Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_da_format.h"
28#include "xfs_da_btree.h"
29#include "xfs_inode.h"
30#include "xfs_trans.h"
31#include "xfs_log.h"
32#include "xfs_log_priv.h"
33#include "xfs_log_recover.h"
34#include "xfs_inode_item.h"
35#include "xfs_extfree_item.h"
36#include "xfs_trans_priv.h"
37#include "xfs_alloc.h"
38#include "xfs_ialloc.h"
39#include "xfs_quota.h"
40#include "xfs_cksum.h"
41#include "xfs_trace.h"
42#include "xfs_icache.h"
43#include "xfs_bmap_btree.h"
44#include "xfs_error.h"
45#include "xfs_dir2.h"
46#include "xfs_rmap_item.h"
47#include "xfs_buf_item.h"
48#include "xfs_refcount_item.h"
49#include "xfs_bmap_item.h"
50
51#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
52
53STATIC int
54xlog_find_zeroed(
55 struct xlog *,
56 xfs_daddr_t *);
57STATIC int
58xlog_clear_stale_blocks(
59 struct xlog *,
60 xfs_lsn_t);
61#if defined(DEBUG)
62STATIC void
63xlog_recover_check_summary(
64 struct xlog *);
65#else
66#define xlog_recover_check_summary(log)
67#endif
68STATIC int
69xlog_do_recovery_pass(
70 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
71
72/*
73 * This structure is used during recovery to record the buf log items which
74 * have been canceled and should not be replayed.
75 */
76struct xfs_buf_cancel {
77 xfs_daddr_t bc_blkno;
78 uint bc_len;
79 int bc_refcount;
80 struct list_head bc_list;
81};
82
83/*
84 * Sector aligned buffer routines for buffer create/read/write/access
85 */
86
87/*
88 * Verify the given count of basic blocks is valid number of blocks
89 * to specify for an operation involving the given XFS log buffer.
90 * Returns nonzero if the count is valid, 0 otherwise.
91 */
92
93static inline int
94xlog_buf_bbcount_valid(
95 struct xlog *log,
96 int bbcount)
97{
98 return bbcount > 0 && bbcount <= log->l_logBBsize;
99}
100
101/*
102 * Allocate a buffer to hold log data. The buffer needs to be able
103 * to map to a range of nbblks basic blocks at any valid (basic
104 * block) offset within the log.
105 */
106STATIC xfs_buf_t *
107xlog_get_bp(
108 struct xlog *log,
109 int nbblks)
110{
111 struct xfs_buf *bp;
112
113 if (!xlog_buf_bbcount_valid(log, nbblks)) {
114 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
115 nbblks);
116 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
117 return NULL;
118 }
119
120 /*
121 * We do log I/O in units of log sectors (a power-of-2
122 * multiple of the basic block size), so we round up the
123 * requested size to accommodate the basic blocks required
124 * for complete log sectors.
125 *
126 * In addition, the buffer may be used for a non-sector-
127 * aligned block offset, in which case an I/O of the
128 * requested size could extend beyond the end of the
129 * buffer. If the requested size is only 1 basic block it
130 * will never straddle a sector boundary, so this won't be
131 * an issue. Nor will this be a problem if the log I/O is
132 * done in basic blocks (sector size 1). But otherwise we
133 * extend the buffer by one extra log sector to ensure
134 * there's space to accommodate this possibility.
135 */
136 if (nbblks > 1 && log->l_sectBBsize > 1)
137 nbblks += log->l_sectBBsize;
138 nbblks = round_up(nbblks, log->l_sectBBsize);
139
140 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
141 if (bp)
142 xfs_buf_unlock(bp);
143 return bp;
144}
145
146STATIC void
147xlog_put_bp(
148 xfs_buf_t *bp)
149{
150 xfs_buf_free(bp);
151}
152
153/*
154 * Return the address of the start of the given block number's data
155 * in a log buffer. The buffer covers a log sector-aligned region.
156 */
157STATIC char *
158xlog_align(
159 struct xlog *log,
160 xfs_daddr_t blk_no,
161 int nbblks,
162 struct xfs_buf *bp)
163{
164 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
165
166 ASSERT(offset + nbblks <= bp->b_length);
167 return bp->b_addr + BBTOB(offset);
168}
169
170
171/*
172 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
173 */
174STATIC int
175xlog_bread_noalign(
176 struct xlog *log,
177 xfs_daddr_t blk_no,
178 int nbblks,
179 struct xfs_buf *bp)
180{
181 int error;
182
183 if (!xlog_buf_bbcount_valid(log, nbblks)) {
184 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
185 nbblks);
186 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
187 return -EFSCORRUPTED;
188 }
189
190 blk_no = round_down(blk_no, log->l_sectBBsize);
191 nbblks = round_up(nbblks, log->l_sectBBsize);
192
193 ASSERT(nbblks > 0);
194 ASSERT(nbblks <= bp->b_length);
195
196 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
197 bp->b_flags |= XBF_READ;
198 bp->b_io_length = nbblks;
199 bp->b_error = 0;
200
201 error = xfs_buf_submit_wait(bp);
202 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
203 xfs_buf_ioerror_alert(bp, __func__);
204 return error;
205}
206
207STATIC int
208xlog_bread(
209 struct xlog *log,
210 xfs_daddr_t blk_no,
211 int nbblks,
212 struct xfs_buf *bp,
213 char **offset)
214{
215 int error;
216
217 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
218 if (error)
219 return error;
220
221 *offset = xlog_align(log, blk_no, nbblks, bp);
222 return 0;
223}
224
225/*
226 * Read at an offset into the buffer. Returns with the buffer in it's original
227 * state regardless of the result of the read.
228 */
229STATIC int
230xlog_bread_offset(
231 struct xlog *log,
232 xfs_daddr_t blk_no, /* block to read from */
233 int nbblks, /* blocks to read */
234 struct xfs_buf *bp,
235 char *offset)
236{
237 char *orig_offset = bp->b_addr;
238 int orig_len = BBTOB(bp->b_length);
239 int error, error2;
240
241 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
242 if (error)
243 return error;
244
245 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
246
247 /* must reset buffer pointer even on error */
248 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
249 if (error)
250 return error;
251 return error2;
252}
253
254/*
255 * Write out the buffer at the given block for the given number of blocks.
256 * The buffer is kept locked across the write and is returned locked.
257 * This can only be used for synchronous log writes.
258 */
259STATIC int
260xlog_bwrite(
261 struct xlog *log,
262 xfs_daddr_t blk_no,
263 int nbblks,
264 struct xfs_buf *bp)
265{
266 int error;
267
268 if (!xlog_buf_bbcount_valid(log, nbblks)) {
269 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
270 nbblks);
271 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
272 return -EFSCORRUPTED;
273 }
274
275 blk_no = round_down(blk_no, log->l_sectBBsize);
276 nbblks = round_up(nbblks, log->l_sectBBsize);
277
278 ASSERT(nbblks > 0);
279 ASSERT(nbblks <= bp->b_length);
280
281 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
282 xfs_buf_hold(bp);
283 xfs_buf_lock(bp);
284 bp->b_io_length = nbblks;
285 bp->b_error = 0;
286
287 error = xfs_bwrite(bp);
288 if (error)
289 xfs_buf_ioerror_alert(bp, __func__);
290 xfs_buf_relse(bp);
291 return error;
292}
293
294#ifdef DEBUG
295/*
296 * dump debug superblock and log record information
297 */
298STATIC void
299xlog_header_check_dump(
300 xfs_mount_t *mp,
301 xlog_rec_header_t *head)
302{
303 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
304 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
305 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
306 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
307}
308#else
309#define xlog_header_check_dump(mp, head)
310#endif
311
312/*
313 * check log record header for recovery
314 */
315STATIC int
316xlog_header_check_recover(
317 xfs_mount_t *mp,
318 xlog_rec_header_t *head)
319{
320 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
321
322 /*
323 * IRIX doesn't write the h_fmt field and leaves it zeroed
324 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
325 * a dirty log created in IRIX.
326 */
327 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
328 xfs_warn(mp,
329 "dirty log written in incompatible format - can't recover");
330 xlog_header_check_dump(mp, head);
331 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
332 XFS_ERRLEVEL_HIGH, mp);
333 return -EFSCORRUPTED;
334 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
335 xfs_warn(mp,
336 "dirty log entry has mismatched uuid - can't recover");
337 xlog_header_check_dump(mp, head);
338 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
339 XFS_ERRLEVEL_HIGH, mp);
340 return -EFSCORRUPTED;
341 }
342 return 0;
343}
344
345/*
346 * read the head block of the log and check the header
347 */
348STATIC int
349xlog_header_check_mount(
350 xfs_mount_t *mp,
351 xlog_rec_header_t *head)
352{
353 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
354
355 if (uuid_is_nil(&head->h_fs_uuid)) {
356 /*
357 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
358 * h_fs_uuid is nil, we assume this log was last mounted
359 * by IRIX and continue.
360 */
361 xfs_warn(mp, "nil uuid in log - IRIX style log");
362 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
363 xfs_warn(mp, "log has mismatched uuid - can't recover");
364 xlog_header_check_dump(mp, head);
365 XFS_ERROR_REPORT("xlog_header_check_mount",
366 XFS_ERRLEVEL_HIGH, mp);
367 return -EFSCORRUPTED;
368 }
369 return 0;
370}
371
372STATIC void
373xlog_recover_iodone(
374 struct xfs_buf *bp)
375{
376 if (bp->b_error) {
377 /*
378 * We're not going to bother about retrying
379 * this during recovery. One strike!
380 */
381 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
382 xfs_buf_ioerror_alert(bp, __func__);
383 xfs_force_shutdown(bp->b_target->bt_mount,
384 SHUTDOWN_META_IO_ERROR);
385 }
386 }
387
388 /*
389 * On v5 supers, a bli could be attached to update the metadata LSN.
390 * Clean it up.
391 */
392 if (bp->b_fspriv)
393 xfs_buf_item_relse(bp);
394 ASSERT(bp->b_fspriv == NULL);
395
396 bp->b_iodone = NULL;
397 xfs_buf_ioend(bp);
398}
399
400/*
401 * This routine finds (to an approximation) the first block in the physical
402 * log which contains the given cycle. It uses a binary search algorithm.
403 * Note that the algorithm can not be perfect because the disk will not
404 * necessarily be perfect.
405 */
406STATIC int
407xlog_find_cycle_start(
408 struct xlog *log,
409 struct xfs_buf *bp,
410 xfs_daddr_t first_blk,
411 xfs_daddr_t *last_blk,
412 uint cycle)
413{
414 char *offset;
415 xfs_daddr_t mid_blk;
416 xfs_daddr_t end_blk;
417 uint mid_cycle;
418 int error;
419
420 end_blk = *last_blk;
421 mid_blk = BLK_AVG(first_blk, end_blk);
422 while (mid_blk != first_blk && mid_blk != end_blk) {
423 error = xlog_bread(log, mid_blk, 1, bp, &offset);
424 if (error)
425 return error;
426 mid_cycle = xlog_get_cycle(offset);
427 if (mid_cycle == cycle)
428 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
429 else
430 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
431 mid_blk = BLK_AVG(first_blk, end_blk);
432 }
433 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
434 (mid_blk == end_blk && mid_blk-1 == first_blk));
435
436 *last_blk = end_blk;
437
438 return 0;
439}
440
441/*
442 * Check that a range of blocks does not contain stop_on_cycle_no.
443 * Fill in *new_blk with the block offset where such a block is
444 * found, or with -1 (an invalid block number) if there is no such
445 * block in the range. The scan needs to occur from front to back
446 * and the pointer into the region must be updated since a later
447 * routine will need to perform another test.
448 */
449STATIC int
450xlog_find_verify_cycle(
451 struct xlog *log,
452 xfs_daddr_t start_blk,
453 int nbblks,
454 uint stop_on_cycle_no,
455 xfs_daddr_t *new_blk)
456{
457 xfs_daddr_t i, j;
458 uint cycle;
459 xfs_buf_t *bp;
460 xfs_daddr_t bufblks;
461 char *buf = NULL;
462 int error = 0;
463
464 /*
465 * Greedily allocate a buffer big enough to handle the full
466 * range of basic blocks we'll be examining. If that fails,
467 * try a smaller size. We need to be able to read at least
468 * a log sector, or we're out of luck.
469 */
470 bufblks = 1 << ffs(nbblks);
471 while (bufblks > log->l_logBBsize)
472 bufblks >>= 1;
473 while (!(bp = xlog_get_bp(log, bufblks))) {
474 bufblks >>= 1;
475 if (bufblks < log->l_sectBBsize)
476 return -ENOMEM;
477 }
478
479 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
480 int bcount;
481
482 bcount = min(bufblks, (start_blk + nbblks - i));
483
484 error = xlog_bread(log, i, bcount, bp, &buf);
485 if (error)
486 goto out;
487
488 for (j = 0; j < bcount; j++) {
489 cycle = xlog_get_cycle(buf);
490 if (cycle == stop_on_cycle_no) {
491 *new_blk = i+j;
492 goto out;
493 }
494
495 buf += BBSIZE;
496 }
497 }
498
499 *new_blk = -1;
500
501out:
502 xlog_put_bp(bp);
503 return error;
504}
505
506/*
507 * Potentially backup over partial log record write.
508 *
509 * In the typical case, last_blk is the number of the block directly after
510 * a good log record. Therefore, we subtract one to get the block number
511 * of the last block in the given buffer. extra_bblks contains the number
512 * of blocks we would have read on a previous read. This happens when the
513 * last log record is split over the end of the physical log.
514 *
515 * extra_bblks is the number of blocks potentially verified on a previous
516 * call to this routine.
517 */
518STATIC int
519xlog_find_verify_log_record(
520 struct xlog *log,
521 xfs_daddr_t start_blk,
522 xfs_daddr_t *last_blk,
523 int extra_bblks)
524{
525 xfs_daddr_t i;
526 xfs_buf_t *bp;
527 char *offset = NULL;
528 xlog_rec_header_t *head = NULL;
529 int error = 0;
530 int smallmem = 0;
531 int num_blks = *last_blk - start_blk;
532 int xhdrs;
533
534 ASSERT(start_blk != 0 || *last_blk != start_blk);
535
536 if (!(bp = xlog_get_bp(log, num_blks))) {
537 if (!(bp = xlog_get_bp(log, 1)))
538 return -ENOMEM;
539 smallmem = 1;
540 } else {
541 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
542 if (error)
543 goto out;
544 offset += ((num_blks - 1) << BBSHIFT);
545 }
546
547 for (i = (*last_blk) - 1; i >= 0; i--) {
548 if (i < start_blk) {
549 /* valid log record not found */
550 xfs_warn(log->l_mp,
551 "Log inconsistent (didn't find previous header)");
552 ASSERT(0);
553 error = -EIO;
554 goto out;
555 }
556
557 if (smallmem) {
558 error = xlog_bread(log, i, 1, bp, &offset);
559 if (error)
560 goto out;
561 }
562
563 head = (xlog_rec_header_t *)offset;
564
565 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
566 break;
567
568 if (!smallmem)
569 offset -= BBSIZE;
570 }
571
572 /*
573 * We hit the beginning of the physical log & still no header. Return
574 * to caller. If caller can handle a return of -1, then this routine
575 * will be called again for the end of the physical log.
576 */
577 if (i == -1) {
578 error = 1;
579 goto out;
580 }
581
582 /*
583 * We have the final block of the good log (the first block
584 * of the log record _before_ the head. So we check the uuid.
585 */
586 if ((error = xlog_header_check_mount(log->l_mp, head)))
587 goto out;
588
589 /*
590 * We may have found a log record header before we expected one.
591 * last_blk will be the 1st block # with a given cycle #. We may end
592 * up reading an entire log record. In this case, we don't want to
593 * reset last_blk. Only when last_blk points in the middle of a log
594 * record do we update last_blk.
595 */
596 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
597 uint h_size = be32_to_cpu(head->h_size);
598
599 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
600 if (h_size % XLOG_HEADER_CYCLE_SIZE)
601 xhdrs++;
602 } else {
603 xhdrs = 1;
604 }
605
606 if (*last_blk - i + extra_bblks !=
607 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
608 *last_blk = i;
609
610out:
611 xlog_put_bp(bp);
612 return error;
613}
614
615/*
616 * Head is defined to be the point of the log where the next log write
617 * could go. This means that incomplete LR writes at the end are
618 * eliminated when calculating the head. We aren't guaranteed that previous
619 * LR have complete transactions. We only know that a cycle number of
620 * current cycle number -1 won't be present in the log if we start writing
621 * from our current block number.
622 *
623 * last_blk contains the block number of the first block with a given
624 * cycle number.
625 *
626 * Return: zero if normal, non-zero if error.
627 */
628STATIC int
629xlog_find_head(
630 struct xlog *log,
631 xfs_daddr_t *return_head_blk)
632{
633 xfs_buf_t *bp;
634 char *offset;
635 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
636 int num_scan_bblks;
637 uint first_half_cycle, last_half_cycle;
638 uint stop_on_cycle;
639 int error, log_bbnum = log->l_logBBsize;
640
641 /* Is the end of the log device zeroed? */
642 error = xlog_find_zeroed(log, &first_blk);
643 if (error < 0) {
644 xfs_warn(log->l_mp, "empty log check failed");
645 return error;
646 }
647 if (error == 1) {
648 *return_head_blk = first_blk;
649
650 /* Is the whole lot zeroed? */
651 if (!first_blk) {
652 /* Linux XFS shouldn't generate totally zeroed logs -
653 * mkfs etc write a dummy unmount record to a fresh
654 * log so we can store the uuid in there
655 */
656 xfs_warn(log->l_mp, "totally zeroed log");
657 }
658
659 return 0;
660 }
661
662 first_blk = 0; /* get cycle # of 1st block */
663 bp = xlog_get_bp(log, 1);
664 if (!bp)
665 return -ENOMEM;
666
667 error = xlog_bread(log, 0, 1, bp, &offset);
668 if (error)
669 goto bp_err;
670
671 first_half_cycle = xlog_get_cycle(offset);
672
673 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
674 error = xlog_bread(log, last_blk, 1, bp, &offset);
675 if (error)
676 goto bp_err;
677
678 last_half_cycle = xlog_get_cycle(offset);
679 ASSERT(last_half_cycle != 0);
680
681 /*
682 * If the 1st half cycle number is equal to the last half cycle number,
683 * then the entire log is stamped with the same cycle number. In this
684 * case, head_blk can't be set to zero (which makes sense). The below
685 * math doesn't work out properly with head_blk equal to zero. Instead,
686 * we set it to log_bbnum which is an invalid block number, but this
687 * value makes the math correct. If head_blk doesn't changed through
688 * all the tests below, *head_blk is set to zero at the very end rather
689 * than log_bbnum. In a sense, log_bbnum and zero are the same block
690 * in a circular file.
691 */
692 if (first_half_cycle == last_half_cycle) {
693 /*
694 * In this case we believe that the entire log should have
695 * cycle number last_half_cycle. We need to scan backwards
696 * from the end verifying that there are no holes still
697 * containing last_half_cycle - 1. If we find such a hole,
698 * then the start of that hole will be the new head. The
699 * simple case looks like
700 * x | x ... | x - 1 | x
701 * Another case that fits this picture would be
702 * x | x + 1 | x ... | x
703 * In this case the head really is somewhere at the end of the
704 * log, as one of the latest writes at the beginning was
705 * incomplete.
706 * One more case is
707 * x | x + 1 | x ... | x - 1 | x
708 * This is really the combination of the above two cases, and
709 * the head has to end up at the start of the x-1 hole at the
710 * end of the log.
711 *
712 * In the 256k log case, we will read from the beginning to the
713 * end of the log and search for cycle numbers equal to x-1.
714 * We don't worry about the x+1 blocks that we encounter,
715 * because we know that they cannot be the head since the log
716 * started with x.
717 */
718 head_blk = log_bbnum;
719 stop_on_cycle = last_half_cycle - 1;
720 } else {
721 /*
722 * In this case we want to find the first block with cycle
723 * number matching last_half_cycle. We expect the log to be
724 * some variation on
725 * x + 1 ... | x ... | x
726 * The first block with cycle number x (last_half_cycle) will
727 * be where the new head belongs. First we do a binary search
728 * for the first occurrence of last_half_cycle. The binary
729 * search may not be totally accurate, so then we scan back
730 * from there looking for occurrences of last_half_cycle before
731 * us. If that backwards scan wraps around the beginning of
732 * the log, then we look for occurrences of last_half_cycle - 1
733 * at the end of the log. The cases we're looking for look
734 * like
735 * v binary search stopped here
736 * x + 1 ... | x | x + 1 | x ... | x
737 * ^ but we want to locate this spot
738 * or
739 * <---------> less than scan distance
740 * x + 1 ... | x ... | x - 1 | x
741 * ^ we want to locate this spot
742 */
743 stop_on_cycle = last_half_cycle;
744 if ((error = xlog_find_cycle_start(log, bp, first_blk,
745 &head_blk, last_half_cycle)))
746 goto bp_err;
747 }
748
749 /*
750 * Now validate the answer. Scan back some number of maximum possible
751 * blocks and make sure each one has the expected cycle number. The
752 * maximum is determined by the total possible amount of buffering
753 * in the in-core log. The following number can be made tighter if
754 * we actually look at the block size of the filesystem.
755 */
756 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
757 if (head_blk >= num_scan_bblks) {
758 /*
759 * We are guaranteed that the entire check can be performed
760 * in one buffer.
761 */
762 start_blk = head_blk - num_scan_bblks;
763 if ((error = xlog_find_verify_cycle(log,
764 start_blk, num_scan_bblks,
765 stop_on_cycle, &new_blk)))
766 goto bp_err;
767 if (new_blk != -1)
768 head_blk = new_blk;
769 } else { /* need to read 2 parts of log */
770 /*
771 * We are going to scan backwards in the log in two parts.
772 * First we scan the physical end of the log. In this part
773 * of the log, we are looking for blocks with cycle number
774 * last_half_cycle - 1.
775 * If we find one, then we know that the log starts there, as
776 * we've found a hole that didn't get written in going around
777 * the end of the physical log. The simple case for this is
778 * x + 1 ... | x ... | x - 1 | x
779 * <---------> less than scan distance
780 * If all of the blocks at the end of the log have cycle number
781 * last_half_cycle, then we check the blocks at the start of
782 * the log looking for occurrences of last_half_cycle. If we
783 * find one, then our current estimate for the location of the
784 * first occurrence of last_half_cycle is wrong and we move
785 * back to the hole we've found. This case looks like
786 * x + 1 ... | x | x + 1 | x ...
787 * ^ binary search stopped here
788 * Another case we need to handle that only occurs in 256k
789 * logs is
790 * x + 1 ... | x ... | x+1 | x ...
791 * ^ binary search stops here
792 * In a 256k log, the scan at the end of the log will see the
793 * x + 1 blocks. We need to skip past those since that is
794 * certainly not the head of the log. By searching for
795 * last_half_cycle-1 we accomplish that.
796 */
797 ASSERT(head_blk <= INT_MAX &&
798 (xfs_daddr_t) num_scan_bblks >= head_blk);
799 start_blk = log_bbnum - (num_scan_bblks - head_blk);
800 if ((error = xlog_find_verify_cycle(log, start_blk,
801 num_scan_bblks - (int)head_blk,
802 (stop_on_cycle - 1), &new_blk)))
803 goto bp_err;
804 if (new_blk != -1) {
805 head_blk = new_blk;
806 goto validate_head;
807 }
808
809 /*
810 * Scan beginning of log now. The last part of the physical
811 * log is good. This scan needs to verify that it doesn't find
812 * the last_half_cycle.
813 */
814 start_blk = 0;
815 ASSERT(head_blk <= INT_MAX);
816 if ((error = xlog_find_verify_cycle(log,
817 start_blk, (int)head_blk,
818 stop_on_cycle, &new_blk)))
819 goto bp_err;
820 if (new_blk != -1)
821 head_blk = new_blk;
822 }
823
824validate_head:
825 /*
826 * Now we need to make sure head_blk is not pointing to a block in
827 * the middle of a log record.
828 */
829 num_scan_bblks = XLOG_REC_SHIFT(log);
830 if (head_blk >= num_scan_bblks) {
831 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
832
833 /* start ptr at last block ptr before head_blk */
834 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
835 if (error == 1)
836 error = -EIO;
837 if (error)
838 goto bp_err;
839 } else {
840 start_blk = 0;
841 ASSERT(head_blk <= INT_MAX);
842 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
843 if (error < 0)
844 goto bp_err;
845 if (error == 1) {
846 /* We hit the beginning of the log during our search */
847 start_blk = log_bbnum - (num_scan_bblks - head_blk);
848 new_blk = log_bbnum;
849 ASSERT(start_blk <= INT_MAX &&
850 (xfs_daddr_t) log_bbnum-start_blk >= 0);
851 ASSERT(head_blk <= INT_MAX);
852 error = xlog_find_verify_log_record(log, start_blk,
853 &new_blk, (int)head_blk);
854 if (error == 1)
855 error = -EIO;
856 if (error)
857 goto bp_err;
858 if (new_blk != log_bbnum)
859 head_blk = new_blk;
860 } else if (error)
861 goto bp_err;
862 }
863
864 xlog_put_bp(bp);
865 if (head_blk == log_bbnum)
866 *return_head_blk = 0;
867 else
868 *return_head_blk = head_blk;
869 /*
870 * When returning here, we have a good block number. Bad block
871 * means that during a previous crash, we didn't have a clean break
872 * from cycle number N to cycle number N-1. In this case, we need
873 * to find the first block with cycle number N-1.
874 */
875 return 0;
876
877 bp_err:
878 xlog_put_bp(bp);
879
880 if (error)
881 xfs_warn(log->l_mp, "failed to find log head");
882 return error;
883}
884
885/*
886 * Seek backwards in the log for log record headers.
887 *
888 * Given a starting log block, walk backwards until we find the provided number
889 * of records or hit the provided tail block. The return value is the number of
890 * records encountered or a negative error code. The log block and buffer
891 * pointer of the last record seen are returned in rblk and rhead respectively.
892 */
893STATIC int
894xlog_rseek_logrec_hdr(
895 struct xlog *log,
896 xfs_daddr_t head_blk,
897 xfs_daddr_t tail_blk,
898 int count,
899 struct xfs_buf *bp,
900 xfs_daddr_t *rblk,
901 struct xlog_rec_header **rhead,
902 bool *wrapped)
903{
904 int i;
905 int error;
906 int found = 0;
907 char *offset = NULL;
908 xfs_daddr_t end_blk;
909
910 *wrapped = false;
911
912 /*
913 * Walk backwards from the head block until we hit the tail or the first
914 * block in the log.
915 */
916 end_blk = head_blk > tail_blk ? tail_blk : 0;
917 for (i = (int) head_blk - 1; i >= end_blk; i--) {
918 error = xlog_bread(log, i, 1, bp, &offset);
919 if (error)
920 goto out_error;
921
922 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
923 *rblk = i;
924 *rhead = (struct xlog_rec_header *) offset;
925 if (++found == count)
926 break;
927 }
928 }
929
930 /*
931 * If we haven't hit the tail block or the log record header count,
932 * start looking again from the end of the physical log. Note that
933 * callers can pass head == tail if the tail is not yet known.
934 */
935 if (tail_blk >= head_blk && found != count) {
936 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
937 error = xlog_bread(log, i, 1, bp, &offset);
938 if (error)
939 goto out_error;
940
941 if (*(__be32 *)offset ==
942 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
943 *wrapped = true;
944 *rblk = i;
945 *rhead = (struct xlog_rec_header *) offset;
946 if (++found == count)
947 break;
948 }
949 }
950 }
951
952 return found;
953
954out_error:
955 return error;
956}
957
958/*
959 * Seek forward in the log for log record headers.
960 *
961 * Given head and tail blocks, walk forward from the tail block until we find
962 * the provided number of records or hit the head block. The return value is the
963 * number of records encountered or a negative error code. The log block and
964 * buffer pointer of the last record seen are returned in rblk and rhead
965 * respectively.
966 */
967STATIC int
968xlog_seek_logrec_hdr(
969 struct xlog *log,
970 xfs_daddr_t head_blk,
971 xfs_daddr_t tail_blk,
972 int count,
973 struct xfs_buf *bp,
974 xfs_daddr_t *rblk,
975 struct xlog_rec_header **rhead,
976 bool *wrapped)
977{
978 int i;
979 int error;
980 int found = 0;
981 char *offset = NULL;
982 xfs_daddr_t end_blk;
983
984 *wrapped = false;
985
986 /*
987 * Walk forward from the tail block until we hit the head or the last
988 * block in the log.
989 */
990 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
991 for (i = (int) tail_blk; i <= end_blk; i++) {
992 error = xlog_bread(log, i, 1, bp, &offset);
993 if (error)
994 goto out_error;
995
996 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
997 *rblk = i;
998 *rhead = (struct xlog_rec_header *) offset;
999 if (++found == count)
1000 break;
1001 }
1002 }
1003
1004 /*
1005 * If we haven't hit the head block or the log record header count,
1006 * start looking again from the start of the physical log.
1007 */
1008 if (tail_blk > head_blk && found != count) {
1009 for (i = 0; i < (int) head_blk; i++) {
1010 error = xlog_bread(log, i, 1, bp, &offset);
1011 if (error)
1012 goto out_error;
1013
1014 if (*(__be32 *)offset ==
1015 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1016 *wrapped = true;
1017 *rblk = i;
1018 *rhead = (struct xlog_rec_header *) offset;
1019 if (++found == count)
1020 break;
1021 }
1022 }
1023 }
1024
1025 return found;
1026
1027out_error:
1028 return error;
1029}
1030
1031/*
1032 * Check the log tail for torn writes. This is required when torn writes are
1033 * detected at the head and the head had to be walked back to a previous record.
1034 * The tail of the previous record must now be verified to ensure the torn
1035 * writes didn't corrupt the previous tail.
1036 *
1037 * Return an error if CRC verification fails as recovery cannot proceed.
1038 */
1039STATIC int
1040xlog_verify_tail(
1041 struct xlog *log,
1042 xfs_daddr_t head_blk,
1043 xfs_daddr_t tail_blk)
1044{
1045 struct xlog_rec_header *thead;
1046 struct xfs_buf *bp;
1047 xfs_daddr_t first_bad;
1048 int count;
1049 int error = 0;
1050 bool wrapped;
1051 xfs_daddr_t tmp_head;
1052
1053 bp = xlog_get_bp(log, 1);
1054 if (!bp)
1055 return -ENOMEM;
1056
1057 /*
1058 * Seek XLOG_MAX_ICLOGS + 1 records past the current tail record to get
1059 * a temporary head block that points after the last possible
1060 * concurrently written record of the tail.
1061 */
1062 count = xlog_seek_logrec_hdr(log, head_blk, tail_blk,
1063 XLOG_MAX_ICLOGS + 1, bp, &tmp_head, &thead,
1064 &wrapped);
1065 if (count < 0) {
1066 error = count;
1067 goto out;
1068 }
1069
1070 /*
1071 * If the call above didn't find XLOG_MAX_ICLOGS + 1 records, we ran
1072 * into the actual log head. tmp_head points to the start of the record
1073 * so update it to the actual head block.
1074 */
1075 if (count < XLOG_MAX_ICLOGS + 1)
1076 tmp_head = head_blk;
1077
1078 /*
1079 * We now have a tail and temporary head block that covers at least
1080 * XLOG_MAX_ICLOGS records from the tail. We need to verify that these
1081 * records were completely written. Run a CRC verification pass from
1082 * tail to head and return the result.
1083 */
1084 error = xlog_do_recovery_pass(log, tmp_head, tail_blk,
1085 XLOG_RECOVER_CRCPASS, &first_bad);
1086
1087out:
1088 xlog_put_bp(bp);
1089 return error;
1090}
1091
1092/*
1093 * Detect and trim torn writes from the head of the log.
1094 *
1095 * Storage without sector atomicity guarantees can result in torn writes in the
1096 * log in the event of a crash. Our only means to detect this scenario is via
1097 * CRC verification. While we can't always be certain that CRC verification
1098 * failure is due to a torn write vs. an unrelated corruption, we do know that
1099 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1100 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1101 * the log and treat failures in this range as torn writes as a matter of
1102 * policy. In the event of CRC failure, the head is walked back to the last good
1103 * record in the log and the tail is updated from that record and verified.
1104 */
1105STATIC int
1106xlog_verify_head(
1107 struct xlog *log,
1108 xfs_daddr_t *head_blk, /* in/out: unverified head */
1109 xfs_daddr_t *tail_blk, /* out: tail block */
1110 struct xfs_buf *bp,
1111 xfs_daddr_t *rhead_blk, /* start blk of last record */
1112 struct xlog_rec_header **rhead, /* ptr to last record */
1113 bool *wrapped) /* last rec. wraps phys. log */
1114{
1115 struct xlog_rec_header *tmp_rhead;
1116 struct xfs_buf *tmp_bp;
1117 xfs_daddr_t first_bad;
1118 xfs_daddr_t tmp_rhead_blk;
1119 int found;
1120 int error;
1121 bool tmp_wrapped;
1122
1123 /*
1124 * Check the head of the log for torn writes. Search backwards from the
1125 * head until we hit the tail or the maximum number of log record I/Os
1126 * that could have been in flight at one time. Use a temporary buffer so
1127 * we don't trash the rhead/bp pointers from the caller.
1128 */
1129 tmp_bp = xlog_get_bp(log, 1);
1130 if (!tmp_bp)
1131 return -ENOMEM;
1132 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1133 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1134 &tmp_rhead, &tmp_wrapped);
1135 xlog_put_bp(tmp_bp);
1136 if (error < 0)
1137 return error;
1138
1139 /*
1140 * Now run a CRC verification pass over the records starting at the
1141 * block found above to the current head. If a CRC failure occurs, the
1142 * log block of the first bad record is saved in first_bad.
1143 */
1144 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1145 XLOG_RECOVER_CRCPASS, &first_bad);
1146 if (error == -EFSBADCRC) {
1147 /*
1148 * We've hit a potential torn write. Reset the error and warn
1149 * about it.
1150 */
1151 error = 0;
1152 xfs_warn(log->l_mp,
1153"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1154 first_bad, *head_blk);
1155
1156 /*
1157 * Get the header block and buffer pointer for the last good
1158 * record before the bad record.
1159 *
1160 * Note that xlog_find_tail() clears the blocks at the new head
1161 * (i.e., the records with invalid CRC) if the cycle number
1162 * matches the the current cycle.
1163 */
1164 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1165 rhead_blk, rhead, wrapped);
1166 if (found < 0)
1167 return found;
1168 if (found == 0) /* XXX: right thing to do here? */
1169 return -EIO;
1170
1171 /*
1172 * Reset the head block to the starting block of the first bad
1173 * log record and set the tail block based on the last good
1174 * record.
1175 *
1176 * Bail out if the updated head/tail match as this indicates
1177 * possible corruption outside of the acceptable
1178 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1179 */
1180 *head_blk = first_bad;
1181 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1182 if (*head_blk == *tail_blk) {
1183 ASSERT(0);
1184 return 0;
1185 }
1186
1187 /*
1188 * Now verify the tail based on the updated head. This is
1189 * required because the torn writes trimmed from the head could
1190 * have been written over the tail of a previous record. Return
1191 * any errors since recovery cannot proceed if the tail is
1192 * corrupt.
1193 *
1194 * XXX: This leaves a gap in truly robust protection from torn
1195 * writes in the log. If the head is behind the tail, the tail
1196 * pushes forward to create some space and then a crash occurs
1197 * causing the writes into the previous record's tail region to
1198 * tear, log recovery isn't able to recover.
1199 *
1200 * How likely is this to occur? If possible, can we do something
1201 * more intelligent here? Is it safe to push the tail forward if
1202 * we can determine that the tail is within the range of the
1203 * torn write (e.g., the kernel can only overwrite the tail if
1204 * it has actually been pushed forward)? Alternatively, could we
1205 * somehow prevent this condition at runtime?
1206 */
1207 error = xlog_verify_tail(log, *head_blk, *tail_blk);
1208 }
1209
1210 return error;
1211}
1212
1213/*
1214 * Check whether the head of the log points to an unmount record. In other
1215 * words, determine whether the log is clean. If so, update the in-core state
1216 * appropriately.
1217 */
1218static int
1219xlog_check_unmount_rec(
1220 struct xlog *log,
1221 xfs_daddr_t *head_blk,
1222 xfs_daddr_t *tail_blk,
1223 struct xlog_rec_header *rhead,
1224 xfs_daddr_t rhead_blk,
1225 struct xfs_buf *bp,
1226 bool *clean)
1227{
1228 struct xlog_op_header *op_head;
1229 xfs_daddr_t umount_data_blk;
1230 xfs_daddr_t after_umount_blk;
1231 int hblks;
1232 int error;
1233 char *offset;
1234
1235 *clean = false;
1236
1237 /*
1238 * Look for unmount record. If we find it, then we know there was a
1239 * clean unmount. Since 'i' could be the last block in the physical
1240 * log, we convert to a log block before comparing to the head_blk.
1241 *
1242 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1243 * below. We won't want to clear the unmount record if there is one, so
1244 * we pass the lsn of the unmount record rather than the block after it.
1245 */
1246 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1247 int h_size = be32_to_cpu(rhead->h_size);
1248 int h_version = be32_to_cpu(rhead->h_version);
1249
1250 if ((h_version & XLOG_VERSION_2) &&
1251 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1252 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1253 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1254 hblks++;
1255 } else {
1256 hblks = 1;
1257 }
1258 } else {
1259 hblks = 1;
1260 }
1261 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1262 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1263 if (*head_blk == after_umount_blk &&
1264 be32_to_cpu(rhead->h_num_logops) == 1) {
1265 umount_data_blk = rhead_blk + hblks;
1266 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1267 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1268 if (error)
1269 return error;
1270
1271 op_head = (struct xlog_op_header *)offset;
1272 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1273 /*
1274 * Set tail and last sync so that newly written log
1275 * records will point recovery to after the current
1276 * unmount record.
1277 */
1278 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1279 log->l_curr_cycle, after_umount_blk);
1280 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1281 log->l_curr_cycle, after_umount_blk);
1282 *tail_blk = after_umount_blk;
1283
1284 *clean = true;
1285 }
1286 }
1287
1288 return 0;
1289}
1290
1291static void
1292xlog_set_state(
1293 struct xlog *log,
1294 xfs_daddr_t head_blk,
1295 struct xlog_rec_header *rhead,
1296 xfs_daddr_t rhead_blk,
1297 bool bump_cycle)
1298{
1299 /*
1300 * Reset log values according to the state of the log when we
1301 * crashed. In the case where head_blk == 0, we bump curr_cycle
1302 * one because the next write starts a new cycle rather than
1303 * continuing the cycle of the last good log record. At this
1304 * point we have guaranteed that all partial log records have been
1305 * accounted for. Therefore, we know that the last good log record
1306 * written was complete and ended exactly on the end boundary
1307 * of the physical log.
1308 */
1309 log->l_prev_block = rhead_blk;
1310 log->l_curr_block = (int)head_blk;
1311 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1312 if (bump_cycle)
1313 log->l_curr_cycle++;
1314 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1315 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1316 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1317 BBTOB(log->l_curr_block));
1318 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1319 BBTOB(log->l_curr_block));
1320}
1321
1322/*
1323 * Find the sync block number or the tail of the log.
1324 *
1325 * This will be the block number of the last record to have its
1326 * associated buffers synced to disk. Every log record header has
1327 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1328 * to get a sync block number. The only concern is to figure out which
1329 * log record header to believe.
1330 *
1331 * The following algorithm uses the log record header with the largest
1332 * lsn. The entire log record does not need to be valid. We only care
1333 * that the header is valid.
1334 *
1335 * We could speed up search by using current head_blk buffer, but it is not
1336 * available.
1337 */
1338STATIC int
1339xlog_find_tail(
1340 struct xlog *log,
1341 xfs_daddr_t *head_blk,
1342 xfs_daddr_t *tail_blk)
1343{
1344 xlog_rec_header_t *rhead;
1345 char *offset = NULL;
1346 xfs_buf_t *bp;
1347 int error;
1348 xfs_daddr_t rhead_blk;
1349 xfs_lsn_t tail_lsn;
1350 bool wrapped = false;
1351 bool clean = false;
1352
1353 /*
1354 * Find previous log record
1355 */
1356 if ((error = xlog_find_head(log, head_blk)))
1357 return error;
1358 ASSERT(*head_blk < INT_MAX);
1359
1360 bp = xlog_get_bp(log, 1);
1361 if (!bp)
1362 return -ENOMEM;
1363 if (*head_blk == 0) { /* special case */
1364 error = xlog_bread(log, 0, 1, bp, &offset);
1365 if (error)
1366 goto done;
1367
1368 if (xlog_get_cycle(offset) == 0) {
1369 *tail_blk = 0;
1370 /* leave all other log inited values alone */
1371 goto done;
1372 }
1373 }
1374
1375 /*
1376 * Search backwards through the log looking for the log record header
1377 * block. This wraps all the way back around to the head so something is
1378 * seriously wrong if we can't find it.
1379 */
1380 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1381 &rhead_blk, &rhead, &wrapped);
1382 if (error < 0)
1383 return error;
1384 if (!error) {
1385 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1386 return -EIO;
1387 }
1388 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1389
1390 /*
1391 * Set the log state based on the current head record.
1392 */
1393 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1394 tail_lsn = atomic64_read(&log->l_tail_lsn);
1395
1396 /*
1397 * Look for an unmount record at the head of the log. This sets the log
1398 * state to determine whether recovery is necessary.
1399 */
1400 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1401 rhead_blk, bp, &clean);
1402 if (error)
1403 goto done;
1404
1405 /*
1406 * Verify the log head if the log is not clean (e.g., we have anything
1407 * but an unmount record at the head). This uses CRC verification to
1408 * detect and trim torn writes. If discovered, CRC failures are
1409 * considered torn writes and the log head is trimmed accordingly.
1410 *
1411 * Note that we can only run CRC verification when the log is dirty
1412 * because there's no guarantee that the log data behind an unmount
1413 * record is compatible with the current architecture.
1414 */
1415 if (!clean) {
1416 xfs_daddr_t orig_head = *head_blk;
1417
1418 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1419 &rhead_blk, &rhead, &wrapped);
1420 if (error)
1421 goto done;
1422
1423 /* update in-core state again if the head changed */
1424 if (*head_blk != orig_head) {
1425 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1426 wrapped);
1427 tail_lsn = atomic64_read(&log->l_tail_lsn);
1428 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1429 rhead, rhead_blk, bp,
1430 &clean);
1431 if (error)
1432 goto done;
1433 }
1434 }
1435
1436 /*
1437 * Note that the unmount was clean. If the unmount was not clean, we
1438 * need to know this to rebuild the superblock counters from the perag
1439 * headers if we have a filesystem using non-persistent counters.
1440 */
1441 if (clean)
1442 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1443
1444 /*
1445 * Make sure that there are no blocks in front of the head
1446 * with the same cycle number as the head. This can happen
1447 * because we allow multiple outstanding log writes concurrently,
1448 * and the later writes might make it out before earlier ones.
1449 *
1450 * We use the lsn from before modifying it so that we'll never
1451 * overwrite the unmount record after a clean unmount.
1452 *
1453 * Do this only if we are going to recover the filesystem
1454 *
1455 * NOTE: This used to say "if (!readonly)"
1456 * However on Linux, we can & do recover a read-only filesystem.
1457 * We only skip recovery if NORECOVERY is specified on mount,
1458 * in which case we would not be here.
1459 *
1460 * But... if the -device- itself is readonly, just skip this.
1461 * We can't recover this device anyway, so it won't matter.
1462 */
1463 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1464 error = xlog_clear_stale_blocks(log, tail_lsn);
1465
1466done:
1467 xlog_put_bp(bp);
1468
1469 if (error)
1470 xfs_warn(log->l_mp, "failed to locate log tail");
1471 return error;
1472}
1473
1474/*
1475 * Is the log zeroed at all?
1476 *
1477 * The last binary search should be changed to perform an X block read
1478 * once X becomes small enough. You can then search linearly through
1479 * the X blocks. This will cut down on the number of reads we need to do.
1480 *
1481 * If the log is partially zeroed, this routine will pass back the blkno
1482 * of the first block with cycle number 0. It won't have a complete LR
1483 * preceding it.
