, 0, 0, &tp);
717 if (error)
718 goto out;
719
720 xfs_ilock(ip, XFS_ILOCK_EXCL);
721 xfs_trans_ijoin(tp, ip, 0);
722
723 /* If there is a hole at end_fsb - 1 go to the previous extent */
724 if (!xfs_iext_lookup_extent(ip, ifp, end_fsb - 1, &idx, &got) ||
725 got.br_startoff > end_fsb) {
726 ASSERT(idx > 0);
727 xfs_iext_get_extent(ifp, --idx, &got);
728 }
729
730 /* Walk backwards until we're out of the I/O range... */
731 while (got.br_startoff + got.br_blockcount > offset_fsb) {
732 del = got;
733 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
734
735 /* Extent delete may have bumped idx forward */
736 if (!del.br_blockcount) {
737 idx--;
738 goto next_extent;
739 }
740
741 ASSERT(!isnullstartblock(got.br_startblock));
742
743 /*
744 * Don't remap unwritten extents; these are
745 * speculatively preallocated CoW extents that have been
746 * allocated but have not yet been involved in a write.
747 */
748 if (got.br_state == XFS_EXT_UNWRITTEN) {
749 idx--;
750 goto next_extent;
751 }
752
753 /* Unmap the old blocks in the data fork. */
754 xfs_defer_init(&dfops, &firstfsb);
755 rlen = del.br_blockcount;
756 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1,
757 &firstfsb, &dfops);
758 if (error)
759 goto out_defer;
760
761 /* Trim the extent to whatever got unmapped. */
762 if (rlen) {
763 xfs_trim_extent(&del, del.br_startoff + rlen,
764 del.br_blockcount - rlen);
765 }
766 trace_xfs_reflink_cow_remap(ip, &del);
767
768 /* Free the CoW orphan record. */
769 error = xfs_refcount_free_cow_extent(tp->t_mountp, &dfops,
770 del.br_startblock, del.br_blockcount);
771 if (error)
772 goto out_defer;
773
774 /* Map the new blocks into the data fork. */
775 error = xfs_bmap_map_extent(tp->t_mountp, &dfops, ip, &del);
776 if (error)
777 goto out_defer;
778
779 /* Remove the mapping from the CoW fork. */
780 xfs_bmap_del_extent_cow(ip, &idx, &got, &del);
781
782 error = xfs_defer_finish(&tp, &dfops, ip);
783 if (error)
784 goto out_defer;
785next_extent:
786 if (!xfs_iext_get_extent(ifp, idx, &got))
787 break;
788 }
789
790 error = xfs_trans_commit(tp);
791 xfs_iunlock(ip, XFS_ILOCK_EXCL);
792 if (error)
793 goto out;
794 return 0;
795
796out_defer:
797 xfs_defer_cancel(&dfops);
798 xfs_trans_cancel(tp);
799 xfs_iunlock(ip, XFS_ILOCK_EXCL);
800out:
801 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
802 return error;
803}
804
805/*
806 * Free leftover CoW reservations that didn't get cleaned out.
807 */
808int
809xfs_reflink_recover_cow(
810 struct xfs_mount *mp)
811{
812 xfs_agnumber_t agno;
813 int error = 0;
814
815 if (!xfs_sb_version_hasreflink(&mp->m_sb))
816 return 0;
817
818 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
819 error = xfs_refcount_recover_cow_leftovers(mp, agno);
820 if (error)
821 break;
822 }
823
824 return error;
825}
826
827/*
828 * Reflinking (Block) Ranges of Two Files Together
829 *
830 * First, ensure that the reflink flag is set on both inodes. The flag is an
831 * optimization to avoid unnecessary refcount btree lookups in the write path.
832 *
833 * Now we can iteratively remap the range of extents (and holes) in src to the
834 * corresponding ranges in dest. Let drange and srange denote the ranges of
835 * logical blocks in dest and src touched by the reflink operation.
836 *
837 * While the length of drange is greater than zero,
838 * - Read src's bmbt at the start of srange ("imap")
839 * - If imap doesn't exist, make imap appear to start at the end of srange
840 * with zero length.
841 * - If imap starts before srange, advance imap to start at srange.
842 * - If imap goes beyond srange, truncate imap to end at the end of srange.
843 * - Punch (imap start - srange start + imap len) blocks from dest at
844 * offset (drange start).
845 * - If imap points to a real range of pblks,
846 * > Increase the refcount of the imap's pblks
847 * > Map imap's pblks into dest at the offset
848 * (drange start + imap start - srange start)
849 * - Advance drange and srange by (imap start - srange start + imap len)
850 *
851 * Finally, if the reflink made dest longer, update both the in-core and
852 * on-disk file sizes.
853 *
854 * ASCII Art Demonstration:
855 *
856 * Let's say we want to reflink this source file:
857 *
858 * ----SSSSSSS-SSSSS----SSSSSS (src file)
859 * <-------------------->
860 *
861 * into this destination file:
862 *
863 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
864 * <-------------------->
865 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
866 * Observe that the range has different logical offsets in either file.
867 *
868 * Consider that the first extent in the source file doesn't line up with our
869 * reflink range. Unmapping and remapping are separate operations, so we can
870 * unmap more blocks from the destination file than we remap.
871 *
872 * ----SSSSSSS-SSSSS----SSSSSS
873 * <------->
874 * --DDDDD---------DDDDD--DDD
875 * <------->
876 *
877 * Now remap the source extent into the destination file:
878 *
879 * ----SSSSSSS-SSSSS----SSSSSS
880 * <------->
881 * --DDDDD--SSSSSSSDDDDD--DDD
882 * <------->
883 *
884 * Do likewise with the second hole and extent in our range. Holes in the
885 * unmap range don't affect our operation.
886 *
887 * ----SSSSSSS-SSSSS----SSSSSS
888 * <---->
889 * --DDDDD--SSSSSSS-SSSSS-DDD
890 * <---->
891 *
892 * Finally, unmap and remap part of the third extent. This will increase the
893 * size of the destination file.
894 *
895 * ----SSSSSSS-SSSSS----SSSSSS
896 * <----->
897 * --DDDDD--SSSSSSS-SSSSS----SSS
898 * <----->
899 *
900 * Once we update the destination file's i_size, we're done.
901 */
902
903/*
904 * Ensure the reflink bit is set in both inodes.
905 */
906STATIC int
907xfs_reflink_set_inode_flag(
908 struct xfs_inode *src,
909 struct xfs_inode *dest)
910{
911 struct xfs_mount *mp = src->i_mount;
912 int error;
913 struct xfs_trans *tp;
914
915 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
916 return 0;
917
918 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
919 if (error)
920 goto out_error;
921
922 /* Lock both files against IO */
923 if (src->i_ino == dest->i_ino)
924 xfs_ilock(src, XFS_ILOCK_EXCL);
925 else
926 xfs_lock_two_inodes(src, dest, XFS_ILOCK_EXCL);
927
928 if (!xfs_is_reflink_inode(src)) {
929 trace_xfs_reflink_set_inode_flag(src);
930 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
931 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
932 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
933 xfs_ifork_init_cow(src);
934 } else
935 xfs_iunlock(src, XFS_ILOCK_EXCL);
936
937 if (src->i_ino == dest->i_ino)
938 goto commit_flags;
939
940 if (!xfs_is_reflink_inode(dest)) {
941 trace_xfs_reflink_set_inode_flag(dest);
942 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
943 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
944 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
945 xfs_ifork_init_cow(dest);
946 } else
947 xfs_iunlock(dest, XFS_ILOCK_EXCL);
948
949commit_flags:
950 error = xfs_trans_commit(tp);
951 if (error)
952 goto out_error;
953 return error;
954
955out_error:
956 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
957 return error;
958}
959
960/*
961 * Update destination inode size & cowextsize hint, if necessary.
962 */
963STATIC int
964xfs_reflink_update_dest(
965 struct xfs_inode *dest,
966 xfs_off_t newlen,
967 xfs_extlen_t cowextsize,
968 bool is_dedupe)
969{
970 struct xfs_mount *mp = dest->i_mount;
971 struct xfs_trans *tp;
972 int error;
973
974 if (is_dedupe && newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
975 return 0;
976
977 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
978 if (error)
979 goto out_error;
980
981 xfs_ilock(dest, XFS_ILOCK_EXCL);
982 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
983
984 if (newlen > i_size_read(VFS_I(dest))) {
985 trace_xfs_reflink_update_inode_size(dest, newlen);
986 i_size_write(VFS_I(dest), newlen);
987 dest->i_d.di_size = newlen;
988 }
989
990 if (cowextsize) {
991 dest->i_d.di_cowextsize = cowextsize;
992 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
993 }
994
995 if (!is_dedupe) {
996 xfs_trans_ichgtime(tp, dest,
997 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
998 }
999 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
1000
1001 error = xfs_trans_commit(tp);
1002 if (error)
1003 goto out_error;
1004 return error;
1005
1006out_error:
1007 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
1008 return error;
1009}
1010
1011/*
1012 * Do we have enough reserve in this AG to handle a reflink? The refcount
1013 * btree already reserved all the space it needs, but the rmap btree can grow
1014 * infinitely, so we won't allow more reflinks when the AG is down to the
1015 * btree reserves.
1016 */
1017static int
1018xfs_reflink_ag_has_free_space(
1019 struct xfs_mount *mp,
1020 xfs_agnumber_t agno)
1021{
1022 struct xfs_perag *pag;
1023 int error = 0;
1024
1025 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
1026 return 0;
1027
1028 pag = xfs_perag_get(mp, agno);
1029 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_AGFL) ||
1030 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
1031 error = -ENOSPC;
1032 xfs_perag_put(pag);
1033 return error;
1034}
1035
1036/*
1037 * Unmap a range of blocks from a file, then map other blocks into the hole.
1038 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
1039 * The extent irec is mapped into dest at irec->br_startoff.
