Loading...
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_mount.h"
25#include "xfs_error.h"
26#include "xfs_trans.h"
27#include "xfs_trans_priv.h"
28#include "xfs_log.h"
29#include "xfs_log_priv.h"
30#include "xfs_log_recover.h"
31#include "xfs_inode.h"
32#include "xfs_trace.h"
33#include "xfs_fsops.h"
34#include "xfs_cksum.h"
35#include "xfs_sysfs.h"
36#include "xfs_sb.h"
37
38kmem_zone_t *xfs_log_ticket_zone;
39
40/* Local miscellaneous function prototypes */
41STATIC int
42xlog_commit_record(
43 struct xlog *log,
44 struct xlog_ticket *ticket,
45 struct xlog_in_core **iclog,
46 xfs_lsn_t *commitlsnp);
47
48STATIC struct xlog *
49xlog_alloc_log(
50 struct xfs_mount *mp,
51 struct xfs_buftarg *log_target,
52 xfs_daddr_t blk_offset,
53 int num_bblks);
54STATIC int
55xlog_space_left(
56 struct xlog *log,
57 atomic64_t *head);
58STATIC int
59xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
62STATIC void
63xlog_dealloc_log(
64 struct xlog *log);
65
66/* local state machine functions */
67STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68STATIC void
69xlog_state_do_callback(
70 struct xlog *log,
71 int aborted,
72 struct xlog_in_core *iclog);
73STATIC int
74xlog_state_get_iclog_space(
75 struct xlog *log,
76 int len,
77 struct xlog_in_core **iclog,
78 struct xlog_ticket *ticket,
79 int *continued_write,
80 int *logoffsetp);
81STATIC int
82xlog_state_release_iclog(
83 struct xlog *log,
84 struct xlog_in_core *iclog);
85STATIC void
86xlog_state_switch_iclogs(
87 struct xlog *log,
88 struct xlog_in_core *iclog,
89 int eventual_size);
90STATIC void
91xlog_state_want_sync(
92 struct xlog *log,
93 struct xlog_in_core *iclog);
94
95STATIC void
96xlog_grant_push_ail(
97 struct xlog *log,
98 int need_bytes);
99STATIC void
100xlog_regrant_reserve_log_space(
101 struct xlog *log,
102 struct xlog_ticket *ticket);
103STATIC void
104xlog_ungrant_log_space(
105 struct xlog *log,
106 struct xlog_ticket *ticket);
107
108#if defined(DEBUG)
109STATIC void
110xlog_verify_dest_ptr(
111 struct xlog *log,
112 void *ptr);
113STATIC void
114xlog_verify_grant_tail(
115 struct xlog *log);
116STATIC void
117xlog_verify_iclog(
118 struct xlog *log,
119 struct xlog_in_core *iclog,
120 int count,
121 bool syncing);
122STATIC void
123xlog_verify_tail_lsn(
124 struct xlog *log,
125 struct xlog_in_core *iclog,
126 xfs_lsn_t tail_lsn);
127#else
128#define xlog_verify_dest_ptr(a,b)
129#define xlog_verify_grant_tail(a)
130#define xlog_verify_iclog(a,b,c,d)
131#define xlog_verify_tail_lsn(a,b,c)
132#endif
133
134STATIC int
135xlog_iclogs_empty(
136 struct xlog *log);
137
138static void
139xlog_grant_sub_space(
140 struct xlog *log,
141 atomic64_t *head,
142 int bytes)
143{
144 int64_t head_val = atomic64_read(head);
145 int64_t new, old;
146
147 do {
148 int cycle, space;
149
150 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152 space -= bytes;
153 if (space < 0) {
154 space += log->l_logsize;
155 cycle--;
156 }
157
158 old = head_val;
159 new = xlog_assign_grant_head_val(cycle, space);
160 head_val = atomic64_cmpxchg(head, old, new);
161 } while (head_val != old);
162}
163
164static void
165xlog_grant_add_space(
166 struct xlog *log,
167 atomic64_t *head,
168 int bytes)
169{
170 int64_t head_val = atomic64_read(head);
171 int64_t new, old;
172
173 do {
174 int tmp;
175 int cycle, space;
176
177 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179 tmp = log->l_logsize - space;
180 if (tmp > bytes)
181 space += bytes;
182 else {
183 space = bytes - tmp;
184 cycle++;
185 }
186
187 old = head_val;
188 new = xlog_assign_grant_head_val(cycle, space);
189 head_val = atomic64_cmpxchg(head, old, new);
190 } while (head_val != old);
191}
192
193STATIC void
194xlog_grant_head_init(
195 struct xlog_grant_head *head)
196{
197 xlog_assign_grant_head(&head->grant, 1, 0);
198 INIT_LIST_HEAD(&head->waiters);
199 spin_lock_init(&head->lock);
200}
201
202STATIC void
203xlog_grant_head_wake_all(
204 struct xlog_grant_head *head)
205{
206 struct xlog_ticket *tic;
207
208 spin_lock(&head->lock);
209 list_for_each_entry(tic, &head->waiters, t_queue)
210 wake_up_process(tic->t_task);
211 spin_unlock(&head->lock);
212}
213
214static inline int
215xlog_ticket_reservation(
216 struct xlog *log,
217 struct xlog_grant_head *head,
218 struct xlog_ticket *tic)
219{
220 if (head == &log->l_write_head) {
221 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222 return tic->t_unit_res;
223 } else {
224 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225 return tic->t_unit_res * tic->t_cnt;
226 else
227 return tic->t_unit_res;
228 }
229}
230
231STATIC bool
232xlog_grant_head_wake(
233 struct xlog *log,
234 struct xlog_grant_head *head,
235 int *free_bytes)
236{
237 struct xlog_ticket *tic;
238 int need_bytes;
239
240 list_for_each_entry(tic, &head->waiters, t_queue) {
241 need_bytes = xlog_ticket_reservation(log, head, tic);
242 if (*free_bytes < need_bytes)
243 return false;
244
245 *free_bytes -= need_bytes;
246 trace_xfs_log_grant_wake_up(log, tic);
247 wake_up_process(tic->t_task);
248 }
249
250 return true;
251}
252
253STATIC int
254xlog_grant_head_wait(
255 struct xlog *log,
256 struct xlog_grant_head *head,
257 struct xlog_ticket *tic,
258 int need_bytes) __releases(&head->lock)
259 __acquires(&head->lock)
260{
261 list_add_tail(&tic->t_queue, &head->waiters);
262
263 do {
264 if (XLOG_FORCED_SHUTDOWN(log))
265 goto shutdown;
266 xlog_grant_push_ail(log, need_bytes);
267
268 __set_current_state(TASK_UNINTERRUPTIBLE);
269 spin_unlock(&head->lock);
270
271 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273 trace_xfs_log_grant_sleep(log, tic);
274 schedule();
275 trace_xfs_log_grant_wake(log, tic);
276
277 spin_lock(&head->lock);
278 if (XLOG_FORCED_SHUTDOWN(log))
279 goto shutdown;
280 } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282 list_del_init(&tic->t_queue);
283 return 0;
284shutdown:
285 list_del_init(&tic->t_queue);
286 return -EIO;
287}
288
289/*
290 * Atomically get the log space required for a log ticket.
291 *
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
294 *
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
298 * every pass.
299 *
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
305 */
306STATIC int
307xlog_grant_head_check(
308 struct xlog *log,
309 struct xlog_grant_head *head,
310 struct xlog_ticket *tic,
311 int *need_bytes)
312{
313 int free_bytes;
314 int error = 0;
315
316 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318 /*
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
323 */
324 *need_bytes = xlog_ticket_reservation(log, head, tic);
325 free_bytes = xlog_space_left(log, &head->grant);
326 if (!list_empty_careful(&head->waiters)) {
327 spin_lock(&head->lock);
328 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329 free_bytes < *need_bytes) {
330 error = xlog_grant_head_wait(log, head, tic,
331 *need_bytes);
332 }
333 spin_unlock(&head->lock);
334 } else if (free_bytes < *need_bytes) {
335 spin_lock(&head->lock);
336 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337 spin_unlock(&head->lock);
338 }
339
340 return error;
341}
342
343static void
344xlog_tic_reset_res(xlog_ticket_t *tic)
345{
346 tic->t_res_num = 0;
347 tic->t_res_arr_sum = 0;
348 tic->t_res_num_ophdrs = 0;
349}
350
351static void
352xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353{
354 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355 /* add to overflow and start again */
356 tic->t_res_o_flow += tic->t_res_arr_sum;
357 tic->t_res_num = 0;
358 tic->t_res_arr_sum = 0;
359 }
360
361 tic->t_res_arr[tic->t_res_num].r_len = len;
362 tic->t_res_arr[tic->t_res_num].r_type = type;
363 tic->t_res_arr_sum += len;
364 tic->t_res_num++;
365}
366
367/*
368 * Replenish the byte reservation required by moving the grant write head.
369 */
370int
371xfs_log_regrant(
372 struct xfs_mount *mp,
373 struct xlog_ticket *tic)
374{
375 struct xlog *log = mp->m_log;
376 int need_bytes;
377 int error = 0;
378
379 if (XLOG_FORCED_SHUTDOWN(log))
380 return -EIO;
381
382 XFS_STATS_INC(mp, xs_try_logspace);
383
384 /*
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
389 */
390 tic->t_tid++;
391
392 xlog_grant_push_ail(log, tic->t_unit_res);
393
394 tic->t_curr_res = tic->t_unit_res;
395 xlog_tic_reset_res(tic);
396
397 if (tic->t_cnt > 0)
398 return 0;
399
400 trace_xfs_log_regrant(log, tic);
401
402 error = xlog_grant_head_check(log, &log->l_write_head, tic,
403 &need_bytes);
404 if (error)
405 goto out_error;
406
407 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408 trace_xfs_log_regrant_exit(log, tic);
409 xlog_verify_grant_tail(log);
410 return 0;
411
412out_error:
413 /*
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
417 */
418 tic->t_curr_res = 0;
419 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420 return error;
421}
422
423/*
424 * Reserve log space and return a ticket corresponding the reservation.
425 *
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
430 */
431int
432xfs_log_reserve(
433 struct xfs_mount *mp,
434 int unit_bytes,
435 int cnt,
436 struct xlog_ticket **ticp,
437 __uint8_t client,
438 bool permanent)
439{
440 struct xlog *log = mp->m_log;
441 struct xlog_ticket *tic;
442 int need_bytes;
443 int error = 0;
444
445 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447 if (XLOG_FORCED_SHUTDOWN(log))
448 return -EIO;
449
450 XFS_STATS_INC(mp, xs_try_logspace);
451
452 ASSERT(*ticp == NULL);
453 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454 KM_SLEEP | KM_MAYFAIL);
455 if (!tic)
456 return -ENOMEM;
457
458 *ticp = tic;
459
460 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461 : tic->t_unit_res);
462
463 trace_xfs_log_reserve(log, tic);
464
465 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466 &need_bytes);
467 if (error)
468 goto out_error;
469
470 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472 trace_xfs_log_reserve_exit(log, tic);
473 xlog_verify_grant_tail(log);
474 return 0;
475
476out_error:
477 /*
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
481 */
482 tic->t_curr_res = 0;
483 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484 return error;
485}
486
487
488/*
489 * NOTES:
490 *
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
493 */
494
495/*
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
508 */
509xfs_lsn_t
510xfs_log_done(
511 struct xfs_mount *mp,
512 struct xlog_ticket *ticket,
513 struct xlog_in_core **iclog,
514 bool regrant)
515{
516 struct xlog *log = mp->m_log;
517 xfs_lsn_t lsn = 0;
518
519 if (XLOG_FORCED_SHUTDOWN(log) ||
520 /*
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
523 */
524 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526 lsn = (xfs_lsn_t) -1;
527 regrant = false;
528 }
529
530
531 if (!regrant) {
532 trace_xfs_log_done_nonperm(log, ticket);
533
534 /*
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
537 */
538 xlog_ungrant_log_space(log, ticket);
539 } else {
540 trace_xfs_log_done_perm(log, ticket);
541
542 xlog_regrant_reserve_log_space(log, ticket);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
546 */
547 ticket->t_flags |= XLOG_TIC_INITED;
548 }
549
550 xfs_log_ticket_put(ticket);
551 return lsn;
552}
553
554/*
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
559 */
560int
561xfs_log_notify(
562 struct xfs_mount *mp,
563 struct xlog_in_core *iclog,
564 xfs_log_callback_t *cb)
565{
566 int abortflg;
567
568 spin_lock(&iclog->ic_callback_lock);
569 abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570 if (!abortflg) {
571 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572 (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573 cb->cb_next = NULL;
574 *(iclog->ic_callback_tail) = cb;
575 iclog->ic_callback_tail = &(cb->cb_next);
576 }
577 spin_unlock(&iclog->ic_callback_lock);
578 return abortflg;
579}
580
581int
582xfs_log_release_iclog(
583 struct xfs_mount *mp,
584 struct xlog_in_core *iclog)
585{
586 if (xlog_state_release_iclog(mp->m_log, iclog)) {
587 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588 return -EIO;
589 }
590
591 return 0;
592}
593
594/*
595 * Mount a log filesystem
596 *
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
601 *
602 * Return error or zero.
603 */
604int
605xfs_log_mount(
606 xfs_mount_t *mp,
607 xfs_buftarg_t *log_target,
608 xfs_daddr_t blk_offset,
609 int num_bblks)
610{
611 int error = 0;
612 int min_logfsbs;
613
614 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615 xfs_notice(mp, "Mounting V%d Filesystem",
616 XFS_SB_VERSION_NUM(&mp->m_sb));
617 } else {
618 xfs_notice(mp,
619"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 XFS_SB_VERSION_NUM(&mp->m_sb));
621 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622 }
623
624 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625 if (IS_ERR(mp->m_log)) {
626 error = PTR_ERR(mp->m_log);
627 goto out;
628 }
629
630 /*
631 * Validate the given log space and drop a critical message via syslog
632 * if the log size is too small that would lead to some unexpected
633 * situations in transaction log space reservation stage.
634 *
635 * Note: we can't just reject the mount if the validation fails. This
636 * would mean that people would have to downgrade their kernel just to
637 * remedy the situation as there is no way to grow the log (short of
638 * black magic surgery with xfs_db).
639 *
640 * We can, however, reject mounts for CRC format filesystems, as the
641 * mkfs binary being used to make the filesystem should never create a
642 * filesystem with a log that is too small.
643 */
644 min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646 if (mp->m_sb.sb_logblocks < min_logfsbs) {
647 xfs_warn(mp,
648 "Log size %d blocks too small, minimum size is %d blocks",
649 mp->m_sb.sb_logblocks, min_logfsbs);
650 error = -EINVAL;
651 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652 xfs_warn(mp,
653 "Log size %d blocks too large, maximum size is %lld blocks",
654 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655 error = -EINVAL;
656 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657 xfs_warn(mp,
658 "log size %lld bytes too large, maximum size is %lld bytes",
659 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660 XFS_MAX_LOG_BYTES);
661 error = -EINVAL;
662 }
663 if (error) {
664 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666 ASSERT(0);
667 goto out_free_log;
668 }
669 xfs_crit(mp, "Log size out of supported range.");
670 xfs_crit(mp,
671"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672 }
673
674 /*
675 * Initialize the AIL now we have a log.
676 */
677 error = xfs_trans_ail_init(mp);
678 if (error) {
679 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680 goto out_free_log;
681 }
682 mp->m_log->l_ailp = mp->m_ail;
683
684 /*
685 * skip log recovery on a norecovery mount. pretend it all
686 * just worked.
687 */
688 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691 if (readonly)
692 mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694 error = xlog_recover(mp->m_log);
695
696 if (readonly)
697 mp->m_flags |= XFS_MOUNT_RDONLY;
698 if (error) {
699 xfs_warn(mp, "log mount/recovery failed: error %d",
700 error);
701 xlog_recover_cancel(mp->m_log);
702 goto out_destroy_ail;
703 }
704 }
705
706 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707 "log");
708 if (error)
709 goto out_destroy_ail;
710
711 /* Normal transactions can now occur */
712 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714 /*
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
718 */
719 xlog_cil_init_post_recovery(mp->m_log);
720
721 return 0;
722
723out_destroy_ail:
724 xfs_trans_ail_destroy(mp);
725out_free_log:
726 xlog_dealloc_log(mp->m_log);
727out:
728 return error;
729}
730
731/*
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735 * here.
736 *
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
739 * it.
740 */
741int
742xfs_log_mount_finish(
743 struct xfs_mount *mp)
744{
745 int error = 0;
746
747 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
748 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
749 return 0;
750 }
751
752 error = xlog_recover_finish(mp->m_log);
753 if (!error)
754 xfs_log_work_queue(mp);
755
756 return error;
757}
758
759/*
760 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
761 * the log.
762 */
763int
764xfs_log_mount_cancel(
765 struct xfs_mount *mp)
766{
767 int error;
768
769 error = xlog_recover_cancel(mp->m_log);
770 xfs_log_unmount(mp);
771
772 return error;
773}
774
775/*
776 * Final log writes as part of unmount.
777 *
778 * Mark the filesystem clean as unmount happens. Note that during relocation
779 * this routine needs to be executed as part of source-bag while the
780 * deallocation must not be done until source-end.
781 */
782
783/*
784 * Unmount record used to have a string "Unmount filesystem--" in the
785 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
786 * We just write the magic number now since that particular field isn't
787 * currently architecture converted and "Unmount" is a bit foo.
788 * As far as I know, there weren't any dependencies on the old behaviour.
789 */
790
791static int
792xfs_log_unmount_write(xfs_mount_t *mp)
793{
794 struct xlog *log = mp->m_log;
795 xlog_in_core_t *iclog;
796#ifdef DEBUG
797 xlog_in_core_t *first_iclog;
798#endif
799 xlog_ticket_t *tic = NULL;
800 xfs_lsn_t lsn;
801 int error;
802
803 /*
804 * Don't write out unmount record on read-only mounts.
805 * Or, if we are doing a forced umount (typically because of IO errors).
806 */
807 if (mp->m_flags & XFS_MOUNT_RDONLY)
808 return 0;
809
810 error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
811 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
812
813#ifdef DEBUG
814 first_iclog = iclog = log->l_iclog;
815 do {
816 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
817 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
818 ASSERT(iclog->ic_offset == 0);
819 }
820 iclog = iclog->ic_next;
821 } while (iclog != first_iclog);
822#endif
823 if (! (XLOG_FORCED_SHUTDOWN(log))) {
824 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
825 if (!error) {
826 /* the data section must be 32 bit size aligned */
827 struct {
828 __uint16_t magic;
829 __uint16_t pad1;
830 __uint32_t pad2; /* may as well make it 64 bits */
831 } magic = {
832 .magic = XLOG_UNMOUNT_TYPE,
833 };
834 struct xfs_log_iovec reg = {
835 .i_addr = &magic,
836 .i_len = sizeof(magic),
837 .i_type = XLOG_REG_TYPE_UNMOUNT,
838 };
839 struct xfs_log_vec vec = {
840 .lv_niovecs = 1,
841 .lv_iovecp = ®,
842 };
843
844 /* remove inited flag, and account for space used */
845 tic->t_flags = 0;
846 tic->t_curr_res -= sizeof(magic);
847 error = xlog_write(log, &vec, tic, &lsn,
848 NULL, XLOG_UNMOUNT_TRANS);
849 /*
850 * At this point, we're umounting anyway,
851 * so there's no point in transitioning log state
852 * to IOERROR. Just continue...
853 */
854 }
855
856 if (error)
857 xfs_alert(mp, "%s: unmount record failed", __func__);
858
859
860 spin_lock(&log->l_icloglock);
861 iclog = log->l_iclog;
862 atomic_inc(&iclog->ic_refcnt);
863 xlog_state_want_sync(log, iclog);
864 spin_unlock(&log->l_icloglock);
865 error = xlog_state_release_iclog(log, iclog);
866
867 spin_lock(&log->l_icloglock);
868 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
869 iclog->ic_state == XLOG_STATE_DIRTY)) {
870 if (!XLOG_FORCED_SHUTDOWN(log)) {
871 xlog_wait(&iclog->ic_force_wait,
872 &log->l_icloglock);
873 } else {
874 spin_unlock(&log->l_icloglock);
875 }
876 } else {
877 spin_unlock(&log->l_icloglock);
878 }
879 if (tic) {
880 trace_xfs_log_umount_write(log, tic);
881 xlog_ungrant_log_space(log, tic);
882 xfs_log_ticket_put(tic);
883 }
884 } else {
885 /*
886 * We're already in forced_shutdown mode, couldn't
887 * even attempt to write out the unmount transaction.
888 *
889 * Go through the motions of sync'ing and releasing
890 * the iclog, even though no I/O will actually happen,
891 * we need to wait for other log I/Os that may already
892 * be in progress. Do this as a separate section of
893 * code so we'll know if we ever get stuck here that
894 * we're in this odd situation of trying to unmount
895 * a file system that went into forced_shutdown as
896 * the result of an unmount..
897 */
898 spin_lock(&log->l_icloglock);
899 iclog = log->l_iclog;
900 atomic_inc(&iclog->ic_refcnt);
901
902 xlog_state_want_sync(log, iclog);
903 spin_unlock(&log->l_icloglock);
904 error = xlog_state_release_iclog(log, iclog);
905
906 spin_lock(&log->l_icloglock);
907
908 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
909 || iclog->ic_state == XLOG_STATE_DIRTY
910 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
911
912 xlog_wait(&iclog->ic_force_wait,
913 &log->l_icloglock);
914 } else {
915 spin_unlock(&log->l_icloglock);
916 }
917 }
918
919 return error;
920} /* xfs_log_unmount_write */
921
922/*
923 * Empty the log for unmount/freeze.
924 *
925 * To do this, we first need to shut down the background log work so it is not
926 * trying to cover the log as we clean up. We then need to unpin all objects in
927 * the log so we can then flush them out. Once they have completed their IO and
928 * run the callbacks removing themselves from the AIL, we can write the unmount
929 * record.
930 */
931void
932xfs_log_quiesce(
933 struct xfs_mount *mp)
934{
935 cancel_delayed_work_sync(&mp->m_log->l_work);
936 xfs_log_force(mp, XFS_LOG_SYNC);
937
938 /*
939 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
940 * will push it, xfs_wait_buftarg() will not wait for it. Further,
941 * xfs_buf_iowait() cannot be used because it was pushed with the
942 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
943 * the IO to complete.
944 */
945 xfs_ail_push_all_sync(mp->m_ail);
946 xfs_wait_buftarg(mp->m_ddev_targp);
947 xfs_buf_lock(mp->m_sb_bp);
948 xfs_buf_unlock(mp->m_sb_bp);
949
950 xfs_log_unmount_write(mp);
951}
952
953/*
954 * Shut down and release the AIL and Log.
955 *
956 * During unmount, we need to ensure we flush all the dirty metadata objects
957 * from the AIL so that the log is empty before we write the unmount record to
958 * the log. Once this is done, we can tear down the AIL and the log.
959 */
960void
961xfs_log_unmount(
962 struct xfs_mount *mp)
963{
964 xfs_log_quiesce(mp);
965
966 xfs_trans_ail_destroy(mp);
967
968 xfs_sysfs_del(&mp->m_log->l_kobj);
969
970 xlog_dealloc_log(mp->m_log);
971}
972
973void
974xfs_log_item_init(
975 struct xfs_mount *mp,
976 struct xfs_log_item *item,
977 int type,
978 const struct xfs_item_ops *ops)
979{
980 item->li_mountp = mp;
981 item->li_ailp = mp->m_ail;
982 item->li_type = type;
983 item->li_ops = ops;
984 item->li_lv = NULL;
985
986 INIT_LIST_HEAD(&item->li_ail);
987 INIT_LIST_HEAD(&item->li_cil);
988}
989
990/*
991 * Wake up processes waiting for log space after we have moved the log tail.
992 */
993void
994xfs_log_space_wake(
995 struct xfs_mount *mp)
996{
997 struct xlog *log = mp->m_log;
998 int free_bytes;
999
1000 if (XLOG_FORCED_SHUTDOWN(log))
1001 return;
1002
1003 if (!list_empty_careful(&log->l_write_head.waiters)) {
1004 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1005
1006 spin_lock(&log->l_write_head.lock);
1007 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1008 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1009 spin_unlock(&log->l_write_head.lock);
1010 }
1011
1012 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1013 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1014
1015 spin_lock(&log->l_reserve_head.lock);
1016 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1017 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1018 spin_unlock(&log->l_reserve_head.lock);
1019 }
1020}
1021
1022/*
1023 * Determine if we have a transaction that has gone to disk that needs to be
1024 * covered. To begin the transition to the idle state firstly the log needs to
1025 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1026 * we start attempting to cover the log.
1027 *
1028 * Only if we are then in a state where covering is needed, the caller is
1029 * informed that dummy transactions are required to move the log into the idle
1030 * state.
1031 *
1032 * If there are any items in the AIl or CIL, then we do not want to attempt to
1033 * cover the log as we may be in a situation where there isn't log space
1034 * available to run a dummy transaction and this can lead to deadlocks when the
1035 * tail of the log is pinned by an item that is modified in the CIL. Hence
1036 * there's no point in running a dummy transaction at this point because we
1037 * can't start trying to idle the log until both the CIL and AIL are empty.
1038 */
1039static int
1040xfs_log_need_covered(xfs_mount_t *mp)
1041{
1042 struct xlog *log = mp->m_log;
1043 int needed = 0;
1044
1045 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1046 return 0;
1047
1048 if (!xlog_cil_empty(log))
1049 return 0;
1050
1051 spin_lock(&log->l_icloglock);
1052 switch (log->l_covered_state) {
1053 case XLOG_STATE_COVER_DONE:
1054 case XLOG_STATE_COVER_DONE2:
1055 case XLOG_STATE_COVER_IDLE:
1056 break;
1057 case XLOG_STATE_COVER_NEED:
1058 case XLOG_STATE_COVER_NEED2:
1059 if (xfs_ail_min_lsn(log->l_ailp))
1060 break;
1061 if (!xlog_iclogs_empty(log))
1062 break;
1063
1064 needed = 1;
1065 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1066 log->l_covered_state = XLOG_STATE_COVER_DONE;
1067 else
1068 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1069 break;
1070 default:
1071 needed = 1;
1072 break;
1073 }
1074 spin_unlock(&log->l_icloglock);
1075 return needed;
1076}
1077
1078/*
1079 * We may be holding the log iclog lock upon entering this routine.
1080 */
1081xfs_lsn_t
1082xlog_assign_tail_lsn_locked(
1083 struct xfs_mount *mp)
1084{
1085 struct xlog *log = mp->m_log;
1086 struct xfs_log_item *lip;
1087 xfs_lsn_t tail_lsn;
1088
1089 assert_spin_locked(&mp->m_ail->xa_lock);
1090
1091 /*
1092 * To make sure we always have a valid LSN for the log tail we keep
1093 * track of the last LSN which was committed in log->l_last_sync_lsn,
1094 * and use that when the AIL was empty.
1095 */
1096 lip = xfs_ail_min(mp->m_ail);
1097 if (lip)
1098 tail_lsn = lip->li_lsn;
1099 else
1100 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1101 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1102 atomic64_set(&log->l_tail_lsn, tail_lsn);
1103 return tail_lsn;
1104}
1105
1106xfs_lsn_t
1107xlog_assign_tail_lsn(
1108 struct xfs_mount *mp)
1109{
1110 xfs_lsn_t tail_lsn;
1111
1112 spin_lock(&mp->m_ail->xa_lock);
1113 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1114 spin_unlock(&mp->m_ail->xa_lock);
1115
1116 return tail_lsn;
1117}
1118
1119/*
1120 * Return the space in the log between the tail and the head. The head
1121 * is passed in the cycle/bytes formal parms. In the special case where
1122 * the reserve head has wrapped passed the tail, this calculation is no
1123 * longer valid. In this case, just return 0 which means there is no space
1124 * in the log. This works for all places where this function is called
1125 * with the reserve head. Of course, if the write head were to ever
1126 * wrap the tail, we should blow up. Rather than catch this case here,
1127 * we depend on other ASSERTions in other parts of the code. XXXmiken
1128 *
1129 * This code also handles the case where the reservation head is behind
1130 * the tail. The details of this case are described below, but the end
1131 * result is that we return the size of the log as the amount of space left.
1132 */
1133STATIC int
1134xlog_space_left(
1135 struct xlog *log,
1136 atomic64_t *head)
1137{
1138 int free_bytes;
1139 int tail_bytes;
1140 int tail_cycle;
1141 int head_cycle;
1142 int head_bytes;
1143
1144 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1145 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1146 tail_bytes = BBTOB(tail_bytes);
1147 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1148 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1149 else if (tail_cycle + 1 < head_cycle)
1150 return 0;
1151 else if (tail_cycle < head_cycle) {
1152 ASSERT(tail_cycle == (head_cycle - 1));
1153 free_bytes = tail_bytes - head_bytes;
1154 } else {
1155 /*
1156 * The reservation head is behind the tail.
1157 * In this case we just want to return the size of the
1158 * log as the amount of space left.