1484 *
1485 * Return:
1486 * 0 => the log is completely written to
1487 * 1 => use *blk_no as the first block of the log
1488 * <0 => error has occurred
1489 */
1490STATIC int
1491xlog_find_zeroed(
1492 struct xlog *log,
1493 xfs_daddr_t *blk_no)
1494{
1495 xfs_buf_t *bp;
1496 char *offset;
1497 uint first_cycle, last_cycle;
1498 xfs_daddr_t new_blk, last_blk, start_blk;
1499 xfs_daddr_t num_scan_bblks;
1500 int error, log_bbnum = log->l_logBBsize;
1501
1502 *blk_no = 0;
1503
1504 /* check totally zeroed log */
1505 bp = xlog_get_bp(log, 1);
1506 if (!bp)
1507 return -ENOMEM;
1508 error = xlog_bread(log, 0, 1, bp, &offset);
1509 if (error)
1510 goto bp_err;
1511
1512 first_cycle = xlog_get_cycle(offset);
1513 if (first_cycle == 0) { /* completely zeroed log */
1514 *blk_no = 0;
1515 xlog_put_bp(bp);
1516 return 1;
1517 }
1518
1519 /* check partially zeroed log */
1520 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1521 if (error)
1522 goto bp_err;
1523
1524 last_cycle = xlog_get_cycle(offset);
1525 if (last_cycle != 0) { /* log completely written to */
1526 xlog_put_bp(bp);
1527 return 0;
1528 } else if (first_cycle != 1) {
1529 /*
1530 * If the cycle of the last block is zero, the cycle of
1531 * the first block must be 1. If it's not, maybe we're
1532 * not looking at a log... Bail out.
1533 */
1534 xfs_warn(log->l_mp,
1535 "Log inconsistent or not a log (last==0, first!=1)");
1536 error = -EINVAL;
1537 goto bp_err;
1538 }
1539
1540 /* we have a partially zeroed log */
1541 last_blk = log_bbnum-1;
1542 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1543 goto bp_err;
1544
1545 /*
1546 * Validate the answer. Because there is no way to guarantee that
1547 * the entire log is made up of log records which are the same size,
1548 * we scan over the defined maximum blocks. At this point, the maximum
1549 * is not chosen to mean anything special. XXXmiken
1550 */
1551 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1552 ASSERT(num_scan_bblks <= INT_MAX);
1553
1554 if (last_blk < num_scan_bblks)
1555 num_scan_bblks = last_blk;
1556 start_blk = last_blk - num_scan_bblks;
1557
1558 /*
1559 * We search for any instances of cycle number 0 that occur before
1560 * our current estimate of the head. What we're trying to detect is
1561 * 1 ... | 0 | 1 | 0...
1562 * ^ binary search ends here
1563 */
1564 if ((error = xlog_find_verify_cycle(log, start_blk,
1565 (int)num_scan_bblks, 0, &new_blk)))
1566 goto bp_err;
1567 if (new_blk != -1)
1568 last_blk = new_blk;
1569
1570 /*
1571 * Potentially backup over partial log record write. We don't need
1572 * to search the end of the log because we know it is zero.
1573 */
1574 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1575 if (error == 1)
1576 error = -EIO;
1577 if (error)
1578 goto bp_err;
1579
1580 *blk_no = last_blk;
1581bp_err:
1582 xlog_put_bp(bp);
1583 if (error)
1584 return error;
1585 return 1;
1586}
1587
1588/*
1589 * These are simple subroutines used by xlog_clear_stale_blocks() below
1590 * to initialize a buffer full of empty log record headers and write
1591 * them into the log.
1592 */
1593STATIC void
1594xlog_add_record(
1595 struct xlog *log,
1596 char *buf,
1597 int cycle,
1598 int block,
1599 int tail_cycle,
1600 int tail_block)
1601{
1602 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1603
1604 memset(buf, 0, BBSIZE);
1605 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1606 recp->h_cycle = cpu_to_be32(cycle);
1607 recp->h_version = cpu_to_be32(
1608 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1609 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1610 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1611 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1612 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1613}
1614
1615STATIC int
1616xlog_write_log_records(
1617 struct xlog *log,
1618 int cycle,
1619 int start_block,
1620 int blocks,
1621 int tail_cycle,
1622 int tail_block)
1623{
1624 char *offset;
1625 xfs_buf_t *bp;
1626 int balign, ealign;
1627 int sectbb = log->l_sectBBsize;
1628 int end_block = start_block + blocks;
1629 int bufblks;
1630 int error = 0;
1631 int i, j = 0;
1632
1633 /*
1634 * Greedily allocate a buffer big enough to handle the full
1635 * range of basic blocks to be written. If that fails, try
1636 * a smaller size. We need to be able to write at least a
1637 * log sector, or we're out of luck.
1638 */
1639 bufblks = 1 << ffs(blocks);
1640 while (bufblks > log->l_logBBsize)
1641 bufblks >>= 1;
1642 while (!(bp = xlog_get_bp(log, bufblks))) {
1643 bufblks >>= 1;
1644 if (bufblks < sectbb)
1645 return -ENOMEM;
1646 }
1647
1648 /* We may need to do a read at the start to fill in part of
1649 * the buffer in the starting sector not covered by the first
1650 * write below.
1651 */
1652 balign = round_down(start_block, sectbb);
1653 if (balign != start_block) {
1654 error = xlog_bread_noalign(log, start_block, 1, bp);
1655 if (error)
1656 goto out_put_bp;
1657
1658 j = start_block - balign;
1659 }
1660
1661 for (i = start_block; i < end_block; i += bufblks) {
1662 int bcount, endcount;
1663
1664 bcount = min(bufblks, end_block - start_block);
1665 endcount = bcount - j;
1666
1667 /* We may need to do a read at the end to fill in part of
1668 * the buffer in the final sector not covered by the write.
1669 * If this is the same sector as the above read, skip it.
1670 */
1671 ealign = round_down(end_block, sectbb);
1672 if (j == 0 && (start_block + endcount > ealign)) {
1673 offset = bp->b_addr + BBTOB(ealign - start_block);
1674 error = xlog_bread_offset(log, ealign, sectbb,
1675 bp, offset);
1676 if (error)
1677 break;
1678
1679 }
1680
1681 offset = xlog_align(log, start_block, endcount, bp);
1682 for (; j < endcount; j++) {
1683 xlog_add_record(log, offset, cycle, i+j,
1684 tail_cycle, tail_block);
1685 offset += BBSIZE;
1686 }
1687 error = xlog_bwrite(log, start_block, endcount, bp);
1688 if (error)
1689 break;
1690 start_block += endcount;
1691 j = 0;
1692 }
1693
1694 out_put_bp:
1695 xlog_put_bp(bp);
1696 return error;
1697}
1698
1699/*
1700 * This routine is called to blow away any incomplete log writes out
1701 * in front of the log head. We do this so that we won't become confused
1702 * if we come up, write only a little bit more, and then crash again.
1703 * If we leave the partial log records out there, this situation could
1704 * cause us to think those partial writes are valid blocks since they
1705 * have the current cycle number. We get rid of them by overwriting them
1706 * with empty log records with the old cycle number rather than the
1707 * current one.
1708 *
1709 * The tail lsn is passed in rather than taken from
1710 * the log so that we will not write over the unmount record after a
1711 * clean unmount in a 512 block log. Doing so would leave the log without
1712 * any valid log records in it until a new one was written. If we crashed
1713 * during that time we would not be able to recover.
1714 */
1715STATIC int
1716xlog_clear_stale_blocks(
1717 struct xlog *log,
1718 xfs_lsn_t tail_lsn)
1719{
1720 int tail_cycle, head_cycle;
1721 int tail_block, head_block;
1722 int tail_distance, max_distance;
1723 int distance;
1724 int error;
1725
1726 tail_cycle = CYCLE_LSN(tail_lsn);
1727 tail_block = BLOCK_LSN(tail_lsn);
1728 head_cycle = log->l_curr_cycle;
1729 head_block = log->l_curr_block;
1730
1731 /*
1732 * Figure out the distance between the new head of the log
1733 * and the tail. We want to write over any blocks beyond the
1734 * head that we may have written just before the crash, but
1735 * we don't want to overwrite the tail of the log.
1736 */
1737 if (head_cycle == tail_cycle) {
1738 /*
1739 * The tail is behind the head in the physical log,
1740 * so the distance from the head to the tail is the
1741 * distance from the head to the end of the log plus
1742 * the distance from the beginning of the log to the
1743 * tail.
1744 */
1745 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1746 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1747 XFS_ERRLEVEL_LOW, log->l_mp);
1748 return -EFSCORRUPTED;
1749 }
1750 tail_distance = tail_block + (log->l_logBBsize - head_block);
1751 } else {
1752 /*
1753 * The head is behind the tail in the physical log,
1754 * so the distance from the head to the tail is just
1755 * the tail block minus the head block.
1756 */
1757 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1758 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1759 XFS_ERRLEVEL_LOW, log->l_mp);
1760 return -EFSCORRUPTED;
1761 }
1762 tail_distance = tail_block - head_block;
1763 }
1764
1765 /*
1766 * If the head is right up against the tail, we can't clear
1767 * anything.
1768 */
1769 if (tail_distance <= 0) {
1770 ASSERT(tail_distance == 0);
1771 return 0;
1772 }
1773
1774 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1775 /*
1776 * Take the smaller of the maximum amount of outstanding I/O
1777 * we could have and the distance to the tail to clear out.
1778 * We take the smaller so that we don't overwrite the tail and
1779 * we don't waste all day writing from the head to the tail
1780 * for no reason.
1781 */
1782 max_distance = MIN(max_distance, tail_distance);
1783
1784 if ((head_block + max_distance) <= log->l_logBBsize) {
1785 /*
1786 * We can stomp all the blocks we need to without
1787 * wrapping around the end of the log. Just do it
1788 * in a single write. Use the cycle number of the
1789 * current cycle minus one so that the log will look like:
1790 * n ... | n - 1 ...
1791 */
1792 error = xlog_write_log_records(log, (head_cycle - 1),
1793 head_block, max_distance, tail_cycle,
1794 tail_block);
1795 if (error)
1796 return error;
1797 } else {
1798 /*
1799 * We need to wrap around the end of the physical log in
1800 * order to clear all the blocks. Do it in two separate
1801 * I/Os. The first write should be from the head to the
1802 * end of the physical log, and it should use the current
1803 * cycle number minus one just like above.
1804 */
1805 distance = log->l_logBBsize - head_block;
1806 error = xlog_write_log_records(log, (head_cycle - 1),
1807 head_block, distance, tail_cycle,
1808 tail_block);
1809
1810 if (error)
1811 return error;
1812
1813 /*
1814 * Now write the blocks at the start of the physical log.
1815 * This writes the remainder of the blocks we want to clear.
1816 * It uses the current cycle number since we're now on the
1817 * same cycle as the head so that we get:
1818 * n ... n ... | n - 1 ...
1819 * ^^^^^ blocks we're writing
1820 */
1821 distance = max_distance - (log->l_logBBsize - head_block);
1822 error = xlog_write_log_records(log, head_cycle, 0, distance,
1823 tail_cycle, tail_block);
1824 if (error)
1825 return error;
1826 }
1827
1828 return 0;
1829}
1830
1831/******************************************************************************
1832 *
1833 * Log recover routines
1834 *
1835 ******************************************************************************
1836 */
1837
1838/*
1839 * Sort the log items in the transaction.
1840 *
1841 * The ordering constraints are defined by the inode allocation and unlink
1842 * behaviour. The rules are:
1843 *
1844 * 1. Every item is only logged once in a given transaction. Hence it
1845 * represents the last logged state of the item. Hence ordering is
1846 * dependent on the order in which operations need to be performed so
1847 * required initial conditions are always met.
1848 *
1849 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1850 * there's nothing to replay from them so we can simply cull them
1851 * from the transaction. However, we can't do that until after we've
1852 * replayed all the other items because they may be dependent on the
1853 * cancelled buffer and replaying the cancelled buffer can remove it
1854 * form the cancelled buffer table. Hence they have tobe done last.
1855 *
1856 * 3. Inode allocation buffers must be replayed before inode items that
1857 * read the buffer and replay changes into it. For filesystems using the
1858 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1859 * treated the same as inode allocation buffers as they create and
1860 * initialise the buffers directly.
1861 *
1862 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1863 * This ensures that inodes are completely flushed to the inode buffer
1864 * in a "free" state before we remove the unlinked inode list pointer.
1865 *
1866 * Hence the ordering needs to be inode allocation buffers first, inode items
1867 * second, inode unlink buffers third and cancelled buffers last.
1868 *
1869 * But there's a problem with that - we can't tell an inode allocation buffer
1870 * apart from a regular buffer, so we can't separate them. We can, however,
1871 * tell an inode unlink buffer from the others, and so we can separate them out
1872 * from all the other buffers and move them to last.
1873 *
1874 * Hence, 4 lists, in order from head to tail:
1875 * - buffer_list for all buffers except cancelled/inode unlink buffers
1876 * - item_list for all non-buffer items
1877 * - inode_buffer_list for inode unlink buffers
1878 * - cancel_list for the cancelled buffers
1879 *
1880 * Note that we add objects to the tail of the lists so that first-to-last
1881 * ordering is preserved within the lists. Adding objects to the head of the
1882 * list means when we traverse from the head we walk them in last-to-first
1883 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1884 * but for all other items there may be specific ordering that we need to
1885 * preserve.
1886 */
1887STATIC int
1888xlog_recover_reorder_trans(
1889 struct xlog *log,
1890 struct xlog_recover *trans,
1891 int pass)
1892{
1893 xlog_recover_item_t *item, *n;
1894 int error = 0;
1895 LIST_HEAD(sort_list);
1896 LIST_HEAD(cancel_list);
1897 LIST_HEAD(buffer_list);
1898 LIST_HEAD(inode_buffer_list);
1899 LIST_HEAD(inode_list);
1900
1901 list_splice_init(&trans->r_itemq, &sort_list);
1902 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1903 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1904
1905 switch (ITEM_TYPE(item)) {
1906 case XFS_LI_ICREATE:
1907 list_move_tail(&item->ri_list, &buffer_list);
1908 break;
1909 case XFS_LI_BUF:
1910 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1911 trace_xfs_log_recover_item_reorder_head(log,
1912 trans, item, pass);
1913 list_move(&item->ri_list, &cancel_list);
1914 break;
1915 }
1916 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1917 list_move(&item->ri_list, &inode_buffer_list);
1918 break;
1919 }
1920 list_move_tail(&item->ri_list, &buffer_list);
1921 break;
1922 case XFS_LI_INODE:
1923 case XFS_LI_DQUOT:
1924 case XFS_LI_QUOTAOFF:
1925 case XFS_LI_EFD:
1926 case XFS_LI_EFI:
1927 case XFS_LI_RUI:
1928 case XFS_LI_RUD:
1929 case XFS_LI_CUI:
1930 case XFS_LI_CUD:
1931 case XFS_LI_BUI:
1932 case XFS_LI_BUD:
1933 trace_xfs_log_recover_item_reorder_tail(log,
1934 trans, item, pass);
1935 list_move_tail(&item->ri_list, &inode_list);
1936 break;
1937 default:
1938 xfs_warn(log->l_mp,
1939 "%s: unrecognized type of log operation",
1940 __func__);
1941 ASSERT(0);
1942 /*
1943 * return the remaining items back to the transaction
1944 * item list so they can be freed in caller.
1945 */
1946 if (!list_empty(&sort_list))
1947 list_splice_init(&sort_list, &trans->r_itemq);
1948 error = -EIO;
1949 goto out;
1950 }
1951 }
1952out:
1953 ASSERT(list_empty(&sort_list));
1954 if (!list_empty(&buffer_list))
1955 list_splice(&buffer_list, &trans->r_itemq);
1956 if (!list_empty(&inode_list))
1957 list_splice_tail(&inode_list, &trans->r_itemq);
1958 if (!list_empty(&inode_buffer_list))
1959 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1960 if (!list_empty(&cancel_list))
1961 list_splice_tail(&cancel_list, &trans->r_itemq);
1962 return error;
1963}
1964
1965/*
1966 * Build up the table of buf cancel records so that we don't replay
1967 * cancelled data in the second pass. For buffer records that are
1968 * not cancel records, there is nothing to do here so we just return.
1969 *
1970 * If we get a cancel record which is already in the table, this indicates
1971 * that the buffer was cancelled multiple times. In order to ensure
1972 * that during pass 2 we keep the record in the table until we reach its
1973 * last occurrence in the log, we keep a reference count in the cancel
1974 * record in the table to tell us how many times we expect to see this
1975 * record during the second pass.
1976 */
1977STATIC int
1978xlog_recover_buffer_pass1(
1979 struct xlog *log,
1980 struct xlog_recover_item *item)
1981{
1982 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1983 struct list_head *bucket;
1984 struct xfs_buf_cancel *bcp;
1985
1986 /*
1987 * If this isn't a cancel buffer item, then just return.
1988 */
1989 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1990 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1991 return 0;
1992 }
1993
1994 /*
1995 * Insert an xfs_buf_cancel record into the hash table of them.
1996 * If there is already an identical record, bump its reference count.
1997 */
1998 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1999 list_for_each_entry(bcp, bucket, bc_list) {
2000 if (bcp->bc_blkno == buf_f->blf_blkno &&
2001 bcp->bc_len == buf_f->blf_len) {
2002 bcp->bc_refcount++;
2003 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2004 return 0;
2005 }
2006 }
2007
2008 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2009 bcp->bc_blkno = buf_f->blf_blkno;
2010 bcp->bc_len = buf_f->blf_len;
2011 bcp->bc_refcount = 1;
2012 list_add_tail(&bcp->bc_list, bucket);
2013
2014 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2015 return 0;
2016}
2017
2018/*
2019 * Check to see whether the buffer being recovered has a corresponding
2020 * entry in the buffer cancel record table. If it is, return the cancel
2021 * buffer structure to the caller.
2022 */
2023STATIC struct xfs_buf_cancel *
2024xlog_peek_buffer_cancelled(
2025 struct xlog *log,
2026 xfs_daddr_t blkno,
2027 uint len,
2028 unsigned short flags)
2029{
2030 struct list_head *bucket;
2031 struct xfs_buf_cancel *bcp;
2032
2033 if (!log->l_buf_cancel_table) {
2034 /* empty table means no cancelled buffers in the log */
2035 ASSERT(!(flags & XFS_BLF_CANCEL));
2036 return NULL;
2037 }
2038
2039 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2040 list_for_each_entry(bcp, bucket, bc_list) {
2041 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2042 return bcp;
2043 }
2044
2045 /*
2046 * We didn't find a corresponding entry in the table, so return 0 so
2047 * that the buffer is NOT cancelled.
2048 */
2049 ASSERT(!(flags & XFS_BLF_CANCEL));
2050 return NULL;
2051}
2052
2053/*
2054 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2055 * otherwise return 0. If the buffer is actually a buffer cancel item
2056 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2057 * table and remove it from the table if this is the last reference.
2058 *
2059 * We remove the cancel record from the table when we encounter its last
2060 * occurrence in the log so that if the same buffer is re-used again after its
2061 * last cancellation we actually replay the changes made at that point.
2062 */
2063STATIC int
2064xlog_check_buffer_cancelled(
2065 struct xlog *log,
2066 xfs_daddr_t blkno,
2067 uint len,
2068 unsigned short flags)
2069{
2070 struct xfs_buf_cancel *bcp;
2071
2072 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2073 if (!bcp)
2074 return 0;
2075
2076 /*
2077 * We've go a match, so return 1 so that the recovery of this buffer
2078 * is cancelled. If this buffer is actually a buffer cancel log
2079 * item, then decrement the refcount on the one in the table and
2080 * remove it if this is the last reference.
2081 */
2082 if (flags & XFS_BLF_CANCEL) {
2083 if (--bcp->bc_refcount == 0) {
2084 list_del(&bcp->bc_list);
2085 kmem_free(bcp);
2086 }
2087 }
2088 return 1;
2089}
2090
2091/*
2092 * Perform recovery for a buffer full of inodes. In these buffers, the only
2093 * data which should be recovered is that which corresponds to the
2094 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2095 * data for the inodes is always logged through the inodes themselves rather
2096 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2097 *
2098 * The only time when buffers full of inodes are fully recovered is when the
2099 * buffer is full of newly allocated inodes. In this case the buffer will
2100 * not be marked as an inode buffer and so will be sent to
2101 * xlog_recover_do_reg_buffer() below during recovery.
2102 */
2103STATIC int
2104xlog_recover_do_inode_buffer(
2105 struct xfs_mount *mp,
2106 xlog_recover_item_t *item,
2107 struct xfs_buf *bp,
2108 xfs_buf_log_format_t *buf_f)
2109{
2110 int i;
2111 int item_index = 0;
2112 int bit = 0;
2113 int nbits = 0;
2114 int reg_buf_offset = 0;
2115 int reg_buf_bytes = 0;
2116 int next_unlinked_offset;
2117 int inodes_per_buf;
2118 xfs_agino_t *logged_nextp;
2119 xfs_agino_t *buffer_nextp;
2120
2121 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2122
2123 /*
2124 * Post recovery validation only works properly on CRC enabled
2125 * filesystems.
2126 */
2127 if (xfs_sb_version_hascrc(&mp->m_sb))
2128 bp->b_ops = &xfs_inode_buf_ops;
2129
2130 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2131 for (i = 0; i < inodes_per_buf; i++) {
2132 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2133 offsetof(xfs_dinode_t, di_next_unlinked);
2134
2135 while (next_unlinked_offset >=
2136 (reg_buf_offset + reg_buf_bytes)) {
2137 /*
2138 * The next di_next_unlinked field is beyond
2139 * the current logged region. Find the next
2140 * logged region that contains or is beyond
2141 * the current di_next_unlinked field.
2142 */
2143 bit += nbits;
2144 bit = xfs_next_bit(buf_f->blf_data_map,
2145 buf_f->blf_map_size, bit);
2146
2147 /*
2148 * If there are no more logged regions in the
2149 * buffer, then we're done.
2150 */
2151 if (bit == -1)
2152 return 0;
2153
2154 nbits = xfs_contig_bits(buf_f->blf_data_map,
2155 buf_f->blf_map_size, bit);
2156 ASSERT(nbits > 0);
2157 reg_buf_offset = bit << XFS_BLF_SHIFT;
2158 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2159 item_index++;
2160 }
2161
2162 /*
2163 * If the current logged region starts after the current
2164 * di_next_unlinked field, then move on to the next
2165 * di_next_unlinked field.
2166 */
2167 if (next_unlinked_offset < reg_buf_offset)
2168 continue;
2169
2170 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2171 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2172 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2173 BBTOB(bp->b_io_length));
2174
2175 /*
2176 * The current logged region contains a copy of the
2177 * current di_next_unlinked field. Extract its value
2178 * and copy it to the buffer copy.
2179 */
2180 logged_nextp = item->ri_buf[item_index].i_addr +
2181 next_unlinked_offset - reg_buf_offset;
2182 if (unlikely(*logged_nextp == 0)) {
2183 xfs_alert(mp,
2184 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
2185 "Trying to replay bad (0) inode di_next_unlinked field.",
2186 item, bp);
2187 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2188 XFS_ERRLEVEL_LOW, mp);
2189 return -EFSCORRUPTED;
2190 }
2191
2192 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2193 *buffer_nextp = *logged_nextp;
2194
2195 /*
2196 * If necessary, recalculate the CRC in the on-disk inode. We
2197 * have to leave the inode in a consistent state for whoever
2198 * reads it next....
2199 */
2200 xfs_dinode_calc_crc(mp,
2201 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2202
2203 }
2204
2205 return 0;
2206}
2207
2208/*
2209 * V5 filesystems know the age of the buffer on disk being recovered. We can
2210 * have newer objects on disk than we are replaying, and so for these cases we
2211 * don't want to replay the current change as that will make the buffer contents
2212 * temporarily invalid on disk.
2213 *
2214 * The magic number might not match the buffer type we are going to recover
2215 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2216 * extract the LSN of the existing object in the buffer based on it's current
2217 * magic number. If we don't recognise the magic number in the buffer, then
2218 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2219 * so can recover the buffer.
2220 *
2221 * Note: we cannot rely solely on magic number matches to determine that the
2222 * buffer has a valid LSN - we also need to verify that it belongs to this
2223 * filesystem, so we need to extract the object's LSN and compare it to that
2224 * which we read from the superblock. If the UUIDs don't match, then we've got a
2225 * stale metadata block from an old filesystem instance that we need to recover
2226 * over the top of.
2227 */
2228static xfs_lsn_t
2229xlog_recover_get_buf_lsn(
2230 struct xfs_mount *mp,
2231 struct xfs_buf *bp)
2232{
2233 __uint32_t magic32;
2234 __uint16_t magic16;
2235 __uint16_t magicda;
2236 void *blk = bp->b_addr;
2237 uuid_t *uuid;
2238 xfs_lsn_t lsn = -1;
2239
2240 /* v4 filesystems always recover immediately */
2241 if (!xfs_sb_version_hascrc(&mp->m_sb))
2242 goto recover_immediately;
2243
2244 magic32 = be32_to_cpu(*(__be32 *)blk);
2245 switch (magic32) {
2246 case XFS_ABTB_CRC_MAGIC:
2247 case XFS_ABTC_CRC_MAGIC:
2248 case XFS_ABTB_MAGIC:
2249 case XFS_ABTC_MAGIC:
2250 case XFS_RMAP_CRC_MAGIC:
2251 case XFS_REFC_CRC_MAGIC:
2252 case XFS_IBT_CRC_MAGIC:
2253 case XFS_IBT_MAGIC: {
2254 struct xfs_btree_block *btb = blk;
2255
2256 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2257 uuid = &btb->bb_u.s.bb_uuid;
2258 break;
2259 }
2260 case XFS_BMAP_CRC_MAGIC:
2261 case XFS_BMAP_MAGIC: {
2262 struct xfs_btree_block *btb = blk;
2263
2264 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2265 uuid = &btb->bb_u.l.bb_uuid;
2266 break;
2267 }
2268 case XFS_AGF_MAGIC:
2269 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2270 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2271 break;
2272 case XFS_AGFL_MAGIC:
2273 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2274 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2275 break;
2276 case XFS_AGI_MAGIC:
2277 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2278 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2279 break;
2280 case XFS_SYMLINK_MAGIC:
2281 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2282 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2283 break;
2284 case XFS_DIR3_BLOCK_MAGIC:
2285 case XFS_DIR3_DATA_MAGIC:
2286 case XFS_DIR3_FREE_MAGIC:
2287 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2288 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2289 break;
2290 case XFS_ATTR3_RMT_MAGIC:
2291 /*
2292 * Remote attr blocks are written synchronously, rather than
2293 * being logged. That means they do not contain a valid LSN
2294 * (i.e. transactionally ordered) in them, and hence any time we
2295 * see a buffer to replay over the top of a remote attribute
2296 * block we should simply do so.
2297 */
2298 goto recover_immediately;
2299 case XFS_SB_MAGIC:
2300 /*
2301 * superblock uuids are magic. We may or may not have a
2302 * sb_meta_uuid on disk, but it will be set in the in-core
2303 * superblock. We set the uuid pointer for verification
2304 * according to the superblock feature mask to ensure we check
2305 * the relevant UUID in the superblock.
2306 */
2307 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2308 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2309 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2310 else
2311 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2312 break;
2313 default:
2314 break;
2315 }
2316
2317 if (lsn != (xfs_lsn_t)-1) {
2318 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2319 goto recover_immediately;
2320 return lsn;
2321 }
2322
2323 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2324 switch (magicda) {
2325 case XFS_DIR3_LEAF1_MAGIC:
2326 case XFS_DIR3_LEAFN_MAGIC:
2327 case XFS_DA3_NODE_MAGIC:
2328 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2329 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2330 break;
2331 default:
2332 break;
2333 }
2334
2335 if (lsn != (xfs_lsn_t)-1) {
2336 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2337 goto recover_immediately;
2338 return lsn;
2339 }
2340
2341 /*
2342 * We do individual object checks on dquot and inode buffers as they
2343 * have their own individual LSN records. Also, we could have a stale
2344 * buffer here, so we have to at least recognise these buffer types.
2345 *
2346 * A notd complexity here is inode unlinked list processing - it logs
2347 * the inode directly in the buffer, but we don't know which inodes have
2348 * been modified, and there is no global buffer LSN. Hence we need to
2349 * recover all inode buffer types immediately. This problem will be
2350 * fixed by logical logging of the unlinked list modifications.
2351 */
2352 magic16 = be16_to_cpu(*(__be16 *)blk);
2353 switch (magic16) {
2354 case XFS_DQUOT_MAGIC:
2355 case XFS_DINODE_MAGIC:
2356 goto recover_immediately;
2357 default:
2358 break;
2359 }
2360
2361 /* unknown buffer contents, recover immediately */
2362
2363recover_immediately:
2364 return (xfs_lsn_t)-1;
2365
2366}
2367
2368/*
2369 * Validate the recovered buffer is of the correct type and attach the
2370 * appropriate buffer operations to them for writeback. Magic numbers are in a
2371 * few places:
2372 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2373 * the first 32 bits of the buffer (most blocks),
2374 * inside a struct xfs_da_blkinfo at the start of the buffer.
2375 */
2376static void
2377xlog_recover_validate_buf_type(
2378 struct xfs_mount *mp,
2379 struct xfs_buf *bp,
2380 xfs_buf_log_format_t *buf_f,
2381 xfs_lsn_t current_lsn)
2382{
2383 struct xfs_da_blkinfo *info = bp->b_addr;
2384 __uint32_t magic32;
2385 __uint16_t magic16;
2386 __uint16_t magicda;
2387 char *warnmsg = NULL;
2388
2389 /*
2390 * We can only do post recovery validation on items on CRC enabled
2391 * fielsystems as we need to know when the buffer was written to be able
2392 * to determine if we should have replayed the item. If we replay old
2393 * metadata over a newer buffer, then it will enter a temporarily
2394 * inconsistent state resulting in verification failures. Hence for now
2395 * just avoid the verification stage for non-crc filesystems
2396 */
2397 if (!xfs_sb_version_hascrc(&mp->m_sb))
2398 return;
2399
2400 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2401 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2402 magicda = be16_to_cpu(info->magic);
2403 switch (xfs_blft_from_flags(buf_f)) {
2404 case XFS_BLFT_BTREE_BUF:
2405 switch (magic32) {
2406 case XFS_ABTB_CRC_MAGIC:
2407 case XFS_ABTC_CRC_MAGIC:
2408 case XFS_ABTB_MAGIC:
2409 case XFS_ABTC_MAGIC:
2410 bp->b_ops = &xfs_allocbt_buf_ops;
2411 break;
2412 case XFS_IBT_CRC_MAGIC:
2413 case XFS_FIBT_CRC_MAGIC:
2414 case XFS_IBT_MAGIC:
2415 case XFS_FIBT_MAGIC:
2416 bp->b_ops = &xfs_inobt_buf_ops;
2417 break;
2418 case XFS_BMAP_CRC_MAGIC:
2419 case XFS_BMAP_MAGIC:
2420 bp->b_ops = &xfs_bmbt_buf_ops;
2421 break;
2422 case XFS_RMAP_CRC_MAGIC:
2423 bp->b_ops = &xfs_rmapbt_buf_ops;
2424 break;
2425 case XFS_REFC_CRC_MAGIC:
2426 bp->b_ops = &xfs_refcountbt_buf_ops;
2427 break;
2428 default:
2429 warnmsg = "Bad btree block magic!";
2430 break;
2431 }
2432 break;
2433 case XFS_BLFT_AGF_BUF:
2434 if (magic32 != XFS_AGF_MAGIC) {
2435 warnmsg = "Bad AGF block magic!";
2436 break;
2437 }
2438 bp->b_ops = &xfs_agf_buf_ops;
2439 break;
2440 case XFS_BLFT_AGFL_BUF:
2441 if (magic32 != XFS_AGFL_MAGIC) {
2442 warnmsg = "Bad AGFL block magic!";
2443 break;
2444 }
2445 bp->b_ops = &xfs_agfl_buf_ops;
2446 break;
2447 case XFS_BLFT_AGI_BUF:
2448 if (magic32 != XFS_AGI_MAGIC) {
2449 warnmsg = "Bad AGI block magic!";
2450 break;
2451 }
2452 bp->b_ops = &xfs_agi_buf_ops;
2453 break;
2454 case XFS_BLFT_UDQUOT_BUF:
2455 case XFS_BLFT_PDQUOT_BUF:
2456 case XFS_BLFT_GDQUOT_BUF:
2457#ifdef CONFIG_XFS_QUOTA
2458 if (magic16 != XFS_DQUOT_MAGIC) {
2459 warnmsg = "Bad DQUOT block magic!";
2460 break;
2461 }
2462 bp->b_ops = &xfs_dquot_buf_ops;
2463#else
2464 xfs_alert(mp,
2465 "Trying to recover dquots without QUOTA support built in!");
2466 ASSERT(0);
2467#endif
2468 break;
2469 case XFS_BLFT_DINO_BUF:
2470 if (magic16 != XFS_DINODE_MAGIC) {
2471 warnmsg = "Bad INODE block magic!";
2472 break;
2473 }
2474 bp->b_ops = &xfs_inode_buf_ops;
2475 break;
2476 case XFS_BLFT_SYMLINK_BUF:
2477 if (magic32 != XFS_SYMLINK_MAGIC) {
2478 warnmsg = "Bad symlink block magic!";
2479 break;
2480 }
2481 bp->b_ops = &xfs_symlink_buf_ops;
2482 break;
2483 case XFS_BLFT_DIR_BLOCK_BUF:
2484 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2485 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2486 warnmsg = "Bad dir block magic!";
2487 break;
2488 }
2489 bp->b_ops = &xfs_dir3_block_buf_ops;
2490 break;
2491 case XFS_BLFT_DIR_DATA_BUF:
2492 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2493 magic32 != XFS_DIR3_DATA_MAGIC) {
2494 warnmsg = "Bad dir data magic!";
2495 break;
2496 }
2497 bp->b_ops = &xfs_dir3_data_buf_ops;
2498 break;
2499 case XFS_BLFT_DIR_FREE_BUF:
2500 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2501 magic32 != XFS_DIR3_FREE_MAGIC) {
2502 warnmsg = "Bad dir3 free magic!";
2503 break;
2504 }
2505 bp->b_ops = &xfs_dir3_free_buf_ops;
2506 break;
2507 case XFS_BLFT_DIR_LEAF1_BUF:
2508 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2509 magicda != XFS_DIR3_LEAF1_MAGIC) {
2510 warnmsg = "Bad dir leaf1 magic!";
2511 break;
2512 }
2513 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2514 break;
2515 case XFS_BLFT_DIR_LEAFN_BUF:
2516 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2517 magicda != XFS_DIR3_LEAFN_MAGIC) {
2518 warnmsg = "Bad dir leafn magic!";
2519 break;
2520 }
2521 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2522 break;
2523 case XFS_BLFT_DA_NODE_BUF:
2524 if (magicda != XFS_DA_NODE_MAGIC &&
2525 magicda != XFS_DA3_NODE_MAGIC) {
2526 warnmsg = "Bad da node magic!";
2527 break;
2528 }
2529 bp->b_ops = &xfs_da3_node_buf_ops;
2530 break;
2531 case XFS_BLFT_ATTR_LEAF_BUF:
2532 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2533 magicda != XFS_ATTR3_LEAF_MAGIC) {
2534 warnmsg = "Bad attr leaf magic!";
2535 break;
2536 }
2537 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2538 break;
2539 case XFS_BLFT_ATTR_RMT_BUF:
2540 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2541 warnmsg = "Bad attr remote magic!";
2542 break;
2543 }
2544 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2545 break;
2546 case XFS_BLFT_SB_BUF:
2547 if (magic32 != XFS_SB_MAGIC) {
2548 warnmsg = "Bad SB block magic!";
2549 break;
2550 }
2551 bp->b_ops = &xfs_sb_buf_ops;
2552 break;
2553#ifdef CONFIG_XFS_RT
2554 case XFS_BLFT_RTBITMAP_BUF:
2555 case XFS_BLFT_RTSUMMARY_BUF:
2556 /* no magic numbers for verification of RT buffers */
2557 bp->b_ops = &xfs_rtbuf_ops;
2558 break;
2559#endif /* CONFIG_XFS_RT */
2560 default:
2561 xfs_warn(mp, "Unknown buffer type %d!",
2562 xfs_blft_from_flags(buf_f));
2563 break;
2564 }
2565
2566 /*
2567 * Nothing else to do in the case of a NULL current LSN as this means
2568 * the buffer is more recent than the change in the log and will be
2569 * skipped.
2570 */
2571 if (current_lsn == NULLCOMMITLSN)
2572 return;
2573
2574 if (warnmsg) {
2575 xfs_warn(mp, warnmsg);
2576 ASSERT(0);
2577 }
2578
2579 /*
2580 * We must update the metadata LSN of the buffer as it is written out to
2581 * ensure that older transactions never replay over this one and corrupt
2582 * the buffer. This can occur if log recovery is interrupted at some
2583 * point after the current transaction completes, at which point a
2584 * subsequent mount starts recovery from the beginning.
2585 *
2586 * Write verifiers update the metadata LSN from log items attached to
2587 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2588 * the verifier. We'll clean it up in our ->iodone() callback.
2589 */
2590 if (bp->b_ops) {
2591 struct xfs_buf_log_item *bip;
2592
2593 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2594 bp->b_iodone = xlog_recover_iodone;
2595 xfs_buf_item_init(bp, mp);
2596 bip = bp->b_fspriv;
2597 bip->bli_item.li_lsn = current_lsn;
2598 }
2599}
2600
2601/*
2602 * Perform a 'normal' buffer recovery. Each logged region of the
2603 * buffer should be copied over the corresponding region in the
2604 * given buffer. The bitmap in the buf log format structure indicates
2605 * where to place the logged data.
2606 */
2607STATIC void
2608xlog_recover_do_reg_buffer(
2609 struct xfs_mount *mp,
2610 xlog_recover_item_t *item,
2611 struct xfs_buf *bp,
2612 xfs_buf_log_format_t *buf_f,
2613 xfs_lsn_t current_lsn)
2614{
2615 int i;
2616 int bit;
2617 int nbits;
2618 int error;
2619
2620 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2621
2622 bit = 0;
2623 i = 1; /* 0 is the buf format structure */
2624 while (1) {
2625 bit = xfs_next_bit(buf_f->blf_data_map,
2626 buf_f->blf_map_size, bit);
2627 if (bit == -1)
2628 break;
2629 nbits = xfs_contig_bits(buf_f->blf_data_map,
2630 buf_f->blf_map_size, bit);
2631 ASSERT(nbits > 0);
2632 ASSERT(item->ri_buf[i].i_addr != NULL);
2633 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2634 ASSERT(BBTOB(bp->b_io_length) >=
2635 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2636
2637 /*
2638 * The dirty regions logged in the buffer, even though
2639 * contiguous, may span multiple chunks. This is because the
2640 * dirty region may span a physical page boundary in a buffer
2641 * and hence be split into two separate vectors for writing into
2642 * the log. Hence we need to trim nbits back to the length of
2643 * the current region being copied out of the log.
2644 */
2645 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2646 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2647
2648 /*
2649 * Do a sanity check if this is a dquot buffer. Just checking
2650 * the first dquot in the buffer should do. XXXThis is
2651 * probably a good thing to do for other buf types also.
2652 */
2653 error = 0;
2654 if (buf_f->blf_flags &
2655 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2656 if (item->ri_buf[i].i_addr == NULL) {
2657 xfs_alert(mp,
2658 "XFS: NULL dquot in %s.", __func__);
2659 goto next;
2660 }
2661 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2662 xfs_alert(mp,
2663 "XFS: dquot too small (%d) in %s.",
2664 item->ri_buf[i].i_len, __func__);
2665 goto next;
2666 }
2667 error = xfs_dqcheck(mp, item->ri_buf[i].i_addr,
2668 -1, 0, XFS_QMOPT_DOWARN,
2669 "dquot_buf_recover");
2670 if (error)
2671 goto next;
2672 }
2673
2674 memcpy(xfs_buf_offset(bp,
2675 (uint)bit << XFS_BLF_SHIFT), /* dest */
2676 item->ri_buf[i].i_addr, /* source */
2677 nbits<<XFS_BLF_SHIFT); /* length */
2678 next:
2679 i++;
2680 bit += nbits;
2681 }
2682
2683 /* Shouldn't be any more regions */
2684 ASSERT(i == item->ri_total);
2685
2686 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2687}
2688
2689/*
2690 * Perform a dquot buffer recovery.
2691 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2692 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2693 * Else, treat it as a regular buffer and do recovery.
2694 *
2695 * Return false if the buffer was tossed and true if we recovered the buffer to
2696 * indicate to the caller if the buffer needs writing.
2697 */
2698STATIC bool
2699xlog_recover_do_dquot_buffer(
2700 struct xfs_mount *mp,
2701 struct xlog *log,
2702 struct xlog_recover_item *item,
2703 struct xfs_buf *bp,
2704 struct xfs_buf_log_format *buf_f)
2705{
2706 uint type;
2707
2708 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2709
2710 /*
2711 * Filesystems are required to send in quota flags at mount time.
2712 */
2713 if (!mp->m_qflags)
2714 return false;
2715
2716 type = 0;
2717 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2718 type |= XFS_DQ_USER;
2719 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2720 type |= XFS_DQ_PROJ;
2721 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2722 type |= XFS_DQ_GROUP;
2723 /*
2724 * This type of quotas was turned off, so ignore this buffer
2725 */
2726 if (log->l_quotaoffs_flag & type)
2727 return false;
2728
2729 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2730 return true;
2731}
2732
2733/*
2734 * This routine replays a modification made to a buffer at runtime.
2735 * There are actually two types of buffer, regular and inode, which
2736 * are handled differently. Inode buffers are handled differently
2737 * in that we only recover a specific set of data from them, namely
2738 * the inode di_next_unlinked fields. This is because all other inode
2739 * data is actually logged via inode records and any data we replay
2740 * here which overlaps that may be stale.
2741 *
2742 * When meta-data buffers are freed at run time we log a buffer item
2743 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2744 * of the buffer in the log should not be replayed at recovery time.
2745 * This is so that if the blocks covered by the buffer are reused for
2746 * file data before we crash we don't end up replaying old, freed
2747 * meta-data into a user's file.
2748 *
2749 * To handle the cancellation of buffer log items, we make two passes
2750 * over the log during recovery. During the first we build a table of
2751 * those buffers which have been cancelled, and during the second we
2752 * only replay those buffers which do not have corresponding cancel
2753 * records in the table. See xlog_recover_buffer_pass[1,2] above
2754 * for more details on the implementation of the table of cancel records.
2755 */
2756STATIC int
2757xlog_recover_buffer_pass2(
2758 struct xlog *log,
2759 struct list_head *buffer_list,
2760 struct xlog_recover_item *item,
2761 xfs_lsn_t current_lsn)
2762{
2763 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2764 xfs_mount_t *mp = log->l_mp;
2765 xfs_buf_t *bp;
2766 int error;
2767 uint buf_flags;
2768 xfs_lsn_t lsn;
2769
2770 /*
2771 * In this pass we only want to recover all the buffers which have
2772 * not been cancelled and are not cancellation buffers themselves.
2773 */
2774 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2775 buf_f->blf_len, buf_f->blf_flags)) {
2776 trace_xfs_log_recover_buf_cancel(log, buf_f);
2777 return 0;
2778 }
2779
2780 trace_xfs_log_recover_buf_recover(log, buf_f);
2781
2782 buf_flags = 0;
2783 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2784 buf_flags |= XBF_UNMAPPED;
2785
2786 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2787 buf_flags, NULL);
2788 if (!bp)
2789 return -ENOMEM;
2790 error = bp->b_error;
2791 if (error) {
2792 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2793 goto out_release;
2794 }
2795
2796 /*
2797 * Recover the buffer only if we get an LSN from it and it's less than
2798 * the lsn of the transaction we are replaying.
2799 *
2800 * Note that we have to be extremely careful of readahead here.
2801 * Readahead does not attach verfiers to the buffers so if we don't
2802 * actually do any replay after readahead because of the LSN we found
2803 * in the buffer if more recent than that current transaction then we
2804 * need to attach the verifier directly. Failure to do so can lead to
2805 * future recovery actions (e.g. EFI and unlinked list recovery) can
2806 * operate on the buffers and they won't get the verifier attached. This
2807 * can lead to blocks on disk having the correct content but a stale
2808 * CRC.
2809 *
2810 * It is safe to assume these clean buffers are currently up to date.
2811 * If the buffer is dirtied by a later transaction being replayed, then
2812 * the verifier will be reset to match whatever recover turns that
2813 * buffer into.
2814 */
2815 lsn = xlog_recover_get_buf_lsn(mp, bp);
2816 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2817 trace_xfs_log_recover_buf_skip(log, buf_f);
2818 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2819 goto out_release;
2820 }
2821
2822 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2823 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2824 if (error)
2825 goto out_release;
2826 } else if (buf_f->blf_flags &
2827 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2828 bool dirty;
2829
2830 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2831 if (!dirty)
2832 goto out_release;
2833 } else {
2834 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2835 }
2836
2837 /*
2838 * Perform delayed write on the buffer. Asynchronous writes will be
2839 * slower when taking into account all the buffers to be flushed.
2840 *
2841 * Also make sure that only inode buffers with good sizes stay in
2842 * the buffer cache. The kernel moves inodes in buffers of 1 block
2843 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2844 * buffers in the log can be a different size if the log was generated
2845 * by an older kernel using unclustered inode buffers or a newer kernel
2846 * running with a different inode cluster size. Regardless, if the
2847 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2848 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2849 * the buffer out of the buffer cache so that the buffer won't
2850 * overlap with future reads of those inodes.