1040 */
1041STATIC int
1042xfs_reflink_remap_extent(
1043 struct xfs_inode *ip,
1044 struct xfs_bmbt_irec *irec,
1045 xfs_fileoff_t destoff,
1046 xfs_off_t new_isize)
1047{
1048 struct xfs_mount *mp = ip->i_mount;
1049 struct xfs_trans *tp;
1050 xfs_fsblock_t firstfsb;
1051 unsigned int resblks;
1052 struct xfs_defer_ops dfops;
1053 struct xfs_bmbt_irec uirec;
1054 bool real_extent;
1055 xfs_filblks_t rlen;
1056 xfs_filblks_t unmap_len;
1057 xfs_off_t newlen;
1058 int error;
1059
1060 unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1061 trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1062
1063 /* Only remap normal extents. */
1064 real_extent = (irec->br_startblock != HOLESTARTBLOCK &&
1065 irec->br_startblock != DELAYSTARTBLOCK &&
1066 !ISUNWRITTEN(irec));
1067
1068 /* No reflinking if we're low on space */
1069 if (real_extent) {
1070 error = xfs_reflink_ag_has_free_space(mp,
1071 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1072 if (error)
1073 goto out;
1074 }
1075
1076 /* Start a rolling transaction to switch the mappings */
1077 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1078 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1079 if (error)
1080 goto out;
1081
1082 xfs_ilock(ip, XFS_ILOCK_EXCL);
1083 xfs_trans_ijoin(tp, ip, 0);
1084
1085 /* If we're not just clearing space, then do we have enough quota? */
1086 if (real_extent) {
1087 error = xfs_trans_reserve_quota_nblks(tp, ip,
1088 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1089 if (error)
1090 goto out_cancel;
1091 }
1092
1093 trace_xfs_reflink_remap(ip, irec->br_startoff,
1094 irec->br_blockcount, irec->br_startblock);
1095
1096 /* Unmap the old blocks in the data fork. */
1097 rlen = unmap_len;
1098 while (rlen) {
1099 xfs_defer_init(&dfops, &firstfsb);
1100 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
1101 &firstfsb, &dfops);
1102 if (error)
1103 goto out_defer;
1104
1105 /*
1106 * Trim the extent to whatever got unmapped.
1107 * Remember, bunmapi works backwards.
1108 */
1109 uirec.br_startblock = irec->br_startblock + rlen;
1110 uirec.br_startoff = irec->br_startoff + rlen;
1111 uirec.br_blockcount = unmap_len - rlen;
1112 unmap_len = rlen;
1113
1114 /* If this isn't a real mapping, we're done. */
1115 if (!real_extent || uirec.br_blockcount == 0)
1116 goto next_extent;
1117
1118 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1119 uirec.br_blockcount, uirec.br_startblock);
1120
1121 /* Update the refcount tree */
1122 error = xfs_refcount_increase_extent(mp, &dfops, &uirec);
1123 if (error)
1124 goto out_defer;
1125
1126 /* Map the new blocks into the data fork. */
1127 error = xfs_bmap_map_extent(mp, &dfops, ip, &uirec);
1128 if (error)
1129 goto out_defer;
1130
1131 /* Update quota accounting. */
1132 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1133 uirec.br_blockcount);
1134
1135 /* Update dest isize if needed. */
1136 newlen = XFS_FSB_TO_B(mp,
1137 uirec.br_startoff + uirec.br_blockcount);
1138 newlen = min_t(xfs_off_t, newlen, new_isize);
1139 if (newlen > i_size_read(VFS_I(ip))) {
1140 trace_xfs_reflink_update_inode_size(ip, newlen);
1141 i_size_write(VFS_I(ip), newlen);
1142 ip->i_d.di_size = newlen;
1143 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1144 }
1145
1146next_extent:
1147 /* Process all the deferred stuff. */
1148 error = xfs_defer_finish(&tp, &dfops, ip);
1149 if (error)
1150 goto out_defer;
1151 }
1152
1153 error = xfs_trans_commit(tp);
1154 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1155 if (error)
1156 goto out;
1157 return 0;
1158
1159out_defer:
1160 xfs_defer_cancel(&dfops);
1161out_cancel:
1162 xfs_trans_cancel(tp);
1163 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1164out:
1165 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1166 return error;
1167}
1168
1169/*
1170 * Iteratively remap one file's extents (and holes) to another's.
1171 */
1172STATIC int
1173xfs_reflink_remap_blocks(
1174 struct xfs_inode *src,
1175 xfs_fileoff_t srcoff,
1176 struct xfs_inode *dest,
1177 xfs_fileoff_t destoff,
1178 xfs_filblks_t len,
1179 xfs_off_t new_isize)
1180{
1181 struct xfs_bmbt_irec imap;
1182 int nimaps;
1183 int error = 0;
1184 xfs_filblks_t range_len;
1185
1186 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1187 while (len) {
1188 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1189 dest, destoff);
1190 /* Read extent from the source file */
1191 nimaps = 1;
1192 xfs_ilock(src, XFS_ILOCK_EXCL);
1193 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1194 xfs_iunlock(src, XFS_ILOCK_EXCL);
1195 if (error)
1196 goto err;
1197 ASSERT(nimaps == 1);
1198
1199 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_IO_OVERWRITE,
1200 &imap);
1201
1202 /* Translate imap into the destination file. */
1203 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1204 imap.br_startoff += destoff - srcoff;
1205
1206 /* Clear dest from destoff to the end of imap and map it in. */
1207 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1208 new_isize);
1209 if (error)
1210 goto err;
1211
1212 if (fatal_signal_pending(current)) {
1213 error = -EINTR;
1214 goto err;
1215 }
1216
1217 /* Advance drange/srange */
1218 srcoff += range_len;
1219 destoff += range_len;
1220 len -= range_len;
1221 }
1222
1223 return 0;
1224
1225err:
1226 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1227 return error;
1228}
1229
1230/*
1231 * Link a range of blocks from one file to another.
1232 */
1233int
1234xfs_reflink_remap_range(
1235 struct file *file_in,
1236 loff_t pos_in,
1237 struct file *file_out,
1238 loff_t pos_out,
1239 u64 len,
1240 bool is_dedupe)
1241{
1242 struct inode *inode_in = file_inode(file_in);
1243 struct xfs_inode *src = XFS_I(inode_in);
1244 struct inode *inode_out = file_inode(file_out);
1245 struct xfs_inode *dest = XFS_I(inode_out);
1246 struct xfs_mount *mp = src->i_mount;
1247 bool same_inode = (inode_in == inode_out);
1248 xfs_fileoff_t sfsbno, dfsbno;
1249 xfs_filblks_t fsblen;
1250 xfs_extlen_t cowextsize;
1251 ssize_t ret;
1252
1253 if (!xfs_sb_version_hasreflink(&mp->m_sb))
1254 return -EOPNOTSUPP;
1255
1256 if (XFS_FORCED_SHUTDOWN(mp))
1257 return -EIO;
1258
1259 /* Lock both files against IO */
1260 lock_two_nondirectories(inode_in, inode_out);
1261 if (same_inode)
1262 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1263 else
1264 xfs_lock_two_inodes(src, dest, XFS_MMAPLOCK_EXCL);
1265
1266 /* Check file eligibility and prepare for block sharing. */
1267 ret = -EINVAL;
1268 /* Don't reflink realtime inodes */
1269 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1270 goto out_unlock;
1271
1272 /* Don't share DAX file data for now. */
1273 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1274 goto out_unlock;
1275
1276 ret = vfs_clone_file_prep_inodes(inode_in, pos_in, inode_out, pos_out,
1277 &len, is_dedupe);
1278 if (ret <= 0)
1279 goto out_unlock;
1280
1281 trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1282
1283 /* Set flags and remap blocks. */
1284 ret = xfs_reflink_set_inode_flag(src, dest);
1285 if (ret)
1286 goto out_unlock;
1287
1288 dfsbno = XFS_B_TO_FSBT(mp, pos_out);
1289 sfsbno = XFS_B_TO_FSBT(mp, pos_in);
1290 fsblen = XFS_B_TO_FSB(mp, len);
1291 ret = xfs_reflink_remap_blocks(src, sfsbno, dest, dfsbno, fsblen,
1292 pos_out + len);
1293 if (ret)
1294 goto out_unlock;
1295
1296 /* Zap any page cache for the destination file's range. */
1297 truncate_inode_pages_range(&inode_out->i_data, pos_out,
1298 PAGE_ALIGN(pos_out + len) - 1);
1299
1300 /*
1301 * Carry the cowextsize hint from src to dest if we're sharing the
1302 * entire source file to the entire destination file, the source file
1303 * has a cowextsize hint, and the destination file does not.
1304 */
1305 cowextsize = 0;
1306 if (pos_in == 0 && len == i_size_read(inode_in) &&
1307 (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1308 pos_out == 0 && len >= i_size_read(inode_out) &&
1309 !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1310 cowextsize = src->i_d.di_cowextsize;
1311
1312 ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1313 is_dedupe);
1314
1315out_unlock:
1316 xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1317 if (!same_inode)
1318 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1319 unlock_two_nondirectories(inode_in, inode_out);
1320 if (ret)
1321 trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1322 return ret;
1323}
1324
1325/*
1326 * The user wants to preemptively CoW all shared blocks in this file,
1327 * which enables us to turn off the reflink flag. Iterate all
1328 * extents which are not prealloc/delalloc to see which ranges are
1329 * mentioned in the refcount tree, then read those blocks into the
1330 * pagecache, dirty them, fsync them back out, and then we can update
1331 * the inode flag. What happens if we run out of memory? :)
1332 */
1333STATIC int
1334xfs_reflink_dirty_extents(
1335 struct xfs_inode *ip,
1336 xfs_fileoff_t fbno,
1337 xfs_filblks_t end,
1338 xfs_off_t isize)
1339{
1340 struct xfs_mount *mp = ip->i_mount;
1341 xfs_agnumber_t agno;
1342 xfs_agblock_t agbno;
1343 xfs_extlen_t aglen;
1344 xfs_agblock_t rbno;
1345 xfs_extlen_t rlen;
1346 xfs_off_t fpos;
1347 xfs_off_t flen;
1348 struct xfs_bmbt_irec map[2];
1349 int nmaps;
1350 int error = 0;
1351
1352 while (end - fbno > 0) {
1353 nmaps = 1;
1354 /*
1355 * Look for extents in the file. Skip holes, delalloc, or
1356 * unwritten extents; they can't be reflinked.