1159 */
1160 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1161 xfs_alert(log->l_mp,
1162 " tail_cycle = %d, tail_bytes = %d",
1163 tail_cycle, tail_bytes);
1164 xfs_alert(log->l_mp,
1165 " GH cycle = %d, GH bytes = %d",
1166 head_cycle, head_bytes);
1167 ASSERT(0);
1168 free_bytes = log->l_logsize;
1169 }
1170 return free_bytes;
1171}
1172
1173
1174/*
1175 * Log function which is called when an io completes.
1176 *
1177 * The log manager needs its own routine, in order to control what
1178 * happens with the buffer after the write completes.
1179 */
1180static void
1181xlog_iodone(xfs_buf_t *bp)
1182{
1183 struct xlog_in_core *iclog = bp->b_fspriv;
1184 struct xlog *l = iclog->ic_log;
1185 int aborted = 0;
1186
1187 /*
1188 * Race to shutdown the filesystem if we see an error or the iclog is in
1189 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1190 * CRC errors into log recovery.
1191 */
1192 if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1193 XFS_RANDOM_IODONE_IOERR) ||
1194 iclog->ic_state & XLOG_STATE_IOABORT) {
1195 if (iclog->ic_state & XLOG_STATE_IOABORT)
1196 iclog->ic_state &= ~XLOG_STATE_IOABORT;
1197
1198 xfs_buf_ioerror_alert(bp, __func__);
1199 xfs_buf_stale(bp);
1200 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1201 /*
1202 * This flag will be propagated to the trans-committed
1203 * callback routines to let them know that the log-commit
1204 * didn't succeed.
1205 */
1206 aborted = XFS_LI_ABORTED;
1207 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1208 aborted = XFS_LI_ABORTED;
1209 }
1210
1211 /* log I/O is always issued ASYNC */
1212 ASSERT(bp->b_flags & XBF_ASYNC);
1213 xlog_state_done_syncing(iclog, aborted);
1214
1215 /*
1216 * drop the buffer lock now that we are done. Nothing references
1217 * the buffer after this, so an unmount waiting on this lock can now
1218 * tear it down safely. As such, it is unsafe to reference the buffer
1219 * (bp) after the unlock as we could race with it being freed.
1220 */
1221 xfs_buf_unlock(bp);
1222}
1223
1224/*
1225 * Return size of each in-core log record buffer.
1226 *
1227 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1228 *
1229 * If the filesystem blocksize is too large, we may need to choose a
1230 * larger size since the directory code currently logs entire blocks.
1231 */
1232
1233STATIC void
1234xlog_get_iclog_buffer_size(
1235 struct xfs_mount *mp,
1236 struct xlog *log)
1237{
1238 int size;
1239 int xhdrs;
1240
1241 if (mp->m_logbufs <= 0)
1242 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1243 else
1244 log->l_iclog_bufs = mp->m_logbufs;
1245
1246 /*
1247 * Buffer size passed in from mount system call.
1248 */
1249 if (mp->m_logbsize > 0) {
1250 size = log->l_iclog_size = mp->m_logbsize;
1251 log->l_iclog_size_log = 0;
1252 while (size != 1) {
1253 log->l_iclog_size_log++;
1254 size >>= 1;
1255 }
1256
1257 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1258 /* # headers = size / 32k
1259 * one header holds cycles from 32k of data
1260 */
1261
1262 xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1263 if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1264 xhdrs++;
1265 log->l_iclog_hsize = xhdrs << BBSHIFT;
1266 log->l_iclog_heads = xhdrs;
1267 } else {
1268 ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1269 log->l_iclog_hsize = BBSIZE;
1270 log->l_iclog_heads = 1;
1271 }
1272 goto done;
1273 }
1274
1275 /* All machines use 32kB buffers by default. */
1276 log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1277 log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1278
1279 /* the default log size is 16k or 32k which is one header sector */
1280 log->l_iclog_hsize = BBSIZE;
1281 log->l_iclog_heads = 1;
1282
1283done:
1284 /* are we being asked to make the sizes selected above visible? */
1285 if (mp->m_logbufs == 0)
1286 mp->m_logbufs = log->l_iclog_bufs;
1287 if (mp->m_logbsize == 0)
1288 mp->m_logbsize = log->l_iclog_size;
1289} /* xlog_get_iclog_buffer_size */
1290
1291
1292void
1293xfs_log_work_queue(
1294 struct xfs_mount *mp)
1295{
1296 queue_delayed_work(mp->m_log_workqueue, &mp->m_log->l_work,
1297 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1298}
1299
1300/*
1301 * Every sync period we need to unpin all items in the AIL and push them to
1302 * disk. If there is nothing dirty, then we might need to cover the log to
1303 * indicate that the filesystem is idle.
1304 */
1305static void
1306xfs_log_worker(
1307 struct work_struct *work)
1308{
1309 struct xlog *log = container_of(to_delayed_work(work),
1310 struct xlog, l_work);
1311 struct xfs_mount *mp = log->l_mp;
1312
1313 /* dgc: errors ignored - not fatal and nowhere to report them */
1314 if (xfs_log_need_covered(mp)) {
1315 /*
1316 * Dump a transaction into the log that contains no real change.
1317 * This is needed to stamp the current tail LSN into the log
1318 * during the covering operation.
1319 *
1320 * We cannot use an inode here for this - that will push dirty
1321 * state back up into the VFS and then periodic inode flushing
1322 * will prevent log covering from making progress. Hence we
1323 * synchronously log the superblock instead to ensure the
1324 * superblock is immediately unpinned and can be written back.
1325 */
1326 xfs_sync_sb(mp, true);
1327 } else
1328 xfs_log_force(mp, 0);
1329
1330 /* start pushing all the metadata that is currently dirty */
1331 xfs_ail_push_all(mp->m_ail);
1332
1333 /* queue us up again */
1334 xfs_log_work_queue(mp);
1335}
1336
1337/*
1338 * This routine initializes some of the log structure for a given mount point.
1339 * Its primary purpose is to fill in enough, so recovery can occur. However,
1340 * some other stuff may be filled in too.
1341 */
1342STATIC struct xlog *
1343xlog_alloc_log(
1344 struct xfs_mount *mp,
1345 struct xfs_buftarg *log_target,
1346 xfs_daddr_t blk_offset,
1347 int num_bblks)
1348{
1349 struct xlog *log;
1350 xlog_rec_header_t *head;
1351 xlog_in_core_t **iclogp;
1352 xlog_in_core_t *iclog, *prev_iclog=NULL;
1353 xfs_buf_t *bp;
1354 int i;
1355 int error = -ENOMEM;
1356 uint log2_size = 0;
1357
1358 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1359 if (!log) {
1360 xfs_warn(mp, "Log allocation failed: No memory!");
1361 goto out;
1362 }
1363
1364 log->l_mp = mp;
1365 log->l_targ = log_target;
1366 log->l_logsize = BBTOB(num_bblks);
1367 log->l_logBBstart = blk_offset;
1368 log->l_logBBsize = num_bblks;
1369 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1370 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1371 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1372
1373 log->l_prev_block = -1;
1374 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1375 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1376 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1377 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1378
1379 xlog_grant_head_init(&log->l_reserve_head);
1380 xlog_grant_head_init(&log->l_write_head);
1381
1382 error = -EFSCORRUPTED;
1383 if (xfs_sb_version_hassector(&mp->m_sb)) {
1384 log2_size = mp->m_sb.sb_logsectlog;
1385 if (log2_size < BBSHIFT) {
1386 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1387 log2_size, BBSHIFT);
1388 goto out_free_log;
1389 }
1390
1391 log2_size -= BBSHIFT;
1392 if (log2_size > mp->m_sectbb_log) {
1393 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1394 log2_size, mp->m_sectbb_log);
1395 goto out_free_log;
1396 }
1397
1398 /* for larger sector sizes, must have v2 or external log */
1399 if (log2_size && log->l_logBBstart > 0 &&
1400 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1401 xfs_warn(mp,
1402 "log sector size (0x%x) invalid for configuration.",
1403 log2_size);
1404 goto out_free_log;
1405 }
1406 }
1407 log->l_sectBBsize = 1 << log2_size;
1408
1409 xlog_get_iclog_buffer_size(mp, log);
1410
1411 /*
1412 * Use a NULL block for the extra log buffer used during splits so that
1413 * it will trigger errors if we ever try to do IO on it without first
1414 * having set it up properly.
1415 */
1416 error = -ENOMEM;
1417 bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1418 BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1419 if (!bp)
1420 goto out_free_log;
1421
1422 /*
1423 * The iclogbuf buffer locks are held over IO but we are not going to do
1424 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1425 * when appropriately.
1426 */
1427 ASSERT(xfs_buf_islocked(bp));
1428 xfs_buf_unlock(bp);
1429
1430 /* use high priority wq for log I/O completion */
1431 bp->b_ioend_wq = mp->m_log_workqueue;
1432 bp->b_iodone = xlog_iodone;
1433 log->l_xbuf = bp;
1434
1435 spin_lock_init(&log->l_icloglock);
1436 init_waitqueue_head(&log->l_flush_wait);
1437
1438 iclogp = &log->l_iclog;
1439 /*
1440 * The amount of memory to allocate for the iclog structure is
1441 * rather funky due to the way the structure is defined. It is
1442 * done this way so that we can use different sizes for machines
1443 * with different amounts of memory. See the definition of
1444 * xlog_in_core_t in xfs_log_priv.h for details.
1445 */
1446 ASSERT(log->l_iclog_size >= 4096);
1447 for (i=0; i < log->l_iclog_bufs; i++) {
1448 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1449 if (!*iclogp)
1450 goto out_free_iclog;
1451
1452 iclog = *iclogp;
1453 iclog->ic_prev = prev_iclog;
1454 prev_iclog = iclog;
1455
1456 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1457 BTOBB(log->l_iclog_size),
1458 XBF_NO_IOACCT);
1459 if (!bp)
1460 goto out_free_iclog;
1461
1462 ASSERT(xfs_buf_islocked(bp));
1463 xfs_buf_unlock(bp);
1464
1465 /* use high priority wq for log I/O completion */
1466 bp->b_ioend_wq = mp->m_log_workqueue;
1467 bp->b_iodone = xlog_iodone;
1468 iclog->ic_bp = bp;
1469 iclog->ic_data = bp->b_addr;
1470#ifdef DEBUG
1471 log->l_iclog_bak[i] = &iclog->ic_header;
1472#endif
1473 head = &iclog->ic_header;
1474 memset(head, 0, sizeof(xlog_rec_header_t));
1475 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1476 head->h_version = cpu_to_be32(
1477 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1478 head->h_size = cpu_to_be32(log->l_iclog_size);
1479 /* new fields */
1480 head->h_fmt = cpu_to_be32(XLOG_FMT);
1481 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1482
1483 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1484 iclog->ic_state = XLOG_STATE_ACTIVE;
1485 iclog->ic_log = log;
1486 atomic_set(&iclog->ic_refcnt, 0);
1487 spin_lock_init(&iclog->ic_callback_lock);
1488 iclog->ic_callback_tail = &(iclog->ic_callback);
1489 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1490
1491 init_waitqueue_head(&iclog->ic_force_wait);
1492 init_waitqueue_head(&iclog->ic_write_wait);
1493
1494 iclogp = &iclog->ic_next;
1495 }
1496 *iclogp = log->l_iclog; /* complete ring */
1497 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1498
1499 error = xlog_cil_init(log);
1500 if (error)
1501 goto out_free_iclog;
1502 return log;
1503
1504out_free_iclog:
1505 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1506 prev_iclog = iclog->ic_next;
1507 if (iclog->ic_bp)
1508 xfs_buf_free(iclog->ic_bp);
1509 kmem_free(iclog);
1510 }
1511 spinlock_destroy(&log->l_icloglock);
1512 xfs_buf_free(log->l_xbuf);
1513out_free_log:
1514 kmem_free(log);
1515out:
1516 return ERR_PTR(error);
1517} /* xlog_alloc_log */
1518
1519
1520/*
1521 * Write out the commit record of a transaction associated with the given
1522 * ticket. Return the lsn of the commit record.
1523 */
1524STATIC int
1525xlog_commit_record(
1526 struct xlog *log,
1527 struct xlog_ticket *ticket,
1528 struct xlog_in_core **iclog,
1529 xfs_lsn_t *commitlsnp)
1530{
1531 struct xfs_mount *mp = log->l_mp;
1532 int error;
1533 struct xfs_log_iovec reg = {
1534 .i_addr = NULL,
1535 .i_len = 0,
1536 .i_type = XLOG_REG_TYPE_COMMIT,
1537 };
1538 struct xfs_log_vec vec = {
1539 .lv_niovecs = 1,
1540 .lv_iovecp = ®,
1541 };
1542
1543 ASSERT_ALWAYS(iclog);
1544 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1545 XLOG_COMMIT_TRANS);
1546 if (error)
1547 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1548 return error;
1549}
1550
1551/*
1552 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1553 * log space. This code pushes on the lsn which would supposedly free up
1554 * the 25% which we want to leave free. We may need to adopt a policy which
1555 * pushes on an lsn which is further along in the log once we reach the high
1556 * water mark. In this manner, we would be creating a low water mark.
1557 */
1558STATIC void
1559xlog_grant_push_ail(
1560 struct xlog *log,
1561 int need_bytes)
1562{
1563 xfs_lsn_t threshold_lsn = 0;
1564 xfs_lsn_t last_sync_lsn;
1565 int free_blocks;
1566 int free_bytes;
1567 int threshold_block;
1568 int threshold_cycle;
1569 int free_threshold;
1570
1571 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1572
1573 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1574 free_blocks = BTOBBT(free_bytes);
1575
1576 /*
1577 * Set the threshold for the minimum number of free blocks in the
1578 * log to the maximum of what the caller needs, one quarter of the
1579 * log, and 256 blocks.
1580 */
1581 free_threshold = BTOBB(need_bytes);
1582 free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1583 free_threshold = MAX(free_threshold, 256);
1584 if (free_blocks >= free_threshold)
1585 return;
1586
1587 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1588 &threshold_block);
1589 threshold_block += free_threshold;
1590 if (threshold_block >= log->l_logBBsize) {
1591 threshold_block -= log->l_logBBsize;
1592 threshold_cycle += 1;
1593 }
1594 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1595 threshold_block);
1596 /*
1597 * Don't pass in an lsn greater than the lsn of the last
1598 * log record known to be on disk. Use a snapshot of the last sync lsn
1599 * so that it doesn't change between the compare and the set.
1600 */
1601 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1602 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1603 threshold_lsn = last_sync_lsn;
1604
1605 /*
1606 * Get the transaction layer to kick the dirty buffers out to
1607 * disk asynchronously. No point in trying to do this if
1608 * the filesystem is shutting down.
1609 */
1610 if (!XLOG_FORCED_SHUTDOWN(log))
1611 xfs_ail_push(log->l_ailp, threshold_lsn);
1612}
1613
1614/*
1615 * Stamp cycle number in every block
1616 */
1617STATIC void
1618xlog_pack_data(
1619 struct xlog *log,
1620 struct xlog_in_core *iclog,
1621 int roundoff)
1622{
1623 int i, j, k;
1624 int size = iclog->ic_offset + roundoff;
1625 __be32 cycle_lsn;
1626 char *dp;
1627
1628 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1629
1630 dp = iclog->ic_datap;
1631 for (i = 0; i < BTOBB(size); i++) {
1632 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1633 break;
1634 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1635 *(__be32 *)dp = cycle_lsn;
1636 dp += BBSIZE;
1637 }
1638
1639 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1640 xlog_in_core_2_t *xhdr = iclog->ic_data;
1641
1642 for ( ; i < BTOBB(size); i++) {
1643 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1644 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1645 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1646 *(__be32 *)dp = cycle_lsn;
1647 dp += BBSIZE;
1648 }
1649
1650 for (i = 1; i < log->l_iclog_heads; i++)
1651 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1652 }
1653}
1654
1655/*
1656 * Calculate the checksum for a log buffer.
1657 *
1658 * This is a little more complicated than it should be because the various
1659 * headers and the actual data are non-contiguous.
1660 */
1661__le32
1662xlog_cksum(
1663 struct xlog *log,
1664 struct xlog_rec_header *rhead,
1665 char *dp,
1666 int size)
1667{
1668 __uint32_t crc;
1669
1670 /* first generate the crc for the record header ... */
1671 crc = xfs_start_cksum_update((char *)rhead,
1672 sizeof(struct xlog_rec_header),
1673 offsetof(struct xlog_rec_header, h_crc));
1674
1675 /* ... then for additional cycle data for v2 logs ... */
1676 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1677 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1678 int i;
1679 int xheads;
1680
1681 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1682 if (size % XLOG_HEADER_CYCLE_SIZE)
1683 xheads++;
1684
1685 for (i = 1; i < xheads; i++) {
1686 crc = crc32c(crc, &xhdr[i].hic_xheader,
1687 sizeof(struct xlog_rec_ext_header));
1688 }
1689 }
1690
1691 /* ... and finally for the payload */
1692 crc = crc32c(crc, dp, size);
1693
1694 return xfs_end_cksum(crc);
1695}
1696
1697/*
1698 * The bdstrat callback function for log bufs. This gives us a central
1699 * place to trap bufs in case we get hit by a log I/O error and need to
1700 * shutdown. Actually, in practice, even when we didn't get a log error,
1701 * we transition the iclogs to IOERROR state *after* flushing all existing
1702 * iclogs to disk. This is because we don't want anymore new transactions to be
1703 * started or completed afterwards.
1704 *
1705 * We lock the iclogbufs here so that we can serialise against IO completion
1706 * during unmount. We might be processing a shutdown triggered during unmount,
1707 * and that can occur asynchronously to the unmount thread, and hence we need to
1708 * ensure that completes before tearing down the iclogbufs. Hence we need to
1709 * hold the buffer lock across the log IO to acheive that.
1710 */
1711STATIC int
1712xlog_bdstrat(
1713 struct xfs_buf *bp)
1714{
1715 struct xlog_in_core *iclog = bp->b_fspriv;
1716
1717 xfs_buf_lock(bp);
1718 if (iclog->ic_state & XLOG_STATE_IOERROR) {
1719 xfs_buf_ioerror(bp, -EIO);
1720 xfs_buf_stale(bp);
1721 xfs_buf_ioend(bp);
1722 /*
1723 * It would seem logical to return EIO here, but we rely on
1724 * the log state machine to propagate I/O errors instead of
1725 * doing it here. Similarly, IO completion will unlock the
1726 * buffer, so we don't do it here.
1727 */
1728 return 0;
1729 }
1730
1731 xfs_buf_submit(bp);
1732 return 0;
1733}
1734
1735/*
1736 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1737 * fashion. Previously, we should have moved the current iclog
1738 * ptr in the log to point to the next available iclog. This allows further
1739 * write to continue while this code syncs out an iclog ready to go.
1740 * Before an in-core log can be written out, the data section must be scanned
1741 * to save away the 1st word of each BBSIZE block into the header. We replace
1742 * it with the current cycle count. Each BBSIZE block is tagged with the
1743 * cycle count because there in an implicit assumption that drives will
1744 * guarantee that entire 512 byte blocks get written at once. In other words,
1745 * we can't have part of a 512 byte block written and part not written. By
1746 * tagging each block, we will know which blocks are valid when recovering
1747 * after an unclean shutdown.
1748 *
1749 * This routine is single threaded on the iclog. No other thread can be in
1750 * this routine with the same iclog. Changing contents of iclog can there-
1751 * fore be done without grabbing the state machine lock. Updating the global
1752 * log will require grabbing the lock though.
1753 *
1754 * The entire log manager uses a logical block numbering scheme. Only
1755 * log_sync (and then only bwrite()) know about the fact that the log may
1756 * not start with block zero on a given device. The log block start offset
1757 * is added immediately before calling bwrite().
1758 */
1759
1760STATIC int
1761xlog_sync(
1762 struct xlog *log,
1763 struct xlog_in_core *iclog)
1764{
1765 xfs_buf_t *bp;
1766 int i;
1767 uint count; /* byte count of bwrite */
1768 uint count_init; /* initial count before roundup */
1769 int roundoff; /* roundoff to BB or stripe */
1770 int split = 0; /* split write into two regions */
1771 int error;
1772 int v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1773 int size;
1774
1775 XFS_STATS_INC(log->l_mp, xs_log_writes);
1776 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1777
1778 /* Add for LR header */
1779 count_init = log->l_iclog_hsize + iclog->ic_offset;
1780
1781 /* Round out the log write size */
1782 if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1783 /* we have a v2 stripe unit to use */
1784 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1785 } else {
1786 count = BBTOB(BTOBB(count_init));
1787 }
1788 roundoff = count - count_init;
1789 ASSERT(roundoff >= 0);
1790 ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 &&
1791 roundoff < log->l_mp->m_sb.sb_logsunit)
1792 ||
1793 (log->l_mp->m_sb.sb_logsunit <= 1 &&
1794 roundoff < BBTOB(1)));
1795
1796 /* move grant heads by roundoff in sync */
1797 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1798 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1799
1800 /* put cycle number in every block */
1801 xlog_pack_data(log, iclog, roundoff);
1802
1803 /* real byte length */
1804 size = iclog->ic_offset;
1805 if (v2)
1806 size += roundoff;
1807 iclog->ic_header.h_len = cpu_to_be32(size);
1808
1809 bp = iclog->ic_bp;
1810 XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1811
1812 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1813
1814 /* Do we need to split this write into 2 parts? */
1815 if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1816 char *dptr;
1817
1818 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1819 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1820 iclog->ic_bwritecnt = 2;
1821
1822 /*
1823 * Bump the cycle numbers at the start of each block in the
1824 * part of the iclog that ends up in the buffer that gets
1825 * written to the start of the log.
1826 *
1827 * Watch out for the header magic number case, though.
1828 */
1829 dptr = (char *)&iclog->ic_header + count;
1830 for (i = 0; i < split; i += BBSIZE) {
1831 __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1832 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1833 cycle++;
1834 *(__be32 *)dptr = cpu_to_be32(cycle);
1835
1836 dptr += BBSIZE;
1837 }
1838 } else {
1839 iclog->ic_bwritecnt = 1;
1840 }
1841
1842 /* calculcate the checksum */
1843 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1844 iclog->ic_datap, size);
1845#ifdef DEBUG
1846 /*
1847 * Intentionally corrupt the log record CRC based on the error injection
1848 * frequency, if defined. This facilitates testing log recovery in the
1849 * event of torn writes. Hence, set the IOABORT state to abort the log
1850 * write on I/O completion and shutdown the fs. The subsequent mount
1851 * detects the bad CRC and attempts to recover.
1852 */
1853 if (log->l_badcrc_factor &&
1854 (prandom_u32() % log->l_badcrc_factor == 0)) {
1855 iclog->ic_header.h_crc &= 0xAAAAAAAA;
1856 iclog->ic_state |= XLOG_STATE_IOABORT;
1857 xfs_warn(log->l_mp,
1858 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1859 be64_to_cpu(iclog->ic_header.h_lsn));
1860 }
1861#endif
1862
1863 bp->b_io_length = BTOBB(count);
1864 bp->b_fspriv = iclog;
1865 bp->b_flags &= ~XBF_FLUSH;
1866 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1867
1868 /*
1869 * Flush the data device before flushing the log to make sure all meta
1870 * data written back from the AIL actually made it to disk before
1871 * stamping the new log tail LSN into the log buffer. For an external
1872 * log we need to issue the flush explicitly, and unfortunately
1873 * synchronously here; for an internal log we can simply use the block
1874 * layer state machine for preflushes.
1875 */
1876 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1877 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1878 else
1879 bp->b_flags |= XBF_FLUSH;
1880
1881 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1882 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1883
1884 xlog_verify_iclog(log, iclog, count, true);
1885
1886 /* account for log which doesn't start at block #0 */
1887 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1888
1889 /*
1890 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1891 * is shutting down.
1892 */
1893 error = xlog_bdstrat(bp);
1894 if (error) {
1895 xfs_buf_ioerror_alert(bp, "xlog_sync");
1896 return error;
1897 }
1898 if (split) {
1899 bp = iclog->ic_log->l_xbuf;
1900 XFS_BUF_SET_ADDR(bp, 0); /* logical 0 */
1901 xfs_buf_associate_memory(bp,
1902 (char *)&iclog->ic_header + count, split);
1903 bp->b_fspriv = iclog;
1904 bp->b_flags &= ~XBF_FLUSH;
1905 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE | XBF_FUA);
1906
1907 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1908 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1909
1910 /* account for internal log which doesn't start at block #0 */
1911 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1912 error = xlog_bdstrat(bp);
1913 if (error) {
1914 xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1915 return error;
1916 }
1917 }
1918 return 0;
1919} /* xlog_sync */
1920
1921/*
1922 * Deallocate a log structure
1923 */
1924STATIC void
1925xlog_dealloc_log(
1926 struct xlog *log)
1927{
1928 xlog_in_core_t *iclog, *next_iclog;
1929 int i;
1930
1931 xlog_cil_destroy(log);
1932
1933 /*
1934 * Cycle all the iclogbuf locks to make sure all log IO completion
1935 * is done before we tear down these buffers.
1936 */
1937 iclog = log->l_iclog;
1938 for (i = 0; i < log->l_iclog_bufs; i++) {
1939 xfs_buf_lock(iclog->ic_bp);
1940 xfs_buf_unlock(iclog->ic_bp);
1941 iclog = iclog->ic_next;
1942 }
1943
1944 /*
1945 * Always need to ensure that the extra buffer does not point to memory
1946 * owned by another log buffer before we free it. Also, cycle the lock
1947 * first to ensure we've completed IO on it.
1948 */
1949 xfs_buf_lock(log->l_xbuf);
1950 xfs_buf_unlock(log->l_xbuf);
1951 xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1952 xfs_buf_free(log->l_xbuf);
1953
1954 iclog = log->l_iclog;
1955 for (i = 0; i < log->l_iclog_bufs; i++) {
1956 xfs_buf_free(iclog->ic_bp);
1957 next_iclog = iclog->ic_next;
1958 kmem_free(iclog);
1959 iclog = next_iclog;
1960 }
1961 spinlock_destroy(&log->l_icloglock);
1962
1963 log->l_mp->m_log = NULL;
1964 kmem_free(log);
1965} /* xlog_dealloc_log */
1966
1967/*
1968 * Update counters atomically now that memcpy is done.
1969 */
1970/* ARGSUSED */
1971static inline void
1972xlog_state_finish_copy(
1973 struct xlog *log,
1974 struct xlog_in_core *iclog,
1975 int record_cnt,
1976 int copy_bytes)
1977{
1978 spin_lock(&log->l_icloglock);
1979
1980 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1981 iclog->ic_offset += copy_bytes;
1982
1983 spin_unlock(&log->l_icloglock);
1984} /* xlog_state_finish_copy */
1985
1986
1987
1988
1989/*
1990 * print out info relating to regions written which consume
1991 * the reservation
1992 */
1993void
1994xlog_print_tic_res(
1995 struct xfs_mount *mp,
1996 struct xlog_ticket *ticket)
1997{
1998 uint i;
1999 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2000
2001 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2002#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2003 static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2004 REG_TYPE_STR(BFORMAT, "bformat"),
2005 REG_TYPE_STR(BCHUNK, "bchunk"),
2006 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2007 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2008 REG_TYPE_STR(IFORMAT, "iformat"),
2009 REG_TYPE_STR(ICORE, "icore"),
2010 REG_TYPE_STR(IEXT, "iext"),
2011 REG_TYPE_STR(IBROOT, "ibroot"),
2012 REG_TYPE_STR(ILOCAL, "ilocal"),
2013 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2014 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2015 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2016 REG_TYPE_STR(QFORMAT, "qformat"),
2017 REG_TYPE_STR(DQUOT, "dquot"),
2018 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2019 REG_TYPE_STR(LRHEADER, "LR header"),
2020 REG_TYPE_STR(UNMOUNT, "unmount"),
2021 REG_TYPE_STR(COMMIT, "commit"),
2022 REG_TYPE_STR(TRANSHDR, "trans header"),
2023 REG_TYPE_STR(ICREATE, "inode create")
2024 };
2025#undef REG_TYPE_STR
2026
2027 xfs_warn(mp, "xlog_write: reservation summary:");
2028 xfs_warn(mp, " unit res = %d bytes",
2029 ticket->t_unit_res);
2030 xfs_warn(mp, " current res = %d bytes",
2031 ticket->t_curr_res);
2032 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2033 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2034 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2035 ticket->t_res_num_ophdrs, ophdr_spc);
2036 xfs_warn(mp, " ophdr + reg = %u bytes",
2037 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2038 xfs_warn(mp, " num regions = %u",
2039 ticket->t_res_num);
2040
2041 for (i = 0; i < ticket->t_res_num; i++) {
2042 uint r_type = ticket->t_res_arr[i].r_type;
2043 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2044 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2045 "bad-rtype" : res_type_str[r_type]),
2046 ticket->t_res_arr[i].r_len);
2047 }
2048
2049 xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2050 "xlog_write: reservation ran out. Need to up reservation");
2051 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2052}
2053
2054/*
2055 * Calculate the potential space needed by the log vector. Each region gets
2056 * its own xlog_op_header_t and may need to be double word aligned.
