Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_defer.h"
28#include "xfs_da_format.h"
29#include "xfs_da_btree.h"
30#include "xfs_inode.h"
31#include "xfs_dir2.h"
32#include "xfs_ialloc.h"
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
39#include "xfs_error.h"
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
42#include "xfs_trace.h"
43#include "xfs_icache.h"
44#include "xfs_sysfs.h"
45#include "xfs_rmap_btree.h"
46#include "xfs_refcount_btree.h"
47#include "xfs_reflink.h"
48
49
50static DEFINE_MUTEX(xfs_uuid_table_mutex);
51static int xfs_uuid_table_size;
52static uuid_t *xfs_uuid_table;
53
54void
55xfs_uuid_table_free(void)
56{
57 if (xfs_uuid_table_size == 0)
58 return;
59 kmem_free(xfs_uuid_table);
60 xfs_uuid_table = NULL;
61 xfs_uuid_table_size = 0;
62}
63
64/*
65 * See if the UUID is unique among mounted XFS filesystems.
66 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
67 */
68STATIC int
69xfs_uuid_mount(
70 struct xfs_mount *mp)
71{
72 uuid_t *uuid = &mp->m_sb.sb_uuid;
73 int hole, i;
74
75 if (mp->m_flags & XFS_MOUNT_NOUUID)
76 return 0;
77
78 if (uuid_is_nil(uuid)) {
79 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
80 return -EINVAL;
81 }
82
83 mutex_lock(&xfs_uuid_table_mutex);
84 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
85 if (uuid_is_nil(&xfs_uuid_table[i])) {
86 hole = i;
87 continue;
88 }
89 if (uuid_equal(uuid, &xfs_uuid_table[i]))
90 goto out_duplicate;
91 }
92
93 if (hole < 0) {
94 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
95 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
96 KM_SLEEP);
97 hole = xfs_uuid_table_size++;
98 }
99 xfs_uuid_table[hole] = *uuid;
100 mutex_unlock(&xfs_uuid_table_mutex);
101
102 return 0;
103
104 out_duplicate:
105 mutex_unlock(&xfs_uuid_table_mutex);
106 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
107 return -EINVAL;
108}
109
110STATIC void
111xfs_uuid_unmount(
112 struct xfs_mount *mp)
113{
114 uuid_t *uuid = &mp->m_sb.sb_uuid;
115 int i;
116
117 if (mp->m_flags & XFS_MOUNT_NOUUID)
118 return;
119
120 mutex_lock(&xfs_uuid_table_mutex);
121 for (i = 0; i < xfs_uuid_table_size; i++) {
122 if (uuid_is_nil(&xfs_uuid_table[i]))
123 continue;
124 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
125 continue;
126 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
127 break;
128 }
129 ASSERT(i < xfs_uuid_table_size);
130 mutex_unlock(&xfs_uuid_table_mutex);
131}
132
133
134STATIC void
135__xfs_free_perag(
136 struct rcu_head *head)
137{
138 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139
140 ASSERT(atomic_read(&pag->pag_ref) == 0);
141 kmem_free(pag);
142}
143
144/*
145 * Free up the per-ag resources associated with the mount structure.
146 */
147STATIC void
148xfs_free_perag(
149 xfs_mount_t *mp)
150{
151 xfs_agnumber_t agno;
152 struct xfs_perag *pag;
153
154 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
155 spin_lock(&mp->m_perag_lock);
156 pag = radix_tree_delete(&mp->m_perag_tree, agno);
157 spin_unlock(&mp->m_perag_lock);
158 ASSERT(pag);
159 ASSERT(atomic_read(&pag->pag_ref) == 0);
160 xfs_buf_hash_destroy(pag);
161 call_rcu(&pag->rcu_head, __xfs_free_perag);
162 }
163}
164
165/*
166 * Check size of device based on the (data/realtime) block count.
167 * Note: this check is used by the growfs code as well as mount.
168 */
169int
170xfs_sb_validate_fsb_count(
171 xfs_sb_t *sbp,
172 __uint64_t nblocks)
173{
174 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
175 ASSERT(sbp->sb_blocklog >= BBSHIFT);
176
177 /* Limited by ULONG_MAX of page cache index */
178 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
179 return -EFBIG;
180 return 0;
181}
182
183int
184xfs_initialize_perag(
185 xfs_mount_t *mp,
186 xfs_agnumber_t agcount,
187 xfs_agnumber_t *maxagi)
188{
189 xfs_agnumber_t index;
190 xfs_agnumber_t first_initialised = NULLAGNUMBER;
191 xfs_perag_t *pag;
192 int error = -ENOMEM;
193
194 /*
195 * Walk the current per-ag tree so we don't try to initialise AGs
196 * that already exist (growfs case). Allocate and insert all the
197 * AGs we don't find ready for initialisation.
198 */
199 for (index = 0; index < agcount; index++) {
200 pag = xfs_perag_get(mp, index);
201 if (pag) {
202 xfs_perag_put(pag);
203 continue;
204 }
205
206 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
207 if (!pag)
208 goto out_unwind_new_pags;
209 pag->pag_agno = index;
210 pag->pag_mount = mp;
211 spin_lock_init(&pag->pag_ici_lock);
212 mutex_init(&pag->pag_ici_reclaim_lock);
213 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
214 if (xfs_buf_hash_init(pag))
215 goto out_free_pag;
216
217 if (radix_tree_preload(GFP_NOFS))
218 goto out_hash_destroy;
219
220 spin_lock(&mp->m_perag_lock);
221 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
222 BUG();
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 error = -EEXIST;
226 goto out_hash_destroy;
227 }
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 /* first new pag is fully initialized */
231 if (first_initialised == NULLAGNUMBER)
232 first_initialised = index;
233 }
234
235 index = xfs_set_inode_alloc(mp, agcount);
236
237 if (maxagi)
238 *maxagi = index;
239
240 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
241 return 0;
242
243out_hash_destroy:
244 xfs_buf_hash_destroy(pag);
245out_free_pag:
246 kmem_free(pag);
247out_unwind_new_pags:
248 /* unwind any prior newly initialized pags */
249 for (index = first_initialised; index < agcount; index++) {
250 pag = radix_tree_delete(&mp->m_perag_tree, index);
251 if (!pag)
252 break;
253 xfs_buf_hash_destroy(pag);
254 kmem_free(pag);
255 }
256 return error;
257}
258
259/*
260 * xfs_readsb
261 *
262 * Does the initial read of the superblock.
263 */
264int
265xfs_readsb(
266 struct xfs_mount *mp,
267 int flags)
268{
269 unsigned int sector_size;
270 struct xfs_buf *bp;
271 struct xfs_sb *sbp = &mp->m_sb;
272 int error;
273 int loud = !(flags & XFS_MFSI_QUIET);
274 const struct xfs_buf_ops *buf_ops;
275
276 ASSERT(mp->m_sb_bp == NULL);
277 ASSERT(mp->m_ddev_targp != NULL);
278
279 /*
280 * For the initial read, we must guess at the sector
281 * size based on the block device. It's enough to
282 * get the sb_sectsize out of the superblock and
283 * then reread with the proper length.
284 * We don't verify it yet, because it may not be complete.
285 */
286 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
287 buf_ops = NULL;
288
289 /*
290 * Allocate a (locked) buffer to hold the superblock. This will be kept
291 * around at all times to optimize access to the superblock. Therefore,
292 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
293 * elevated.
294 */
295reread:
296 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
297 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
298 buf_ops);
299 if (error) {
300 if (loud)
301 xfs_warn(mp, "SB validate failed with error %d.", error);
302 /* bad CRC means corrupted metadata */
303 if (error == -EFSBADCRC)
304 error = -EFSCORRUPTED;
305 return error;
306 }
307
308 /*
309 * Initialize the mount structure from the superblock.
310 */
311 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
312
313 /*
314 * If we haven't validated the superblock, do so now before we try
315 * to check the sector size and reread the superblock appropriately.
316 */
317 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
318 if (loud)
319 xfs_warn(mp, "Invalid superblock magic number");
320 error = -EINVAL;
321 goto release_buf;
322 }
323
324 /*
325 * We must be able to do sector-sized and sector-aligned IO.
326 */
327 if (sector_size > sbp->sb_sectsize) {
328 if (loud)
329 xfs_warn(mp, "device supports %u byte sectors (not %u)",
330 sector_size, sbp->sb_sectsize);
331 error = -ENOSYS;
332 goto release_buf;
333 }
334
335 if (buf_ops == NULL) {
336 /*
337 * Re-read the superblock so the buffer is correctly sized,
338 * and properly verified.
339 */
340 xfs_buf_relse(bp);
341 sector_size = sbp->sb_sectsize;
342 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
343 goto reread;
344 }
345
346 xfs_reinit_percpu_counters(mp);
347
348 /* no need to be quiet anymore, so reset the buf ops */
349 bp->b_ops = &xfs_sb_buf_ops;
350
351 mp->m_sb_bp = bp;
352 xfs_buf_unlock(bp);
353 return 0;
354
355release_buf:
356 xfs_buf_relse(bp);
357 return error;
358}
359
360/*
361 * Update alignment values based on mount options and sb values
362 */
363STATIC int
364xfs_update_alignment(xfs_mount_t *mp)
365{
366 xfs_sb_t *sbp = &(mp->m_sb);
367
368 if (mp->m_dalign) {
369 /*
370 * If stripe unit and stripe width are not multiples
371 * of the fs blocksize turn off alignment.
372 */
373 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
374 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
375 xfs_warn(mp,
376 "alignment check failed: sunit/swidth vs. blocksize(%d)",
377 sbp->sb_blocksize);
378 return -EINVAL;
379 } else {
380 /*
381 * Convert the stripe unit and width to FSBs.