1357 */
1358 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1359 if (error)
1360 goto out;
1361 if (nmaps == 0)
1362 break;
1363 if (map[0].br_startblock == HOLESTARTBLOCK ||
1364 map[0].br_startblock == DELAYSTARTBLOCK ||
1365 ISUNWRITTEN(&map[0]))
1366 goto next;
1367
1368 map[1] = map[0];
1369 while (map[1].br_blockcount) {
1370 agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1371 agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1372 aglen = map[1].br_blockcount;
1373
1374 error = xfs_reflink_find_shared(mp, agno, agbno, aglen,
1375 &rbno, &rlen, true);
1376 if (error)
1377 goto out;
1378 if (rbno == NULLAGBLOCK)
1379 break;
1380
1381 /* Dirty the pages */
1382 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1383 fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1384 (rbno - agbno));
1385 flen = XFS_FSB_TO_B(mp, rlen);
1386 if (fpos + flen > isize)
1387 flen = isize - fpos;
1388 error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1389 &xfs_iomap_ops);
1390 xfs_ilock(ip, XFS_ILOCK_EXCL);
1391 if (error)
1392 goto out;
1393
1394 map[1].br_blockcount -= (rbno - agbno + rlen);
1395 map[1].br_startoff += (rbno - agbno + rlen);
1396 map[1].br_startblock += (rbno - agbno + rlen);
1397 }
1398
1399next:
1400 fbno = map[0].br_startoff + map[0].br_blockcount;
1401 }
1402out:
1403 return error;
1404}
1405
1406/* Clear the inode reflink flag if there are no shared extents. */
1407int
1408xfs_reflink_clear_inode_flag(
1409 struct xfs_inode *ip,
1410 struct xfs_trans **tpp)
1411{
1412 struct xfs_mount *mp = ip->i_mount;
1413 xfs_fileoff_t fbno;
1414 xfs_filblks_t end;
1415 xfs_agnumber_t agno;
1416 xfs_agblock_t agbno;
1417 xfs_extlen_t aglen;
1418 xfs_agblock_t rbno;
1419 xfs_extlen_t rlen;
1420 struct xfs_bmbt_irec map;
1421 int nmaps;
1422 int error = 0;
1423
1424 ASSERT(xfs_is_reflink_inode(ip));
1425
1426 fbno = 0;
1427 end = XFS_B_TO_FSB(mp, i_size_read(VFS_I(ip)));
1428 while (end - fbno > 0) {
1429 nmaps = 1;
1430 /*
1431 * Look for extents in the file. Skip holes, delalloc, or
1432 * unwritten extents; they can't be reflinked.
1433 */
1434 error = xfs_bmapi_read(ip, fbno, end - fbno, &map, &nmaps, 0);
1435 if (error)
1436 return error;
1437 if (nmaps == 0)
1438 break;
1439 if (map.br_startblock == HOLESTARTBLOCK ||
1440 map.br_startblock == DELAYSTARTBLOCK ||
1441 ISUNWRITTEN(&map))
1442 goto next;
1443
1444 agno = XFS_FSB_TO_AGNO(mp, map.br_startblock);
1445 agbno = XFS_FSB_TO_AGBNO(mp, map.br_startblock);
1446 aglen = map.br_blockcount;
1447
1448 error = xfs_reflink_find_shared(mp, agno, agbno, aglen,
1449 &rbno, &rlen, false);
1450 if (error)
1451 return error;
1452 /* Is there still a shared block here? */
1453 if (rbno != NULLAGBLOCK)
1454 return 0;
1455next:
1456 fbno = map.br_startoff + map.br_blockcount;
1457 }
1458
1459 /*
1460 * We didn't find any shared blocks so turn off the reflink flag.
1461 * First, get rid of any leftover CoW mappings.
1462 */
1463 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1464 if (error)
1465 return error;
1466
1467 /* Clear the inode flag. */
1468 trace_xfs_reflink_unset_inode_flag(ip);
1469 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1470 xfs_inode_clear_cowblocks_tag(ip);
1471 xfs_trans_ijoin(*tpp, ip, 0);
1472 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1473
1474 return error;
1475}
1476
1477/*
1478 * Clear the inode reflink flag if there are no shared extents and the size
1479 * hasn't changed.
1480 */
1481STATIC int
1482xfs_reflink_try_clear_inode_flag(
1483 struct xfs_inode *ip)
1484{
1485 struct xfs_mount *mp = ip->i_mount;
1486 struct xfs_trans *tp;
1487 int error = 0;
1488
1489 /* Start a rolling transaction to remove the mappings */
1490 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1491 if (error)
1492 return error;
1493
1494 xfs_ilock(ip, XFS_ILOCK_EXCL);
1495 xfs_trans_ijoin(tp, ip, 0);
1496
1497 error = xfs_reflink_clear_inode_flag(ip, &tp);
1498 if (error)
1499 goto cancel;
1500
1501 error = xfs_trans_commit(tp);
1502 if (error)
1503 goto out;
1504
1505 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1506 return 0;
1507cancel:
1508 xfs_trans_cancel(tp);
1509out:
1510 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1511 return error;
1512}
1513
1514/*
1515 * Pre-COW all shared blocks within a given byte range of a file and turn off
1516 * the reflink flag if we unshare all of the file's blocks.
1517 */
1518int
1519xfs_reflink_unshare(
1520 struct xfs_inode *ip,
1521 xfs_off_t offset,
1522 xfs_off_t len)
1523{
1524 struct xfs_mount *mp = ip->i_mount;
1525 xfs_fileoff_t fbno;
1526 xfs_filblks_t end;
1527 xfs_off_t isize;
1528 int error;
1529
1530 if (!xfs_is_reflink_inode(ip))
1531 return 0;
1532
1533 trace_xfs_reflink_unshare(ip, offset, len);
1534
1535 inode_dio_wait(VFS_I(ip));
1536
1537 /* Try to CoW the selected ranges */
1538 xfs_ilock(ip, XFS_ILOCK_EXCL);
1539 fbno = XFS_B_TO_FSBT(mp, offset);
1540 isize = i_size_read(VFS_I(ip));
1541 end = XFS_B_TO_FSB(mp, offset + len);
1542 error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1543 if (error)
1544 goto out_unlock;
1545 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1546
1547 /* Wait for the IO to finish */
1548 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1549 if (error)
1550 goto out;
1551
1552 /* Turn off the reflink flag if possible. */
1553 error = xfs_reflink_try_clear_inode_flag(ip);
1554 if (error)
1555 goto out;
1556
1557 return 0;
1558
1559out_unlock:
1560 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1561out:
1562 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1563 return error;
1564}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_btree.h"
21#include "xfs_refcount_btree.h"
22#include "xfs_refcount.h"
23#include "xfs_bmap_btree.h"
24#include "xfs_trans_space.h"
25#include "xfs_bit.h"
26#include "xfs_alloc.h"
27#include "xfs_quota.h"
28#include "xfs_reflink.h"
29#include "xfs_iomap.h"
30#include "xfs_sb.h"
31#include "xfs_ag_resv.h"
32
33/*
34 * Copy on Write of Shared Blocks
35 *
36 * XFS must preserve "the usual" file semantics even when two files share
37 * the same physical blocks. This means that a write to one file must not
38 * alter the blocks in a different file; the way that we'll do that is
39 * through the use of a copy-on-write mechanism. At a high level, that
40 * means that when we want to write to a shared block, we allocate a new
41 * block, write the data to the new block, and if that succeeds we map the
42 * new block into the file.
43 *
44 * XFS provides a "delayed allocation" mechanism that defers the allocation
45 * of disk blocks to dirty-but-not-yet-mapped file blocks as long as
46 * possible. This reduces fragmentation by enabling the filesystem to ask
47 * for bigger chunks less often, which is exactly what we want for CoW.
48 *
49 * The delalloc mechanism begins when the kernel wants to make a block
50 * writable (write_begin or page_mkwrite). If the offset is not mapped, we
51 * create a delalloc mapping, which is a regular in-core extent, but without
52 * a real startblock. (For delalloc mappings, the startblock encodes both
53 * a flag that this is a delalloc mapping, and a worst-case estimate of how
54 * many blocks might be required to put the mapping into the BMBT.) delalloc
55 * mappings are a reservation against the free space in the filesystem;
56 * adjacent mappings can also be combined into fewer larger mappings.
57 *
58 * As an optimization, the CoW extent size hint (cowextsz) creates
59 * outsized aligned delalloc reservations in the hope of landing out of
60 * order nearby CoW writes in a single extent on disk, thereby reducing
61 * fragmentation and improving future performance.
62 *
63 * D: --RRRRRRSSSRRRRRRRR--- (data fork)
64 * C: ------DDDDDDD--------- (CoW fork)
65 *
66 * When dirty pages are being written out (typically in writepage), the
67 * delalloc reservations are converted into unwritten mappings by
68 * allocating blocks and replacing the delalloc mapping with real ones.
69 * A delalloc mapping can be replaced by several unwritten ones if the
70 * free space is fragmented.
71 *
72 * D: --RRRRRRSSSRRRRRRRR---
73 * C: ------UUUUUUU---------
74 *
75 * We want to adapt the delalloc mechanism for copy-on-write, since the
76 * write paths are similar. The first two steps (creating the reservation
77 * and allocating the blocks) are exactly the same as delalloc except that
78 * the mappings must be stored in a separate CoW fork because we do not want
79 * to disturb the mapping in the data fork until we're sure that the write
80 * succeeded. IO completion in this case is the process of removing the old
81 * mapping from the data fork and moving the new mapping from the CoW fork to
82 * the data fork. This will be discussed shortly.
83 *
84 * For now, unaligned directio writes will be bounced back to the page cache.
85 * Block-aligned directio writes will use the same mechanism as buffered
86 * writes.
87 *
88 * Just prior to submitting the actual disk write requests, we convert
89 * the extents representing the range of the file actually being written
90 * (as opposed to extra pieces created for the cowextsize hint) to real
91 * extents. This will become important in the next step:
92 *
93 * D: --RRRRRRSSSRRRRRRRR---
94 * C: ------UUrrUUU---------
95 *
96 * CoW remapping must be done after the data block write completes,
97 * because we don't want to destroy the old data fork map until we're sure
98 * the new block has been written. Since the new mappings are kept in a
99 * separate fork, we can simply iterate these mappings to find the ones
100 * that cover the file blocks that we just CoW'd. For each extent, simply
101 * unmap the corresponding range in the data fork, map the new range into
102 * the data fork, and remove the extent from the CoW fork. Because of
103 * the presence of the cowextsize hint, however, we must be careful
104 * only to remap the blocks that we've actually written out -- we must
105 * never remap delalloc reservations nor CoW staging blocks that have
106 * yet to be written. This corresponds exactly to the real extents in
107 * the CoW fork:
108 *
109 * D: --RRRRRRrrSRRRRRRRR---
110 * C: ------UU--UUU---------
111 *
112 * Since the remapping operation can be applied to an arbitrary file
113 * range, we record the need for the remap step as a flag in the ioend
114 * instead of declaring a new IO type. This is required for direct io
115 * because we only have ioend for the whole dio, and we have to be able to
116 * remember the presence of unwritten blocks and CoW blocks with a single
117 * ioend structure. Better yet, the more ground we can cover with one
118 * ioend, the better.