2057 */
2058static int
2059xlog_write_calc_vec_length(
2060 struct xlog_ticket *ticket,
2061 struct xfs_log_vec *log_vector)
2062{
2063 struct xfs_log_vec *lv;
2064 int headers = 0;
2065 int len = 0;
2066 int i;
2067
2068 /* acct for start rec of xact */
2069 if (ticket->t_flags & XLOG_TIC_INITED)
2070 headers++;
2071
2072 for (lv = log_vector; lv; lv = lv->lv_next) {
2073 /* we don't write ordered log vectors */
2074 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2075 continue;
2076
2077 headers += lv->lv_niovecs;
2078
2079 for (i = 0; i < lv->lv_niovecs; i++) {
2080 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2081
2082 len += vecp->i_len;
2083 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2084 }
2085 }
2086
2087 ticket->t_res_num_ophdrs += headers;
2088 len += headers * sizeof(struct xlog_op_header);
2089
2090 return len;
2091}
2092
2093/*
2094 * If first write for transaction, insert start record We can't be trying to
2095 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2096 */
2097static int
2098xlog_write_start_rec(
2099 struct xlog_op_header *ophdr,
2100 struct xlog_ticket *ticket)
2101{
2102 if (!(ticket->t_flags & XLOG_TIC_INITED))
2103 return 0;
2104
2105 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2106 ophdr->oh_clientid = ticket->t_clientid;
2107 ophdr->oh_len = 0;
2108 ophdr->oh_flags = XLOG_START_TRANS;
2109 ophdr->oh_res2 = 0;
2110
2111 ticket->t_flags &= ~XLOG_TIC_INITED;
2112
2113 return sizeof(struct xlog_op_header);
2114}
2115
2116static xlog_op_header_t *
2117xlog_write_setup_ophdr(
2118 struct xlog *log,
2119 struct xlog_op_header *ophdr,
2120 struct xlog_ticket *ticket,
2121 uint flags)
2122{
2123 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2124 ophdr->oh_clientid = ticket->t_clientid;
2125 ophdr->oh_res2 = 0;
2126
2127 /* are we copying a commit or unmount record? */
2128 ophdr->oh_flags = flags;
2129
2130 /*
2131 * We've seen logs corrupted with bad transaction client ids. This
2132 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2133 * and shut down the filesystem.
2134 */
2135 switch (ophdr->oh_clientid) {
2136 case XFS_TRANSACTION:
2137 case XFS_VOLUME:
2138 case XFS_LOG:
2139 break;
2140 default:
2141 xfs_warn(log->l_mp,
2142 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2143 ophdr->oh_clientid, ticket);
2144 return NULL;
2145 }
2146
2147 return ophdr;
2148}
2149
2150/*
2151 * Set up the parameters of the region copy into the log. This has
2152 * to handle region write split across multiple log buffers - this
2153 * state is kept external to this function so that this code can
2154 * be written in an obvious, self documenting manner.
2155 */
2156static int
2157xlog_write_setup_copy(
2158 struct xlog_ticket *ticket,
2159 struct xlog_op_header *ophdr,
2160 int space_available,
2161 int space_required,
2162 int *copy_off,
2163 int *copy_len,
2164 int *last_was_partial_copy,
2165 int *bytes_consumed)
2166{
2167 int still_to_copy;
2168
2169 still_to_copy = space_required - *bytes_consumed;
2170 *copy_off = *bytes_consumed;
2171
2172 if (still_to_copy <= space_available) {
2173 /* write of region completes here */
2174 *copy_len = still_to_copy;
2175 ophdr->oh_len = cpu_to_be32(*copy_len);
2176 if (*last_was_partial_copy)
2177 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2178 *last_was_partial_copy = 0;
2179 *bytes_consumed = 0;
2180 return 0;
2181 }
2182
2183 /* partial write of region, needs extra log op header reservation */
2184 *copy_len = space_available;
2185 ophdr->oh_len = cpu_to_be32(*copy_len);
2186 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2187 if (*last_was_partial_copy)
2188 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2189 *bytes_consumed += *copy_len;
2190 (*last_was_partial_copy)++;
2191
2192 /* account for new log op header */
2193 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2194 ticket->t_res_num_ophdrs++;
2195
2196 return sizeof(struct xlog_op_header);
2197}
2198
2199static int
2200xlog_write_copy_finish(
2201 struct xlog *log,
2202 struct xlog_in_core *iclog,
2203 uint flags,
2204 int *record_cnt,
2205 int *data_cnt,
2206 int *partial_copy,
2207 int *partial_copy_len,
2208 int log_offset,
2209 struct xlog_in_core **commit_iclog)
2210{
2211 if (*partial_copy) {
2212 /*
2213 * This iclog has already been marked WANT_SYNC by
2214 * xlog_state_get_iclog_space.
2215 */
2216 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2217 *record_cnt = 0;
2218 *data_cnt = 0;
2219 return xlog_state_release_iclog(log, iclog);
2220 }
2221
2222 *partial_copy = 0;
2223 *partial_copy_len = 0;
2224
2225 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2226 /* no more space in this iclog - push it. */
2227 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2228 *record_cnt = 0;
2229 *data_cnt = 0;
2230
2231 spin_lock(&log->l_icloglock);
2232 xlog_state_want_sync(log, iclog);
2233 spin_unlock(&log->l_icloglock);
2234
2235 if (!commit_iclog)
2236 return xlog_state_release_iclog(log, iclog);
2237 ASSERT(flags & XLOG_COMMIT_TRANS);
2238 *commit_iclog = iclog;
2239 }
2240
2241 return 0;
2242}
2243
2244/*
2245 * Write some region out to in-core log
2246 *
2247 * This will be called when writing externally provided regions or when
2248 * writing out a commit record for a given transaction.
2249 *
2250 * General algorithm:
2251 * 1. Find total length of this write. This may include adding to the
2252 * lengths passed in.
2253 * 2. Check whether we violate the tickets reservation.
2254 * 3. While writing to this iclog
2255 * A. Reserve as much space in this iclog as can get
2256 * B. If this is first write, save away start lsn
2257 * C. While writing this region:
2258 * 1. If first write of transaction, write start record
2259 * 2. Write log operation header (header per region)
2260 * 3. Find out if we can fit entire region into this iclog
2261 * 4. Potentially, verify destination memcpy ptr
2262 * 5. Memcpy (partial) region
2263 * 6. If partial copy, release iclog; otherwise, continue
2264 * copying more regions into current iclog
2265 * 4. Mark want sync bit (in simulation mode)
2266 * 5. Release iclog for potential flush to on-disk log.
2267 *
2268 * ERRORS:
2269 * 1. Panic if reservation is overrun. This should never happen since
2270 * reservation amounts are generated internal to the filesystem.
2271 * NOTES:
2272 * 1. Tickets are single threaded data structures.
2273 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2274 * syncing routine. When a single log_write region needs to span
2275 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2276 * on all log operation writes which don't contain the end of the
2277 * region. The XLOG_END_TRANS bit is used for the in-core log
2278 * operation which contains the end of the continued log_write region.
2279 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2280 * we don't really know exactly how much space will be used. As a result,
2281 * we don't update ic_offset until the end when we know exactly how many
2282 * bytes have been written out.
2283 */
2284int
2285xlog_write(
2286 struct xlog *log,
2287 struct xfs_log_vec *log_vector,
2288 struct xlog_ticket *ticket,
2289 xfs_lsn_t *start_lsn,
2290 struct xlog_in_core **commit_iclog,
2291 uint flags)
2292{
2293 struct xlog_in_core *iclog = NULL;
2294 struct xfs_log_iovec *vecp;
2295 struct xfs_log_vec *lv;
2296 int len;
2297 int index;
2298 int partial_copy = 0;
2299 int partial_copy_len = 0;
2300 int contwr = 0;
2301 int record_cnt = 0;
2302 int data_cnt = 0;
2303 int error;
2304
2305 *start_lsn = 0;
2306
2307 len = xlog_write_calc_vec_length(ticket, log_vector);
2308
2309 /*
2310 * Region headers and bytes are already accounted for.
2311 * We only need to take into account start records and
2312 * split regions in this function.
2313 */
2314 if (ticket->t_flags & XLOG_TIC_INITED)
2315 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2316
2317 /*
2318 * Commit record headers need to be accounted for. These
2319 * come in as separate writes so are easy to detect.
2320 */
2321 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2322 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2323
2324 if (ticket->t_curr_res < 0)
2325 xlog_print_tic_res(log->l_mp, ticket);
2326
2327 index = 0;
2328 lv = log_vector;
2329 vecp = lv->lv_iovecp;
2330 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2331 void *ptr;
2332 int log_offset;
2333
2334 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2335 &contwr, &log_offset);
2336 if (error)
2337 return error;
2338
2339 ASSERT(log_offset <= iclog->ic_size - 1);
2340 ptr = iclog->ic_datap + log_offset;
2341
2342 /* start_lsn is the first lsn written to. That's all we need. */
2343 if (!*start_lsn)
2344 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2345
2346 /*
2347 * This loop writes out as many regions as can fit in the amount
2348 * of space which was allocated by xlog_state_get_iclog_space().
2349 */
2350 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2351 struct xfs_log_iovec *reg;
2352 struct xlog_op_header *ophdr;
2353 int start_rec_copy;
2354 int copy_len;
2355 int copy_off;
2356 bool ordered = false;
2357
2358 /* ordered log vectors have no regions to write */
2359 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2360 ASSERT(lv->lv_niovecs == 0);
2361 ordered = true;
2362 goto next_lv;
2363 }
2364
2365 reg = &vecp[index];
2366 ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2367 ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2368
2369 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2370 if (start_rec_copy) {
2371 record_cnt++;
2372 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2373 start_rec_copy);
2374 }
2375
2376 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2377 if (!ophdr)
2378 return -EIO;
2379
2380 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2381 sizeof(struct xlog_op_header));
2382
2383 len += xlog_write_setup_copy(ticket, ophdr,
2384 iclog->ic_size-log_offset,
2385 reg->i_len,
2386 ©_off, ©_len,
2387 &partial_copy,
2388 &partial_copy_len);
2389 xlog_verify_dest_ptr(log, ptr);
2390
2391 /*
2392 * Copy region.
2393 *
2394 * Unmount records just log an opheader, so can have
2395 * empty payloads with no data region to copy. Hence we
2396 * only copy the payload if the vector says it has data
2397 * to copy.
2398 */
2399 ASSERT(copy_len >= 0);
2400 if (copy_len > 0) {
2401 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2402 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2403 copy_len);
2404 }
2405 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2406 record_cnt++;
2407 data_cnt += contwr ? copy_len : 0;
2408
2409 error = xlog_write_copy_finish(log, iclog, flags,
2410 &record_cnt, &data_cnt,
2411 &partial_copy,
2412 &partial_copy_len,
2413 log_offset,
2414 commit_iclog);
2415 if (error)
2416 return error;
2417
2418 /*
2419 * if we had a partial copy, we need to get more iclog
2420 * space but we don't want to increment the region
2421 * index because there is still more is this region to
2422 * write.
2423 *
2424 * If we completed writing this region, and we flushed
2425 * the iclog (indicated by resetting of the record
2426 * count), then we also need to get more log space. If
2427 * this was the last record, though, we are done and
2428 * can just return.
2429 */
2430 if (partial_copy)
2431 break;
2432
2433 if (++index == lv->lv_niovecs) {
2434next_lv:
2435 lv = lv->lv_next;
2436 index = 0;
2437 if (lv)
2438 vecp = lv->lv_iovecp;
2439 }
2440 if (record_cnt == 0 && ordered == false) {
2441 if (!lv)
2442 return 0;
2443 break;
2444 }
2445 }
2446 }
2447
2448 ASSERT(len == 0);
2449
2450 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2451 if (!commit_iclog)
2452 return xlog_state_release_iclog(log, iclog);
2453
2454 ASSERT(flags & XLOG_COMMIT_TRANS);
2455 *commit_iclog = iclog;
2456 return 0;
2457}
2458
2459
2460/*****************************************************************************
2461 *
2462 * State Machine functions
2463 *
2464 *****************************************************************************
2465 */
2466
2467/* Clean iclogs starting from the head. This ordering must be
2468 * maintained, so an iclog doesn't become ACTIVE beyond one that
2469 * is SYNCING. This is also required to maintain the notion that we use
2470 * a ordered wait queue to hold off would be writers to the log when every
2471 * iclog is trying to sync to disk.
2472 *
2473 * State Change: DIRTY -> ACTIVE
2474 */
2475STATIC void
2476xlog_state_clean_log(
2477 struct xlog *log)
2478{
2479 xlog_in_core_t *iclog;
2480 int changed = 0;
2481
2482 iclog = log->l_iclog;
2483 do {
2484 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2485 iclog->ic_state = XLOG_STATE_ACTIVE;
2486 iclog->ic_offset = 0;
2487 ASSERT(iclog->ic_callback == NULL);
2488 /*
2489 * If the number of ops in this iclog indicate it just
2490 * contains the dummy transaction, we can
2491 * change state into IDLE (the second time around).
2492 * Otherwise we should change the state into
2493 * NEED a dummy.
2494 * We don't need to cover the dummy.
2495 */
2496 if (!changed &&
2497 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2498 XLOG_COVER_OPS)) {
2499 changed = 1;
2500 } else {
2501 /*
2502 * We have two dirty iclogs so start over
2503 * This could also be num of ops indicates
2504 * this is not the dummy going out.
2505 */
2506 changed = 2;
2507 }
2508 iclog->ic_header.h_num_logops = 0;
2509 memset(iclog->ic_header.h_cycle_data, 0,
2510 sizeof(iclog->ic_header.h_cycle_data));
2511 iclog->ic_header.h_lsn = 0;
2512 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2513 /* do nothing */;
2514 else
2515 break; /* stop cleaning */
2516 iclog = iclog->ic_next;
2517 } while (iclog != log->l_iclog);
2518
2519 /* log is locked when we are called */
2520 /*
2521 * Change state for the dummy log recording.
2522 * We usually go to NEED. But we go to NEED2 if the changed indicates
2523 * we are done writing the dummy record.
2524 * If we are done with the second dummy recored (DONE2), then
2525 * we go to IDLE.
2526 */
2527 if (changed) {
2528 switch (log->l_covered_state) {
2529 case XLOG_STATE_COVER_IDLE:
2530 case XLOG_STATE_COVER_NEED:
2531 case XLOG_STATE_COVER_NEED2:
2532 log->l_covered_state = XLOG_STATE_COVER_NEED;
2533 break;
2534
2535 case XLOG_STATE_COVER_DONE:
2536 if (changed == 1)
2537 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2538 else
2539 log->l_covered_state = XLOG_STATE_COVER_NEED;
2540 break;
2541
2542 case XLOG_STATE_COVER_DONE2:
2543 if (changed == 1)
2544 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2545 else
2546 log->l_covered_state = XLOG_STATE_COVER_NEED;
2547 break;
2548
2549 default:
2550 ASSERT(0);
2551 }
2552 }
2553} /* xlog_state_clean_log */
2554
2555STATIC xfs_lsn_t
2556xlog_get_lowest_lsn(
2557 struct xlog *log)
2558{
2559 xlog_in_core_t *lsn_log;
2560 xfs_lsn_t lowest_lsn, lsn;
2561
2562 lsn_log = log->l_iclog;
2563 lowest_lsn = 0;
2564 do {
2565 if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2566 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2567 if ((lsn && !lowest_lsn) ||
2568 (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2569 lowest_lsn = lsn;
2570 }
2571 }
2572 lsn_log = lsn_log->ic_next;
2573 } while (lsn_log != log->l_iclog);
2574 return lowest_lsn;
2575}
2576
2577
2578STATIC void
2579xlog_state_do_callback(
2580 struct xlog *log,
2581 int aborted,
2582 struct xlog_in_core *ciclog)
2583{
2584 xlog_in_core_t *iclog;
2585 xlog_in_core_t *first_iclog; /* used to know when we've
2586 * processed all iclogs once */
2587 xfs_log_callback_t *cb, *cb_next;
2588 int flushcnt = 0;
2589 xfs_lsn_t lowest_lsn;
2590 int ioerrors; /* counter: iclogs with errors */
2591 int loopdidcallbacks; /* flag: inner loop did callbacks*/
2592 int funcdidcallbacks; /* flag: function did callbacks */
2593 int repeats; /* for issuing console warnings if
2594 * looping too many times */
2595 int wake = 0;
2596
2597 spin_lock(&log->l_icloglock);
2598 first_iclog = iclog = log->l_iclog;
2599 ioerrors = 0;
2600 funcdidcallbacks = 0;
2601 repeats = 0;
2602
2603 do {
2604 /*
2605 * Scan all iclogs starting with the one pointed to by the
2606 * log. Reset this starting point each time the log is
2607 * unlocked (during callbacks).
2608 *
2609 * Keep looping through iclogs until one full pass is made
2610 * without running any callbacks.
2611 */
2612 first_iclog = log->l_iclog;
2613 iclog = log->l_iclog;
2614 loopdidcallbacks = 0;
2615 repeats++;
2616
2617 do {
2618
2619 /* skip all iclogs in the ACTIVE & DIRTY states */
2620 if (iclog->ic_state &
2621 (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2622 iclog = iclog->ic_next;
2623 continue;
2624 }
2625
2626 /*
2627 * Between marking a filesystem SHUTDOWN and stopping
2628 * the log, we do flush all iclogs to disk (if there
2629 * wasn't a log I/O error). So, we do want things to
2630 * go smoothly in case of just a SHUTDOWN w/o a
2631 * LOG_IO_ERROR.
2632 */
2633 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2634 /*
2635 * Can only perform callbacks in order. Since
2636 * this iclog is not in the DONE_SYNC/
2637 * DO_CALLBACK state, we skip the rest and
2638 * just try to clean up. If we set our iclog
2639 * to DO_CALLBACK, we will not process it when
2640 * we retry since a previous iclog is in the
2641 * CALLBACK and the state cannot change since
2642 * we are holding the l_icloglock.
2643 */
2644 if (!(iclog->ic_state &
2645 (XLOG_STATE_DONE_SYNC |
2646 XLOG_STATE_DO_CALLBACK))) {
2647 if (ciclog && (ciclog->ic_state ==
2648 XLOG_STATE_DONE_SYNC)) {
2649 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2650 }
2651 break;
2652 }
2653 /*
2654 * We now have an iclog that is in either the
2655 * DO_CALLBACK or DONE_SYNC states. The other
2656 * states (WANT_SYNC, SYNCING, or CALLBACK were
2657 * caught by the above if and are going to
2658 * clean (i.e. we aren't doing their callbacks)
2659 * see the above if.
2660 */
2661
2662 /*
2663 * We will do one more check here to see if we
2664 * have chased our tail around.
2665 */
2666
2667 lowest_lsn = xlog_get_lowest_lsn(log);
2668 if (lowest_lsn &&
2669 XFS_LSN_CMP(lowest_lsn,
2670 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2671 iclog = iclog->ic_next;
2672 continue; /* Leave this iclog for
2673 * another thread */
2674 }
2675
2676 iclog->ic_state = XLOG_STATE_CALLBACK;
2677
2678
2679 /*
2680 * Completion of a iclog IO does not imply that
2681 * a transaction has completed, as transactions
2682 * can be large enough to span many iclogs. We
2683 * cannot change the tail of the log half way
2684 * through a transaction as this may be the only
2685 * transaction in the log and moving th etail to
2686 * point to the middle of it will prevent
2687 * recovery from finding the start of the
2688 * transaction. Hence we should only update the
2689 * last_sync_lsn if this iclog contains
2690 * transaction completion callbacks on it.
2691 *
2692 * We have to do this before we drop the
2693 * icloglock to ensure we are the only one that
2694 * can update it.
2695 */
2696 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2697 be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2698 if (iclog->ic_callback)
2699 atomic64_set(&log->l_last_sync_lsn,
2700 be64_to_cpu(iclog->ic_header.h_lsn));
2701
2702 } else
2703 ioerrors++;
2704
2705 spin_unlock(&log->l_icloglock);
2706
2707 /*
2708 * Keep processing entries in the callback list until
2709 * we come around and it is empty. We need to
2710 * atomically see that the list is empty and change the
2711 * state to DIRTY so that we don't miss any more
2712 * callbacks being added.
2713 */
2714 spin_lock(&iclog->ic_callback_lock);
2715 cb = iclog->ic_callback;
2716 while (cb) {
2717 iclog->ic_callback_tail = &(iclog->ic_callback);
2718 iclog->ic_callback = NULL;
2719 spin_unlock(&iclog->ic_callback_lock);
2720
2721 /* perform callbacks in the order given */
2722 for (; cb; cb = cb_next) {
2723 cb_next = cb->cb_next;
2724 cb->cb_func(cb->cb_arg, aborted);
2725 }
2726 spin_lock(&iclog->ic_callback_lock);
2727 cb = iclog->ic_callback;
2728 }
2729
2730 loopdidcallbacks++;
2731 funcdidcallbacks++;
2732
2733 spin_lock(&log->l_icloglock);
2734 ASSERT(iclog->ic_callback == NULL);
2735 spin_unlock(&iclog->ic_callback_lock);
2736 if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2737 iclog->ic_state = XLOG_STATE_DIRTY;
2738
2739 /*
2740 * Transition from DIRTY to ACTIVE if applicable.
2741 * NOP if STATE_IOERROR.
2742 */
2743 xlog_state_clean_log(log);
2744
2745 /* wake up threads waiting in xfs_log_force() */
2746 wake_up_all(&iclog->ic_force_wait);
2747
2748 iclog = iclog->ic_next;
2749 } while (first_iclog != iclog);
2750
2751 if (repeats > 5000) {
2752 flushcnt += repeats;
2753 repeats = 0;
2754 xfs_warn(log->l_mp,
2755 "%s: possible infinite loop (%d iterations)",
2756 __func__, flushcnt);
2757 }
2758 } while (!ioerrors && loopdidcallbacks);
2759
2760#ifdef DEBUG
2761 /*
2762 * Make one last gasp attempt to see if iclogs are being left in limbo.
2763 * If the above loop finds an iclog earlier than the current iclog and
2764 * in one of the syncing states, the current iclog is put into
2765 * DO_CALLBACK and the callbacks are deferred to the completion of the
2766 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2767 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2768 * states.
2769 *
2770 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2771 * for ic_state == SYNCING.
2772 */
2773 if (funcdidcallbacks) {
2774 first_iclog = iclog = log->l_iclog;
2775 do {
2776 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2777 /*
2778 * Terminate the loop if iclogs are found in states
2779 * which will cause other threads to clean up iclogs.
2780 *
2781 * SYNCING - i/o completion will go through logs
2782 * DONE_SYNC - interrupt thread should be waiting for
2783 * l_icloglock
2784 * IOERROR - give up hope all ye who enter here
2785 */
2786 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2787 iclog->ic_state & XLOG_STATE_SYNCING ||
2788 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2789 iclog->ic_state == XLOG_STATE_IOERROR )
2790 break;
2791 iclog = iclog->ic_next;
2792 } while (first_iclog != iclog);
2793 }
2794#endif
2795
2796 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2797 wake = 1;
2798 spin_unlock(&log->l_icloglock);
2799
2800 if (wake)
2801 wake_up_all(&log->l_flush_wait);
2802}
2803
2804
2805/*
2806 * Finish transitioning this iclog to the dirty state.
2807 *
2808 * Make sure that we completely execute this routine only when this is
2809 * the last call to the iclog. There is a good chance that iclog flushes,
2810 * when we reach the end of the physical log, get turned into 2 separate
2811 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2812 * routine. By using the reference count bwritecnt, we guarantee that only
2813 * the second completion goes through.
2814 *
2815 * Callbacks could take time, so they are done outside the scope of the
2816 * global state machine log lock.
2817 */
2818STATIC void
2819xlog_state_done_syncing(
2820 xlog_in_core_t *iclog,
2821 int aborted)
2822{
2823 struct xlog *log = iclog->ic_log;
2824
2825 spin_lock(&log->l_icloglock);
2826
2827 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2828 iclog->ic_state == XLOG_STATE_IOERROR);
2829 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2830 ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2831
2832
2833 /*
2834 * If we got an error, either on the first buffer, or in the case of
2835 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2836 * and none should ever be attempted to be written to disk
2837 * again.
2838 */
2839 if (iclog->ic_state != XLOG_STATE_IOERROR) {
2840 if (--iclog->ic_bwritecnt == 1) {
2841 spin_unlock(&log->l_icloglock);
2842 return;
2843 }
2844 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2845 }
2846
2847 /*
2848 * Someone could be sleeping prior to writing out the next
2849 * iclog buffer, we wake them all, one will get to do the
2850 * I/O, the others get to wait for the result.
2851 */
2852 wake_up_all(&iclog->ic_write_wait);
2853 spin_unlock(&log->l_icloglock);
2854 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2855} /* xlog_state_done_syncing */
2856
2857
2858/*
2859 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2860 * sleep. We wait on the flush queue on the head iclog as that should be
2861 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2862 * we will wait here and all new writes will sleep until a sync completes.
2863 *
2864 * The in-core logs are used in a circular fashion. They are not used
2865 * out-of-order even when an iclog past the head is free.
2866 *
2867 * return:
2868 * * log_offset where xlog_write() can start writing into the in-core
2869 * log's data space.
2870 * * in-core log pointer to which xlog_write() should write.
2871 * * boolean indicating this is a continued write to an in-core log.
2872 * If this is the last write, then the in-core log's offset field
2873 * needs to be incremented, depending on the amount of data which
2874 * is copied.
2875 */
2876STATIC int
2877xlog_state_get_iclog_space(
2878 struct xlog *log,
2879 int len,
2880 struct xlog_in_core **iclogp,
2881 struct xlog_ticket *ticket,
2882 int *continued_write,
2883 int *logoffsetp)
2884{
2885 int log_offset;
2886 xlog_rec_header_t *head;
2887 xlog_in_core_t *iclog;
2888 int error;
2889
2890restart:
2891 spin_lock(&log->l_icloglock);
2892 if (XLOG_FORCED_SHUTDOWN(log)) {
2893 spin_unlock(&log->l_icloglock);
2894 return -EIO;
2895 }
2896
2897 iclog = log->l_iclog;
2898 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2899 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2900
2901 /* Wait for log writes to have flushed */
2902 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2903 goto restart;
2904 }
2905
2906 head = &iclog->ic_header;
2907
2908 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2909 log_offset = iclog->ic_offset;
2910
2911 /* On the 1st write to an iclog, figure out lsn. This works
2912 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2913 * committing to. If the offset is set, that's how many blocks
2914 * must be written.
2915 */
2916 if (log_offset == 0) {
2917 ticket->t_curr_res -= log->l_iclog_hsize;
2918 xlog_tic_add_region(ticket,
2919 log->l_iclog_hsize,
2920 XLOG_REG_TYPE_LRHEADER);
2921 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2922 head->h_lsn = cpu_to_be64(
2923 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2924 ASSERT(log->l_curr_block >= 0);
2925 }
2926
2927 /* If there is enough room to write everything, then do it. Otherwise,
2928 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2929 * bit is on, so this will get flushed out. Don't update ic_offset
2930 * until you know exactly how many bytes get copied. Therefore, wait
2931 * until later to update ic_offset.
2932 *
2933 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2934 * can fit into remaining data section.
2935 */
2936 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2937 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2938
2939 /*
2940 * If I'm the only one writing to this iclog, sync it to disk.
2941 * We need to do an atomic compare and decrement here to avoid
2942 * racing with concurrent atomic_dec_and_lock() calls in
2943 * xlog_state_release_iclog() when there is more than one
2944 * reference to the iclog.
2945 */
2946 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2947 /* we are the only one */
2948 spin_unlock(&log->l_icloglock);
2949 error = xlog_state_release_iclog(log, iclog);
2950 if (error)
2951 return error;
2952 } else {
2953 spin_unlock(&log->l_icloglock);
2954 }
2955 goto restart;
2956 }
2957
2958 /* Do we have enough room to write the full amount in the remainder
2959 * of this iclog? Or must we continue a write on the next iclog and
2960 * mark this iclog as completely taken? In the case where we switch
2961 * iclogs (to mark it taken), this particular iclog will release/sync
2962 * to disk in xlog_write().
2963 */
2964 if (len <= iclog->ic_size - iclog->ic_offset) {
2965 *continued_write = 0;
2966 iclog->ic_offset += len;
2967 } else {
2968 *continued_write = 1;
2969 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2970 }
2971 *iclogp = iclog;
2972
2973 ASSERT(iclog->ic_offset <= iclog->ic_size);
2974 spin_unlock(&log->l_icloglock);
2975
2976 *logoffsetp = log_offset;
2977 return 0;
2978} /* xlog_state_get_iclog_space */
2979
2980/* The first cnt-1 times through here we don't need to
2981 * move the grant write head because the permanent
2982 * reservation has reserved cnt times the unit amount.
2983 * Release part of current permanent unit reservation and
2984 * reset current reservation to be one units worth. Also
2985 * move grant reservation head forward.