382 */
383 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
384 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
385 xfs_warn(mp,
386 "alignment check failed: sunit/swidth vs. agsize(%d)",
387 sbp->sb_agblocks);
388 return -EINVAL;
389 } else if (mp->m_dalign) {
390 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
391 } else {
392 xfs_warn(mp,
393 "alignment check failed: sunit(%d) less than bsize(%d)",
394 mp->m_dalign, sbp->sb_blocksize);
395 return -EINVAL;
396 }
397 }
398
399 /*
400 * Update superblock with new values
401 * and log changes
402 */
403 if (xfs_sb_version_hasdalign(sbp)) {
404 if (sbp->sb_unit != mp->m_dalign) {
405 sbp->sb_unit = mp->m_dalign;
406 mp->m_update_sb = true;
407 }
408 if (sbp->sb_width != mp->m_swidth) {
409 sbp->sb_width = mp->m_swidth;
410 mp->m_update_sb = true;
411 }
412 } else {
413 xfs_warn(mp,
414 "cannot change alignment: superblock does not support data alignment");
415 return -EINVAL;
416 }
417 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
418 xfs_sb_version_hasdalign(&mp->m_sb)) {
419 mp->m_dalign = sbp->sb_unit;
420 mp->m_swidth = sbp->sb_width;
421 }
422
423 return 0;
424}
425
426/*
427 * Set the maximum inode count for this filesystem
428 */
429STATIC void
430xfs_set_maxicount(xfs_mount_t *mp)
431{
432 xfs_sb_t *sbp = &(mp->m_sb);
433 __uint64_t icount;
434
435 if (sbp->sb_imax_pct) {
436 /*
437 * Make sure the maximum inode count is a multiple
438 * of the units we allocate inodes in.
439 */
440 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
441 do_div(icount, 100);
442 do_div(icount, mp->m_ialloc_blks);
443 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
444 sbp->sb_inopblog;
445 } else {
446 mp->m_maxicount = 0;
447 }
448}
449
450/*
451 * Set the default minimum read and write sizes unless
452 * already specified in a mount option.
453 * We use smaller I/O sizes when the file system
454 * is being used for NFS service (wsync mount option).
455 */
456STATIC void
457xfs_set_rw_sizes(xfs_mount_t *mp)
458{
459 xfs_sb_t *sbp = &(mp->m_sb);
460 int readio_log, writeio_log;
461
462 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
463 if (mp->m_flags & XFS_MOUNT_WSYNC) {
464 readio_log = XFS_WSYNC_READIO_LOG;
465 writeio_log = XFS_WSYNC_WRITEIO_LOG;
466 } else {
467 readio_log = XFS_READIO_LOG_LARGE;
468 writeio_log = XFS_WRITEIO_LOG_LARGE;
469 }
470 } else {
471 readio_log = mp->m_readio_log;
472 writeio_log = mp->m_writeio_log;
473 }
474
475 if (sbp->sb_blocklog > readio_log) {
476 mp->m_readio_log = sbp->sb_blocklog;
477 } else {
478 mp->m_readio_log = readio_log;
479 }
480 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
481 if (sbp->sb_blocklog > writeio_log) {
482 mp->m_writeio_log = sbp->sb_blocklog;
483 } else {
484 mp->m_writeio_log = writeio_log;
485 }
486 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
487}
488
489/*
490 * precalculate the low space thresholds for dynamic speculative preallocation.
491 */
492void
493xfs_set_low_space_thresholds(
494 struct xfs_mount *mp)
495{
496 int i;
497
498 for (i = 0; i < XFS_LOWSP_MAX; i++) {
499 __uint64_t space = mp->m_sb.sb_dblocks;
500
501 do_div(space, 100);
502 mp->m_low_space[i] = space * (i + 1);
503 }
504}
505
506
507/*
508 * Set whether we're using inode alignment.
509 */
510STATIC void
511xfs_set_inoalignment(xfs_mount_t *mp)
512{
513 if (xfs_sb_version_hasalign(&mp->m_sb) &&
514 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
515 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
516 else
517 mp->m_inoalign_mask = 0;
518 /*
519 * If we are using stripe alignment, check whether
520 * the stripe unit is a multiple of the inode alignment
521 */
522 if (mp->m_dalign && mp->m_inoalign_mask &&
523 !(mp->m_dalign & mp->m_inoalign_mask))
524 mp->m_sinoalign = mp->m_dalign;
525 else
526 mp->m_sinoalign = 0;
527}
528
529/*
530 * Check that the data (and log if separate) is an ok size.
531 */
532STATIC int
533xfs_check_sizes(
534 struct xfs_mount *mp)
535{
536 struct xfs_buf *bp;
537 xfs_daddr_t d;
538 int error;
539
540 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
541 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
542 xfs_warn(mp, "filesystem size mismatch detected");
543 return -EFBIG;
544 }
545 error = xfs_buf_read_uncached(mp->m_ddev_targp,
546 d - XFS_FSS_TO_BB(mp, 1),
547 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
548 if (error) {
549 xfs_warn(mp, "last sector read failed");
550 return error;
551 }
552 xfs_buf_relse(bp);
553
554 if (mp->m_logdev_targp == mp->m_ddev_targp)
555 return 0;
556
557 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
558 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
559 xfs_warn(mp, "log size mismatch detected");
560 return -EFBIG;
561 }
562 error = xfs_buf_read_uncached(mp->m_logdev_targp,
563 d - XFS_FSB_TO_BB(mp, 1),
564 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
565 if (error) {
566 xfs_warn(mp, "log device read failed");
567 return error;
568 }
569 xfs_buf_relse(bp);
570 return 0;
571}
572
573/*
574 * Clear the quotaflags in memory and in the superblock.
575 */
576int
577xfs_mount_reset_sbqflags(
578 struct xfs_mount *mp)
579{
580 mp->m_qflags = 0;
581
582 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
583 if (mp->m_sb.sb_qflags == 0)
584 return 0;
585 spin_lock(&mp->m_sb_lock);
586 mp->m_sb.sb_qflags = 0;
587 spin_unlock(&mp->m_sb_lock);
588
589 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
590 return 0;
591
592 return xfs_sync_sb(mp, false);
593}
594
595__uint64_t
596xfs_default_resblks(xfs_mount_t *mp)
597{
598 __uint64_t resblks;
599
600 /*
601 * We default to 5% or 8192 fsbs of space reserved, whichever is
602 * smaller. This is intended to cover concurrent allocation
603 * transactions when we initially hit enospc. These each require a 4
604 * block reservation. Hence by default we cover roughly 2000 concurrent
605 * allocation reservations.
606 */
607 resblks = mp->m_sb.sb_dblocks;
608 do_div(resblks, 20);
609 resblks = min_t(__uint64_t, resblks, 8192);
610 return resblks;
611}
612
613/*
614 * This function does the following on an initial mount of a file system:
615 * - reads the superblock from disk and init the mount struct
616 * - if we're a 32-bit kernel, do a size check on the superblock
617 * so we don't mount terabyte filesystems
618 * - init mount struct realtime fields
619 * - allocate inode hash table for fs
620 * - init directory manager
621 * - perform recovery and init the log manager
622 */
623int
624xfs_mountfs(
625 struct xfs_mount *mp)
626{
627 struct xfs_sb *sbp = &(mp->m_sb);
628 struct xfs_inode *rip;
629 __uint64_t resblks;
630 uint quotamount = 0;
631 uint quotaflags = 0;
632 int error = 0;
633
634 xfs_sb_mount_common(mp, sbp);
635
636 /*
637 * Check for a mismatched features2 values. Older kernels read & wrote
638 * into the wrong sb offset for sb_features2 on some platforms due to
639 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
640 * which made older superblock reading/writing routines swap it as a
641 * 64-bit value.
642 *
643 * For backwards compatibility, we make both slots equal.
644 *
645 * If we detect a mismatched field, we OR the set bits into the existing
646 * features2 field in case it has already been modified; we don't want
647 * to lose any features. We then update the bad location with the ORed
648 * value so that older kernels will see any features2 flags. The
649 * superblock writeback code ensures the new sb_features2 is copied to
650 * sb_bad_features2 before it is logged or written to disk.
651 */
652 if (xfs_sb_has_mismatched_features2(sbp)) {
653 xfs_warn(mp, "correcting sb_features alignment problem");
654 sbp->sb_features2 |= sbp->sb_bad_features2;
655 mp->m_update_sb = true;
656
657 /*
658 * Re-check for ATTR2 in case it was found in bad_features2
659 * slot.
660 */
661 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
662 !(mp->m_flags & XFS_MOUNT_NOATTR2))
663 mp->m_flags |= XFS_MOUNT_ATTR2;
664 }
665
666 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
667 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
668 xfs_sb_version_removeattr2(&mp->m_sb);
669 mp->m_update_sb = true;
670
671 /* update sb_versionnum for the clearing of the morebits */
672 if (!sbp->sb_features2)
673 mp->m_update_sb = true;
674 }
675
676 /* always use v2 inodes by default now */
677 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
678 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
679 mp->m_update_sb = true;
680 }
681
682 /*
683 * Check if sb_agblocks is aligned at stripe boundary
684 * If sb_agblocks is NOT aligned turn off m_dalign since
685 * allocator alignment is within an ag, therefore ag has
686 * to be aligned at stripe boundary.