119 */
120
121/*
122 * Given an AG extent, find the lowest-numbered run of shared blocks
123 * within that range and return the range in fbno/flen. If
124 * find_end_of_shared is true, return the longest contiguous extent of
125 * shared blocks. If there are no shared extents, fbno and flen will
126 * be set to NULLAGBLOCK and 0, respectively.
127 */
128int
129xfs_reflink_find_shared(
130 struct xfs_mount *mp,
131 struct xfs_trans *tp,
132 xfs_agnumber_t agno,
133 xfs_agblock_t agbno,
134 xfs_extlen_t aglen,
135 xfs_agblock_t *fbno,
136 xfs_extlen_t *flen,
137 bool find_end_of_shared)
138{
139 struct xfs_buf *agbp;
140 struct xfs_btree_cur *cur;
141 int error;
142
143 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
144 if (error)
145 return error;
146 if (!agbp)
147 return -ENOMEM;
148
149 cur = xfs_refcountbt_init_cursor(mp, tp, agbp, agno);
150
151 error = xfs_refcount_find_shared(cur, agbno, aglen, fbno, flen,
152 find_end_of_shared);
153
154 xfs_btree_del_cursor(cur, error);
155
156 xfs_trans_brelse(tp, agbp);
157 return error;
158}
159
160/*
161 * Trim the mapping to the next block where there's a change in the
162 * shared/unshared status. More specifically, this means that we
163 * find the lowest-numbered extent of shared blocks that coincides with
164 * the given block mapping. If the shared extent overlaps the start of
165 * the mapping, trim the mapping to the end of the shared extent. If
166 * the shared region intersects the mapping, trim the mapping to the
167 * start of the shared extent. If there are no shared regions that
168 * overlap, just return the original extent.
169 */
170int
171xfs_reflink_trim_around_shared(
172 struct xfs_inode *ip,
173 struct xfs_bmbt_irec *irec,
174 bool *shared)
175{
176 xfs_agnumber_t agno;
177 xfs_agblock_t agbno;
178 xfs_extlen_t aglen;
179 xfs_agblock_t fbno;
180 xfs_extlen_t flen;
181 int error = 0;
182
183 /* Holes, unwritten, and delalloc extents cannot be shared */
184 if (!xfs_is_cow_inode(ip) || !xfs_bmap_is_real_extent(irec)) {
185 *shared = false;
186 return 0;
187 }
188
189 trace_xfs_reflink_trim_around_shared(ip, irec);
190
191 agno = XFS_FSB_TO_AGNO(ip->i_mount, irec->br_startblock);
192 agbno = XFS_FSB_TO_AGBNO(ip->i_mount, irec->br_startblock);
193 aglen = irec->br_blockcount;
194
195 error = xfs_reflink_find_shared(ip->i_mount, NULL, agno, agbno,
196 aglen, &fbno, &flen, true);
197 if (error)
198 return error;
199
200 *shared = false;
201 if (fbno == NULLAGBLOCK) {
202 /* No shared blocks at all. */
203 return 0;
204 } else if (fbno == agbno) {
205 /*
206 * The start of this extent is shared. Truncate the
207 * mapping at the end of the shared region so that a
208 * subsequent iteration starts at the start of the
209 * unshared region.
210 */
211 irec->br_blockcount = flen;
212 *shared = true;
213 return 0;
214 } else {
215 /*
216 * There's a shared extent midway through this extent.
217 * Truncate the mapping at the start of the shared
218 * extent so that a subsequent iteration starts at the
219 * start of the shared region.
220 */
221 irec->br_blockcount = fbno - agbno;
222 return 0;
223 }
224}
225
226bool
227xfs_inode_need_cow(
228 struct xfs_inode *ip,
229 struct xfs_bmbt_irec *imap,
230 bool *shared)
231{
232 /* We can't update any real extents in always COW mode. */
233 if (xfs_is_always_cow_inode(ip) &&
234 !isnullstartblock(imap->br_startblock)) {
235 *shared = true;
236 return 0;
237 }
238
239 /* Trim the mapping to the nearest shared extent boundary. */
240 return xfs_reflink_trim_around_shared(ip, imap, shared);
241}
242
243static int
244xfs_reflink_convert_cow_locked(
245 struct xfs_inode *ip,
246 xfs_fileoff_t offset_fsb,
247 xfs_filblks_t count_fsb)
248{
249 struct xfs_iext_cursor icur;
250 struct xfs_bmbt_irec got;
251 struct xfs_btree_cur *dummy_cur = NULL;
252 int dummy_logflags;
253 int error = 0;
254
255 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
256 return 0;
257
258 do {
259 if (got.br_startoff >= offset_fsb + count_fsb)
260 break;
261 if (got.br_state == XFS_EXT_NORM)
262 continue;
263 if (WARN_ON_ONCE(isnullstartblock(got.br_startblock)))
264 return -EIO;
265
266 xfs_trim_extent(&got, offset_fsb, count_fsb);
267 if (!got.br_blockcount)
268 continue;
269
270 got.br_state = XFS_EXT_NORM;
271 error = xfs_bmap_add_extent_unwritten_real(NULL, ip,
272 XFS_COW_FORK, &icur, &dummy_cur, &got,
273 &dummy_logflags);
274 if (error)
275 return error;
276 } while (xfs_iext_next_extent(ip->i_cowfp, &icur, &got));
277
278 return error;
279}
280
281/* Convert all of the unwritten CoW extents in a file's range to real ones. */
282int
283xfs_reflink_convert_cow(
284 struct xfs_inode *ip,
285 xfs_off_t offset,
286 xfs_off_t count)
287{
288 struct xfs_mount *mp = ip->i_mount;
289 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset);
290 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count);
291 xfs_filblks_t count_fsb = end_fsb - offset_fsb;
292 int error;
293
294 ASSERT(count != 0);
295
296 xfs_ilock(ip, XFS_ILOCK_EXCL);
297 error = xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
298 xfs_iunlock(ip, XFS_ILOCK_EXCL);
299 return error;
300}
301
302/*
303 * Find the extent that maps the given range in the COW fork. Even if the extent
304 * is not shared we might have a preallocation for it in the COW fork. If so we
305 * use it that rather than trigger a new allocation.
306 */
307static int
308xfs_find_trim_cow_extent(
309 struct xfs_inode *ip,
310 struct xfs_bmbt_irec *imap,
311 bool *shared,
312 bool *found)
313{
314 xfs_fileoff_t offset_fsb = imap->br_startoff;
315 xfs_filblks_t count_fsb = imap->br_blockcount;
316 struct xfs_iext_cursor icur;
317 struct xfs_bmbt_irec got;
318
319 *found = false;
320
321 /*
322 * If we don't find an overlapping extent, trim the range we need to
323 * allocate to fit the hole we found.
324 */
325 if (!xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &got))
326 got.br_startoff = offset_fsb + count_fsb;
327 if (got.br_startoff > offset_fsb) {
328 xfs_trim_extent(imap, imap->br_startoff,
329 got.br_startoff - imap->br_startoff);
330 return xfs_inode_need_cow(ip, imap, shared);
331 }
332
333 *shared = true;
334 if (isnullstartblock(got.br_startblock)) {
335 xfs_trim_extent(imap, got.br_startoff, got.br_blockcount);
336 return 0;
337 }
338
339 /* real extent found - no need to allocate */
340 xfs_trim_extent(&got, offset_fsb, count_fsb);
341 *imap = got;
342 *found = true;
343 return 0;
344}
345
346/* Allocate all CoW reservations covering a range of blocks in a file. */
347int
348xfs_reflink_allocate_cow(
349 struct xfs_inode *ip,
350 struct xfs_bmbt_irec *imap,
351 bool *shared,
352 uint *lockmode,
353 bool convert_now)
354{
355 struct xfs_mount *mp = ip->i_mount;
356 xfs_fileoff_t offset_fsb = imap->br_startoff;
357 xfs_filblks_t count_fsb = imap->br_blockcount;
358 struct xfs_trans *tp;
359 int nimaps, error = 0;
360 bool found;
361 xfs_filblks_t resaligned;
362 xfs_extlen_t resblks = 0;
363
364 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
365 if (!ip->i_cowfp) {
366 ASSERT(!xfs_is_reflink_inode(ip));
367 xfs_ifork_init_cow(ip);
368 }
369
370 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
371 if (error || !*shared)
372 return error;
373 if (found)
374 goto convert;
375
376 resaligned = xfs_aligned_fsb_count(imap->br_startoff,
377 imap->br_blockcount, xfs_get_cowextsz_hint(ip));
378 resblks = XFS_DIOSTRAT_SPACE_RES(mp, resaligned);
379
380 xfs_iunlock(ip, *lockmode);
381 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
382 *lockmode = XFS_ILOCK_EXCL;
383 xfs_ilock(ip, *lockmode);
384
385 if (error)
386 return error;
387
388 error = xfs_qm_dqattach_locked(ip, false);
389 if (error)
390 goto out_trans_cancel;
391
392 /*
393 * Check for an overlapping extent again now that we dropped the ilock.
394 */
395 error = xfs_find_trim_cow_extent(ip, imap, shared, &found);
396 if (error || !*shared)
397 goto out_trans_cancel;
398 if (found) {
399 xfs_trans_cancel(tp);
400 goto convert;
401 }
402
403 error = xfs_trans_reserve_quota_nblks(tp, ip, resblks, 0,
404 XFS_QMOPT_RES_REGBLKS);
405 if (error)
406 goto out_trans_cancel;
407
408 xfs_trans_ijoin(tp, ip, 0);
409
410 /* Allocate the entire reservation as unwritten blocks. */
411 nimaps = 1;
412 error = xfs_bmapi_write(tp, ip, imap->br_startoff, imap->br_blockcount,
413 XFS_BMAPI_COWFORK | XFS_BMAPI_PREALLOC,
414 resblks, imap, &nimaps);
415 if (error)
416 goto out_unreserve;
417
418 xfs_inode_set_cowblocks_tag(ip);
419 error = xfs_trans_commit(tp);
420 if (error)
421 return error;
422
423 /*
424 * Allocation succeeded but the requested range was not even partially
425 * satisfied? Bail out!
426 */
427 if (nimaps == 0)
428 return -ENOSPC;
429convert:
430 xfs_trim_extent(imap, offset_fsb, count_fsb);
431 /*
432 * COW fork extents are supposed to remain unwritten until we're ready
433 * to initiate a disk write. For direct I/O we are going to write the
434 * data and need the conversion, but for buffered writes we're done.