2986 */
2987STATIC void
2988xlog_regrant_reserve_log_space(
2989 struct xlog *log,
2990 struct xlog_ticket *ticket)
2991{
2992 trace_xfs_log_regrant_reserve_enter(log, ticket);
2993
2994 if (ticket->t_cnt > 0)
2995 ticket->t_cnt--;
2996
2997 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2998 ticket->t_curr_res);
2999 xlog_grant_sub_space(log, &log->l_write_head.grant,
3000 ticket->t_curr_res);
3001 ticket->t_curr_res = ticket->t_unit_res;
3002 xlog_tic_reset_res(ticket);
3003
3004 trace_xfs_log_regrant_reserve_sub(log, ticket);
3005
3006 /* just return if we still have some of the pre-reserved space */
3007 if (ticket->t_cnt > 0)
3008 return;
3009
3010 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3011 ticket->t_unit_res);
3012
3013 trace_xfs_log_regrant_reserve_exit(log, ticket);
3014
3015 ticket->t_curr_res = ticket->t_unit_res;
3016 xlog_tic_reset_res(ticket);
3017} /* xlog_regrant_reserve_log_space */
3018
3019
3020/*
3021 * Give back the space left from a reservation.
3022 *
3023 * All the information we need to make a correct determination of space left
3024 * is present. For non-permanent reservations, things are quite easy. The
3025 * count should have been decremented to zero. We only need to deal with the
3026 * space remaining in the current reservation part of the ticket. If the
3027 * ticket contains a permanent reservation, there may be left over space which
3028 * needs to be released. A count of N means that N-1 refills of the current
3029 * reservation can be done before we need to ask for more space. The first
3030 * one goes to fill up the first current reservation. Once we run out of
3031 * space, the count will stay at zero and the only space remaining will be
3032 * in the current reservation field.
3033 */
3034STATIC void
3035xlog_ungrant_log_space(
3036 struct xlog *log,
3037 struct xlog_ticket *ticket)
3038{
3039 int bytes;
3040
3041 if (ticket->t_cnt > 0)
3042 ticket->t_cnt--;
3043
3044 trace_xfs_log_ungrant_enter(log, ticket);
3045 trace_xfs_log_ungrant_sub(log, ticket);
3046
3047 /*
3048 * If this is a permanent reservation ticket, we may be able to free
3049 * up more space based on the remaining count.
3050 */
3051 bytes = ticket->t_curr_res;
3052 if (ticket->t_cnt > 0) {
3053 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3054 bytes += ticket->t_unit_res*ticket->t_cnt;
3055 }
3056
3057 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3058 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3059
3060 trace_xfs_log_ungrant_exit(log, ticket);
3061
3062 xfs_log_space_wake(log->l_mp);
3063}
3064
3065/*
3066 * Flush iclog to disk if this is the last reference to the given iclog and
3067 * the WANT_SYNC bit is set.
3068 *
3069 * When this function is entered, the iclog is not necessarily in the
3070 * WANT_SYNC state. It may be sitting around waiting to get filled.
3071 *
3072 *
3073 */
3074STATIC int
3075xlog_state_release_iclog(
3076 struct xlog *log,
3077 struct xlog_in_core *iclog)
3078{
3079 int sync = 0; /* do we sync? */
3080
3081 if (iclog->ic_state & XLOG_STATE_IOERROR)
3082 return -EIO;
3083
3084 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3085 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3086 return 0;
3087
3088 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3089 spin_unlock(&log->l_icloglock);
3090 return -EIO;
3091 }
3092 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3093 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3094
3095 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3096 /* update tail before writing to iclog */
3097 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3098 sync++;
3099 iclog->ic_state = XLOG_STATE_SYNCING;
3100 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3101 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3102 /* cycle incremented when incrementing curr_block */
3103 }
3104 spin_unlock(&log->l_icloglock);
3105
3106 /*
3107 * We let the log lock go, so it's possible that we hit a log I/O
3108 * error or some other SHUTDOWN condition that marks the iclog
3109 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3110 * this iclog has consistent data, so we ignore IOERROR
3111 * flags after this point.
3112 */
3113 if (sync)
3114 return xlog_sync(log, iclog);
3115 return 0;
3116} /* xlog_state_release_iclog */
3117
3118
3119/*
3120 * This routine will mark the current iclog in the ring as WANT_SYNC
3121 * and move the current iclog pointer to the next iclog in the ring.
3122 * When this routine is called from xlog_state_get_iclog_space(), the
3123 * exact size of the iclog has not yet been determined. All we know is
3124 * that every data block. We have run out of space in this log record.
3125 */
3126STATIC void
3127xlog_state_switch_iclogs(
3128 struct xlog *log,
3129 struct xlog_in_core *iclog,
3130 int eventual_size)
3131{
3132 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3133 if (!eventual_size)
3134 eventual_size = iclog->ic_offset;
3135 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3136 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3137 log->l_prev_block = log->l_curr_block;
3138 log->l_prev_cycle = log->l_curr_cycle;
3139
3140 /* roll log?: ic_offset changed later */
3141 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3142
3143 /* Round up to next log-sunit */
3144 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3145 log->l_mp->m_sb.sb_logsunit > 1) {
3146 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3147 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3148 }
3149
3150 if (log->l_curr_block >= log->l_logBBsize) {
3151 /*
3152 * Rewind the current block before the cycle is bumped to make
3153 * sure that the combined LSN never transiently moves forward
3154 * when the log wraps to the next cycle. This is to support the
3155 * unlocked sample of these fields from xlog_valid_lsn(). Most
3156 * other cases should acquire l_icloglock.
3157 */
3158 log->l_curr_block -= log->l_logBBsize;
3159 ASSERT(log->l_curr_block >= 0);
3160 smp_wmb();
3161 log->l_curr_cycle++;
3162 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3163 log->l_curr_cycle++;
3164 }
3165 ASSERT(iclog == log->l_iclog);
3166 log->l_iclog = iclog->ic_next;
3167} /* xlog_state_switch_iclogs */
3168
3169/*
3170 * Write out all data in the in-core log as of this exact moment in time.
3171 *
3172 * Data may be written to the in-core log during this call. However,
3173 * we don't guarantee this data will be written out. A change from past
3174 * implementation means this routine will *not* write out zero length LRs.
3175 *
3176 * Basically, we try and perform an intelligent scan of the in-core logs.
3177 * If we determine there is no flushable data, we just return. There is no
3178 * flushable data if:
3179 *
3180 * 1. the current iclog is active and has no data; the previous iclog
3181 * is in the active or dirty state.
3182 * 2. the current iclog is drity, and the previous iclog is in the
3183 * active or dirty state.
3184 *
3185 * We may sleep if:
3186 *
3187 * 1. the current iclog is not in the active nor dirty state.
3188 * 2. the current iclog dirty, and the previous iclog is not in the
3189 * active nor dirty state.
3190 * 3. the current iclog is active, and there is another thread writing
3191 * to this particular iclog.
3192 * 4. a) the current iclog is active and has no other writers
3193 * b) when we return from flushing out this iclog, it is still
3194 * not in the active nor dirty state.
3195 */
3196int
3197_xfs_log_force(
3198 struct xfs_mount *mp,
3199 uint flags,
3200 int *log_flushed)
3201{
3202 struct xlog *log = mp->m_log;
3203 struct xlog_in_core *iclog;
3204 xfs_lsn_t lsn;
3205
3206 XFS_STATS_INC(mp, xs_log_force);
3207
3208 xlog_cil_force(log);
3209
3210 spin_lock(&log->l_icloglock);
3211
3212 iclog = log->l_iclog;
3213 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3214 spin_unlock(&log->l_icloglock);
3215 return -EIO;
3216 }
3217
3218 /* If the head iclog is not active nor dirty, we just attach
3219 * ourselves to the head and go to sleep.
3220 */
3221 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3222 iclog->ic_state == XLOG_STATE_DIRTY) {
3223 /*
3224 * If the head is dirty or (active and empty), then
3225 * we need to look at the previous iclog. If the previous
3226 * iclog is active or dirty we are done. There is nothing
3227 * to sync out. Otherwise, we attach ourselves to the
3228 * previous iclog and go to sleep.
3229 */
3230 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3231 (atomic_read(&iclog->ic_refcnt) == 0
3232 && iclog->ic_offset == 0)) {
3233 iclog = iclog->ic_prev;
3234 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3235 iclog->ic_state == XLOG_STATE_DIRTY)
3236 goto no_sleep;
3237 else
3238 goto maybe_sleep;
3239 } else {
3240 if (atomic_read(&iclog->ic_refcnt) == 0) {
3241 /* We are the only one with access to this
3242 * iclog. Flush it out now. There should
3243 * be a roundoff of zero to show that someone
3244 * has already taken care of the roundoff from
3245 * the previous sync.
3246 */
3247 atomic_inc(&iclog->ic_refcnt);
3248 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3249 xlog_state_switch_iclogs(log, iclog, 0);
3250 spin_unlock(&log->l_icloglock);
3251
3252 if (xlog_state_release_iclog(log, iclog))
3253 return -EIO;
3254
3255 if (log_flushed)
3256 *log_flushed = 1;
3257 spin_lock(&log->l_icloglock);
3258 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3259 iclog->ic_state != XLOG_STATE_DIRTY)
3260 goto maybe_sleep;
3261 else
3262 goto no_sleep;
3263 } else {
3264 /* Someone else is writing to this iclog.
3265 * Use its call to flush out the data. However,
3266 * the other thread may not force out this LR,
3267 * so we mark it WANT_SYNC.
3268 */
3269 xlog_state_switch_iclogs(log, iclog, 0);
3270 goto maybe_sleep;
3271 }
3272 }
3273 }
3274
3275 /* By the time we come around again, the iclog could've been filled
3276 * which would give it another lsn. If we have a new lsn, just
3277 * return because the relevant data has been flushed.
3278 */
3279maybe_sleep:
3280 if (flags & XFS_LOG_SYNC) {
3281 /*
3282 * We must check if we're shutting down here, before
3283 * we wait, while we're holding the l_icloglock.
3284 * Then we check again after waking up, in case our
3285 * sleep was disturbed by a bad news.
3286 */
3287 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3288 spin_unlock(&log->l_icloglock);
3289 return -EIO;
3290 }
3291 XFS_STATS_INC(mp, xs_log_force_sleep);
3292 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3293 /*
3294 * No need to grab the log lock here since we're
3295 * only deciding whether or not to return EIO
3296 * and the memory read should be atomic.
3297 */
3298 if (iclog->ic_state & XLOG_STATE_IOERROR)
3299 return -EIO;
3300 if (log_flushed)
3301 *log_flushed = 1;
3302 } else {
3303
3304no_sleep:
3305 spin_unlock(&log->l_icloglock);
3306 }
3307 return 0;
3308}
3309
3310/*
3311 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3312 * about errors or whether the log was flushed or not. This is the normal
3313 * interface to use when trying to unpin items or move the log forward.
3314 */
3315void
3316xfs_log_force(
3317 xfs_mount_t *mp,
3318 uint flags)
3319{
3320 trace_xfs_log_force(mp, 0, _RET_IP_);
3321 _xfs_log_force(mp, flags, NULL);
3322}
3323
3324/*
3325 * Force the in-core log to disk for a specific LSN.
3326 *
3327 * Find in-core log with lsn.
3328 * If it is in the DIRTY state, just return.
3329 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3330 * state and go to sleep or return.
3331 * If it is in any other state, go to sleep or return.
3332 *
3333 * Synchronous forces are implemented with a signal variable. All callers
3334 * to force a given lsn to disk will wait on a the sv attached to the
3335 * specific in-core log. When given in-core log finally completes its
3336 * write to disk, that thread will wake up all threads waiting on the
3337 * sv.
3338 */
3339int
3340_xfs_log_force_lsn(
3341 struct xfs_mount *mp,
3342 xfs_lsn_t lsn,
3343 uint flags,
3344 int *log_flushed)
3345{
3346 struct xlog *log = mp->m_log;
3347 struct xlog_in_core *iclog;
3348 int already_slept = 0;
3349
3350 ASSERT(lsn != 0);
3351
3352 XFS_STATS_INC(mp, xs_log_force);
3353
3354 lsn = xlog_cil_force_lsn(log, lsn);
3355 if (lsn == NULLCOMMITLSN)
3356 return 0;
3357
3358try_again:
3359 spin_lock(&log->l_icloglock);
3360 iclog = log->l_iclog;
3361 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3362 spin_unlock(&log->l_icloglock);
3363 return -EIO;
3364 }
3365
3366 do {
3367 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3368 iclog = iclog->ic_next;
3369 continue;
3370 }
3371
3372 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3373 spin_unlock(&log->l_icloglock);
3374 return 0;
3375 }
3376
3377 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3378 /*
3379 * We sleep here if we haven't already slept (e.g.
3380 * this is the first time we've looked at the correct
3381 * iclog buf) and the buffer before us is going to
3382 * be sync'ed. The reason for this is that if we
3383 * are doing sync transactions here, by waiting for
3384 * the previous I/O to complete, we can allow a few
3385 * more transactions into this iclog before we close
3386 * it down.
3387 *
3388 * Otherwise, we mark the buffer WANT_SYNC, and bump
3389 * up the refcnt so we can release the log (which
3390 * drops the ref count). The state switch keeps new
3391 * transaction commits from using this buffer. When
3392 * the current commits finish writing into the buffer,
3393 * the refcount will drop to zero and the buffer will
3394 * go out then.
3395 */
3396 if (!already_slept &&
3397 (iclog->ic_prev->ic_state &
3398 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3399 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3400
3401 XFS_STATS_INC(mp, xs_log_force_sleep);
3402
3403 xlog_wait(&iclog->ic_prev->ic_write_wait,
3404 &log->l_icloglock);
3405 if (log_flushed)
3406 *log_flushed = 1;
3407 already_slept = 1;
3408 goto try_again;
3409 }
3410 atomic_inc(&iclog->ic_refcnt);
3411 xlog_state_switch_iclogs(log, iclog, 0);
3412 spin_unlock(&log->l_icloglock);
3413 if (xlog_state_release_iclog(log, iclog))
3414 return -EIO;
3415 if (log_flushed)
3416 *log_flushed = 1;
3417 spin_lock(&log->l_icloglock);
3418 }
3419
3420 if ((flags & XFS_LOG_SYNC) && /* sleep */
3421 !(iclog->ic_state &
3422 (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3423 /*
3424 * Don't wait on completion if we know that we've
3425 * gotten a log write error.
3426 */
3427 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3428 spin_unlock(&log->l_icloglock);
3429 return -EIO;
3430 }
3431 XFS_STATS_INC(mp, xs_log_force_sleep);
3432 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3433 /*
3434 * No need to grab the log lock here since we're
3435 * only deciding whether or not to return EIO
3436 * and the memory read should be atomic.
3437 */
3438 if (iclog->ic_state & XLOG_STATE_IOERROR)
3439 return -EIO;
3440
3441 if (log_flushed)
3442 *log_flushed = 1;
3443 } else { /* just return */
3444 spin_unlock(&log->l_icloglock);
3445 }
3446
3447 return 0;
3448 } while (iclog != log->l_iclog);
3449
3450 spin_unlock(&log->l_icloglock);
3451 return 0;
3452}
3453
3454/*
3455 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3456 * about errors or whether the log was flushed or not. This is the normal
3457 * interface to use when trying to unpin items or move the log forward.
3458 */
3459void
3460xfs_log_force_lsn(
3461 xfs_mount_t *mp,
3462 xfs_lsn_t lsn,
3463 uint flags)
3464{
3465 trace_xfs_log_force(mp, lsn, _RET_IP_);
3466 _xfs_log_force_lsn(mp, lsn, flags, NULL);
3467}
3468
3469/*
3470 * Called when we want to mark the current iclog as being ready to sync to
3471 * disk.
3472 */
3473STATIC void
3474xlog_state_want_sync(
3475 struct xlog *log,
3476 struct xlog_in_core *iclog)
3477{
3478 assert_spin_locked(&log->l_icloglock);
3479
3480 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3481 xlog_state_switch_iclogs(log, iclog, 0);
3482 } else {
3483 ASSERT(iclog->ic_state &
3484 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3485 }
3486}
3487
3488
3489/*****************************************************************************
3490 *
3491 * TICKET functions
3492 *
3493 *****************************************************************************
3494 */
3495
3496/*
3497 * Free a used ticket when its refcount falls to zero.
3498 */
3499void
3500xfs_log_ticket_put(
3501 xlog_ticket_t *ticket)
3502{
3503 ASSERT(atomic_read(&ticket->t_ref) > 0);
3504 if (atomic_dec_and_test(&ticket->t_ref))
3505 kmem_zone_free(xfs_log_ticket_zone, ticket);
3506}
3507
3508xlog_ticket_t *
3509xfs_log_ticket_get(
3510 xlog_ticket_t *ticket)
3511{
3512 ASSERT(atomic_read(&ticket->t_ref) > 0);
3513 atomic_inc(&ticket->t_ref);
3514 return ticket;
3515}
3516
3517/*
3518 * Figure out the total log space unit (in bytes) that would be
3519 * required for a log ticket.
3520 */
3521int
3522xfs_log_calc_unit_res(
3523 struct xfs_mount *mp,
3524 int unit_bytes)
3525{
3526 struct xlog *log = mp->m_log;
3527 int iclog_space;
3528 uint num_headers;
3529
3530 /*
3531 * Permanent reservations have up to 'cnt'-1 active log operations
3532 * in the log. A unit in this case is the amount of space for one
3533 * of these log operations. Normal reservations have a cnt of 1
3534 * and their unit amount is the total amount of space required.
3535 *
3536 * The following lines of code account for non-transaction data
3537 * which occupy space in the on-disk log.
3538 *
3539 * Normal form of a transaction is:
3540 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3541 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3542 *
3543 * We need to account for all the leadup data and trailer data
3544 * around the transaction data.
3545 * And then we need to account for the worst case in terms of using
3546 * more space.
3547 * The worst case will happen if:
3548 * - the placement of the transaction happens to be such that the
3549 * roundoff is at its maximum
3550 * - the transaction data is synced before the commit record is synced
3551 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3552 * Therefore the commit record is in its own Log Record.
3553 * This can happen as the commit record is called with its
3554 * own region to xlog_write().
3555 * This then means that in the worst case, roundoff can happen for
3556 * the commit-rec as well.
3557 * The commit-rec is smaller than padding in this scenario and so it is
3558 * not added separately.
3559 */
3560
3561 /* for trans header */
3562 unit_bytes += sizeof(xlog_op_header_t);
3563 unit_bytes += sizeof(xfs_trans_header_t);
3564
3565 /* for start-rec */
3566 unit_bytes += sizeof(xlog_op_header_t);
3567
3568 /*
3569 * for LR headers - the space for data in an iclog is the size minus
3570 * the space used for the headers. If we use the iclog size, then we
3571 * undercalculate the number of headers required.
3572 *
3573 * Furthermore - the addition of op headers for split-recs might
3574 * increase the space required enough to require more log and op
3575 * headers, so take that into account too.
3576 *
3577 * IMPORTANT: This reservation makes the assumption that if this
3578 * transaction is the first in an iclog and hence has the LR headers
3579 * accounted to it, then the remaining space in the iclog is
3580 * exclusively for this transaction. i.e. if the transaction is larger
3581 * than the iclog, it will be the only thing in that iclog.
3582 * Fundamentally, this means we must pass the entire log vector to
3583 * xlog_write to guarantee this.
3584 */
3585 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3586 num_headers = howmany(unit_bytes, iclog_space);
3587
3588 /* for split-recs - ophdrs added when data split over LRs */
3589 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3590
3591 /* add extra header reservations if we overrun */
3592 while (!num_headers ||
3593 howmany(unit_bytes, iclog_space) > num_headers) {
3594 unit_bytes += sizeof(xlog_op_header_t);
3595 num_headers++;
3596 }
3597 unit_bytes += log->l_iclog_hsize * num_headers;
3598
3599 /* for commit-rec LR header - note: padding will subsume the ophdr */
3600 unit_bytes += log->l_iclog_hsize;
3601
3602 /* for roundoff padding for transaction data and one for commit record */
3603 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3604 /* log su roundoff */
3605 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3606 } else {
3607 /* BB roundoff */
3608 unit_bytes += 2 * BBSIZE;
3609 }
3610
3611 return unit_bytes;
3612}
3613
3614/*
3615 * Allocate and initialise a new log ticket.
3616 */
3617struct xlog_ticket *
3618xlog_ticket_alloc(
3619 struct xlog *log,
3620 int unit_bytes,
3621 int cnt,
3622 char client,
3623 bool permanent,
3624 xfs_km_flags_t alloc_flags)
3625{
3626 struct xlog_ticket *tic;
3627 int unit_res;
3628
3629 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3630 if (!tic)
3631 return NULL;
3632
3633 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3634
3635 atomic_set(&tic->t_ref, 1);
3636 tic->t_task = current;
3637 INIT_LIST_HEAD(&tic->t_queue);
3638 tic->t_unit_res = unit_res;
3639 tic->t_curr_res = unit_res;
3640 tic->t_cnt = cnt;
3641 tic->t_ocnt = cnt;
3642 tic->t_tid = prandom_u32();
3643 tic->t_clientid = client;
3644 tic->t_flags = XLOG_TIC_INITED;
3645 if (permanent)
3646 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3647
3648 xlog_tic_reset_res(tic);
3649
3650 return tic;
3651}
3652
3653
3654/******************************************************************************
3655 *
3656 * Log debug routines
3657 *
3658 ******************************************************************************
3659 */
3660#if defined(DEBUG)
3661/*
3662 * Make sure that the destination ptr is within the valid data region of
3663 * one of the iclogs. This uses backup pointers stored in a different
3664 * part of the log in case we trash the log structure.
3665 */
3666void
3667xlog_verify_dest_ptr(
3668 struct xlog *log,
3669 void *ptr)
3670{
3671 int i;
3672 int good_ptr = 0;
3673
3674 for (i = 0; i < log->l_iclog_bufs; i++) {
3675 if (ptr >= log->l_iclog_bak[i] &&
3676 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3677 good_ptr++;
3678 }
3679
3680 if (!good_ptr)
3681 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3682}
3683
3684/*
3685 * Check to make sure the grant write head didn't just over lap the tail. If
3686 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3687 * the cycles differ by exactly one and check the byte count.
3688 *
3689 * This check is run unlocked, so can give false positives. Rather than assert
3690 * on failures, use a warn-once flag and a panic tag to allow the admin to
3691 * determine if they want to panic the machine when such an error occurs. For
3692 * debug kernels this will have the same effect as using an assert but, unlinke
3693 * an assert, it can be turned off at runtime.
3694 */
3695STATIC void
3696xlog_verify_grant_tail(
3697 struct xlog *log)
3698{
3699 int tail_cycle, tail_blocks;
3700 int cycle, space;
3701
3702 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3703 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3704 if (tail_cycle != cycle) {
3705 if (cycle - 1 != tail_cycle &&
3706 !(log->l_flags & XLOG_TAIL_WARN)) {
3707 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3708 "%s: cycle - 1 != tail_cycle", __func__);
3709 log->l_flags |= XLOG_TAIL_WARN;
3710 }
3711
3712 if (space > BBTOB(tail_blocks) &&
3713 !(log->l_flags & XLOG_TAIL_WARN)) {
3714 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3715 "%s: space > BBTOB(tail_blocks)", __func__);
3716 log->l_flags |= XLOG_TAIL_WARN;
3717 }
3718 }
3719}
3720
3721/* check if it will fit */
3722STATIC void
3723xlog_verify_tail_lsn(
3724 struct xlog *log,
3725 struct xlog_in_core *iclog,
3726 xfs_lsn_t tail_lsn)
3727{
3728 int blocks;
3729
3730 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3731 blocks =
3732 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3733 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3734 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3735 } else {
3736 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3737
3738 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3739 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3740
3741 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3742 if (blocks < BTOBB(iclog->ic_offset) + 1)
3743 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3744 }
3745} /* xlog_verify_tail_lsn */
3746
3747/*
3748 * Perform a number of checks on the iclog before writing to disk.
3749 *
3750 * 1. Make sure the iclogs are still circular
3751 * 2. Make sure we have a good magic number
3752 * 3. Make sure we don't have magic numbers in the data
3753 * 4. Check fields of each log operation header for:
3754 * A. Valid client identifier
3755 * B. tid ptr value falls in valid ptr space (user space code)
3756 * C. Length in log record header is correct according to the
3757 * individual operation headers within record.
3758 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3759 * log, check the preceding blocks of the physical log to make sure all
3760 * the cycle numbers agree with the current cycle number.
3761 */
3762STATIC void
3763xlog_verify_iclog(
3764 struct xlog *log,
3765 struct xlog_in_core *iclog,
3766 int count,
3767 bool syncing)
3768{
3769 xlog_op_header_t *ophead;
3770 xlog_in_core_t *icptr;
3771 xlog_in_core_2_t *xhdr;
3772 void *base_ptr, *ptr, *p;
3773 ptrdiff_t field_offset;
3774 __uint8_t clientid;
3775 int len, i, j, k, op_len;
3776 int idx;
3777
3778 /* check validity of iclog pointers */
3779 spin_lock(&log->l_icloglock);
3780 icptr = log->l_iclog;
3781 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3782 ASSERT(icptr);
3783
3784 if (icptr != log->l_iclog)
3785 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3786 spin_unlock(&log->l_icloglock);
3787
3788 /* check log magic numbers */
3789 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3790 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3791
3792 base_ptr = ptr = &iclog->ic_header;
3793 p = &iclog->ic_header;
3794 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3795 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3796 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3797 __func__);
3798 }
3799
3800 /* check fields */
3801 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3802 base_ptr = ptr = iclog->ic_datap;
3803 ophead = ptr;
3804 xhdr = iclog->ic_data;
3805 for (i = 0; i < len; i++) {
3806 ophead = ptr;
3807
3808 /* clientid is only 1 byte */
3809 p = &ophead->oh_clientid;
3810 field_offset = p - base_ptr;
3811 if (!syncing || (field_offset & 0x1ff)) {
3812 clientid = ophead->oh_clientid;
3813 } else {
3814 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3815 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3816 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3817 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3818 clientid = xlog_get_client_id(
3819 xhdr[j].hic_xheader.xh_cycle_data[k]);
3820 } else {
3821 clientid = xlog_get_client_id(
3822 iclog->ic_header.h_cycle_data[idx]);
3823 }
3824 }
3825 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3826 xfs_warn(log->l_mp,
3827 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3828 __func__, clientid, ophead,
3829 (unsigned long)field_offset);
3830
3831 /* check length */
3832 p = &ophead->oh_len;
3833 field_offset = p - base_ptr;
3834 if (!syncing || (field_offset & 0x1ff)) {
3835 op_len = be32_to_cpu(ophead->oh_len);
3836 } else {
3837 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3838 (uintptr_t)iclog->ic_datap);
3839 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3840 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3841 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3842 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3843 } else {
3844 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3845 }
3846 }
3847 ptr += sizeof(xlog_op_header_t) + op_len;
3848 }
3849} /* xlog_verify_iclog */
3850#endif
3851
3852/*
3853 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3854 */
3855STATIC int
3856xlog_state_ioerror(
3857 struct xlog *log)
3858{
3859 xlog_in_core_t *iclog, *ic;
3860
3861 iclog = log->l_iclog;
3862 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3863 /*
3864 * Mark all the incore logs IOERROR.
3865 * From now on, no log flushes will result.
3866 */
3867 ic = iclog;
3868 do {
3869 ic->ic_state = XLOG_STATE_IOERROR;
3870 ic = ic->ic_next;
3871 } while (ic != iclog);
3872 return 0;
3873 }
3874 /*
3875 * Return non-zero, if state transition has already happened.
3876 */
3877 return 1;
3878}
3879
3880/*
3881 * This is called from xfs_force_shutdown, when we're forcibly
3882 * shutting down the filesystem, typically because of an IO error.
3883 * Our main objectives here are to make sure that:
3884 * a. if !logerror, flush the logs to disk. Anything modified
3885 * after this is ignored.
3886 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3887 * parties to find out, 'atomically'.
3888 * c. those who're sleeping on log reservations, pinned objects and
3889 * other resources get woken up, and be told the bad news.
3890 * d. nothing new gets queued up after (b) and (c) are done.
3891 *
3892 * Note: for the !logerror case we need to flush the regions held in memory out
3893 * to disk first. This needs to be done before the log is marked as shutdown,
3894 * otherwise the iclog writes will fail.
3895 */
3896int
3897xfs_log_force_umount(
3898 struct xfs_mount *mp,
3899 int logerror)
3900{
3901 struct xlog *log;
3902 int retval;
3903
3904 log = mp->m_log;
3905
3906 /*
3907 * If this happens during log recovery, don't worry about
3908 * locking; the log isn't open for business yet.
3909 */
3910 if (!log ||
3911 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3912 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3913 if (mp->m_sb_bp)
3914 mp->m_sb_bp->b_flags |= XBF_DONE;
3915 return 0;
3916 }
3917
3918 /*
3919 * Somebody could've already done the hard work for us.
3920 * No need to get locks for this.