2851 */
2852 if (XFS_DINODE_MAGIC ==
2853 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2854 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
2855 (__uint32_t)log->l_mp->m_inode_cluster_size))) {
2856 xfs_buf_stale(bp);
2857 error = xfs_bwrite(bp);
2858 } else {
2859 ASSERT(bp->b_target->bt_mount == mp);
2860 bp->b_iodone = xlog_recover_iodone;
2861 xfs_buf_delwri_queue(bp, buffer_list);
2862 }
2863
2864out_release:
2865 xfs_buf_relse(bp);
2866 return error;
2867}
2868
2869/*
2870 * Inode fork owner changes
2871 *
2872 * If we have been told that we have to reparent the inode fork, it's because an
2873 * extent swap operation on a CRC enabled filesystem has been done and we are
2874 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2875 * owners of it.
2876 *
2877 * The complexity here is that we don't have an inode context to work with, so
2878 * after we've replayed the inode we need to instantiate one. This is where the
2879 * fun begins.
2880 *
2881 * We are in the middle of log recovery, so we can't run transactions. That
2882 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2883 * that will result in the corresponding iput() running the inode through
2884 * xfs_inactive(). If we've just replayed an inode core that changes the link
2885 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2886 * transactions (bad!).
2887 *
2888 * So, to avoid this, we instantiate an inode directly from the inode core we've
2889 * just recovered. We have the buffer still locked, and all we really need to
2890 * instantiate is the inode core and the forks being modified. We can do this
2891 * manually, then run the inode btree owner change, and then tear down the
2892 * xfs_inode without having to run any transactions at all.
2893 *
2894 * Also, because we don't have a transaction context available here but need to
2895 * gather all the buffers we modify for writeback so we pass the buffer_list
2896 * instead for the operation to use.
2897 */
2898
2899STATIC int
2900xfs_recover_inode_owner_change(
2901 struct xfs_mount *mp,
2902 struct xfs_dinode *dip,
2903 struct xfs_inode_log_format *in_f,
2904 struct list_head *buffer_list)
2905{
2906 struct xfs_inode *ip;
2907 int error;
2908
2909 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2910
2911 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2912 if (!ip)
2913 return -ENOMEM;
2914
2915 /* instantiate the inode */
2916 xfs_inode_from_disk(ip, dip);
2917 ASSERT(ip->i_d.di_version >= 3);
2918
2919 error = xfs_iformat_fork(ip, dip);
2920 if (error)
2921 goto out_free_ip;
2922
2923
2924 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2925 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2926 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2927 ip->i_ino, buffer_list);
2928 if (error)
2929 goto out_free_ip;
2930 }
2931
2932 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2933 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2934 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2935 ip->i_ino, buffer_list);
2936 if (error)
2937 goto out_free_ip;
2938 }
2939
2940out_free_ip:
2941 xfs_inode_free(ip);
2942 return error;
2943}
2944
2945STATIC int
2946xlog_recover_inode_pass2(
2947 struct xlog *log,
2948 struct list_head *buffer_list,
2949 struct xlog_recover_item *item,
2950 xfs_lsn_t current_lsn)
2951{
2952 xfs_inode_log_format_t *in_f;
2953 xfs_mount_t *mp = log->l_mp;
2954 xfs_buf_t *bp;
2955 xfs_dinode_t *dip;
2956 int len;
2957 char *src;
2958 char *dest;
2959 int error;
2960 int attr_index;
2961 uint fields;
2962 struct xfs_log_dinode *ldip;
2963 uint isize;
2964 int need_free = 0;
2965
2966 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
2967 in_f = item->ri_buf[0].i_addr;
2968 } else {
2969 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
2970 need_free = 1;
2971 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2972 if (error)
2973 goto error;
2974 }
2975
2976 /*
2977 * Inode buffers can be freed, look out for it,
2978 * and do not replay the inode.
2979 */
2980 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2981 in_f->ilf_len, 0)) {
2982 error = 0;
2983 trace_xfs_log_recover_inode_cancel(log, in_f);
2984 goto error;
2985 }
2986 trace_xfs_log_recover_inode_recover(log, in_f);
2987
2988 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2989 &xfs_inode_buf_ops);
2990 if (!bp) {
2991 error = -ENOMEM;
2992 goto error;
2993 }
2994 error = bp->b_error;
2995 if (error) {
2996 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2997 goto out_release;
2998 }
2999 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3000 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3001
3002 /*
3003 * Make sure the place we're flushing out to really looks
3004 * like an inode!
3005 */
3006 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3007 xfs_alert(mp,
3008 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
3009 __func__, dip, bp, in_f->ilf_ino);
3010 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3011 XFS_ERRLEVEL_LOW, mp);
3012 error = -EFSCORRUPTED;
3013 goto out_release;
3014 }
3015 ldip = item->ri_buf[1].i_addr;
3016 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3017 xfs_alert(mp,
3018 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
3019 __func__, item, in_f->ilf_ino);
3020 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3021 XFS_ERRLEVEL_LOW, mp);
3022 error = -EFSCORRUPTED;
3023 goto out_release;
3024 }
3025
3026 /*
3027 * If the inode has an LSN in it, recover the inode only if it's less
3028 * than the lsn of the transaction we are replaying. Note: we still
3029 * need to replay an owner change even though the inode is more recent
3030 * than the transaction as there is no guarantee that all the btree
3031 * blocks are more recent than this transaction, too.
3032 */
3033 if (dip->di_version >= 3) {
3034 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3035
3036 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3037 trace_xfs_log_recover_inode_skip(log, in_f);
3038 error = 0;
3039 goto out_owner_change;
3040 }
3041 }
3042
3043 /*
3044 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3045 * are transactional and if ordering is necessary we can determine that
3046 * more accurately by the LSN field in the V3 inode core. Don't trust
3047 * the inode versions we might be changing them here - use the
3048 * superblock flag to determine whether we need to look at di_flushiter
3049 * to skip replay when the on disk inode is newer than the log one
3050 */
3051 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3052 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3053 /*
3054 * Deal with the wrap case, DI_MAX_FLUSH is less
3055 * than smaller numbers
3056 */
3057 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3058 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3059 /* do nothing */
3060 } else {
3061 trace_xfs_log_recover_inode_skip(log, in_f);
3062 error = 0;
3063 goto out_release;
3064 }
3065 }
3066
3067 /* Take the opportunity to reset the flush iteration count */
3068 ldip->di_flushiter = 0;
3069
3070 if (unlikely(S_ISREG(ldip->di_mode))) {
3071 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3072 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3073 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3074 XFS_ERRLEVEL_LOW, mp, ldip);
3075 xfs_alert(mp,
3076 "%s: Bad regular inode log record, rec ptr 0x%p, "
3077 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3078 __func__, item, dip, bp, in_f->ilf_ino);
3079 error = -EFSCORRUPTED;
3080 goto out_release;
3081 }
3082 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3083 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3084 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3085 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3086 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3087 XFS_ERRLEVEL_LOW, mp, ldip);
3088 xfs_alert(mp,
3089 "%s: Bad dir inode log record, rec ptr 0x%p, "
3090 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
3091 __func__, item, dip, bp, in_f->ilf_ino);
3092 error = -EFSCORRUPTED;
3093 goto out_release;
3094 }
3095 }
3096 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3097 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3098 XFS_ERRLEVEL_LOW, mp, ldip);
3099 xfs_alert(mp,
3100 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3101 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
3102 __func__, item, dip, bp, in_f->ilf_ino,
3103 ldip->di_nextents + ldip->di_anextents,
3104 ldip->di_nblocks);
3105 error = -EFSCORRUPTED;
3106 goto out_release;
3107 }
3108 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3109 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3110 XFS_ERRLEVEL_LOW, mp, ldip);
3111 xfs_alert(mp,
3112 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
3113 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
3114 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3115 error = -EFSCORRUPTED;
3116 goto out_release;
3117 }
3118 isize = xfs_log_dinode_size(ldip->di_version);
3119 if (unlikely(item->ri_buf[1].i_len > isize)) {
3120 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3121 XFS_ERRLEVEL_LOW, mp, ldip);
3122 xfs_alert(mp,
3123 "%s: Bad inode log record length %d, rec ptr 0x%p",
3124 __func__, item->ri_buf[1].i_len, item);
3125 error = -EFSCORRUPTED;
3126 goto out_release;
3127 }
3128
3129 /* recover the log dinode inode into the on disk inode */
3130 xfs_log_dinode_to_disk(ldip, dip);
3131
3132 /* the rest is in on-disk format */
3133 if (item->ri_buf[1].i_len > isize) {
3134 memcpy((char *)dip + isize,
3135 item->ri_buf[1].i_addr + isize,
3136 item->ri_buf[1].i_len - isize);
3137 }
3138
3139 fields = in_f->ilf_fields;
3140 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
3141 case XFS_ILOG_DEV:
3142 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3143 break;
3144 case XFS_ILOG_UUID:
3145 memcpy(XFS_DFORK_DPTR(dip),
3146 &in_f->ilf_u.ilfu_uuid,
3147 sizeof(uuid_t));
3148 break;
3149 }
3150
3151 if (in_f->ilf_size == 2)
3152 goto out_owner_change;
3153 len = item->ri_buf[2].i_len;
3154 src = item->ri_buf[2].i_addr;
3155 ASSERT(in_f->ilf_size <= 4);
3156 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3157 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3158 (len == in_f->ilf_dsize));
3159
3160 switch (fields & XFS_ILOG_DFORK) {
3161 case XFS_ILOG_DDATA:
3162 case XFS_ILOG_DEXT:
3163 memcpy(XFS_DFORK_DPTR(dip), src, len);
3164 break;
3165
3166 case XFS_ILOG_DBROOT:
3167 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3168 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3169 XFS_DFORK_DSIZE(dip, mp));
3170 break;
3171
3172 default:
3173 /*
3174 * There are no data fork flags set.
3175 */
3176 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3177 break;
3178 }
3179
3180 /*
3181 * If we logged any attribute data, recover it. There may or
3182 * may not have been any other non-core data logged in this
3183 * transaction.
3184 */
3185 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3186 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3187 attr_index = 3;
3188 } else {
3189 attr_index = 2;
3190 }
3191 len = item->ri_buf[attr_index].i_len;
3192 src = item->ri_buf[attr_index].i_addr;
3193 ASSERT(len == in_f->ilf_asize);
3194
3195 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3196 case XFS_ILOG_ADATA:
3197 case XFS_ILOG_AEXT:
3198 dest = XFS_DFORK_APTR(dip);
3199 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3200 memcpy(dest, src, len);
3201 break;
3202
3203 case XFS_ILOG_ABROOT:
3204 dest = XFS_DFORK_APTR(dip);
3205 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3206 len, (xfs_bmdr_block_t*)dest,
3207 XFS_DFORK_ASIZE(dip, mp));
3208 break;
3209
3210 default:
3211 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3212 ASSERT(0);
3213 error = -EIO;
3214 goto out_release;
3215 }
3216 }
3217
3218out_owner_change:
3219 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3220 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3221 buffer_list);
3222 /* re-generate the checksum. */
3223 xfs_dinode_calc_crc(log->l_mp, dip);
3224
3225 ASSERT(bp->b_target->bt_mount == mp);
3226 bp->b_iodone = xlog_recover_iodone;
3227 xfs_buf_delwri_queue(bp, buffer_list);
3228
3229out_release:
3230 xfs_buf_relse(bp);
3231error:
3232 if (need_free)
3233 kmem_free(in_f);
3234 return error;
3235}
3236
3237/*
3238 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3239 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3240 * of that type.
3241 */
3242STATIC int
3243xlog_recover_quotaoff_pass1(
3244 struct xlog *log,
3245 struct xlog_recover_item *item)
3246{
3247 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3248 ASSERT(qoff_f);
3249
3250 /*
3251 * The logitem format's flag tells us if this was user quotaoff,
3252 * group/project quotaoff or both.
3253 */
3254 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3255 log->l_quotaoffs_flag |= XFS_DQ_USER;
3256 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3257 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3258 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3259 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3260
3261 return 0;
3262}
3263
3264/*
3265 * Recover a dquot record
3266 */
3267STATIC int
3268xlog_recover_dquot_pass2(
3269 struct xlog *log,
3270 struct list_head *buffer_list,
3271 struct xlog_recover_item *item,
3272 xfs_lsn_t current_lsn)
3273{
3274 xfs_mount_t *mp = log->l_mp;
3275 xfs_buf_t *bp;
3276 struct xfs_disk_dquot *ddq, *recddq;
3277 int error;
3278 xfs_dq_logformat_t *dq_f;
3279 uint type;
3280
3281
3282 /*
3283 * Filesystems are required to send in quota flags at mount time.
3284 */
3285 if (mp->m_qflags == 0)
3286 return 0;
3287
3288 recddq = item->ri_buf[1].i_addr;
3289 if (recddq == NULL) {
3290 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3291 return -EIO;
3292 }
3293 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3294 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3295 item->ri_buf[1].i_len, __func__);
3296 return -EIO;
3297 }
3298
3299 /*
3300 * This type of quotas was turned off, so ignore this record.
3301 */
3302 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3303 ASSERT(type);
3304 if (log->l_quotaoffs_flag & type)
3305 return 0;
3306
3307 /*
3308 * At this point we know that quota was _not_ turned off.
3309 * Since the mount flags are not indicating to us otherwise, this
3310 * must mean that quota is on, and the dquot needs to be replayed.
3311 * Remember that we may not have fully recovered the superblock yet,
3312 * so we can't do the usual trick of looking at the SB quota bits.
3313 *
3314 * The other possibility, of course, is that the quota subsystem was
3315 * removed since the last mount - ENOSYS.
3316 */
3317 dq_f = item->ri_buf[0].i_addr;
3318 ASSERT(dq_f);
3319 error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3320 "xlog_recover_dquot_pass2 (log copy)");
3321 if (error)
3322 return -EIO;
3323 ASSERT(dq_f->qlf_len == 1);
3324
3325 /*
3326 * At this point we are assuming that the dquots have been allocated
3327 * and hence the buffer has valid dquots stamped in it. It should,
3328 * therefore, pass verifier validation. If the dquot is bad, then the
3329 * we'll return an error here, so we don't need to specifically check
3330 * the dquot in the buffer after the verifier has run.
3331 */
3332 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3333 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3334 &xfs_dquot_buf_ops);
3335 if (error)
3336 return error;
3337
3338 ASSERT(bp);
3339 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3340
3341 /*
3342 * If the dquot has an LSN in it, recover the dquot only if it's less
3343 * than the lsn of the transaction we are replaying.
3344 */
3345 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3346 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3347 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3348
3349 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3350 goto out_release;
3351 }
3352 }
3353
3354 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3355 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3356 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3357 XFS_DQUOT_CRC_OFF);
3358 }
3359
3360 ASSERT(dq_f->qlf_size == 2);
3361 ASSERT(bp->b_target->bt_mount == mp);
3362 bp->b_iodone = xlog_recover_iodone;
3363 xfs_buf_delwri_queue(bp, buffer_list);
3364
3365out_release:
3366 xfs_buf_relse(bp);
3367 return 0;
3368}
3369
3370/*
3371 * This routine is called to create an in-core extent free intent
3372 * item from the efi format structure which was logged on disk.
3373 * It allocates an in-core efi, copies the extents from the format
3374 * structure into it, and adds the efi to the AIL with the given
3375 * LSN.
3376 */
3377STATIC int
3378xlog_recover_efi_pass2(
3379 struct xlog *log,
3380 struct xlog_recover_item *item,
3381 xfs_lsn_t lsn)
3382{
3383 int error;
3384 struct xfs_mount *mp = log->l_mp;
3385 struct xfs_efi_log_item *efip;
3386 struct xfs_efi_log_format *efi_formatp;
3387
3388 efi_formatp = item->ri_buf[0].i_addr;
3389
3390 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3391 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3392 if (error) {
3393 xfs_efi_item_free(efip);
3394 return error;
3395 }
3396 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3397
3398 spin_lock(&log->l_ailp->xa_lock);
3399 /*
3400 * The EFI has two references. One for the EFD and one for EFI to ensure
3401 * it makes it into the AIL. Insert the EFI into the AIL directly and
3402 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3403 * AIL lock.
3404 */
3405 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3406 xfs_efi_release(efip);
3407 return 0;
3408}
3409
3410
3411/*
3412 * This routine is called when an EFD format structure is found in a committed
3413 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3414 * was still in the log. To do this it searches the AIL for the EFI with an id
3415 * equal to that in the EFD format structure. If we find it we drop the EFD
3416 * reference, which removes the EFI from the AIL and frees it.
3417 */
3418STATIC int
3419xlog_recover_efd_pass2(
3420 struct xlog *log,
3421 struct xlog_recover_item *item)
3422{
3423 xfs_efd_log_format_t *efd_formatp;
3424 xfs_efi_log_item_t *efip = NULL;
3425 xfs_log_item_t *lip;
3426 __uint64_t efi_id;
3427 struct xfs_ail_cursor cur;
3428 struct xfs_ail *ailp = log->l_ailp;
3429
3430 efd_formatp = item->ri_buf[0].i_addr;
3431 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3432 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3433 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3434 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3435 efi_id = efd_formatp->efd_efi_id;
3436
3437 /*
3438 * Search for the EFI with the id in the EFD format structure in the
3439 * AIL.
3440 */
3441 spin_lock(&ailp->xa_lock);
3442 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3443 while (lip != NULL) {
3444 if (lip->li_type == XFS_LI_EFI) {
3445 efip = (xfs_efi_log_item_t *)lip;
3446 if (efip->efi_format.efi_id == efi_id) {
3447 /*
3448 * Drop the EFD reference to the EFI. This
3449 * removes the EFI from the AIL and frees it.
3450 */
3451 spin_unlock(&ailp->xa_lock);
3452 xfs_efi_release(efip);
3453 spin_lock(&ailp->xa_lock);
3454 break;
3455 }
3456 }
3457 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3458 }
3459
3460 xfs_trans_ail_cursor_done(&cur);
3461 spin_unlock(&ailp->xa_lock);
3462
3463 return 0;
3464}
3465
3466/*
3467 * This routine is called to create an in-core extent rmap update
3468 * item from the rui format structure which was logged on disk.
3469 * It allocates an in-core rui, copies the extents from the format
3470 * structure into it, and adds the rui to the AIL with the given
3471 * LSN.
3472 */
3473STATIC int
3474xlog_recover_rui_pass2(
3475 struct xlog *log,
3476 struct xlog_recover_item *item,
3477 xfs_lsn_t lsn)
3478{
3479 int error;
3480 struct xfs_mount *mp = log->l_mp;
3481 struct xfs_rui_log_item *ruip;
3482 struct xfs_rui_log_format *rui_formatp;
3483
3484 rui_formatp = item->ri_buf[0].i_addr;
3485
3486 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3487 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3488 if (error) {
3489 xfs_rui_item_free(ruip);
3490 return error;
3491 }
3492 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3493
3494 spin_lock(&log->l_ailp->xa_lock);
3495 /*
3496 * The RUI has two references. One for the RUD and one for RUI to ensure
3497 * it makes it into the AIL. Insert the RUI into the AIL directly and
3498 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3499 * AIL lock.
3500 */
3501 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3502 xfs_rui_release(ruip);
3503 return 0;
3504}
3505
3506
3507/*
3508 * This routine is called when an RUD format structure is found in a committed
3509 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3510 * was still in the log. To do this it searches the AIL for the RUI with an id
3511 * equal to that in the RUD format structure. If we find it we drop the RUD
3512 * reference, which removes the RUI from the AIL and frees it.
3513 */
3514STATIC int
3515xlog_recover_rud_pass2(
3516 struct xlog *log,
3517 struct xlog_recover_item *item)
3518{
3519 struct xfs_rud_log_format *rud_formatp;
3520 struct xfs_rui_log_item *ruip = NULL;
3521 struct xfs_log_item *lip;
3522 __uint64_t rui_id;
3523 struct xfs_ail_cursor cur;
3524 struct xfs_ail *ailp = log->l_ailp;
3525
3526 rud_formatp = item->ri_buf[0].i_addr;
3527 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3528 rui_id = rud_formatp->rud_rui_id;
3529
3530 /*
3531 * Search for the RUI with the id in the RUD format structure in the
3532 * AIL.
3533 */
3534 spin_lock(&ailp->xa_lock);
3535 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3536 while (lip != NULL) {
3537 if (lip->li_type == XFS_LI_RUI) {
3538 ruip = (struct xfs_rui_log_item *)lip;
3539 if (ruip->rui_format.rui_id == rui_id) {
3540 /*
3541 * Drop the RUD reference to the RUI. This
3542 * removes the RUI from the AIL and frees it.
3543 */
3544 spin_unlock(&ailp->xa_lock);
3545 xfs_rui_release(ruip);
3546 spin_lock(&ailp->xa_lock);
3547 break;
3548 }
3549 }
3550 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3551 }
3552
3553 xfs_trans_ail_cursor_done(&cur);
3554 spin_unlock(&ailp->xa_lock);
3555
3556 return 0;
3557}
3558
3559/*
3560 * Copy an CUI format buffer from the given buf, and into the destination
3561 * CUI format structure. The CUI/CUD items were designed not to need any
3562 * special alignment handling.
3563 */
3564static int
3565xfs_cui_copy_format(
3566 struct xfs_log_iovec *buf,
3567 struct xfs_cui_log_format *dst_cui_fmt)
3568{
3569 struct xfs_cui_log_format *src_cui_fmt;
3570 uint len;
3571
3572 src_cui_fmt = buf->i_addr;
3573 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3574
3575 if (buf->i_len == len) {
3576 memcpy(dst_cui_fmt, src_cui_fmt, len);
3577 return 0;
3578 }
3579 return -EFSCORRUPTED;
3580}
3581
3582/*
3583 * This routine is called to create an in-core extent refcount update
3584 * item from the cui format structure which was logged on disk.
3585 * It allocates an in-core cui, copies the extents from the format
3586 * structure into it, and adds the cui to the AIL with the given
3587 * LSN.
3588 */
3589STATIC int
3590xlog_recover_cui_pass2(
3591 struct xlog *log,
3592 struct xlog_recover_item *item,
3593 xfs_lsn_t lsn)
3594{
3595 int error;
3596 struct xfs_mount *mp = log->l_mp;
3597 struct xfs_cui_log_item *cuip;
3598 struct xfs_cui_log_format *cui_formatp;
3599
3600 cui_formatp = item->ri_buf[0].i_addr;
3601
3602 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3603 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3604 if (error) {
3605 xfs_cui_item_free(cuip);
3606 return error;
3607 }
3608 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3609
3610 spin_lock(&log->l_ailp->xa_lock);
3611 /*
3612 * The CUI has two references. One for the CUD and one for CUI to ensure
3613 * it makes it into the AIL. Insert the CUI into the AIL directly and
3614 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3615 * AIL lock.
3616 */
3617 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3618 xfs_cui_release(cuip);
3619 return 0;
3620}
3621
3622
3623/*
3624 * This routine is called when an CUD format structure is found in a committed
3625 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3626 * was still in the log. To do this it searches the AIL for the CUI with an id
3627 * equal to that in the CUD format structure. If we find it we drop the CUD
3628 * reference, which removes the CUI from the AIL and frees it.
3629 */
3630STATIC int
3631xlog_recover_cud_pass2(
3632 struct xlog *log,
3633 struct xlog_recover_item *item)
3634{
3635 struct xfs_cud_log_format *cud_formatp;
3636 struct xfs_cui_log_item *cuip = NULL;
3637 struct xfs_log_item *lip;
3638 __uint64_t cui_id;
3639 struct xfs_ail_cursor cur;
3640 struct xfs_ail *ailp = log->l_ailp;
3641
3642 cud_formatp = item->ri_buf[0].i_addr;
3643 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3644 return -EFSCORRUPTED;
3645 cui_id = cud_formatp->cud_cui_id;
3646
3647 /*
3648 * Search for the CUI with the id in the CUD format structure in the
3649 * AIL.
3650 */
3651 spin_lock(&ailp->xa_lock);
3652 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3653 while (lip != NULL) {
3654 if (lip->li_type == XFS_LI_CUI) {
3655 cuip = (struct xfs_cui_log_item *)lip;
3656 if (cuip->cui_format.cui_id == cui_id) {
3657 /*
3658 * Drop the CUD reference to the CUI. This
3659 * removes the CUI from the AIL and frees it.
3660 */
3661 spin_unlock(&ailp->xa_lock);
3662 xfs_cui_release(cuip);
3663 spin_lock(&ailp->xa_lock);
3664 break;
3665 }
3666 }
3667 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3668 }
3669
3670 xfs_trans_ail_cursor_done(&cur);
3671 spin_unlock(&ailp->xa_lock);
3672
3673 return 0;
3674}
3675
3676/*
3677 * Copy an BUI format buffer from the given buf, and into the destination
3678 * BUI format structure. The BUI/BUD items were designed not to need any
3679 * special alignment handling.
3680 */
3681static int
3682xfs_bui_copy_format(
3683 struct xfs_log_iovec *buf,
3684 struct xfs_bui_log_format *dst_bui_fmt)
3685{
3686 struct xfs_bui_log_format *src_bui_fmt;
3687 uint len;
3688
3689 src_bui_fmt = buf->i_addr;
3690 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3691
3692 if (buf->i_len == len) {
3693 memcpy(dst_bui_fmt, src_bui_fmt, len);
3694 return 0;
3695 }
3696 return -EFSCORRUPTED;
3697}
3698
3699/*
3700 * This routine is called to create an in-core extent bmap update
3701 * item from the bui format structure which was logged on disk.
3702 * It allocates an in-core bui, copies the extents from the format
3703 * structure into it, and adds the bui to the AIL with the given
3704 * LSN.
3705 */
3706STATIC int
3707xlog_recover_bui_pass2(
3708 struct xlog *log,
3709 struct xlog_recover_item *item,
3710 xfs_lsn_t lsn)
3711{
3712 int error;
3713 struct xfs_mount *mp = log->l_mp;
3714 struct xfs_bui_log_item *buip;
3715 struct xfs_bui_log_format *bui_formatp;
3716
3717 bui_formatp = item->ri_buf[0].i_addr;
3718
3719 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3720 return -EFSCORRUPTED;
3721 buip = xfs_bui_init(mp);
3722 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3723 if (error) {
3724 xfs_bui_item_free(buip);
3725 return error;
3726 }
3727 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3728
3729 spin_lock(&log->l_ailp->xa_lock);
3730 /*
3731 * The RUI has two references. One for the RUD and one for RUI to ensure
3732 * it makes it into the AIL. Insert the RUI into the AIL directly and
3733 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3734 * AIL lock.
3735 */
3736 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3737 xfs_bui_release(buip);
3738 return 0;
3739}
3740
3741
3742/*
3743 * This routine is called when an BUD format structure is found in a committed
3744 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3745 * was still in the log. To do this it searches the AIL for the BUI with an id
3746 * equal to that in the BUD format structure. If we find it we drop the BUD
3747 * reference, which removes the BUI from the AIL and frees it.
3748 */
3749STATIC int
3750xlog_recover_bud_pass2(
3751 struct xlog *log,
3752 struct xlog_recover_item *item)
3753{
3754 struct xfs_bud_log_format *bud_formatp;
3755 struct xfs_bui_log_item *buip = NULL;
3756 struct xfs_log_item *lip;
3757 __uint64_t bui_id;
3758 struct xfs_ail_cursor cur;
3759 struct xfs_ail *ailp = log->l_ailp;
3760
3761 bud_formatp = item->ri_buf[0].i_addr;
3762 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3763 return -EFSCORRUPTED;
3764 bui_id = bud_formatp->bud_bui_id;
3765
3766 /*
3767 * Search for the BUI with the id in the BUD format structure in the
3768 * AIL.
3769 */
3770 spin_lock(&ailp->xa_lock);
3771 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3772 while (lip != NULL) {
3773 if (lip->li_type == XFS_LI_BUI) {
3774 buip = (struct xfs_bui_log_item *)lip;
3775 if (buip->bui_format.bui_id == bui_id) {
3776 /*
3777 * Drop the BUD reference to the BUI. This
3778 * removes the BUI from the AIL and frees it.
3779 */
3780 spin_unlock(&ailp->xa_lock);
3781 xfs_bui_release(buip);
3782 spin_lock(&ailp->xa_lock);
3783 break;
3784 }
3785 }
3786 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3787 }
3788
3789 xfs_trans_ail_cursor_done(&cur);
3790 spin_unlock(&ailp->xa_lock);
3791
3792 return 0;
3793}
3794
3795/*
3796 * This routine is called when an inode create format structure is found in a
3797 * committed transaction in the log. It's purpose is to initialise the inodes
3798 * being allocated on disk. This requires us to get inode cluster buffers that
3799 * match the range to be intialised, stamped with inode templates and written
3800 * by delayed write so that subsequent modifications will hit the cached buffer
3801 * and only need writing out at the end of recovery.
3802 */
3803STATIC int
3804xlog_recover_do_icreate_pass2(
3805 struct xlog *log,
3806 struct list_head *buffer_list,
3807 xlog_recover_item_t *item)
3808{
3809 struct xfs_mount *mp = log->l_mp;
3810 struct xfs_icreate_log *icl;
3811 xfs_agnumber_t agno;
3812 xfs_agblock_t agbno;
3813 unsigned int count;
3814 unsigned int isize;
3815 xfs_agblock_t length;
3816 int blks_per_cluster;
3817 int bb_per_cluster;
3818 int cancel_count;
3819 int nbufs;
3820 int i;
3821
3822 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3823 if (icl->icl_type != XFS_LI_ICREATE) {
3824 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3825 return -EINVAL;
3826 }
3827
3828 if (icl->icl_size != 1) {
3829 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3830 return -EINVAL;
3831 }
3832
3833 agno = be32_to_cpu(icl->icl_ag);
3834 if (agno >= mp->m_sb.sb_agcount) {
3835 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3836 return -EINVAL;
3837 }
3838 agbno = be32_to_cpu(icl->icl_agbno);
3839 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3840 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3841 return -EINVAL;
3842 }
3843 isize = be32_to_cpu(icl->icl_isize);
3844 if (isize != mp->m_sb.sb_inodesize) {
3845 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3846 return -EINVAL;
3847 }
3848 count = be32_to_cpu(icl->icl_count);
3849 if (!count) {
3850 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3851 return -EINVAL;
3852 }
3853 length = be32_to_cpu(icl->icl_length);
3854 if (!length || length >= mp->m_sb.sb_agblocks) {
3855 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3856 return -EINVAL;
3857 }
3858
3859 /*
3860 * The inode chunk is either full or sparse and we only support
3861 * m_ialloc_min_blks sized sparse allocations at this time.
3862 */
3863 if (length != mp->m_ialloc_blks &&
3864 length != mp->m_ialloc_min_blks) {
3865 xfs_warn(log->l_mp,
3866 "%s: unsupported chunk length", __FUNCTION__);
3867 return -EINVAL;
3868 }
3869
3870 /* verify inode count is consistent with extent length */
3871 if ((count >> mp->m_sb.sb_inopblog) != length) {
3872 xfs_warn(log->l_mp,
3873 "%s: inconsistent inode count and chunk length",
3874 __FUNCTION__);
3875 return -EINVAL;
3876 }
3877
3878 /*
3879 * The icreate transaction can cover multiple cluster buffers and these
3880 * buffers could have been freed and reused. Check the individual
3881 * buffers for cancellation so we don't overwrite anything written after
3882 * a cancellation.
3883 */
3884 blks_per_cluster = xfs_icluster_size_fsb(mp);
3885 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3886 nbufs = length / blks_per_cluster;
3887 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3888 xfs_daddr_t daddr;
3889
3890 daddr = XFS_AGB_TO_DADDR(mp, agno,
3891 agbno + i * blks_per_cluster);
3892 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3893 cancel_count++;
3894 }
3895
3896 /*
3897 * We currently only use icreate for a single allocation at a time. This
3898 * means we should expect either all or none of the buffers to be
3899 * cancelled. Be conservative and skip replay if at least one buffer is
3900 * cancelled, but warn the user that something is awry if the buffers
3901 * are not consistent.
3902 *
3903 * XXX: This must be refined to only skip cancelled clusters once we use
3904 * icreate for multiple chunk allocations.
3905 */
3906 ASSERT(!cancel_count || cancel_count == nbufs);
3907 if (cancel_count) {
3908 if (cancel_count != nbufs)
3909 xfs_warn(mp,
3910 "WARNING: partial inode chunk cancellation, skipped icreate.");
3911 trace_xfs_log_recover_icreate_cancel(log, icl);
3912 return 0;
3913 }
3914
3915 trace_xfs_log_recover_icreate_recover(log, icl);
3916 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3917 length, be32_to_cpu(icl->icl_gen));
3918}
3919
3920STATIC void
3921xlog_recover_buffer_ra_pass2(
3922 struct xlog *log,
3923 struct xlog_recover_item *item)
3924{
3925 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3926 struct xfs_mount *mp = log->l_mp;
3927
3928 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3929 buf_f->blf_len, buf_f->blf_flags)) {
3930 return;
3931 }
3932
3933 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3934 buf_f->blf_len, NULL);
3935}
3936
3937STATIC void
3938xlog_recover_inode_ra_pass2(
3939 struct xlog *log,
3940 struct xlog_recover_item *item)
3941{
3942 struct xfs_inode_log_format ilf_buf;
3943 struct xfs_inode_log_format *ilfp;
3944 struct xfs_mount *mp = log->l_mp;
3945 int error;
3946
3947 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3948 ilfp = item->ri_buf[0].i_addr;
3949 } else {
3950 ilfp = &ilf_buf;
3951 memset(ilfp, 0, sizeof(*ilfp));
3952 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3953 if (error)
3954 return;
3955 }
3956
3957 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3958 return;
3959
3960 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3961 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3962}
3963
3964STATIC void
3965xlog_recover_dquot_ra_pass2(
3966 struct xlog *log,
3967 struct xlog_recover_item *item)
3968{
3969 struct xfs_mount *mp = log->l_mp;
3970 struct xfs_disk_dquot *recddq;
3971 struct xfs_dq_logformat *dq_f;
3972 uint type;
3973 int len;
3974
3975
3976 if (mp->m_qflags == 0)
3977 return;
3978
3979 recddq = item->ri_buf[1].i_addr;
3980 if (recddq == NULL)
3981 return;
3982 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3983 return;
3984
3985 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3986 ASSERT(type);
3987 if (log->l_quotaoffs_flag & type)
3988 return;
3989
3990 dq_f = item->ri_buf[0].i_addr;
3991 ASSERT(dq_f);
3992 ASSERT(dq_f->qlf_len == 1);
3993
3994 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3995 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3996 return;
3997
3998 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3999 &xfs_dquot_buf_ra_ops);
4000}
4001
4002STATIC void
4003xlog_recover_ra_pass2(
4004 struct xlog *log,
4005 struct xlog_recover_item *item)
4006{
4007 switch (ITEM_TYPE(item)) {
4008 case XFS_LI_BUF:
4009 xlog_recover_buffer_ra_pass2(log, item);
4010 break;
4011 case XFS_LI_INODE:
4012 xlog_recover_inode_ra_pass2(log, item);
4013 break;
4014 case XFS_LI_DQUOT:
4015 xlog_recover_dquot_ra_pass2(log, item);
4016 break;
4017 case XFS_LI_EFI:
4018 case XFS_LI_EFD:
4019 case XFS_LI_QUOTAOFF:
4020 case XFS_LI_RUI:
4021 case XFS_LI_RUD:
4022 case XFS_LI_CUI:
4023 case XFS_LI_CUD:
4024 case XFS_LI_BUI:
4025 case XFS_LI_BUD:
4026 default:
4027 break;
4028 }
4029}
4030
4031STATIC int
4032xlog_recover_commit_pass1(
4033 struct xlog *log,
4034 struct xlog_recover *trans,
4035 struct xlog_recover_item *item)
4036{
4037 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4038
4039 switch (ITEM_TYPE(item)) {
4040 case XFS_LI_BUF:
4041 return xlog_recover_buffer_pass1(log, item);
4042 case XFS_LI_QUOTAOFF:
4043 return xlog_recover_quotaoff_pass1(log, item);
4044 case XFS_LI_INODE:
4045 case XFS_LI_EFI:
4046 case XFS_LI_EFD:
4047 case XFS_LI_DQUOT:
4048 case XFS_LI_ICREATE:
4049 case XFS_LI_RUI:
4050 case XFS_LI_RUD:
4051 case XFS_LI_CUI:
4052 case XFS_LI_CUD:
4053 case XFS_LI_BUI:
4054 case XFS_LI_BUD:
4055 /* nothing to do in pass 1 */
4056 return 0;
4057 default:
4058 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4059 __func__, ITEM_TYPE(item));
4060 ASSERT(0);
4061 return -EIO;
4062 }
4063}
4064
4065STATIC int
4066xlog_recover_commit_pass2(
4067 struct xlog *log,
4068 struct xlog_recover *trans,
4069 struct list_head *buffer_list,
4070 struct xlog_recover_item *item)
4071{
4072 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4073
4074 switch (ITEM_TYPE(item)) {
4075 case XFS_LI_BUF:
4076 return xlog_recover_buffer_pass2(log, buffer_list, item,
4077 trans->r_lsn);
4078 case XFS_LI_INODE:
4079 return xlog_recover_inode_pass2(log, buffer_list, item,
4080 trans->r_lsn);
4081 case XFS_LI_EFI:
4082 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4083 case XFS_LI_EFD:
4084 return xlog_recover_efd_pass2(log, item);
4085 case XFS_LI_RUI:
4086 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4087 case XFS_LI_RUD:
4088 return xlog_recover_rud_pass2(log, item);
4089 case XFS_LI_CUI:
4090 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4091 case XFS_LI_CUD:
4092 return xlog_recover_cud_pass2(log, item);
4093 case XFS_LI_BUI:
4094 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4095 case XFS_LI_BUD:
4096 return xlog_recover_bud_pass2(log, item);
4097 case XFS_LI_DQUOT:
4098 return xlog_recover_dquot_pass2(log, buffer_list, item,
4099 trans->r_lsn);
4100 case XFS_LI_ICREATE:
4101 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4102 case XFS_LI_QUOTAOFF:
4103 /* nothing to do in pass2 */
4104 return 0;
4105 default:
4106 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4107 __func__, ITEM_TYPE(item));
4108 ASSERT(0);
4109 return -EIO;
4110 }
4111}
4112
4113STATIC int
4114xlog_recover_items_pass2(
4115 struct xlog *log,
4116 struct xlog_recover *trans,
4117 struct list_head *buffer_list,
4118 struct list_head *item_list)
4119{
4120 struct xlog_recover_item *item;
4121 int error = 0;
4122
4123 list_for_each_entry(item, item_list, ri_list) {
4124 error = xlog_recover_commit_pass2(log, trans,
4125 buffer_list, item);
4126 if (error)
4127 return error;
4128 }
4129
4130 return error;
4131}
4132
4133/*
4134 * Perform the transaction.
4135 *
4136 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4137 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4138 */
4139STATIC int
4140xlog_recover_commit_trans(
4141 struct xlog *log,
4142 struct xlog_recover *trans,
4143 int pass,
4144 struct list_head *buffer_list)
4145{
4146 int error = 0;
4147 int items_queued = 0;
4148 struct xlog_recover_item *item;
4149 struct xlog_recover_item *next;
4150 LIST_HEAD (ra_list);
4151 LIST_HEAD (done_list);
4152
4153 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4154
4155 hlist_del(&trans->r_list);
4156
4157 error = xlog_recover_reorder_trans(log, trans, pass);
4158 if (error)
4159 return error;
4160
4161 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4162 switch (pass) {
4163 case XLOG_RECOVER_PASS1:
4164 error = xlog_recover_commit_pass1(log, trans, item);
4165 break;
4166 case XLOG_RECOVER_PASS2:
4167 xlog_recover_ra_pass2(log, item);
4168 list_move_tail(&item->ri_list, &ra_list);
4169 items_queued++;
4170 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4171 error = xlog_recover_items_pass2(log, trans,
4172 buffer_list, &ra_list);
4173 list_splice_tail_init(&ra_list, &done_list);
4174 items_queued = 0;
4175 }
4176
4177 break;
4178 default:
4179 ASSERT(0);
4180 }
4181
4182 if (error)
4183 goto out;
4184 }
4185
4186out:
4187 if (!list_empty(&ra_list)) {
4188 if (!error)
4189 error = xlog_recover_items_pass2(log, trans,
4190 buffer_list, &ra_list);
4191 list_splice_tail_init(&ra_list, &done_list);
4192 }
4193
4194 if (!list_empty(&done_list))
4195 list_splice_init(&done_list, &trans->r_itemq);
4196
4197 return error;
4198}
4199
4200STATIC void
4201xlog_recover_add_item(
4202 struct list_head *head)
4203{
4204 xlog_recover_item_t *item;
4205
4206 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4207 INIT_LIST_HEAD(&item->ri_list);
4208 list_add_tail(&item->ri_list, head);
4209}
4210
4211STATIC int
4212xlog_recover_add_to_cont_trans(
4213 struct xlog *log,
4214 struct xlog_recover *trans,
4215 char *dp,
4216 int len)
4217{
4218 xlog_recover_item_t *item;
4219 char *ptr, *old_ptr;
4220 int old_len;
4221
4222 /*
4223 * If the transaction is empty, the header was split across this and the
4224 * previous record. Copy the rest of the header.
4225 */
4226 if (list_empty(&trans->r_itemq)) {
4227 ASSERT(len <= sizeof(struct xfs_trans_header));
4228 if (len > sizeof(struct xfs_trans_header)) {
4229 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4230 return -EIO;
4231 }
4232
4233 xlog_recover_add_item(&trans->r_itemq);
4234 ptr = (char *)&trans->r_theader +
4235 sizeof(struct xfs_trans_header) - len;
4236 memcpy(ptr, dp, len);
4237 return 0;
4238 }
4239
4240 /* take the tail entry */
4241 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4242
4243 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4244 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4245
4246 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4247 memcpy(&ptr[old_len], dp, len);
4248 item->ri_buf[item->ri_cnt-1].i_len += len;
4249 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4250 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4251 return 0;
4252}
4253
4254/*
4255 * The next region to add is the start of a new region. It could be
4256 * a whole region or it could be the first part of a new region. Because
4257 * of this, the assumption here is that the type and size fields of all
4258 * format structures fit into the first 32 bits of the structure.
4259 *
4260 * This works because all regions must be 32 bit aligned. Therefore, we
4261 * either have both fields or we have neither field. In the case we have
4262 * neither field, the data part of the region is zero length. We only have
4263 * a log_op_header and can throw away the header since a new one will appear
4264 * later. If we have at least 4 bytes, then we can determine how many regions
4265 * will appear in the current log item.
4266 */
4267STATIC int
4268xlog_recover_add_to_trans(
4269 struct xlog *log,
4270 struct xlog_recover *trans,
4271 char *dp,
4272 int len)
4273{
4274 xfs_inode_log_format_t *in_f; /* any will do */
4275 xlog_recover_item_t *item;
4276 char *ptr;
4277
4278 if (!len)
4279 return 0;
4280 if (list_empty(&trans->r_itemq)) {
4281 /* we need to catch log corruptions here */
4282 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4283 xfs_warn(log->l_mp, "%s: bad header magic number",
4284 __func__);
4285 ASSERT(0);
4286 return -EIO;
4287 }
4288
4289 if (len > sizeof(struct xfs_trans_header)) {
4290 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4291 ASSERT(0);
4292 return -EIO;
4293 }
4294
4295 /*
4296 * The transaction header can be arbitrarily split across op
4297 * records. If we don't have the whole thing here, copy what we
4298 * do have and handle the rest in the next record.
4299 */
4300 if (len == sizeof(struct xfs_trans_header))
4301 xlog_recover_add_item(&trans->r_itemq);
4302 memcpy(&trans->r_theader, dp, len);
4303 return 0;
4304 }
4305
4306 ptr = kmem_alloc(len, KM_SLEEP);
4307 memcpy(ptr, dp, len);
4308 in_f = (xfs_inode_log_format_t *)ptr;
4309
4310 /* take the tail entry */
4311 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4312 if (item->ri_total != 0 &&
4313 item->ri_total == item->ri_cnt) {
4314 /* tail item is in use, get a new one */
4315 xlog_recover_add_item(&trans->r_itemq);
4316 item = list_entry(trans->r_itemq.prev,
4317 xlog_recover_item_t, ri_list);
4318 }
4319
4320 if (item->ri_total == 0) { /* first region to be added */
4321 if (in_f->ilf_size == 0 ||
4322 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4323 xfs_warn(log->l_mp,
4324 "bad number of regions (%d) in inode log format",
4325 in_f->ilf_size);
4326 ASSERT(0);
4327 kmem_free(ptr);
4328 return -EIO;
4329 }
4330
4331 item->ri_total = in_f->ilf_size;
4332 item->ri_buf =
4333 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4334 KM_SLEEP);
4335 }
4336 ASSERT(item->ri_total > item->ri_cnt);
4337 /* Description region is ri_buf[0] */
4338 item->ri_buf[item->ri_cnt].i_addr = ptr;
4339 item->ri_buf[item->ri_cnt].i_len = len;
4340 item->ri_cnt++;
4341 trace_xfs_log_recover_item_add(log, trans, item, 0);
4342 return 0;
4343}
4344
4345/*
4346 * Free up any resources allocated by the transaction
4347 *
4348 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4349 */
4350STATIC void
4351xlog_recover_free_trans(
4352 struct xlog_recover *trans)
4353{
4354 xlog_recover_item_t *item, *n;
4355 int i;
4356
4357 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4358 /* Free the regions in the item. */
4359 list_del(&item->ri_list);
4360 for (i = 0; i < item->ri_cnt; i++)
4361 kmem_free(item->ri_buf[i].i_addr);
4362 /* Free the item itself */
4363 kmem_free(item->ri_buf);
4364 kmem_free(item);
4365 }
4366 /* Free the transaction recover structure */
4367 kmem_free(trans);
4368}
4369
4370/*
4371 * On error or completion, trans is freed.