687 */
688 error = xfs_update_alignment(mp);
689 if (error)
690 goto out;
691
692 xfs_alloc_compute_maxlevels(mp);
693 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
694 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
695 xfs_ialloc_compute_maxlevels(mp);
696 xfs_rmapbt_compute_maxlevels(mp);
697 xfs_refcountbt_compute_maxlevels(mp);
698
699 xfs_set_maxicount(mp);
700
701 /* enable fail_at_unmount as default */
702 mp->m_fail_unmount = 1;
703
704 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
705 if (error)
706 goto out;
707
708 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
709 &mp->m_kobj, "stats");
710 if (error)
711 goto out_remove_sysfs;
712
713 error = xfs_error_sysfs_init(mp);
714 if (error)
715 goto out_del_stats;
716
717
718 error = xfs_uuid_mount(mp);
719 if (error)
720 goto out_remove_error_sysfs;
721
722 /*
723 * Set the minimum read and write sizes
724 */
725 xfs_set_rw_sizes(mp);
726
727 /* set the low space thresholds for dynamic preallocation */
728 xfs_set_low_space_thresholds(mp);
729
730 /*
731 * Set the inode cluster size.
732 * This may still be overridden by the file system
733 * block size if it is larger than the chosen cluster size.
734 *
735 * For v5 filesystems, scale the cluster size with the inode size to
736 * keep a constant ratio of inode per cluster buffer, but only if mkfs
737 * has set the inode alignment value appropriately for larger cluster
738 * sizes.
739 */
740 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
741 if (xfs_sb_version_hascrc(&mp->m_sb)) {
742 int new_size = mp->m_inode_cluster_size;
743
744 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
745 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
746 mp->m_inode_cluster_size = new_size;
747 }
748
749 /*
750 * If enabled, sparse inode chunk alignment is expected to match the
751 * cluster size. Full inode chunk alignment must match the chunk size,
752 * but that is checked on sb read verification...
753 */
754 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
755 mp->m_sb.sb_spino_align !=
756 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
757 xfs_warn(mp,
758 "Sparse inode block alignment (%u) must match cluster size (%llu).",
759 mp->m_sb.sb_spino_align,
760 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
761 error = -EINVAL;
762 goto out_remove_uuid;
763 }
764
765 /*
766 * Set inode alignment fields
767 */
768 xfs_set_inoalignment(mp);
769
770 /*
771 * Check that the data (and log if separate) is an ok size.
772 */
773 error = xfs_check_sizes(mp);
774 if (error)
775 goto out_remove_uuid;
776
777 /*
778 * Initialize realtime fields in the mount structure
779 */
780 error = xfs_rtmount_init(mp);
781 if (error) {
782 xfs_warn(mp, "RT mount failed");
783 goto out_remove_uuid;
784 }
785
786 /*
787 * Copies the low order bits of the timestamp and the randomly
788 * set "sequence" number out of a UUID.
789 */
790 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
791
792 mp->m_dmevmask = 0; /* not persistent; set after each mount */
793
794 error = xfs_da_mount(mp);
795 if (error) {
796 xfs_warn(mp, "Failed dir/attr init: %d", error);
797 goto out_remove_uuid;
798 }
799
800 /*
801 * Initialize the precomputed transaction reservations values.
802 */
803 xfs_trans_init(mp);
804
805 /*
806 * Allocate and initialize the per-ag data.
807 */
808 spin_lock_init(&mp->m_perag_lock);
809 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
810 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
811 if (error) {
812 xfs_warn(mp, "Failed per-ag init: %d", error);
813 goto out_free_dir;
814 }
815
816 if (!sbp->sb_logblocks) {
817 xfs_warn(mp, "no log defined");
818 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
819 error = -EFSCORRUPTED;
820 goto out_free_perag;
821 }
822
823 /*
824 * Log's mount-time initialization. The first part of recovery can place
825 * some items on the AIL, to be handled when recovery is finished or
826 * cancelled.
827 */
828 error = xfs_log_mount(mp, mp->m_logdev_targp,
829 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
830 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
831 if (error) {
832 xfs_warn(mp, "log mount failed");
833 goto out_fail_wait;
834 }
835
836 /*
837 * Now the log is mounted, we know if it was an unclean shutdown or
838 * not. If it was, with the first phase of recovery has completed, we
839 * have consistent AG blocks on disk. We have not recovered EFIs yet,
840 * but they are recovered transactionally in the second recovery phase
841 * later.
842 *
843 * Hence we can safely re-initialise incore superblock counters from
844 * the per-ag data. These may not be correct if the filesystem was not
845 * cleanly unmounted, so we need to wait for recovery to finish before
846 * doing this.
847 *
848 * If the filesystem was cleanly unmounted, then we can trust the
849 * values in the superblock to be correct and we don't need to do
850 * anything here.
851 *
852 * If we are currently making the filesystem, the initialisation will
853 * fail as the perag data is in an undefined state.
854 */
855 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
856 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
857 !mp->m_sb.sb_inprogress) {
858 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
859 if (error)
860 goto out_log_dealloc;
861 }
862
863 /*
864 * Get and sanity-check the root inode.
865 * Save the pointer to it in the mount structure.
866 */
867 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
868 if (error) {
869 xfs_warn(mp, "failed to read root inode");
870 goto out_log_dealloc;
871 }
872
873 ASSERT(rip != NULL);
874
875 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
876 xfs_warn(mp, "corrupted root inode %llu: not a directory",
877 (unsigned long long)rip->i_ino);
878 xfs_iunlock(rip, XFS_ILOCK_EXCL);
879 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
880 mp);
881 error = -EFSCORRUPTED;
882 goto out_rele_rip;
883 }
884 mp->m_rootip = rip; /* save it */
885
886 xfs_iunlock(rip, XFS_ILOCK_EXCL);
887
888 /*
889 * Initialize realtime inode pointers in the mount structure
890 */
891 error = xfs_rtmount_inodes(mp);
892 if (error) {
893 /*
894 * Free up the root inode.
895 */
896 xfs_warn(mp, "failed to read RT inodes");
897 goto out_rele_rip;
898 }
899
900 /*
901 * If this is a read-only mount defer the superblock updates until
902 * the next remount into writeable mode. Otherwise we would never
903 * perform the update e.g. for the root filesystem.
904 */
905 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
906 error = xfs_sync_sb(mp, false);
907 if (error) {
908 xfs_warn(mp, "failed to write sb changes");
909 goto out_rtunmount;
910 }
911 }
912
913 /*
914 * Initialise the XFS quota management subsystem for this mount
915 */
916 if (XFS_IS_QUOTA_RUNNING(mp)) {
917 error = xfs_qm_newmount(mp, "amount, "aflags);
918 if (error)
919 goto out_rtunmount;
920 } else {
921 ASSERT(!XFS_IS_QUOTA_ON(mp));
922
923 /*
924 * If a file system had quotas running earlier, but decided to
925 * mount without -o uquota/pquota/gquota options, revoke the
926 * quotachecked license.
927 */
928 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
929 xfs_notice(mp, "resetting quota flags");
930 error = xfs_mount_reset_sbqflags(mp);
931 if (error)
932 goto out_rtunmount;
933 }
934 }
935
936 /*
937 * During the second phase of log recovery, we need iget and
938 * iput to behave like they do for an active filesystem.
939 * xfs_fs_drop_inode needs to be able to prevent the deletion
940 * of inodes before we're done replaying log items on those
941 * inodes.
942 */
943 mp->m_super->s_flags |= MS_ACTIVE;
944
945 /*
946 * Finish recovering the file system. This part needed to be delayed
947 * until after the root and real-time bitmap inodes were consistently
948 * read in.
949 */
950 error = xfs_log_mount_finish(mp);
951 if (error) {
952 xfs_warn(mp, "log mount finish failed");
953 goto out_rtunmount;
954 }
955
956 /*
957 * Now the log is fully replayed, we can transition to full read-only
958 * mode for read-only mounts. This will sync all the metadata and clean
959 * the log so that the recovery we just performed does not have to be
960 * replayed again on the next mount.
961 *
962 * We use the same quiesce mechanism as the rw->ro remount, as they are
963 * semantically identical operations.
964 */
965 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
966 XFS_MOUNT_RDONLY) {
967 xfs_quiesce_attr(mp);
968 }
969
970 /*
971 * Complete the quota initialisation, post-log-replay component.
972 */
973 if (quotamount) {
974 ASSERT(mp->m_qflags == 0);
975 mp->m_qflags = quotaflags;
976
977 xfs_qm_mount_quotas(mp);
978 }
979
980 /*
981 * Now we are mounted, reserve a small amount of unused space for
982 * privileged transactions. This is needed so that transaction
983 * space required for critical operations can dip into this pool
984 * when at ENOSPC. This is needed for operations like create with
985 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
986 * are not allowed to use this reserved space.
987 *
988 * This may drive us straight to ENOSPC on mount, but that implies
989 * we were already there on the last unmount. Warn if this occurs.
990 */
991 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
992 resblks = xfs_default_resblks(mp);
993 error = xfs_reserve_blocks(mp, &resblks, NULL);
994 if (error)
995 xfs_warn(mp,
996 "Unable to allocate reserve blocks. Continuing without reserve pool.");
997
998 /* Recover any CoW blocks that never got remapped. */
999 error = xfs_reflink_recover_cow(mp);
1000 if (error) {
1001 xfs_err(mp,
1002 "Error %d recovering leftover CoW allocations.", error);
1003 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1004 goto out_quota;
1005 }
1006
1007 /* Reserve AG blocks for future btree expansion. */
1008 error = xfs_fs_reserve_ag_blocks(mp);
1009 if (error && error != -ENOSPC)
1010 goto out_agresv;
1011 }
1012
1013 return 0;
1014
1015 out_agresv:
1016 xfs_fs_unreserve_ag_blocks(mp);
1017 out_quota:
1018 xfs_qm_unmount_quotas(mp);
1019 out_rtunmount:
1020 mp->m_super->s_flags &= ~MS_ACTIVE;
1021 xfs_rtunmount_inodes(mp);
1022 out_rele_rip:
1023 IRELE(rip);
1024 cancel_delayed_work_sync(&mp->m_reclaim_work);
1025 xfs_reclaim_inodes(mp, SYNC_WAIT);
1026 out_log_dealloc:
1027 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1028 xfs_log_mount_cancel(mp);
1029 out_fail_wait:
1030 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1031 xfs_wait_buftarg(mp->m_logdev_targp);
1032 xfs_wait_buftarg(mp->m_ddev_targp);
1033 out_free_perag:
1034 xfs_free_perag(mp);
1035 out_free_dir:
1036 xfs_da_unmount(mp);
1037 out_remove_uuid:
1038 xfs_uuid_unmount(mp);
1039 out_remove_error_sysfs:
1040 xfs_error_sysfs_del(mp);
1041 out_del_stats:
1042 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1043 out_remove_sysfs:
1044 xfs_sysfs_del(&mp->m_kobj);
1045 out:
1046 return error;
1047}
1048
1049/*
1050 * This flushes out the inodes,dquots and the superblock, unmounts the
1051 * log and makes sure that incore structures are freed.