3921 */
3922 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3923 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3924 return 1;
3925 }
3926
3927 /*
3928 * Flush all the completed transactions to disk before marking the log
3929 * being shut down. We need to do it in this order to ensure that
3930 * completed operations are safely on disk before we shut down, and that
3931 * we don't have to issue any buffer IO after the shutdown flags are set
3932 * to guarantee this.
3933 */
3934 if (!logerror)
3935 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3936
3937 /*
3938 * mark the filesystem and the as in a shutdown state and wake
3939 * everybody up to tell them the bad news.
3940 */
3941 spin_lock(&log->l_icloglock);
3942 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3943 if (mp->m_sb_bp)
3944 mp->m_sb_bp->b_flags |= XBF_DONE;
3945
3946 /*
3947 * Mark the log and the iclogs with IO error flags to prevent any
3948 * further log IO from being issued or completed.
3949 */
3950 log->l_flags |= XLOG_IO_ERROR;
3951 retval = xlog_state_ioerror(log);
3952 spin_unlock(&log->l_icloglock);
3953
3954 /*
3955 * We don't want anybody waiting for log reservations after this. That
3956 * means we have to wake up everybody queued up on reserveq as well as
3957 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3958 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3959 * action is protected by the grant locks.
3960 */
3961 xlog_grant_head_wake_all(&log->l_reserve_head);
3962 xlog_grant_head_wake_all(&log->l_write_head);
3963
3964 /*
3965 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3966 * as if the log writes were completed. The abort handling in the log
3967 * item committed callback functions will do this again under lock to
3968 * avoid races.
3969 */
3970 wake_up_all(&log->l_cilp->xc_commit_wait);
3971 xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
3972
3973#ifdef XFSERRORDEBUG
3974 {
3975 xlog_in_core_t *iclog;
3976
3977 spin_lock(&log->l_icloglock);
3978 iclog = log->l_iclog;
3979 do {
3980 ASSERT(iclog->ic_callback == 0);
3981 iclog = iclog->ic_next;
3982 } while (iclog != log->l_iclog);
3983 spin_unlock(&log->l_icloglock);
3984 }
3985#endif
3986 /* return non-zero if log IOERROR transition had already happened */
3987 return retval;
3988}
3989
3990STATIC int
3991xlog_iclogs_empty(
3992 struct xlog *log)
3993{
3994 xlog_in_core_t *iclog;
3995
3996 iclog = log->l_iclog;
3997 do {
3998 /* endianness does not matter here, zero is zero in
3999 * any language.
4000 */
4001 if (iclog->ic_header.h_num_logops)
4002 return 0;
4003 iclog = iclog->ic_next;
4004 } while (iclog != log->l_iclog);
4005 return 1;
4006}
4007
4008/*
4009 * Verify that an LSN stamped into a piece of metadata is valid. This is
4010 * intended for use in read verifiers on v5 superblocks.
4011 */
4012bool
4013xfs_log_check_lsn(
4014 struct xfs_mount *mp,
4015 xfs_lsn_t lsn)
4016{
4017 struct xlog *log = mp->m_log;
4018 bool valid;
4019
4020 /*
4021 * norecovery mode skips mount-time log processing and unconditionally
4022 * resets the in-core LSN. We can't validate in this mode, but
4023 * modifications are not allowed anyways so just return true.
4024 */
4025 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4026 return true;
4027
4028 /*
4029 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4030 * handled by recovery and thus safe to ignore here.
4031 */
4032 if (lsn == NULLCOMMITLSN)
4033 return true;
4034
4035 valid = xlog_valid_lsn(mp->m_log, lsn);
4036
4037 /* warn the user about what's gone wrong before verifier failure */
4038 if (!valid) {
4039 spin_lock(&log->l_icloglock);
4040 xfs_warn(mp,
4041"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4042"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4043 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4044 log->l_curr_cycle, log->l_curr_block);
4045 spin_unlock(&log->l_icloglock);
4046 }
4047
4048 return valid;
4049}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_errortag.h"
14#include "xfs_error.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
18#include "xfs_log_priv.h"
19#include "xfs_trace.h"
20#include "xfs_sysfs.h"
21#include "xfs_sb.h"
22#include "xfs_health.h"
23
24kmem_zone_t *xfs_log_ticket_zone;
25
26/* Local miscellaneous function prototypes */
27STATIC int
28xlog_commit_record(
29 struct xlog *log,
30 struct xlog_ticket *ticket,
31 struct xlog_in_core **iclog,
32 xfs_lsn_t *commitlsnp);
33
34STATIC struct xlog *
35xlog_alloc_log(
36 struct xfs_mount *mp,
37 struct xfs_buftarg *log_target,
38 xfs_daddr_t blk_offset,
39 int num_bblks);
40STATIC int
41xlog_space_left(
42 struct xlog *log,
43 atomic64_t *head);
44STATIC void
45xlog_dealloc_log(
46 struct xlog *log);
47
48/* local state machine functions */
49STATIC void xlog_state_done_syncing(
50 struct xlog_in_core *iclog,
51 bool aborted);
52STATIC int
53xlog_state_get_iclog_space(
54 struct xlog *log,
55 int len,
56 struct xlog_in_core **iclog,
57 struct xlog_ticket *ticket,
58 int *continued_write,
59 int *logoffsetp);
60STATIC int
61xlog_state_release_iclog(
62 struct xlog *log,
63 struct xlog_in_core *iclog);
64STATIC void
65xlog_state_switch_iclogs(
66 struct xlog *log,
67 struct xlog_in_core *iclog,
68 int eventual_size);
69STATIC void
70xlog_state_want_sync(
71 struct xlog *log,
72 struct xlog_in_core *iclog);
73
74STATIC void
75xlog_grant_push_ail(
76 struct xlog *log,
77 int need_bytes);
78STATIC void
79xlog_regrant_reserve_log_space(
80 struct xlog *log,
81 struct xlog_ticket *ticket);
82STATIC void
83xlog_ungrant_log_space(
84 struct xlog *log,
85 struct xlog_ticket *ticket);
86
87#if defined(DEBUG)
88STATIC void
89xlog_verify_dest_ptr(
90 struct xlog *log,
91 void *ptr);
92STATIC void
93xlog_verify_grant_tail(
94 struct xlog *log);
95STATIC void
96xlog_verify_iclog(
97 struct xlog *log,
98 struct xlog_in_core *iclog,
99 int count);
100STATIC void
101xlog_verify_tail_lsn(
102 struct xlog *log,
103 struct xlog_in_core *iclog,
104 xfs_lsn_t tail_lsn);
105#else
106#define xlog_verify_dest_ptr(a,b)
107#define xlog_verify_grant_tail(a)
108#define xlog_verify_iclog(a,b,c)
109#define xlog_verify_tail_lsn(a,b,c)
110#endif
111
112STATIC int
113xlog_iclogs_empty(
114 struct xlog *log);
115
116static void
117xlog_grant_sub_space(
118 struct xlog *log,
119 atomic64_t *head,
120 int bytes)
121{
122 int64_t head_val = atomic64_read(head);
123 int64_t new, old;
124
125 do {
126 int cycle, space;
127
128 xlog_crack_grant_head_val(head_val, &cycle, &space);
129
130 space -= bytes;
131 if (space < 0) {
132 space += log->l_logsize;
133 cycle--;
134 }
135
136 old = head_val;
137 new = xlog_assign_grant_head_val(cycle, space);
138 head_val = atomic64_cmpxchg(head, old, new);
139 } while (head_val != old);
140}
141
142static void
143xlog_grant_add_space(
144 struct xlog *log,
145 atomic64_t *head,
146 int bytes)
147{
148 int64_t head_val = atomic64_read(head);
149 int64_t new, old;
150
151 do {
152 int tmp;
153 int cycle, space;
154
155 xlog_crack_grant_head_val(head_val, &cycle, &space);
156
157 tmp = log->l_logsize - space;
158 if (tmp > bytes)
159 space += bytes;
160 else {
161 space = bytes - tmp;
162 cycle++;
163 }
164
165 old = head_val;
166 new = xlog_assign_grant_head_val(cycle, space);
167 head_val = atomic64_cmpxchg(head, old, new);
168 } while (head_val != old);
169}
170
171STATIC void
172xlog_grant_head_init(
173 struct xlog_grant_head *head)
174{
175 xlog_assign_grant_head(&head->grant, 1, 0);
176 INIT_LIST_HEAD(&head->waiters);
177 spin_lock_init(&head->lock);
178}
179
180STATIC void
181xlog_grant_head_wake_all(
182 struct xlog_grant_head *head)
183{
184 struct xlog_ticket *tic;
185
186 spin_lock(&head->lock);
187 list_for_each_entry(tic, &head->waiters, t_queue)
188 wake_up_process(tic->t_task);
189 spin_unlock(&head->lock);
190}
191
192static inline int
193xlog_ticket_reservation(
194 struct xlog *log,
195 struct xlog_grant_head *head,
196 struct xlog_ticket *tic)
197{
198 if (head == &log->l_write_head) {
199 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
200 return tic->t_unit_res;
201 } else {
202 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
203 return tic->t_unit_res * tic->t_cnt;
204 else
205 return tic->t_unit_res;
206 }
207}
208
209STATIC bool
210xlog_grant_head_wake(
211 struct xlog *log,
212 struct xlog_grant_head *head,
213 int *free_bytes)
214{
215 struct xlog_ticket *tic;
216 int need_bytes;
217 bool woken_task = false;
218
219 list_for_each_entry(tic, &head->waiters, t_queue) {
220
221 /*
222 * There is a chance that the size of the CIL checkpoints in
223 * progress at the last AIL push target calculation resulted in
224 * limiting the target to the log head (l_last_sync_lsn) at the
225 * time. This may not reflect where the log head is now as the
226 * CIL checkpoints may have completed.
227 *
228 * Hence when we are woken here, it may be that the head of the
229 * log that has moved rather than the tail. As the tail didn't
230 * move, there still won't be space available for the
231 * reservation we require. However, if the AIL has already
232 * pushed to the target defined by the old log head location, we
233 * will hang here waiting for something else to update the AIL
234 * push target.
235 *
236 * Therefore, if there isn't space to wake the first waiter on
237 * the grant head, we need to push the AIL again to ensure the
238 * target reflects both the current log tail and log head
239 * position before we wait for the tail to move again.
240 */
241
242 need_bytes = xlog_ticket_reservation(log, head, tic);
243 if (*free_bytes < need_bytes) {
244 if (!woken_task)
245 xlog_grant_push_ail(log, need_bytes);
246 return false;
247 }
248
249 *free_bytes -= need_bytes;
250 trace_xfs_log_grant_wake_up(log, tic);
251 wake_up_process(tic->t_task);
252 woken_task = true;
253 }
254
255 return true;
256}
257
258STATIC int
259xlog_grant_head_wait(
260 struct xlog *log,
261 struct xlog_grant_head *head,
262 struct xlog_ticket *tic,
263 int need_bytes) __releases(&head->lock)
264 __acquires(&head->lock)
265{
266 list_add_tail(&tic->t_queue, &head->waiters);
267
268 do {
269 if (XLOG_FORCED_SHUTDOWN(log))
270 goto shutdown;
271 xlog_grant_push_ail(log, need_bytes);
272
273 __set_current_state(TASK_UNINTERRUPTIBLE);
274 spin_unlock(&head->lock);
275
276 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
277
278 trace_xfs_log_grant_sleep(log, tic);
279 schedule();
280 trace_xfs_log_grant_wake(log, tic);
281
282 spin_lock(&head->lock);
283 if (XLOG_FORCED_SHUTDOWN(log))
284 goto shutdown;
285 } while (xlog_space_left(log, &head->grant) < need_bytes);
286
287 list_del_init(&tic->t_queue);
288 return 0;
289shutdown:
290 list_del_init(&tic->t_queue);
291 return -EIO;
292}
293
294/*
295 * Atomically get the log space required for a log ticket.
296 *
297 * Once a ticket gets put onto head->waiters, it will only return after the
298 * needed reservation is satisfied.
299 *
300 * This function is structured so that it has a lock free fast path. This is
301 * necessary because every new transaction reservation will come through this
302 * path. Hence any lock will be globally hot if we take it unconditionally on
303 * every pass.
304 *
305 * As tickets are only ever moved on and off head->waiters under head->lock, we
306 * only need to take that lock if we are going to add the ticket to the queue
307 * and sleep. We can avoid taking the lock if the ticket was never added to
308 * head->waiters because the t_queue list head will be empty and we hold the
309 * only reference to it so it can safely be checked unlocked.
310 */
311STATIC int
312xlog_grant_head_check(
313 struct xlog *log,
314 struct xlog_grant_head *head,
315 struct xlog_ticket *tic,
316 int *need_bytes)
317{
318 int free_bytes;
319 int error = 0;
320
321 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
322
323 /*
324 * If there are other waiters on the queue then give them a chance at
325 * logspace before us. Wake up the first waiters, if we do not wake
326 * up all the waiters then go to sleep waiting for more free space,
327 * otherwise try to get some space for this transaction.
328 */
329 *need_bytes = xlog_ticket_reservation(log, head, tic);
330 free_bytes = xlog_space_left(log, &head->grant);
331 if (!list_empty_careful(&head->waiters)) {
332 spin_lock(&head->lock);
333 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
334 free_bytes < *need_bytes) {
335 error = xlog_grant_head_wait(log, head, tic,
336 *need_bytes);
337 }
338 spin_unlock(&head->lock);
339 } else if (free_bytes < *need_bytes) {
340 spin_lock(&head->lock);
341 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
342 spin_unlock(&head->lock);
343 }
344
345 return error;
346}
347
348static void
349xlog_tic_reset_res(xlog_ticket_t *tic)
350{
351 tic->t_res_num = 0;
352 tic->t_res_arr_sum = 0;
353 tic->t_res_num_ophdrs = 0;
354}
355
356static void
357xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
358{
359 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
360 /* add to overflow and start again */
361 tic->t_res_o_flow += tic->t_res_arr_sum;
362 tic->t_res_num = 0;
363 tic->t_res_arr_sum = 0;
364 }
365
366 tic->t_res_arr[tic->t_res_num].r_len = len;
367 tic->t_res_arr[tic->t_res_num].r_type = type;
368 tic->t_res_arr_sum += len;
369 tic->t_res_num++;
370}
371
372/*
373 * Replenish the byte reservation required by moving the grant write head.
374 */
375int
376xfs_log_regrant(
377 struct xfs_mount *mp,
378 struct xlog_ticket *tic)
379{
380 struct xlog *log = mp->m_log;
381 int need_bytes;
382 int error = 0;
383
384 if (XLOG_FORCED_SHUTDOWN(log))
385 return -EIO;
386
387 XFS_STATS_INC(mp, xs_try_logspace);
388
389 /*
390 * This is a new transaction on the ticket, so we need to change the
391 * transaction ID so that the next transaction has a different TID in
392 * the log. Just add one to the existing tid so that we can see chains
393 * of rolling transactions in the log easily.
394 */
395 tic->t_tid++;
396
397 xlog_grant_push_ail(log, tic->t_unit_res);
398
399 tic->t_curr_res = tic->t_unit_res;
400 xlog_tic_reset_res(tic);
401
402 if (tic->t_cnt > 0)
403 return 0;
404
405 trace_xfs_log_regrant(log, tic);
406
407 error = xlog_grant_head_check(log, &log->l_write_head, tic,
408 &need_bytes);
409 if (error)
410 goto out_error;
411
412 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
413 trace_xfs_log_regrant_exit(log, tic);
414 xlog_verify_grant_tail(log);
415 return 0;
416
417out_error:
418 /*
419 * If we are failing, make sure the ticket doesn't have any current
420 * reservations. We don't want to add this back when the ticket/
421 * transaction gets cancelled.
422 */
423 tic->t_curr_res = 0;
424 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
425 return error;
426}
427
428/*
429 * Reserve log space and return a ticket corresponding to the reservation.
430 *
431 * Each reservation is going to reserve extra space for a log record header.
432 * When writes happen to the on-disk log, we don't subtract the length of the
433 * log record header from any reservation. By wasting space in each
434 * reservation, we prevent over allocation problems.
435 */
436int
437xfs_log_reserve(
438 struct xfs_mount *mp,
439 int unit_bytes,
440 int cnt,
441 struct xlog_ticket **ticp,
442 uint8_t client,
443 bool permanent)
444{
445 struct xlog *log = mp->m_log;
446 struct xlog_ticket *tic;
447 int need_bytes;
448 int error = 0;
449
450 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
451
452 if (XLOG_FORCED_SHUTDOWN(log))
453 return -EIO;
454
455 XFS_STATS_INC(mp, xs_try_logspace);
456
457 ASSERT(*ticp == NULL);
458 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent, 0);
459 *ticp = tic;
460
461 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
462 : tic->t_unit_res);
463
464 trace_xfs_log_reserve(log, tic);
465
466 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
467 &need_bytes);
468 if (error)
469 goto out_error;
470
471 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
472 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
473 trace_xfs_log_reserve_exit(log, tic);
474 xlog_verify_grant_tail(log);
475 return 0;
476
477out_error:
478 /*
479 * If we are failing, make sure the ticket doesn't have any current
480 * reservations. We don't want to add this back when the ticket/
481 * transaction gets cancelled.
482 */
483 tic->t_curr_res = 0;
484 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
485 return error;
486}
487
488
489/*
490 * NOTES:
491 *
492 * 1. currblock field gets updated at startup and after in-core logs
493 * marked as with WANT_SYNC.
494 */
495
496/*
497 * This routine is called when a user of a log manager ticket is done with
498 * the reservation. If the ticket was ever used, then a commit record for
499 * the associated transaction is written out as a log operation header with
500 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
501 * a given ticket. If the ticket was one with a permanent reservation, then
502 * a few operations are done differently. Permanent reservation tickets by
503 * default don't release the reservation. They just commit the current
504 * transaction with the belief that the reservation is still needed. A flag
505 * must be passed in before permanent reservations are actually released.
506 * When these type of tickets are not released, they need to be set into
507 * the inited state again. By doing this, a start record will be written
508 * out when the next write occurs.
509 */
510xfs_lsn_t
511xfs_log_done(
512 struct xfs_mount *mp,
513 struct xlog_ticket *ticket,
514 struct xlog_in_core **iclog,
515 bool regrant)
516{
517 struct xlog *log = mp->m_log;
518 xfs_lsn_t lsn = 0;
519
520 if (XLOG_FORCED_SHUTDOWN(log) ||
521 /*
522 * If nothing was ever written, don't write out commit record.
523 * If we get an error, just continue and give back the log ticket.
524 */
525 (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
526 (xlog_commit_record(log, ticket, iclog, &lsn)))) {
527 lsn = (xfs_lsn_t) -1;
528 regrant = false;
529 }
530
531
532 if (!regrant) {
533 trace_xfs_log_done_nonperm(log, ticket);
534
535 /*
536 * Release ticket if not permanent reservation or a specific
537 * request has been made to release a permanent reservation.
538 */
539 xlog_ungrant_log_space(log, ticket);
540 } else {
541 trace_xfs_log_done_perm(log, ticket);
542
543 xlog_regrant_reserve_log_space(log, ticket);
544 /* If this ticket was a permanent reservation and we aren't
545 * trying to release it, reset the inited flags; so next time
546 * we write, a start record will be written out.
547 */
548 ticket->t_flags |= XLOG_TIC_INITED;
549 }
550
551 xfs_log_ticket_put(ticket);
552 return lsn;
553}
554
555int
556xfs_log_release_iclog(
557 struct xfs_mount *mp,
558 struct xlog_in_core *iclog)
559{
560 if (xlog_state_release_iclog(mp->m_log, iclog)) {
561 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
562 return -EIO;
563 }
564
565 return 0;
566}
567
568/*
569 * Mount a log filesystem
570 *
571 * mp - ubiquitous xfs mount point structure
572 * log_target - buftarg of on-disk log device
573 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
574 * num_bblocks - Number of BBSIZE blocks in on-disk log
575 *
576 * Return error or zero.
577 */
578int
579xfs_log_mount(
580 xfs_mount_t *mp,
581 xfs_buftarg_t *log_target,
582 xfs_daddr_t blk_offset,
583 int num_bblks)
584{
585 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
586 int error = 0;
587 int min_logfsbs;
588
589 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
590 xfs_notice(mp, "Mounting V%d Filesystem",
591 XFS_SB_VERSION_NUM(&mp->m_sb));
592 } else {
593 xfs_notice(mp,
594"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
595 XFS_SB_VERSION_NUM(&mp->m_sb));
596 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
597 }
598
599 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
600 if (IS_ERR(mp->m_log)) {
601 error = PTR_ERR(mp->m_log);
602 goto out;
603 }
604
605 /*
606 * Validate the given log space and drop a critical message via syslog
607 * if the log size is too small that would lead to some unexpected
608 * situations in transaction log space reservation stage.
609 *
610 * Note: we can't just reject the mount if the validation fails. This
611 * would mean that people would have to downgrade their kernel just to
612 * remedy the situation as there is no way to grow the log (short of
613 * black magic surgery with xfs_db).
614 *
615 * We can, however, reject mounts for CRC format filesystems, as the
616 * mkfs binary being used to make the filesystem should never create a
617 * filesystem with a log that is too small.
618 */
619 min_logfsbs = xfs_log_calc_minimum_size(mp);
620
621 if (mp->m_sb.sb_logblocks < min_logfsbs) {
622 xfs_warn(mp,
623 "Log size %d blocks too small, minimum size is %d blocks",
624 mp->m_sb.sb_logblocks, min_logfsbs);
625 error = -EINVAL;
626 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
627 xfs_warn(mp,
628 "Log size %d blocks too large, maximum size is %lld blocks",
629 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
630 error = -EINVAL;
631 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
632 xfs_warn(mp,
633 "log size %lld bytes too large, maximum size is %lld bytes",
634 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
635 XFS_MAX_LOG_BYTES);
636 error = -EINVAL;
637 } else if (mp->m_sb.sb_logsunit > 1 &&
638 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
639 xfs_warn(mp,
640 "log stripe unit %u bytes must be a multiple of block size",
641 mp->m_sb.sb_logsunit);
642 error = -EINVAL;
643 fatal = true;
644 }
645 if (error) {
646 /*
647 * Log check errors are always fatal on v5; or whenever bad
648 * metadata leads to a crash.
649 */
650 if (fatal) {
651 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
652 ASSERT(0);
653 goto out_free_log;
654 }
655 xfs_crit(mp, "Log size out of supported range.");
656 xfs_crit(mp,
657"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
658 }
659
660 /*
661 * Initialize the AIL now we have a log.
662 */
663 error = xfs_trans_ail_init(mp);
664 if (error) {
665 xfs_warn(mp, "AIL initialisation failed: error %d", error);
666 goto out_free_log;
667 }
668 mp->m_log->l_ailp = mp->m_ail;
669
670 /*
671 * skip log recovery on a norecovery mount. pretend it all
672 * just worked.
673 */
674 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
675 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
676
677 if (readonly)
678 mp->m_flags &= ~XFS_MOUNT_RDONLY;
679
680 error = xlog_recover(mp->m_log);
681
682 if (readonly)
683 mp->m_flags |= XFS_MOUNT_RDONLY;
684 if (error) {
685 xfs_warn(mp, "log mount/recovery failed: error %d",
686 error);
687 xlog_recover_cancel(mp->m_log);
688 goto out_destroy_ail;
689 }
690 }
691
692 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
693 "log");
694 if (error)
695 goto out_destroy_ail;
696
697 /* Normal transactions can now occur */
698 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
699
700 /*
701 * Now the log has been fully initialised and we know were our
702 * space grant counters are, we can initialise the permanent ticket
703 * needed for delayed logging to work.
704 */
705 xlog_cil_init_post_recovery(mp->m_log);
706
707 return 0;
708
709out_destroy_ail:
710 xfs_trans_ail_destroy(mp);
711out_free_log:
712 xlog_dealloc_log(mp->m_log);
713out:
714 return error;
715}
716
717/*
718 * Finish the recovery of the file system. This is separate from the
719 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
720 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
721 * here.
722 *
723 * If we finish recovery successfully, start the background log work. If we are
724 * not doing recovery, then we have a RO filesystem and we don't need to start
725 * it.
726 */
727int
728xfs_log_mount_finish(
729 struct xfs_mount *mp)
730{
731 int error = 0;
732 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
733 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
734
735 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
736 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
737 return 0;
738 } else if (readonly) {
739 /* Allow unlinked processing to proceed */
740 mp->m_flags &= ~XFS_MOUNT_RDONLY;
741 }
742
743 /*
744 * During the second phase of log recovery, we need iget and
745 * iput to behave like they do for an active filesystem.
746 * xfs_fs_drop_inode needs to be able to prevent the deletion
747 * of inodes before we're done replaying log items on those
748 * inodes. Turn it off immediately after recovery finishes
749 * so that we don't leak the quota inodes if subsequent mount
750 * activities fail.
751 *
752 * We let all inodes involved in redo item processing end up on
753 * the LRU instead of being evicted immediately so that if we do
754 * something to an unlinked inode, the irele won't cause
755 * premature truncation and freeing of the inode, which results
756 * in log recovery failure. We have to evict the unreferenced
757 * lru inodes after clearing SB_ACTIVE because we don't
758 * otherwise clean up the lru if there's a subsequent failure in
759 * xfs_mountfs, which leads to us leaking the inodes if nothing
760 * else (e.g. quotacheck) references the inodes before the
761 * mount failure occurs.
762 */
763 mp->m_super->s_flags |= SB_ACTIVE;
764 error = xlog_recover_finish(mp->m_log);
765 if (!error)
766 xfs_log_work_queue(mp);
767 mp->m_super->s_flags &= ~SB_ACTIVE;
768 evict_inodes(mp->m_super);
769
770 /*
771 * Drain the buffer LRU after log recovery. This is required for v4
772 * filesystems to avoid leaving around buffers with NULL verifier ops,
773 * but we do it unconditionally to make sure we're always in a clean
774 * cache state after mount.
775 *
776 * Don't push in the error case because the AIL may have pending intents
777 * that aren't removed until recovery is cancelled.
778 */
779 if (!error && recovered) {
780 xfs_log_force(mp, XFS_LOG_SYNC);
781 xfs_ail_push_all_sync(mp->m_ail);
782 }
783 xfs_wait_buftarg(mp->m_ddev_targp);
784
785 if (readonly)
786 mp->m_flags |= XFS_MOUNT_RDONLY;
787
788 return error;
789}
790
791/*
792 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
793 * the log.
794 */
795void
796xfs_log_mount_cancel(
797 struct xfs_mount *mp)
798{
799 xlog_recover_cancel(mp->m_log);
800 xfs_log_unmount(mp);
801}
802
803/*
804 * Final log writes as part of unmount.
805 *
806 * Mark the filesystem clean as unmount happens. Note that during relocation
807 * this routine needs to be executed as part of source-bag while the
808 * deallocation must not be done until source-end.
809 */
810
811/* Actually write the unmount record to disk. */
812static void
813xfs_log_write_unmount_record(
814 struct xfs_mount *mp)
815{
816 /* the data section must be 32 bit size aligned */
817 struct xfs_unmount_log_format magic = {
818 .magic = XLOG_UNMOUNT_TYPE,
819 };
820 struct xfs_log_iovec reg = {
821 .i_addr = &magic,
822 .i_len = sizeof(magic),
823 .i_type = XLOG_REG_TYPE_UNMOUNT,
824 };
825 struct xfs_log_vec vec = {
826 .lv_niovecs = 1,
827 .lv_iovecp = ®,
828 };
829 struct xlog *log = mp->m_log;
830 struct xlog_in_core *iclog;
831 struct xlog_ticket *tic = NULL;
832 xfs_lsn_t lsn;
833 uint flags = XLOG_UNMOUNT_TRANS;
834 int error;
835
836 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
837 if (error)
838 goto out_err;
839
840 /*
841 * If we think the summary counters are bad, clear the unmount header
842 * flag in the unmount record so that the summary counters will be
843 * recalculated during log recovery at next mount. Refer to
844 * xlog_check_unmount_rec for more details.
845 */
846 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
847 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
848 xfs_alert(mp, "%s: will fix summary counters at next mount",
849 __func__);
850 flags &= ~XLOG_UNMOUNT_TRANS;
851 }
852
853 /* remove inited flag, and account for space used */
854 tic->t_flags = 0;
855 tic->t_curr_res -= sizeof(magic);
856 error = xlog_write(log, &vec, tic, &lsn, NULL, flags);
857 /*
858 * At this point, we're umounting anyway, so there's no point in
859 * transitioning log state to IOERROR. Just continue...
860 */
861out_err:
862 if (error)
863 xfs_alert(mp, "%s: unmount record failed", __func__);
864
865 spin_lock(&log->l_icloglock);
866 iclog = log->l_iclog;
867 atomic_inc(&iclog->ic_refcnt);
868 xlog_state_want_sync(log, iclog);
869 spin_unlock(&log->l_icloglock);
870 error = xlog_state_release_iclog(log, iclog);
871
872 spin_lock(&log->l_icloglock);
873 switch (iclog->ic_state) {
874 default:
875 if (!XLOG_FORCED_SHUTDOWN(log)) {
876 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
877 break;
878 }
879 /* fall through */
880 case XLOG_STATE_ACTIVE:
881 case XLOG_STATE_DIRTY:
882 spin_unlock(&log->l_icloglock);
883 break;
884 }
885
886 if (tic) {
887 trace_xfs_log_umount_write(log, tic);
888 xlog_ungrant_log_space(log, tic);
889 xfs_log_ticket_put(tic);
890 }
891}
892
893/*
894 * Unmount record used to have a string "Unmount filesystem--" in the
895 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
896 * We just write the magic number now since that particular field isn't
897 * currently architecture converted and "Unmount" is a bit foo.