4372 */
4373STATIC int
4374xlog_recovery_process_trans(
4375 struct xlog *log,
4376 struct xlog_recover *trans,
4377 char *dp,
4378 unsigned int len,
4379 unsigned int flags,
4380 int pass,
4381 struct list_head *buffer_list)
4382{
4383 int error = 0;
4384 bool freeit = false;
4385
4386 /* mask off ophdr transaction container flags */
4387 flags &= ~XLOG_END_TRANS;
4388 if (flags & XLOG_WAS_CONT_TRANS)
4389 flags &= ~XLOG_CONTINUE_TRANS;
4390
4391 /*
4392 * Callees must not free the trans structure. We'll decide if we need to
4393 * free it or not based on the operation being done and it's result.
4394 */
4395 switch (flags) {
4396 /* expected flag values */
4397 case 0:
4398 case XLOG_CONTINUE_TRANS:
4399 error = xlog_recover_add_to_trans(log, trans, dp, len);
4400 break;
4401 case XLOG_WAS_CONT_TRANS:
4402 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4403 break;
4404 case XLOG_COMMIT_TRANS:
4405 error = xlog_recover_commit_trans(log, trans, pass,
4406 buffer_list);
4407 /* success or fail, we are now done with this transaction. */
4408 freeit = true;
4409 break;
4410
4411 /* unexpected flag values */
4412 case XLOG_UNMOUNT_TRANS:
4413 /* just skip trans */
4414 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4415 freeit = true;
4416 break;
4417 case XLOG_START_TRANS:
4418 default:
4419 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4420 ASSERT(0);
4421 error = -EIO;
4422 break;
4423 }
4424 if (error || freeit)
4425 xlog_recover_free_trans(trans);
4426 return error;
4427}
4428
4429/*
4430 * Lookup the transaction recovery structure associated with the ID in the
4431 * current ophdr. If the transaction doesn't exist and the start flag is set in
4432 * the ophdr, then allocate a new transaction for future ID matches to find.
4433 * Either way, return what we found during the lookup - an existing transaction
4434 * or nothing.
4435 */
4436STATIC struct xlog_recover *
4437xlog_recover_ophdr_to_trans(
4438 struct hlist_head rhash[],
4439 struct xlog_rec_header *rhead,
4440 struct xlog_op_header *ohead)
4441{
4442 struct xlog_recover *trans;
4443 xlog_tid_t tid;
4444 struct hlist_head *rhp;
4445
4446 tid = be32_to_cpu(ohead->oh_tid);
4447 rhp = &rhash[XLOG_RHASH(tid)];
4448 hlist_for_each_entry(trans, rhp, r_list) {
4449 if (trans->r_log_tid == tid)
4450 return trans;
4451 }
4452
4453 /*
4454 * skip over non-start transaction headers - we could be
4455 * processing slack space before the next transaction starts
4456 */
4457 if (!(ohead->oh_flags & XLOG_START_TRANS))
4458 return NULL;
4459
4460 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4461
4462 /*
4463 * This is a new transaction so allocate a new recovery container to
4464 * hold the recovery ops that will follow.
4465 */
4466 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4467 trans->r_log_tid = tid;
4468 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4469 INIT_LIST_HEAD(&trans->r_itemq);
4470 INIT_HLIST_NODE(&trans->r_list);
4471 hlist_add_head(&trans->r_list, rhp);
4472
4473 /*
4474 * Nothing more to do for this ophdr. Items to be added to this new
4475 * transaction will be in subsequent ophdr containers.
4476 */
4477 return NULL;
4478}
4479
4480STATIC int
4481xlog_recover_process_ophdr(
4482 struct xlog *log,
4483 struct hlist_head rhash[],
4484 struct xlog_rec_header *rhead,
4485 struct xlog_op_header *ohead,
4486 char *dp,
4487 char *end,
4488 int pass,
4489 struct list_head *buffer_list)
4490{
4491 struct xlog_recover *trans;
4492 unsigned int len;
4493 int error;
4494
4495 /* Do we understand who wrote this op? */
4496 if (ohead->oh_clientid != XFS_TRANSACTION &&
4497 ohead->oh_clientid != XFS_LOG) {
4498 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4499 __func__, ohead->oh_clientid);
4500 ASSERT(0);
4501 return -EIO;
4502 }
4503
4504 /*
4505 * Check the ophdr contains all the data it is supposed to contain.
4506 */
4507 len = be32_to_cpu(ohead->oh_len);
4508 if (dp + len > end) {
4509 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4510 WARN_ON(1);
4511 return -EIO;
4512 }
4513
4514 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4515 if (!trans) {
4516 /* nothing to do, so skip over this ophdr */
4517 return 0;
4518 }
4519
4520 /*
4521 * The recovered buffer queue is drained only once we know that all
4522 * recovery items for the current LSN have been processed. This is
4523 * required because:
4524 *
4525 * - Buffer write submission updates the metadata LSN of the buffer.
4526 * - Log recovery skips items with a metadata LSN >= the current LSN of
4527 * the recovery item.
4528 * - Separate recovery items against the same metadata buffer can share
4529 * a current LSN. I.e., consider that the LSN of a recovery item is
4530 * defined as the starting LSN of the first record in which its
4531 * transaction appears, that a record can hold multiple transactions,
4532 * and/or that a transaction can span multiple records.
4533 *
4534 * In other words, we are allowed to submit a buffer from log recovery
4535 * once per current LSN. Otherwise, we may incorrectly skip recovery
4536 * items and cause corruption.
4537 *
4538 * We don't know up front whether buffers are updated multiple times per
4539 * LSN. Therefore, track the current LSN of each commit log record as it
4540 * is processed and drain the queue when it changes. Use commit records
4541 * because they are ordered correctly by the logging code.
4542 */
4543 if (log->l_recovery_lsn != trans->r_lsn &&
4544 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4545 error = xfs_buf_delwri_submit(buffer_list);
4546 if (error)
4547 return error;
4548 log->l_recovery_lsn = trans->r_lsn;
4549 }
4550
4551 return xlog_recovery_process_trans(log, trans, dp, len,
4552 ohead->oh_flags, pass, buffer_list);
4553}
4554
4555/*
4556 * There are two valid states of the r_state field. 0 indicates that the
4557 * transaction structure is in a normal state. We have either seen the
4558 * start of the transaction or the last operation we added was not a partial
4559 * operation. If the last operation we added to the transaction was a
4560 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4561 *
4562 * NOTE: skip LRs with 0 data length.
4563 */
4564STATIC int
4565xlog_recover_process_data(
4566 struct xlog *log,
4567 struct hlist_head rhash[],
4568 struct xlog_rec_header *rhead,
4569 char *dp,
4570 int pass,
4571 struct list_head *buffer_list)
4572{
4573 struct xlog_op_header *ohead;
4574 char *end;
4575 int num_logops;
4576 int error;
4577
4578 end = dp + be32_to_cpu(rhead->h_len);
4579 num_logops = be32_to_cpu(rhead->h_num_logops);
4580
4581 /* check the log format matches our own - else we can't recover */
4582 if (xlog_header_check_recover(log->l_mp, rhead))
4583 return -EIO;
4584
4585 trace_xfs_log_recover_record(log, rhead, pass);
4586 while ((dp < end) && num_logops) {
4587
4588 ohead = (struct xlog_op_header *)dp;
4589 dp += sizeof(*ohead);
4590 ASSERT(dp <= end);
4591
4592 /* errors will abort recovery */
4593 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4594 dp, end, pass, buffer_list);
4595 if (error)
4596 return error;
4597
4598 dp += be32_to_cpu(ohead->oh_len);
4599 num_logops--;
4600 }
4601 return 0;
4602}
4603
4604/* Recover the EFI if necessary. */
4605STATIC int
4606xlog_recover_process_efi(
4607 struct xfs_mount *mp,
4608 struct xfs_ail *ailp,
4609 struct xfs_log_item *lip)
4610{
4611 struct xfs_efi_log_item *efip;
4612 int error;
4613
4614 /*
4615 * Skip EFIs that we've already processed.
4616 */
4617 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4618 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4619 return 0;
4620
4621 spin_unlock(&ailp->xa_lock);
4622 error = xfs_efi_recover(mp, efip);
4623 spin_lock(&ailp->xa_lock);
4624
4625 return error;
4626}
4627
4628/* Release the EFI since we're cancelling everything. */
4629STATIC void
4630xlog_recover_cancel_efi(
4631 struct xfs_mount *mp,
4632 struct xfs_ail *ailp,
4633 struct xfs_log_item *lip)
4634{
4635 struct xfs_efi_log_item *efip;
4636
4637 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4638
4639 spin_unlock(&ailp->xa_lock);
4640 xfs_efi_release(efip);
4641 spin_lock(&ailp->xa_lock);
4642}
4643
4644/* Recover the RUI if necessary. */
4645STATIC int
4646xlog_recover_process_rui(
4647 struct xfs_mount *mp,
4648 struct xfs_ail *ailp,
4649 struct xfs_log_item *lip)
4650{
4651 struct xfs_rui_log_item *ruip;
4652 int error;
4653
4654 /*
4655 * Skip RUIs that we've already processed.
4656 */
4657 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4658 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4659 return 0;
4660
4661 spin_unlock(&ailp->xa_lock);
4662 error = xfs_rui_recover(mp, ruip);
4663 spin_lock(&ailp->xa_lock);
4664
4665 return error;
4666}
4667
4668/* Release the RUI since we're cancelling everything. */
4669STATIC void
4670xlog_recover_cancel_rui(
4671 struct xfs_mount *mp,
4672 struct xfs_ail *ailp,
4673 struct xfs_log_item *lip)
4674{
4675 struct xfs_rui_log_item *ruip;
4676
4677 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4678
4679 spin_unlock(&ailp->xa_lock);
4680 xfs_rui_release(ruip);
4681 spin_lock(&ailp->xa_lock);
4682}
4683
4684/* Recover the CUI if necessary. */
4685STATIC int
4686xlog_recover_process_cui(
4687 struct xfs_mount *mp,
4688 struct xfs_ail *ailp,
4689 struct xfs_log_item *lip)
4690{
4691 struct xfs_cui_log_item *cuip;
4692 int error;
4693
4694 /*
4695 * Skip CUIs that we've already processed.
4696 */
4697 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4698 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4699 return 0;
4700
4701 spin_unlock(&ailp->xa_lock);
4702 error = xfs_cui_recover(mp, cuip);
4703 spin_lock(&ailp->xa_lock);
4704
4705 return error;
4706}
4707
4708/* Release the CUI since we're cancelling everything. */
4709STATIC void
4710xlog_recover_cancel_cui(
4711 struct xfs_mount *mp,
4712 struct xfs_ail *ailp,
4713 struct xfs_log_item *lip)
4714{
4715 struct xfs_cui_log_item *cuip;
4716
4717 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4718
4719 spin_unlock(&ailp->xa_lock);
4720 xfs_cui_release(cuip);
4721 spin_lock(&ailp->xa_lock);
4722}
4723
4724/* Recover the BUI if necessary. */
4725STATIC int
4726xlog_recover_process_bui(
4727 struct xfs_mount *mp,
4728 struct xfs_ail *ailp,
4729 struct xfs_log_item *lip)
4730{
4731 struct xfs_bui_log_item *buip;
4732 int error;
4733
4734 /*
4735 * Skip BUIs that we've already processed.
4736 */
4737 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4738 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4739 return 0;
4740
4741 spin_unlock(&ailp->xa_lock);
4742 error = xfs_bui_recover(mp, buip);
4743 spin_lock(&ailp->xa_lock);
4744
4745 return error;
4746}
4747
4748/* Release the BUI since we're cancelling everything. */
4749STATIC void
4750xlog_recover_cancel_bui(
4751 struct xfs_mount *mp,
4752 struct xfs_ail *ailp,
4753 struct xfs_log_item *lip)
4754{
4755 struct xfs_bui_log_item *buip;
4756
4757 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4758
4759 spin_unlock(&ailp->xa_lock);
4760 xfs_bui_release(buip);
4761 spin_lock(&ailp->xa_lock);
4762}
4763
4764/* Is this log item a deferred action intent? */
4765static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4766{
4767 switch (lip->li_type) {
4768 case XFS_LI_EFI:
4769 case XFS_LI_RUI:
4770 case XFS_LI_CUI:
4771 case XFS_LI_BUI:
4772 return true;
4773 default:
4774 return false;
4775 }
4776}
4777
4778/*
4779 * When this is called, all of the log intent items which did not have
4780 * corresponding log done items should be in the AIL. What we do now
4781 * is update the data structures associated with each one.
4782 *
4783 * Since we process the log intent items in normal transactions, they
4784 * will be removed at some point after the commit. This prevents us
4785 * from just walking down the list processing each one. We'll use a
4786 * flag in the intent item to skip those that we've already processed
4787 * and use the AIL iteration mechanism's generation count to try to
4788 * speed this up at least a bit.
4789 *
4790 * When we start, we know that the intents are the only things in the
4791 * AIL. As we process them, however, other items are added to the
4792 * AIL.
4793 */
4794STATIC int
4795xlog_recover_process_intents(
4796 struct xlog *log)
4797{
4798 struct xfs_log_item *lip;
4799 int error = 0;
4800 struct xfs_ail_cursor cur;
4801 struct xfs_ail *ailp;
4802 xfs_lsn_t last_lsn;
4803
4804 ailp = log->l_ailp;
4805 spin_lock(&ailp->xa_lock);
4806 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4807 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4808 while (lip != NULL) {
4809 /*
4810 * We're done when we see something other than an intent.
4811 * There should be no intents left in the AIL now.
4812 */
4813 if (!xlog_item_is_intent(lip)) {
4814#ifdef DEBUG
4815 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4816 ASSERT(!xlog_item_is_intent(lip));
4817#endif
4818 break;
4819 }
4820
4821 /*
4822 * We should never see a redo item with a LSN higher than
4823 * the last transaction we found in the log at the start
4824 * of recovery.
4825 */
4826 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4827
4828 switch (lip->li_type) {
4829 case XFS_LI_EFI:
4830 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4831 break;
4832 case XFS_LI_RUI:
4833 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4834 break;
4835 case XFS_LI_CUI:
4836 error = xlog_recover_process_cui(log->l_mp, ailp, lip);
4837 break;
4838 case XFS_LI_BUI:
4839 error = xlog_recover_process_bui(log->l_mp, ailp, lip);
4840 break;
4841 }
4842 if (error)
4843 goto out;
4844 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4845 }
4846out:
4847 xfs_trans_ail_cursor_done(&cur);
4848 spin_unlock(&ailp->xa_lock);
4849 return error;
4850}
4851
4852/*
4853 * A cancel occurs when the mount has failed and we're bailing out.
4854 * Release all pending log intent items so they don't pin the AIL.
4855 */
4856STATIC int
4857xlog_recover_cancel_intents(
4858 struct xlog *log)
4859{
4860 struct xfs_log_item *lip;
4861 int error = 0;
4862 struct xfs_ail_cursor cur;
4863 struct xfs_ail *ailp;
4864
4865 ailp = log->l_ailp;
4866 spin_lock(&ailp->xa_lock);
4867 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4868 while (lip != NULL) {
4869 /*
4870 * We're done when we see something other than an intent.
4871 * There should be no intents left in the AIL now.
4872 */
4873 if (!xlog_item_is_intent(lip)) {
4874#ifdef DEBUG
4875 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4876 ASSERT(!xlog_item_is_intent(lip));
4877#endif
4878 break;
4879 }
4880
4881 switch (lip->li_type) {
4882 case XFS_LI_EFI:
4883 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4884 break;
4885 case XFS_LI_RUI:
4886 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4887 break;
4888 case XFS_LI_CUI:
4889 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4890 break;
4891 case XFS_LI_BUI:
4892 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4893 break;
4894 }
4895
4896 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4897 }
4898
4899 xfs_trans_ail_cursor_done(&cur);
4900 spin_unlock(&ailp->xa_lock);
4901 return error;
4902}
4903
4904/*
4905 * This routine performs a transaction to null out a bad inode pointer
4906 * in an agi unlinked inode hash bucket.
4907 */
4908STATIC void
4909xlog_recover_clear_agi_bucket(
4910 xfs_mount_t *mp,
4911 xfs_agnumber_t agno,
4912 int bucket)
4913{
4914 xfs_trans_t *tp;
4915 xfs_agi_t *agi;
4916 xfs_buf_t *agibp;
4917 int offset;
4918 int error;
4919
4920 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4921 if (error)
4922 goto out_error;
4923
4924 error = xfs_read_agi(mp, tp, agno, &agibp);
4925 if (error)
4926 goto out_abort;
4927
4928 agi = XFS_BUF_TO_AGI(agibp);
4929 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4930 offset = offsetof(xfs_agi_t, agi_unlinked) +
4931 (sizeof(xfs_agino_t) * bucket);
4932 xfs_trans_log_buf(tp, agibp, offset,
4933 (offset + sizeof(xfs_agino_t) - 1));
4934
4935 error = xfs_trans_commit(tp);
4936 if (error)
4937 goto out_error;
4938 return;
4939
4940out_abort:
4941 xfs_trans_cancel(tp);
4942out_error:
4943 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4944 return;
4945}
4946
4947STATIC xfs_agino_t
4948xlog_recover_process_one_iunlink(
4949 struct xfs_mount *mp,
4950 xfs_agnumber_t agno,
4951 xfs_agino_t agino,
4952 int bucket)
4953{
4954 struct xfs_buf *ibp;
4955 struct xfs_dinode *dip;
4956 struct xfs_inode *ip;
4957 xfs_ino_t ino;
4958 int error;
4959
4960 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4961 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4962 if (error)
4963 goto fail;
4964
4965 /*
4966 * Get the on disk inode to find the next inode in the bucket.
4967 */
4968 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4969 if (error)
4970 goto fail_iput;
4971
4972 xfs_iflags_clear(ip, XFS_IRECOVERY);
4973 ASSERT(VFS_I(ip)->i_nlink == 0);
4974 ASSERT(VFS_I(ip)->i_mode != 0);
4975
4976 /* setup for the next pass */
4977 agino = be32_to_cpu(dip->di_next_unlinked);
4978 xfs_buf_relse(ibp);
4979
4980 /*
4981 * Prevent any DMAPI event from being sent when the reference on
4982 * the inode is dropped.
4983 */
4984 ip->i_d.di_dmevmask = 0;
4985
4986 IRELE(ip);
4987 return agino;
4988
4989 fail_iput:
4990 IRELE(ip);
4991 fail:
4992 /*
4993 * We can't read in the inode this bucket points to, or this inode
4994 * is messed up. Just ditch this bucket of inodes. We will lose
4995 * some inodes and space, but at least we won't hang.
4996 *
4997 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
4998 * clear the inode pointer in the bucket.
4999 */
5000 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5001 return NULLAGINO;
5002}
5003
5004/*
5005 * xlog_iunlink_recover
5006 *
5007 * This is called during recovery to process any inodes which
5008 * we unlinked but not freed when the system crashed. These
5009 * inodes will be on the lists in the AGI blocks. What we do
5010 * here is scan all the AGIs and fully truncate and free any
5011 * inodes found on the lists. Each inode is removed from the
5012 * lists when it has been fully truncated and is freed. The
5013 * freeing of the inode and its removal from the list must be
5014 * atomic.
5015 */
5016STATIC void
5017xlog_recover_process_iunlinks(
5018 struct xlog *log)
5019{
5020 xfs_mount_t *mp;
5021 xfs_agnumber_t agno;
5022 xfs_agi_t *agi;
5023 xfs_buf_t *agibp;
5024 xfs_agino_t agino;
5025 int bucket;
5026 int error;
5027 uint mp_dmevmask;
5028
5029 mp = log->l_mp;
5030
5031 /*
5032 * Prevent any DMAPI event from being sent while in this function.
5033 */
5034 mp_dmevmask = mp->m_dmevmask;
5035 mp->m_dmevmask = 0;
5036
5037 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5038 /*
5039 * Find the agi for this ag.
5040 */
5041 error = xfs_read_agi(mp, NULL, agno, &agibp);
5042 if (error) {
5043 /*
5044 * AGI is b0rked. Don't process it.
5045 *
5046 * We should probably mark the filesystem as corrupt
5047 * after we've recovered all the ag's we can....
5048 */
5049 continue;
5050 }
5051 /*
5052 * Unlock the buffer so that it can be acquired in the normal
5053 * course of the transaction to truncate and free each inode.
5054 * Because we are not racing with anyone else here for the AGI
5055 * buffer, we don't even need to hold it locked to read the
5056 * initial unlinked bucket entries out of the buffer. We keep
5057 * buffer reference though, so that it stays pinned in memory
5058 * while we need the buffer.
5059 */
5060 agi = XFS_BUF_TO_AGI(agibp);
5061 xfs_buf_unlock(agibp);
5062
5063 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5064 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5065 while (agino != NULLAGINO) {
5066 agino = xlog_recover_process_one_iunlink(mp,
5067 agno, agino, bucket);
5068 }
5069 }
5070 xfs_buf_rele(agibp);
5071 }
5072
5073 mp->m_dmevmask = mp_dmevmask;
5074}
5075
5076STATIC int
5077xlog_unpack_data(
5078 struct xlog_rec_header *rhead,
5079 char *dp,
5080 struct xlog *log)
5081{
5082 int i, j, k;
5083
5084 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5085 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5086 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5087 dp += BBSIZE;
5088 }
5089
5090 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5091 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5092 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5093 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5094 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5095 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5096 dp += BBSIZE;
5097 }
5098 }
5099
5100 return 0;
5101}
5102
5103/*
5104 * CRC check, unpack and process a log record.
5105 */
5106STATIC int
5107xlog_recover_process(
5108 struct xlog *log,
5109 struct hlist_head rhash[],
5110 struct xlog_rec_header *rhead,
5111 char *dp,
5112 int pass,
5113 struct list_head *buffer_list)
5114{
5115 int error;
5116 __le32 old_crc = rhead->h_crc;
5117 __le32 crc;
5118
5119
5120 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5121
5122 /*
5123 * Nothing else to do if this is a CRC verification pass. Just return
5124 * if this a record with a non-zero crc. Unfortunately, mkfs always
5125 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5126 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5127 * know precisely what failed.
5128 */
5129 if (pass == XLOG_RECOVER_CRCPASS) {
5130 if (old_crc && crc != old_crc)
5131 return -EFSBADCRC;
5132 return 0;
5133 }
5134
5135 /*
5136 * We're in the normal recovery path. Issue a warning if and only if the
5137 * CRC in the header is non-zero. This is an advisory warning and the
5138 * zero CRC check prevents warnings from being emitted when upgrading
5139 * the kernel from one that does not add CRCs by default.
5140 */
5141 if (crc != old_crc) {
5142 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5143 xfs_alert(log->l_mp,
5144 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5145 le32_to_cpu(old_crc),
5146 le32_to_cpu(crc));
5147 xfs_hex_dump(dp, 32);
5148 }
5149
5150 /*
5151 * If the filesystem is CRC enabled, this mismatch becomes a
5152 * fatal log corruption failure.
5153 */
5154 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5155 return -EFSCORRUPTED;
5156 }
5157
5158 error = xlog_unpack_data(rhead, dp, log);
5159 if (error)
5160 return error;
5161
5162 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5163 buffer_list);
5164}
5165
5166STATIC int
5167xlog_valid_rec_header(
5168 struct xlog *log,
5169 struct xlog_rec_header *rhead,
5170 xfs_daddr_t blkno)
5171{
5172 int hlen;
5173
5174 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5175 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5176 XFS_ERRLEVEL_LOW, log->l_mp);
5177 return -EFSCORRUPTED;
5178 }
5179 if (unlikely(
5180 (!rhead->h_version ||
5181 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5182 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5183 __func__, be32_to_cpu(rhead->h_version));
5184 return -EIO;
5185 }
5186
5187 /* LR body must have data or it wouldn't have been written */
5188 hlen = be32_to_cpu(rhead->h_len);
5189 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5190 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5191 XFS_ERRLEVEL_LOW, log->l_mp);
5192 return -EFSCORRUPTED;
5193 }
5194 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5195 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5196 XFS_ERRLEVEL_LOW, log->l_mp);
5197 return -EFSCORRUPTED;
5198 }
5199 return 0;
5200}
5201
5202/*
5203 * Read the log from tail to head and process the log records found.
5204 * Handle the two cases where the tail and head are in the same cycle
5205 * and where the active portion of the log wraps around the end of
5206 * the physical log separately. The pass parameter is passed through
5207 * to the routines called to process the data and is not looked at
5208 * here.
5209 */
5210STATIC int
5211xlog_do_recovery_pass(
5212 struct xlog *log,
5213 xfs_daddr_t head_blk,
5214 xfs_daddr_t tail_blk,
5215 int pass,
5216 xfs_daddr_t *first_bad) /* out: first bad log rec */
5217{
5218 xlog_rec_header_t *rhead;
5219 xfs_daddr_t blk_no;
5220 xfs_daddr_t rhead_blk;
5221 char *offset;
5222 xfs_buf_t *hbp, *dbp;
5223 int error = 0, h_size, h_len;
5224 int error2 = 0;
5225 int bblks, split_bblks;
5226 int hblks, split_hblks, wrapped_hblks;
5227 struct hlist_head rhash[XLOG_RHASH_SIZE];
5228 LIST_HEAD (buffer_list);
5229
5230 ASSERT(head_blk != tail_blk);
5231 rhead_blk = 0;
5232
5233 /*
5234 * Read the header of the tail block and get the iclog buffer size from
5235 * h_size. Use this to tell how many sectors make up the log header.
5236 */
5237 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5238 /*
5239 * When using variable length iclogs, read first sector of
5240 * iclog header and extract the header size from it. Get a
5241 * new hbp that is the correct size.
5242 */
5243 hbp = xlog_get_bp(log, 1);
5244 if (!hbp)
5245 return -ENOMEM;
5246
5247 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5248 if (error)
5249 goto bread_err1;
5250
5251 rhead = (xlog_rec_header_t *)offset;
5252 error = xlog_valid_rec_header(log, rhead, tail_blk);
5253 if (error)
5254 goto bread_err1;
5255
5256 /*
5257 * xfsprogs has a bug where record length is based on lsunit but
5258 * h_size (iclog size) is hardcoded to 32k. Now that we
5259 * unconditionally CRC verify the unmount record, this means the
5260 * log buffer can be too small for the record and cause an
5261 * overrun.
5262 *
5263 * Detect this condition here. Use lsunit for the buffer size as
5264 * long as this looks like the mkfs case. Otherwise, return an
5265 * error to avoid a buffer overrun.
5266 */
5267 h_size = be32_to_cpu(rhead->h_size);
5268 h_len = be32_to_cpu(rhead->h_len);
5269 if (h_len > h_size) {
5270 if (h_len <= log->l_mp->m_logbsize &&
5271 be32_to_cpu(rhead->h_num_logops) == 1) {
5272 xfs_warn(log->l_mp,
5273 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5274 h_size, log->l_mp->m_logbsize);
5275 h_size = log->l_mp->m_logbsize;
5276 } else
5277 return -EFSCORRUPTED;
5278 }
5279
5280 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5281 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5282 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5283 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5284 hblks++;
5285 xlog_put_bp(hbp);
5286 hbp = xlog_get_bp(log, hblks);
5287 } else {
5288 hblks = 1;
5289 }
5290 } else {
5291 ASSERT(log->l_sectBBsize == 1);
5292 hblks = 1;
5293 hbp = xlog_get_bp(log, 1);
5294 h_size = XLOG_BIG_RECORD_BSIZE;
5295 }
5296
5297 if (!hbp)
5298 return -ENOMEM;
5299 dbp = xlog_get_bp(log, BTOBB(h_size));
5300 if (!dbp) {
5301 xlog_put_bp(hbp);
5302 return -ENOMEM;
5303 }
5304
5305 memset(rhash, 0, sizeof(rhash));
5306 blk_no = rhead_blk = tail_blk;
5307 if (tail_blk > head_blk) {
5308 /*
5309 * Perform recovery around the end of the physical log.
5310 * When the head is not on the same cycle number as the tail,
5311 * we can't do a sequential recovery.
5312 */
5313 while (blk_no < log->l_logBBsize) {
5314 /*
5315 * Check for header wrapping around physical end-of-log
5316 */
5317 offset = hbp->b_addr;
5318 split_hblks = 0;
5319 wrapped_hblks = 0;
5320 if (blk_no + hblks <= log->l_logBBsize) {
5321 /* Read header in one read */
5322 error = xlog_bread(log, blk_no, hblks, hbp,
5323 &offset);
5324 if (error)
5325 goto bread_err2;
5326 } else {
5327 /* This LR is split across physical log end */
5328 if (blk_no != log->l_logBBsize) {
5329 /* some data before physical log end */
5330 ASSERT(blk_no <= INT_MAX);
5331 split_hblks = log->l_logBBsize - (int)blk_no;
5332 ASSERT(split_hblks > 0);
5333 error = xlog_bread(log, blk_no,
5334 split_hblks, hbp,
5335 &offset);
5336 if (error)
5337 goto bread_err2;
5338 }
5339
5340 /*
5341 * Note: this black magic still works with
5342 * large sector sizes (non-512) only because:
5343 * - we increased the buffer size originally
5344 * by 1 sector giving us enough extra space
5345 * for the second read;
5346 * - the log start is guaranteed to be sector
5347 * aligned;
5348 * - we read the log end (LR header start)
5349 * _first_, then the log start (LR header end)
5350 * - order is important.
5351 */
5352 wrapped_hblks = hblks - split_hblks;
5353 error = xlog_bread_offset(log, 0,
5354 wrapped_hblks, hbp,
5355 offset + BBTOB(split_hblks));
5356 if (error)
5357 goto bread_err2;
5358 }
5359 rhead = (xlog_rec_header_t *)offset;
5360 error = xlog_valid_rec_header(log, rhead,
5361 split_hblks ? blk_no : 0);
5362 if (error)
5363 goto bread_err2;
5364
5365 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5366 blk_no += hblks;
5367
5368 /* Read in data for log record */
5369 if (blk_no + bblks <= log->l_logBBsize) {
5370 error = xlog_bread(log, blk_no, bblks, dbp,
5371 &offset);
5372 if (error)
5373 goto bread_err2;
5374 } else {
5375 /* This log record is split across the
5376 * physical end of log */
5377 offset = dbp->b_addr;
5378 split_bblks = 0;
5379 if (blk_no != log->l_logBBsize) {
5380 /* some data is before the physical
5381 * end of log */
5382 ASSERT(!wrapped_hblks);
5383 ASSERT(blk_no <= INT_MAX);
5384 split_bblks =
5385 log->l_logBBsize - (int)blk_no;
5386 ASSERT(split_bblks > 0);
5387 error = xlog_bread(log, blk_no,
5388 split_bblks, dbp,
5389 &offset);
5390 if (error)
5391 goto bread_err2;
5392 }
5393
5394 /*
5395 * Note: this black magic still works with
5396 * large sector sizes (non-512) only because:
5397 * - we increased the buffer size originally
5398 * by 1 sector giving us enough extra space
5399 * for the second read;
5400 * - the log start is guaranteed to be sector
5401 * aligned;
5402 * - we read the log end (LR header start)
5403 * _first_, then the log start (LR header end)
5404 * - order is important.
5405 */
5406 error = xlog_bread_offset(log, 0,
5407 bblks - split_bblks, dbp,
5408 offset + BBTOB(split_bblks));
5409 if (error)
5410 goto bread_err2;
5411 }
5412
5413 error = xlog_recover_process(log, rhash, rhead, offset,
5414 pass, &buffer_list);
5415 if (error)
5416 goto bread_err2;
5417
5418 blk_no += bblks;
5419 rhead_blk = blk_no;
5420 }
5421
5422 ASSERT(blk_no >= log->l_logBBsize);
5423 blk_no -= log->l_logBBsize;
5424 rhead_blk = blk_no;
5425 }
5426
5427 /* read first part of physical log */
5428 while (blk_no < head_blk) {
5429 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5430 if (error)
5431 goto bread_err2;
5432
5433 rhead = (xlog_rec_header_t *)offset;
5434 error = xlog_valid_rec_header(log, rhead, blk_no);
5435 if (error)
5436 goto bread_err2;
5437
5438 /* blocks in data section */
5439 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5440 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5441 &offset);
5442 if (error)
5443 goto bread_err2;
5444
5445 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5446 &buffer_list);
5447 if (error)
5448 goto bread_err2;
5449
5450 blk_no += bblks + hblks;
5451 rhead_blk = blk_no;
5452 }
5453
5454 bread_err2:
5455 xlog_put_bp(dbp);
5456 bread_err1:
5457 xlog_put_bp(hbp);
5458
5459 /*
5460 * Submit buffers that have been added from the last record processed,
5461 * regardless of error status.
5462 */
5463 if (!list_empty(&buffer_list))
5464 error2 = xfs_buf_delwri_submit(&buffer_list);
5465
5466 if (error && first_bad)
5467 *first_bad = rhead_blk;
5468
5469 return error ? error : error2;
5470}
5471
5472/*
5473 * Do the recovery of the log. We actually do this in two phases.
5474 * The two passes are necessary in order to implement the function
5475 * of cancelling a record written into the log. The first pass
5476 * determines those things which have been cancelled, and the
5477 * second pass replays log items normally except for those which
5478 * have been cancelled. The handling of the replay and cancellations
5479 * takes place in the log item type specific routines.
5480 *
5481 * The table of items which have cancel records in the log is allocated
5482 * and freed at this level, since only here do we know when all of
5483 * the log recovery has been completed.
5484 */
5485STATIC int
5486xlog_do_log_recovery(
5487 struct xlog *log,
5488 xfs_daddr_t head_blk,
5489 xfs_daddr_t tail_blk)
5490{
5491 int error, i;
5492
5493 ASSERT(head_blk != tail_blk);
5494
5495 /*
5496 * First do a pass to find all of the cancelled buf log items.
5497 * Store them in the buf_cancel_table for use in the second pass.
5498 */
5499 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5500 sizeof(struct list_head),
5501 KM_SLEEP);
5502 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5503 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5504
5505 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5506 XLOG_RECOVER_PASS1, NULL);
5507 if (error != 0) {
5508 kmem_free(log->l_buf_cancel_table);
5509 log->l_buf_cancel_table = NULL;
5510 return error;
5511 }
5512 /*
5513 * Then do a second pass to actually recover the items in the log.
5514 * When it is complete free the table of buf cancel items.
5515 */
5516 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5517 XLOG_RECOVER_PASS2, NULL);
5518#ifdef DEBUG
5519 if (!error) {
5520 int i;
5521
5522 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5523 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5524 }
5525#endif /* DEBUG */
5526
5527 kmem_free(log->l_buf_cancel_table);
5528 log->l_buf_cancel_table = NULL;
5529
5530 return error;
5531}
5532
5533/*
5534 * Do the actual recovery
5535 */
5536STATIC int
5537xlog_do_recover(
5538 struct xlog *log,
5539 xfs_daddr_t head_blk,
5540 xfs_daddr_t tail_blk)
5541{
5542 struct xfs_mount *mp = log->l_mp;
5543 int error;
5544 xfs_buf_t *bp;
5545 xfs_sb_t *sbp;
5546
5547 /*
5548 * First replay the images in the log.
5549 */
5550 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5551 if (error)
5552 return error;
5553
5554 /*
5555 * If IO errors happened during recovery, bail out.
5556 */
5557 if (XFS_FORCED_SHUTDOWN(mp)) {
5558 return -EIO;
5559 }
5560
5561 /*
5562 * We now update the tail_lsn since much of the recovery has completed
5563 * and there may be space available to use. If there were no extent
5564 * or iunlinks, we can free up the entire log and set the tail_lsn to
5565 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5566 * lsn of the last known good LR on disk. If there are extent frees
5567 * or iunlinks they will have some entries in the AIL; so we look at
5568 * the AIL to determine how to set the tail_lsn.
5569 */
5570 xlog_assign_tail_lsn(mp);
5571
5572 /*
5573 * Now that we've finished replaying all buffer and inode
5574 * updates, re-read in the superblock and reverify it.
5575 */
5576 bp = xfs_getsb(mp, 0);
5577 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5578 ASSERT(!(bp->b_flags & XBF_WRITE));
5579 bp->b_flags |= XBF_READ;
5580 bp->b_ops = &xfs_sb_buf_ops;
5581
5582 error = xfs_buf_submit_wait(bp);
5583 if (error) {
5584 if (!XFS_FORCED_SHUTDOWN(mp)) {
5585 xfs_buf_ioerror_alert(bp, __func__);
5586 ASSERT(0);
5587 }
5588 xfs_buf_relse(bp);
5589 return error;
5590 }
5591
5592 /* Convert superblock from on-disk format */
5593 sbp = &mp->m_sb;
5594 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5595 xfs_buf_relse(bp);
5596
5597 /* re-initialise in-core superblock and geometry structures */
5598 xfs_reinit_percpu_counters(mp);
5599 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5600 if (error) {
5601 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5602 return error;
5603 }
5604 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5605
5606 xlog_recover_check_summary(log);
5607
5608 /* Normal transactions can now occur */
5609 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5610 return 0;
5611}
5612
5613/*
5614 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5615 *
5616 * Return error or zero.
5617 */
5618int
5619xlog_recover(
5620 struct xlog *log)
5621{
5622 xfs_daddr_t head_blk, tail_blk;
5623 int error;
5624
5625 /* find the tail of the log */
5626 error = xlog_find_tail(log, &head_blk, &tail_blk);
5627 if (error)
5628 return error;
5629
5630 /*
5631 * The superblock was read before the log was available and thus the LSN
5632 * could not be verified. Check the superblock LSN against the current
5633 * LSN now that it's known.
5634 */
5635 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5636 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5637 return -EINVAL;
5638
5639 if (tail_blk != head_blk) {
5640 /* There used to be a comment here:
5641 *
5642 * disallow recovery on read-only mounts. note -- mount
5643 * checks for ENOSPC and turns it into an intelligent
5644 * error message.
5645 * ...but this is no longer true. Now, unless you specify
5646 * NORECOVERY (in which case this function would never be
5647 * called), we just go ahead and recover. We do this all
5648 * under the vfs layer, so we can get away with it unless
5649 * the device itself is read-only, in which case we fail.
5650 */
5651 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5652 return error;
5653 }
5654
5655 /*
5656 * Version 5 superblock log feature mask validation. We know the
5657 * log is dirty so check if there are any unknown log features
5658 * in what we need to recover. If there are unknown features
5659 * (e.g. unsupported transactions, then simply reject the
5660 * attempt at recovery before touching anything.
5661 */
5662 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5663 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5664 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5665 xfs_warn(log->l_mp,
5666"Superblock has unknown incompatible log features (0x%x) enabled.",
5667 (log->l_mp->m_sb.sb_features_log_incompat &
5668 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5669 xfs_warn(log->l_mp,
5670"The log can not be fully and/or safely recovered by this kernel.");
5671 xfs_warn(log->l_mp,
5672"Please recover the log on a kernel that supports the unknown features.");
5673 return -EINVAL;
5674 }
5675
5676 /*
5677 * Delay log recovery if the debug hook is set. This is debug
5678 * instrumention to coordinate simulation of I/O failures with
5679 * log recovery.
5680 */
5681 if (xfs_globals.log_recovery_delay) {
5682 xfs_notice(log->l_mp,
5683 "Delaying log recovery for %d seconds.",
5684 xfs_globals.log_recovery_delay);
5685 msleep(xfs_globals.log_recovery_delay * 1000);
5686 }
5687
5688 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5689 log->l_mp->m_logname ? log->l_mp->m_logname
5690 : "internal");
5691
5692 error = xlog_do_recover(log, head_blk, tail_blk);
5693 log->l_flags |= XLOG_RECOVERY_NEEDED;
5694 }
5695 return error;
5696}
5697
5698/*
5699 * In the first part of recovery we replay inodes and buffers and build
5700 * up the list of extent free items which need to be processed. Here
5701 * we process the extent free items and clean up the on disk unlinked
5702 * inode lists. This is separated from the first part of recovery so
5703 * that the root and real-time bitmap inodes can be read in from disk in
5704 * between the two stages. This is necessary so that we can free space
5705 * in the real-time portion of the file system.
5706 */
5707int
5708xlog_recover_finish(
5709 struct xlog *log)
5710{
5711 /*
5712 * Now we're ready to do the transactions needed for the
5713 * rest of recovery. Start with completing all the extent
5714 * free intent records and then process the unlinked inode
5715 * lists. At this point, we essentially run in normal mode
5716 * except that we're still performing recovery actions
5717 * rather than accepting new requests.
5718 */
5719 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5720 int error;
5721 error = xlog_recover_process_intents(log);
5722 if (error) {
5723 xfs_alert(log->l_mp, "Failed to recover intents");
5724 return error;
5725 }
5726
5727 /*
5728 * Sync the log to get all the intents out of the AIL.
5729 * This isn't absolutely necessary, but it helps in
5730 * case the unlink transactions would have problems
5731 * pushing the intents out of the way.
5732 */
5733 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5734
5735 xlog_recover_process_iunlinks(log);
5736
5737 xlog_recover_check_summary(log);
5738
5739 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5740 log->l_mp->m_logname ? log->l_mp->m_logname
5741 : "internal");
5742 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5743 } else {
5744 xfs_info(log->l_mp, "Ending clean mount");
5745 }
5746 return 0;
5747}
5748
5749int
5750xlog_recover_cancel(
5751 struct xlog *log)
5752{
5753 int error = 0;
5754
5755 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5756 error = xlog_recover_cancel_intents(log);
5757
5758 return error;
5759}
5760
5761#if defined(DEBUG)
5762/*
5763 * Read all of the agf and agi counters and check that they
5764 * are consistent with the superblock counters.
5765 */
5766void
5767xlog_recover_check_summary(
5768 struct xlog *log)
5769{
5770 xfs_mount_t *mp;
5771 xfs_agf_t *agfp;
5772 xfs_buf_t *agfbp;
5773 xfs_buf_t *agibp;
5774 xfs_agnumber_t agno;
5775 __uint64_t freeblks;
5776 __uint64_t itotal;
5777 __uint64_t ifree;
5778 int error;
5779
5780 mp = log->l_mp;
5781
5782 freeblks = 0LL;
5783 itotal = 0LL;
5784 ifree = 0LL;
5785 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5786 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5787 if (error) {
5788 xfs_alert(mp, "%s agf read failed agno %d error %d",
5789 __func__, agno, error);
5790 } else {
5791 agfp = XFS_BUF_TO_AGF(agfbp);
5792 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5793 be32_to_cpu(agfp->agf_flcount);
5794 xfs_buf_relse(agfbp);
5795 }
5796
5797 error = xfs_read_agi(mp, NULL, agno, &agibp);
5798 if (error) {
5799 xfs_alert(mp, "%s agi read failed agno %d error %d",
5800 __func__, agno, error);
5801 } else {
5802 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5803
5804 itotal += be32_to_cpu(agi->agi_count);
5805 ifree += be32_to_cpu(agi->agi_freecount);
5806 xfs_buf_relse(agibp);
5807 }
5808 }
5809}
5810#endif /* DEBUG */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_log_recover.h"
21#include "xfs_inode_item.h"
22#include "xfs_extfree_item.h"
23#include "xfs_trans_priv.h"
24#include "xfs_alloc.h"
25#include "xfs_ialloc.h"
26#include "xfs_quota.h"
27#include "xfs_trace.h"
28#include "xfs_icache.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_error.h"
31#include "xfs_dir2.h"
32#include "xfs_rmap_item.h"
33#include "xfs_buf_item.h"
34#include "xfs_refcount_item.h"
35#include "xfs_bmap_item.h"
36
37#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
38
39STATIC int
40xlog_find_zeroed(
41 struct xlog *,
42 xfs_daddr_t *);
43STATIC int
44xlog_clear_stale_blocks(
45 struct xlog *,
46 xfs_lsn_t);
47#if defined(DEBUG)
48STATIC void
49xlog_recover_check_summary(
50 struct xlog *);
51#else
52#define xlog_recover_check_summary(log)
53#endif
54STATIC int
55xlog_do_recovery_pass(
56 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
57
58/*
59 * This structure is used during recovery to record the buf log items which
60 * have been canceled and should not be replayed.