1052 */
1053void
1054xfs_unmountfs(
1055 struct xfs_mount *mp)
1056{
1057 __uint64_t resblks;
1058 int error;
1059
1060 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1061 cancel_delayed_work_sync(&mp->m_cowblocks_work);
1062
1063 xfs_fs_unreserve_ag_blocks(mp);
1064 xfs_qm_unmount_quotas(mp);
1065 xfs_rtunmount_inodes(mp);
1066 IRELE(mp->m_rootip);
1067
1068 /*
1069 * We can potentially deadlock here if we have an inode cluster
1070 * that has been freed has its buffer still pinned in memory because
1071 * the transaction is still sitting in a iclog. The stale inodes
1072 * on that buffer will have their flush locks held until the
1073 * transaction hits the disk and the callbacks run. the inode
1074 * flush takes the flush lock unconditionally and with nothing to
1075 * push out the iclog we will never get that unlocked. hence we
1076 * need to force the log first.
1077 */
1078 xfs_log_force(mp, XFS_LOG_SYNC);
1079
1080 /*
1081 * We now need to tell the world we are unmounting. This will allow
1082 * us to detect that the filesystem is going away and we should error
1083 * out anything that we have been retrying in the background. This will
1084 * prevent neverending retries in AIL pushing from hanging the unmount.
1085 */
1086 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1087
1088 /*
1089 * Flush all pending changes from the AIL.
1090 */
1091 xfs_ail_push_all_sync(mp->m_ail);
1092
1093 /*
1094 * And reclaim all inodes. At this point there should be no dirty
1095 * inodes and none should be pinned or locked, but use synchronous
1096 * reclaim just to be sure. We can stop background inode reclaim
1097 * here as well if it is still running.
1098 */
1099 cancel_delayed_work_sync(&mp->m_reclaim_work);
1100 xfs_reclaim_inodes(mp, SYNC_WAIT);
1101
1102 xfs_qm_unmount(mp);
1103
1104 /*
1105 * Unreserve any blocks we have so that when we unmount we don't account
1106 * the reserved free space as used. This is really only necessary for
1107 * lazy superblock counting because it trusts the incore superblock
1108 * counters to be absolutely correct on clean unmount.
1109 *
1110 * We don't bother correcting this elsewhere for lazy superblock
1111 * counting because on mount of an unclean filesystem we reconstruct the
1112 * correct counter value and this is irrelevant.
1113 *
1114 * For non-lazy counter filesystems, this doesn't matter at all because
1115 * we only every apply deltas to the superblock and hence the incore
1116 * value does not matter....
1117 */
1118 resblks = 0;
1119 error = xfs_reserve_blocks(mp, &resblks, NULL);
1120 if (error)
1121 xfs_warn(mp, "Unable to free reserved block pool. "
1122 "Freespace may not be correct on next mount.");
1123
1124 error = xfs_log_sbcount(mp);
1125 if (error)
1126 xfs_warn(mp, "Unable to update superblock counters. "
1127 "Freespace may not be correct on next mount.");
1128
1129
1130 xfs_log_unmount(mp);
1131 xfs_da_unmount(mp);
1132 xfs_uuid_unmount(mp);
1133
1134#if defined(DEBUG)
1135 xfs_errortag_clearall(mp, 0);
1136#endif
1137 xfs_free_perag(mp);
1138
1139 xfs_error_sysfs_del(mp);
1140 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1141 xfs_sysfs_del(&mp->m_kobj);
1142}
1143
1144/*
1145 * Determine whether modifications can proceed. The caller specifies the minimum
1146 * freeze level for which modifications should not be allowed. This allows
1147 * certain operations to proceed while the freeze sequence is in progress, if
1148 * necessary.
1149 */
1150bool
1151xfs_fs_writable(
1152 struct xfs_mount *mp,
1153 int level)
1154{
1155 ASSERT(level > SB_UNFROZEN);
1156 if ((mp->m_super->s_writers.frozen >= level) ||
1157 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1158 return false;
1159
1160 return true;
1161}
1162
1163/*
1164 * xfs_log_sbcount
1165 *
1166 * Sync the superblock counters to disk.
1167 *
1168 * Note this code can be called during the process of freezing, so we use the
1169 * transaction allocator that does not block when the transaction subsystem is
1170 * in its frozen state.
1171 */
1172int
1173xfs_log_sbcount(xfs_mount_t *mp)
1174{
1175 /* allow this to proceed during the freeze sequence... */
1176 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1177 return 0;
1178
1179 /*
1180 * we don't need to do this if we are updating the superblock
1181 * counters on every modification.
1182 */
1183 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1184 return 0;
1185
1186 return xfs_sync_sb(mp, true);
1187}
1188
1189/*
1190 * Deltas for the inode count are +/-64, hence we use a large batch size
1191 * of 128 so we don't need to take the counter lock on every update.
1192 */
1193#define XFS_ICOUNT_BATCH 128
1194int
1195xfs_mod_icount(
1196 struct xfs_mount *mp,
1197 int64_t delta)
1198{
1199 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1200 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1201 ASSERT(0);
1202 percpu_counter_add(&mp->m_icount, -delta);
1203 return -EINVAL;
1204 }
1205 return 0;
1206}
1207
1208int
1209xfs_mod_ifree(
1210 struct xfs_mount *mp,
1211 int64_t delta)
1212{
1213 percpu_counter_add(&mp->m_ifree, delta);
1214 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1215 ASSERT(0);
1216 percpu_counter_add(&mp->m_ifree, -delta);
1217 return -EINVAL;
1218 }
1219 return 0;
1220}
1221
1222/*
1223 * Deltas for the block count can vary from 1 to very large, but lock contention
1224 * only occurs on frequent small block count updates such as in the delayed
1225 * allocation path for buffered writes (page a time updates). Hence we set
1226 * a large batch count (1024) to minimise global counter updates except when
1227 * we get near to ENOSPC and we have to be very accurate with our updates.
1228 */
1229#define XFS_FDBLOCKS_BATCH 1024
1230int
1231xfs_mod_fdblocks(
1232 struct xfs_mount *mp,
1233 int64_t delta,
1234 bool rsvd)
1235{
1236 int64_t lcounter;
1237 long long res_used;
1238 s32 batch;
1239
1240 if (delta > 0) {
1241 /*
1242 * If the reserve pool is depleted, put blocks back into it
1243 * first. Most of the time the pool is full.
1244 */
1245 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1246 percpu_counter_add(&mp->m_fdblocks, delta);
1247 return 0;
1248 }
1249
1250 spin_lock(&mp->m_sb_lock);
1251 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1252
1253 if (res_used > delta) {
1254 mp->m_resblks_avail += delta;
1255 } else {
1256 delta -= res_used;
1257 mp->m_resblks_avail = mp->m_resblks;
1258 percpu_counter_add(&mp->m_fdblocks, delta);
1259 }
1260 spin_unlock(&mp->m_sb_lock);
1261 return 0;
1262 }
1263
1264 /*
1265 * Taking blocks away, need to be more accurate the closer we
1266 * are to zero.
1267 *
1268 * If the counter has a value of less than 2 * max batch size,
1269 * then make everything serialise as we are real close to
1270 * ENOSPC.
1271 */
1272 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1273 XFS_FDBLOCKS_BATCH) < 0)
1274 batch = 1;
1275 else
1276 batch = XFS_FDBLOCKS_BATCH;
1277
1278 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
1279 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1280 XFS_FDBLOCKS_BATCH) >= 0) {
1281 /* we had space! */
1282 return 0;
1283 }
1284
1285 /*
1286 * lock up the sb for dipping into reserves before releasing the space
1287 * that took us to ENOSPC.
1288 */
1289 spin_lock(&mp->m_sb_lock);
1290 percpu_counter_add(&mp->m_fdblocks, -delta);
1291 if (!rsvd)
1292 goto fdblocks_enospc;
1293
1294 lcounter = (long long)mp->m_resblks_avail + delta;
1295 if (lcounter >= 0) {
1296 mp->m_resblks_avail = lcounter;
1297 spin_unlock(&mp->m_sb_lock);
1298 return 0;
1299 }
1300 printk_once(KERN_WARNING
1301 "Filesystem \"%s\": reserve blocks depleted! "
1302 "Consider increasing reserve pool size.",
1303 mp->m_fsname);
1304fdblocks_enospc:
1305 spin_unlock(&mp->m_sb_lock);
1306 return -ENOSPC;
1307}
1308
1309int
1310xfs_mod_frextents(
1311 struct xfs_mount *mp,
1312 int64_t delta)
1313{
1314 int64_t lcounter;
1315 int ret = 0;
1316
1317 spin_lock(&mp->m_sb_lock);
1318 lcounter = mp->m_sb.sb_frextents + delta;
1319 if (lcounter < 0)
1320 ret = -ENOSPC;
1321 else
1322 mp->m_sb.sb_frextents = lcounter;
1323 spin_unlock(&mp->m_sb_lock);
1324 return ret;
1325}
1326
1327/*
1328 * xfs_getsb() is called to obtain the buffer for the superblock.