898 * As far as I know, there weren't any dependencies on the old behaviour.
899 */
900
901static int
902xfs_log_unmount_write(xfs_mount_t *mp)
903{
904 struct xlog *log = mp->m_log;
905 xlog_in_core_t *iclog;
906#ifdef DEBUG
907 xlog_in_core_t *first_iclog;
908#endif
909 int error;
910
911 /*
912 * Don't write out unmount record on norecovery mounts or ro devices.
913 * Or, if we are doing a forced umount (typically because of IO errors).
914 */
915 if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
916 xfs_readonly_buftarg(log->l_targ)) {
917 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
918 return 0;
919 }
920
921 error = xfs_log_force(mp, XFS_LOG_SYNC);
922 ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
923
924#ifdef DEBUG
925 first_iclog = iclog = log->l_iclog;
926 do {
927 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
928 ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
929 ASSERT(iclog->ic_offset == 0);
930 }
931 iclog = iclog->ic_next;
932 } while (iclog != first_iclog);
933#endif
934 if (! (XLOG_FORCED_SHUTDOWN(log))) {
935 xfs_log_write_unmount_record(mp);
936 } else {
937 /*
938 * We're already in forced_shutdown mode, couldn't
939 * even attempt to write out the unmount transaction.
940 *
941 * Go through the motions of sync'ing and releasing
942 * the iclog, even though no I/O will actually happen,
943 * we need to wait for other log I/Os that may already
944 * be in progress. Do this as a separate section of
945 * code so we'll know if we ever get stuck here that
946 * we're in this odd situation of trying to unmount
947 * a file system that went into forced_shutdown as
948 * the result of an unmount..
949 */
950 spin_lock(&log->l_icloglock);
951 iclog = log->l_iclog;
952 atomic_inc(&iclog->ic_refcnt);
953
954 xlog_state_want_sync(log, iclog);
955 spin_unlock(&log->l_icloglock);
956 error = xlog_state_release_iclog(log, iclog);
957
958 spin_lock(&log->l_icloglock);
959
960 if ( ! ( iclog->ic_state == XLOG_STATE_ACTIVE
961 || iclog->ic_state == XLOG_STATE_DIRTY
962 || iclog->ic_state == XLOG_STATE_IOERROR) ) {
963
964 xlog_wait(&iclog->ic_force_wait,
965 &log->l_icloglock);
966 } else {
967 spin_unlock(&log->l_icloglock);
968 }
969 }
970
971 return error;
972} /* xfs_log_unmount_write */
973
974/*
975 * Empty the log for unmount/freeze.
976 *
977 * To do this, we first need to shut down the background log work so it is not
978 * trying to cover the log as we clean up. We then need to unpin all objects in
979 * the log so we can then flush them out. Once they have completed their IO and
980 * run the callbacks removing themselves from the AIL, we can write the unmount
981 * record.
982 */
983void
984xfs_log_quiesce(
985 struct xfs_mount *mp)
986{
987 cancel_delayed_work_sync(&mp->m_log->l_work);
988 xfs_log_force(mp, XFS_LOG_SYNC);
989
990 /*
991 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
992 * will push it, xfs_wait_buftarg() will not wait for it. Further,
993 * xfs_buf_iowait() cannot be used because it was pushed with the
994 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
995 * the IO to complete.
996 */
997 xfs_ail_push_all_sync(mp->m_ail);
998 xfs_wait_buftarg(mp->m_ddev_targp);
999 xfs_buf_lock(mp->m_sb_bp);
1000 xfs_buf_unlock(mp->m_sb_bp);
1001
1002 xfs_log_unmount_write(mp);
1003}
1004
1005/*
1006 * Shut down and release the AIL and Log.
1007 *
1008 * During unmount, we need to ensure we flush all the dirty metadata objects
1009 * from the AIL so that the log is empty before we write the unmount record to
1010 * the log. Once this is done, we can tear down the AIL and the log.
1011 */
1012void
1013xfs_log_unmount(
1014 struct xfs_mount *mp)
1015{
1016 xfs_log_quiesce(mp);
1017
1018 xfs_trans_ail_destroy(mp);
1019
1020 xfs_sysfs_del(&mp->m_log->l_kobj);
1021
1022 xlog_dealloc_log(mp->m_log);
1023}
1024
1025void
1026xfs_log_item_init(
1027 struct xfs_mount *mp,
1028 struct xfs_log_item *item,
1029 int type,
1030 const struct xfs_item_ops *ops)
1031{
1032 item->li_mountp = mp;
1033 item->li_ailp = mp->m_ail;
1034 item->li_type = type;
1035 item->li_ops = ops;
1036 item->li_lv = NULL;
1037
1038 INIT_LIST_HEAD(&item->li_ail);
1039 INIT_LIST_HEAD(&item->li_cil);
1040 INIT_LIST_HEAD(&item->li_bio_list);
1041 INIT_LIST_HEAD(&item->li_trans);
1042}
1043
1044/*
1045 * Wake up processes waiting for log space after we have moved the log tail.
1046 */
1047void
1048xfs_log_space_wake(
1049 struct xfs_mount *mp)
1050{
1051 struct xlog *log = mp->m_log;
1052 int free_bytes;
1053
1054 if (XLOG_FORCED_SHUTDOWN(log))
1055 return;
1056
1057 if (!list_empty_careful(&log->l_write_head.waiters)) {
1058 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1059
1060 spin_lock(&log->l_write_head.lock);
1061 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1062 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1063 spin_unlock(&log->l_write_head.lock);
1064 }
1065
1066 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1067 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1068
1069 spin_lock(&log->l_reserve_head.lock);
1070 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1071 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1072 spin_unlock(&log->l_reserve_head.lock);
1073 }
1074}
1075
1076/*
1077 * Determine if we have a transaction that has gone to disk that needs to be
1078 * covered. To begin the transition to the idle state firstly the log needs to
1079 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1080 * we start attempting to cover the log.
1081 *
1082 * Only if we are then in a state where covering is needed, the caller is
1083 * informed that dummy transactions are required to move the log into the idle
1084 * state.
1085 *
1086 * If there are any items in the AIl or CIL, then we do not want to attempt to
1087 * cover the log as we may be in a situation where there isn't log space
1088 * available to run a dummy transaction and this can lead to deadlocks when the
1089 * tail of the log is pinned by an item that is modified in the CIL. Hence
1090 * there's no point in running a dummy transaction at this point because we
1091 * can't start trying to idle the log until both the CIL and AIL are empty.
1092 */
1093static int
1094xfs_log_need_covered(xfs_mount_t *mp)
1095{
1096 struct xlog *log = mp->m_log;
1097 int needed = 0;
1098
1099 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1100 return 0;
1101
1102 if (!xlog_cil_empty(log))
1103 return 0;
1104
1105 spin_lock(&log->l_icloglock);
1106 switch (log->l_covered_state) {
1107 case XLOG_STATE_COVER_DONE:
1108 case XLOG_STATE_COVER_DONE2:
1109 case XLOG_STATE_COVER_IDLE:
1110 break;
1111 case XLOG_STATE_COVER_NEED:
1112 case XLOG_STATE_COVER_NEED2:
1113 if (xfs_ail_min_lsn(log->l_ailp))
1114 break;
1115 if (!xlog_iclogs_empty(log))
1116 break;
1117
1118 needed = 1;
1119 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1120 log->l_covered_state = XLOG_STATE_COVER_DONE;
1121 else
1122 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1123 break;
1124 default:
1125 needed = 1;
1126 break;
1127 }
1128 spin_unlock(&log->l_icloglock);
1129 return needed;
1130}
1131
1132/*
1133 * We may be holding the log iclog lock upon entering this routine.
1134 */
1135xfs_lsn_t
1136xlog_assign_tail_lsn_locked(
1137 struct xfs_mount *mp)
1138{
1139 struct xlog *log = mp->m_log;
1140 struct xfs_log_item *lip;
1141 xfs_lsn_t tail_lsn;
1142
1143 assert_spin_locked(&mp->m_ail->ail_lock);
1144
1145 /*
1146 * To make sure we always have a valid LSN for the log tail we keep
1147 * track of the last LSN which was committed in log->l_last_sync_lsn,
1148 * and use that when the AIL was empty.
1149 */
1150 lip = xfs_ail_min(mp->m_ail);
1151 if (lip)
1152 tail_lsn = lip->li_lsn;
1153 else
1154 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1155 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1156 atomic64_set(&log->l_tail_lsn, tail_lsn);
1157 return tail_lsn;
1158}
1159
1160xfs_lsn_t
1161xlog_assign_tail_lsn(
1162 struct xfs_mount *mp)
1163{
1164 xfs_lsn_t tail_lsn;
1165
1166 spin_lock(&mp->m_ail->ail_lock);
1167 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1168 spin_unlock(&mp->m_ail->ail_lock);
1169
1170 return tail_lsn;
1171}
1172
1173/*
1174 * Return the space in the log between the tail and the head. The head
1175 * is passed in the cycle/bytes formal parms. In the special case where
1176 * the reserve head has wrapped passed the tail, this calculation is no
1177 * longer valid. In this case, just return 0 which means there is no space
1178 * in the log. This works for all places where this function is called
1179 * with the reserve head. Of course, if the write head were to ever
1180 * wrap the tail, we should blow up. Rather than catch this case here,
1181 * we depend on other ASSERTions in other parts of the code. XXXmiken
1182 *
1183 * This code also handles the case where the reservation head is behind
1184 * the tail. The details of this case are described below, but the end
1185 * result is that we return the size of the log as the amount of space left.
1186 */
1187STATIC int
1188xlog_space_left(
1189 struct xlog *log,
1190 atomic64_t *head)
1191{
1192 int free_bytes;
1193 int tail_bytes;
1194 int tail_cycle;
1195 int head_cycle;
1196 int head_bytes;
1197
1198 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1199 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1200 tail_bytes = BBTOB(tail_bytes);
1201 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1202 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1203 else if (tail_cycle + 1 < head_cycle)
1204 return 0;
1205 else if (tail_cycle < head_cycle) {
1206 ASSERT(tail_cycle == (head_cycle - 1));
1207 free_bytes = tail_bytes - head_bytes;
1208 } else {
1209 /*
1210 * The reservation head is behind the tail.
1211 * In this case we just want to return the size of the
1212 * log as the amount of space left.
1213 */
1214 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1215 xfs_alert(log->l_mp,
1216 " tail_cycle = %d, tail_bytes = %d",
1217 tail_cycle, tail_bytes);
1218 xfs_alert(log->l_mp,
1219 " GH cycle = %d, GH bytes = %d",
1220 head_cycle, head_bytes);
1221 ASSERT(0);
1222 free_bytes = log->l_logsize;
1223 }
1224 return free_bytes;
1225}
1226
1227
1228static void
1229xlog_ioend_work(
1230 struct work_struct *work)
1231{
1232 struct xlog_in_core *iclog =
1233 container_of(work, struct xlog_in_core, ic_end_io_work);
1234 struct xlog *log = iclog->ic_log;
1235 bool aborted = false;
1236 int error;
1237
1238 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1239#ifdef DEBUG
1240 /* treat writes with injected CRC errors as failed */
1241 if (iclog->ic_fail_crc)
1242 error = -EIO;
1243#endif
1244
1245 /*
1246 * Race to shutdown the filesystem if we see an error.
1247 */
1248 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1249 xfs_alert(log->l_mp, "log I/O error %d", error);
1250 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1251 /*
1252 * This flag will be propagated to the trans-committed
1253 * callback routines to let them know that the log-commit
1254 * didn't succeed.
1255 */
1256 aborted = true;
1257 } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1258 aborted = true;
1259 }
1260
1261 xlog_state_done_syncing(iclog, aborted);
1262 bio_uninit(&iclog->ic_bio);
1263
1264 /*
1265 * Drop the lock to signal that we are done. Nothing references the
1266 * iclog after this, so an unmount waiting on this lock can now tear it
1267 * down safely. As such, it is unsafe to reference the iclog after the
1268 * unlock as we could race with it being freed.
1269 */
1270 up(&iclog->ic_sema);
1271}
1272
1273/*
1274 * Return size of each in-core log record buffer.
1275 *
1276 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1277 *
1278 * If the filesystem blocksize is too large, we may need to choose a
1279 * larger size since the directory code currently logs entire blocks.
1280 */
1281STATIC void
1282xlog_get_iclog_buffer_size(
1283 struct xfs_mount *mp,
1284 struct xlog *log)
1285{
1286 if (mp->m_logbufs <= 0)
1287 mp->m_logbufs = XLOG_MAX_ICLOGS;
1288 if (mp->m_logbsize <= 0)
1289 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1290
1291 log->l_iclog_bufs = mp->m_logbufs;
1292 log->l_iclog_size = mp->m_logbsize;
1293
1294 /*
1295 * # headers = size / 32k - one header holds cycles from 32k of data.
1296 */
1297 log->l_iclog_heads =
1298 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1299 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1300}
1301
1302void
1303xfs_log_work_queue(
1304 struct xfs_mount *mp)
1305{
1306 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1307 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1308}
1309
1310/*
1311 * Every sync period we need to unpin all items in the AIL and push them to
1312 * disk. If there is nothing dirty, then we might need to cover the log to
1313 * indicate that the filesystem is idle.
1314 */
1315static void
1316xfs_log_worker(
1317 struct work_struct *work)
1318{
1319 struct xlog *log = container_of(to_delayed_work(work),
1320 struct xlog, l_work);
1321 struct xfs_mount *mp = log->l_mp;
1322
1323 /* dgc: errors ignored - not fatal and nowhere to report them */
1324 if (xfs_log_need_covered(mp)) {
1325 /*
1326 * Dump a transaction into the log that contains no real change.
1327 * This is needed to stamp the current tail LSN into the log
1328 * during the covering operation.
1329 *
1330 * We cannot use an inode here for this - that will push dirty
1331 * state back up into the VFS and then periodic inode flushing
1332 * will prevent log covering from making progress. Hence we
1333 * synchronously log the superblock instead to ensure the
1334 * superblock is immediately unpinned and can be written back.
1335 */
1336 xfs_sync_sb(mp, true);
1337 } else
1338 xfs_log_force(mp, 0);
1339
1340 /* start pushing all the metadata that is currently dirty */
1341 xfs_ail_push_all(mp->m_ail);
1342
1343 /* queue us up again */
1344 xfs_log_work_queue(mp);
1345}
1346
1347/*
1348 * This routine initializes some of the log structure for a given mount point.
1349 * Its primary purpose is to fill in enough, so recovery can occur. However,
1350 * some other stuff may be filled in too.
1351 */
1352STATIC struct xlog *
1353xlog_alloc_log(
1354 struct xfs_mount *mp,
1355 struct xfs_buftarg *log_target,
1356 xfs_daddr_t blk_offset,
1357 int num_bblks)
1358{
1359 struct xlog *log;
1360 xlog_rec_header_t *head;
1361 xlog_in_core_t **iclogp;
1362 xlog_in_core_t *iclog, *prev_iclog=NULL;
1363 int i;
1364 int error = -ENOMEM;
1365 uint log2_size = 0;
1366
1367 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1368 if (!log) {
1369 xfs_warn(mp, "Log allocation failed: No memory!");
1370 goto out;
1371 }
1372
1373 log->l_mp = mp;
1374 log->l_targ = log_target;
1375 log->l_logsize = BBTOB(num_bblks);
1376 log->l_logBBstart = blk_offset;
1377 log->l_logBBsize = num_bblks;
1378 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1379 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1380 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1381
1382 log->l_prev_block = -1;
1383 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1384 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1385 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1386 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1387
1388 xlog_grant_head_init(&log->l_reserve_head);
1389 xlog_grant_head_init(&log->l_write_head);
1390
1391 error = -EFSCORRUPTED;
1392 if (xfs_sb_version_hassector(&mp->m_sb)) {
1393 log2_size = mp->m_sb.sb_logsectlog;
1394 if (log2_size < BBSHIFT) {
1395 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1396 log2_size, BBSHIFT);
1397 goto out_free_log;
1398 }
1399
1400 log2_size -= BBSHIFT;
1401 if (log2_size > mp->m_sectbb_log) {
1402 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1403 log2_size, mp->m_sectbb_log);
1404 goto out_free_log;
1405 }
1406
1407 /* for larger sector sizes, must have v2 or external log */
1408 if (log2_size && log->l_logBBstart > 0 &&
1409 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1410 xfs_warn(mp,
1411 "log sector size (0x%x) invalid for configuration.",
1412 log2_size);
1413 goto out_free_log;
1414 }
1415 }
1416 log->l_sectBBsize = 1 << log2_size;
1417
1418 xlog_get_iclog_buffer_size(mp, log);
1419
1420 spin_lock_init(&log->l_icloglock);
1421 init_waitqueue_head(&log->l_flush_wait);
1422
1423 iclogp = &log->l_iclog;
1424 /*
1425 * The amount of memory to allocate for the iclog structure is
1426 * rather funky due to the way the structure is defined. It is
1427 * done this way so that we can use different sizes for machines
1428 * with different amounts of memory. See the definition of
1429 * xlog_in_core_t in xfs_log_priv.h for details.
1430 */
1431 ASSERT(log->l_iclog_size >= 4096);
1432 for (i = 0; i < log->l_iclog_bufs; i++) {
1433 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1434 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1435 sizeof(struct bio_vec);
1436
1437 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1438 if (!iclog)
1439 goto out_free_iclog;
1440
1441 *iclogp = iclog;
1442 iclog->ic_prev = prev_iclog;
1443 prev_iclog = iclog;
1444
1445 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1446 KM_MAYFAIL | KM_ZERO);
1447 if (!iclog->ic_data)
1448 goto out_free_iclog;
1449#ifdef DEBUG
1450 log->l_iclog_bak[i] = &iclog->ic_header;
1451#endif
1452 head = &iclog->ic_header;
1453 memset(head, 0, sizeof(xlog_rec_header_t));
1454 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1455 head->h_version = cpu_to_be32(
1456 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1457 head->h_size = cpu_to_be32(log->l_iclog_size);
1458 /* new fields */
1459 head->h_fmt = cpu_to_be32(XLOG_FMT);
1460 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1461
1462 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1463 iclog->ic_state = XLOG_STATE_ACTIVE;
1464 iclog->ic_log = log;
1465 atomic_set(&iclog->ic_refcnt, 0);
1466 spin_lock_init(&iclog->ic_callback_lock);
1467 INIT_LIST_HEAD(&iclog->ic_callbacks);
1468 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1469
1470 init_waitqueue_head(&iclog->ic_force_wait);
1471 init_waitqueue_head(&iclog->ic_write_wait);
1472 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1473 sema_init(&iclog->ic_sema, 1);
1474
1475 iclogp = &iclog->ic_next;
1476 }
1477 *iclogp = log->l_iclog; /* complete ring */
1478 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1479
1480 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1481 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1482 mp->m_fsname);
1483 if (!log->l_ioend_workqueue)
1484 goto out_free_iclog;
1485
1486 error = xlog_cil_init(log);
1487 if (error)
1488 goto out_destroy_workqueue;
1489 return log;
1490
1491out_destroy_workqueue:
1492 destroy_workqueue(log->l_ioend_workqueue);
1493out_free_iclog:
1494 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1495 prev_iclog = iclog->ic_next;
1496 kmem_free(iclog->ic_data);
1497 kmem_free(iclog);
1498 }
1499out_free_log:
1500 kmem_free(log);
1501out:
1502 return ERR_PTR(error);
1503} /* xlog_alloc_log */
1504
1505
1506/*
1507 * Write out the commit record of a transaction associated with the given
1508 * ticket. Return the lsn of the commit record.
1509 */
1510STATIC int
1511xlog_commit_record(
1512 struct xlog *log,
1513 struct xlog_ticket *ticket,
1514 struct xlog_in_core **iclog,
1515 xfs_lsn_t *commitlsnp)
1516{
1517 struct xfs_mount *mp = log->l_mp;
1518 int error;
1519 struct xfs_log_iovec reg = {
1520 .i_addr = NULL,
1521 .i_len = 0,
1522 .i_type = XLOG_REG_TYPE_COMMIT,
1523 };
1524 struct xfs_log_vec vec = {
1525 .lv_niovecs = 1,
1526 .lv_iovecp = ®,
1527 };
1528
1529 ASSERT_ALWAYS(iclog);
1530 error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1531 XLOG_COMMIT_TRANS);
1532 if (error)
1533 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1534 return error;
1535}
1536
1537/*
1538 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1539 * log space. This code pushes on the lsn which would supposedly free up
1540 * the 25% which we want to leave free. We may need to adopt a policy which
1541 * pushes on an lsn which is further along in the log once we reach the high
1542 * water mark. In this manner, we would be creating a low water mark.
1543 */
1544STATIC void
1545xlog_grant_push_ail(
1546 struct xlog *log,
1547 int need_bytes)
1548{
1549 xfs_lsn_t threshold_lsn = 0;
1550 xfs_lsn_t last_sync_lsn;
1551 int free_blocks;
1552 int free_bytes;
1553 int threshold_block;
1554 int threshold_cycle;
1555 int free_threshold;
1556
1557 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1558
1559 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1560 free_blocks = BTOBBT(free_bytes);
1561
1562 /*
1563 * Set the threshold for the minimum number of free blocks in the
1564 * log to the maximum of what the caller needs, one quarter of the
1565 * log, and 256 blocks.
1566 */
1567 free_threshold = BTOBB(need_bytes);
1568 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1569 free_threshold = max(free_threshold, 256);
1570 if (free_blocks >= free_threshold)
1571 return;
1572
1573 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1574 &threshold_block);
1575 threshold_block += free_threshold;
1576 if (threshold_block >= log->l_logBBsize) {
1577 threshold_block -= log->l_logBBsize;
1578 threshold_cycle += 1;
1579 }
1580 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1581 threshold_block);
1582 /*
1583 * Don't pass in an lsn greater than the lsn of the last
1584 * log record known to be on disk. Use a snapshot of the last sync lsn
1585 * so that it doesn't change between the compare and the set.
1586 */
1587 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1588 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1589 threshold_lsn = last_sync_lsn;
1590
1591 /*
1592 * Get the transaction layer to kick the dirty buffers out to
1593 * disk asynchronously. No point in trying to do this if
1594 * the filesystem is shutting down.
1595 */
1596 if (!XLOG_FORCED_SHUTDOWN(log))
1597 xfs_ail_push(log->l_ailp, threshold_lsn);
1598}
1599
1600/*
1601 * Stamp cycle number in every block
1602 */
1603STATIC void
1604xlog_pack_data(
1605 struct xlog *log,
1606 struct xlog_in_core *iclog,
1607 int roundoff)
1608{
1609 int i, j, k;
1610 int size = iclog->ic_offset + roundoff;
1611 __be32 cycle_lsn;
1612 char *dp;
1613
1614 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1615
1616 dp = iclog->ic_datap;
1617 for (i = 0; i < BTOBB(size); i++) {
1618 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1619 break;
1620 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1621 *(__be32 *)dp = cycle_lsn;
1622 dp += BBSIZE;
1623 }
1624
1625 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1626 xlog_in_core_2_t *xhdr = iclog->ic_data;
1627
1628 for ( ; i < BTOBB(size); i++) {
1629 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1630 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1631 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1632 *(__be32 *)dp = cycle_lsn;
1633 dp += BBSIZE;
1634 }
1635
1636 for (i = 1; i < log->l_iclog_heads; i++)
1637 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1638 }
1639}
1640
1641/*
1642 * Calculate the checksum for a log buffer.
1643 *
1644 * This is a little more complicated than it should be because the various
1645 * headers and the actual data are non-contiguous.
1646 */
1647__le32
1648xlog_cksum(
1649 struct xlog *log,
1650 struct xlog_rec_header *rhead,
1651 char *dp,
1652 int size)
1653{
1654 uint32_t crc;
1655
1656 /* first generate the crc for the record header ... */
1657 crc = xfs_start_cksum_update((char *)rhead,
1658 sizeof(struct xlog_rec_header),
1659 offsetof(struct xlog_rec_header, h_crc));
1660
1661 /* ... then for additional cycle data for v2 logs ... */
1662 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1663 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1664 int i;
1665 int xheads;
1666
1667 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1668 if (size % XLOG_HEADER_CYCLE_SIZE)
1669 xheads++;
1670
1671 for (i = 1; i < xheads; i++) {
1672 crc = crc32c(crc, &xhdr[i].hic_xheader,
1673 sizeof(struct xlog_rec_ext_header));
1674 }
1675 }
1676
1677 /* ... and finally for the payload */
1678 crc = crc32c(crc, dp, size);
1679
1680 return xfs_end_cksum(crc);
1681}
1682
1683static void
1684xlog_bio_end_io(
1685 struct bio *bio)
1686{
1687 struct xlog_in_core *iclog = bio->bi_private;
1688
1689 queue_work(iclog->ic_log->l_ioend_workqueue,
1690 &iclog->ic_end_io_work);
1691}
1692
1693static void
1694xlog_map_iclog_data(
1695 struct bio *bio,
1696 void *data,
1697 size_t count)
1698{
1699 do {
1700 struct page *page = kmem_to_page(data);
1701 unsigned int off = offset_in_page(data);
1702 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1703
1704 WARN_ON_ONCE(bio_add_page(bio, page, len, off) != len);
1705
1706 data += len;
1707 count -= len;
1708 } while (count);
1709}
1710
1711STATIC void
1712xlog_write_iclog(
1713 struct xlog *log,
1714 struct xlog_in_core *iclog,
1715 uint64_t bno,
1716 unsigned int count,
1717 bool need_flush)
1718{
1719 ASSERT(bno < log->l_logBBsize);
1720
1721 /*
1722 * We lock the iclogbufs here so that we can serialise against I/O
1723 * completion during unmount. We might be processing a shutdown
1724 * triggered during unmount, and that can occur asynchronously to the
1725 * unmount thread, and hence we need to ensure that completes before
1726 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1727 * across the log IO to archieve that.
1728 */
1729 down(&iclog->ic_sema);
1730 if (unlikely(iclog->ic_state & XLOG_STATE_IOERROR)) {
1731 /*
1732 * It would seem logical to return EIO here, but we rely on
1733 * the log state machine to propagate I/O errors instead of
1734 * doing it here. We kick of the state machine and unlock
1735 * the buffer manually, the code needs to be kept in sync
1736 * with the I/O completion path.
1737 */
1738 xlog_state_done_syncing(iclog, XFS_LI_ABORTED);
1739 up(&iclog->ic_sema);
1740 return;
1741 }
1742
1743 iclog->ic_io_size = count;
1744
1745 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1746 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1747 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1748 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1749 iclog->ic_bio.bi_private = iclog;
1750 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_FUA;
1751 if (need_flush)
1752 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1753
1754 xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, iclog->ic_io_size);
1755 if (is_vmalloc_addr(iclog->ic_data))
1756 flush_kernel_vmap_range(iclog->ic_data, iclog->ic_io_size);
1757
1758 /*
1759 * If this log buffer would straddle the end of the log we will have
1760 * to split it up into two bios, so that we can continue at the start.
1761 */
1762 if (bno + BTOBB(count) > log->l_logBBsize) {
1763 struct bio *split;
1764
1765 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1766 GFP_NOIO, &fs_bio_set);
1767 bio_chain(split, &iclog->ic_bio);
1768 submit_bio(split);
1769
1770 /* restart at logical offset zero for the remainder */
1771 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1772 }
1773
1774 submit_bio(&iclog->ic_bio);
1775}
1776
1777/*
1778 * We need to bump cycle number for the part of the iclog that is
1779 * written to the start of the log. Watch out for the header magic
1780 * number case, though.
1781 */
1782static void
1783xlog_split_iclog(
1784 struct xlog *log,
1785 void *data,
1786 uint64_t bno,
1787 unsigned int count)
1788{
1789 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1790 unsigned int i;
1791
1792 for (i = split_offset; i < count; i += BBSIZE) {
1793 uint32_t cycle = get_unaligned_be32(data + i);
1794
1795 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1796 cycle++;
1797 put_unaligned_be32(cycle, data + i);
1798 }
1799}
1800
1801static int
1802xlog_calc_iclog_size(
1803 struct xlog *log,
1804 struct xlog_in_core *iclog,
1805 uint32_t *roundoff)
1806{
1807 uint32_t count_init, count;
1808 bool use_lsunit;
1809
1810 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1811 log->l_mp->m_sb.sb_logsunit > 1;
1812
1813 /* Add for LR header */
1814 count_init = log->l_iclog_hsize + iclog->ic_offset;
1815
1816 /* Round out the log write size */
1817 if (use_lsunit) {
1818 /* we have a v2 stripe unit to use */
1819 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1820 } else {
1821 count = BBTOB(BTOBB(count_init));
1822 }
1823
1824 ASSERT(count >= count_init);
1825 *roundoff = count - count_init;
1826
1827 if (use_lsunit)
1828 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1829 else
1830 ASSERT(*roundoff < BBTOB(1));
1831 return count;
1832}
1833
1834/*
1835 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1836 * fashion. Previously, we should have moved the current iclog
1837 * ptr in the log to point to the next available iclog. This allows further
1838 * write to continue while this code syncs out an iclog ready to go.