61 */
62struct xfs_buf_cancel {
63 xfs_daddr_t bc_blkno;
64 uint bc_len;
65 int bc_refcount;
66 struct list_head bc_list;
67};
68
69/*
70 * Sector aligned buffer routines for buffer create/read/write/access
71 */
72
73/*
74 * Verify the log-relative block number and length in basic blocks are valid for
75 * an operation involving the given XFS log buffer. Returns true if the fields
76 * are valid, false otherwise.
77 */
78static inline bool
79xlog_verify_bno(
80 struct xlog *log,
81 xfs_daddr_t blk_no,
82 int bbcount)
83{
84 if (blk_no < 0 || blk_no >= log->l_logBBsize)
85 return false;
86 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
87 return false;
88 return true;
89}
90
91/*
92 * Allocate a buffer to hold log data. The buffer needs to be able to map to
93 * a range of nbblks basic blocks at any valid offset within the log.
94 */
95static char *
96xlog_alloc_buffer(
97 struct xlog *log,
98 int nbblks)
99{
100 int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
101
102 /*
103 * Pass log block 0 since we don't have an addr yet, buffer will be
104 * verified on read.
105 */
106 if (!xlog_verify_bno(log, 0, nbblks)) {
107 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
108 nbblks);
109 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
110 return NULL;
111 }
112
113 /*
114 * We do log I/O in units of log sectors (a power-of-2 multiple of the
115 * basic block size), so we round up the requested size to accommodate
116 * the basic blocks required for complete log sectors.
117 *
118 * In addition, the buffer may be used for a non-sector-aligned block
119 * offset, in which case an I/O of the requested size could extend
120 * beyond the end of the buffer. If the requested size is only 1 basic
121 * block it will never straddle a sector boundary, so this won't be an
122 * issue. Nor will this be a problem if the log I/O is done in basic
123 * blocks (sector size 1). But otherwise we extend the buffer by one
124 * extra log sector to ensure there's space to accommodate this
125 * possibility.
126 */
127 if (nbblks > 1 && log->l_sectBBsize > 1)
128 nbblks += log->l_sectBBsize;
129 nbblks = round_up(nbblks, log->l_sectBBsize);
130 return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
131}
132
133/*
134 * Return the address of the start of the given block number's data
135 * in a log buffer. The buffer covers a log sector-aligned region.
136 */
137static inline unsigned int
138xlog_align(
139 struct xlog *log,
140 xfs_daddr_t blk_no)
141{
142 return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
143}
144
145static int
146xlog_do_io(
147 struct xlog *log,
148 xfs_daddr_t blk_no,
149 unsigned int nbblks,
150 char *data,
151 unsigned int op)
152{
153 int error;
154
155 if (!xlog_verify_bno(log, blk_no, nbblks)) {
156 xfs_warn(log->l_mp,
157 "Invalid log block/length (0x%llx, 0x%x) for buffer",
158 blk_no, nbblks);
159 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
160 return -EFSCORRUPTED;
161 }
162
163 blk_no = round_down(blk_no, log->l_sectBBsize);
164 nbblks = round_up(nbblks, log->l_sectBBsize);
165 ASSERT(nbblks > 0);
166
167 error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
168 BBTOB(nbblks), data, op);
169 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
170 xfs_alert(log->l_mp,
171 "log recovery %s I/O error at daddr 0x%llx len %d error %d",
172 op == REQ_OP_WRITE ? "write" : "read",
173 blk_no, nbblks, error);
174 }
175 return error;
176}
177
178STATIC int
179xlog_bread_noalign(
180 struct xlog *log,
181 xfs_daddr_t blk_no,
182 int nbblks,
183 char *data)
184{
185 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
186}
187
188STATIC int
189xlog_bread(
190 struct xlog *log,
191 xfs_daddr_t blk_no,
192 int nbblks,
193 char *data,
194 char **offset)
195{
196 int error;
197
198 error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
199 if (!error)
200 *offset = data + xlog_align(log, blk_no);
201 return error;
202}
203
204STATIC int
205xlog_bwrite(
206 struct xlog *log,
207 xfs_daddr_t blk_no,
208 int nbblks,
209 char *data)
210{
211 return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
212}
213
214#ifdef DEBUG
215/*
216 * dump debug superblock and log record information
217 */
218STATIC void
219xlog_header_check_dump(
220 xfs_mount_t *mp,
221 xlog_rec_header_t *head)
222{
223 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
224 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
225 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
226 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
227}
228#else
229#define xlog_header_check_dump(mp, head)
230#endif
231
232/*
233 * check log record header for recovery
234 */
235STATIC int
236xlog_header_check_recover(
237 xfs_mount_t *mp,
238 xlog_rec_header_t *head)
239{
240 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
241
242 /*
243 * IRIX doesn't write the h_fmt field and leaves it zeroed
244 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
245 * a dirty log created in IRIX.
246 */
247 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
248 xfs_warn(mp,
249 "dirty log written in incompatible format - can't recover");
250 xlog_header_check_dump(mp, head);
251 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
252 XFS_ERRLEVEL_HIGH, mp);
253 return -EFSCORRUPTED;
254 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
255 xfs_warn(mp,
256 "dirty log entry has mismatched uuid - can't recover");
257 xlog_header_check_dump(mp, head);
258 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
259 XFS_ERRLEVEL_HIGH, mp);
260 return -EFSCORRUPTED;
261 }
262 return 0;
263}
264
265/*
266 * read the head block of the log and check the header
267 */
268STATIC int
269xlog_header_check_mount(
270 xfs_mount_t *mp,
271 xlog_rec_header_t *head)
272{
273 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
274
275 if (uuid_is_null(&head->h_fs_uuid)) {
276 /*
277 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
278 * h_fs_uuid is null, we assume this log was last mounted
279 * by IRIX and continue.
280 */
281 xfs_warn(mp, "null uuid in log - IRIX style log");
282 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
283 xfs_warn(mp, "log has mismatched uuid - can't recover");
284 xlog_header_check_dump(mp, head);
285 XFS_ERROR_REPORT("xlog_header_check_mount",
286 XFS_ERRLEVEL_HIGH, mp);
287 return -EFSCORRUPTED;
288 }
289 return 0;
290}
291
292STATIC void
293xlog_recover_iodone(
294 struct xfs_buf *bp)
295{
296 if (bp->b_error) {
297 /*
298 * We're not going to bother about retrying
299 * this during recovery. One strike!
300 */
301 if (!XFS_FORCED_SHUTDOWN(bp->b_mount)) {
302 xfs_buf_ioerror_alert(bp, __func__);
303 xfs_force_shutdown(bp->b_mount, SHUTDOWN_META_IO_ERROR);
304 }
305 }
306
307 /*
308 * On v5 supers, a bli could be attached to update the metadata LSN.
309 * Clean it up.
310 */
311 if (bp->b_log_item)
312 xfs_buf_item_relse(bp);
313 ASSERT(bp->b_log_item == NULL);
314
315 bp->b_iodone = NULL;
316 xfs_buf_ioend(bp);
317}
318
319/*
320 * This routine finds (to an approximation) the first block in the physical
321 * log which contains the given cycle. It uses a binary search algorithm.
322 * Note that the algorithm can not be perfect because the disk will not
323 * necessarily be perfect.
324 */
325STATIC int
326xlog_find_cycle_start(
327 struct xlog *log,
328 char *buffer,
329 xfs_daddr_t first_blk,
330 xfs_daddr_t *last_blk,
331 uint cycle)
332{
333 char *offset;
334 xfs_daddr_t mid_blk;
335 xfs_daddr_t end_blk;
336 uint mid_cycle;
337 int error;
338
339 end_blk = *last_blk;
340 mid_blk = BLK_AVG(first_blk, end_blk);
341 while (mid_blk != first_blk && mid_blk != end_blk) {
342 error = xlog_bread(log, mid_blk, 1, buffer, &offset);
343 if (error)
344 return error;
345 mid_cycle = xlog_get_cycle(offset);
346 if (mid_cycle == cycle)
347 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
348 else
349 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
350 mid_blk = BLK_AVG(first_blk, end_blk);
351 }
352 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
353 (mid_blk == end_blk && mid_blk-1 == first_blk));
354
355 *last_blk = end_blk;
356
357 return 0;
358}
359
360/*
361 * Check that a range of blocks does not contain stop_on_cycle_no.
362 * Fill in *new_blk with the block offset where such a block is
363 * found, or with -1 (an invalid block number) if there is no such
364 * block in the range. The scan needs to occur from front to back
365 * and the pointer into the region must be updated since a later
366 * routine will need to perform another test.
367 */
368STATIC int
369xlog_find_verify_cycle(
370 struct xlog *log,
371 xfs_daddr_t start_blk,
372 int nbblks,
373 uint stop_on_cycle_no,
374 xfs_daddr_t *new_blk)
375{
376 xfs_daddr_t i, j;
377 uint cycle;
378 char *buffer;
379 xfs_daddr_t bufblks;
380 char *buf = NULL;
381 int error = 0;
382
383 /*
384 * Greedily allocate a buffer big enough to handle the full
385 * range of basic blocks we'll be examining. If that fails,
386 * try a smaller size. We need to be able to read at least
387 * a log sector, or we're out of luck.
388 */
389 bufblks = 1 << ffs(nbblks);
390 while (bufblks > log->l_logBBsize)
391 bufblks >>= 1;
392 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
393 bufblks >>= 1;
394 if (bufblks < log->l_sectBBsize)
395 return -ENOMEM;
396 }
397
398 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
399 int bcount;
400
401 bcount = min(bufblks, (start_blk + nbblks - i));
402
403 error = xlog_bread(log, i, bcount, buffer, &buf);
404 if (error)
405 goto out;
406
407 for (j = 0; j < bcount; j++) {
408 cycle = xlog_get_cycle(buf);
409 if (cycle == stop_on_cycle_no) {
410 *new_blk = i+j;
411 goto out;
412 }
413
414 buf += BBSIZE;
415 }
416 }
417
418 *new_blk = -1;
419
420out:
421 kmem_free(buffer);
422 return error;
423}
424
425/*
426 * Potentially backup over partial log record write.
427 *
428 * In the typical case, last_blk is the number of the block directly after
429 * a good log record. Therefore, we subtract one to get the block number
430 * of the last block in the given buffer. extra_bblks contains the number
431 * of blocks we would have read on a previous read. This happens when the
432 * last log record is split over the end of the physical log.
433 *
434 * extra_bblks is the number of blocks potentially verified on a previous
435 * call to this routine.
436 */
437STATIC int
438xlog_find_verify_log_record(
439 struct xlog *log,
440 xfs_daddr_t start_blk,
441 xfs_daddr_t *last_blk,
442 int extra_bblks)
443{
444 xfs_daddr_t i;
445 char *buffer;
446 char *offset = NULL;
447 xlog_rec_header_t *head = NULL;
448 int error = 0;
449 int smallmem = 0;
450 int num_blks = *last_blk - start_blk;
451 int xhdrs;
452
453 ASSERT(start_blk != 0 || *last_blk != start_blk);
454
455 buffer = xlog_alloc_buffer(log, num_blks);
456 if (!buffer) {
457 buffer = xlog_alloc_buffer(log, 1);
458 if (!buffer)
459 return -ENOMEM;
460 smallmem = 1;
461 } else {
462 error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
463 if (error)
464 goto out;
465 offset += ((num_blks - 1) << BBSHIFT);
466 }
467
468 for (i = (*last_blk) - 1; i >= 0; i--) {
469 if (i < start_blk) {
470 /* valid log record not found */
471 xfs_warn(log->l_mp,
472 "Log inconsistent (didn't find previous header)");
473 ASSERT(0);
474 error = -EIO;
475 goto out;
476 }
477
478 if (smallmem) {
479 error = xlog_bread(log, i, 1, buffer, &offset);
480 if (error)
481 goto out;
482 }
483
484 head = (xlog_rec_header_t *)offset;
485
486 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
487 break;
488
489 if (!smallmem)
490 offset -= BBSIZE;
491 }
492
493 /*
494 * We hit the beginning of the physical log & still no header. Return
495 * to caller. If caller can handle a return of -1, then this routine
496 * will be called again for the end of the physical log.
497 */
498 if (i == -1) {
499 error = 1;
500 goto out;
501 }
502
503 /*
504 * We have the final block of the good log (the first block
505 * of the log record _before_ the head. So we check the uuid.
506 */
507 if ((error = xlog_header_check_mount(log->l_mp, head)))
508 goto out;
509
510 /*
511 * We may have found a log record header before we expected one.
512 * last_blk will be the 1st block # with a given cycle #. We may end
513 * up reading an entire log record. In this case, we don't want to
514 * reset last_blk. Only when last_blk points in the middle of a log
515 * record do we update last_blk.
516 */
517 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
518 uint h_size = be32_to_cpu(head->h_size);
519
520 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
521 if (h_size % XLOG_HEADER_CYCLE_SIZE)
522 xhdrs++;
523 } else {
524 xhdrs = 1;
525 }
526
527 if (*last_blk - i + extra_bblks !=
528 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
529 *last_blk = i;
530
531out:
532 kmem_free(buffer);
533 return error;
534}
535
536/*
537 * Head is defined to be the point of the log where the next log write
538 * could go. This means that incomplete LR writes at the end are
539 * eliminated when calculating the head. We aren't guaranteed that previous
540 * LR have complete transactions. We only know that a cycle number of
541 * current cycle number -1 won't be present in the log if we start writing
542 * from our current block number.
543 *
544 * last_blk contains the block number of the first block with a given
545 * cycle number.
546 *
547 * Return: zero if normal, non-zero if error.
548 */
549STATIC int
550xlog_find_head(
551 struct xlog *log,
552 xfs_daddr_t *return_head_blk)
553{
554 char *buffer;
555 char *offset;
556 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
557 int num_scan_bblks;
558 uint first_half_cycle, last_half_cycle;
559 uint stop_on_cycle;
560 int error, log_bbnum = log->l_logBBsize;
561
562 /* Is the end of the log device zeroed? */
563 error = xlog_find_zeroed(log, &first_blk);
564 if (error < 0) {
565 xfs_warn(log->l_mp, "empty log check failed");
566 return error;
567 }
568 if (error == 1) {
569 *return_head_blk = first_blk;
570
571 /* Is the whole lot zeroed? */
572 if (!first_blk) {
573 /* Linux XFS shouldn't generate totally zeroed logs -
574 * mkfs etc write a dummy unmount record to a fresh
575 * log so we can store the uuid in there
576 */
577 xfs_warn(log->l_mp, "totally zeroed log");
578 }
579
580 return 0;
581 }
582
583 first_blk = 0; /* get cycle # of 1st block */
584 buffer = xlog_alloc_buffer(log, 1);
585 if (!buffer)
586 return -ENOMEM;
587
588 error = xlog_bread(log, 0, 1, buffer, &offset);
589 if (error)
590 goto out_free_buffer;
591
592 first_half_cycle = xlog_get_cycle(offset);
593
594 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
595 error = xlog_bread(log, last_blk, 1, buffer, &offset);
596 if (error)
597 goto out_free_buffer;
598
599 last_half_cycle = xlog_get_cycle(offset);
600 ASSERT(last_half_cycle != 0);
601
602 /*
603 * If the 1st half cycle number is equal to the last half cycle number,
604 * then the entire log is stamped with the same cycle number. In this
605 * case, head_blk can't be set to zero (which makes sense). The below
606 * math doesn't work out properly with head_blk equal to zero. Instead,
607 * we set it to log_bbnum which is an invalid block number, but this
608 * value makes the math correct. If head_blk doesn't changed through
609 * all the tests below, *head_blk is set to zero at the very end rather
610 * than log_bbnum. In a sense, log_bbnum and zero are the same block
611 * in a circular file.
612 */
613 if (first_half_cycle == last_half_cycle) {
614 /*
615 * In this case we believe that the entire log should have
616 * cycle number last_half_cycle. We need to scan backwards
617 * from the end verifying that there are no holes still
618 * containing last_half_cycle - 1. If we find such a hole,
619 * then the start of that hole will be the new head. The
620 * simple case looks like
621 * x | x ... | x - 1 | x
622 * Another case that fits this picture would be
623 * x | x + 1 | x ... | x
624 * In this case the head really is somewhere at the end of the
625 * log, as one of the latest writes at the beginning was
626 * incomplete.
627 * One more case is
628 * x | x + 1 | x ... | x - 1 | x
629 * This is really the combination of the above two cases, and
630 * the head has to end up at the start of the x-1 hole at the
631 * end of the log.
632 *
633 * In the 256k log case, we will read from the beginning to the
634 * end of the log and search for cycle numbers equal to x-1.
635 * We don't worry about the x+1 blocks that we encounter,
636 * because we know that they cannot be the head since the log
637 * started with x.
638 */
639 head_blk = log_bbnum;
640 stop_on_cycle = last_half_cycle - 1;
641 } else {
642 /*
643 * In this case we want to find the first block with cycle
644 * number matching last_half_cycle. We expect the log to be
645 * some variation on
646 * x + 1 ... | x ... | x
647 * The first block with cycle number x (last_half_cycle) will
648 * be where the new head belongs. First we do a binary search
649 * for the first occurrence of last_half_cycle. The binary
650 * search may not be totally accurate, so then we scan back
651 * from there looking for occurrences of last_half_cycle before
652 * us. If that backwards scan wraps around the beginning of
653 * the log, then we look for occurrences of last_half_cycle - 1
654 * at the end of the log. The cases we're looking for look
655 * like
656 * v binary search stopped here
657 * x + 1 ... | x | x + 1 | x ... | x
658 * ^ but we want to locate this spot
659 * or
660 * <---------> less than scan distance
661 * x + 1 ... | x ... | x - 1 | x
662 * ^ we want to locate this spot
663 */
664 stop_on_cycle = last_half_cycle;
665 error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
666 last_half_cycle);
667 if (error)
668 goto out_free_buffer;
669 }
670
671 /*
672 * Now validate the answer. Scan back some number of maximum possible
673 * blocks and make sure each one has the expected cycle number. The
674 * maximum is determined by the total possible amount of buffering
675 * in the in-core log. The following number can be made tighter if
676 * we actually look at the block size of the filesystem.
677 */
678 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
679 if (head_blk >= num_scan_bblks) {
680 /*
681 * We are guaranteed that the entire check can be performed
682 * in one buffer.
683 */
684 start_blk = head_blk - num_scan_bblks;
685 if ((error = xlog_find_verify_cycle(log,
686 start_blk, num_scan_bblks,
687 stop_on_cycle, &new_blk)))
688 goto out_free_buffer;
689 if (new_blk != -1)
690 head_blk = new_blk;
691 } else { /* need to read 2 parts of log */
692 /*
693 * We are going to scan backwards in the log in two parts.
694 * First we scan the physical end of the log. In this part
695 * of the log, we are looking for blocks with cycle number
696 * last_half_cycle - 1.
697 * If we find one, then we know that the log starts there, as
698 * we've found a hole that didn't get written in going around
699 * the end of the physical log. The simple case for this is
700 * x + 1 ... | x ... | x - 1 | x
701 * <---------> less than scan distance
702 * If all of the blocks at the end of the log have cycle number
703 * last_half_cycle, then we check the blocks at the start of
704 * the log looking for occurrences of last_half_cycle. If we
705 * find one, then our current estimate for the location of the
706 * first occurrence of last_half_cycle is wrong and we move
707 * back to the hole we've found. This case looks like
708 * x + 1 ... | x | x + 1 | x ...
709 * ^ binary search stopped here
710 * Another case we need to handle that only occurs in 256k
711 * logs is
712 * x + 1 ... | x ... | x+1 | x ...
713 * ^ binary search stops here
714 * In a 256k log, the scan at the end of the log will see the
715 * x + 1 blocks. We need to skip past those since that is
716 * certainly not the head of the log. By searching for
717 * last_half_cycle-1 we accomplish that.
718 */
719 ASSERT(head_blk <= INT_MAX &&
720 (xfs_daddr_t) num_scan_bblks >= head_blk);
721 start_blk = log_bbnum - (num_scan_bblks - head_blk);
722 if ((error = xlog_find_verify_cycle(log, start_blk,
723 num_scan_bblks - (int)head_blk,
724 (stop_on_cycle - 1), &new_blk)))
725 goto out_free_buffer;
726 if (new_blk != -1) {
727 head_blk = new_blk;
728 goto validate_head;
729 }
730
731 /*
732 * Scan beginning of log now. The last part of the physical
733 * log is good. This scan needs to verify that it doesn't find
734 * the last_half_cycle.
735 */
736 start_blk = 0;
737 ASSERT(head_blk <= INT_MAX);
738 if ((error = xlog_find_verify_cycle(log,
739 start_blk, (int)head_blk,
740 stop_on_cycle, &new_blk)))
741 goto out_free_buffer;
742 if (new_blk != -1)
743 head_blk = new_blk;
744 }
745
746validate_head:
747 /*
748 * Now we need to make sure head_blk is not pointing to a block in
749 * the middle of a log record.
750 */
751 num_scan_bblks = XLOG_REC_SHIFT(log);
752 if (head_blk >= num_scan_bblks) {
753 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
754
755 /* start ptr at last block ptr before head_blk */
756 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
757 if (error == 1)
758 error = -EIO;
759 if (error)
760 goto out_free_buffer;
761 } else {
762 start_blk = 0;
763 ASSERT(head_blk <= INT_MAX);
764 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
765 if (error < 0)
766 goto out_free_buffer;
767 if (error == 1) {
768 /* We hit the beginning of the log during our search */
769 start_blk = log_bbnum - (num_scan_bblks - head_blk);
770 new_blk = log_bbnum;
771 ASSERT(start_blk <= INT_MAX &&
772 (xfs_daddr_t) log_bbnum-start_blk >= 0);
773 ASSERT(head_blk <= INT_MAX);
774 error = xlog_find_verify_log_record(log, start_blk,
775 &new_blk, (int)head_blk);
776 if (error == 1)
777 error = -EIO;
778 if (error)
779 goto out_free_buffer;
780 if (new_blk != log_bbnum)
781 head_blk = new_blk;
782 } else if (error)
783 goto out_free_buffer;
784 }
785
786 kmem_free(buffer);
787 if (head_blk == log_bbnum)
788 *return_head_blk = 0;
789 else
790 *return_head_blk = head_blk;
791 /*
792 * When returning here, we have a good block number. Bad block
793 * means that during a previous crash, we didn't have a clean break
794 * from cycle number N to cycle number N-1. In this case, we need
795 * to find the first block with cycle number N-1.
796 */
797 return 0;
798
799out_free_buffer:
800 kmem_free(buffer);
801 if (error)
802 xfs_warn(log->l_mp, "failed to find log head");
803 return error;
804}
805
806/*
807 * Seek backwards in the log for log record headers.
808 *
809 * Given a starting log block, walk backwards until we find the provided number
810 * of records or hit the provided tail block. The return value is the number of
811 * records encountered or a negative error code. The log block and buffer
812 * pointer of the last record seen are returned in rblk and rhead respectively.
813 */
814STATIC int
815xlog_rseek_logrec_hdr(
816 struct xlog *log,
817 xfs_daddr_t head_blk,
818 xfs_daddr_t tail_blk,
819 int count,
820 char *buffer,
821 xfs_daddr_t *rblk,
822 struct xlog_rec_header **rhead,
823 bool *wrapped)
824{
825 int i;
826 int error;
827 int found = 0;
828 char *offset = NULL;
829 xfs_daddr_t end_blk;
830
831 *wrapped = false;
832
833 /*
834 * Walk backwards from the head block until we hit the tail or the first
835 * block in the log.
836 */
837 end_blk = head_blk > tail_blk ? tail_blk : 0;
838 for (i = (int) head_blk - 1; i >= end_blk; i--) {
839 error = xlog_bread(log, i, 1, buffer, &offset);
840 if (error)
841 goto out_error;
842
843 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
844 *rblk = i;
845 *rhead = (struct xlog_rec_header *) offset;
846 if (++found == count)
847 break;
848 }
849 }
850
851 /*
852 * If we haven't hit the tail block or the log record header count,
853 * start looking again from the end of the physical log. Note that
854 * callers can pass head == tail if the tail is not yet known.
855 */
856 if (tail_blk >= head_blk && found != count) {
857 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
858 error = xlog_bread(log, i, 1, buffer, &offset);
859 if (error)
860 goto out_error;
861
862 if (*(__be32 *)offset ==
863 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
864 *wrapped = true;
865 *rblk = i;
866 *rhead = (struct xlog_rec_header *) offset;
867 if (++found == count)
868 break;
869 }
870 }
871 }
872
873 return found;
874
875out_error:
876 return error;
877}
878
879/*
880 * Seek forward in the log for log record headers.
881 *
882 * Given head and tail blocks, walk forward from the tail block until we find
883 * the provided number of records or hit the head block. The return value is the
884 * number of records encountered or a negative error code. The log block and
885 * buffer pointer of the last record seen are returned in rblk and rhead
886 * respectively.
887 */
888STATIC int
889xlog_seek_logrec_hdr(
890 struct xlog *log,
891 xfs_daddr_t head_blk,
892 xfs_daddr_t tail_blk,
893 int count,
894 char *buffer,
895 xfs_daddr_t *rblk,
896 struct xlog_rec_header **rhead,
897 bool *wrapped)
898{
899 int i;
900 int error;
901 int found = 0;
902 char *offset = NULL;
903 xfs_daddr_t end_blk;
904
905 *wrapped = false;
906
907 /*
908 * Walk forward from the tail block until we hit the head or the last
909 * block in the log.
910 */
911 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
912 for (i = (int) tail_blk; i <= end_blk; i++) {
913 error = xlog_bread(log, i, 1, buffer, &offset);
914 if (error)
915 goto out_error;
916
917 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
918 *rblk = i;
919 *rhead = (struct xlog_rec_header *) offset;
920 if (++found == count)
921 break;
922 }
923 }
924
925 /*
926 * If we haven't hit the head block or the log record header count,
927 * start looking again from the start of the physical log.
928 */
929 if (tail_blk > head_blk && found != count) {
930 for (i = 0; i < (int) head_blk; i++) {
931 error = xlog_bread(log, i, 1, buffer, &offset);
932 if (error)
933 goto out_error;
934
935 if (*(__be32 *)offset ==
936 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
937 *wrapped = true;
938 *rblk = i;
939 *rhead = (struct xlog_rec_header *) offset;
940 if (++found == count)
941 break;
942 }
943 }
944 }
945
946 return found;
947
948out_error:
949 return error;
950}
951
952/*
953 * Calculate distance from head to tail (i.e., unused space in the log).
954 */
955static inline int
956xlog_tail_distance(
957 struct xlog *log,
958 xfs_daddr_t head_blk,
959 xfs_daddr_t tail_blk)
960{
961 if (head_blk < tail_blk)
962 return tail_blk - head_blk;
963
964 return tail_blk + (log->l_logBBsize - head_blk);
965}
966
967/*
968 * Verify the log tail. This is particularly important when torn or incomplete
969 * writes have been detected near the front of the log and the head has been
970 * walked back accordingly.
971 *
972 * We also have to handle the case where the tail was pinned and the head
973 * blocked behind the tail right before a crash. If the tail had been pushed
974 * immediately prior to the crash and the subsequent checkpoint was only
975 * partially written, it's possible it overwrote the last referenced tail in the
976 * log with garbage. This is not a coherency problem because the tail must have
977 * been pushed before it can be overwritten, but appears as log corruption to
978 * recovery because we have no way to know the tail was updated if the
979 * subsequent checkpoint didn't write successfully.
980 *
981 * Therefore, CRC check the log from tail to head. If a failure occurs and the
982 * offending record is within max iclog bufs from the head, walk the tail
983 * forward and retry until a valid tail is found or corruption is detected out
984 * of the range of a possible overwrite.
985 */
986STATIC int
987xlog_verify_tail(
988 struct xlog *log,
989 xfs_daddr_t head_blk,
990 xfs_daddr_t *tail_blk,
991 int hsize)
992{
993 struct xlog_rec_header *thead;
994 char *buffer;
995 xfs_daddr_t first_bad;
996 int error = 0;
997 bool wrapped;
998 xfs_daddr_t tmp_tail;
999 xfs_daddr_t orig_tail = *tail_blk;
1000
1001 buffer = xlog_alloc_buffer(log, 1);
1002 if (!buffer)
1003 return -ENOMEM;
1004
1005 /*
1006 * Make sure the tail points to a record (returns positive count on
1007 * success).
1008 */
1009 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
1010 &tmp_tail, &thead, &wrapped);
1011 if (error < 0)
1012 goto out;
1013 if (*tail_blk != tmp_tail)
1014 *tail_blk = tmp_tail;
1015
1016 /*
1017 * Run a CRC check from the tail to the head. We can't just check
1018 * MAX_ICLOGS records past the tail because the tail may point to stale
1019 * blocks cleared during the search for the head/tail. These blocks are
1020 * overwritten with zero-length records and thus record count is not a
1021 * reliable indicator of the iclog state before a crash.
1022 */
1023 first_bad = 0;
1024 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1025 XLOG_RECOVER_CRCPASS, &first_bad);
1026 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1027 int tail_distance;
1028
1029 /*
1030 * Is corruption within range of the head? If so, retry from
1031 * the next record. Otherwise return an error.
1032 */
1033 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1034 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1035 break;
1036
1037 /* skip to the next record; returns positive count on success */
1038 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
1039 buffer, &tmp_tail, &thead, &wrapped);
1040 if (error < 0)
1041 goto out;
1042
1043 *tail_blk = tmp_tail;
1044 first_bad = 0;
1045 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1046 XLOG_RECOVER_CRCPASS, &first_bad);
1047 }
1048
1049 if (!error && *tail_blk != orig_tail)
1050 xfs_warn(log->l_mp,
1051 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1052 orig_tail, *tail_blk);
1053out:
1054 kmem_free(buffer);
1055 return error;
1056}
1057
1058/*
1059 * Detect and trim torn writes from the head of the log.
1060 *
1061 * Storage without sector atomicity guarantees can result in torn writes in the
1062 * log in the event of a crash. Our only means to detect this scenario is via
1063 * CRC verification. While we can't always be certain that CRC verification
1064 * failure is due to a torn write vs. an unrelated corruption, we do know that
1065 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1066 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1067 * the log and treat failures in this range as torn writes as a matter of
1068 * policy. In the event of CRC failure, the head is walked back to the last good
1069 * record in the log and the tail is updated from that record and verified.
1070 */
1071STATIC int
1072xlog_verify_head(
1073 struct xlog *log,
1074 xfs_daddr_t *head_blk, /* in/out: unverified head */
1075 xfs_daddr_t *tail_blk, /* out: tail block */
1076 char *buffer,
1077 xfs_daddr_t *rhead_blk, /* start blk of last record */
1078 struct xlog_rec_header **rhead, /* ptr to last record */
1079 bool *wrapped) /* last rec. wraps phys. log */
1080{
1081 struct xlog_rec_header *tmp_rhead;
1082 char *tmp_buffer;
1083 xfs_daddr_t first_bad;
1084 xfs_daddr_t tmp_rhead_blk;
1085 int found;
1086 int error;
1087 bool tmp_wrapped;
1088
1089 /*
1090 * Check the head of the log for torn writes. Search backwards from the
1091 * head until we hit the tail or the maximum number of log record I/Os
1092 * that could have been in flight at one time. Use a temporary buffer so
1093 * we don't trash the rhead/buffer pointers from the caller.
1094 */
1095 tmp_buffer = xlog_alloc_buffer(log, 1);
1096 if (!tmp_buffer)
1097 return -ENOMEM;
1098 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1099 XLOG_MAX_ICLOGS, tmp_buffer,
1100 &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1101 kmem_free(tmp_buffer);
1102 if (error < 0)
1103 return error;
1104
1105 /*
1106 * Now run a CRC verification pass over the records starting at the
1107 * block found above to the current head. If a CRC failure occurs, the
1108 * log block of the first bad record is saved in first_bad.
1109 */
1110 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1111 XLOG_RECOVER_CRCPASS, &first_bad);
1112 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1113 /*
1114 * We've hit a potential torn write. Reset the error and warn
1115 * about it.
1116 */
1117 error = 0;
1118 xfs_warn(log->l_mp,
1119"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1120 first_bad, *head_blk);
1121
1122 /*
1123 * Get the header block and buffer pointer for the last good
1124 * record before the bad record.
1125 *
1126 * Note that xlog_find_tail() clears the blocks at the new head
1127 * (i.e., the records with invalid CRC) if the cycle number
1128 * matches the the current cycle.
1129 */
1130 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1131 buffer, rhead_blk, rhead, wrapped);
1132 if (found < 0)
1133 return found;
1134 if (found == 0) /* XXX: right thing to do here? */
1135 return -EIO;
1136
1137 /*
1138 * Reset the head block to the starting block of the first bad
1139 * log record and set the tail block based on the last good
1140 * record.
1141 *
1142 * Bail out if the updated head/tail match as this indicates
1143 * possible corruption outside of the acceptable
1144 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1145 */
1146 *head_blk = first_bad;
1147 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1148 if (*head_blk == *tail_blk) {
1149 ASSERT(0);
1150 return 0;
1151 }
1152 }
1153 if (error)
1154 return error;
1155
1156 return xlog_verify_tail(log, *head_blk, tail_blk,
1157 be32_to_cpu((*rhead)->h_size));
1158}
1159
1160/*
1161 * We need to make sure we handle log wrapping properly, so we can't use the
1162 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1163 * log.
1164 *
1165 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1166 * operation here and cast it back to a 64 bit daddr on return.
1167 */
1168static inline xfs_daddr_t
1169xlog_wrap_logbno(
1170 struct xlog *log,
1171 xfs_daddr_t bno)
1172{
1173 int mod;
1174
1175 div_s64_rem(bno, log->l_logBBsize, &mod);
1176 return mod;
1177}
1178
1179/*
1180 * Check whether the head of the log points to an unmount record. In other
1181 * words, determine whether the log is clean. If so, update the in-core state
1182 * appropriately.
1183 */
1184static int
1185xlog_check_unmount_rec(
1186 struct xlog *log,
1187 xfs_daddr_t *head_blk,
1188 xfs_daddr_t *tail_blk,
1189 struct xlog_rec_header *rhead,
1190 xfs_daddr_t rhead_blk,
1191 char *buffer,
1192 bool *clean)
1193{
1194 struct xlog_op_header *op_head;
1195 xfs_daddr_t umount_data_blk;
1196 xfs_daddr_t after_umount_blk;
1197 int hblks;
1198 int error;
1199 char *offset;
1200
1201 *clean = false;
1202
1203 /*
1204 * Look for unmount record. If we find it, then we know there was a
1205 * clean unmount. Since 'i' could be the last block in the physical
1206 * log, we convert to a log block before comparing to the head_blk.
1207 *
1208 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1209 * below. We won't want to clear the unmount record if there is one, so
1210 * we pass the lsn of the unmount record rather than the block after it.
1211 */
1212 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1213 int h_size = be32_to_cpu(rhead->h_size);
1214 int h_version = be32_to_cpu(rhead->h_version);
1215
1216 if ((h_version & XLOG_VERSION_2) &&
1217 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1218 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1219 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1220 hblks++;
1221 } else {
1222 hblks = 1;
1223 }
1224 } else {
1225 hblks = 1;
1226 }
1227
1228 after_umount_blk = xlog_wrap_logbno(log,
1229 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1230
1231 if (*head_blk == after_umount_blk &&
1232 be32_to_cpu(rhead->h_num_logops) == 1) {
1233 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1234 error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1235 if (error)
1236 return error;
1237
1238 op_head = (struct xlog_op_header *)offset;
1239 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1240 /*
1241 * Set tail and last sync so that newly written log
1242 * records will point recovery to after the current
1243 * unmount record.
1244 */
1245 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1246 log->l_curr_cycle, after_umount_blk);
1247 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1248 log->l_curr_cycle, after_umount_blk);
1249 *tail_blk = after_umount_blk;
1250
1251 *clean = true;
1252 }
1253 }
1254
1255 return 0;
1256}
1257
1258static void
1259xlog_set_state(
1260 struct xlog *log,
1261 xfs_daddr_t head_blk,
1262 struct xlog_rec_header *rhead,
1263 xfs_daddr_t rhead_blk,
1264 bool bump_cycle)
1265{
1266 /*
1267 * Reset log values according to the state of the log when we
1268 * crashed. In the case where head_blk == 0, we bump curr_cycle
1269 * one because the next write starts a new cycle rather than
1270 * continuing the cycle of the last good log record. At this
1271 * point we have guaranteed that all partial log records have been
1272 * accounted for. Therefore, we know that the last good log record
1273 * written was complete and ended exactly on the end boundary
1274 * of the physical log.
1275 */
1276 log->l_prev_block = rhead_blk;
1277 log->l_curr_block = (int)head_blk;
1278 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1279 if (bump_cycle)
1280 log->l_curr_cycle++;
1281 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1282 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1283 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1284 BBTOB(log->l_curr_block));
1285 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1286 BBTOB(log->l_curr_block));
1287}
1288
1289/*
1290 * Find the sync block number or the tail of the log.
1291 *
1292 * This will be the block number of the last record to have its
1293 * associated buffers synced to disk. Every log record header has
1294 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1295 * to get a sync block number. The only concern is to figure out which
1296 * log record header to believe.
1297 *
1298 * The following algorithm uses the log record header with the largest
1299 * lsn. The entire log record does not need to be valid. We only care
1300 * that the header is valid.
1301 *
1302 * We could speed up search by using current head_blk buffer, but it is not
1303 * available.
1304 */
1305STATIC int
1306xlog_find_tail(
1307 struct xlog *log,
1308 xfs_daddr_t *head_blk,
1309 xfs_daddr_t *tail_blk)
1310{
1311 xlog_rec_header_t *rhead;
1312 char *offset = NULL;
1313 char *buffer;
1314 int error;
1315 xfs_daddr_t rhead_blk;
1316 xfs_lsn_t tail_lsn;
1317 bool wrapped = false;
1318 bool clean = false;
1319
1320 /*
1321 * Find previous log record
1322 */
1323 if ((error = xlog_find_head(log, head_blk)))
1324 return error;
1325 ASSERT(*head_blk < INT_MAX);
1326
1327 buffer = xlog_alloc_buffer(log, 1);
1328 if (!buffer)
1329 return -ENOMEM;
1330 if (*head_blk == 0) { /* special case */
1331 error = xlog_bread(log, 0, 1, buffer, &offset);
1332 if (error)
1333 goto done;
1334
1335 if (xlog_get_cycle(offset) == 0) {
1336 *tail_blk = 0;
1337 /* leave all other log inited values alone */
1338 goto done;
1339 }
1340 }
1341
1342 /*
1343 * Search backwards through the log looking for the log record header
1344 * block. This wraps all the way back around to the head so something is
1345 * seriously wrong if we can't find it.
1346 */
1347 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1348 &rhead_blk, &rhead, &wrapped);
1349 if (error < 0)
1350 return error;
1351 if (!error) {
1352 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1353 return -EIO;
1354 }
1355 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1356
1357 /*
1358 * Set the log state based on the current head record.
1359 */
1360 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1361 tail_lsn = atomic64_read(&log->l_tail_lsn);
1362
1363 /*
1364 * Look for an unmount record at the head of the log. This sets the log
1365 * state to determine whether recovery is necessary.
1366 */
1367 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1368 rhead_blk, buffer, &clean);
1369 if (error)
1370 goto done;
1371
1372 /*
1373 * Verify the log head if the log is not clean (e.g., we have anything
1374 * but an unmount record at the head). This uses CRC verification to
1375 * detect and trim torn writes. If discovered, CRC failures are
1376 * considered torn writes and the log head is trimmed accordingly.
1377 *
1378 * Note that we can only run CRC verification when the log is dirty
1379 * because there's no guarantee that the log data behind an unmount
1380 * record is compatible with the current architecture.
1381 */
1382 if (!clean) {
1383 xfs_daddr_t orig_head = *head_blk;
1384
1385 error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1386 &rhead_blk, &rhead, &wrapped);
1387 if (error)
1388 goto done;
1389
1390 /* update in-core state again if the head changed */
1391 if (*head_blk != orig_head) {
1392 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1393 wrapped);
1394 tail_lsn = atomic64_read(&log->l_tail_lsn);
1395 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1396 rhead, rhead_blk, buffer,
1397 &clean);
1398 if (error)
1399 goto done;
1400 }
1401 }
1402
1403 /*
1404 * Note that the unmount was clean. If the unmount was not clean, we
1405 * need to know this to rebuild the superblock counters from the perag
1406 * headers if we have a filesystem using non-persistent counters.
1407 */
1408 if (clean)
1409 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1410
1411 /*
1412 * Make sure that there are no blocks in front of the head
1413 * with the same cycle number as the head. This can happen
1414 * because we allow multiple outstanding log writes concurrently,
1415 * and the later writes might make it out before earlier ones.
1416 *
1417 * We use the lsn from before modifying it so that we'll never
1418 * overwrite the unmount record after a clean unmount.
1419 *
1420 * Do this only if we are going to recover the filesystem
1421 *
1422 * NOTE: This used to say "if (!readonly)"
1423 * However on Linux, we can & do recover a read-only filesystem.
1424 * We only skip recovery if NORECOVERY is specified on mount,
1425 * in which case we would not be here.
1426 *
1427 * But... if the -device- itself is readonly, just skip this.
1428 * We can't recover this device anyway, so it won't matter.
1429 */
1430 if (!xfs_readonly_buftarg(log->l_targ))
1431 error = xlog_clear_stale_blocks(log, tail_lsn);
1432
1433done:
1434 kmem_free(buffer);
1435
1436 if (error)
1437 xfs_warn(log->l_mp, "failed to locate log tail");
1438 return error;
1439}
1440
1441/*
1442 * Is the log zeroed at all?
1443 *
1444 * The last binary search should be changed to perform an X block read
1445 * once X becomes small enough. You can then search linearly through
1446 * the X blocks. This will cut down on the number of reads we need to do.
1447 *
1448 * If the log is partially zeroed, this routine will pass back the blkno
1449 * of the first block with cycle number 0. It won't have a complete LR
1450 * preceding it.
1451 *
1452 * Return:
1453 * 0 => the log is completely written to
1454 * 1 => use *blk_no as the first block of the log
1455 * <0 => error has occurred
1456 */
1457STATIC int
1458xlog_find_zeroed(
1459 struct xlog *log,
1460 xfs_daddr_t *blk_no)
1461{
1462 char *buffer;
1463 char *offset;
1464 uint first_cycle, last_cycle;
1465 xfs_daddr_t new_blk, last_blk, start_blk;
1466 xfs_daddr_t num_scan_bblks;
1467 int error, log_bbnum = log->l_logBBsize;
1468
1469 *blk_no = 0;
1470
1471 /* check totally zeroed log */
1472 buffer = xlog_alloc_buffer(log, 1);
1473 if (!buffer)
1474 return -ENOMEM;
1475 error = xlog_bread(log, 0, 1, buffer, &offset);
1476 if (error)
1477 goto out_free_buffer;
1478
1479 first_cycle = xlog_get_cycle(offset);
1480 if (first_cycle == 0) { /* completely zeroed log */
1481 *blk_no = 0;
1482 kmem_free(buffer);
1483 return 1;
1484 }
1485
1486 /* check partially zeroed log */
1487 error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1488 if (error)
1489 goto out_free_buffer;
1490
1491 last_cycle = xlog_get_cycle(offset);
1492 if (last_cycle != 0) { /* log completely written to */
1493 kmem_free(buffer);
1494 return 0;
1495 }
1496
1497 /* we have a partially zeroed log */
1498 last_blk = log_bbnum-1;
1499 error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1500 if (error)
1501 goto out_free_buffer;
1502
1503 /*
1504 * Validate the answer. Because there is no way to guarantee that
1505 * the entire log is made up of log records which are the same size,
1506 * we scan over the defined maximum blocks. At this point, the maximum
1507 * is not chosen to mean anything special. XXXmiken
1508 */
1509 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1510 ASSERT(num_scan_bblks <= INT_MAX);
1511
1512 if (last_blk < num_scan_bblks)
1513 num_scan_bblks = last_blk;
1514 start_blk = last_blk - num_scan_bblks;
1515
1516 /*
1517 * We search for any instances of cycle number 0 that occur before
1518 * our current estimate of the head. What we're trying to detect is
1519 * 1 ... | 0 | 1 | 0...
1520 * ^ binary search ends here
1521 */
1522 if ((error = xlog_find_verify_cycle(log, start_blk,
1523 (int)num_scan_bblks, 0, &new_blk)))
1524 goto out_free_buffer;
1525 if (new_blk != -1)
1526 last_blk = new_blk;
1527
1528 /*
1529 * Potentially backup over partial log record write. We don't need
1530 * to search the end of the log because we know it is zero.
1531 */
1532 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1533 if (error == 1)
1534 error = -EIO;
1535 if (error)
1536 goto out_free_buffer;
1537
1538 *blk_no = last_blk;
1539out_free_buffer:
1540 kmem_free(buffer);
1541 if (error)
1542 return error;
1543 return 1;
1544}
1545
1546/*
1547 * These are simple subroutines used by xlog_clear_stale_blocks() below
1548 * to initialize a buffer full of empty log record headers and write
1549 * them into the log.