1329 * The buffer is returned locked and read in from disk.
1330 * The buffer should be released with a call to xfs_brelse().
1331 *
1332 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1333 * the superblock buffer if it can be locked without sleeping.
1334 * If it can't then we'll return NULL.
1335 */
1336struct xfs_buf *
1337xfs_getsb(
1338 struct xfs_mount *mp,
1339 int flags)
1340{
1341 struct xfs_buf *bp = mp->m_sb_bp;
1342
1343 if (!xfs_buf_trylock(bp)) {
1344 if (flags & XBF_TRYLOCK)
1345 return NULL;
1346 xfs_buf_lock(bp);
1347 }
1348
1349 xfs_buf_hold(bp);
1350 ASSERT(bp->b_flags & XBF_DONE);
1351 return bp;
1352}
1353
1354/*
1355 * Used to free the superblock along various error paths.
1356 */
1357void
1358xfs_freesb(
1359 struct xfs_mount *mp)
1360{
1361 struct xfs_buf *bp = mp->m_sb_bp;
1362
1363 xfs_buf_lock(bp);
1364 mp->m_sb_bp = NULL;
1365 xfs_buf_relse(bp);
1366}
1367
1368/*
1369 * If the underlying (data/log/rt) device is readonly, there are some
1370 * operations that cannot proceed.
1371 */
1372int
1373xfs_dev_is_read_only(
1374 struct xfs_mount *mp,
1375 char *message)
1376{
1377 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1378 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1379 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1380 xfs_notice(mp, "%s required on read-only device.", message);
1381 xfs_notice(mp, "write access unavailable, cannot proceed.");
1382 return -EROFS;
1383 }
1384 return 0;
1385}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_error.h"
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
27#include "xfs_icache.h"
28#include "xfs_sysfs.h"
29#include "xfs_rmap_btree.h"
30#include "xfs_refcount_btree.h"
31#include "xfs_reflink.h"
32#include "xfs_extent_busy.h"
33#include "xfs_health.h"
34
35
36static DEFINE_MUTEX(xfs_uuid_table_mutex);
37static int xfs_uuid_table_size;
38static uuid_t *xfs_uuid_table;
39
40void
41xfs_uuid_table_free(void)
42{
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48}
49
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56 struct xfs_mount *mp)
57{
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
61 /* Publish UUID in struct super_block */
62 uuid_copy(&mp->m_super->s_uuid, uuid);
63
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
69 return -EINVAL;
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74 if (uuid_is_null(&xfs_uuid_table[i])) {
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85 0);
86 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96 return -EINVAL;
97}
98
99STATIC void
100xfs_uuid_unmount(
101 struct xfs_mount *mp)
102{
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
111 if (uuid_is_null(&xfs_uuid_table[i]))
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120}
121
122
123STATIC void
124__xfs_free_perag(
125 struct rcu_head *head)
126{
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
131}
132
133/*
134 * Free up the per-ag resources associated with the mount structure.
135 */
136STATIC void
137xfs_free_perag(
138 xfs_mount_t *mp)
139{
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
142
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
147 ASSERT(pag);
148 ASSERT(atomic_read(&pag->pag_ref) == 0);
149 xfs_iunlink_destroy(pag);
150 xfs_buf_hash_destroy(pag);
151 mutex_destroy(&pag->pag_ici_reclaim_lock);
152 call_rcu(&pag->rcu_head, __xfs_free_perag);
153 }
154}
155
156/*
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
159 */
160int
161xfs_sb_validate_fsb_count(
162 xfs_sb_t *sbp,
163 uint64_t nblocks)
164{
165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 ASSERT(sbp->sb_blocklog >= BBSHIFT);
167
168 /* Limited by ULONG_MAX of page cache index */
169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
170 return -EFBIG;
171 return 0;
172}
173
174int
175xfs_initialize_perag(
176 xfs_mount_t *mp,
177 xfs_agnumber_t agcount,
178 xfs_agnumber_t *maxagi)
179{
180 xfs_agnumber_t index;
181 xfs_agnumber_t first_initialised = NULLAGNUMBER;
182 xfs_perag_t *pag;
183 int error = -ENOMEM;
184
185 /*
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
189 */
190 for (index = 0; index < agcount; index++) {
191 pag = xfs_perag_get(mp, index);
192 if (pag) {
193 xfs_perag_put(pag);
194 continue;
195 }
196
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag)
199 goto out_unwind_new_pags;
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
202 spin_lock_init(&pag->pag_ici_lock);
203 mutex_init(&pag->pag_ici_reclaim_lock);
204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
205 if (xfs_buf_hash_init(pag))
206 goto out_free_pag;
207 init_waitqueue_head(&pag->pagb_wait);
208 spin_lock_init(&pag->pagb_lock);
209 pag->pagb_count = 0;
210 pag->pagb_tree = RB_ROOT;
211
212 if (radix_tree_preload(GFP_NOFS))
213 goto out_hash_destroy;
214
215 spin_lock(&mp->m_perag_lock);
216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
217 WARN_ON_ONCE(1);
218 spin_unlock(&mp->m_perag_lock);
219 radix_tree_preload_end();
220 error = -EEXIST;
221 goto out_hash_destroy;
222 }
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
225 /* first new pag is fully initialized */
226 if (first_initialised == NULLAGNUMBER)
227 first_initialised = index;
228 error = xfs_iunlink_init(pag);
229 if (error)
230 goto out_hash_destroy;
231 spin_lock_init(&pag->pag_state_lock);
232 }
233
234 index = xfs_set_inode_alloc(mp, agcount);
235
236 if (maxagi)
237 *maxagi = index;
238
239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
240 return 0;
241
242out_hash_destroy:
243 xfs_buf_hash_destroy(pag);
244out_free_pag:
245 mutex_destroy(&pag->pag_ici_reclaim_lock);
246 kmem_free(pag);
247out_unwind_new_pags:
248 /* unwind any prior newly initialized pags */
249 for (index = first_initialised; index < agcount; index++) {
250 pag = radix_tree_delete(&mp->m_perag_tree, index);
251 if (!pag)
252 break;
253 xfs_buf_hash_destroy(pag);
254 xfs_iunlink_destroy(pag);
255 mutex_destroy(&pag->pag_ici_reclaim_lock);
256 kmem_free(pag);
257 }
258 return error;
259}
260
261/*
262 * xfs_readsb
263 *
264 * Does the initial read of the superblock.
265 */
266int
267xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
270{
271 unsigned int sector_size;
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
274 int error;
275 int loud = !(flags & XFS_MFSI_QUIET);
276 const struct xfs_buf_ops *buf_ops;
277
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
280
281 /*
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
287 */
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
290
291 /*
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
296 */
297reread:
298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
301 if (error) {
302 if (loud)
303 xfs_warn(mp, "SB validate failed with error %d.", error);
304 /* bad CRC means corrupted metadata */
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
307 return error;
308 }
309
310 /*
311 * Initialize the mount structure from the superblock.
312 */
313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
314
315 /*
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
318 */
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
322 error = -EINVAL;
323 goto release_buf;
324 }
325
326 /*
327 * We must be able to do sector-sized and sector-aligned IO.
328 */
329 if (sector_size > sbp->sb_sectsize) {
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
332 sector_size, sbp->sb_sectsize);
333 error = -ENOSYS;
334 goto release_buf;
335 }
336
337 if (buf_ops == NULL) {
338 /*
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
341 */
342 xfs_buf_relse(bp);
343 sector_size = sbp->sb_sectsize;
344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345 goto reread;
346 }
347
348 xfs_reinit_percpu_counters(mp);
349
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
352
353 mp->m_sb_bp = bp;
354 xfs_buf_unlock(bp);
355 return 0;
356
357release_buf:
358 xfs_buf_relse(bp);
359 return error;
360}
361
362/*
363 * Update alignment values based on mount options and sb values
364 */
365STATIC int
366xfs_update_alignment(xfs_mount_t *mp)
367{
368 xfs_sb_t *sbp = &(mp->m_sb);
369
370 if (mp->m_dalign) {
371 /*
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
374 */
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
379 sbp->sb_blocksize);
380 return -EINVAL;
381 } else {
382 /*
383 * Convert the stripe unit and width to FSBs.
384 */
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
387 xfs_warn(mp,
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
389 sbp->sb_agblocks);
390 return -EINVAL;
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 } else {
394 xfs_warn(mp,
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
397 return -EINVAL;
398 }
399 }
400
401 /*
402 * Update superblock with new values
403 * and log changes
404 */
405 if (xfs_sb_version_hasdalign(sbp)) {
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
408 mp->m_update_sb = true;
409 }
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
412 mp->m_update_sb = true;
413 }
414 } else {
415 xfs_warn(mp,
416 "cannot change alignment: superblock does not support data alignment");
417 return -EINVAL;
418 }
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
420 xfs_sb_version_hasdalign(&mp->m_sb)) {
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
423 }
424
425 return 0;
426}
427
428/*
429 * Set the default minimum read and write sizes unless
430 * already specified in a mount option.
431 * We use smaller I/O sizes when the file system
432 * is being used for NFS service (wsync mount option).