435 */
436 if (!convert_now || imap->br_state == XFS_EXT_NORM)
437 return 0;
438 trace_xfs_reflink_convert_cow(ip, imap);
439 return xfs_reflink_convert_cow_locked(ip, offset_fsb, count_fsb);
440
441out_unreserve:
442 xfs_trans_unreserve_quota_nblks(tp, ip, (long)resblks, 0,
443 XFS_QMOPT_RES_REGBLKS);
444out_trans_cancel:
445 xfs_trans_cancel(tp);
446 return error;
447}
448
449/*
450 * Cancel CoW reservations for some block range of an inode.
451 *
452 * If cancel_real is true this function cancels all COW fork extents for the
453 * inode; if cancel_real is false, real extents are not cleared.
454 *
455 * Caller must have already joined the inode to the current transaction. The
456 * inode will be joined to the transaction returned to the caller.
457 */
458int
459xfs_reflink_cancel_cow_blocks(
460 struct xfs_inode *ip,
461 struct xfs_trans **tpp,
462 xfs_fileoff_t offset_fsb,
463 xfs_fileoff_t end_fsb,
464 bool cancel_real)
465{
466 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
467 struct xfs_bmbt_irec got, del;
468 struct xfs_iext_cursor icur;
469 int error = 0;
470
471 if (!xfs_inode_has_cow_data(ip))
472 return 0;
473 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
474 return 0;
475
476 /* Walk backwards until we're out of the I/O range... */
477 while (got.br_startoff + got.br_blockcount > offset_fsb) {
478 del = got;
479 xfs_trim_extent(&del, offset_fsb, end_fsb - offset_fsb);
480
481 /* Extent delete may have bumped ext forward */
482 if (!del.br_blockcount) {
483 xfs_iext_prev(ifp, &icur);
484 goto next_extent;
485 }
486
487 trace_xfs_reflink_cancel_cow(ip, &del);
488
489 if (isnullstartblock(del.br_startblock)) {
490 error = xfs_bmap_del_extent_delay(ip, XFS_COW_FORK,
491 &icur, &got, &del);
492 if (error)
493 break;
494 } else if (del.br_state == XFS_EXT_UNWRITTEN || cancel_real) {
495 ASSERT((*tpp)->t_firstblock == NULLFSBLOCK);
496
497 /* Free the CoW orphan record. */
498 xfs_refcount_free_cow_extent(*tpp, del.br_startblock,
499 del.br_blockcount);
500
501 xfs_bmap_add_free(*tpp, del.br_startblock,
502 del.br_blockcount, NULL);
503
504 /* Roll the transaction */
505 error = xfs_defer_finish(tpp);
506 if (error)
507 break;
508
509 /* Remove the mapping from the CoW fork. */
510 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
511
512 /* Remove the quota reservation */
513 error = xfs_trans_reserve_quota_nblks(NULL, ip,
514 -(long)del.br_blockcount, 0,
515 XFS_QMOPT_RES_REGBLKS);
516 if (error)
517 break;
518 } else {
519 /* Didn't do anything, push cursor back. */
520 xfs_iext_prev(ifp, &icur);
521 }
522next_extent:
523 if (!xfs_iext_get_extent(ifp, &icur, &got))
524 break;
525 }
526
527 /* clear tag if cow fork is emptied */
528 if (!ifp->if_bytes)
529 xfs_inode_clear_cowblocks_tag(ip);
530 return error;
531}
532
533/*
534 * Cancel CoW reservations for some byte range of an inode.
535 *
536 * If cancel_real is true this function cancels all COW fork extents for the
537 * inode; if cancel_real is false, real extents are not cleared.
538 */
539int
540xfs_reflink_cancel_cow_range(
541 struct xfs_inode *ip,
542 xfs_off_t offset,
543 xfs_off_t count,
544 bool cancel_real)
545{
546 struct xfs_trans *tp;
547 xfs_fileoff_t offset_fsb;
548 xfs_fileoff_t end_fsb;
549 int error;
550
551 trace_xfs_reflink_cancel_cow_range(ip, offset, count);
552 ASSERT(ip->i_cowfp);
553
554 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
555 if (count == NULLFILEOFF)
556 end_fsb = NULLFILEOFF;
557 else
558 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
559
560 /* Start a rolling transaction to remove the mappings */
561 error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_write,
562 0, 0, 0, &tp);
563 if (error)
564 goto out;
565
566 xfs_ilock(ip, XFS_ILOCK_EXCL);
567 xfs_trans_ijoin(tp, ip, 0);
568
569 /* Scrape out the old CoW reservations */
570 error = xfs_reflink_cancel_cow_blocks(ip, &tp, offset_fsb, end_fsb,
571 cancel_real);
572 if (error)
573 goto out_cancel;
574
575 error = xfs_trans_commit(tp);
576
577 xfs_iunlock(ip, XFS_ILOCK_EXCL);
578 return error;
579
580out_cancel:
581 xfs_trans_cancel(tp);
582 xfs_iunlock(ip, XFS_ILOCK_EXCL);
583out:
584 trace_xfs_reflink_cancel_cow_range_error(ip, error, _RET_IP_);
585 return error;
586}
587
588/*
589 * Remap part of the CoW fork into the data fork.
590 *
591 * We aim to remap the range starting at @offset_fsb and ending at @end_fsb
592 * into the data fork; this function will remap what it can (at the end of the
593 * range) and update @end_fsb appropriately. Each remap gets its own
594 * transaction because we can end up merging and splitting bmbt blocks for
595 * every remap operation and we'd like to keep the block reservation
596 * requirements as low as possible.
597 */
598STATIC int
599xfs_reflink_end_cow_extent(
600 struct xfs_inode *ip,
601 xfs_fileoff_t offset_fsb,
602 xfs_fileoff_t *end_fsb)
603{
604 struct xfs_bmbt_irec got, del;
605 struct xfs_iext_cursor icur;
606 struct xfs_mount *mp = ip->i_mount;
607 struct xfs_trans *tp;
608 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
609 xfs_filblks_t rlen;
610 unsigned int resblks;
611 int error;
612
613 /* No COW extents? That's easy! */
614 if (ifp->if_bytes == 0) {
615 *end_fsb = offset_fsb;
616 return 0;
617 }
618
619 resblks = XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK);
620 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0,
621 XFS_TRANS_RESERVE, &tp);
622 if (error)
623 return error;
624
625 /*
626 * Lock the inode. We have to ijoin without automatic unlock because
627 * the lead transaction is the refcountbt record deletion; the data
628 * fork update follows as a deferred log item.
629 */
630 xfs_ilock(ip, XFS_ILOCK_EXCL);
631 xfs_trans_ijoin(tp, ip, 0);
632
633 /*
634 * In case of racing, overlapping AIO writes no COW extents might be
635 * left by the time I/O completes for the loser of the race. In that
636 * case we are done.
637 */
638 if (!xfs_iext_lookup_extent_before(ip, ifp, end_fsb, &icur, &got) ||
639 got.br_startoff + got.br_blockcount <= offset_fsb) {
640 *end_fsb = offset_fsb;
641 goto out_cancel;
642 }
643
644 /*
645 * Structure copy @got into @del, then trim @del to the range that we
646 * were asked to remap. We preserve @got for the eventual CoW fork
647 * deletion; from now on @del represents the mapping that we're
648 * actually remapping.
649 */
650 del = got;
651 xfs_trim_extent(&del, offset_fsb, *end_fsb - offset_fsb);
652
653 ASSERT(del.br_blockcount > 0);
654
655 /*
656 * Only remap real extents that contain data. With AIO, speculative
657 * preallocations can leak into the range we are called upon, and we
658 * need to skip them.
659 */
660 if (!xfs_bmap_is_real_extent(&got)) {
661 *end_fsb = del.br_startoff;
662 goto out_cancel;
663 }
664
665 /* Unmap the old blocks in the data fork. */
666 rlen = del.br_blockcount;
667 error = __xfs_bunmapi(tp, ip, del.br_startoff, &rlen, 0, 1);
668 if (error)
669 goto out_cancel;
670
671 /* Trim the extent to whatever got unmapped. */
672 xfs_trim_extent(&del, del.br_startoff + rlen, del.br_blockcount - rlen);
673 trace_xfs_reflink_cow_remap(ip, &del);
674
675 /* Free the CoW orphan record. */
676 xfs_refcount_free_cow_extent(tp, del.br_startblock, del.br_blockcount);
677
678 /* Map the new blocks into the data fork. */
679 xfs_bmap_map_extent(tp, ip, &del);
680
681 /* Charge this new data fork mapping to the on-disk quota. */
682 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_DELBCOUNT,
683 (long)del.br_blockcount);
684
685 /* Remove the mapping from the CoW fork. */
686 xfs_bmap_del_extent_cow(ip, &icur, &got, &del);
687
688 error = xfs_trans_commit(tp);
689 xfs_iunlock(ip, XFS_ILOCK_EXCL);
690 if (error)
691 return error;
692
693 /* Update the caller about how much progress we made. */
694 *end_fsb = del.br_startoff;
695 return 0;
696
697out_cancel:
698 xfs_trans_cancel(tp);
699 xfs_iunlock(ip, XFS_ILOCK_EXCL);
700 return error;
701}
702
703/*
704 * Remap parts of a file's data fork after a successful CoW.
705 */
706int
707xfs_reflink_end_cow(
708 struct xfs_inode *ip,
709 xfs_off_t offset,
710 xfs_off_t count)
711{
712 xfs_fileoff_t offset_fsb;
713 xfs_fileoff_t end_fsb;
714 int error = 0;
715
716 trace_xfs_reflink_end_cow(ip, offset, count);
717
718 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
719 end_fsb = XFS_B_TO_FSB(ip->i_mount, offset + count);
720
721 /*
722 * Walk backwards until we're out of the I/O range. The loop function
723 * repeatedly cycles the ILOCK to allocate one transaction per remapped
724 * extent.
725 *
726 * If we're being called by writeback then the the pages will still
727 * have PageWriteback set, which prevents races with reflink remapping
728 * and truncate. Reflink remapping prevents races with writeback by
729 * taking the iolock and mmaplock before flushing the pages and
730 * remapping, which means there won't be any further writeback or page
731 * cache dirtying until the reflink completes.
732 *
733 * We should never have two threads issuing writeback for the same file
734 * region. There are also have post-eof checks in the writeback
735 * preparation code so that we don't bother writing out pages that are
736 * about to be truncated.