1550 */
1551STATIC void
1552xlog_add_record(
1553 struct xlog *log,
1554 char *buf,
1555 int cycle,
1556 int block,
1557 int tail_cycle,
1558 int tail_block)
1559{
1560 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1561
1562 memset(buf, 0, BBSIZE);
1563 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1564 recp->h_cycle = cpu_to_be32(cycle);
1565 recp->h_version = cpu_to_be32(
1566 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1567 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1568 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1569 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1570 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1571}
1572
1573STATIC int
1574xlog_write_log_records(
1575 struct xlog *log,
1576 int cycle,
1577 int start_block,
1578 int blocks,
1579 int tail_cycle,
1580 int tail_block)
1581{
1582 char *offset;
1583 char *buffer;
1584 int balign, ealign;
1585 int sectbb = log->l_sectBBsize;
1586 int end_block = start_block + blocks;
1587 int bufblks;
1588 int error = 0;
1589 int i, j = 0;
1590
1591 /*
1592 * Greedily allocate a buffer big enough to handle the full
1593 * range of basic blocks to be written. If that fails, try
1594 * a smaller size. We need to be able to write at least a
1595 * log sector, or we're out of luck.
1596 */
1597 bufblks = 1 << ffs(blocks);
1598 while (bufblks > log->l_logBBsize)
1599 bufblks >>= 1;
1600 while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1601 bufblks >>= 1;
1602 if (bufblks < sectbb)
1603 return -ENOMEM;
1604 }
1605
1606 /* We may need to do a read at the start to fill in part of
1607 * the buffer in the starting sector not covered by the first
1608 * write below.
1609 */
1610 balign = round_down(start_block, sectbb);
1611 if (balign != start_block) {
1612 error = xlog_bread_noalign(log, start_block, 1, buffer);
1613 if (error)
1614 goto out_free_buffer;
1615
1616 j = start_block - balign;
1617 }
1618
1619 for (i = start_block; i < end_block; i += bufblks) {
1620 int bcount, endcount;
1621
1622 bcount = min(bufblks, end_block - start_block);
1623 endcount = bcount - j;
1624
1625 /* We may need to do a read at the end to fill in part of
1626 * the buffer in the final sector not covered by the write.
1627 * If this is the same sector as the above read, skip it.
1628 */
1629 ealign = round_down(end_block, sectbb);
1630 if (j == 0 && (start_block + endcount > ealign)) {
1631 error = xlog_bread_noalign(log, ealign, sectbb,
1632 buffer + BBTOB(ealign - start_block));
1633 if (error)
1634 break;
1635
1636 }
1637
1638 offset = buffer + xlog_align(log, start_block);
1639 for (; j < endcount; j++) {
1640 xlog_add_record(log, offset, cycle, i+j,
1641 tail_cycle, tail_block);
1642 offset += BBSIZE;
1643 }
1644 error = xlog_bwrite(log, start_block, endcount, buffer);
1645 if (error)
1646 break;
1647 start_block += endcount;
1648 j = 0;
1649 }
1650
1651out_free_buffer:
1652 kmem_free(buffer);
1653 return error;
1654}
1655
1656/*
1657 * This routine is called to blow away any incomplete log writes out
1658 * in front of the log head. We do this so that we won't become confused
1659 * if we come up, write only a little bit more, and then crash again.
1660 * If we leave the partial log records out there, this situation could
1661 * cause us to think those partial writes are valid blocks since they
1662 * have the current cycle number. We get rid of them by overwriting them
1663 * with empty log records with the old cycle number rather than the
1664 * current one.
1665 *
1666 * The tail lsn is passed in rather than taken from
1667 * the log so that we will not write over the unmount record after a
1668 * clean unmount in a 512 block log. Doing so would leave the log without
1669 * any valid log records in it until a new one was written. If we crashed
1670 * during that time we would not be able to recover.
1671 */
1672STATIC int
1673xlog_clear_stale_blocks(
1674 struct xlog *log,
1675 xfs_lsn_t tail_lsn)
1676{
1677 int tail_cycle, head_cycle;
1678 int tail_block, head_block;
1679 int tail_distance, max_distance;
1680 int distance;
1681 int error;
1682
1683 tail_cycle = CYCLE_LSN(tail_lsn);
1684 tail_block = BLOCK_LSN(tail_lsn);
1685 head_cycle = log->l_curr_cycle;
1686 head_block = log->l_curr_block;
1687
1688 /*
1689 * Figure out the distance between the new head of the log
1690 * and the tail. We want to write over any blocks beyond the
1691 * head that we may have written just before the crash, but
1692 * we don't want to overwrite the tail of the log.
1693 */
1694 if (head_cycle == tail_cycle) {
1695 /*
1696 * The tail is behind the head in the physical log,
1697 * so the distance from the head to the tail is the
1698 * distance from the head to the end of the log plus
1699 * the distance from the beginning of the log to the
1700 * tail.
1701 */
1702 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1703 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1704 XFS_ERRLEVEL_LOW, log->l_mp);
1705 return -EFSCORRUPTED;
1706 }
1707 tail_distance = tail_block + (log->l_logBBsize - head_block);
1708 } else {
1709 /*
1710 * The head is behind the tail in the physical log,
1711 * so the distance from the head to the tail is just
1712 * the tail block minus the head block.
1713 */
1714 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1715 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1716 XFS_ERRLEVEL_LOW, log->l_mp);
1717 return -EFSCORRUPTED;
1718 }
1719 tail_distance = tail_block - head_block;
1720 }
1721
1722 /*
1723 * If the head is right up against the tail, we can't clear
1724 * anything.
1725 */
1726 if (tail_distance <= 0) {
1727 ASSERT(tail_distance == 0);
1728 return 0;
1729 }
1730
1731 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1732 /*
1733 * Take the smaller of the maximum amount of outstanding I/O
1734 * we could have and the distance to the tail to clear out.
1735 * We take the smaller so that we don't overwrite the tail and
1736 * we don't waste all day writing from the head to the tail
1737 * for no reason.
1738 */
1739 max_distance = min(max_distance, tail_distance);
1740
1741 if ((head_block + max_distance) <= log->l_logBBsize) {
1742 /*
1743 * We can stomp all the blocks we need to without
1744 * wrapping around the end of the log. Just do it
1745 * in a single write. Use the cycle number of the
1746 * current cycle minus one so that the log will look like:
1747 * n ... | n - 1 ...
1748 */
1749 error = xlog_write_log_records(log, (head_cycle - 1),
1750 head_block, max_distance, tail_cycle,
1751 tail_block);
1752 if (error)
1753 return error;
1754 } else {
1755 /*
1756 * We need to wrap around the end of the physical log in
1757 * order to clear all the blocks. Do it in two separate
1758 * I/Os. The first write should be from the head to the
1759 * end of the physical log, and it should use the current
1760 * cycle number minus one just like above.
1761 */
1762 distance = log->l_logBBsize - head_block;
1763 error = xlog_write_log_records(log, (head_cycle - 1),
1764 head_block, distance, tail_cycle,
1765 tail_block);
1766
1767 if (error)
1768 return error;
1769
1770 /*
1771 * Now write the blocks at the start of the physical log.
1772 * This writes the remainder of the blocks we want to clear.
1773 * It uses the current cycle number since we're now on the
1774 * same cycle as the head so that we get:
1775 * n ... n ... | n - 1 ...
1776 * ^^^^^ blocks we're writing
1777 */
1778 distance = max_distance - (log->l_logBBsize - head_block);
1779 error = xlog_write_log_records(log, head_cycle, 0, distance,
1780 tail_cycle, tail_block);
1781 if (error)
1782 return error;
1783 }
1784
1785 return 0;
1786}
1787
1788/******************************************************************************
1789 *
1790 * Log recover routines
1791 *
1792 ******************************************************************************
1793 */
1794
1795/*
1796 * Sort the log items in the transaction.
1797 *
1798 * The ordering constraints are defined by the inode allocation and unlink
1799 * behaviour. The rules are:
1800 *
1801 * 1. Every item is only logged once in a given transaction. Hence it
1802 * represents the last logged state of the item. Hence ordering is
1803 * dependent on the order in which operations need to be performed so
1804 * required initial conditions are always met.
1805 *
1806 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1807 * there's nothing to replay from them so we can simply cull them
1808 * from the transaction. However, we can't do that until after we've
1809 * replayed all the other items because they may be dependent on the
1810 * cancelled buffer and replaying the cancelled buffer can remove it
1811 * form the cancelled buffer table. Hence they have tobe done last.
1812 *
1813 * 3. Inode allocation buffers must be replayed before inode items that
1814 * read the buffer and replay changes into it. For filesystems using the
1815 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1816 * treated the same as inode allocation buffers as they create and
1817 * initialise the buffers directly.
1818 *
1819 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1820 * This ensures that inodes are completely flushed to the inode buffer
1821 * in a "free" state before we remove the unlinked inode list pointer.
1822 *
1823 * Hence the ordering needs to be inode allocation buffers first, inode items
1824 * second, inode unlink buffers third and cancelled buffers last.
1825 *
1826 * But there's a problem with that - we can't tell an inode allocation buffer
1827 * apart from a regular buffer, so we can't separate them. We can, however,
1828 * tell an inode unlink buffer from the others, and so we can separate them out
1829 * from all the other buffers and move them to last.
1830 *
1831 * Hence, 4 lists, in order from head to tail:
1832 * - buffer_list for all buffers except cancelled/inode unlink buffers
1833 * - item_list for all non-buffer items
1834 * - inode_buffer_list for inode unlink buffers
1835 * - cancel_list for the cancelled buffers
1836 *
1837 * Note that we add objects to the tail of the lists so that first-to-last
1838 * ordering is preserved within the lists. Adding objects to the head of the
1839 * list means when we traverse from the head we walk them in last-to-first
1840 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1841 * but for all other items there may be specific ordering that we need to
1842 * preserve.
1843 */
1844STATIC int
1845xlog_recover_reorder_trans(
1846 struct xlog *log,
1847 struct xlog_recover *trans,
1848 int pass)
1849{
1850 xlog_recover_item_t *item, *n;
1851 int error = 0;
1852 LIST_HEAD(sort_list);
1853 LIST_HEAD(cancel_list);
1854 LIST_HEAD(buffer_list);
1855 LIST_HEAD(inode_buffer_list);
1856 LIST_HEAD(inode_list);
1857
1858 list_splice_init(&trans->r_itemq, &sort_list);
1859 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1860 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1861
1862 switch (ITEM_TYPE(item)) {
1863 case XFS_LI_ICREATE:
1864 list_move_tail(&item->ri_list, &buffer_list);
1865 break;
1866 case XFS_LI_BUF:
1867 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1868 trace_xfs_log_recover_item_reorder_head(log,
1869 trans, item, pass);
1870 list_move(&item->ri_list, &cancel_list);
1871 break;
1872 }
1873 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1874 list_move(&item->ri_list, &inode_buffer_list);
1875 break;
1876 }
1877 list_move_tail(&item->ri_list, &buffer_list);
1878 break;
1879 case XFS_LI_INODE:
1880 case XFS_LI_DQUOT:
1881 case XFS_LI_QUOTAOFF:
1882 case XFS_LI_EFD:
1883 case XFS_LI_EFI:
1884 case XFS_LI_RUI:
1885 case XFS_LI_RUD:
1886 case XFS_LI_CUI:
1887 case XFS_LI_CUD:
1888 case XFS_LI_BUI:
1889 case XFS_LI_BUD:
1890 trace_xfs_log_recover_item_reorder_tail(log,
1891 trans, item, pass);
1892 list_move_tail(&item->ri_list, &inode_list);
1893 break;
1894 default:
1895 xfs_warn(log->l_mp,
1896 "%s: unrecognized type of log operation",
1897 __func__);
1898 ASSERT(0);
1899 /*
1900 * return the remaining items back to the transaction
1901 * item list so they can be freed in caller.
1902 */
1903 if (!list_empty(&sort_list))
1904 list_splice_init(&sort_list, &trans->r_itemq);
1905 error = -EIO;
1906 goto out;
1907 }
1908 }
1909out:
1910 ASSERT(list_empty(&sort_list));
1911 if (!list_empty(&buffer_list))
1912 list_splice(&buffer_list, &trans->r_itemq);
1913 if (!list_empty(&inode_list))
1914 list_splice_tail(&inode_list, &trans->r_itemq);
1915 if (!list_empty(&inode_buffer_list))
1916 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1917 if (!list_empty(&cancel_list))
1918 list_splice_tail(&cancel_list, &trans->r_itemq);
1919 return error;
1920}
1921
1922/*
1923 * Build up the table of buf cancel records so that we don't replay
1924 * cancelled data in the second pass. For buffer records that are
1925 * not cancel records, there is nothing to do here so we just return.
1926 *
1927 * If we get a cancel record which is already in the table, this indicates
1928 * that the buffer was cancelled multiple times. In order to ensure
1929 * that during pass 2 we keep the record in the table until we reach its
1930 * last occurrence in the log, we keep a reference count in the cancel
1931 * record in the table to tell us how many times we expect to see this
1932 * record during the second pass.
1933 */
1934STATIC int
1935xlog_recover_buffer_pass1(
1936 struct xlog *log,
1937 struct xlog_recover_item *item)
1938{
1939 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1940 struct list_head *bucket;
1941 struct xfs_buf_cancel *bcp;
1942
1943 /*
1944 * If this isn't a cancel buffer item, then just return.
1945 */
1946 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
1947 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
1948 return 0;
1949 }
1950
1951 /*
1952 * Insert an xfs_buf_cancel record into the hash table of them.
1953 * If there is already an identical record, bump its reference count.
1954 */
1955 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1956 list_for_each_entry(bcp, bucket, bc_list) {
1957 if (bcp->bc_blkno == buf_f->blf_blkno &&
1958 bcp->bc_len == buf_f->blf_len) {
1959 bcp->bc_refcount++;
1960 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
1961 return 0;
1962 }
1963 }
1964
1965 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), 0);
1966 bcp->bc_blkno = buf_f->blf_blkno;
1967 bcp->bc_len = buf_f->blf_len;
1968 bcp->bc_refcount = 1;
1969 list_add_tail(&bcp->bc_list, bucket);
1970
1971 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
1972 return 0;
1973}
1974
1975/*
1976 * Check to see whether the buffer being recovered has a corresponding
1977 * entry in the buffer cancel record table. If it is, return the cancel
1978 * buffer structure to the caller.
1979 */
1980STATIC struct xfs_buf_cancel *
1981xlog_peek_buffer_cancelled(
1982 struct xlog *log,
1983 xfs_daddr_t blkno,
1984 uint len,
1985 unsigned short flags)
1986{
1987 struct list_head *bucket;
1988 struct xfs_buf_cancel *bcp;
1989
1990 if (!log->l_buf_cancel_table) {
1991 /* empty table means no cancelled buffers in the log */
1992 ASSERT(!(flags & XFS_BLF_CANCEL));
1993 return NULL;
1994 }
1995
1996 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1997 list_for_each_entry(bcp, bucket, bc_list) {
1998 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
1999 return bcp;
2000 }
2001
2002 /*
2003 * We didn't find a corresponding entry in the table, so return 0 so
2004 * that the buffer is NOT cancelled.
2005 */
2006 ASSERT(!(flags & XFS_BLF_CANCEL));
2007 return NULL;
2008}
2009
2010/*
2011 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2012 * otherwise return 0. If the buffer is actually a buffer cancel item
2013 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2014 * table and remove it from the table if this is the last reference.
2015 *
2016 * We remove the cancel record from the table when we encounter its last
2017 * occurrence in the log so that if the same buffer is re-used again after its
2018 * last cancellation we actually replay the changes made at that point.
2019 */
2020STATIC int
2021xlog_check_buffer_cancelled(
2022 struct xlog *log,
2023 xfs_daddr_t blkno,
2024 uint len,
2025 unsigned short flags)
2026{
2027 struct xfs_buf_cancel *bcp;
2028
2029 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2030 if (!bcp)
2031 return 0;
2032
2033 /*
2034 * We've go a match, so return 1 so that the recovery of this buffer
2035 * is cancelled. If this buffer is actually a buffer cancel log
2036 * item, then decrement the refcount on the one in the table and
2037 * remove it if this is the last reference.
2038 */
2039 if (flags & XFS_BLF_CANCEL) {
2040 if (--bcp->bc_refcount == 0) {
2041 list_del(&bcp->bc_list);
2042 kmem_free(bcp);
2043 }
2044 }
2045 return 1;
2046}
2047
2048/*
2049 * Perform recovery for a buffer full of inodes. In these buffers, the only
2050 * data which should be recovered is that which corresponds to the
2051 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2052 * data for the inodes is always logged through the inodes themselves rather
2053 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2054 *
2055 * The only time when buffers full of inodes are fully recovered is when the
2056 * buffer is full of newly allocated inodes. In this case the buffer will
2057 * not be marked as an inode buffer and so will be sent to
2058 * xlog_recover_do_reg_buffer() below during recovery.
2059 */
2060STATIC int
2061xlog_recover_do_inode_buffer(
2062 struct xfs_mount *mp,
2063 xlog_recover_item_t *item,
2064 struct xfs_buf *bp,
2065 xfs_buf_log_format_t *buf_f)
2066{
2067 int i;
2068 int item_index = 0;
2069 int bit = 0;
2070 int nbits = 0;
2071 int reg_buf_offset = 0;
2072 int reg_buf_bytes = 0;
2073 int next_unlinked_offset;
2074 int inodes_per_buf;
2075 xfs_agino_t *logged_nextp;
2076 xfs_agino_t *buffer_nextp;
2077
2078 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2079
2080 /*
2081 * Post recovery validation only works properly on CRC enabled
2082 * filesystems.
2083 */
2084 if (xfs_sb_version_hascrc(&mp->m_sb))
2085 bp->b_ops = &xfs_inode_buf_ops;
2086
2087 inodes_per_buf = BBTOB(bp->b_length) >> mp->m_sb.sb_inodelog;
2088 for (i = 0; i < inodes_per_buf; i++) {
2089 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2090 offsetof(xfs_dinode_t, di_next_unlinked);
2091
2092 while (next_unlinked_offset >=
2093 (reg_buf_offset + reg_buf_bytes)) {
2094 /*
2095 * The next di_next_unlinked field is beyond
2096 * the current logged region. Find the next
2097 * logged region that contains or is beyond
2098 * the current di_next_unlinked field.
2099 */
2100 bit += nbits;
2101 bit = xfs_next_bit(buf_f->blf_data_map,
2102 buf_f->blf_map_size, bit);
2103
2104 /*
2105 * If there are no more logged regions in the
2106 * buffer, then we're done.
2107 */
2108 if (bit == -1)
2109 return 0;
2110
2111 nbits = xfs_contig_bits(buf_f->blf_data_map,
2112 buf_f->blf_map_size, bit);
2113 ASSERT(nbits > 0);
2114 reg_buf_offset = bit << XFS_BLF_SHIFT;
2115 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2116 item_index++;
2117 }
2118
2119 /*
2120 * If the current logged region starts after the current
2121 * di_next_unlinked field, then move on to the next
2122 * di_next_unlinked field.
2123 */
2124 if (next_unlinked_offset < reg_buf_offset)
2125 continue;
2126
2127 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2128 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2129 ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_length));
2130
2131 /*
2132 * The current logged region contains a copy of the
2133 * current di_next_unlinked field. Extract its value
2134 * and copy it to the buffer copy.
2135 */
2136 logged_nextp = item->ri_buf[item_index].i_addr +
2137 next_unlinked_offset - reg_buf_offset;
2138 if (unlikely(*logged_nextp == 0)) {
2139 xfs_alert(mp,
2140 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2141 "Trying to replay bad (0) inode di_next_unlinked field.",
2142 item, bp);
2143 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2144 XFS_ERRLEVEL_LOW, mp);
2145 return -EFSCORRUPTED;
2146 }
2147
2148 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2149 *buffer_nextp = *logged_nextp;
2150
2151 /*
2152 * If necessary, recalculate the CRC in the on-disk inode. We
2153 * have to leave the inode in a consistent state for whoever
2154 * reads it next....
2155 */
2156 xfs_dinode_calc_crc(mp,
2157 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2158
2159 }
2160
2161 return 0;
2162}
2163
2164/*
2165 * V5 filesystems know the age of the buffer on disk being recovered. We can
2166 * have newer objects on disk than we are replaying, and so for these cases we
2167 * don't want to replay the current change as that will make the buffer contents
2168 * temporarily invalid on disk.
2169 *
2170 * The magic number might not match the buffer type we are going to recover
2171 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2172 * extract the LSN of the existing object in the buffer based on it's current
2173 * magic number. If we don't recognise the magic number in the buffer, then
2174 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2175 * so can recover the buffer.
2176 *
2177 * Note: we cannot rely solely on magic number matches to determine that the
2178 * buffer has a valid LSN - we also need to verify that it belongs to this
2179 * filesystem, so we need to extract the object's LSN and compare it to that
2180 * which we read from the superblock. If the UUIDs don't match, then we've got a
2181 * stale metadata block from an old filesystem instance that we need to recover
2182 * over the top of.
2183 */
2184static xfs_lsn_t
2185xlog_recover_get_buf_lsn(
2186 struct xfs_mount *mp,
2187 struct xfs_buf *bp)
2188{
2189 uint32_t magic32;
2190 uint16_t magic16;
2191 uint16_t magicda;
2192 void *blk = bp->b_addr;
2193 uuid_t *uuid;
2194 xfs_lsn_t lsn = -1;
2195
2196 /* v4 filesystems always recover immediately */
2197 if (!xfs_sb_version_hascrc(&mp->m_sb))
2198 goto recover_immediately;
2199
2200 magic32 = be32_to_cpu(*(__be32 *)blk);
2201 switch (magic32) {
2202 case XFS_ABTB_CRC_MAGIC:
2203 case XFS_ABTC_CRC_MAGIC:
2204 case XFS_ABTB_MAGIC:
2205 case XFS_ABTC_MAGIC:
2206 case XFS_RMAP_CRC_MAGIC:
2207 case XFS_REFC_CRC_MAGIC:
2208 case XFS_IBT_CRC_MAGIC:
2209 case XFS_IBT_MAGIC: {
2210 struct xfs_btree_block *btb = blk;
2211
2212 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2213 uuid = &btb->bb_u.s.bb_uuid;
2214 break;
2215 }
2216 case XFS_BMAP_CRC_MAGIC:
2217 case XFS_BMAP_MAGIC: {
2218 struct xfs_btree_block *btb = blk;
2219
2220 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2221 uuid = &btb->bb_u.l.bb_uuid;
2222 break;
2223 }
2224 case XFS_AGF_MAGIC:
2225 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2226 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2227 break;
2228 case XFS_AGFL_MAGIC:
2229 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2230 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2231 break;
2232 case XFS_AGI_MAGIC:
2233 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2234 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2235 break;
2236 case XFS_SYMLINK_MAGIC:
2237 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2238 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2239 break;
2240 case XFS_DIR3_BLOCK_MAGIC:
2241 case XFS_DIR3_DATA_MAGIC:
2242 case XFS_DIR3_FREE_MAGIC:
2243 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2244 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2245 break;
2246 case XFS_ATTR3_RMT_MAGIC:
2247 /*
2248 * Remote attr blocks are written synchronously, rather than
2249 * being logged. That means they do not contain a valid LSN
2250 * (i.e. transactionally ordered) in them, and hence any time we
2251 * see a buffer to replay over the top of a remote attribute
2252 * block we should simply do so.
2253 */
2254 goto recover_immediately;
2255 case XFS_SB_MAGIC:
2256 /*
2257 * superblock uuids are magic. We may or may not have a
2258 * sb_meta_uuid on disk, but it will be set in the in-core
2259 * superblock. We set the uuid pointer for verification
2260 * according to the superblock feature mask to ensure we check
2261 * the relevant UUID in the superblock.
2262 */
2263 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2264 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2265 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2266 else
2267 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2268 break;
2269 default:
2270 break;
2271 }
2272
2273 if (lsn != (xfs_lsn_t)-1) {
2274 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2275 goto recover_immediately;
2276 return lsn;
2277 }
2278
2279 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2280 switch (magicda) {
2281 case XFS_DIR3_LEAF1_MAGIC:
2282 case XFS_DIR3_LEAFN_MAGIC:
2283 case XFS_DA3_NODE_MAGIC:
2284 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2285 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2286 break;
2287 default:
2288 break;
2289 }
2290
2291 if (lsn != (xfs_lsn_t)-1) {
2292 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2293 goto recover_immediately;
2294 return lsn;
2295 }
2296
2297 /*
2298 * We do individual object checks on dquot and inode buffers as they
2299 * have their own individual LSN records. Also, we could have a stale
2300 * buffer here, so we have to at least recognise these buffer types.
2301 *
2302 * A notd complexity here is inode unlinked list processing - it logs
2303 * the inode directly in the buffer, but we don't know which inodes have
2304 * been modified, and there is no global buffer LSN. Hence we need to
2305 * recover all inode buffer types immediately. This problem will be
2306 * fixed by logical logging of the unlinked list modifications.
2307 */
2308 magic16 = be16_to_cpu(*(__be16 *)blk);
2309 switch (magic16) {
2310 case XFS_DQUOT_MAGIC:
2311 case XFS_DINODE_MAGIC:
2312 goto recover_immediately;
2313 default:
2314 break;
2315 }
2316
2317 /* unknown buffer contents, recover immediately */
2318
2319recover_immediately:
2320 return (xfs_lsn_t)-1;
2321
2322}
2323
2324/*
2325 * Validate the recovered buffer is of the correct type and attach the
2326 * appropriate buffer operations to them for writeback. Magic numbers are in a
2327 * few places:
2328 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2329 * the first 32 bits of the buffer (most blocks),
2330 * inside a struct xfs_da_blkinfo at the start of the buffer.
2331 */
2332static void
2333xlog_recover_validate_buf_type(
2334 struct xfs_mount *mp,
2335 struct xfs_buf *bp,
2336 xfs_buf_log_format_t *buf_f,
2337 xfs_lsn_t current_lsn)
2338{
2339 struct xfs_da_blkinfo *info = bp->b_addr;
2340 uint32_t magic32;
2341 uint16_t magic16;
2342 uint16_t magicda;
2343 char *warnmsg = NULL;
2344
2345 /*
2346 * We can only do post recovery validation on items on CRC enabled
2347 * fielsystems as we need to know when the buffer was written to be able
2348 * to determine if we should have replayed the item. If we replay old
2349 * metadata over a newer buffer, then it will enter a temporarily
2350 * inconsistent state resulting in verification failures. Hence for now
2351 * just avoid the verification stage for non-crc filesystems
2352 */
2353 if (!xfs_sb_version_hascrc(&mp->m_sb))
2354 return;
2355
2356 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2357 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2358 magicda = be16_to_cpu(info->magic);
2359 switch (xfs_blft_from_flags(buf_f)) {
2360 case XFS_BLFT_BTREE_BUF:
2361 switch (magic32) {
2362 case XFS_ABTB_CRC_MAGIC:
2363 case XFS_ABTB_MAGIC:
2364 bp->b_ops = &xfs_bnobt_buf_ops;
2365 break;
2366 case XFS_ABTC_CRC_MAGIC:
2367 case XFS_ABTC_MAGIC:
2368 bp->b_ops = &xfs_cntbt_buf_ops;
2369 break;
2370 case XFS_IBT_CRC_MAGIC:
2371 case XFS_IBT_MAGIC:
2372 bp->b_ops = &xfs_inobt_buf_ops;
2373 break;
2374 case XFS_FIBT_CRC_MAGIC:
2375 case XFS_FIBT_MAGIC:
2376 bp->b_ops = &xfs_finobt_buf_ops;
2377 break;
2378 case XFS_BMAP_CRC_MAGIC:
2379 case XFS_BMAP_MAGIC:
2380 bp->b_ops = &xfs_bmbt_buf_ops;
2381 break;
2382 case XFS_RMAP_CRC_MAGIC:
2383 bp->b_ops = &xfs_rmapbt_buf_ops;
2384 break;
2385 case XFS_REFC_CRC_MAGIC:
2386 bp->b_ops = &xfs_refcountbt_buf_ops;
2387 break;
2388 default:
2389 warnmsg = "Bad btree block magic!";
2390 break;
2391 }
2392 break;
2393 case XFS_BLFT_AGF_BUF:
2394 if (magic32 != XFS_AGF_MAGIC) {
2395 warnmsg = "Bad AGF block magic!";
2396 break;
2397 }
2398 bp->b_ops = &xfs_agf_buf_ops;
2399 break;
2400 case XFS_BLFT_AGFL_BUF:
2401 if (magic32 != XFS_AGFL_MAGIC) {
2402 warnmsg = "Bad AGFL block magic!";
2403 break;
2404 }
2405 bp->b_ops = &xfs_agfl_buf_ops;
2406 break;
2407 case XFS_BLFT_AGI_BUF:
2408 if (magic32 != XFS_AGI_MAGIC) {
2409 warnmsg = "Bad AGI block magic!";
2410 break;
2411 }
2412 bp->b_ops = &xfs_agi_buf_ops;
2413 break;
2414 case XFS_BLFT_UDQUOT_BUF:
2415 case XFS_BLFT_PDQUOT_BUF:
2416 case XFS_BLFT_GDQUOT_BUF:
2417#ifdef CONFIG_XFS_QUOTA
2418 if (magic16 != XFS_DQUOT_MAGIC) {
2419 warnmsg = "Bad DQUOT block magic!";
2420 break;
2421 }
2422 bp->b_ops = &xfs_dquot_buf_ops;
2423#else
2424 xfs_alert(mp,
2425 "Trying to recover dquots without QUOTA support built in!");
2426 ASSERT(0);
2427#endif
2428 break;
2429 case XFS_BLFT_DINO_BUF:
2430 if (magic16 != XFS_DINODE_MAGIC) {
2431 warnmsg = "Bad INODE block magic!";
2432 break;
2433 }
2434 bp->b_ops = &xfs_inode_buf_ops;
2435 break;
2436 case XFS_BLFT_SYMLINK_BUF:
2437 if (magic32 != XFS_SYMLINK_MAGIC) {
2438 warnmsg = "Bad symlink block magic!";
2439 break;
2440 }
2441 bp->b_ops = &xfs_symlink_buf_ops;
2442 break;
2443 case XFS_BLFT_DIR_BLOCK_BUF:
2444 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2445 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2446 warnmsg = "Bad dir block magic!";
2447 break;
2448 }
2449 bp->b_ops = &xfs_dir3_block_buf_ops;
2450 break;
2451 case XFS_BLFT_DIR_DATA_BUF:
2452 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2453 magic32 != XFS_DIR3_DATA_MAGIC) {
2454 warnmsg = "Bad dir data magic!";
2455 break;
2456 }
2457 bp->b_ops = &xfs_dir3_data_buf_ops;
2458 break;
2459 case XFS_BLFT_DIR_FREE_BUF:
2460 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2461 magic32 != XFS_DIR3_FREE_MAGIC) {
2462 warnmsg = "Bad dir3 free magic!";
2463 break;
2464 }
2465 bp->b_ops = &xfs_dir3_free_buf_ops;
2466 break;
2467 case XFS_BLFT_DIR_LEAF1_BUF:
2468 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2469 magicda != XFS_DIR3_LEAF1_MAGIC) {
2470 warnmsg = "Bad dir leaf1 magic!";
2471 break;
2472 }
2473 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2474 break;
2475 case XFS_BLFT_DIR_LEAFN_BUF:
2476 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2477 magicda != XFS_DIR3_LEAFN_MAGIC) {
2478 warnmsg = "Bad dir leafn magic!";
2479 break;
2480 }
2481 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2482 break;
2483 case XFS_BLFT_DA_NODE_BUF:
2484 if (magicda != XFS_DA_NODE_MAGIC &&
2485 magicda != XFS_DA3_NODE_MAGIC) {
2486 warnmsg = "Bad da node magic!";
2487 break;
2488 }
2489 bp->b_ops = &xfs_da3_node_buf_ops;
2490 break;
2491 case XFS_BLFT_ATTR_LEAF_BUF:
2492 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2493 magicda != XFS_ATTR3_LEAF_MAGIC) {
2494 warnmsg = "Bad attr leaf magic!";
2495 break;
2496 }
2497 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2498 break;
2499 case XFS_BLFT_ATTR_RMT_BUF:
2500 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2501 warnmsg = "Bad attr remote magic!";
2502 break;
2503 }
2504 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2505 break;
2506 case XFS_BLFT_SB_BUF:
2507 if (magic32 != XFS_SB_MAGIC) {
2508 warnmsg = "Bad SB block magic!";
2509 break;
2510 }
2511 bp->b_ops = &xfs_sb_buf_ops;
2512 break;
2513#ifdef CONFIG_XFS_RT
2514 case XFS_BLFT_RTBITMAP_BUF:
2515 case XFS_BLFT_RTSUMMARY_BUF:
2516 /* no magic numbers for verification of RT buffers */
2517 bp->b_ops = &xfs_rtbuf_ops;
2518 break;
2519#endif /* CONFIG_XFS_RT */
2520 default:
2521 xfs_warn(mp, "Unknown buffer type %d!",
2522 xfs_blft_from_flags(buf_f));
2523 break;
2524 }
2525
2526 /*
2527 * Nothing else to do in the case of a NULL current LSN as this means
2528 * the buffer is more recent than the change in the log and will be
2529 * skipped.
2530 */
2531 if (current_lsn == NULLCOMMITLSN)
2532 return;
2533
2534 if (warnmsg) {
2535 xfs_warn(mp, warnmsg);
2536 ASSERT(0);
2537 }
2538
2539 /*
2540 * We must update the metadata LSN of the buffer as it is written out to
2541 * ensure that older transactions never replay over this one and corrupt
2542 * the buffer. This can occur if log recovery is interrupted at some
2543 * point after the current transaction completes, at which point a
2544 * subsequent mount starts recovery from the beginning.
2545 *
2546 * Write verifiers update the metadata LSN from log items attached to
2547 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2548 * the verifier. We'll clean it up in our ->iodone() callback.
2549 */
2550 if (bp->b_ops) {
2551 struct xfs_buf_log_item *bip;
2552
2553 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2554 bp->b_iodone = xlog_recover_iodone;
2555 xfs_buf_item_init(bp, mp);
2556 bip = bp->b_log_item;
2557 bip->bli_item.li_lsn = current_lsn;
2558 }
2559}
2560
2561/*
2562 * Perform a 'normal' buffer recovery. Each logged region of the
2563 * buffer should be copied over the corresponding region in the
2564 * given buffer. The bitmap in the buf log format structure indicates
2565 * where to place the logged data.
2566 */
2567STATIC void
2568xlog_recover_do_reg_buffer(
2569 struct xfs_mount *mp,
2570 xlog_recover_item_t *item,
2571 struct xfs_buf *bp,
2572 xfs_buf_log_format_t *buf_f,
2573 xfs_lsn_t current_lsn)
2574{
2575 int i;
2576 int bit;
2577 int nbits;
2578 xfs_failaddr_t fa;
2579
2580 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2581
2582 bit = 0;
2583 i = 1; /* 0 is the buf format structure */
2584 while (1) {
2585 bit = xfs_next_bit(buf_f->blf_data_map,
2586 buf_f->blf_map_size, bit);
2587 if (bit == -1)
2588 break;
2589 nbits = xfs_contig_bits(buf_f->blf_data_map,
2590 buf_f->blf_map_size, bit);
2591 ASSERT(nbits > 0);
2592 ASSERT(item->ri_buf[i].i_addr != NULL);
2593 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2594 ASSERT(BBTOB(bp->b_length) >=
2595 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2596
2597 /*
2598 * The dirty regions logged in the buffer, even though
2599 * contiguous, may span multiple chunks. This is because the
2600 * dirty region may span a physical page boundary in a buffer
2601 * and hence be split into two separate vectors for writing into
2602 * the log. Hence we need to trim nbits back to the length of
2603 * the current region being copied out of the log.
2604 */
2605 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2606 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2607
2608 /*
2609 * Do a sanity check if this is a dquot buffer. Just checking
2610 * the first dquot in the buffer should do. XXXThis is
2611 * probably a good thing to do for other buf types also.
2612 */
2613 fa = NULL;
2614 if (buf_f->blf_flags &
2615 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2616 if (item->ri_buf[i].i_addr == NULL) {
2617 xfs_alert(mp,
2618 "XFS: NULL dquot in %s.", __func__);
2619 goto next;
2620 }
2621 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2622 xfs_alert(mp,
2623 "XFS: dquot too small (%d) in %s.",
2624 item->ri_buf[i].i_len, __func__);
2625 goto next;
2626 }
2627 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2628 -1, 0);
2629 if (fa) {
2630 xfs_alert(mp,
2631 "dquot corrupt at %pS trying to replay into block 0x%llx",
2632 fa, bp->b_bn);
2633 goto next;
2634 }
2635 }
2636
2637 memcpy(xfs_buf_offset(bp,
2638 (uint)bit << XFS_BLF_SHIFT), /* dest */
2639 item->ri_buf[i].i_addr, /* source */
2640 nbits<<XFS_BLF_SHIFT); /* length */
2641 next:
2642 i++;
2643 bit += nbits;
2644 }
2645
2646 /* Shouldn't be any more regions */
2647 ASSERT(i == item->ri_total);
2648
2649 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2650}
2651
2652/*
2653 * Perform a dquot buffer recovery.
2654 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2655 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2656 * Else, treat it as a regular buffer and do recovery.
2657 *
2658 * Return false if the buffer was tossed and true if we recovered the buffer to
2659 * indicate to the caller if the buffer needs writing.
2660 */
2661STATIC bool
2662xlog_recover_do_dquot_buffer(
2663 struct xfs_mount *mp,
2664 struct xlog *log,
2665 struct xlog_recover_item *item,
2666 struct xfs_buf *bp,
2667 struct xfs_buf_log_format *buf_f)
2668{
2669 uint type;
2670
2671 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2672
2673 /*
2674 * Filesystems are required to send in quota flags at mount time.
2675 */
2676 if (!mp->m_qflags)
2677 return false;
2678
2679 type = 0;
2680 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2681 type |= XFS_DQ_USER;
2682 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2683 type |= XFS_DQ_PROJ;
2684 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2685 type |= XFS_DQ_GROUP;
2686 /*
2687 * This type of quotas was turned off, so ignore this buffer
2688 */
2689 if (log->l_quotaoffs_flag & type)
2690 return false;
2691
2692 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2693 return true;
2694}
2695
2696/*
2697 * This routine replays a modification made to a buffer at runtime.
2698 * There are actually two types of buffer, regular and inode, which
2699 * are handled differently. Inode buffers are handled differently
2700 * in that we only recover a specific set of data from them, namely
2701 * the inode di_next_unlinked fields. This is because all other inode
2702 * data is actually logged via inode records and any data we replay
2703 * here which overlaps that may be stale.
2704 *
2705 * When meta-data buffers are freed at run time we log a buffer item
2706 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2707 * of the buffer in the log should not be replayed at recovery time.
2708 * This is so that if the blocks covered by the buffer are reused for
2709 * file data before we crash we don't end up replaying old, freed
2710 * meta-data into a user's file.
2711 *
2712 * To handle the cancellation of buffer log items, we make two passes
2713 * over the log during recovery. During the first we build a table of
2714 * those buffers which have been cancelled, and during the second we
2715 * only replay those buffers which do not have corresponding cancel
2716 * records in the table. See xlog_recover_buffer_pass[1,2] above
2717 * for more details on the implementation of the table of cancel records.
2718 */
2719STATIC int
2720xlog_recover_buffer_pass2(
2721 struct xlog *log,
2722 struct list_head *buffer_list,
2723 struct xlog_recover_item *item,
2724 xfs_lsn_t current_lsn)
2725{
2726 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2727 xfs_mount_t *mp = log->l_mp;
2728 xfs_buf_t *bp;
2729 int error;
2730 uint buf_flags;
2731 xfs_lsn_t lsn;
2732
2733 /*
2734 * In this pass we only want to recover all the buffers which have
2735 * not been cancelled and are not cancellation buffers themselves.
2736 */
2737 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2738 buf_f->blf_len, buf_f->blf_flags)) {
2739 trace_xfs_log_recover_buf_cancel(log, buf_f);
2740 return 0;
2741 }
2742
2743 trace_xfs_log_recover_buf_recover(log, buf_f);
2744
2745 buf_flags = 0;
2746 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2747 buf_flags |= XBF_UNMAPPED;
2748
2749 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2750 buf_flags, NULL);
2751 if (!bp)
2752 return -ENOMEM;
2753 error = bp->b_error;
2754 if (error) {
2755 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2756 goto out_release;
2757 }
2758
2759 /*
2760 * Recover the buffer only if we get an LSN from it and it's less than
2761 * the lsn of the transaction we are replaying.
2762 *
2763 * Note that we have to be extremely careful of readahead here.
2764 * Readahead does not attach verfiers to the buffers so if we don't
2765 * actually do any replay after readahead because of the LSN we found
2766 * in the buffer if more recent than that current transaction then we
2767 * need to attach the verifier directly. Failure to do so can lead to
2768 * future recovery actions (e.g. EFI and unlinked list recovery) can
2769 * operate on the buffers and they won't get the verifier attached. This
2770 * can lead to blocks on disk having the correct content but a stale
2771 * CRC.
2772 *
2773 * It is safe to assume these clean buffers are currently up to date.
2774 * If the buffer is dirtied by a later transaction being replayed, then
2775 * the verifier will be reset to match whatever recover turns that
2776 * buffer into.
2777 */
2778 lsn = xlog_recover_get_buf_lsn(mp, bp);
2779 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2780 trace_xfs_log_recover_buf_skip(log, buf_f);
2781 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2782 goto out_release;
2783 }
2784
2785 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2786 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2787 if (error)
2788 goto out_release;
2789 } else if (buf_f->blf_flags &
2790 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2791 bool dirty;
2792
2793 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2794 if (!dirty)
2795 goto out_release;
2796 } else {
2797 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2798 }
2799
2800 /*
2801 * Perform delayed write on the buffer. Asynchronous writes will be
2802 * slower when taking into account all the buffers to be flushed.
2803 *
2804 * Also make sure that only inode buffers with good sizes stay in
2805 * the buffer cache. The kernel moves inodes in buffers of 1 block
2806 * or inode_cluster_size bytes, whichever is bigger. The inode
2807 * buffers in the log can be a different size if the log was generated
2808 * by an older kernel using unclustered inode buffers or a newer kernel
2809 * running with a different inode cluster size. Regardless, if the
2810 * the inode buffer size isn't max(blocksize, inode_cluster_size)
2811 * for *our* value of inode_cluster_size, then we need to keep
2812 * the buffer out of the buffer cache so that the buffer won't
2813 * overlap with future reads of those inodes.
2814 */
2815 if (XFS_DINODE_MAGIC ==
2816 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2817 (BBTOB(bp->b_length) != M_IGEO(log->l_mp)->inode_cluster_size)) {
2818 xfs_buf_stale(bp);
2819 error = xfs_bwrite(bp);
2820 } else {
2821 ASSERT(bp->b_mount == mp);
2822 bp->b_iodone = xlog_recover_iodone;
2823 xfs_buf_delwri_queue(bp, buffer_list);
2824 }
2825
2826out_release:
2827 xfs_buf_relse(bp);
2828 return error;
2829}
2830
2831/*
2832 * Inode fork owner changes
2833 *
2834 * If we have been told that we have to reparent the inode fork, it's because an
2835 * extent swap operation on a CRC enabled filesystem has been done and we are
2836 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2837 * owners of it.
2838 *
2839 * The complexity here is that we don't have an inode context to work with, so
2840 * after we've replayed the inode we need to instantiate one. This is where the
2841 * fun begins.
2842 *
2843 * We are in the middle of log recovery, so we can't run transactions. That
2844 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2845 * that will result in the corresponding iput() running the inode through
2846 * xfs_inactive(). If we've just replayed an inode core that changes the link
2847 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2848 * transactions (bad!).
2849 *
2850 * So, to avoid this, we instantiate an inode directly from the inode core we've
2851 * just recovered. We have the buffer still locked, and all we really need to
2852 * instantiate is the inode core and the forks being modified. We can do this
2853 * manually, then run the inode btree owner change, and then tear down the
2854 * xfs_inode without having to run any transactions at all.
2855 *
2856 * Also, because we don't have a transaction context available here but need to
2857 * gather all the buffers we modify for writeback so we pass the buffer_list
2858 * instead for the operation to use.