433 */
434STATIC void
435xfs_set_rw_sizes(xfs_mount_t *mp)
436{
437 xfs_sb_t *sbp = &(mp->m_sb);
438 int readio_log, writeio_log;
439
440 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
441 if (mp->m_flags & XFS_MOUNT_WSYNC) {
442 readio_log = XFS_WSYNC_READIO_LOG;
443 writeio_log = XFS_WSYNC_WRITEIO_LOG;
444 } else {
445 readio_log = XFS_READIO_LOG_LARGE;
446 writeio_log = XFS_WRITEIO_LOG_LARGE;
447 }
448 } else {
449 readio_log = mp->m_readio_log;
450 writeio_log = mp->m_writeio_log;
451 }
452
453 if (sbp->sb_blocklog > readio_log) {
454 mp->m_readio_log = sbp->sb_blocklog;
455 } else {
456 mp->m_readio_log = readio_log;
457 }
458 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
459 if (sbp->sb_blocklog > writeio_log) {
460 mp->m_writeio_log = sbp->sb_blocklog;
461 } else {
462 mp->m_writeio_log = writeio_log;
463 }
464 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
465}
466
467/*
468 * precalculate the low space thresholds for dynamic speculative preallocation.
469 */
470void
471xfs_set_low_space_thresholds(
472 struct xfs_mount *mp)
473{
474 int i;
475
476 for (i = 0; i < XFS_LOWSP_MAX; i++) {
477 uint64_t space = mp->m_sb.sb_dblocks;
478
479 do_div(space, 100);
480 mp->m_low_space[i] = space * (i + 1);
481 }
482}
483
484/*
485 * Check that the data (and log if separate) is an ok size.
486 */
487STATIC int
488xfs_check_sizes(
489 struct xfs_mount *mp)
490{
491 struct xfs_buf *bp;
492 xfs_daddr_t d;
493 int error;
494
495 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
496 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
497 xfs_warn(mp, "filesystem size mismatch detected");
498 return -EFBIG;
499 }
500 error = xfs_buf_read_uncached(mp->m_ddev_targp,
501 d - XFS_FSS_TO_BB(mp, 1),
502 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
503 if (error) {
504 xfs_warn(mp, "last sector read failed");
505 return error;
506 }
507 xfs_buf_relse(bp);
508
509 if (mp->m_logdev_targp == mp->m_ddev_targp)
510 return 0;
511
512 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
513 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
514 xfs_warn(mp, "log size mismatch detected");
515 return -EFBIG;
516 }
517 error = xfs_buf_read_uncached(mp->m_logdev_targp,
518 d - XFS_FSB_TO_BB(mp, 1),
519 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
520 if (error) {
521 xfs_warn(mp, "log device read failed");
522 return error;
523 }
524 xfs_buf_relse(bp);
525 return 0;
526}
527
528/*
529 * Clear the quotaflags in memory and in the superblock.
530 */
531int
532xfs_mount_reset_sbqflags(
533 struct xfs_mount *mp)
534{
535 mp->m_qflags = 0;
536
537 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
538 if (mp->m_sb.sb_qflags == 0)
539 return 0;
540 spin_lock(&mp->m_sb_lock);
541 mp->m_sb.sb_qflags = 0;
542 spin_unlock(&mp->m_sb_lock);
543
544 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
545 return 0;
546
547 return xfs_sync_sb(mp, false);
548}
549
550uint64_t
551xfs_default_resblks(xfs_mount_t *mp)
552{
553 uint64_t resblks;
554
555 /*
556 * We default to 5% or 8192 fsbs of space reserved, whichever is
557 * smaller. This is intended to cover concurrent allocation
558 * transactions when we initially hit enospc. These each require a 4
559 * block reservation. Hence by default we cover roughly 2000 concurrent
560 * allocation reservations.
561 */
562 resblks = mp->m_sb.sb_dblocks;
563 do_div(resblks, 20);
564 resblks = min_t(uint64_t, resblks, 8192);
565 return resblks;
566}
567
568/* Ensure the summary counts are correct. */
569STATIC int
570xfs_check_summary_counts(
571 struct xfs_mount *mp)
572{
573 /*
574 * The AG0 superblock verifier rejects in-progress filesystems,
575 * so we should never see the flag set this far into mounting.
576 */
577 if (mp->m_sb.sb_inprogress) {
578 xfs_err(mp, "sb_inprogress set after log recovery??");
579 WARN_ON(1);
580 return -EFSCORRUPTED;
581 }
582
583 /*
584 * Now the log is mounted, we know if it was an unclean shutdown or
585 * not. If it was, with the first phase of recovery has completed, we
586 * have consistent AG blocks on disk. We have not recovered EFIs yet,
587 * but they are recovered transactionally in the second recovery phase
588 * later.
589 *
590 * If the log was clean when we mounted, we can check the summary
591 * counters. If any of them are obviously incorrect, we can recompute
592 * them from the AGF headers in the next step.
593 */
594 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
595 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
596 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
597 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
598 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
599
600 /*
601 * We can safely re-initialise incore superblock counters from the
602 * per-ag data. These may not be correct if the filesystem was not
603 * cleanly unmounted, so we waited for recovery to finish before doing
604 * this.
605 *
606 * If the filesystem was cleanly unmounted or the previous check did
607 * not flag anything weird, then we can trust the values in the
608 * superblock to be correct and we don't need to do anything here.
609 * Otherwise, recalculate the summary counters.
610 */
611 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
612 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
613 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
614 return 0;
615
616 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
617}
618
619/*
620 * This function does the following on an initial mount of a file system:
621 * - reads the superblock from disk and init the mount struct
622 * - if we're a 32-bit kernel, do a size check on the superblock
623 * so we don't mount terabyte filesystems
624 * - init mount struct realtime fields
625 * - allocate inode hash table for fs
626 * - init directory manager
627 * - perform recovery and init the log manager
628 */
629int
630xfs_mountfs(
631 struct xfs_mount *mp)
632{
633 struct xfs_sb *sbp = &(mp->m_sb);
634 struct xfs_inode *rip;
635 struct xfs_ino_geometry *igeo = M_IGEO(mp);
636 uint64_t resblks;
637 uint quotamount = 0;
638 uint quotaflags = 0;
639 int error = 0;
640
641 xfs_sb_mount_common(mp, sbp);
642
643 /*
644 * Check for a mismatched features2 values. Older kernels read & wrote
645 * into the wrong sb offset for sb_features2 on some platforms due to
646 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
647 * which made older superblock reading/writing routines swap it as a
648 * 64-bit value.
649 *
650 * For backwards compatibility, we make both slots equal.
651 *
652 * If we detect a mismatched field, we OR the set bits into the existing
653 * features2 field in case it has already been modified; we don't want
654 * to lose any features. We then update the bad location with the ORed
655 * value so that older kernels will see any features2 flags. The
656 * superblock writeback code ensures the new sb_features2 is copied to
657 * sb_bad_features2 before it is logged or written to disk.
658 */
659 if (xfs_sb_has_mismatched_features2(sbp)) {
660 xfs_warn(mp, "correcting sb_features alignment problem");
661 sbp->sb_features2 |= sbp->sb_bad_features2;
662 mp->m_update_sb = true;
663
664 /*
665 * Re-check for ATTR2 in case it was found in bad_features2
666 * slot.
667 */
668 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 !(mp->m_flags & XFS_MOUNT_NOATTR2))
670 mp->m_flags |= XFS_MOUNT_ATTR2;
671 }
672
673 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
675 xfs_sb_version_removeattr2(&mp->m_sb);
676 mp->m_update_sb = true;
677
678 /* update sb_versionnum for the clearing of the morebits */
679 if (!sbp->sb_features2)
680 mp->m_update_sb = true;
681 }
682
683 /* always use v2 inodes by default now */
684 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
685 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
686 mp->m_update_sb = true;
687 }
688
689 /*
690 * Check if sb_agblocks is aligned at stripe boundary
691 * If sb_agblocks is NOT aligned turn off m_dalign since
692 * allocator alignment is within an ag, therefore ag has
693 * to be aligned at stripe boundary.
694 */
695 error = xfs_update_alignment(mp);
696 if (error)
697 goto out;
698
699 xfs_alloc_compute_maxlevels(mp);
700 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
701 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
702 xfs_ialloc_setup_geometry(mp);
703 xfs_rmapbt_compute_maxlevels(mp);
704 xfs_refcountbt_compute_maxlevels(mp);
705
706 /* enable fail_at_unmount as default */
707 mp->m_fail_unmount = true;
708
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
710 if (error)
711 goto out;
712
713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
714 &mp->m_kobj, "stats");
715 if (error)
716 goto out_remove_sysfs;
717
718 error = xfs_error_sysfs_init(mp);
719 if (error)
720 goto out_del_stats;
721
722 error = xfs_errortag_init(mp);
723 if (error)
724 goto out_remove_error_sysfs;
725
726 error = xfs_uuid_mount(mp);
727 if (error)
728 goto out_remove_errortag;
729
730 /*
731 * Set the minimum read and write sizes
732 */
733 xfs_set_rw_sizes(mp);
734
735 /* set the low space thresholds for dynamic preallocation */
736 xfs_set_low_space_thresholds(mp);
737
738 /*
739 * If enabled, sparse inode chunk alignment is expected to match the
740 * cluster size. Full inode chunk alignment must match the chunk size,
741 * but that is checked on sb read verification...
742 */
743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 mp->m_sb.sb_spino_align !=
745 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
746 xfs_warn(mp,
747 "Sparse inode block alignment (%u) must match cluster size (%llu).",
748 mp->m_sb.sb_spino_align,
749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
750 error = -EINVAL;
751 goto out_remove_uuid;
752 }
753
754 /*
755 * Check that the data (and log if separate) is an ok size.
756 */
757 error = xfs_check_sizes(mp);
758 if (error)
759 goto out_remove_uuid;
760
761 /*
762 * Initialize realtime fields in the mount structure
763 */
764 error = xfs_rtmount_init(mp);
765 if (error) {
766 xfs_warn(mp, "RT mount failed");
767 goto out_remove_uuid;
768 }
769
770 /*
771 * Copies the low order bits of the timestamp and the randomly
772 * set "sequence" number out of a UUID.