1839 * Before an in-core log can be written out, the data section must be scanned
1840 * to save away the 1st word of each BBSIZE block into the header. We replace
1841 * it with the current cycle count. Each BBSIZE block is tagged with the
1842 * cycle count because there in an implicit assumption that drives will
1843 * guarantee that entire 512 byte blocks get written at once. In other words,
1844 * we can't have part of a 512 byte block written and part not written. By
1845 * tagging each block, we will know which blocks are valid when recovering
1846 * after an unclean shutdown.
1847 *
1848 * This routine is single threaded on the iclog. No other thread can be in
1849 * this routine with the same iclog. Changing contents of iclog can there-
1850 * fore be done without grabbing the state machine lock. Updating the global
1851 * log will require grabbing the lock though.
1852 *
1853 * The entire log manager uses a logical block numbering scheme. Only
1854 * xlog_write_iclog knows about the fact that the log may not start with
1855 * block zero on a given device.
1856 */
1857STATIC void
1858xlog_sync(
1859 struct xlog *log,
1860 struct xlog_in_core *iclog)
1861{
1862 unsigned int count; /* byte count of bwrite */
1863 unsigned int roundoff; /* roundoff to BB or stripe */
1864 uint64_t bno;
1865 unsigned int size;
1866 bool need_flush = true, split = false;
1867
1868 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1869
1870 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1871
1872 /* move grant heads by roundoff in sync */
1873 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1874 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1875
1876 /* put cycle number in every block */
1877 xlog_pack_data(log, iclog, roundoff);
1878
1879 /* real byte length */
1880 size = iclog->ic_offset;
1881 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1882 size += roundoff;
1883 iclog->ic_header.h_len = cpu_to_be32(size);
1884
1885 XFS_STATS_INC(log->l_mp, xs_log_writes);
1886 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1887
1888 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1889
1890 /* Do we need to split this write into 2 parts? */
1891 if (bno + BTOBB(count) > log->l_logBBsize) {
1892 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1893 split = true;
1894 }
1895
1896 /* calculcate the checksum */
1897 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1898 iclog->ic_datap, size);
1899 /*
1900 * Intentionally corrupt the log record CRC based on the error injection
1901 * frequency, if defined. This facilitates testing log recovery in the
1902 * event of torn writes. Hence, set the IOABORT state to abort the log
1903 * write on I/O completion and shutdown the fs. The subsequent mount
1904 * detects the bad CRC and attempts to recover.
1905 */
1906#ifdef DEBUG
1907 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1908 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1909 iclog->ic_fail_crc = true;
1910 xfs_warn(log->l_mp,
1911 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1912 be64_to_cpu(iclog->ic_header.h_lsn));
1913 }
1914#endif
1915
1916 /*
1917 * Flush the data device before flushing the log to make sure all meta
1918 * data written back from the AIL actually made it to disk before
1919 * stamping the new log tail LSN into the log buffer. For an external
1920 * log we need to issue the flush explicitly, and unfortunately
1921 * synchronously here; for an internal log we can simply use the block
1922 * layer state machine for preflushes.
1923 */
1924 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1925 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1926 need_flush = false;
1927 }
1928
1929 xlog_verify_iclog(log, iclog, count);
1930 xlog_write_iclog(log, iclog, bno, count, need_flush);
1931}
1932
1933/*
1934 * Deallocate a log structure
1935 */
1936STATIC void
1937xlog_dealloc_log(
1938 struct xlog *log)
1939{
1940 xlog_in_core_t *iclog, *next_iclog;
1941 int i;
1942
1943 xlog_cil_destroy(log);
1944
1945 /*
1946 * Cycle all the iclogbuf locks to make sure all log IO completion
1947 * is done before we tear down these buffers.
1948 */
1949 iclog = log->l_iclog;
1950 for (i = 0; i < log->l_iclog_bufs; i++) {
1951 down(&iclog->ic_sema);
1952 up(&iclog->ic_sema);
1953 iclog = iclog->ic_next;
1954 }
1955
1956 iclog = log->l_iclog;
1957 for (i = 0; i < log->l_iclog_bufs; i++) {
1958 next_iclog = iclog->ic_next;
1959 kmem_free(iclog->ic_data);
1960 kmem_free(iclog);
1961 iclog = next_iclog;
1962 }
1963
1964 log->l_mp->m_log = NULL;
1965 destroy_workqueue(log->l_ioend_workqueue);
1966 kmem_free(log);
1967} /* xlog_dealloc_log */
1968
1969/*
1970 * Update counters atomically now that memcpy is done.
1971 */
1972/* ARGSUSED */
1973static inline void
1974xlog_state_finish_copy(
1975 struct xlog *log,
1976 struct xlog_in_core *iclog,
1977 int record_cnt,
1978 int copy_bytes)
1979{
1980 spin_lock(&log->l_icloglock);
1981
1982 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1983 iclog->ic_offset += copy_bytes;
1984
1985 spin_unlock(&log->l_icloglock);
1986} /* xlog_state_finish_copy */
1987
1988
1989
1990
1991/*
1992 * print out info relating to regions written which consume
1993 * the reservation
1994 */
1995void
1996xlog_print_tic_res(
1997 struct xfs_mount *mp,
1998 struct xlog_ticket *ticket)
1999{
2000 uint i;
2001 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2002
2003 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2004#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2005 static char *res_type_str[] = {
2006 REG_TYPE_STR(BFORMAT, "bformat"),
2007 REG_TYPE_STR(BCHUNK, "bchunk"),
2008 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2009 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2010 REG_TYPE_STR(IFORMAT, "iformat"),
2011 REG_TYPE_STR(ICORE, "icore"),
2012 REG_TYPE_STR(IEXT, "iext"),
2013 REG_TYPE_STR(IBROOT, "ibroot"),
2014 REG_TYPE_STR(ILOCAL, "ilocal"),
2015 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2016 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2017 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2018 REG_TYPE_STR(QFORMAT, "qformat"),
2019 REG_TYPE_STR(DQUOT, "dquot"),
2020 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2021 REG_TYPE_STR(LRHEADER, "LR header"),
2022 REG_TYPE_STR(UNMOUNT, "unmount"),
2023 REG_TYPE_STR(COMMIT, "commit"),
2024 REG_TYPE_STR(TRANSHDR, "trans header"),
2025 REG_TYPE_STR(ICREATE, "inode create"),
2026 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2027 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2028 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2029 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2030 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2031 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2032 };
2033 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2034#undef REG_TYPE_STR
2035
2036 xfs_warn(mp, "ticket reservation summary:");
2037 xfs_warn(mp, " unit res = %d bytes",
2038 ticket->t_unit_res);
2039 xfs_warn(mp, " current res = %d bytes",
2040 ticket->t_curr_res);
2041 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2042 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2043 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2044 ticket->t_res_num_ophdrs, ophdr_spc);
2045 xfs_warn(mp, " ophdr + reg = %u bytes",
2046 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2047 xfs_warn(mp, " num regions = %u",
2048 ticket->t_res_num);
2049
2050 for (i = 0; i < ticket->t_res_num; i++) {
2051 uint r_type = ticket->t_res_arr[i].r_type;
2052 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2053 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2054 "bad-rtype" : res_type_str[r_type]),
2055 ticket->t_res_arr[i].r_len);
2056 }
2057}
2058
2059/*
2060 * Print a summary of the transaction.
2061 */
2062void
2063xlog_print_trans(
2064 struct xfs_trans *tp)
2065{
2066 struct xfs_mount *mp = tp->t_mountp;
2067 struct xfs_log_item *lip;
2068
2069 /* dump core transaction and ticket info */
2070 xfs_warn(mp, "transaction summary:");
2071 xfs_warn(mp, " log res = %d", tp->t_log_res);
2072 xfs_warn(mp, " log count = %d", tp->t_log_count);
2073 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2074
2075 xlog_print_tic_res(mp, tp->t_ticket);
2076
2077 /* dump each log item */
2078 list_for_each_entry(lip, &tp->t_items, li_trans) {
2079 struct xfs_log_vec *lv = lip->li_lv;
2080 struct xfs_log_iovec *vec;
2081 int i;
2082
2083 xfs_warn(mp, "log item: ");
2084 xfs_warn(mp, " type = 0x%x", lip->li_type);
2085 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2086 if (!lv)
2087 continue;
2088 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2089 xfs_warn(mp, " size = %d", lv->lv_size);
2090 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2091 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2092
2093 /* dump each iovec for the log item */
2094 vec = lv->lv_iovecp;
2095 for (i = 0; i < lv->lv_niovecs; i++) {
2096 int dumplen = min(vec->i_len, 32);
2097
2098 xfs_warn(mp, " iovec[%d]", i);
2099 xfs_warn(mp, " type = 0x%x", vec->i_type);
2100 xfs_warn(mp, " len = %d", vec->i_len);
2101 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2102 xfs_hex_dump(vec->i_addr, dumplen);
2103
2104 vec++;
2105 }
2106 }
2107}
2108
2109/*
2110 * Calculate the potential space needed by the log vector. Each region gets
2111 * its own xlog_op_header_t and may need to be double word aligned.
2112 */
2113static int
2114xlog_write_calc_vec_length(
2115 struct xlog_ticket *ticket,
2116 struct xfs_log_vec *log_vector)
2117{
2118 struct xfs_log_vec *lv;
2119 int headers = 0;
2120 int len = 0;
2121 int i;
2122
2123 /* acct for start rec of xact */
2124 if (ticket->t_flags & XLOG_TIC_INITED)
2125 headers++;
2126
2127 for (lv = log_vector; lv; lv = lv->lv_next) {
2128 /* we don't write ordered log vectors */
2129 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2130 continue;
2131
2132 headers += lv->lv_niovecs;
2133
2134 for (i = 0; i < lv->lv_niovecs; i++) {
2135 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2136
2137 len += vecp->i_len;
2138 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2139 }
2140 }
2141
2142 ticket->t_res_num_ophdrs += headers;
2143 len += headers * sizeof(struct xlog_op_header);
2144
2145 return len;
2146}
2147
2148/*
2149 * If first write for transaction, insert start record We can't be trying to
2150 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2151 */
2152static int
2153xlog_write_start_rec(
2154 struct xlog_op_header *ophdr,
2155 struct xlog_ticket *ticket)
2156{
2157 if (!(ticket->t_flags & XLOG_TIC_INITED))
2158 return 0;
2159
2160 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2161 ophdr->oh_clientid = ticket->t_clientid;
2162 ophdr->oh_len = 0;
2163 ophdr->oh_flags = XLOG_START_TRANS;
2164 ophdr->oh_res2 = 0;
2165
2166 ticket->t_flags &= ~XLOG_TIC_INITED;
2167
2168 return sizeof(struct xlog_op_header);
2169}
2170
2171static xlog_op_header_t *
2172xlog_write_setup_ophdr(
2173 struct xlog *log,
2174 struct xlog_op_header *ophdr,
2175 struct xlog_ticket *ticket,
2176 uint flags)
2177{
2178 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2179 ophdr->oh_clientid = ticket->t_clientid;
2180 ophdr->oh_res2 = 0;
2181
2182 /* are we copying a commit or unmount record? */
2183 ophdr->oh_flags = flags;
2184
2185 /*
2186 * We've seen logs corrupted with bad transaction client ids. This
2187 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2188 * and shut down the filesystem.
2189 */
2190 switch (ophdr->oh_clientid) {
2191 case XFS_TRANSACTION:
2192 case XFS_VOLUME:
2193 case XFS_LOG:
2194 break;
2195 default:
2196 xfs_warn(log->l_mp,
2197 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2198 ophdr->oh_clientid, ticket);
2199 return NULL;
2200 }
2201
2202 return ophdr;
2203}
2204
2205/*
2206 * Set up the parameters of the region copy into the log. This has
2207 * to handle region write split across multiple log buffers - this
2208 * state is kept external to this function so that this code can
2209 * be written in an obvious, self documenting manner.
2210 */
2211static int
2212xlog_write_setup_copy(
2213 struct xlog_ticket *ticket,
2214 struct xlog_op_header *ophdr,
2215 int space_available,
2216 int space_required,
2217 int *copy_off,
2218 int *copy_len,
2219 int *last_was_partial_copy,
2220 int *bytes_consumed)
2221{
2222 int still_to_copy;
2223
2224 still_to_copy = space_required - *bytes_consumed;
2225 *copy_off = *bytes_consumed;
2226
2227 if (still_to_copy <= space_available) {
2228 /* write of region completes here */
2229 *copy_len = still_to_copy;
2230 ophdr->oh_len = cpu_to_be32(*copy_len);
2231 if (*last_was_partial_copy)
2232 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2233 *last_was_partial_copy = 0;
2234 *bytes_consumed = 0;
2235 return 0;
2236 }
2237
2238 /* partial write of region, needs extra log op header reservation */
2239 *copy_len = space_available;
2240 ophdr->oh_len = cpu_to_be32(*copy_len);
2241 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2242 if (*last_was_partial_copy)
2243 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2244 *bytes_consumed += *copy_len;
2245 (*last_was_partial_copy)++;
2246
2247 /* account for new log op header */
2248 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2249 ticket->t_res_num_ophdrs++;
2250
2251 return sizeof(struct xlog_op_header);
2252}
2253
2254static int
2255xlog_write_copy_finish(
2256 struct xlog *log,
2257 struct xlog_in_core *iclog,
2258 uint flags,
2259 int *record_cnt,
2260 int *data_cnt,
2261 int *partial_copy,
2262 int *partial_copy_len,
2263 int log_offset,
2264 struct xlog_in_core **commit_iclog)
2265{
2266 if (*partial_copy) {
2267 /*
2268 * This iclog has already been marked WANT_SYNC by
2269 * xlog_state_get_iclog_space.
2270 */
2271 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2272 *record_cnt = 0;
2273 *data_cnt = 0;
2274 return xlog_state_release_iclog(log, iclog);
2275 }
2276
2277 *partial_copy = 0;
2278 *partial_copy_len = 0;
2279
2280 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2281 /* no more space in this iclog - push it. */
2282 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2283 *record_cnt = 0;
2284 *data_cnt = 0;
2285
2286 spin_lock(&log->l_icloglock);
2287 xlog_state_want_sync(log, iclog);
2288 spin_unlock(&log->l_icloglock);
2289
2290 if (!commit_iclog)
2291 return xlog_state_release_iclog(log, iclog);
2292 ASSERT(flags & XLOG_COMMIT_TRANS);
2293 *commit_iclog = iclog;
2294 }
2295
2296 return 0;
2297}
2298
2299/*
2300 * Write some region out to in-core log
2301 *
2302 * This will be called when writing externally provided regions or when
2303 * writing out a commit record for a given transaction.
2304 *
2305 * General algorithm:
2306 * 1. Find total length of this write. This may include adding to the
2307 * lengths passed in.
2308 * 2. Check whether we violate the tickets reservation.
2309 * 3. While writing to this iclog
2310 * A. Reserve as much space in this iclog as can get
2311 * B. If this is first write, save away start lsn
2312 * C. While writing this region:
2313 * 1. If first write of transaction, write start record
2314 * 2. Write log operation header (header per region)
2315 * 3. Find out if we can fit entire region into this iclog
2316 * 4. Potentially, verify destination memcpy ptr
2317 * 5. Memcpy (partial) region
2318 * 6. If partial copy, release iclog; otherwise, continue
2319 * copying more regions into current iclog
2320 * 4. Mark want sync bit (in simulation mode)
2321 * 5. Release iclog for potential flush to on-disk log.
2322 *
2323 * ERRORS:
2324 * 1. Panic if reservation is overrun. This should never happen since
2325 * reservation amounts are generated internal to the filesystem.
2326 * NOTES:
2327 * 1. Tickets are single threaded data structures.
2328 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2329 * syncing routine. When a single log_write region needs to span
2330 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2331 * on all log operation writes which don't contain the end of the
2332 * region. The XLOG_END_TRANS bit is used for the in-core log
2333 * operation which contains the end of the continued log_write region.
2334 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2335 * we don't really know exactly how much space will be used. As a result,
2336 * we don't update ic_offset until the end when we know exactly how many
2337 * bytes have been written out.
2338 */
2339int
2340xlog_write(
2341 struct xlog *log,
2342 struct xfs_log_vec *log_vector,
2343 struct xlog_ticket *ticket,
2344 xfs_lsn_t *start_lsn,
2345 struct xlog_in_core **commit_iclog,
2346 uint flags)
2347{
2348 struct xlog_in_core *iclog = NULL;
2349 struct xfs_log_iovec *vecp;
2350 struct xfs_log_vec *lv;
2351 int len;
2352 int index;
2353 int partial_copy = 0;
2354 int partial_copy_len = 0;
2355 int contwr = 0;
2356 int record_cnt = 0;
2357 int data_cnt = 0;
2358 int error;
2359
2360 *start_lsn = 0;
2361
2362 len = xlog_write_calc_vec_length(ticket, log_vector);
2363
2364 /*
2365 * Region headers and bytes are already accounted for.
2366 * We only need to take into account start records and
2367 * split regions in this function.
2368 */
2369 if (ticket->t_flags & XLOG_TIC_INITED)
2370 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2371
2372 /*
2373 * Commit record headers need to be accounted for. These
2374 * come in as separate writes so are easy to detect.
2375 */
2376 if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2377 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2378
2379 if (ticket->t_curr_res < 0) {
2380 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2381 "ctx ticket reservation ran out. Need to up reservation");
2382 xlog_print_tic_res(log->l_mp, ticket);
2383 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2384 }
2385
2386 index = 0;
2387 lv = log_vector;
2388 vecp = lv->lv_iovecp;
2389 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2390 void *ptr;
2391 int log_offset;
2392
2393 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2394 &contwr, &log_offset);
2395 if (error)
2396 return error;
2397
2398 ASSERT(log_offset <= iclog->ic_size - 1);
2399 ptr = iclog->ic_datap + log_offset;
2400
2401 /* start_lsn is the first lsn written to. That's all we need. */
2402 if (!*start_lsn)
2403 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2404
2405 /*
2406 * This loop writes out as many regions as can fit in the amount
2407 * of space which was allocated by xlog_state_get_iclog_space().
2408 */
2409 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2410 struct xfs_log_iovec *reg;
2411 struct xlog_op_header *ophdr;
2412 int start_rec_copy;
2413 int copy_len;
2414 int copy_off;
2415 bool ordered = false;
2416
2417 /* ordered log vectors have no regions to write */
2418 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2419 ASSERT(lv->lv_niovecs == 0);
2420 ordered = true;
2421 goto next_lv;
2422 }
2423
2424 reg = &vecp[index];
2425 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2426 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2427
2428 start_rec_copy = xlog_write_start_rec(ptr, ticket);
2429 if (start_rec_copy) {
2430 record_cnt++;
2431 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2432 start_rec_copy);
2433 }
2434
2435 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2436 if (!ophdr)
2437 return -EIO;
2438
2439 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2440 sizeof(struct xlog_op_header));
2441
2442 len += xlog_write_setup_copy(ticket, ophdr,
2443 iclog->ic_size-log_offset,
2444 reg->i_len,
2445 ©_off, ©_len,
2446 &partial_copy,
2447 &partial_copy_len);
2448 xlog_verify_dest_ptr(log, ptr);
2449
2450 /*
2451 * Copy region.
2452 *
2453 * Unmount records just log an opheader, so can have
2454 * empty payloads with no data region to copy. Hence we
2455 * only copy the payload if the vector says it has data
2456 * to copy.
2457 */
2458 ASSERT(copy_len >= 0);
2459 if (copy_len > 0) {
2460 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2461 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2462 copy_len);
2463 }
2464 copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2465 record_cnt++;
2466 data_cnt += contwr ? copy_len : 0;
2467
2468 error = xlog_write_copy_finish(log, iclog, flags,
2469 &record_cnt, &data_cnt,
2470 &partial_copy,
2471 &partial_copy_len,
2472 log_offset,
2473 commit_iclog);
2474 if (error)
2475 return error;
2476
2477 /*
2478 * if we had a partial copy, we need to get more iclog
2479 * space but we don't want to increment the region
2480 * index because there is still more is this region to
2481 * write.
2482 *
2483 * If we completed writing this region, and we flushed
2484 * the iclog (indicated by resetting of the record
2485 * count), then we also need to get more log space. If
2486 * this was the last record, though, we are done and
2487 * can just return.
2488 */
2489 if (partial_copy)
2490 break;
2491
2492 if (++index == lv->lv_niovecs) {
2493next_lv:
2494 lv = lv->lv_next;
2495 index = 0;
2496 if (lv)
2497 vecp = lv->lv_iovecp;
2498 }
2499 if (record_cnt == 0 && !ordered) {
2500 if (!lv)
2501 return 0;
2502 break;
2503 }
2504 }
2505 }
2506
2507 ASSERT(len == 0);
2508
2509 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2510 if (!commit_iclog)
2511 return xlog_state_release_iclog(log, iclog);
2512
2513 ASSERT(flags & XLOG_COMMIT_TRANS);
2514 *commit_iclog = iclog;
2515 return 0;
2516}
2517
2518
2519/*****************************************************************************
2520 *
2521 * State Machine functions
2522 *
2523 *****************************************************************************
2524 */
2525
2526/*
2527 * An iclog has just finished IO completion processing, so we need to update
2528 * the iclog state and propagate that up into the overall log state. Hence we
2529 * prepare the iclog for cleaning, and then clean all the pending dirty iclogs
2530 * starting from the head, and then wake up any threads that are waiting for the
2531 * iclog to be marked clean.
2532 *
2533 * The ordering of marking iclogs ACTIVE must be maintained, so an iclog
2534 * doesn't become ACTIVE beyond one that is SYNCING. This is also required to
2535 * maintain the notion that we use a ordered wait queue to hold off would be
2536 * writers to the log when every iclog is trying to sync to disk.
2537 *
2538 * Caller must hold the icloglock before calling us.
2539 *
2540 * State Change: !IOERROR -> DIRTY -> ACTIVE
2541 */
2542STATIC void
2543xlog_state_clean_iclog(
2544 struct xlog *log,
2545 struct xlog_in_core *dirty_iclog)
2546{
2547 struct xlog_in_core *iclog;
2548 int changed = 0;
2549
2550 /* Prepare the completed iclog. */
2551 if (!(dirty_iclog->ic_state & XLOG_STATE_IOERROR))
2552 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2553
2554 /* Walk all the iclogs to update the ordered active state. */
2555 iclog = log->l_iclog;
2556 do {
2557 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2558 iclog->ic_state = XLOG_STATE_ACTIVE;
2559 iclog->ic_offset = 0;
2560 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2561 /*
2562 * If the number of ops in this iclog indicate it just
2563 * contains the dummy transaction, we can
2564 * change state into IDLE (the second time around).
2565 * Otherwise we should change the state into
2566 * NEED a dummy.
2567 * We don't need to cover the dummy.
2568 */
2569 if (!changed &&
2570 (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2571 XLOG_COVER_OPS)) {
2572 changed = 1;
2573 } else {
2574 /*
2575 * We have two dirty iclogs so start over
2576 * This could also be num of ops indicates
2577 * this is not the dummy going out.
2578 */
2579 changed = 2;
2580 }
2581 iclog->ic_header.h_num_logops = 0;
2582 memset(iclog->ic_header.h_cycle_data, 0,
2583 sizeof(iclog->ic_header.h_cycle_data));
2584 iclog->ic_header.h_lsn = 0;
2585 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2586 /* do nothing */;
2587 else
2588 break; /* stop cleaning */
2589 iclog = iclog->ic_next;
2590 } while (iclog != log->l_iclog);
2591
2592
2593 /*
2594 * Wake up threads waiting in xfs_log_force() for the dirty iclog
2595 * to be cleaned.
2596 */
2597 wake_up_all(&dirty_iclog->ic_force_wait);
2598
2599 /*
2600 * Change state for the dummy log recording.
2601 * We usually go to NEED. But we go to NEED2 if the changed indicates
2602 * we are done writing the dummy record.
2603 * If we are done with the second dummy recored (DONE2), then
2604 * we go to IDLE.
2605 */
2606 if (changed) {
2607 switch (log->l_covered_state) {
2608 case XLOG_STATE_COVER_IDLE:
2609 case XLOG_STATE_COVER_NEED:
2610 case XLOG_STATE_COVER_NEED2:
2611 log->l_covered_state = XLOG_STATE_COVER_NEED;
2612 break;
2613
2614 case XLOG_STATE_COVER_DONE:
2615 if (changed == 1)
2616 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2617 else
2618 log->l_covered_state = XLOG_STATE_COVER_NEED;
2619 break;
2620
2621 case XLOG_STATE_COVER_DONE2:
2622 if (changed == 1)
2623 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2624 else
2625 log->l_covered_state = XLOG_STATE_COVER_NEED;
2626 break;
2627
2628 default:
2629 ASSERT(0);
2630 }
2631 }
2632}
2633
2634STATIC xfs_lsn_t
2635xlog_get_lowest_lsn(
2636 struct xlog *log)
2637{
2638 struct xlog_in_core *iclog = log->l_iclog;
2639 xfs_lsn_t lowest_lsn = 0, lsn;
2640
2641 do {
2642 if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2643 continue;
2644
2645 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2646 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2647 lowest_lsn = lsn;
2648 } while ((iclog = iclog->ic_next) != log->l_iclog);
2649
2650 return lowest_lsn;
2651}
2652
2653/*
2654 * Completion of a iclog IO does not imply that a transaction has completed, as
2655 * transactions can be large enough to span many iclogs. We cannot change the
2656 * tail of the log half way through a transaction as this may be the only
2657 * transaction in the log and moving the tail to point to the middle of it
2658 * will prevent recovery from finding the start of the transaction. Hence we
2659 * should only update the last_sync_lsn if this iclog contains transaction
2660 * completion callbacks on it.
2661 *
2662 * We have to do this before we drop the icloglock to ensure we are the only one
2663 * that can update it.
2664 *
2665 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2666 * the reservation grant head pushing. This is due to the fact that the push
2667 * target is bound by the current last_sync_lsn value. Hence if we have a large
2668 * amount of log space bound up in this committing transaction then the
2669 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2670 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2671 * should push the AIL to ensure the push target (and hence the grant head) is
2672 * no longer bound by the old log head location and can move forwards and make
2673 * progress again.
2674 */
2675static void
2676xlog_state_set_callback(
2677 struct xlog *log,
2678 struct xlog_in_core *iclog,
2679 xfs_lsn_t header_lsn)
2680{
2681 iclog->ic_state = XLOG_STATE_CALLBACK;
2682
2683 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2684 header_lsn) <= 0);
2685
2686 if (list_empty_careful(&iclog->ic_callbacks))
2687 return;
2688
2689 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2690 xlog_grant_push_ail(log, 0);
2691}
2692
2693/*
2694 * Return true if we need to stop processing, false to continue to the next
2695 * iclog. The caller will need to run callbacks if the iclog is returned in the
2696 * XLOG_STATE_CALLBACK state.
2697 */
2698static bool
2699xlog_state_iodone_process_iclog(
2700 struct xlog *log,
2701 struct xlog_in_core *iclog,
2702 struct xlog_in_core *completed_iclog,
2703 bool *ioerror)
2704{
2705 xfs_lsn_t lowest_lsn;
2706 xfs_lsn_t header_lsn;
2707
2708 /* Skip all iclogs in the ACTIVE & DIRTY states */
2709 if (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))
2710 return false;
2711
2712 /*
2713 * Between marking a filesystem SHUTDOWN and stopping the log, we do
2714 * flush all iclogs to disk (if there wasn't a log I/O error). So, we do
2715 * want things to go smoothly in case of just a SHUTDOWN w/o a
2716 * LOG_IO_ERROR.
2717 */
2718 if (iclog->ic_state & XLOG_STATE_IOERROR) {
2719 *ioerror = true;
2720 return false;
2721 }
2722
2723 /*
2724 * Can only perform callbacks in order. Since this iclog is not in the
2725 * DONE_SYNC/ DO_CALLBACK state, we skip the rest and just try to clean
2726 * up. If we set our iclog to DO_CALLBACK, we will not process it when
2727 * we retry since a previous iclog is in the CALLBACK and the state
2728 * cannot change since we are holding the l_icloglock.
2729 */
2730 if (!(iclog->ic_state &
2731 (XLOG_STATE_DONE_SYNC | XLOG_STATE_DO_CALLBACK))) {
2732 if (completed_iclog &&
2733 (completed_iclog->ic_state == XLOG_STATE_DONE_SYNC)) {
2734 completed_iclog->ic_state = XLOG_STATE_DO_CALLBACK;
2735 }
2736 return true;
2737 }
2738
2739 /*
2740 * We now have an iclog that is in either the DO_CALLBACK or DONE_SYNC
2741 * states. The other states (WANT_SYNC, SYNCING, or CALLBACK were caught
2742 * by the above if and are going to clean (i.e. we aren't doing their
2743 * callbacks) see the above if.