2859 */
2860
2861STATIC int
2862xfs_recover_inode_owner_change(
2863 struct xfs_mount *mp,
2864 struct xfs_dinode *dip,
2865 struct xfs_inode_log_format *in_f,
2866 struct list_head *buffer_list)
2867{
2868 struct xfs_inode *ip;
2869 int error;
2870
2871 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2872
2873 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2874 if (!ip)
2875 return -ENOMEM;
2876
2877 /* instantiate the inode */
2878 xfs_inode_from_disk(ip, dip);
2879 ASSERT(ip->i_d.di_version >= 3);
2880
2881 error = xfs_iformat_fork(ip, dip);
2882 if (error)
2883 goto out_free_ip;
2884
2885 if (!xfs_inode_verify_forks(ip)) {
2886 error = -EFSCORRUPTED;
2887 goto out_free_ip;
2888 }
2889
2890 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2891 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2892 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2893 ip->i_ino, buffer_list);
2894 if (error)
2895 goto out_free_ip;
2896 }
2897
2898 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2899 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2900 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2901 ip->i_ino, buffer_list);
2902 if (error)
2903 goto out_free_ip;
2904 }
2905
2906out_free_ip:
2907 xfs_inode_free(ip);
2908 return error;
2909}
2910
2911STATIC int
2912xlog_recover_inode_pass2(
2913 struct xlog *log,
2914 struct list_head *buffer_list,
2915 struct xlog_recover_item *item,
2916 xfs_lsn_t current_lsn)
2917{
2918 struct xfs_inode_log_format *in_f;
2919 xfs_mount_t *mp = log->l_mp;
2920 xfs_buf_t *bp;
2921 xfs_dinode_t *dip;
2922 int len;
2923 char *src;
2924 char *dest;
2925 int error;
2926 int attr_index;
2927 uint fields;
2928 struct xfs_log_dinode *ldip;
2929 uint isize;
2930 int need_free = 0;
2931
2932 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
2933 in_f = item->ri_buf[0].i_addr;
2934 } else {
2935 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), 0);
2936 need_free = 1;
2937 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2938 if (error)
2939 goto error;
2940 }
2941
2942 /*
2943 * Inode buffers can be freed, look out for it,
2944 * and do not replay the inode.
2945 */
2946 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2947 in_f->ilf_len, 0)) {
2948 error = 0;
2949 trace_xfs_log_recover_inode_cancel(log, in_f);
2950 goto error;
2951 }
2952 trace_xfs_log_recover_inode_recover(log, in_f);
2953
2954 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
2955 &xfs_inode_buf_ops);
2956 if (!bp) {
2957 error = -ENOMEM;
2958 goto error;
2959 }
2960 error = bp->b_error;
2961 if (error) {
2962 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
2963 goto out_release;
2964 }
2965 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
2966 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
2967
2968 /*
2969 * Make sure the place we're flushing out to really looks
2970 * like an inode!
2971 */
2972 if (unlikely(!xfs_verify_magic16(bp, dip->di_magic))) {
2973 xfs_alert(mp,
2974 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
2975 __func__, dip, bp, in_f->ilf_ino);
2976 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
2977 XFS_ERRLEVEL_LOW, mp);
2978 error = -EFSCORRUPTED;
2979 goto out_release;
2980 }
2981 ldip = item->ri_buf[1].i_addr;
2982 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
2983 xfs_alert(mp,
2984 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
2985 __func__, item, in_f->ilf_ino);
2986 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
2987 XFS_ERRLEVEL_LOW, mp);
2988 error = -EFSCORRUPTED;
2989 goto out_release;
2990 }
2991
2992 /*
2993 * If the inode has an LSN in it, recover the inode only if it's less
2994 * than the lsn of the transaction we are replaying. Note: we still
2995 * need to replay an owner change even though the inode is more recent
2996 * than the transaction as there is no guarantee that all the btree
2997 * blocks are more recent than this transaction, too.
2998 */
2999 if (dip->di_version >= 3) {
3000 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3001
3002 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3003 trace_xfs_log_recover_inode_skip(log, in_f);
3004 error = 0;
3005 goto out_owner_change;
3006 }
3007 }
3008
3009 /*
3010 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3011 * are transactional and if ordering is necessary we can determine that
3012 * more accurately by the LSN field in the V3 inode core. Don't trust
3013 * the inode versions we might be changing them here - use the
3014 * superblock flag to determine whether we need to look at di_flushiter
3015 * to skip replay when the on disk inode is newer than the log one
3016 */
3017 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3018 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3019 /*
3020 * Deal with the wrap case, DI_MAX_FLUSH is less
3021 * than smaller numbers
3022 */
3023 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3024 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3025 /* do nothing */
3026 } else {
3027 trace_xfs_log_recover_inode_skip(log, in_f);
3028 error = 0;
3029 goto out_release;
3030 }
3031 }
3032
3033 /* Take the opportunity to reset the flush iteration count */
3034 ldip->di_flushiter = 0;
3035
3036 if (unlikely(S_ISREG(ldip->di_mode))) {
3037 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3038 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3039 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3040 XFS_ERRLEVEL_LOW, mp, ldip,
3041 sizeof(*ldip));
3042 xfs_alert(mp,
3043 "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3044 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3045 __func__, item, dip, bp, in_f->ilf_ino);
3046 error = -EFSCORRUPTED;
3047 goto out_release;
3048 }
3049 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3050 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3051 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3052 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3053 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3054 XFS_ERRLEVEL_LOW, mp, ldip,
3055 sizeof(*ldip));
3056 xfs_alert(mp,
3057 "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3058 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3059 __func__, item, dip, bp, in_f->ilf_ino);
3060 error = -EFSCORRUPTED;
3061 goto out_release;
3062 }
3063 }
3064 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3065 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3066 XFS_ERRLEVEL_LOW, mp, ldip,
3067 sizeof(*ldip));
3068 xfs_alert(mp,
3069 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3070 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3071 __func__, item, dip, bp, in_f->ilf_ino,
3072 ldip->di_nextents + ldip->di_anextents,
3073 ldip->di_nblocks);
3074 error = -EFSCORRUPTED;
3075 goto out_release;
3076 }
3077 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3078 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3079 XFS_ERRLEVEL_LOW, mp, ldip,
3080 sizeof(*ldip));
3081 xfs_alert(mp,
3082 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3083 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3084 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3085 error = -EFSCORRUPTED;
3086 goto out_release;
3087 }
3088 isize = xfs_log_dinode_size(ldip->di_version);
3089 if (unlikely(item->ri_buf[1].i_len > isize)) {
3090 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3091 XFS_ERRLEVEL_LOW, mp, ldip,
3092 sizeof(*ldip));
3093 xfs_alert(mp,
3094 "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3095 __func__, item->ri_buf[1].i_len, item);
3096 error = -EFSCORRUPTED;
3097 goto out_release;
3098 }
3099
3100 /* recover the log dinode inode into the on disk inode */
3101 xfs_log_dinode_to_disk(ldip, dip);
3102
3103 fields = in_f->ilf_fields;
3104 if (fields & XFS_ILOG_DEV)
3105 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3106
3107 if (in_f->ilf_size == 2)
3108 goto out_owner_change;
3109 len = item->ri_buf[2].i_len;
3110 src = item->ri_buf[2].i_addr;
3111 ASSERT(in_f->ilf_size <= 4);
3112 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3113 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3114 (len == in_f->ilf_dsize));
3115
3116 switch (fields & XFS_ILOG_DFORK) {
3117 case XFS_ILOG_DDATA:
3118 case XFS_ILOG_DEXT:
3119 memcpy(XFS_DFORK_DPTR(dip), src, len);
3120 break;
3121
3122 case XFS_ILOG_DBROOT:
3123 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3124 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3125 XFS_DFORK_DSIZE(dip, mp));
3126 break;
3127
3128 default:
3129 /*
3130 * There are no data fork flags set.
3131 */
3132 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3133 break;
3134 }
3135
3136 /*
3137 * If we logged any attribute data, recover it. There may or
3138 * may not have been any other non-core data logged in this
3139 * transaction.
3140 */
3141 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3142 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3143 attr_index = 3;
3144 } else {
3145 attr_index = 2;
3146 }
3147 len = item->ri_buf[attr_index].i_len;
3148 src = item->ri_buf[attr_index].i_addr;
3149 ASSERT(len == in_f->ilf_asize);
3150
3151 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3152 case XFS_ILOG_ADATA:
3153 case XFS_ILOG_AEXT:
3154 dest = XFS_DFORK_APTR(dip);
3155 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3156 memcpy(dest, src, len);
3157 break;
3158
3159 case XFS_ILOG_ABROOT:
3160 dest = XFS_DFORK_APTR(dip);
3161 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3162 len, (xfs_bmdr_block_t*)dest,
3163 XFS_DFORK_ASIZE(dip, mp));
3164 break;
3165
3166 default:
3167 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3168 ASSERT(0);
3169 error = -EIO;
3170 goto out_release;
3171 }
3172 }
3173
3174out_owner_change:
3175 /* Recover the swapext owner change unless inode has been deleted */
3176 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3177 (dip->di_mode != 0))
3178 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3179 buffer_list);
3180 /* re-generate the checksum. */
3181 xfs_dinode_calc_crc(log->l_mp, dip);
3182
3183 ASSERT(bp->b_mount == mp);
3184 bp->b_iodone = xlog_recover_iodone;
3185 xfs_buf_delwri_queue(bp, buffer_list);
3186
3187out_release:
3188 xfs_buf_relse(bp);
3189error:
3190 if (need_free)
3191 kmem_free(in_f);
3192 return error;
3193}
3194
3195/*
3196 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3197 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3198 * of that type.
3199 */
3200STATIC int
3201xlog_recover_quotaoff_pass1(
3202 struct xlog *log,
3203 struct xlog_recover_item *item)
3204{
3205 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3206 ASSERT(qoff_f);
3207
3208 /*
3209 * The logitem format's flag tells us if this was user quotaoff,
3210 * group/project quotaoff or both.
3211 */
3212 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3213 log->l_quotaoffs_flag |= XFS_DQ_USER;
3214 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3215 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3216 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3217 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3218
3219 return 0;
3220}
3221
3222/*
3223 * Recover a dquot record
3224 */
3225STATIC int
3226xlog_recover_dquot_pass2(
3227 struct xlog *log,
3228 struct list_head *buffer_list,
3229 struct xlog_recover_item *item,
3230 xfs_lsn_t current_lsn)
3231{
3232 xfs_mount_t *mp = log->l_mp;
3233 xfs_buf_t *bp;
3234 struct xfs_disk_dquot *ddq, *recddq;
3235 xfs_failaddr_t fa;
3236 int error;
3237 xfs_dq_logformat_t *dq_f;
3238 uint type;
3239
3240
3241 /*
3242 * Filesystems are required to send in quota flags at mount time.
3243 */
3244 if (mp->m_qflags == 0)
3245 return 0;
3246
3247 recddq = item->ri_buf[1].i_addr;
3248 if (recddq == NULL) {
3249 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3250 return -EIO;
3251 }
3252 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3253 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3254 item->ri_buf[1].i_len, __func__);
3255 return -EIO;
3256 }
3257
3258 /*
3259 * This type of quotas was turned off, so ignore this record.
3260 */
3261 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3262 ASSERT(type);
3263 if (log->l_quotaoffs_flag & type)
3264 return 0;
3265
3266 /*
3267 * At this point we know that quota was _not_ turned off.
3268 * Since the mount flags are not indicating to us otherwise, this
3269 * must mean that quota is on, and the dquot needs to be replayed.
3270 * Remember that we may not have fully recovered the superblock yet,
3271 * so we can't do the usual trick of looking at the SB quota bits.
3272 *
3273 * The other possibility, of course, is that the quota subsystem was
3274 * removed since the last mount - ENOSYS.
3275 */
3276 dq_f = item->ri_buf[0].i_addr;
3277 ASSERT(dq_f);
3278 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3279 if (fa) {
3280 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3281 dq_f->qlf_id, fa);
3282 return -EIO;
3283 }
3284 ASSERT(dq_f->qlf_len == 1);
3285
3286 /*
3287 * At this point we are assuming that the dquots have been allocated
3288 * and hence the buffer has valid dquots stamped in it. It should,
3289 * therefore, pass verifier validation. If the dquot is bad, then the
3290 * we'll return an error here, so we don't need to specifically check
3291 * the dquot in the buffer after the verifier has run.
3292 */
3293 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3294 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3295 &xfs_dquot_buf_ops);
3296 if (error)
3297 return error;
3298
3299 ASSERT(bp);
3300 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3301
3302 /*
3303 * If the dquot has an LSN in it, recover the dquot only if it's less
3304 * than the lsn of the transaction we are replaying.
3305 */
3306 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3307 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3308 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3309
3310 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3311 goto out_release;
3312 }
3313 }
3314
3315 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3316 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3317 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3318 XFS_DQUOT_CRC_OFF);
3319 }
3320
3321 ASSERT(dq_f->qlf_size == 2);
3322 ASSERT(bp->b_mount == mp);
3323 bp->b_iodone = xlog_recover_iodone;
3324 xfs_buf_delwri_queue(bp, buffer_list);
3325
3326out_release:
3327 xfs_buf_relse(bp);
3328 return 0;
3329}
3330
3331/*
3332 * This routine is called to create an in-core extent free intent
3333 * item from the efi format structure which was logged on disk.
3334 * It allocates an in-core efi, copies the extents from the format
3335 * structure into it, and adds the efi to the AIL with the given
3336 * LSN.
3337 */
3338STATIC int
3339xlog_recover_efi_pass2(
3340 struct xlog *log,
3341 struct xlog_recover_item *item,
3342 xfs_lsn_t lsn)
3343{
3344 int error;
3345 struct xfs_mount *mp = log->l_mp;
3346 struct xfs_efi_log_item *efip;
3347 struct xfs_efi_log_format *efi_formatp;
3348
3349 efi_formatp = item->ri_buf[0].i_addr;
3350
3351 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3352 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3353 if (error) {
3354 xfs_efi_item_free(efip);
3355 return error;
3356 }
3357 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3358
3359 spin_lock(&log->l_ailp->ail_lock);
3360 /*
3361 * The EFI has two references. One for the EFD and one for EFI to ensure
3362 * it makes it into the AIL. Insert the EFI into the AIL directly and
3363 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3364 * AIL lock.
3365 */
3366 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3367 xfs_efi_release(efip);
3368 return 0;
3369}
3370
3371
3372/*
3373 * This routine is called when an EFD format structure is found in a committed
3374 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3375 * was still in the log. To do this it searches the AIL for the EFI with an id
3376 * equal to that in the EFD format structure. If we find it we drop the EFD
3377 * reference, which removes the EFI from the AIL and frees it.
3378 */
3379STATIC int
3380xlog_recover_efd_pass2(
3381 struct xlog *log,
3382 struct xlog_recover_item *item)
3383{
3384 xfs_efd_log_format_t *efd_formatp;
3385 xfs_efi_log_item_t *efip = NULL;
3386 struct xfs_log_item *lip;
3387 uint64_t efi_id;
3388 struct xfs_ail_cursor cur;
3389 struct xfs_ail *ailp = log->l_ailp;
3390
3391 efd_formatp = item->ri_buf[0].i_addr;
3392 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3393 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3394 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3395 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3396 efi_id = efd_formatp->efd_efi_id;
3397
3398 /*
3399 * Search for the EFI with the id in the EFD format structure in the
3400 * AIL.
3401 */
3402 spin_lock(&ailp->ail_lock);
3403 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3404 while (lip != NULL) {
3405 if (lip->li_type == XFS_LI_EFI) {
3406 efip = (xfs_efi_log_item_t *)lip;
3407 if (efip->efi_format.efi_id == efi_id) {
3408 /*
3409 * Drop the EFD reference to the EFI. This
3410 * removes the EFI from the AIL and frees it.
3411 */
3412 spin_unlock(&ailp->ail_lock);
3413 xfs_efi_release(efip);
3414 spin_lock(&ailp->ail_lock);
3415 break;
3416 }
3417 }
3418 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3419 }
3420
3421 xfs_trans_ail_cursor_done(&cur);
3422 spin_unlock(&ailp->ail_lock);
3423
3424 return 0;
3425}
3426
3427/*
3428 * This routine is called to create an in-core extent rmap update
3429 * item from the rui format structure which was logged on disk.
3430 * It allocates an in-core rui, copies the extents from the format
3431 * structure into it, and adds the rui to the AIL with the given
3432 * LSN.
3433 */
3434STATIC int
3435xlog_recover_rui_pass2(
3436 struct xlog *log,
3437 struct xlog_recover_item *item,
3438 xfs_lsn_t lsn)
3439{
3440 int error;
3441 struct xfs_mount *mp = log->l_mp;
3442 struct xfs_rui_log_item *ruip;
3443 struct xfs_rui_log_format *rui_formatp;
3444
3445 rui_formatp = item->ri_buf[0].i_addr;
3446
3447 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3448 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3449 if (error) {
3450 xfs_rui_item_free(ruip);
3451 return error;
3452 }
3453 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3454
3455 spin_lock(&log->l_ailp->ail_lock);
3456 /*
3457 * The RUI has two references. One for the RUD and one for RUI to ensure
3458 * it makes it into the AIL. Insert the RUI into the AIL directly and
3459 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3460 * AIL lock.
3461 */
3462 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3463 xfs_rui_release(ruip);
3464 return 0;
3465}
3466
3467
3468/*
3469 * This routine is called when an RUD format structure is found in a committed
3470 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3471 * was still in the log. To do this it searches the AIL for the RUI with an id
3472 * equal to that in the RUD format structure. If we find it we drop the RUD
3473 * reference, which removes the RUI from the AIL and frees it.
3474 */
3475STATIC int
3476xlog_recover_rud_pass2(
3477 struct xlog *log,
3478 struct xlog_recover_item *item)
3479{
3480 struct xfs_rud_log_format *rud_formatp;
3481 struct xfs_rui_log_item *ruip = NULL;
3482 struct xfs_log_item *lip;
3483 uint64_t rui_id;
3484 struct xfs_ail_cursor cur;
3485 struct xfs_ail *ailp = log->l_ailp;
3486
3487 rud_formatp = item->ri_buf[0].i_addr;
3488 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3489 rui_id = rud_formatp->rud_rui_id;
3490
3491 /*
3492 * Search for the RUI with the id in the RUD format structure in the
3493 * AIL.
3494 */
3495 spin_lock(&ailp->ail_lock);
3496 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3497 while (lip != NULL) {
3498 if (lip->li_type == XFS_LI_RUI) {
3499 ruip = (struct xfs_rui_log_item *)lip;
3500 if (ruip->rui_format.rui_id == rui_id) {
3501 /*
3502 * Drop the RUD reference to the RUI. This
3503 * removes the RUI from the AIL and frees it.
3504 */
3505 spin_unlock(&ailp->ail_lock);
3506 xfs_rui_release(ruip);
3507 spin_lock(&ailp->ail_lock);
3508 break;
3509 }
3510 }
3511 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3512 }
3513
3514 xfs_trans_ail_cursor_done(&cur);
3515 spin_unlock(&ailp->ail_lock);
3516
3517 return 0;
3518}
3519
3520/*
3521 * Copy an CUI format buffer from the given buf, and into the destination
3522 * CUI format structure. The CUI/CUD items were designed not to need any
3523 * special alignment handling.
3524 */
3525static int
3526xfs_cui_copy_format(
3527 struct xfs_log_iovec *buf,
3528 struct xfs_cui_log_format *dst_cui_fmt)
3529{
3530 struct xfs_cui_log_format *src_cui_fmt;
3531 uint len;
3532
3533 src_cui_fmt = buf->i_addr;
3534 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3535
3536 if (buf->i_len == len) {
3537 memcpy(dst_cui_fmt, src_cui_fmt, len);
3538 return 0;
3539 }
3540 return -EFSCORRUPTED;
3541}
3542
3543/*
3544 * This routine is called to create an in-core extent refcount update
3545 * item from the cui format structure which was logged on disk.
3546 * It allocates an in-core cui, copies the extents from the format
3547 * structure into it, and adds the cui to the AIL with the given
3548 * LSN.
3549 */
3550STATIC int
3551xlog_recover_cui_pass2(
3552 struct xlog *log,
3553 struct xlog_recover_item *item,
3554 xfs_lsn_t lsn)
3555{
3556 int error;
3557 struct xfs_mount *mp = log->l_mp;
3558 struct xfs_cui_log_item *cuip;
3559 struct xfs_cui_log_format *cui_formatp;
3560
3561 cui_formatp = item->ri_buf[0].i_addr;
3562
3563 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3564 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3565 if (error) {
3566 xfs_cui_item_free(cuip);
3567 return error;
3568 }
3569 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3570
3571 spin_lock(&log->l_ailp->ail_lock);
3572 /*
3573 * The CUI has two references. One for the CUD and one for CUI to ensure
3574 * it makes it into the AIL. Insert the CUI into the AIL directly and
3575 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3576 * AIL lock.
3577 */
3578 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3579 xfs_cui_release(cuip);
3580 return 0;
3581}
3582
3583
3584/*
3585 * This routine is called when an CUD format structure is found in a committed
3586 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3587 * was still in the log. To do this it searches the AIL for the CUI with an id
3588 * equal to that in the CUD format structure. If we find it we drop the CUD
3589 * reference, which removes the CUI from the AIL and frees it.
3590 */
3591STATIC int
3592xlog_recover_cud_pass2(
3593 struct xlog *log,
3594 struct xlog_recover_item *item)
3595{
3596 struct xfs_cud_log_format *cud_formatp;
3597 struct xfs_cui_log_item *cuip = NULL;
3598 struct xfs_log_item *lip;
3599 uint64_t cui_id;
3600 struct xfs_ail_cursor cur;
3601 struct xfs_ail *ailp = log->l_ailp;
3602
3603 cud_formatp = item->ri_buf[0].i_addr;
3604 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3605 return -EFSCORRUPTED;
3606 cui_id = cud_formatp->cud_cui_id;
3607
3608 /*
3609 * Search for the CUI with the id in the CUD format structure in the
3610 * AIL.
3611 */
3612 spin_lock(&ailp->ail_lock);
3613 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3614 while (lip != NULL) {
3615 if (lip->li_type == XFS_LI_CUI) {
3616 cuip = (struct xfs_cui_log_item *)lip;
3617 if (cuip->cui_format.cui_id == cui_id) {
3618 /*
3619 * Drop the CUD reference to the CUI. This
3620 * removes the CUI from the AIL and frees it.
3621 */
3622 spin_unlock(&ailp->ail_lock);
3623 xfs_cui_release(cuip);
3624 spin_lock(&ailp->ail_lock);
3625 break;
3626 }
3627 }
3628 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3629 }
3630
3631 xfs_trans_ail_cursor_done(&cur);
3632 spin_unlock(&ailp->ail_lock);
3633
3634 return 0;
3635}
3636
3637/*
3638 * Copy an BUI format buffer from the given buf, and into the destination
3639 * BUI format structure. The BUI/BUD items were designed not to need any
3640 * special alignment handling.
3641 */
3642static int
3643xfs_bui_copy_format(
3644 struct xfs_log_iovec *buf,
3645 struct xfs_bui_log_format *dst_bui_fmt)
3646{
3647 struct xfs_bui_log_format *src_bui_fmt;
3648 uint len;
3649
3650 src_bui_fmt = buf->i_addr;
3651 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3652
3653 if (buf->i_len == len) {
3654 memcpy(dst_bui_fmt, src_bui_fmt, len);
3655 return 0;
3656 }
3657 return -EFSCORRUPTED;
3658}
3659
3660/*
3661 * This routine is called to create an in-core extent bmap update
3662 * item from the bui format structure which was logged on disk.
3663 * It allocates an in-core bui, copies the extents from the format
3664 * structure into it, and adds the bui to the AIL with the given
3665 * LSN.
3666 */
3667STATIC int
3668xlog_recover_bui_pass2(
3669 struct xlog *log,
3670 struct xlog_recover_item *item,
3671 xfs_lsn_t lsn)
3672{
3673 int error;
3674 struct xfs_mount *mp = log->l_mp;
3675 struct xfs_bui_log_item *buip;
3676 struct xfs_bui_log_format *bui_formatp;
3677
3678 bui_formatp = item->ri_buf[0].i_addr;
3679
3680 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3681 return -EFSCORRUPTED;
3682 buip = xfs_bui_init(mp);
3683 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3684 if (error) {
3685 xfs_bui_item_free(buip);
3686 return error;
3687 }
3688 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3689
3690 spin_lock(&log->l_ailp->ail_lock);
3691 /*
3692 * The RUI has two references. One for the RUD and one for RUI to ensure
3693 * it makes it into the AIL. Insert the RUI into the AIL directly and
3694 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3695 * AIL lock.
3696 */
3697 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3698 xfs_bui_release(buip);
3699 return 0;
3700}
3701
3702
3703/*
3704 * This routine is called when an BUD format structure is found in a committed
3705 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3706 * was still in the log. To do this it searches the AIL for the BUI with an id
3707 * equal to that in the BUD format structure. If we find it we drop the BUD
3708 * reference, which removes the BUI from the AIL and frees it.
3709 */
3710STATIC int
3711xlog_recover_bud_pass2(
3712 struct xlog *log,
3713 struct xlog_recover_item *item)
3714{
3715 struct xfs_bud_log_format *bud_formatp;
3716 struct xfs_bui_log_item *buip = NULL;
3717 struct xfs_log_item *lip;
3718 uint64_t bui_id;
3719 struct xfs_ail_cursor cur;
3720 struct xfs_ail *ailp = log->l_ailp;
3721
3722 bud_formatp = item->ri_buf[0].i_addr;
3723 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3724 return -EFSCORRUPTED;
3725 bui_id = bud_formatp->bud_bui_id;
3726
3727 /*
3728 * Search for the BUI with the id in the BUD format structure in the
3729 * AIL.
3730 */
3731 spin_lock(&ailp->ail_lock);
3732 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3733 while (lip != NULL) {
3734 if (lip->li_type == XFS_LI_BUI) {
3735 buip = (struct xfs_bui_log_item *)lip;
3736 if (buip->bui_format.bui_id == bui_id) {
3737 /*
3738 * Drop the BUD reference to the BUI. This
3739 * removes the BUI from the AIL and frees it.
3740 */
3741 spin_unlock(&ailp->ail_lock);
3742 xfs_bui_release(buip);
3743 spin_lock(&ailp->ail_lock);
3744 break;
3745 }
3746 }
3747 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3748 }
3749
3750 xfs_trans_ail_cursor_done(&cur);
3751 spin_unlock(&ailp->ail_lock);
3752
3753 return 0;
3754}
3755
3756/*
3757 * This routine is called when an inode create format structure is found in a
3758 * committed transaction in the log. It's purpose is to initialise the inodes
3759 * being allocated on disk. This requires us to get inode cluster buffers that
3760 * match the range to be initialised, stamped with inode templates and written
3761 * by delayed write so that subsequent modifications will hit the cached buffer
3762 * and only need writing out at the end of recovery.
3763 */
3764STATIC int
3765xlog_recover_do_icreate_pass2(
3766 struct xlog *log,
3767 struct list_head *buffer_list,
3768 xlog_recover_item_t *item)
3769{
3770 struct xfs_mount *mp = log->l_mp;
3771 struct xfs_icreate_log *icl;
3772 struct xfs_ino_geometry *igeo = M_IGEO(mp);
3773 xfs_agnumber_t agno;
3774 xfs_agblock_t agbno;
3775 unsigned int count;
3776 unsigned int isize;
3777 xfs_agblock_t length;
3778 int bb_per_cluster;
3779 int cancel_count;
3780 int nbufs;
3781 int i;
3782
3783 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3784 if (icl->icl_type != XFS_LI_ICREATE) {
3785 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3786 return -EINVAL;
3787 }
3788
3789 if (icl->icl_size != 1) {
3790 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3791 return -EINVAL;
3792 }
3793
3794 agno = be32_to_cpu(icl->icl_ag);
3795 if (agno >= mp->m_sb.sb_agcount) {
3796 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3797 return -EINVAL;
3798 }
3799 agbno = be32_to_cpu(icl->icl_agbno);
3800 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3801 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3802 return -EINVAL;
3803 }
3804 isize = be32_to_cpu(icl->icl_isize);
3805 if (isize != mp->m_sb.sb_inodesize) {
3806 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3807 return -EINVAL;
3808 }
3809 count = be32_to_cpu(icl->icl_count);
3810 if (!count) {
3811 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3812 return -EINVAL;
3813 }
3814 length = be32_to_cpu(icl->icl_length);
3815 if (!length || length >= mp->m_sb.sb_agblocks) {
3816 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3817 return -EINVAL;
3818 }
3819
3820 /*
3821 * The inode chunk is either full or sparse and we only support
3822 * m_ino_geo.ialloc_min_blks sized sparse allocations at this time.
3823 */
3824 if (length != igeo->ialloc_blks &&
3825 length != igeo->ialloc_min_blks) {
3826 xfs_warn(log->l_mp,
3827 "%s: unsupported chunk length", __FUNCTION__);
3828 return -EINVAL;
3829 }
3830
3831 /* verify inode count is consistent with extent length */
3832 if ((count >> mp->m_sb.sb_inopblog) != length) {
3833 xfs_warn(log->l_mp,
3834 "%s: inconsistent inode count and chunk length",
3835 __FUNCTION__);
3836 return -EINVAL;
3837 }
3838
3839 /*
3840 * The icreate transaction can cover multiple cluster buffers and these
3841 * buffers could have been freed and reused. Check the individual
3842 * buffers for cancellation so we don't overwrite anything written after
3843 * a cancellation.
3844 */
3845 bb_per_cluster = XFS_FSB_TO_BB(mp, igeo->blocks_per_cluster);
3846 nbufs = length / igeo->blocks_per_cluster;
3847 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3848 xfs_daddr_t daddr;
3849
3850 daddr = XFS_AGB_TO_DADDR(mp, agno,
3851 agbno + i * igeo->blocks_per_cluster);
3852 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3853 cancel_count++;
3854 }
3855
3856 /*
3857 * We currently only use icreate for a single allocation at a time. This
3858 * means we should expect either all or none of the buffers to be
3859 * cancelled. Be conservative and skip replay if at least one buffer is
3860 * cancelled, but warn the user that something is awry if the buffers
3861 * are not consistent.
3862 *
3863 * XXX: This must be refined to only skip cancelled clusters once we use
3864 * icreate for multiple chunk allocations.
3865 */
3866 ASSERT(!cancel_count || cancel_count == nbufs);
3867 if (cancel_count) {
3868 if (cancel_count != nbufs)
3869 xfs_warn(mp,
3870 "WARNING: partial inode chunk cancellation, skipped icreate.");
3871 trace_xfs_log_recover_icreate_cancel(log, icl);
3872 return 0;
3873 }
3874
3875 trace_xfs_log_recover_icreate_recover(log, icl);
3876 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3877 length, be32_to_cpu(icl->icl_gen));
3878}
3879
3880STATIC void
3881xlog_recover_buffer_ra_pass2(
3882 struct xlog *log,
3883 struct xlog_recover_item *item)
3884{
3885 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3886 struct xfs_mount *mp = log->l_mp;
3887
3888 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3889 buf_f->blf_len, buf_f->blf_flags)) {
3890 return;
3891 }
3892
3893 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3894 buf_f->blf_len, NULL);
3895}
3896
3897STATIC void
3898xlog_recover_inode_ra_pass2(
3899 struct xlog *log,
3900 struct xlog_recover_item *item)
3901{
3902 struct xfs_inode_log_format ilf_buf;
3903 struct xfs_inode_log_format *ilfp;
3904 struct xfs_mount *mp = log->l_mp;
3905 int error;
3906
3907 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3908 ilfp = item->ri_buf[0].i_addr;
3909 } else {
3910 ilfp = &ilf_buf;
3911 memset(ilfp, 0, sizeof(*ilfp));
3912 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3913 if (error)
3914 return;
3915 }
3916
3917 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3918 return;
3919
3920 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3921 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3922}
3923
3924STATIC void
3925xlog_recover_dquot_ra_pass2(
3926 struct xlog *log,
3927 struct xlog_recover_item *item)
3928{
3929 struct xfs_mount *mp = log->l_mp;
3930 struct xfs_disk_dquot *recddq;
3931 struct xfs_dq_logformat *dq_f;
3932 uint type;
3933 int len;
3934
3935
3936 if (mp->m_qflags == 0)
3937 return;
3938
3939 recddq = item->ri_buf[1].i_addr;
3940 if (recddq == NULL)
3941 return;
3942 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3943 return;
3944
3945 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3946 ASSERT(type);
3947 if (log->l_quotaoffs_flag & type)
3948 return;
3949
3950 dq_f = item->ri_buf[0].i_addr;
3951 ASSERT(dq_f);
3952 ASSERT(dq_f->qlf_len == 1);
3953
3954 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
3955 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
3956 return;
3957
3958 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
3959 &xfs_dquot_buf_ra_ops);
3960}
3961
3962STATIC void
3963xlog_recover_ra_pass2(
3964 struct xlog *log,
3965 struct xlog_recover_item *item)
3966{
3967 switch (ITEM_TYPE(item)) {
3968 case XFS_LI_BUF:
3969 xlog_recover_buffer_ra_pass2(log, item);
3970 break;
3971 case XFS_LI_INODE:
3972 xlog_recover_inode_ra_pass2(log, item);
3973 break;
3974 case XFS_LI_DQUOT:
3975 xlog_recover_dquot_ra_pass2(log, item);
3976 break;
3977 case XFS_LI_EFI:
3978 case XFS_LI_EFD:
3979 case XFS_LI_QUOTAOFF:
3980 case XFS_LI_RUI:
3981 case XFS_LI_RUD:
3982 case XFS_LI_CUI:
3983 case XFS_LI_CUD:
3984 case XFS_LI_BUI:
3985 case XFS_LI_BUD:
3986 default:
3987 break;
3988 }
3989}
3990
3991STATIC int
3992xlog_recover_commit_pass1(
3993 struct xlog *log,
3994 struct xlog_recover *trans,
3995 struct xlog_recover_item *item)
3996{
3997 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
3998
3999 switch (ITEM_TYPE(item)) {
4000 case XFS_LI_BUF:
4001 return xlog_recover_buffer_pass1(log, item);
4002 case XFS_LI_QUOTAOFF:
4003 return xlog_recover_quotaoff_pass1(log, item);
4004 case XFS_LI_INODE:
4005 case XFS_LI_EFI:
4006 case XFS_LI_EFD:
4007 case XFS_LI_DQUOT:
4008 case XFS_LI_ICREATE:
4009 case XFS_LI_RUI:
4010 case XFS_LI_RUD:
4011 case XFS_LI_CUI:
4012 case XFS_LI_CUD:
4013 case XFS_LI_BUI:
4014 case XFS_LI_BUD:
4015 /* nothing to do in pass 1 */
4016 return 0;
4017 default:
4018 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4019 __func__, ITEM_TYPE(item));
4020 ASSERT(0);
4021 return -EIO;
4022 }
4023}
4024
4025STATIC int
4026xlog_recover_commit_pass2(
4027 struct xlog *log,
4028 struct xlog_recover *trans,
4029 struct list_head *buffer_list,
4030 struct xlog_recover_item *item)
4031{
4032 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4033
4034 switch (ITEM_TYPE(item)) {
4035 case XFS_LI_BUF:
4036 return xlog_recover_buffer_pass2(log, buffer_list, item,
4037 trans->r_lsn);
4038 case XFS_LI_INODE:
4039 return xlog_recover_inode_pass2(log, buffer_list, item,
4040 trans->r_lsn);
4041 case XFS_LI_EFI:
4042 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4043 case XFS_LI_EFD:
4044 return xlog_recover_efd_pass2(log, item);
4045 case XFS_LI_RUI:
4046 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4047 case XFS_LI_RUD:
4048 return xlog_recover_rud_pass2(log, item);
4049 case XFS_LI_CUI:
4050 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4051 case XFS_LI_CUD:
4052 return xlog_recover_cud_pass2(log, item);
4053 case XFS_LI_BUI:
4054 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4055 case XFS_LI_BUD:
4056 return xlog_recover_bud_pass2(log, item);
4057 case XFS_LI_DQUOT:
4058 return xlog_recover_dquot_pass2(log, buffer_list, item,
4059 trans->r_lsn);
4060 case XFS_LI_ICREATE:
4061 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4062 case XFS_LI_QUOTAOFF:
4063 /* nothing to do in pass2 */
4064 return 0;
4065 default:
4066 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4067 __func__, ITEM_TYPE(item));
4068 ASSERT(0);
4069 return -EIO;
4070 }
4071}
4072
4073STATIC int
4074xlog_recover_items_pass2(
4075 struct xlog *log,
4076 struct xlog_recover *trans,
4077 struct list_head *buffer_list,
4078 struct list_head *item_list)
4079{
4080 struct xlog_recover_item *item;
4081 int error = 0;
4082
4083 list_for_each_entry(item, item_list, ri_list) {
4084 error = xlog_recover_commit_pass2(log, trans,
4085 buffer_list, item);
4086 if (error)
4087 return error;
4088 }
4089
4090 return error;
4091}
4092
4093/*
4094 * Perform the transaction.
4095 *
4096 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4097 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4098 */
4099STATIC int
4100xlog_recover_commit_trans(
4101 struct xlog *log,
4102 struct xlog_recover *trans,
4103 int pass,
4104 struct list_head *buffer_list)
4105{
4106 int error = 0;
4107 int items_queued = 0;
4108 struct xlog_recover_item *item;
4109 struct xlog_recover_item *next;
4110 LIST_HEAD (ra_list);
4111 LIST_HEAD (done_list);
4112
4113 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4114
4115 hlist_del_init(&trans->r_list);
4116
4117 error = xlog_recover_reorder_trans(log, trans, pass);
4118 if (error)
4119 return error;
4120
4121 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4122 switch (pass) {
4123 case XLOG_RECOVER_PASS1:
4124 error = xlog_recover_commit_pass1(log, trans, item);
4125 break;
4126 case XLOG_RECOVER_PASS2:
4127 xlog_recover_ra_pass2(log, item);
4128 list_move_tail(&item->ri_list, &ra_list);
4129 items_queued++;
4130 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4131 error = xlog_recover_items_pass2(log, trans,
4132 buffer_list, &ra_list);
4133 list_splice_tail_init(&ra_list, &done_list);
4134 items_queued = 0;
4135 }
4136
4137 break;
4138 default:
4139 ASSERT(0);
4140 }
4141
4142 if (error)
4143 goto out;
4144 }
4145
4146out:
4147 if (!list_empty(&ra_list)) {
4148 if (!error)
4149 error = xlog_recover_items_pass2(log, trans,
4150 buffer_list, &ra_list);
4151 list_splice_tail_init(&ra_list, &done_list);
4152 }
4153
4154 if (!list_empty(&done_list))
4155 list_splice_init(&done_list, &trans->r_itemq);
4156
4157 return error;
4158}
4159
4160STATIC void
4161xlog_recover_add_item(
4162 struct list_head *head)
4163{
4164 xlog_recover_item_t *item;
4165
4166 item = kmem_zalloc(sizeof(xlog_recover_item_t), 0);
4167 INIT_LIST_HEAD(&item->ri_list);
4168 list_add_tail(&item->ri_list, head);
4169}
4170
4171STATIC int
4172xlog_recover_add_to_cont_trans(
4173 struct xlog *log,
4174 struct xlog_recover *trans,
4175 char *dp,
4176 int len)
4177{
4178 xlog_recover_item_t *item;
4179 char *ptr, *old_ptr;
4180 int old_len;
4181
4182 /*
4183 * If the transaction is empty, the header was split across this and the
4184 * previous record. Copy the rest of the header.
4185 */
4186 if (list_empty(&trans->r_itemq)) {
4187 ASSERT(len <= sizeof(struct xfs_trans_header));
4188 if (len > sizeof(struct xfs_trans_header)) {
4189 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4190 return -EIO;
4191 }
4192
4193 xlog_recover_add_item(&trans->r_itemq);
4194 ptr = (char *)&trans->r_theader +
4195 sizeof(struct xfs_trans_header) - len;
4196 memcpy(ptr, dp, len);
4197 return 0;
4198 }
4199
4200 /* take the tail entry */
4201 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4202
4203 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4204 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4205
4206 ptr = kmem_realloc(old_ptr, len + old_len, 0);
4207 memcpy(&ptr[old_len], dp, len);
4208 item->ri_buf[item->ri_cnt-1].i_len += len;
4209 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4210 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4211 return 0;
4212}
4213
4214/*
4215 * The next region to add is the start of a new region. It could be
4216 * a whole region or it could be the first part of a new region. Because
4217 * of this, the assumption here is that the type and size fields of all
4218 * format structures fit into the first 32 bits of the structure.
4219 *
4220 * This works because all regions must be 32 bit aligned. Therefore, we
4221 * either have both fields or we have neither field. In the case we have
4222 * neither field, the data part of the region is zero length. We only have
4223 * a log_op_header and can throw away the header since a new one will appear
4224 * later. If we have at least 4 bytes, then we can determine how many regions
4225 * will appear in the current log item.
4226 */
4227STATIC int
4228xlog_recover_add_to_trans(
4229 struct xlog *log,
4230 struct xlog_recover *trans,
4231 char *dp,
4232 int len)
4233{
4234 struct xfs_inode_log_format *in_f; /* any will do */
4235 xlog_recover_item_t *item;
4236 char *ptr;
4237
4238 if (!len)
4239 return 0;
4240 if (list_empty(&trans->r_itemq)) {
4241 /* we need to catch log corruptions here */
4242 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4243 xfs_warn(log->l_mp, "%s: bad header magic number",
4244 __func__);
4245 ASSERT(0);
4246 return -EIO;
4247 }
4248
4249 if (len > sizeof(struct xfs_trans_header)) {
4250 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4251 ASSERT(0);
4252 return -EIO;
4253 }
4254
4255 /*
4256 * The transaction header can be arbitrarily split across op
4257 * records. If we don't have the whole thing here, copy what we
4258 * do have and handle the rest in the next record.
4259 */
4260 if (len == sizeof(struct xfs_trans_header))
4261 xlog_recover_add_item(&trans->r_itemq);
4262 memcpy(&trans->r_theader, dp, len);
4263 return 0;
4264 }
4265
4266 ptr = kmem_alloc(len, 0);
4267 memcpy(ptr, dp, len);
4268 in_f = (struct xfs_inode_log_format *)ptr;
4269
4270 /* take the tail entry */
4271 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4272 if (item->ri_total != 0 &&
4273 item->ri_total == item->ri_cnt) {
4274 /* tail item is in use, get a new one */
4275 xlog_recover_add_item(&trans->r_itemq);
4276 item = list_entry(trans->r_itemq.prev,
4277 xlog_recover_item_t, ri_list);
4278 }
4279
4280 if (item->ri_total == 0) { /* first region to be added */
4281 if (in_f->ilf_size == 0 ||
4282 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4283 xfs_warn(log->l_mp,
4284 "bad number of regions (%d) in inode log format",
4285 in_f->ilf_size);
4286 ASSERT(0);
4287 kmem_free(ptr);
4288 return -EIO;
4289 }
4290
4291 item->ri_total = in_f->ilf_size;
4292 item->ri_buf =
4293 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4294 0);
4295 }
4296 ASSERT(item->ri_total > item->ri_cnt);
4297 /* Description region is ri_buf[0] */
4298 item->ri_buf[item->ri_cnt].i_addr = ptr;
4299 item->ri_buf[item->ri_cnt].i_len = len;
4300 item->ri_cnt++;
4301 trace_xfs_log_recover_item_add(log, trans, item, 0);
4302 return 0;
4303}
4304
4305/*
4306 * Free up any resources allocated by the transaction
4307 *
4308 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4309 */
4310STATIC void
4311xlog_recover_free_trans(
4312 struct xlog_recover *trans)
4313{
4314 xlog_recover_item_t *item, *n;
4315 int i;
4316
4317 hlist_del_init(&trans->r_list);
4318
4319 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4320 /* Free the regions in the item. */
4321 list_del(&item->ri_list);
4322 for (i = 0; i < item->ri_cnt; i++)
4323 kmem_free(item->ri_buf[i].i_addr);
4324 /* Free the item itself */
4325 kmem_free(item->ri_buf);
4326 kmem_free(item);
4327 }
4328 /* Free the transaction recover structure */
4329 kmem_free(trans);
4330}
4331
4332/*
4333 * On error or completion, trans is freed.
4334 */
4335STATIC int
4336xlog_recovery_process_trans(
4337 struct xlog *log,
4338 struct xlog_recover *trans,
4339 char *dp,
4340 unsigned int len,
4341 unsigned int flags,
4342 int pass,
4343 struct list_head *buffer_list)
4344{
4345 int error = 0;
4346 bool freeit = false;
4347
4348 /* mask off ophdr transaction container flags */
4349 flags &= ~XLOG_END_TRANS;
4350 if (flags & XLOG_WAS_CONT_TRANS)
4351 flags &= ~XLOG_CONTINUE_TRANS;
4352
4353 /*
4354 * Callees must not free the trans structure. We'll decide if we need to
4355 * free it or not based on the operation being done and it's result.