773 */
774 mp->m_fixedfsid[0] =
775 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
776 get_unaligned_be16(&sbp->sb_uuid.b[4]);
777 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
778
779 error = xfs_da_mount(mp);
780 if (error) {
781 xfs_warn(mp, "Failed dir/attr init: %d", error);
782 goto out_remove_uuid;
783 }
784
785 /*
786 * Initialize the precomputed transaction reservations values.
787 */
788 xfs_trans_init(mp);
789
790 /*
791 * Allocate and initialize the per-ag data.
792 */
793 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
794 if (error) {
795 xfs_warn(mp, "Failed per-ag init: %d", error);
796 goto out_free_dir;
797 }
798
799 if (!sbp->sb_logblocks) {
800 xfs_warn(mp, "no log defined");
801 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
802 error = -EFSCORRUPTED;
803 goto out_free_perag;
804 }
805
806 /*
807 * Log's mount-time initialization. The first part of recovery can place
808 * some items on the AIL, to be handled when recovery is finished or
809 * cancelled.
810 */
811 error = xfs_log_mount(mp, mp->m_logdev_targp,
812 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
813 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
814 if (error) {
815 xfs_warn(mp, "log mount failed");
816 goto out_fail_wait;
817 }
818
819 /* Make sure the summary counts are ok. */
820 error = xfs_check_summary_counts(mp);
821 if (error)
822 goto out_log_dealloc;
823
824 /*
825 * Get and sanity-check the root inode.
826 * Save the pointer to it in the mount structure.
827 */
828 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
829 XFS_ILOCK_EXCL, &rip);
830 if (error) {
831 xfs_warn(mp,
832 "Failed to read root inode 0x%llx, error %d",
833 sbp->sb_rootino, -error);
834 goto out_log_dealloc;
835 }
836
837 ASSERT(rip != NULL);
838
839 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
840 xfs_warn(mp, "corrupted root inode %llu: not a directory",
841 (unsigned long long)rip->i_ino);
842 xfs_iunlock(rip, XFS_ILOCK_EXCL);
843 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
844 mp);
845 error = -EFSCORRUPTED;
846 goto out_rele_rip;
847 }
848 mp->m_rootip = rip; /* save it */
849
850 xfs_iunlock(rip, XFS_ILOCK_EXCL);
851
852 /*
853 * Initialize realtime inode pointers in the mount structure
854 */
855 error = xfs_rtmount_inodes(mp);
856 if (error) {
857 /*
858 * Free up the root inode.
859 */
860 xfs_warn(mp, "failed to read RT inodes");
861 goto out_rele_rip;
862 }
863
864 /*
865 * If this is a read-only mount defer the superblock updates until
866 * the next remount into writeable mode. Otherwise we would never
867 * perform the update e.g. for the root filesystem.
868 */
869 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
870 error = xfs_sync_sb(mp, false);
871 if (error) {
872 xfs_warn(mp, "failed to write sb changes");
873 goto out_rtunmount;
874 }
875 }
876
877 /*
878 * Initialise the XFS quota management subsystem for this mount
879 */
880 if (XFS_IS_QUOTA_RUNNING(mp)) {
881 error = xfs_qm_newmount(mp, "amount, "aflags);
882 if (error)
883 goto out_rtunmount;
884 } else {
885 ASSERT(!XFS_IS_QUOTA_ON(mp));
886
887 /*
888 * If a file system had quotas running earlier, but decided to
889 * mount without -o uquota/pquota/gquota options, revoke the
890 * quotachecked license.
891 */
892 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
893 xfs_notice(mp, "resetting quota flags");
894 error = xfs_mount_reset_sbqflags(mp);
895 if (error)
896 goto out_rtunmount;
897 }
898 }
899
900 /*
901 * Finish recovering the file system. This part needed to be delayed
902 * until after the root and real-time bitmap inodes were consistently
903 * read in.
904 */
905 error = xfs_log_mount_finish(mp);
906 if (error) {
907 xfs_warn(mp, "log mount finish failed");
908 goto out_rtunmount;
909 }
910
911 /*
912 * Now the log is fully replayed, we can transition to full read-only
913 * mode for read-only mounts. This will sync all the metadata and clean
914 * the log so that the recovery we just performed does not have to be
915 * replayed again on the next mount.
916 *
917 * We use the same quiesce mechanism as the rw->ro remount, as they are
918 * semantically identical operations.
919 */
920 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
921 XFS_MOUNT_RDONLY) {
922 xfs_quiesce_attr(mp);
923 }
924
925 /*
926 * Complete the quota initialisation, post-log-replay component.
927 */
928 if (quotamount) {
929 ASSERT(mp->m_qflags == 0);
930 mp->m_qflags = quotaflags;
931
932 xfs_qm_mount_quotas(mp);
933 }
934
935 /*
936 * Now we are mounted, reserve a small amount of unused space for
937 * privileged transactions. This is needed so that transaction
938 * space required for critical operations can dip into this pool
939 * when at ENOSPC. This is needed for operations like create with
940 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
941 * are not allowed to use this reserved space.
942 *
943 * This may drive us straight to ENOSPC on mount, but that implies
944 * we were already there on the last unmount. Warn if this occurs.
945 */
946 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
947 resblks = xfs_default_resblks(mp);
948 error = xfs_reserve_blocks(mp, &resblks, NULL);
949 if (error)
950 xfs_warn(mp,
951 "Unable to allocate reserve blocks. Continuing without reserve pool.");
952
953 /* Recover any CoW blocks that never got remapped. */
954 error = xfs_reflink_recover_cow(mp);
955 if (error) {
956 xfs_err(mp,
957 "Error %d recovering leftover CoW allocations.", error);
958 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
959 goto out_quota;
960 }
961
962 /* Reserve AG blocks for future btree expansion. */
963 error = xfs_fs_reserve_ag_blocks(mp);
964 if (error && error != -ENOSPC)
965 goto out_agresv;
966 }
967
968 return 0;
969
970 out_agresv:
971 xfs_fs_unreserve_ag_blocks(mp);
972 out_quota:
973 xfs_qm_unmount_quotas(mp);
974 out_rtunmount:
975 xfs_rtunmount_inodes(mp);
976 out_rele_rip:
977 xfs_irele(rip);
978 /* Clean out dquots that might be in memory after quotacheck. */
979 xfs_qm_unmount(mp);
980 /*
981 * Cancel all delayed reclaim work and reclaim the inodes directly.
982 * We have to do this /after/ rtunmount and qm_unmount because those
983 * two will have scheduled delayed reclaim for the rt/quota inodes.
984 *
985 * This is slightly different from the unmountfs call sequence
986 * because we could be tearing down a partially set up mount. In
987 * particular, if log_mount_finish fails we bail out without calling
988 * qm_unmount_quotas and therefore rely on qm_unmount to release the
989 * quota inodes.
990 */
991 cancel_delayed_work_sync(&mp->m_reclaim_work);
992 xfs_reclaim_inodes(mp, SYNC_WAIT);
993 xfs_health_unmount(mp);
994 out_log_dealloc:
995 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
996 xfs_log_mount_cancel(mp);
997 out_fail_wait:
998 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
999 xfs_wait_buftarg(mp->m_logdev_targp);
1000 xfs_wait_buftarg(mp->m_ddev_targp);
1001 out_free_perag:
1002 xfs_free_perag(mp);
1003 out_free_dir:
1004 xfs_da_unmount(mp);
1005 out_remove_uuid:
1006 xfs_uuid_unmount(mp);
1007 out_remove_errortag:
1008 xfs_errortag_del(mp);
1009 out_remove_error_sysfs:
1010 xfs_error_sysfs_del(mp);
1011 out_del_stats:
1012 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1013 out_remove_sysfs:
1014 xfs_sysfs_del(&mp->m_kobj);
1015 out:
1016 return error;
1017}
1018
1019/*
1020 * This flushes out the inodes,dquots and the superblock, unmounts the
1021 * log and makes sure that incore structures are freed.
1022 */
1023void
1024xfs_unmountfs(
1025 struct xfs_mount *mp)
1026{
1027 uint64_t resblks;
1028 int error;
1029
1030 xfs_stop_block_reaping(mp);
1031 xfs_fs_unreserve_ag_blocks(mp);
1032 xfs_qm_unmount_quotas(mp);
1033 xfs_rtunmount_inodes(mp);
1034 xfs_irele(mp->m_rootip);
1035
1036 /*
1037 * We can potentially deadlock here if we have an inode cluster
1038 * that has been freed has its buffer still pinned in memory because
1039 * the transaction is still sitting in a iclog. The stale inodes
1040 * on that buffer will have their flush locks held until the
1041 * transaction hits the disk and the callbacks run. the inode
1042 * flush takes the flush lock unconditionally and with nothing to
1043 * push out the iclog we will never get that unlocked. hence we
1044 * need to force the log first.
1045 */
1046 xfs_log_force(mp, XFS_LOG_SYNC);
1047
1048 /*
1049 * Wait for all busy extents to be freed, including completion of
1050 * any discard operation.
1051 */
1052 xfs_extent_busy_wait_all(mp);
1053 flush_workqueue(xfs_discard_wq);
1054
1055 /*
1056 * We now need to tell the world we are unmounting. This will allow
1057 * us to detect that the filesystem is going away and we should error
1058 * out anything that we have been retrying in the background. This will
1059 * prevent neverending retries in AIL pushing from hanging the unmount.
1060 */
1061 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1062
1063 /*
1064 * Flush all pending changes from the AIL.
1065 */
1066 xfs_ail_push_all_sync(mp->m_ail);
1067
1068 /*
1069 * And reclaim all inodes. At this point there should be no dirty
1070 * inodes and none should be pinned or locked, but use synchronous
1071 * reclaim just to be sure. We can stop background inode reclaim
1072 * here as well if it is still running.