737 *
738 * If we're being called as part of directio write completion, the dio
739 * count is still elevated, which reflink and truncate will wait for.
740 * Reflink remapping takes the iolock and mmaplock and waits for
741 * pending dio to finish, which should prevent any directio until the
742 * remap completes. Multiple concurrent directio writes to the same
743 * region are handled by end_cow processing only occurring for the
744 * threads which succeed; the outcome of multiple overlapping direct
745 * writes is not well defined anyway.
746 *
747 * It's possible that a buffered write and a direct write could collide
748 * here (the buffered write stumbles in after the dio flushes and
749 * invalidates the page cache and immediately queues writeback), but we
750 * have never supported this 100%. If either disk write succeeds the
751 * blocks will be remapped.
752 */
753 while (end_fsb > offset_fsb && !error)
754 error = xfs_reflink_end_cow_extent(ip, offset_fsb, &end_fsb);
755
756 if (error)
757 trace_xfs_reflink_end_cow_error(ip, error, _RET_IP_);
758 return error;
759}
760
761/*
762 * Free leftover CoW reservations that didn't get cleaned out.
763 */
764int
765xfs_reflink_recover_cow(
766 struct xfs_mount *mp)
767{
768 xfs_agnumber_t agno;
769 int error = 0;
770
771 if (!xfs_sb_version_hasreflink(&mp->m_sb))
772 return 0;
773
774 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
775 error = xfs_refcount_recover_cow_leftovers(mp, agno);
776 if (error)
777 break;
778 }
779
780 return error;
781}
782
783/*
784 * Reflinking (Block) Ranges of Two Files Together
785 *
786 * First, ensure that the reflink flag is set on both inodes. The flag is an
787 * optimization to avoid unnecessary refcount btree lookups in the write path.
788 *
789 * Now we can iteratively remap the range of extents (and holes) in src to the
790 * corresponding ranges in dest. Let drange and srange denote the ranges of
791 * logical blocks in dest and src touched by the reflink operation.
792 *
793 * While the length of drange is greater than zero,
794 * - Read src's bmbt at the start of srange ("imap")
795 * - If imap doesn't exist, make imap appear to start at the end of srange
796 * with zero length.
797 * - If imap starts before srange, advance imap to start at srange.
798 * - If imap goes beyond srange, truncate imap to end at the end of srange.
799 * - Punch (imap start - srange start + imap len) blocks from dest at
800 * offset (drange start).
801 * - If imap points to a real range of pblks,
802 * > Increase the refcount of the imap's pblks
803 * > Map imap's pblks into dest at the offset
804 * (drange start + imap start - srange start)
805 * - Advance drange and srange by (imap start - srange start + imap len)
806 *
807 * Finally, if the reflink made dest longer, update both the in-core and
808 * on-disk file sizes.
809 *
810 * ASCII Art Demonstration:
811 *
812 * Let's say we want to reflink this source file:
813 *
814 * ----SSSSSSS-SSSSS----SSSSSS (src file)
815 * <-------------------->
816 *
817 * into this destination file:
818 *
819 * --DDDDDDDDDDDDDDDDDDD--DDD (dest file)
820 * <-------------------->
821 * '-' means a hole, and 'S' and 'D' are written blocks in the src and dest.
822 * Observe that the range has different logical offsets in either file.
823 *
824 * Consider that the first extent in the source file doesn't line up with our
825 * reflink range. Unmapping and remapping are separate operations, so we can
826 * unmap more blocks from the destination file than we remap.
827 *
828 * ----SSSSSSS-SSSSS----SSSSSS
829 * <------->
830 * --DDDDD---------DDDDD--DDD
831 * <------->
832 *
833 * Now remap the source extent into the destination file:
834 *
835 * ----SSSSSSS-SSSSS----SSSSSS
836 * <------->
837 * --DDDDD--SSSSSSSDDDDD--DDD
838 * <------->
839 *
840 * Do likewise with the second hole and extent in our range. Holes in the
841 * unmap range don't affect our operation.
842 *
843 * ----SSSSSSS-SSSSS----SSSSSS
844 * <---->
845 * --DDDDD--SSSSSSS-SSSSS-DDD
846 * <---->
847 *
848 * Finally, unmap and remap part of the third extent. This will increase the
849 * size of the destination file.
850 *
851 * ----SSSSSSS-SSSSS----SSSSSS
852 * <----->
853 * --DDDDD--SSSSSSS-SSSSS----SSS
854 * <----->
855 *
856 * Once we update the destination file's i_size, we're done.
857 */
858
859/*
860 * Ensure the reflink bit is set in both inodes.
861 */
862STATIC int
863xfs_reflink_set_inode_flag(
864 struct xfs_inode *src,
865 struct xfs_inode *dest)
866{
867 struct xfs_mount *mp = src->i_mount;
868 int error;
869 struct xfs_trans *tp;
870
871 if (xfs_is_reflink_inode(src) && xfs_is_reflink_inode(dest))
872 return 0;
873
874 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
875 if (error)
876 goto out_error;
877
878 /* Lock both files against IO */
879 if (src->i_ino == dest->i_ino)
880 xfs_ilock(src, XFS_ILOCK_EXCL);
881 else
882 xfs_lock_two_inodes(src, XFS_ILOCK_EXCL, dest, XFS_ILOCK_EXCL);
883
884 if (!xfs_is_reflink_inode(src)) {
885 trace_xfs_reflink_set_inode_flag(src);
886 xfs_trans_ijoin(tp, src, XFS_ILOCK_EXCL);
887 src->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
888 xfs_trans_log_inode(tp, src, XFS_ILOG_CORE);
889 xfs_ifork_init_cow(src);
890 } else
891 xfs_iunlock(src, XFS_ILOCK_EXCL);
892
893 if (src->i_ino == dest->i_ino)
894 goto commit_flags;
895
896 if (!xfs_is_reflink_inode(dest)) {
897 trace_xfs_reflink_set_inode_flag(dest);
898 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
899 dest->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
900 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
901 xfs_ifork_init_cow(dest);
902 } else
903 xfs_iunlock(dest, XFS_ILOCK_EXCL);
904
905commit_flags:
906 error = xfs_trans_commit(tp);
907 if (error)
908 goto out_error;
909 return error;
910
911out_error:
912 trace_xfs_reflink_set_inode_flag_error(dest, error, _RET_IP_);
913 return error;
914}
915
916/*
917 * Update destination inode size & cowextsize hint, if necessary.
918 */
919int
920xfs_reflink_update_dest(
921 struct xfs_inode *dest,
922 xfs_off_t newlen,
923 xfs_extlen_t cowextsize,
924 unsigned int remap_flags)
925{
926 struct xfs_mount *mp = dest->i_mount;
927 struct xfs_trans *tp;
928 int error;
929
930 if (newlen <= i_size_read(VFS_I(dest)) && cowextsize == 0)
931 return 0;
932
933 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
934 if (error)
935 goto out_error;
936
937 xfs_ilock(dest, XFS_ILOCK_EXCL);
938 xfs_trans_ijoin(tp, dest, XFS_ILOCK_EXCL);
939
940 if (newlen > i_size_read(VFS_I(dest))) {
941 trace_xfs_reflink_update_inode_size(dest, newlen);
942 i_size_write(VFS_I(dest), newlen);
943 dest->i_d.di_size = newlen;
944 }
945
946 if (cowextsize) {
947 dest->i_d.di_cowextsize = cowextsize;
948 dest->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
949 }
950
951 xfs_trans_log_inode(tp, dest, XFS_ILOG_CORE);
952
953 error = xfs_trans_commit(tp);
954 if (error)
955 goto out_error;
956 return error;
957
958out_error:
959 trace_xfs_reflink_update_inode_size_error(dest, error, _RET_IP_);
960 return error;
961}
962
963/*
964 * Do we have enough reserve in this AG to handle a reflink? The refcount
965 * btree already reserved all the space it needs, but the rmap btree can grow
966 * infinitely, so we won't allow more reflinks when the AG is down to the
967 * btree reserves.
968 */
969static int
970xfs_reflink_ag_has_free_space(
971 struct xfs_mount *mp,
972 xfs_agnumber_t agno)
973{
974 struct xfs_perag *pag;
975 int error = 0;
976
977 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
978 return 0;
979
980 pag = xfs_perag_get(mp, agno);
981 if (xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) ||
982 xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA))
983 error = -ENOSPC;
984 xfs_perag_put(pag);
985 return error;
986}
987
988/*
989 * Unmap a range of blocks from a file, then map other blocks into the hole.
990 * The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
991 * The extent irec is mapped into dest at irec->br_startoff.
992 */
993STATIC int
994xfs_reflink_remap_extent(
995 struct xfs_inode *ip,
996 struct xfs_bmbt_irec *irec,
997 xfs_fileoff_t destoff,
998 xfs_off_t new_isize)
999{
1000 struct xfs_mount *mp = ip->i_mount;
1001 bool real_extent = xfs_bmap_is_real_extent(irec);
1002 struct xfs_trans *tp;
1003 unsigned int resblks;
1004 struct xfs_bmbt_irec uirec;
1005 xfs_filblks_t rlen;
1006 xfs_filblks_t unmap_len;
1007 xfs_off_t newlen;
1008 int error;
1009
1010 unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
1011 trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
1012
1013 /* No reflinking if we're low on space */
1014 if (real_extent) {
1015 error = xfs_reflink_ag_has_free_space(mp,
1016 XFS_FSB_TO_AGNO(mp, irec->br_startblock));
1017 if (error)
1018 goto out;
1019 }
1020
1021 /* Start a rolling transaction to switch the mappings */
1022 resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
1023 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1024 if (error)
1025 goto out;
1026
1027 xfs_ilock(ip, XFS_ILOCK_EXCL);
1028 xfs_trans_ijoin(tp, ip, 0);
1029
1030 /* If we're not just clearing space, then do we have enough quota? */
1031 if (real_extent) {
1032 error = xfs_trans_reserve_quota_nblks(tp, ip,
1033 irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
1034 if (error)
1035 goto out_cancel;
1036 }
1037
1038 trace_xfs_reflink_remap(ip, irec->br_startoff,
1039 irec->br_blockcount, irec->br_startblock);
1040
1041 /* Unmap the old blocks in the data fork. */
1042 rlen = unmap_len;
1043 while (rlen) {
1044 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1045 error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1);
1046 if (error)
1047 goto out_cancel;
1048
1049 /*
1050 * Trim the extent to whatever got unmapped.