4356 */
4357 switch (flags) {
4358 /* expected flag values */
4359 case 0:
4360 case XLOG_CONTINUE_TRANS:
4361 error = xlog_recover_add_to_trans(log, trans, dp, len);
4362 break;
4363 case XLOG_WAS_CONT_TRANS:
4364 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4365 break;
4366 case XLOG_COMMIT_TRANS:
4367 error = xlog_recover_commit_trans(log, trans, pass,
4368 buffer_list);
4369 /* success or fail, we are now done with this transaction. */
4370 freeit = true;
4371 break;
4372
4373 /* unexpected flag values */
4374 case XLOG_UNMOUNT_TRANS:
4375 /* just skip trans */
4376 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4377 freeit = true;
4378 break;
4379 case XLOG_START_TRANS:
4380 default:
4381 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4382 ASSERT(0);
4383 error = -EIO;
4384 break;
4385 }
4386 if (error || freeit)
4387 xlog_recover_free_trans(trans);
4388 return error;
4389}
4390
4391/*
4392 * Lookup the transaction recovery structure associated with the ID in the
4393 * current ophdr. If the transaction doesn't exist and the start flag is set in
4394 * the ophdr, then allocate a new transaction for future ID matches to find.
4395 * Either way, return what we found during the lookup - an existing transaction
4396 * or nothing.
4397 */
4398STATIC struct xlog_recover *
4399xlog_recover_ophdr_to_trans(
4400 struct hlist_head rhash[],
4401 struct xlog_rec_header *rhead,
4402 struct xlog_op_header *ohead)
4403{
4404 struct xlog_recover *trans;
4405 xlog_tid_t tid;
4406 struct hlist_head *rhp;
4407
4408 tid = be32_to_cpu(ohead->oh_tid);
4409 rhp = &rhash[XLOG_RHASH(tid)];
4410 hlist_for_each_entry(trans, rhp, r_list) {
4411 if (trans->r_log_tid == tid)
4412 return trans;
4413 }
4414
4415 /*
4416 * skip over non-start transaction headers - we could be
4417 * processing slack space before the next transaction starts
4418 */
4419 if (!(ohead->oh_flags & XLOG_START_TRANS))
4420 return NULL;
4421
4422 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4423
4424 /*
4425 * This is a new transaction so allocate a new recovery container to
4426 * hold the recovery ops that will follow.
4427 */
4428 trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
4429 trans->r_log_tid = tid;
4430 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4431 INIT_LIST_HEAD(&trans->r_itemq);
4432 INIT_HLIST_NODE(&trans->r_list);
4433 hlist_add_head(&trans->r_list, rhp);
4434
4435 /*
4436 * Nothing more to do for this ophdr. Items to be added to this new
4437 * transaction will be in subsequent ophdr containers.
4438 */
4439 return NULL;
4440}
4441
4442STATIC int
4443xlog_recover_process_ophdr(
4444 struct xlog *log,
4445 struct hlist_head rhash[],
4446 struct xlog_rec_header *rhead,
4447 struct xlog_op_header *ohead,
4448 char *dp,
4449 char *end,
4450 int pass,
4451 struct list_head *buffer_list)
4452{
4453 struct xlog_recover *trans;
4454 unsigned int len;
4455 int error;
4456
4457 /* Do we understand who wrote this op? */
4458 if (ohead->oh_clientid != XFS_TRANSACTION &&
4459 ohead->oh_clientid != XFS_LOG) {
4460 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4461 __func__, ohead->oh_clientid);
4462 ASSERT(0);
4463 return -EIO;
4464 }
4465
4466 /*
4467 * Check the ophdr contains all the data it is supposed to contain.
4468 */
4469 len = be32_to_cpu(ohead->oh_len);
4470 if (dp + len > end) {
4471 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4472 WARN_ON(1);
4473 return -EIO;
4474 }
4475
4476 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4477 if (!trans) {
4478 /* nothing to do, so skip over this ophdr */
4479 return 0;
4480 }
4481
4482 /*
4483 * The recovered buffer queue is drained only once we know that all
4484 * recovery items for the current LSN have been processed. This is
4485 * required because:
4486 *
4487 * - Buffer write submission updates the metadata LSN of the buffer.
4488 * - Log recovery skips items with a metadata LSN >= the current LSN of
4489 * the recovery item.
4490 * - Separate recovery items against the same metadata buffer can share
4491 * a current LSN. I.e., consider that the LSN of a recovery item is
4492 * defined as the starting LSN of the first record in which its
4493 * transaction appears, that a record can hold multiple transactions,
4494 * and/or that a transaction can span multiple records.
4495 *
4496 * In other words, we are allowed to submit a buffer from log recovery
4497 * once per current LSN. Otherwise, we may incorrectly skip recovery
4498 * items and cause corruption.
4499 *
4500 * We don't know up front whether buffers are updated multiple times per
4501 * LSN. Therefore, track the current LSN of each commit log record as it
4502 * is processed and drain the queue when it changes. Use commit records
4503 * because they are ordered correctly by the logging code.
4504 */
4505 if (log->l_recovery_lsn != trans->r_lsn &&
4506 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4507 error = xfs_buf_delwri_submit(buffer_list);
4508 if (error)
4509 return error;
4510 log->l_recovery_lsn = trans->r_lsn;
4511 }
4512
4513 return xlog_recovery_process_trans(log, trans, dp, len,
4514 ohead->oh_flags, pass, buffer_list);
4515}
4516
4517/*
4518 * There are two valid states of the r_state field. 0 indicates that the
4519 * transaction structure is in a normal state. We have either seen the
4520 * start of the transaction or the last operation we added was not a partial
4521 * operation. If the last operation we added to the transaction was a
4522 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4523 *
4524 * NOTE: skip LRs with 0 data length.
4525 */
4526STATIC int
4527xlog_recover_process_data(
4528 struct xlog *log,
4529 struct hlist_head rhash[],
4530 struct xlog_rec_header *rhead,
4531 char *dp,
4532 int pass,
4533 struct list_head *buffer_list)
4534{
4535 struct xlog_op_header *ohead;
4536 char *end;
4537 int num_logops;
4538 int error;
4539
4540 end = dp + be32_to_cpu(rhead->h_len);
4541 num_logops = be32_to_cpu(rhead->h_num_logops);
4542
4543 /* check the log format matches our own - else we can't recover */
4544 if (xlog_header_check_recover(log->l_mp, rhead))
4545 return -EIO;
4546
4547 trace_xfs_log_recover_record(log, rhead, pass);
4548 while ((dp < end) && num_logops) {
4549
4550 ohead = (struct xlog_op_header *)dp;
4551 dp += sizeof(*ohead);
4552 ASSERT(dp <= end);
4553
4554 /* errors will abort recovery */
4555 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4556 dp, end, pass, buffer_list);
4557 if (error)
4558 return error;
4559
4560 dp += be32_to_cpu(ohead->oh_len);
4561 num_logops--;
4562 }
4563 return 0;
4564}
4565
4566/* Recover the EFI if necessary. */
4567STATIC int
4568xlog_recover_process_efi(
4569 struct xfs_mount *mp,
4570 struct xfs_ail *ailp,
4571 struct xfs_log_item *lip)
4572{
4573 struct xfs_efi_log_item *efip;
4574 int error;
4575
4576 /*
4577 * Skip EFIs that we've already processed.
4578 */
4579 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4580 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4581 return 0;
4582
4583 spin_unlock(&ailp->ail_lock);
4584 error = xfs_efi_recover(mp, efip);
4585 spin_lock(&ailp->ail_lock);
4586
4587 return error;
4588}
4589
4590/* Release the EFI since we're cancelling everything. */
4591STATIC void
4592xlog_recover_cancel_efi(
4593 struct xfs_mount *mp,
4594 struct xfs_ail *ailp,
4595 struct xfs_log_item *lip)
4596{
4597 struct xfs_efi_log_item *efip;
4598
4599 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4600
4601 spin_unlock(&ailp->ail_lock);
4602 xfs_efi_release(efip);
4603 spin_lock(&ailp->ail_lock);
4604}
4605
4606/* Recover the RUI if necessary. */
4607STATIC int
4608xlog_recover_process_rui(
4609 struct xfs_mount *mp,
4610 struct xfs_ail *ailp,
4611 struct xfs_log_item *lip)
4612{
4613 struct xfs_rui_log_item *ruip;
4614 int error;
4615
4616 /*
4617 * Skip RUIs that we've already processed.
4618 */
4619 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4620 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4621 return 0;
4622
4623 spin_unlock(&ailp->ail_lock);
4624 error = xfs_rui_recover(mp, ruip);
4625 spin_lock(&ailp->ail_lock);
4626
4627 return error;
4628}
4629
4630/* Release the RUI since we're cancelling everything. */
4631STATIC void
4632xlog_recover_cancel_rui(
4633 struct xfs_mount *mp,
4634 struct xfs_ail *ailp,
4635 struct xfs_log_item *lip)
4636{
4637 struct xfs_rui_log_item *ruip;
4638
4639 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4640
4641 spin_unlock(&ailp->ail_lock);
4642 xfs_rui_release(ruip);
4643 spin_lock(&ailp->ail_lock);
4644}
4645
4646/* Recover the CUI if necessary. */
4647STATIC int
4648xlog_recover_process_cui(
4649 struct xfs_trans *parent_tp,
4650 struct xfs_ail *ailp,
4651 struct xfs_log_item *lip)
4652{
4653 struct xfs_cui_log_item *cuip;
4654 int error;
4655
4656 /*
4657 * Skip CUIs that we've already processed.
4658 */
4659 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4660 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4661 return 0;
4662
4663 spin_unlock(&ailp->ail_lock);
4664 error = xfs_cui_recover(parent_tp, cuip);
4665 spin_lock(&ailp->ail_lock);
4666
4667 return error;
4668}
4669
4670/* Release the CUI since we're cancelling everything. */
4671STATIC void
4672xlog_recover_cancel_cui(
4673 struct xfs_mount *mp,
4674 struct xfs_ail *ailp,
4675 struct xfs_log_item *lip)
4676{
4677 struct xfs_cui_log_item *cuip;
4678
4679 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4680
4681 spin_unlock(&ailp->ail_lock);
4682 xfs_cui_release(cuip);
4683 spin_lock(&ailp->ail_lock);
4684}
4685
4686/* Recover the BUI if necessary. */
4687STATIC int
4688xlog_recover_process_bui(
4689 struct xfs_trans *parent_tp,
4690 struct xfs_ail *ailp,
4691 struct xfs_log_item *lip)
4692{
4693 struct xfs_bui_log_item *buip;
4694 int error;
4695
4696 /*
4697 * Skip BUIs that we've already processed.
4698 */
4699 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4700 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4701 return 0;
4702
4703 spin_unlock(&ailp->ail_lock);
4704 error = xfs_bui_recover(parent_tp, buip);
4705 spin_lock(&ailp->ail_lock);
4706
4707 return error;
4708}
4709
4710/* Release the BUI since we're cancelling everything. */
4711STATIC void
4712xlog_recover_cancel_bui(
4713 struct xfs_mount *mp,
4714 struct xfs_ail *ailp,
4715 struct xfs_log_item *lip)
4716{
4717 struct xfs_bui_log_item *buip;
4718
4719 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4720
4721 spin_unlock(&ailp->ail_lock);
4722 xfs_bui_release(buip);
4723 spin_lock(&ailp->ail_lock);
4724}
4725
4726/* Is this log item a deferred action intent? */
4727static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4728{
4729 switch (lip->li_type) {
4730 case XFS_LI_EFI:
4731 case XFS_LI_RUI:
4732 case XFS_LI_CUI:
4733 case XFS_LI_BUI:
4734 return true;
4735 default:
4736 return false;
4737 }
4738}
4739
4740/* Take all the collected deferred ops and finish them in order. */
4741static int
4742xlog_finish_defer_ops(
4743 struct xfs_trans *parent_tp)
4744{
4745 struct xfs_mount *mp = parent_tp->t_mountp;
4746 struct xfs_trans *tp;
4747 int64_t freeblks;
4748 uint resblks;
4749 int error;
4750
4751 /*
4752 * We're finishing the defer_ops that accumulated as a result of
4753 * recovering unfinished intent items during log recovery. We
4754 * reserve an itruncate transaction because it is the largest
4755 * permanent transaction type. Since we're the only user of the fs
4756 * right now, take 93% (15/16) of the available free blocks. Use
4757 * weird math to avoid a 64-bit division.
4758 */
4759 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4760 if (freeblks <= 0)
4761 return -ENOSPC;
4762 resblks = min_t(int64_t, UINT_MAX, freeblks);
4763 resblks = (resblks * 15) >> 4;
4764 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4765 0, XFS_TRANS_RESERVE, &tp);
4766 if (error)
4767 return error;
4768 /* transfer all collected dfops to this transaction */
4769 xfs_defer_move(tp, parent_tp);
4770
4771 return xfs_trans_commit(tp);
4772}
4773
4774/*
4775 * When this is called, all of the log intent items which did not have
4776 * corresponding log done items should be in the AIL. What we do now
4777 * is update the data structures associated with each one.
4778 *
4779 * Since we process the log intent items in normal transactions, they
4780 * will be removed at some point after the commit. This prevents us
4781 * from just walking down the list processing each one. We'll use a
4782 * flag in the intent item to skip those that we've already processed
4783 * and use the AIL iteration mechanism's generation count to try to
4784 * speed this up at least a bit.
4785 *
4786 * When we start, we know that the intents are the only things in the
4787 * AIL. As we process them, however, other items are added to the
4788 * AIL.
4789 */
4790STATIC int
4791xlog_recover_process_intents(
4792 struct xlog *log)
4793{
4794 struct xfs_trans *parent_tp;
4795 struct xfs_ail_cursor cur;
4796 struct xfs_log_item *lip;
4797 struct xfs_ail *ailp;
4798 int error;
4799#if defined(DEBUG) || defined(XFS_WARN)
4800 xfs_lsn_t last_lsn;
4801#endif
4802
4803 /*
4804 * The intent recovery handlers commit transactions to complete recovery
4805 * for individual intents, but any new deferred operations that are
4806 * queued during that process are held off until the very end. The
4807 * purpose of this transaction is to serve as a container for deferred
4808 * operations. Each intent recovery handler must transfer dfops here
4809 * before its local transaction commits, and we'll finish the entire
4810 * list below.
4811 */
4812 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4813 if (error)
4814 return error;
4815
4816 ailp = log->l_ailp;
4817 spin_lock(&ailp->ail_lock);
4818 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4819#if defined(DEBUG) || defined(XFS_WARN)
4820 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4821#endif
4822 while (lip != NULL) {
4823 /*
4824 * We're done when we see something other than an intent.
4825 * There should be no intents left in the AIL now.
4826 */
4827 if (!xlog_item_is_intent(lip)) {
4828#ifdef DEBUG
4829 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4830 ASSERT(!xlog_item_is_intent(lip));
4831#endif
4832 break;
4833 }
4834
4835 /*
4836 * We should never see a redo item with a LSN higher than
4837 * the last transaction we found in the log at the start
4838 * of recovery.
4839 */
4840 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4841
4842 /*
4843 * NOTE: If your intent processing routine can create more
4844 * deferred ops, you /must/ attach them to the dfops in this
4845 * routine or else those subsequent intents will get
4846 * replayed in the wrong order!
4847 */
4848 switch (lip->li_type) {
4849 case XFS_LI_EFI:
4850 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4851 break;
4852 case XFS_LI_RUI:
4853 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4854 break;
4855 case XFS_LI_CUI:
4856 error = xlog_recover_process_cui(parent_tp, ailp, lip);
4857 break;
4858 case XFS_LI_BUI:
4859 error = xlog_recover_process_bui(parent_tp, ailp, lip);
4860 break;
4861 }
4862 if (error)
4863 goto out;
4864 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4865 }
4866out:
4867 xfs_trans_ail_cursor_done(&cur);
4868 spin_unlock(&ailp->ail_lock);
4869 if (!error)
4870 error = xlog_finish_defer_ops(parent_tp);
4871 xfs_trans_cancel(parent_tp);
4872
4873 return error;
4874}
4875
4876/*
4877 * A cancel occurs when the mount has failed and we're bailing out.
4878 * Release all pending log intent items so they don't pin the AIL.
4879 */
4880STATIC void
4881xlog_recover_cancel_intents(
4882 struct xlog *log)
4883{
4884 struct xfs_log_item *lip;
4885 struct xfs_ail_cursor cur;
4886 struct xfs_ail *ailp;
4887
4888 ailp = log->l_ailp;
4889 spin_lock(&ailp->ail_lock);
4890 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4891 while (lip != NULL) {
4892 /*
4893 * We're done when we see something other than an intent.
4894 * There should be no intents left in the AIL now.
4895 */
4896 if (!xlog_item_is_intent(lip)) {
4897#ifdef DEBUG
4898 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4899 ASSERT(!xlog_item_is_intent(lip));
4900#endif
4901 break;
4902 }
4903
4904 switch (lip->li_type) {
4905 case XFS_LI_EFI:
4906 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4907 break;
4908 case XFS_LI_RUI:
4909 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4910 break;
4911 case XFS_LI_CUI:
4912 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4913 break;
4914 case XFS_LI_BUI:
4915 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4916 break;
4917 }
4918
4919 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4920 }
4921
4922 xfs_trans_ail_cursor_done(&cur);
4923 spin_unlock(&ailp->ail_lock);
4924}
4925
4926/*
4927 * This routine performs a transaction to null out a bad inode pointer
4928 * in an agi unlinked inode hash bucket.
4929 */
4930STATIC void
4931xlog_recover_clear_agi_bucket(
4932 xfs_mount_t *mp,
4933 xfs_agnumber_t agno,
4934 int bucket)
4935{
4936 xfs_trans_t *tp;
4937 xfs_agi_t *agi;
4938 xfs_buf_t *agibp;
4939 int offset;
4940 int error;
4941
4942 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
4943 if (error)
4944 goto out_error;
4945
4946 error = xfs_read_agi(mp, tp, agno, &agibp);
4947 if (error)
4948 goto out_abort;
4949
4950 agi = XFS_BUF_TO_AGI(agibp);
4951 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
4952 offset = offsetof(xfs_agi_t, agi_unlinked) +
4953 (sizeof(xfs_agino_t) * bucket);
4954 xfs_trans_log_buf(tp, agibp, offset,
4955 (offset + sizeof(xfs_agino_t) - 1));
4956
4957 error = xfs_trans_commit(tp);
4958 if (error)
4959 goto out_error;
4960 return;
4961
4962out_abort:
4963 xfs_trans_cancel(tp);
4964out_error:
4965 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
4966 return;
4967}
4968
4969STATIC xfs_agino_t
4970xlog_recover_process_one_iunlink(
4971 struct xfs_mount *mp,
4972 xfs_agnumber_t agno,
4973 xfs_agino_t agino,
4974 int bucket)
4975{
4976 struct xfs_buf *ibp;
4977 struct xfs_dinode *dip;
4978 struct xfs_inode *ip;
4979 xfs_ino_t ino;
4980 int error;
4981
4982 ino = XFS_AGINO_TO_INO(mp, agno, agino);
4983 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
4984 if (error)
4985 goto fail;
4986
4987 /*
4988 * Get the on disk inode to find the next inode in the bucket.
4989 */
4990 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
4991 if (error)
4992 goto fail_iput;
4993
4994 xfs_iflags_clear(ip, XFS_IRECOVERY);
4995 ASSERT(VFS_I(ip)->i_nlink == 0);
4996 ASSERT(VFS_I(ip)->i_mode != 0);
4997
4998 /* setup for the next pass */
4999 agino = be32_to_cpu(dip->di_next_unlinked);
5000 xfs_buf_relse(ibp);
5001
5002 /*
5003 * Prevent any DMAPI event from being sent when the reference on
5004 * the inode is dropped.
5005 */
5006 ip->i_d.di_dmevmask = 0;
5007
5008 xfs_irele(ip);
5009 return agino;
5010
5011 fail_iput:
5012 xfs_irele(ip);
5013 fail:
5014 /*
5015 * We can't read in the inode this bucket points to, or this inode
5016 * is messed up. Just ditch this bucket of inodes. We will lose
5017 * some inodes and space, but at least we won't hang.
5018 *
5019 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5020 * clear the inode pointer in the bucket.
5021 */
5022 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5023 return NULLAGINO;
5024}
5025
5026/*
5027 * Recover AGI unlinked lists
5028 *
5029 * This is called during recovery to process any inodes which we unlinked but
5030 * not freed when the system crashed. These inodes will be on the lists in the
5031 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
5032 * any inodes found on the lists. Each inode is removed from the lists when it
5033 * has been fully truncated and is freed. The freeing of the inode and its
5034 * removal from the list must be atomic.
5035 *
5036 * If everything we touch in the agi processing loop is already in memory, this
5037 * loop can hold the cpu for a long time. It runs without lock contention,
5038 * memory allocation contention, the need wait for IO, etc, and so will run
5039 * until we either run out of inodes to process, run low on memory or we run out
5040 * of log space.
5041 *
5042 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
5043 * and can prevent other filesytem work (such as CIL pushes) from running. This
5044 * can lead to deadlocks if the recovery process runs out of log reservation
5045 * space. Hence we need to yield the CPU when there is other kernel work
5046 * scheduled on this CPU to ensure other scheduled work can run without undue
5047 * latency.
5048 */
5049STATIC void
5050xlog_recover_process_iunlinks(
5051 struct xlog *log)
5052{
5053 xfs_mount_t *mp;
5054 xfs_agnumber_t agno;
5055 xfs_agi_t *agi;
5056 xfs_buf_t *agibp;
5057 xfs_agino_t agino;
5058 int bucket;
5059 int error;
5060
5061 mp = log->l_mp;
5062
5063 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5064 /*
5065 * Find the agi for this ag.
5066 */
5067 error = xfs_read_agi(mp, NULL, agno, &agibp);
5068 if (error) {
5069 /*
5070 * AGI is b0rked. Don't process it.
5071 *
5072 * We should probably mark the filesystem as corrupt
5073 * after we've recovered all the ag's we can....
5074 */
5075 continue;
5076 }
5077 /*
5078 * Unlock the buffer so that it can be acquired in the normal
5079 * course of the transaction to truncate and free each inode.
5080 * Because we are not racing with anyone else here for the AGI
5081 * buffer, we don't even need to hold it locked to read the
5082 * initial unlinked bucket entries out of the buffer. We keep
5083 * buffer reference though, so that it stays pinned in memory
5084 * while we need the buffer.
5085 */
5086 agi = XFS_BUF_TO_AGI(agibp);
5087 xfs_buf_unlock(agibp);
5088
5089 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5090 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5091 while (agino != NULLAGINO) {
5092 agino = xlog_recover_process_one_iunlink(mp,
5093 agno, agino, bucket);
5094 cond_resched();
5095 }
5096 }
5097 xfs_buf_rele(agibp);
5098 }
5099}
5100
5101STATIC void
5102xlog_unpack_data(
5103 struct xlog_rec_header *rhead,
5104 char *dp,
5105 struct xlog *log)
5106{
5107 int i, j, k;
5108
5109 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5110 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5111 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5112 dp += BBSIZE;
5113 }
5114
5115 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5116 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5117 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5118 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5119 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5120 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5121 dp += BBSIZE;
5122 }
5123 }
5124}
5125
5126/*
5127 * CRC check, unpack and process a log record.
5128 */
5129STATIC int
5130xlog_recover_process(
5131 struct xlog *log,
5132 struct hlist_head rhash[],
5133 struct xlog_rec_header *rhead,
5134 char *dp,
5135 int pass,
5136 struct list_head *buffer_list)
5137{
5138 __le32 old_crc = rhead->h_crc;
5139 __le32 crc;
5140
5141 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5142
5143 /*
5144 * Nothing else to do if this is a CRC verification pass. Just return
5145 * if this a record with a non-zero crc. Unfortunately, mkfs always
5146 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5147 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5148 * know precisely what failed.
5149 */
5150 if (pass == XLOG_RECOVER_CRCPASS) {
5151 if (old_crc && crc != old_crc)
5152 return -EFSBADCRC;
5153 return 0;
5154 }
5155
5156 /*
5157 * We're in the normal recovery path. Issue a warning if and only if the
5158 * CRC in the header is non-zero. This is an advisory warning and the
5159 * zero CRC check prevents warnings from being emitted when upgrading
5160 * the kernel from one that does not add CRCs by default.
5161 */
5162 if (crc != old_crc) {
5163 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5164 xfs_alert(log->l_mp,
5165 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5166 le32_to_cpu(old_crc),
5167 le32_to_cpu(crc));
5168 xfs_hex_dump(dp, 32);
5169 }
5170
5171 /*
5172 * If the filesystem is CRC enabled, this mismatch becomes a
5173 * fatal log corruption failure.
5174 */
5175 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5176 return -EFSCORRUPTED;
5177 }
5178
5179 xlog_unpack_data(rhead, dp, log);
5180
5181 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5182 buffer_list);
5183}
5184
5185STATIC int
5186xlog_valid_rec_header(
5187 struct xlog *log,
5188 struct xlog_rec_header *rhead,
5189 xfs_daddr_t blkno)
5190{
5191 int hlen;
5192
5193 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5194 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5195 XFS_ERRLEVEL_LOW, log->l_mp);
5196 return -EFSCORRUPTED;
5197 }
5198 if (unlikely(
5199 (!rhead->h_version ||
5200 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5201 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5202 __func__, be32_to_cpu(rhead->h_version));
5203 return -EIO;
5204 }
5205
5206 /* LR body must have data or it wouldn't have been written */
5207 hlen = be32_to_cpu(rhead->h_len);
5208 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5209 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5210 XFS_ERRLEVEL_LOW, log->l_mp);
5211 return -EFSCORRUPTED;
5212 }
5213 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5214 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5215 XFS_ERRLEVEL_LOW, log->l_mp);
5216 return -EFSCORRUPTED;
5217 }
5218 return 0;
5219}
5220
5221/*
5222 * Read the log from tail to head and process the log records found.
5223 * Handle the two cases where the tail and head are in the same cycle
5224 * and where the active portion of the log wraps around the end of
5225 * the physical log separately. The pass parameter is passed through
5226 * to the routines called to process the data and is not looked at
5227 * here.
5228 */
5229STATIC int
5230xlog_do_recovery_pass(
5231 struct xlog *log,
5232 xfs_daddr_t head_blk,
5233 xfs_daddr_t tail_blk,
5234 int pass,
5235 xfs_daddr_t *first_bad) /* out: first bad log rec */
5236{
5237 xlog_rec_header_t *rhead;
5238 xfs_daddr_t blk_no, rblk_no;
5239 xfs_daddr_t rhead_blk;
5240 char *offset;
5241 char *hbp, *dbp;
5242 int error = 0, h_size, h_len;
5243 int error2 = 0;
5244 int bblks, split_bblks;
5245 int hblks, split_hblks, wrapped_hblks;
5246 int i;
5247 struct hlist_head rhash[XLOG_RHASH_SIZE];
5248 LIST_HEAD (buffer_list);
5249
5250 ASSERT(head_blk != tail_blk);
5251 blk_no = rhead_blk = tail_blk;
5252
5253 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5254 INIT_HLIST_HEAD(&rhash[i]);
5255
5256 /*
5257 * Read the header of the tail block and get the iclog buffer size from
5258 * h_size. Use this to tell how many sectors make up the log header.
5259 */
5260 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5261 /*
5262 * When using variable length iclogs, read first sector of
5263 * iclog header and extract the header size from it. Get a
5264 * new hbp that is the correct size.
5265 */
5266 hbp = xlog_alloc_buffer(log, 1);
5267 if (!hbp)
5268 return -ENOMEM;
5269
5270 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5271 if (error)
5272 goto bread_err1;
5273
5274 rhead = (xlog_rec_header_t *)offset;
5275 error = xlog_valid_rec_header(log, rhead, tail_blk);
5276 if (error)
5277 goto bread_err1;
5278
5279 /*
5280 * xfsprogs has a bug where record length is based on lsunit but
5281 * h_size (iclog size) is hardcoded to 32k. Now that we
5282 * unconditionally CRC verify the unmount record, this means the
5283 * log buffer can be too small for the record and cause an
5284 * overrun.
5285 *
5286 * Detect this condition here. Use lsunit for the buffer size as
5287 * long as this looks like the mkfs case. Otherwise, return an
5288 * error to avoid a buffer overrun.
5289 */
5290 h_size = be32_to_cpu(rhead->h_size);
5291 h_len = be32_to_cpu(rhead->h_len);
5292 if (h_len > h_size) {
5293 if (h_len <= log->l_mp->m_logbsize &&
5294 be32_to_cpu(rhead->h_num_logops) == 1) {
5295 xfs_warn(log->l_mp,
5296 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5297 h_size, log->l_mp->m_logbsize);
5298 h_size = log->l_mp->m_logbsize;
5299 } else
5300 return -EFSCORRUPTED;
5301 }
5302
5303 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5304 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5305 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5306 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5307 hblks++;
5308 kmem_free(hbp);
5309 hbp = xlog_alloc_buffer(log, hblks);
5310 } else {
5311 hblks = 1;
5312 }
5313 } else {
5314 ASSERT(log->l_sectBBsize == 1);
5315 hblks = 1;
5316 hbp = xlog_alloc_buffer(log, 1);
5317 h_size = XLOG_BIG_RECORD_BSIZE;
5318 }
5319
5320 if (!hbp)
5321 return -ENOMEM;
5322 dbp = xlog_alloc_buffer(log, BTOBB(h_size));
5323 if (!dbp) {
5324 kmem_free(hbp);
5325 return -ENOMEM;
5326 }
5327
5328 memset(rhash, 0, sizeof(rhash));
5329 if (tail_blk > head_blk) {
5330 /*
5331 * Perform recovery around the end of the physical log.
5332 * When the head is not on the same cycle number as the tail,
5333 * we can't do a sequential recovery.
5334 */
5335 while (blk_no < log->l_logBBsize) {
5336 /*
5337 * Check for header wrapping around physical end-of-log
5338 */
5339 offset = hbp;
5340 split_hblks = 0;
5341 wrapped_hblks = 0;
5342 if (blk_no + hblks <= log->l_logBBsize) {
5343 /* Read header in one read */
5344 error = xlog_bread(log, blk_no, hblks, hbp,
5345 &offset);
5346 if (error)
5347 goto bread_err2;
5348 } else {
5349 /* This LR is split across physical log end */
5350 if (blk_no != log->l_logBBsize) {
5351 /* some data before physical log end */
5352 ASSERT(blk_no <= INT_MAX);
5353 split_hblks = log->l_logBBsize - (int)blk_no;
5354 ASSERT(split_hblks > 0);
5355 error = xlog_bread(log, blk_no,
5356 split_hblks, hbp,
5357 &offset);
5358 if (error)
5359 goto bread_err2;
5360 }
5361
5362 /*
5363 * Note: this black magic still works with
5364 * large sector sizes (non-512) only because:
5365 * - we increased the buffer size originally
5366 * by 1 sector giving us enough extra space
5367 * for the second read;
5368 * - the log start is guaranteed to be sector
5369 * aligned;
5370 * - we read the log end (LR header start)
5371 * _first_, then the log start (LR header end)
5372 * - order is important.
5373 */
5374 wrapped_hblks = hblks - split_hblks;
5375 error = xlog_bread_noalign(log, 0,
5376 wrapped_hblks,
5377 offset + BBTOB(split_hblks));
5378 if (error)
5379 goto bread_err2;
5380 }
5381 rhead = (xlog_rec_header_t *)offset;
5382 error = xlog_valid_rec_header(log, rhead,
5383 split_hblks ? blk_no : 0);
5384 if (error)
5385 goto bread_err2;
5386
5387 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5388 blk_no += hblks;
5389
5390 /*
5391 * Read the log record data in multiple reads if it
5392 * wraps around the end of the log. Note that if the
5393 * header already wrapped, blk_no could point past the
5394 * end of the log. The record data is contiguous in
5395 * that case.
5396 */
5397 if (blk_no + bblks <= log->l_logBBsize ||
5398 blk_no >= log->l_logBBsize) {
5399 rblk_no = xlog_wrap_logbno(log, blk_no);
5400 error = xlog_bread(log, rblk_no, bblks, dbp,
5401 &offset);
5402 if (error)
5403 goto bread_err2;
5404 } else {
5405 /* This log record is split across the
5406 * physical end of log */
5407 offset = dbp;
5408 split_bblks = 0;
5409 if (blk_no != log->l_logBBsize) {
5410 /* some data is before the physical
5411 * end of log */
5412 ASSERT(!wrapped_hblks);
5413 ASSERT(blk_no <= INT_MAX);
5414 split_bblks =
5415 log->l_logBBsize - (int)blk_no;
5416 ASSERT(split_bblks > 0);
5417 error = xlog_bread(log, blk_no,
5418 split_bblks, dbp,
5419 &offset);
5420 if (error)
5421 goto bread_err2;
5422 }
5423
5424 /*
5425 * Note: this black magic still works with
5426 * large sector sizes (non-512) only because:
5427 * - we increased the buffer size originally
5428 * by 1 sector giving us enough extra space
5429 * for the second read;
5430 * - the log start is guaranteed to be sector
5431 * aligned;
5432 * - we read the log end (LR header start)
5433 * _first_, then the log start (LR header end)
5434 * - order is important.
5435 */
5436 error = xlog_bread_noalign(log, 0,
5437 bblks - split_bblks,
5438 offset + BBTOB(split_bblks));
5439 if (error)
5440 goto bread_err2;
5441 }
5442
5443 error = xlog_recover_process(log, rhash, rhead, offset,
5444 pass, &buffer_list);
5445 if (error)
5446 goto bread_err2;
5447
5448 blk_no += bblks;
5449 rhead_blk = blk_no;
5450 }
5451
5452 ASSERT(blk_no >= log->l_logBBsize);
5453 blk_no -= log->l_logBBsize;
5454 rhead_blk = blk_no;
5455 }
5456
5457 /* read first part of physical log */
5458 while (blk_no < head_blk) {
5459 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5460 if (error)
5461 goto bread_err2;
5462
5463 rhead = (xlog_rec_header_t *)offset;
5464 error = xlog_valid_rec_header(log, rhead, blk_no);
5465 if (error)
5466 goto bread_err2;
5467
5468 /* blocks in data section */
5469 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5470 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5471 &offset);
5472 if (error)
5473 goto bread_err2;
5474
5475 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5476 &buffer_list);
5477 if (error)
5478 goto bread_err2;
5479
5480 blk_no += bblks + hblks;
5481 rhead_blk = blk_no;
5482 }
5483
5484 bread_err2:
5485 kmem_free(dbp);
5486 bread_err1:
5487 kmem_free(hbp);
5488
5489 /*
5490 * Submit buffers that have been added from the last record processed,
5491 * regardless of error status.
5492 */
5493 if (!list_empty(&buffer_list))
5494 error2 = xfs_buf_delwri_submit(&buffer_list);
5495
5496 if (error && first_bad)
5497 *first_bad = rhead_blk;
5498
5499 /*
5500 * Transactions are freed at commit time but transactions without commit
5501 * records on disk are never committed. Free any that may be left in the
5502 * hash table.
5503 */
5504 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5505 struct hlist_node *tmp;
5506 struct xlog_recover *trans;
5507
5508 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5509 xlog_recover_free_trans(trans);
5510 }
5511
5512 return error ? error : error2;
5513}
5514
5515/*
5516 * Do the recovery of the log. We actually do this in two phases.
5517 * The two passes are necessary in order to implement the function
5518 * of cancelling a record written into the log. The first pass
5519 * determines those things which have been cancelled, and the
5520 * second pass replays log items normally except for those which
5521 * have been cancelled. The handling of the replay and cancellations
5522 * takes place in the log item type specific routines.
5523 *
5524 * The table of items which have cancel records in the log is allocated
5525 * and freed at this level, since only here do we know when all of
5526 * the log recovery has been completed.
5527 */
5528STATIC int
5529xlog_do_log_recovery(
5530 struct xlog *log,
5531 xfs_daddr_t head_blk,
5532 xfs_daddr_t tail_blk)
5533{
5534 int error, i;
5535
5536 ASSERT(head_blk != tail_blk);
5537
5538 /*
5539 * First do a pass to find all of the cancelled buf log items.
5540 * Store them in the buf_cancel_table for use in the second pass.
5541 */
5542 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5543 sizeof(struct list_head),
5544 0);
5545 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5546 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5547
5548 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5549 XLOG_RECOVER_PASS1, NULL);
5550 if (error != 0) {
5551 kmem_free(log->l_buf_cancel_table);
5552 log->l_buf_cancel_table = NULL;
5553 return error;
5554 }
5555 /*
5556 * Then do a second pass to actually recover the items in the log.
5557 * When it is complete free the table of buf cancel items.
5558 */
5559 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5560 XLOG_RECOVER_PASS2, NULL);
5561#ifdef DEBUG
5562 if (!error) {
5563 int i;
5564
5565 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5566 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5567 }
5568#endif /* DEBUG */
5569
5570 kmem_free(log->l_buf_cancel_table);
5571 log->l_buf_cancel_table = NULL;
5572
5573 return error;
5574}
5575
5576/*
5577 * Do the actual recovery
5578 */
5579STATIC int
5580xlog_do_recover(
5581 struct xlog *log,
5582 xfs_daddr_t head_blk,
5583 xfs_daddr_t tail_blk)
5584{
5585 struct xfs_mount *mp = log->l_mp;
5586 int error;
5587 xfs_buf_t *bp;
5588 xfs_sb_t *sbp;
5589
5590 trace_xfs_log_recover(log, head_blk, tail_blk);
5591
5592 /*
5593 * First replay the images in the log.
5594 */
5595 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5596 if (error)
5597 return error;
5598
5599 /*
5600 * If IO errors happened during recovery, bail out.
5601 */
5602 if (XFS_FORCED_SHUTDOWN(mp)) {
5603 return -EIO;
5604 }
5605
5606 /*
5607 * We now update the tail_lsn since much of the recovery has completed
5608 * and there may be space available to use. If there were no extent
5609 * or iunlinks, we can free up the entire log and set the tail_lsn to
5610 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5611 * lsn of the last known good LR on disk. If there are extent frees
5612 * or iunlinks they will have some entries in the AIL; so we look at
5613 * the AIL to determine how to set the tail_lsn.
5614 */
5615 xlog_assign_tail_lsn(mp);
5616
5617 /*
5618 * Now that we've finished replaying all buffer and inode
5619 * updates, re-read in the superblock and reverify it.
5620 */
5621 bp = xfs_getsb(mp);
5622 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5623 ASSERT(!(bp->b_flags & XBF_WRITE));
5624 bp->b_flags |= XBF_READ;
5625 bp->b_ops = &xfs_sb_buf_ops;
5626
5627 error = xfs_buf_submit(bp);
5628 if (error) {
5629 if (!XFS_FORCED_SHUTDOWN(mp)) {
5630 xfs_buf_ioerror_alert(bp, __func__);
5631 ASSERT(0);
5632 }
5633 xfs_buf_relse(bp);
5634 return error;
5635 }
5636
5637 /* Convert superblock from on-disk format */
5638 sbp = &mp->m_sb;
5639 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5640 xfs_buf_relse(bp);
5641
5642 /* re-initialise in-core superblock and geometry structures */
5643 xfs_reinit_percpu_counters(mp);
5644 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5645 if (error) {
5646 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5647 return error;
5648 }
5649 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5650
5651 xlog_recover_check_summary(log);
5652
5653 /* Normal transactions can now occur */
5654 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5655 return 0;
5656}
5657
5658/*
5659 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5660 *
5661 * Return error or zero.
5662 */
5663int
5664xlog_recover(
5665 struct xlog *log)
5666{
5667 xfs_daddr_t head_blk, tail_blk;
5668 int error;
5669
5670 /* find the tail of the log */
5671 error = xlog_find_tail(log, &head_blk, &tail_blk);
5672 if (error)
5673 return error;
5674
5675 /*
5676 * The superblock was read before the log was available and thus the LSN
5677 * could not be verified. Check the superblock LSN against the current
5678 * LSN now that it's known.
5679 */
5680 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5681 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5682 return -EINVAL;
5683
5684 if (tail_blk != head_blk) {
5685 /* There used to be a comment here:
5686 *
5687 * disallow recovery on read-only mounts. note -- mount
5688 * checks for ENOSPC and turns it into an intelligent
5689 * error message.
5690 * ...but this is no longer true. Now, unless you specify
5691 * NORECOVERY (in which case this function would never be
5692 * called), we just go ahead and recover. We do this all
5693 * under the vfs layer, so we can get away with it unless
5694 * the device itself is read-only, in which case we fail.
5695 */
5696 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5697 return error;
5698 }
5699
5700 /*
5701 * Version 5 superblock log feature mask validation. We know the
5702 * log is dirty so check if there are any unknown log features
5703 * in what we need to recover. If there are unknown features
5704 * (e.g. unsupported transactions, then simply reject the
5705 * attempt at recovery before touching anything.
5706 */
5707 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5708 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5709 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5710 xfs_warn(log->l_mp,
5711"Superblock has unknown incompatible log features (0x%x) enabled.",
5712 (log->l_mp->m_sb.sb_features_log_incompat &
5713 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5714 xfs_warn(log->l_mp,
5715"The log can not be fully and/or safely recovered by this kernel.");
5716 xfs_warn(log->l_mp,
5717"Please recover the log on a kernel that supports the unknown features.");
5718 return -EINVAL;
5719 }
5720
5721 /*
5722 * Delay log recovery if the debug hook is set. This is debug
5723 * instrumention to coordinate simulation of I/O failures with
5724 * log recovery.
5725 */
5726 if (xfs_globals.log_recovery_delay) {
5727 xfs_notice(log->l_mp,
5728 "Delaying log recovery for %d seconds.",
5729 xfs_globals.log_recovery_delay);
5730 msleep(xfs_globals.log_recovery_delay * 1000);
5731 }
5732
5733 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5734 log->l_mp->m_logname ? log->l_mp->m_logname
5735 : "internal");
5736
5737 error = xlog_do_recover(log, head_blk, tail_blk);
5738 log->l_flags |= XLOG_RECOVERY_NEEDED;
5739 }
5740 return error;
5741}
5742
5743/*
5744 * In the first part of recovery we replay inodes and buffers and build
5745 * up the list of extent free items which need to be processed. Here
5746 * we process the extent free items and clean up the on disk unlinked
5747 * inode lists. This is separated from the first part of recovery so
5748 * that the root and real-time bitmap inodes can be read in from disk in
5749 * between the two stages. This is necessary so that we can free space
5750 * in the real-time portion of the file system.
5751 */
5752int
5753xlog_recover_finish(
5754 struct xlog *log)
5755{
5756 /*
5757 * Now we're ready to do the transactions needed for the
5758 * rest of recovery. Start with completing all the extent
5759 * free intent records and then process the unlinked inode
5760 * lists. At this point, we essentially run in normal mode
5761 * except that we're still performing recovery actions
5762 * rather than accepting new requests.
5763 */
5764 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5765 int error;
5766 error = xlog_recover_process_intents(log);
5767 if (error) {
5768 xfs_alert(log->l_mp, "Failed to recover intents");
5769 return error;
5770 }
5771
5772 /*
5773 * Sync the log to get all the intents out of the AIL.
5774 * This isn't absolutely necessary, but it helps in
5775 * case the unlink transactions would have problems
5776 * pushing the intents out of the way.
5777 */
5778 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5779
5780 xlog_recover_process_iunlinks(log);
5781
5782 xlog_recover_check_summary(log);
5783
5784 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5785 log->l_mp->m_logname ? log->l_mp->m_logname
5786 : "internal");
5787 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5788 } else {
5789 xfs_info(log->l_mp, "Ending clean mount");
5790 }
5791 return 0;
5792}
5793
5794void
5795xlog_recover_cancel(
5796 struct xlog *log)
5797{
5798 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5799 xlog_recover_cancel_intents(log);
5800}
5801
5802#if defined(DEBUG)
5803/*
5804 * Read all of the agf and agi counters and check that they
5805 * are consistent with the superblock counters.
5806 */
5807STATIC void
5808xlog_recover_check_summary(
5809 struct xlog *log)
5810{
5811 xfs_mount_t *mp;
5812 xfs_agf_t *agfp;
5813 xfs_buf_t *agfbp;
5814 xfs_buf_t *agibp;
5815 xfs_agnumber_t agno;
5816 uint64_t freeblks;
5817 uint64_t itotal;
5818 uint64_t ifree;
5819 int error;
5820
5821 mp = log->l_mp;
5822
5823 freeblks = 0LL;
5824 itotal = 0LL;
5825 ifree = 0LL;
5826 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5827 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5828 if (error) {
5829 xfs_alert(mp, "%s agf read failed agno %d error %d",
5830 __func__, agno, error);
5831 } else {
5832 agfp = XFS_BUF_TO_AGF(agfbp);
5833 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5834 be32_to_cpu(agfp->agf_flcount);
5835 xfs_buf_relse(agfbp);
5836 }
5837
5838 error = xfs_read_agi(mp, NULL, agno, &agibp);
5839 if (error) {
5840 xfs_alert(mp, "%s agi read failed agno %d error %d",
5841 __func__, agno, error);
5842 } else {
5843 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5844
5845 itotal += be32_to_cpu(agi->agi_count);
5846 ifree += be32_to_cpu(agi->agi_freecount);
5847 xfs_buf_relse(agibp);
5848 }
5849 }
5850}
5851#endif /* DEBUG */