1073 */
1074 cancel_delayed_work_sync(&mp->m_reclaim_work);
1075 xfs_reclaim_inodes(mp, SYNC_WAIT);
1076 xfs_health_unmount(mp);
1077
1078 xfs_qm_unmount(mp);
1079
1080 /*
1081 * Unreserve any blocks we have so that when we unmount we don't account
1082 * the reserved free space as used. This is really only necessary for
1083 * lazy superblock counting because it trusts the incore superblock
1084 * counters to be absolutely correct on clean unmount.
1085 *
1086 * We don't bother correcting this elsewhere for lazy superblock
1087 * counting because on mount of an unclean filesystem we reconstruct the
1088 * correct counter value and this is irrelevant.
1089 *
1090 * For non-lazy counter filesystems, this doesn't matter at all because
1091 * we only every apply deltas to the superblock and hence the incore
1092 * value does not matter....
1093 */
1094 resblks = 0;
1095 error = xfs_reserve_blocks(mp, &resblks, NULL);
1096 if (error)
1097 xfs_warn(mp, "Unable to free reserved block pool. "
1098 "Freespace may not be correct on next mount.");
1099
1100 error = xfs_log_sbcount(mp);
1101 if (error)
1102 xfs_warn(mp, "Unable to update superblock counters. "
1103 "Freespace may not be correct on next mount.");
1104
1105
1106 xfs_log_unmount(mp);
1107 xfs_da_unmount(mp);
1108 xfs_uuid_unmount(mp);
1109
1110#if defined(DEBUG)
1111 xfs_errortag_clearall(mp);
1112#endif
1113 xfs_free_perag(mp);
1114
1115 xfs_errortag_del(mp);
1116 xfs_error_sysfs_del(mp);
1117 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1118 xfs_sysfs_del(&mp->m_kobj);
1119}
1120
1121/*
1122 * Determine whether modifications can proceed. The caller specifies the minimum
1123 * freeze level for which modifications should not be allowed. This allows
1124 * certain operations to proceed while the freeze sequence is in progress, if
1125 * necessary.
1126 */
1127bool
1128xfs_fs_writable(
1129 struct xfs_mount *mp,
1130 int level)
1131{
1132 ASSERT(level > SB_UNFROZEN);
1133 if ((mp->m_super->s_writers.frozen >= level) ||
1134 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1135 return false;
1136
1137 return true;
1138}
1139
1140/*
1141 * xfs_log_sbcount
1142 *
1143 * Sync the superblock counters to disk.
1144 *
1145 * Note this code can be called during the process of freezing, so we use the
1146 * transaction allocator that does not block when the transaction subsystem is
1147 * in its frozen state.
1148 */
1149int
1150xfs_log_sbcount(xfs_mount_t *mp)
1151{
1152 /* allow this to proceed during the freeze sequence... */
1153 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1154 return 0;
1155
1156 /*
1157 * we don't need to do this if we are updating the superblock
1158 * counters on every modification.
1159 */
1160 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1161 return 0;
1162
1163 return xfs_sync_sb(mp, true);
1164}
1165
1166/*
1167 * Deltas for the inode count are +/-64, hence we use a large batch size
1168 * of 128 so we don't need to take the counter lock on every update.
1169 */
1170#define XFS_ICOUNT_BATCH 128
1171int
1172xfs_mod_icount(
1173 struct xfs_mount *mp,
1174 int64_t delta)
1175{
1176 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1177 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1178 ASSERT(0);
1179 percpu_counter_add(&mp->m_icount, -delta);
1180 return -EINVAL;
1181 }
1182 return 0;
1183}
1184
1185int
1186xfs_mod_ifree(
1187 struct xfs_mount *mp,
1188 int64_t delta)
1189{
1190 percpu_counter_add(&mp->m_ifree, delta);
1191 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1192 ASSERT(0);
1193 percpu_counter_add(&mp->m_ifree, -delta);
1194 return -EINVAL;
1195 }
1196 return 0;
1197}
1198
1199/*
1200 * Deltas for the block count can vary from 1 to very large, but lock contention
1201 * only occurs on frequent small block count updates such as in the delayed
1202 * allocation path for buffered writes (page a time updates). Hence we set
1203 * a large batch count (1024) to minimise global counter updates except when
1204 * we get near to ENOSPC and we have to be very accurate with our updates.
1205 */
1206#define XFS_FDBLOCKS_BATCH 1024
1207int
1208xfs_mod_fdblocks(
1209 struct xfs_mount *mp,
1210 int64_t delta,
1211 bool rsvd)
1212{
1213 int64_t lcounter;
1214 long long res_used;
1215 s32 batch;
1216
1217 if (delta > 0) {
1218 /*
1219 * If the reserve pool is depleted, put blocks back into it
1220 * first. Most of the time the pool is full.
1221 */
1222 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1223 percpu_counter_add(&mp->m_fdblocks, delta);
1224 return 0;
1225 }
1226
1227 spin_lock(&mp->m_sb_lock);
1228 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1229
1230 if (res_used > delta) {
1231 mp->m_resblks_avail += delta;
1232 } else {
1233 delta -= res_used;
1234 mp->m_resblks_avail = mp->m_resblks;
1235 percpu_counter_add(&mp->m_fdblocks, delta);
1236 }
1237 spin_unlock(&mp->m_sb_lock);
1238 return 0;
1239 }
1240
1241 /*
1242 * Taking blocks away, need to be more accurate the closer we
1243 * are to zero.
1244 *
1245 * If the counter has a value of less than 2 * max batch size,
1246 * then make everything serialise as we are real close to
1247 * ENOSPC.
1248 */
1249 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1250 XFS_FDBLOCKS_BATCH) < 0)
1251 batch = 1;
1252 else
1253 batch = XFS_FDBLOCKS_BATCH;
1254
1255 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1256 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1257 XFS_FDBLOCKS_BATCH) >= 0) {
1258 /* we had space! */
1259 return 0;
1260 }
1261
1262 /*
1263 * lock up the sb for dipping into reserves before releasing the space
1264 * that took us to ENOSPC.
1265 */
1266 spin_lock(&mp->m_sb_lock);
1267 percpu_counter_add(&mp->m_fdblocks, -delta);
1268 if (!rsvd)
1269 goto fdblocks_enospc;
1270
1271 lcounter = (long long)mp->m_resblks_avail + delta;
1272 if (lcounter >= 0) {
1273 mp->m_resblks_avail = lcounter;
1274 spin_unlock(&mp->m_sb_lock);
1275 return 0;
1276 }
1277 printk_once(KERN_WARNING
1278 "Filesystem \"%s\": reserve blocks depleted! "
1279 "Consider increasing reserve pool size.",
1280 mp->m_fsname);
1281fdblocks_enospc:
1282 spin_unlock(&mp->m_sb_lock);
1283 return -ENOSPC;
1284}
1285
1286int
1287xfs_mod_frextents(
1288 struct xfs_mount *mp,
1289 int64_t delta)
1290{
1291 int64_t lcounter;
1292 int ret = 0;
1293
1294 spin_lock(&mp->m_sb_lock);
1295 lcounter = mp->m_sb.sb_frextents + delta;
1296 if (lcounter < 0)
1297 ret = -ENOSPC;
1298 else
1299 mp->m_sb.sb_frextents = lcounter;
1300 spin_unlock(&mp->m_sb_lock);
1301 return ret;
1302}
1303
1304/*
1305 * xfs_getsb() is called to obtain the buffer for the superblock.
1306 * The buffer is returned locked and read in from disk.
1307 * The buffer should be released with a call to xfs_brelse().
1308 */
1309struct xfs_buf *
1310xfs_getsb(
1311 struct xfs_mount *mp)
1312{
1313 struct xfs_buf *bp = mp->m_sb_bp;
1314
1315 xfs_buf_lock(bp);
1316 xfs_buf_hold(bp);
1317 ASSERT(bp->b_flags & XBF_DONE);
1318 return bp;
1319}
1320
1321/*
1322 * Used to free the superblock along various error paths.
1323 */
1324void
1325xfs_freesb(
1326 struct xfs_mount *mp)
1327{
1328 struct xfs_buf *bp = mp->m_sb_bp;
1329
1330 xfs_buf_lock(bp);
1331 mp->m_sb_bp = NULL;
1332 xfs_buf_relse(bp);
1333}
1334
1335/*
1336 * If the underlying (data/log/rt) device is readonly, there are some
1337 * operations that cannot proceed.
1338 */
1339int
1340xfs_dev_is_read_only(
1341 struct xfs_mount *mp,
1342 char *message)
1343{
1344 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1345 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1346 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1347 xfs_notice(mp, "%s required on read-only device.", message);
1348 xfs_notice(mp, "write access unavailable, cannot proceed.");
1349 return -EROFS;
1350 }
1351 return 0;
1352}
1353
1354/* Force the summary counters to be recalculated at next mount. */
1355void
1356xfs_force_summary_recalc(
1357 struct xfs_mount *mp)
1358{
1359 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1360 return;
1361
1362 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1363}
1364
1365/*
1366 * Update the in-core delayed block counter.
1367 *
1368 * We prefer to update the counter without having to take a spinlock for every
1369 * counter update (i.e. batching). Each change to delayed allocation
1370 * reservations can change can easily exceed the default percpu counter
1371 * batching, so we use a larger batch factor here.
1372 *
1373 * Note that we don't currently have any callers requiring fast summation
1374 * (e.g. percpu_counter_read) so we can use a big batch value here.
1375 */
1376#define XFS_DELALLOC_BATCH (4096)
1377void
1378xfs_mod_delalloc(
1379 struct xfs_mount *mp,
1380 int64_t delta)
1381{
1382 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1383 XFS_DELALLOC_BATCH);
1384}