1051 * Remember, bunmapi works backwards.
1052 */
1053 uirec.br_startblock = irec->br_startblock + rlen;
1054 uirec.br_startoff = irec->br_startoff + rlen;
1055 uirec.br_blockcount = unmap_len - rlen;
1056 unmap_len = rlen;
1057
1058 /* If this isn't a real mapping, we're done. */
1059 if (!real_extent || uirec.br_blockcount == 0)
1060 goto next_extent;
1061
1062 trace_xfs_reflink_remap(ip, uirec.br_startoff,
1063 uirec.br_blockcount, uirec.br_startblock);
1064
1065 /* Update the refcount tree */
1066 xfs_refcount_increase_extent(tp, &uirec);
1067
1068 /* Map the new blocks into the data fork. */
1069 xfs_bmap_map_extent(tp, ip, &uirec);
1070
1071 /* Update quota accounting. */
1072 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
1073 uirec.br_blockcount);
1074
1075 /* Update dest isize if needed. */
1076 newlen = XFS_FSB_TO_B(mp,
1077 uirec.br_startoff + uirec.br_blockcount);
1078 newlen = min_t(xfs_off_t, newlen, new_isize);
1079 if (newlen > i_size_read(VFS_I(ip))) {
1080 trace_xfs_reflink_update_inode_size(ip, newlen);
1081 i_size_write(VFS_I(ip), newlen);
1082 ip->i_d.di_size = newlen;
1083 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1084 }
1085
1086next_extent:
1087 /* Process all the deferred stuff. */
1088 error = xfs_defer_finish(&tp);
1089 if (error)
1090 goto out_cancel;
1091 }
1092
1093 error = xfs_trans_commit(tp);
1094 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1095 if (error)
1096 goto out;
1097 return 0;
1098
1099out_cancel:
1100 xfs_trans_cancel(tp);
1101 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1102out:
1103 trace_xfs_reflink_remap_extent_error(ip, error, _RET_IP_);
1104 return error;
1105}
1106
1107/*
1108 * Iteratively remap one file's extents (and holes) to another's.
1109 */
1110int
1111xfs_reflink_remap_blocks(
1112 struct xfs_inode *src,
1113 loff_t pos_in,
1114 struct xfs_inode *dest,
1115 loff_t pos_out,
1116 loff_t remap_len,
1117 loff_t *remapped)
1118{
1119 struct xfs_bmbt_irec imap;
1120 xfs_fileoff_t srcoff;
1121 xfs_fileoff_t destoff;
1122 xfs_filblks_t len;
1123 xfs_filblks_t range_len;
1124 xfs_filblks_t remapped_len = 0;
1125 xfs_off_t new_isize = pos_out + remap_len;
1126 int nimaps;
1127 int error = 0;
1128
1129 destoff = XFS_B_TO_FSBT(src->i_mount, pos_out);
1130 srcoff = XFS_B_TO_FSBT(src->i_mount, pos_in);
1131 len = XFS_B_TO_FSB(src->i_mount, remap_len);
1132
1133 /* drange = (destoff, destoff + len); srange = (srcoff, srcoff + len) */
1134 while (len) {
1135 uint lock_mode;
1136
1137 trace_xfs_reflink_remap_blocks_loop(src, srcoff, len,
1138 dest, destoff);
1139
1140 /* Read extent from the source file */
1141 nimaps = 1;
1142 lock_mode = xfs_ilock_data_map_shared(src);
1143 error = xfs_bmapi_read(src, srcoff, len, &imap, &nimaps, 0);
1144 xfs_iunlock(src, lock_mode);
1145 if (error)
1146 break;
1147 ASSERT(nimaps == 1);
1148
1149 trace_xfs_reflink_remap_imap(src, srcoff, len, XFS_DATA_FORK,
1150 &imap);
1151
1152 /* Translate imap into the destination file. */
1153 range_len = imap.br_startoff + imap.br_blockcount - srcoff;
1154 imap.br_startoff += destoff - srcoff;
1155
1156 /* Clear dest from destoff to the end of imap and map it in. */
1157 error = xfs_reflink_remap_extent(dest, &imap, destoff,
1158 new_isize);
1159 if (error)
1160 break;
1161
1162 if (fatal_signal_pending(current)) {
1163 error = -EINTR;
1164 break;
1165 }
1166
1167 /* Advance drange/srange */
1168 srcoff += range_len;
1169 destoff += range_len;
1170 len -= range_len;
1171 remapped_len += range_len;
1172 }
1173
1174 if (error)
1175 trace_xfs_reflink_remap_blocks_error(dest, error, _RET_IP_);
1176 *remapped = min_t(loff_t, remap_len,
1177 XFS_FSB_TO_B(src->i_mount, remapped_len));
1178 return error;
1179}
1180
1181/*
1182 * Grab the exclusive iolock for a data copy from src to dest, making sure to
1183 * abide vfs locking order (lowest pointer value goes first) and breaking the
1184 * layout leases before proceeding. The loop is needed because we cannot call
1185 * the blocking break_layout() with the iolocks held, and therefore have to
1186 * back out both locks.
1187 */
1188static int
1189xfs_iolock_two_inodes_and_break_layout(
1190 struct inode *src,
1191 struct inode *dest)
1192{
1193 int error;
1194
1195 if (src > dest)
1196 swap(src, dest);
1197
1198retry:
1199 /* Wait to break both inodes' layouts before we start locking. */
1200 error = break_layout(src, true);
1201 if (error)
1202 return error;
1203 if (src != dest) {
1204 error = break_layout(dest, true);
1205 if (error)
1206 return error;
1207 }
1208
1209 /* Lock one inode and make sure nobody got in and leased it. */
1210 inode_lock(src);
1211 error = break_layout(src, false);
1212 if (error) {
1213 inode_unlock(src);
1214 if (error == -EWOULDBLOCK)
1215 goto retry;
1216 return error;
1217 }
1218
1219 if (src == dest)
1220 return 0;
1221
1222 /* Lock the other inode and make sure nobody got in and leased it. */
1223 inode_lock_nested(dest, I_MUTEX_NONDIR2);
1224 error = break_layout(dest, false);
1225 if (error) {
1226 inode_unlock(src);
1227 inode_unlock(dest);
1228 if (error == -EWOULDBLOCK)
1229 goto retry;
1230 return error;
1231 }
1232
1233 return 0;
1234}
1235
1236/* Unlock both inodes after they've been prepped for a range clone. */
1237void
1238xfs_reflink_remap_unlock(
1239 struct file *file_in,
1240 struct file *file_out)
1241{
1242 struct inode *inode_in = file_inode(file_in);
1243 struct xfs_inode *src = XFS_I(inode_in);
1244 struct inode *inode_out = file_inode(file_out);
1245 struct xfs_inode *dest = XFS_I(inode_out);
1246 bool same_inode = (inode_in == inode_out);
1247
1248 xfs_iunlock(dest, XFS_MMAPLOCK_EXCL);
1249 if (!same_inode)
1250 xfs_iunlock(src, XFS_MMAPLOCK_EXCL);
1251 inode_unlock(inode_out);
1252 if (!same_inode)
1253 inode_unlock(inode_in);
1254}
1255
1256/*
1257 * If we're reflinking to a point past the destination file's EOF, we must
1258 * zero any speculative post-EOF preallocations that sit between the old EOF
1259 * and the destination file offset.
1260 */
1261static int
1262xfs_reflink_zero_posteof(
1263 struct xfs_inode *ip,
1264 loff_t pos)
1265{
1266 loff_t isize = i_size_read(VFS_I(ip));
1267
1268 if (pos <= isize)
1269 return 0;
1270
1271 trace_xfs_zero_eof(ip, isize, pos - isize);
1272 return iomap_zero_range(VFS_I(ip), isize, pos - isize, NULL,
1273 &xfs_iomap_ops);
1274}
1275
1276/*
1277 * Prepare two files for range cloning. Upon a successful return both inodes
1278 * will have the iolock and mmaplock held, the page cache of the out file will
1279 * be truncated, and any leases on the out file will have been broken. This
1280 * function borrows heavily from xfs_file_aio_write_checks.
1281 *
1282 * The VFS allows partial EOF blocks to "match" for dedupe even though it hasn't
1283 * checked that the bytes beyond EOF physically match. Hence we cannot use the
1284 * EOF block in the source dedupe range because it's not a complete block match,
1285 * hence can introduce a corruption into the file that has it's block replaced.
1286 *
1287 * In similar fashion, the VFS file cloning also allows partial EOF blocks to be
1288 * "block aligned" for the purposes of cloning entire files. However, if the
1289 * source file range includes the EOF block and it lands within the existing EOF
1290 * of the destination file, then we can expose stale data from beyond the source
1291 * file EOF in the destination file.
1292 *
1293 * XFS doesn't support partial block sharing, so in both cases we have check
1294 * these cases ourselves. For dedupe, we can simply round the length to dedupe
1295 * down to the previous whole block and ignore the partial EOF block. While this
1296 * means we can't dedupe the last block of a file, this is an acceptible
1297 * tradeoff for simplicity on implementation.
1298 *
1299 * For cloning, we want to share the partial EOF block if it is also the new EOF
1300 * block of the destination file. If the partial EOF block lies inside the
1301 * existing destination EOF, then we have to abort the clone to avoid exposing
1302 * stale data in the destination file. Hence we reject these clone attempts with
1303 * -EINVAL in this case.
1304 */
1305int
1306xfs_reflink_remap_prep(
1307 struct file *file_in,
1308 loff_t pos_in,
1309 struct file *file_out,
1310 loff_t pos_out,
1311 loff_t *len,
1312 unsigned int remap_flags)
1313{
1314 struct inode *inode_in = file_inode(file_in);
1315 struct xfs_inode *src = XFS_I(inode_in);
1316 struct inode *inode_out = file_inode(file_out);
1317 struct xfs_inode *dest = XFS_I(inode_out);
1318 bool same_inode = (inode_in == inode_out);
1319 ssize_t ret;
1320
1321 /* Lock both files against IO */
1322 ret = xfs_iolock_two_inodes_and_break_layout(inode_in, inode_out);
1323 if (ret)
1324 return ret;
1325 if (same_inode)
1326 xfs_ilock(src, XFS_MMAPLOCK_EXCL);
1327 else
1328 xfs_lock_two_inodes(src, XFS_MMAPLOCK_EXCL, dest,
1329 XFS_MMAPLOCK_EXCL);
1330
1331 /* Check file eligibility and prepare for block sharing. */
1332 ret = -EINVAL;
1333 /* Don't reflink realtime inodes */
1334 if (XFS_IS_REALTIME_INODE(src) || XFS_IS_REALTIME_INODE(dest))
1335 goto out_unlock;
1336
1337 /* Don't share DAX file data for now. */
1338 if (IS_DAX(inode_in) || IS_DAX(inode_out))
1339 goto out_unlock;
1340
1341 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out,
1342 len, remap_flags);
1343 if (ret < 0 || *len == 0)
1344 goto out_unlock;
1345
1346 /* Attach dquots to dest inode before changing block map */
1347 ret = xfs_qm_dqattach(dest);
1348 if (ret)
1349 goto out_unlock;
1350
1351 /*
1352 * Zero existing post-eof speculative preallocations in the destination
1353 * file.
1354 */
1355 ret = xfs_reflink_zero_posteof(dest, pos_out);
1356 if (ret)
1357 goto out_unlock;
1358
1359 /* Set flags and remap blocks. */
1360 ret = xfs_reflink_set_inode_flag(src, dest);
1361 if (ret)
1362 goto out_unlock;
1363
1364 /*
1365 * If pos_out > EOF, we may have dirtied blocks between EOF and
1366 * pos_out. In that case, we need to extend the flush and unmap to cover
1367 * from EOF to the end of the copy length.
1368 */
1369 if (pos_out > XFS_ISIZE(dest)) {
1370 loff_t flen = *len + (pos_out - XFS_ISIZE(dest));
1371 ret = xfs_flush_unmap_range(dest, XFS_ISIZE(dest), flen);
1372 } else {
1373 ret = xfs_flush_unmap_range(dest, pos_out, *len);
1374 }
1375 if (ret)
1376 goto out_unlock;
1377
1378 return 1;
1379out_unlock:
1380 xfs_reflink_remap_unlock(file_in, file_out);
1381 return ret;
1382}
1383
1384/*
1385 * The user wants to preemptively CoW all shared blocks in this file,
1386 * which enables us to turn off the reflink flag. Iterate all
1387 * extents which are not prealloc/delalloc to see which ranges are
1388 * mentioned in the refcount tree, then read those blocks into the
1389 * pagecache, dirty them, fsync them back out, and then we can update
1390 * the inode flag. What happens if we run out of memory? :)
1391 */
1392STATIC int
1393xfs_reflink_dirty_extents(
1394 struct xfs_inode *ip,
1395 xfs_fileoff_t fbno,
1396 xfs_filblks_t end,
1397 xfs_off_t isize)
1398{
1399 struct xfs_mount *mp = ip->i_mount;
1400 xfs_agnumber_t agno;
1401 xfs_agblock_t agbno;
1402 xfs_extlen_t aglen;
1403 xfs_agblock_t rbno;
1404 xfs_extlen_t rlen;
1405 xfs_off_t fpos;
1406 xfs_off_t flen;
1407 struct xfs_bmbt_irec map[2];
1408 int nmaps;
1409 int error = 0;
1410
1411 while (end - fbno > 0) {
1412 nmaps = 1;
1413 /*
1414 * Look for extents in the file. Skip holes, delalloc, or
1415 * unwritten extents; they can't be reflinked.
1416 */
1417 error = xfs_bmapi_read(ip, fbno, end - fbno, map, &nmaps, 0);
1418 if (error)
1419 goto out;
1420 if (nmaps == 0)
1421 break;
1422 if (!xfs_bmap_is_real_extent(&map[0]))
1423 goto next;
1424
1425 map[1] = map[0];
1426 while (map[1].br_blockcount) {
1427 agno = XFS_FSB_TO_AGNO(mp, map[1].br_startblock);
1428 agbno = XFS_FSB_TO_AGBNO(mp, map[1].br_startblock);
1429 aglen = map[1].br_blockcount;
1430
1431 error = xfs_reflink_find_shared(mp, NULL, agno, agbno,
1432 aglen, &rbno, &rlen, true);
1433 if (error)
1434 goto out;
1435 if (rbno == NULLAGBLOCK)
1436 break;
1437
1438 /* Dirty the pages */
1439 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1440 fpos = XFS_FSB_TO_B(mp, map[1].br_startoff +
1441 (rbno - agbno));
1442 flen = XFS_FSB_TO_B(mp, rlen);
1443 if (fpos + flen > isize)
1444 flen = isize - fpos;
1445 error = iomap_file_dirty(VFS_I(ip), fpos, flen,
1446 &xfs_iomap_ops);
1447 xfs_ilock(ip, XFS_ILOCK_EXCL);
1448 if (error)
1449 goto out;
1450
1451 map[1].br_blockcount -= (rbno - agbno + rlen);
1452 map[1].br_startoff += (rbno - agbno + rlen);
1453 map[1].br_startblock += (rbno - agbno + rlen);
1454 }
1455
1456next:
1457 fbno = map[0].br_startoff + map[0].br_blockcount;
1458 }
1459out:
1460 return error;
1461}
1462
1463/* Does this inode need the reflink flag? */
1464int
1465xfs_reflink_inode_has_shared_extents(
1466 struct xfs_trans *tp,
1467 struct xfs_inode *ip,
1468 bool *has_shared)
1469{
1470 struct xfs_bmbt_irec got;
1471 struct xfs_mount *mp = ip->i_mount;
1472 struct xfs_ifork *ifp;
1473 xfs_agnumber_t agno;
1474 xfs_agblock_t agbno;
1475 xfs_extlen_t aglen;
1476 xfs_agblock_t rbno;
1477 xfs_extlen_t rlen;
1478 struct xfs_iext_cursor icur;
1479 bool found;
1480 int error;
1481
1482 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1483 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
1484 error = xfs_iread_extents(tp, ip, XFS_DATA_FORK);
1485 if (error)
1486 return error;
1487 }
1488
1489 *has_shared = false;
1490 found = xfs_iext_lookup_extent(ip, ifp, 0, &icur, &got);
1491 while (found) {
1492 if (isnullstartblock(got.br_startblock) ||
1493 got.br_state != XFS_EXT_NORM)
1494 goto next;
1495 agno = XFS_FSB_TO_AGNO(mp, got.br_startblock);
1496 agbno = XFS_FSB_TO_AGBNO(mp, got.br_startblock);
1497 aglen = got.br_blockcount;
1498
1499 error = xfs_reflink_find_shared(mp, tp, agno, agbno, aglen,
1500 &rbno, &rlen, false);
1501 if (error)
1502 return error;
1503 /* Is there still a shared block here? */
1504 if (rbno != NULLAGBLOCK) {
1505 *has_shared = true;
1506 return 0;
1507 }
1508next:
1509 found = xfs_iext_next_extent(ifp, &icur, &got);
1510 }
1511
1512 return 0;
1513}
1514
1515/*
1516 * Clear the inode reflink flag if there are no shared extents.
1517 *
1518 * The caller is responsible for joining the inode to the transaction passed in.
1519 * The inode will be joined to the transaction that is returned to the caller.
1520 */
1521int
1522xfs_reflink_clear_inode_flag(
1523 struct xfs_inode *ip,
1524 struct xfs_trans **tpp)
1525{
1526 bool needs_flag;
1527 int error = 0;
1528
1529 ASSERT(xfs_is_reflink_inode(ip));
1530
1531 error = xfs_reflink_inode_has_shared_extents(*tpp, ip, &needs_flag);
1532 if (error || needs_flag)
1533 return error;
1534
1535 /*
1536 * We didn't find any shared blocks so turn off the reflink flag.
1537 * First, get rid of any leftover CoW mappings.
1538 */
1539 error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
1540 if (error)
1541 return error;
1542
1543 /* Clear the inode flag. */
1544 trace_xfs_reflink_unset_inode_flag(ip);
1545 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1546 xfs_inode_clear_cowblocks_tag(ip);
1547 xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
1548
1549 return error;
1550}
1551
1552/*
1553 * Clear the inode reflink flag if there are no shared extents and the size
1554 * hasn't changed.
1555 */
1556STATIC int
1557xfs_reflink_try_clear_inode_flag(
1558 struct xfs_inode *ip)
1559{
1560 struct xfs_mount *mp = ip->i_mount;
1561 struct xfs_trans *tp;
1562 int error = 0;
1563
1564 /* Start a rolling transaction to remove the mappings */
1565 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0, &tp);
1566 if (error)
1567 return error;
1568
1569 xfs_ilock(ip, XFS_ILOCK_EXCL);
1570 xfs_trans_ijoin(tp, ip, 0);
1571
1572 error = xfs_reflink_clear_inode_flag(ip, &tp);
1573 if (error)
1574 goto cancel;
1575
1576 error = xfs_trans_commit(tp);
1577 if (error)
1578 goto out;
1579
1580 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1581 return 0;
1582cancel:
1583 xfs_trans_cancel(tp);
1584out:
1585 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1586 return error;
1587}
1588
1589/*
1590 * Pre-COW all shared blocks within a given byte range of a file and turn off
1591 * the reflink flag if we unshare all of the file's blocks.
1592 */
1593int
1594xfs_reflink_unshare(
1595 struct xfs_inode *ip,
1596 xfs_off_t offset,
1597 xfs_off_t len)
1598{
1599 struct xfs_mount *mp = ip->i_mount;
1600 xfs_fileoff_t fbno;
1601 xfs_filblks_t end;
1602 xfs_off_t isize;
1603 int error;
1604
1605 if (!xfs_is_reflink_inode(ip))
1606 return 0;
1607
1608 trace_xfs_reflink_unshare(ip, offset, len);
1609
1610 inode_dio_wait(VFS_I(ip));
1611
1612 /* Try to CoW the selected ranges */
1613 xfs_ilock(ip, XFS_ILOCK_EXCL);
1614 fbno = XFS_B_TO_FSBT(mp, offset);
1615 isize = i_size_read(VFS_I(ip));
1616 end = XFS_B_TO_FSB(mp, offset + len);
1617 error = xfs_reflink_dirty_extents(ip, fbno, end, isize);
1618 if (error)
1619 goto out_unlock;
1620 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1621
1622 /* Wait for the IO to finish */
1623 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1624 if (error)
1625 goto out;
1626
1627 /* Turn off the reflink flag if possible. */
1628 error = xfs_reflink_try_clear_inode_flag(ip);
1629 if (error)
1630 goto out;
1631
1632 return 0;
1633
1634out_unlock:
1635 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1636out:
1637 trace_xfs_reflink_unshare_error(ip, error, _RET_IP_);
1638 return error;
1639}