2744 *
2745 * We will do one more check here to see if we have chased our tail
2746 * around. If this is not the lowest lsn iclog, then we will leave it
2747 * for another completion to process.
2748 */
2749 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2750 lowest_lsn = xlog_get_lowest_lsn(log);
2751 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2752 return false;
2753
2754 xlog_state_set_callback(log, iclog, header_lsn);
2755 return false;
2756
2757}
2758
2759/*
2760 * Keep processing entries in the iclog callback list until we come around and
2761 * it is empty. We need to atomically see that the list is empty and change the
2762 * state to DIRTY so that we don't miss any more callbacks being added.
2763 *
2764 * This function is called with the icloglock held and returns with it held. We
2765 * drop it while running callbacks, however, as holding it over thousands of
2766 * callbacks is unnecessary and causes excessive contention if we do.
2767 */
2768static void
2769xlog_state_do_iclog_callbacks(
2770 struct xlog *log,
2771 struct xlog_in_core *iclog,
2772 bool aborted)
2773{
2774 spin_unlock(&log->l_icloglock);
2775 spin_lock(&iclog->ic_callback_lock);
2776 while (!list_empty(&iclog->ic_callbacks)) {
2777 LIST_HEAD(tmp);
2778
2779 list_splice_init(&iclog->ic_callbacks, &tmp);
2780
2781 spin_unlock(&iclog->ic_callback_lock);
2782 xlog_cil_process_committed(&tmp, aborted);
2783 spin_lock(&iclog->ic_callback_lock);
2784 }
2785
2786 /*
2787 * Pick up the icloglock while still holding the callback lock so we
2788 * serialise against anyone trying to add more callbacks to this iclog
2789 * now we've finished processing.
2790 */
2791 spin_lock(&log->l_icloglock);
2792 spin_unlock(&iclog->ic_callback_lock);
2793}
2794
2795#ifdef DEBUG
2796/*
2797 * Make one last gasp attempt to see if iclogs are being left in limbo. If the
2798 * above loop finds an iclog earlier than the current iclog and in one of the
2799 * syncing states, the current iclog is put into DO_CALLBACK and the callbacks
2800 * are deferred to the completion of the earlier iclog. Walk the iclogs in order
2801 * and make sure that no iclog is in DO_CALLBACK unless an earlier iclog is in
2802 * one of the syncing states.
2803 *
2804 * Note that SYNCING|IOERROR is a valid state so we cannot just check for
2805 * ic_state == SYNCING.
2806 */
2807static void
2808xlog_state_callback_check_state(
2809 struct xlog *log)
2810{
2811 struct xlog_in_core *first_iclog = log->l_iclog;
2812 struct xlog_in_core *iclog = first_iclog;
2813
2814 do {
2815 ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2816 /*
2817 * Terminate the loop if iclogs are found in states
2818 * which will cause other threads to clean up iclogs.
2819 *
2820 * SYNCING - i/o completion will go through logs
2821 * DONE_SYNC - interrupt thread should be waiting for
2822 * l_icloglock
2823 * IOERROR - give up hope all ye who enter here
2824 */
2825 if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2826 iclog->ic_state & XLOG_STATE_SYNCING ||
2827 iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2828 iclog->ic_state == XLOG_STATE_IOERROR )
2829 break;
2830 iclog = iclog->ic_next;
2831 } while (first_iclog != iclog);
2832}
2833#else
2834#define xlog_state_callback_check_state(l) ((void)0)
2835#endif
2836
2837STATIC void
2838xlog_state_do_callback(
2839 struct xlog *log,
2840 bool aborted,
2841 struct xlog_in_core *ciclog)
2842{
2843 struct xlog_in_core *iclog;
2844 struct xlog_in_core *first_iclog;
2845 bool did_callbacks = false;
2846 bool cycled_icloglock;
2847 bool ioerror;
2848 int flushcnt = 0;
2849 int repeats = 0;
2850
2851 spin_lock(&log->l_icloglock);
2852 do {
2853 /*
2854 * Scan all iclogs starting with the one pointed to by the
2855 * log. Reset this starting point each time the log is
2856 * unlocked (during callbacks).
2857 *
2858 * Keep looping through iclogs until one full pass is made
2859 * without running any callbacks.
2860 */
2861 first_iclog = log->l_iclog;
2862 iclog = log->l_iclog;
2863 cycled_icloglock = false;
2864 ioerror = false;
2865 repeats++;
2866
2867 do {
2868 if (xlog_state_iodone_process_iclog(log, iclog,
2869 ciclog, &ioerror))
2870 break;
2871
2872 if (!(iclog->ic_state &
2873 (XLOG_STATE_CALLBACK | XLOG_STATE_IOERROR))) {
2874 iclog = iclog->ic_next;
2875 continue;
2876 }
2877
2878 /*
2879 * Running callbacks will drop the icloglock which means
2880 * we'll have to run at least one more complete loop.
2881 */
2882 cycled_icloglock = true;
2883 xlog_state_do_iclog_callbacks(log, iclog, aborted);
2884
2885 xlog_state_clean_iclog(log, iclog);
2886 iclog = iclog->ic_next;
2887 } while (first_iclog != iclog);
2888
2889 did_callbacks |= cycled_icloglock;
2890
2891 if (repeats > 5000) {
2892 flushcnt += repeats;
2893 repeats = 0;
2894 xfs_warn(log->l_mp,
2895 "%s: possible infinite loop (%d iterations)",
2896 __func__, flushcnt);
2897 }
2898 } while (!ioerror && cycled_icloglock);
2899
2900 if (did_callbacks)
2901 xlog_state_callback_check_state(log);
2902
2903 if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2904 wake_up_all(&log->l_flush_wait);
2905
2906 spin_unlock(&log->l_icloglock);
2907}
2908
2909
2910/*
2911 * Finish transitioning this iclog to the dirty state.
2912 *
2913 * Make sure that we completely execute this routine only when this is
2914 * the last call to the iclog. There is a good chance that iclog flushes,
2915 * when we reach the end of the physical log, get turned into 2 separate
2916 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2917 * routine. By using the reference count bwritecnt, we guarantee that only
2918 * the second completion goes through.
2919 *
2920 * Callbacks could take time, so they are done outside the scope of the
2921 * global state machine log lock.
2922 */
2923STATIC void
2924xlog_state_done_syncing(
2925 struct xlog_in_core *iclog,
2926 bool aborted)
2927{
2928 struct xlog *log = iclog->ic_log;
2929
2930 spin_lock(&log->l_icloglock);
2931
2932 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2933 iclog->ic_state == XLOG_STATE_IOERROR);
2934 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2935
2936 /*
2937 * If we got an error, either on the first buffer, or in the case of
2938 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2939 * and none should ever be attempted to be written to disk
2940 * again.
2941 */
2942 if (iclog->ic_state != XLOG_STATE_IOERROR)
2943 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2944
2945 /*
2946 * Someone could be sleeping prior to writing out the next
2947 * iclog buffer, we wake them all, one will get to do the
2948 * I/O, the others get to wait for the result.
2949 */
2950 wake_up_all(&iclog->ic_write_wait);
2951 spin_unlock(&log->l_icloglock);
2952 xlog_state_do_callback(log, aborted, iclog); /* also cleans log */
2953} /* xlog_state_done_syncing */
2954
2955
2956/*
2957 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2958 * sleep. We wait on the flush queue on the head iclog as that should be
2959 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2960 * we will wait here and all new writes will sleep until a sync completes.
2961 *
2962 * The in-core logs are used in a circular fashion. They are not used
2963 * out-of-order even when an iclog past the head is free.
2964 *
2965 * return:
2966 * * log_offset where xlog_write() can start writing into the in-core
2967 * log's data space.
2968 * * in-core log pointer to which xlog_write() should write.
2969 * * boolean indicating this is a continued write to an in-core log.
2970 * If this is the last write, then the in-core log's offset field
2971 * needs to be incremented, depending on the amount of data which
2972 * is copied.
2973 */
2974STATIC int
2975xlog_state_get_iclog_space(
2976 struct xlog *log,
2977 int len,
2978 struct xlog_in_core **iclogp,
2979 struct xlog_ticket *ticket,
2980 int *continued_write,
2981 int *logoffsetp)
2982{
2983 int log_offset;
2984 xlog_rec_header_t *head;
2985 xlog_in_core_t *iclog;
2986 int error;
2987
2988restart:
2989 spin_lock(&log->l_icloglock);
2990 if (XLOG_FORCED_SHUTDOWN(log)) {
2991 spin_unlock(&log->l_icloglock);
2992 return -EIO;
2993 }
2994
2995 iclog = log->l_iclog;
2996 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2997 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2998
2999 /* Wait for log writes to have flushed */
3000 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
3001 goto restart;
3002 }
3003
3004 head = &iclog->ic_header;
3005
3006 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
3007 log_offset = iclog->ic_offset;
3008
3009 /* On the 1st write to an iclog, figure out lsn. This works
3010 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3011 * committing to. If the offset is set, that's how many blocks
3012 * must be written.
3013 */
3014 if (log_offset == 0) {
3015 ticket->t_curr_res -= log->l_iclog_hsize;
3016 xlog_tic_add_region(ticket,
3017 log->l_iclog_hsize,
3018 XLOG_REG_TYPE_LRHEADER);
3019 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3020 head->h_lsn = cpu_to_be64(
3021 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
3022 ASSERT(log->l_curr_block >= 0);
3023 }
3024
3025 /* If there is enough room to write everything, then do it. Otherwise,
3026 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3027 * bit is on, so this will get flushed out. Don't update ic_offset
3028 * until you know exactly how many bytes get copied. Therefore, wait
3029 * until later to update ic_offset.
3030 *
3031 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3032 * can fit into remaining data section.
3033 */
3034 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
3035 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3036
3037 /*
3038 * If I'm the only one writing to this iclog, sync it to disk.
3039 * We need to do an atomic compare and decrement here to avoid
3040 * racing with concurrent atomic_dec_and_lock() calls in
3041 * xlog_state_release_iclog() when there is more than one
3042 * reference to the iclog.
3043 */
3044 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
3045 /* we are the only one */
3046 spin_unlock(&log->l_icloglock);
3047 error = xlog_state_release_iclog(log, iclog);
3048 if (error)
3049 return error;
3050 } else {
3051 spin_unlock(&log->l_icloglock);
3052 }
3053 goto restart;
3054 }
3055
3056 /* Do we have enough room to write the full amount in the remainder
3057 * of this iclog? Or must we continue a write on the next iclog and
3058 * mark this iclog as completely taken? In the case where we switch
3059 * iclogs (to mark it taken), this particular iclog will release/sync
3060 * to disk in xlog_write().
3061 */
3062 if (len <= iclog->ic_size - iclog->ic_offset) {
3063 *continued_write = 0;
3064 iclog->ic_offset += len;
3065 } else {
3066 *continued_write = 1;
3067 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3068 }
3069 *iclogp = iclog;
3070
3071 ASSERT(iclog->ic_offset <= iclog->ic_size);
3072 spin_unlock(&log->l_icloglock);
3073
3074 *logoffsetp = log_offset;
3075 return 0;
3076} /* xlog_state_get_iclog_space */
3077
3078/* The first cnt-1 times through here we don't need to
3079 * move the grant write head because the permanent
3080 * reservation has reserved cnt times the unit amount.
3081 * Release part of current permanent unit reservation and
3082 * reset current reservation to be one units worth. Also
3083 * move grant reservation head forward.
3084 */
3085STATIC void
3086xlog_regrant_reserve_log_space(
3087 struct xlog *log,
3088 struct xlog_ticket *ticket)
3089{
3090 trace_xfs_log_regrant_reserve_enter(log, ticket);
3091
3092 if (ticket->t_cnt > 0)
3093 ticket->t_cnt--;
3094
3095 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3096 ticket->t_curr_res);
3097 xlog_grant_sub_space(log, &log->l_write_head.grant,
3098 ticket->t_curr_res);
3099 ticket->t_curr_res = ticket->t_unit_res;
3100 xlog_tic_reset_res(ticket);
3101
3102 trace_xfs_log_regrant_reserve_sub(log, ticket);
3103
3104 /* just return if we still have some of the pre-reserved space */
3105 if (ticket->t_cnt > 0)
3106 return;
3107
3108 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3109 ticket->t_unit_res);
3110
3111 trace_xfs_log_regrant_reserve_exit(log, ticket);
3112
3113 ticket->t_curr_res = ticket->t_unit_res;
3114 xlog_tic_reset_res(ticket);
3115} /* xlog_regrant_reserve_log_space */
3116
3117
3118/*
3119 * Give back the space left from a reservation.
3120 *
3121 * All the information we need to make a correct determination of space left
3122 * is present. For non-permanent reservations, things are quite easy. The
3123 * count should have been decremented to zero. We only need to deal with the
3124 * space remaining in the current reservation part of the ticket. If the
3125 * ticket contains a permanent reservation, there may be left over space which
3126 * needs to be released. A count of N means that N-1 refills of the current
3127 * reservation can be done before we need to ask for more space. The first
3128 * one goes to fill up the first current reservation. Once we run out of
3129 * space, the count will stay at zero and the only space remaining will be
3130 * in the current reservation field.
3131 */
3132STATIC void
3133xlog_ungrant_log_space(
3134 struct xlog *log,
3135 struct xlog_ticket *ticket)
3136{
3137 int bytes;
3138
3139 if (ticket->t_cnt > 0)
3140 ticket->t_cnt--;
3141
3142 trace_xfs_log_ungrant_enter(log, ticket);
3143 trace_xfs_log_ungrant_sub(log, ticket);
3144
3145 /*
3146 * If this is a permanent reservation ticket, we may be able to free
3147 * up more space based on the remaining count.
3148 */
3149 bytes = ticket->t_curr_res;
3150 if (ticket->t_cnt > 0) {
3151 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3152 bytes += ticket->t_unit_res*ticket->t_cnt;
3153 }
3154
3155 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3156 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3157
3158 trace_xfs_log_ungrant_exit(log, ticket);
3159
3160 xfs_log_space_wake(log->l_mp);
3161}
3162
3163/*
3164 * Flush iclog to disk if this is the last reference to the given iclog and
3165 * the WANT_SYNC bit is set.
3166 *
3167 * When this function is entered, the iclog is not necessarily in the
3168 * WANT_SYNC state. It may be sitting around waiting to get filled.
3169 *
3170 *
3171 */
3172STATIC int
3173xlog_state_release_iclog(
3174 struct xlog *log,
3175 struct xlog_in_core *iclog)
3176{
3177 int sync = 0; /* do we sync? */
3178
3179 if (iclog->ic_state & XLOG_STATE_IOERROR)
3180 return -EIO;
3181
3182 ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3183 if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3184 return 0;
3185
3186 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3187 spin_unlock(&log->l_icloglock);
3188 return -EIO;
3189 }
3190 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3191 iclog->ic_state == XLOG_STATE_WANT_SYNC);
3192
3193 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3194 /* update tail before writing to iclog */
3195 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3196 sync++;
3197 iclog->ic_state = XLOG_STATE_SYNCING;
3198 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3199 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3200 /* cycle incremented when incrementing curr_block */
3201 }
3202 spin_unlock(&log->l_icloglock);
3203
3204 /*
3205 * We let the log lock go, so it's possible that we hit a log I/O
3206 * error or some other SHUTDOWN condition that marks the iclog
3207 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3208 * this iclog has consistent data, so we ignore IOERROR
3209 * flags after this point.
3210 */
3211 if (sync)
3212 xlog_sync(log, iclog);
3213 return 0;
3214} /* xlog_state_release_iclog */
3215
3216
3217/*
3218 * This routine will mark the current iclog in the ring as WANT_SYNC
3219 * and move the current iclog pointer to the next iclog in the ring.
3220 * When this routine is called from xlog_state_get_iclog_space(), the
3221 * exact size of the iclog has not yet been determined. All we know is
3222 * that every data block. We have run out of space in this log record.
3223 */
3224STATIC void
3225xlog_state_switch_iclogs(
3226 struct xlog *log,
3227 struct xlog_in_core *iclog,
3228 int eventual_size)
3229{
3230 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3231 if (!eventual_size)
3232 eventual_size = iclog->ic_offset;
3233 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3234 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3235 log->l_prev_block = log->l_curr_block;
3236 log->l_prev_cycle = log->l_curr_cycle;
3237
3238 /* roll log?: ic_offset changed later */
3239 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3240
3241 /* Round up to next log-sunit */
3242 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3243 log->l_mp->m_sb.sb_logsunit > 1) {
3244 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3245 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3246 }
3247
3248 if (log->l_curr_block >= log->l_logBBsize) {
3249 /*
3250 * Rewind the current block before the cycle is bumped to make
3251 * sure that the combined LSN never transiently moves forward
3252 * when the log wraps to the next cycle. This is to support the
3253 * unlocked sample of these fields from xlog_valid_lsn(). Most
3254 * other cases should acquire l_icloglock.
3255 */
3256 log->l_curr_block -= log->l_logBBsize;
3257 ASSERT(log->l_curr_block >= 0);
3258 smp_wmb();
3259 log->l_curr_cycle++;
3260 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3261 log->l_curr_cycle++;
3262 }
3263 ASSERT(iclog == log->l_iclog);
3264 log->l_iclog = iclog->ic_next;
3265} /* xlog_state_switch_iclogs */
3266
3267/*
3268 * Write out all data in the in-core log as of this exact moment in time.
3269 *
3270 * Data may be written to the in-core log during this call. However,
3271 * we don't guarantee this data will be written out. A change from past
3272 * implementation means this routine will *not* write out zero length LRs.
3273 *
3274 * Basically, we try and perform an intelligent scan of the in-core logs.
3275 * If we determine there is no flushable data, we just return. There is no
3276 * flushable data if:
3277 *
3278 * 1. the current iclog is active and has no data; the previous iclog
3279 * is in the active or dirty state.
3280 * 2. the current iclog is drity, and the previous iclog is in the
3281 * active or dirty state.
3282 *
3283 * We may sleep if:
3284 *
3285 * 1. the current iclog is not in the active nor dirty state.
3286 * 2. the current iclog dirty, and the previous iclog is not in the
3287 * active nor dirty state.
3288 * 3. the current iclog is active, and there is another thread writing
3289 * to this particular iclog.
3290 * 4. a) the current iclog is active and has no other writers
3291 * b) when we return from flushing out this iclog, it is still
3292 * not in the active nor dirty state.
3293 */
3294int
3295xfs_log_force(
3296 struct xfs_mount *mp,
3297 uint flags)
3298{
3299 struct xlog *log = mp->m_log;
3300 struct xlog_in_core *iclog;
3301 xfs_lsn_t lsn;
3302
3303 XFS_STATS_INC(mp, xs_log_force);
3304 trace_xfs_log_force(mp, 0, _RET_IP_);
3305
3306 xlog_cil_force(log);
3307
3308 spin_lock(&log->l_icloglock);
3309 iclog = log->l_iclog;
3310 if (iclog->ic_state & XLOG_STATE_IOERROR)
3311 goto out_error;
3312
3313 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3314 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3315 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3316 /*
3317 * If the head is dirty or (active and empty), then we need to
3318 * look at the previous iclog.
3319 *
3320 * If the previous iclog is active or dirty we are done. There
3321 * is nothing to sync out. Otherwise, we attach ourselves to the
3322 * previous iclog and go to sleep.
3323 */
3324 iclog = iclog->ic_prev;
3325 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3326 iclog->ic_state == XLOG_STATE_DIRTY)
3327 goto out_unlock;
3328 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3329 if (atomic_read(&iclog->ic_refcnt) == 0) {
3330 /*
3331 * We are the only one with access to this iclog.
3332 *
3333 * Flush it out now. There should be a roundoff of zero
3334 * to show that someone has already taken care of the
3335 * roundoff from the previous sync.
3336 */
3337 atomic_inc(&iclog->ic_refcnt);
3338 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3339 xlog_state_switch_iclogs(log, iclog, 0);
3340 spin_unlock(&log->l_icloglock);
3341
3342 if (xlog_state_release_iclog(log, iclog))
3343 return -EIO;
3344
3345 spin_lock(&log->l_icloglock);
3346 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn ||
3347 iclog->ic_state == XLOG_STATE_DIRTY)
3348 goto out_unlock;
3349 } else {
3350 /*
3351 * Someone else is writing to this iclog.
3352 *
3353 * Use its call to flush out the data. However, the
3354 * other thread may not force out this LR, so we mark
3355 * it WANT_SYNC.
3356 */
3357 xlog_state_switch_iclogs(log, iclog, 0);
3358 }
3359 } else {
3360 /*
3361 * If the head iclog is not active nor dirty, we just attach
3362 * ourselves to the head and go to sleep if necessary.
3363 */
3364 ;
3365 }
3366
3367 if (!(flags & XFS_LOG_SYNC))
3368 goto out_unlock;
3369
3370 if (iclog->ic_state & XLOG_STATE_IOERROR)
3371 goto out_error;
3372 XFS_STATS_INC(mp, xs_log_force_sleep);
3373 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3374 if (iclog->ic_state & XLOG_STATE_IOERROR)
3375 return -EIO;
3376 return 0;
3377
3378out_unlock:
3379 spin_unlock(&log->l_icloglock);
3380 return 0;
3381out_error:
3382 spin_unlock(&log->l_icloglock);
3383 return -EIO;
3384}
3385
3386static int
3387__xfs_log_force_lsn(
3388 struct xfs_mount *mp,
3389 xfs_lsn_t lsn,
3390 uint flags,
3391 int *log_flushed,
3392 bool already_slept)
3393{
3394 struct xlog *log = mp->m_log;
3395 struct xlog_in_core *iclog;
3396
3397 spin_lock(&log->l_icloglock);
3398 iclog = log->l_iclog;
3399 if (iclog->ic_state & XLOG_STATE_IOERROR)
3400 goto out_error;
3401
3402 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3403 iclog = iclog->ic_next;
3404 if (iclog == log->l_iclog)
3405 goto out_unlock;
3406 }
3407
3408 if (iclog->ic_state == XLOG_STATE_DIRTY)
3409 goto out_unlock;
3410
3411 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3412 /*
3413 * We sleep here if we haven't already slept (e.g. this is the
3414 * first time we've looked at the correct iclog buf) and the
3415 * buffer before us is going to be sync'ed. The reason for this
3416 * is that if we are doing sync transactions here, by waiting
3417 * for the previous I/O to complete, we can allow a few more
3418 * transactions into this iclog before we close it down.
3419 *
3420 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3421 * refcnt so we can release the log (which drops the ref count).
3422 * The state switch keeps new transaction commits from using
3423 * this buffer. When the current commits finish writing into
3424 * the buffer, the refcount will drop to zero and the buffer
3425 * will go out then.
3426 */
3427 if (!already_slept &&
3428 (iclog->ic_prev->ic_state &
3429 (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3430 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3431
3432 XFS_STATS_INC(mp, xs_log_force_sleep);
3433
3434 xlog_wait(&iclog->ic_prev->ic_write_wait,
3435 &log->l_icloglock);
3436 return -EAGAIN;
3437 }
3438 atomic_inc(&iclog->ic_refcnt);
3439 xlog_state_switch_iclogs(log, iclog, 0);
3440 spin_unlock(&log->l_icloglock);
3441 if (xlog_state_release_iclog(log, iclog))
3442 return -EIO;
3443 if (log_flushed)
3444 *log_flushed = 1;
3445 spin_lock(&log->l_icloglock);
3446 }
3447
3448 if (!(flags & XFS_LOG_SYNC) ||
3449 (iclog->ic_state & (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY)))
3450 goto out_unlock;
3451
3452 if (iclog->ic_state & XLOG_STATE_IOERROR)
3453 goto out_error;
3454
3455 XFS_STATS_INC(mp, xs_log_force_sleep);
3456 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3457 if (iclog->ic_state & XLOG_STATE_IOERROR)
3458 return -EIO;
3459 return 0;
3460
3461out_unlock:
3462 spin_unlock(&log->l_icloglock);
3463 return 0;
3464out_error:
3465 spin_unlock(&log->l_icloglock);
3466 return -EIO;
3467}
3468
3469/*
3470 * Force the in-core log to disk for a specific LSN.
3471 *
3472 * Find in-core log with lsn.
3473 * If it is in the DIRTY state, just return.
3474 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3475 * state and go to sleep or return.
3476 * If it is in any other state, go to sleep or return.
3477 *
3478 * Synchronous forces are implemented with a wait queue. All callers trying
3479 * to force a given lsn to disk must wait on the queue attached to the
3480 * specific in-core log. When given in-core log finally completes its write
3481 * to disk, that thread will wake up all threads waiting on the queue.
3482 */
3483int
3484xfs_log_force_lsn(
3485 struct xfs_mount *mp,
3486 xfs_lsn_t lsn,
3487 uint flags,
3488 int *log_flushed)
3489{
3490 int ret;
3491 ASSERT(lsn != 0);
3492
3493 XFS_STATS_INC(mp, xs_log_force);
3494 trace_xfs_log_force(mp, lsn, _RET_IP_);
3495
3496 lsn = xlog_cil_force_lsn(mp->m_log, lsn);
3497 if (lsn == NULLCOMMITLSN)
3498 return 0;
3499
3500 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, false);
3501 if (ret == -EAGAIN)
3502 ret = __xfs_log_force_lsn(mp, lsn, flags, log_flushed, true);
3503 return ret;
3504}
3505
3506/*
3507 * Called when we want to mark the current iclog as being ready to sync to
3508 * disk.
3509 */
3510STATIC void
3511xlog_state_want_sync(
3512 struct xlog *log,
3513 struct xlog_in_core *iclog)
3514{
3515 assert_spin_locked(&log->l_icloglock);
3516
3517 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3518 xlog_state_switch_iclogs(log, iclog, 0);
3519 } else {
3520 ASSERT(iclog->ic_state &
3521 (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3522 }
3523}
3524
3525
3526/*****************************************************************************
3527 *
3528 * TICKET functions
3529 *
3530 *****************************************************************************
3531 */
3532
3533/*
3534 * Free a used ticket when its refcount falls to zero.
3535 */
3536void
3537xfs_log_ticket_put(
3538 xlog_ticket_t *ticket)
3539{
3540 ASSERT(atomic_read(&ticket->t_ref) > 0);
3541 if (atomic_dec_and_test(&ticket->t_ref))
3542 kmem_zone_free(xfs_log_ticket_zone, ticket);
3543}
3544
3545xlog_ticket_t *
3546xfs_log_ticket_get(
3547 xlog_ticket_t *ticket)
3548{
3549 ASSERT(atomic_read(&ticket->t_ref) > 0);
3550 atomic_inc(&ticket->t_ref);
3551 return ticket;
3552}
3553
3554/*
3555 * Figure out the total log space unit (in bytes) that would be
3556 * required for a log ticket.
3557 */
3558int
3559xfs_log_calc_unit_res(
3560 struct xfs_mount *mp,
3561 int unit_bytes)
3562{
3563 struct xlog *log = mp->m_log;
3564 int iclog_space;
3565 uint num_headers;
3566
3567 /*
3568 * Permanent reservations have up to 'cnt'-1 active log operations
3569 * in the log. A unit in this case is the amount of space for one
3570 * of these log operations. Normal reservations have a cnt of 1
3571 * and their unit amount is the total amount of space required.
3572 *
3573 * The following lines of code account for non-transaction data
3574 * which occupy space in the on-disk log.
3575 *
3576 * Normal form of a transaction is:
3577 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3578 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3579 *
3580 * We need to account for all the leadup data and trailer data
3581 * around the transaction data.
3582 * And then we need to account for the worst case in terms of using
3583 * more space.
3584 * The worst case will happen if:
3585 * - the placement of the transaction happens to be such that the
3586 * roundoff is at its maximum
3587 * - the transaction data is synced before the commit record is synced
3588 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3589 * Therefore the commit record is in its own Log Record.
3590 * This can happen as the commit record is called with its
3591 * own region to xlog_write().
3592 * This then means that in the worst case, roundoff can happen for
3593 * the commit-rec as well.
3594 * The commit-rec is smaller than padding in this scenario and so it is
3595 * not added separately.
3596 */
3597
3598 /* for trans header */
3599 unit_bytes += sizeof(xlog_op_header_t);
3600 unit_bytes += sizeof(xfs_trans_header_t);
3601
3602 /* for start-rec */
3603 unit_bytes += sizeof(xlog_op_header_t);
3604
3605 /*
3606 * for LR headers - the space for data in an iclog is the size minus
3607 * the space used for the headers. If we use the iclog size, then we
3608 * undercalculate the number of headers required.
3609 *
3610 * Furthermore - the addition of op headers for split-recs might
3611 * increase the space required enough to require more log and op
3612 * headers, so take that into account too.
3613 *
3614 * IMPORTANT: This reservation makes the assumption that if this
3615 * transaction is the first in an iclog and hence has the LR headers
3616 * accounted to it, then the remaining space in the iclog is
3617 * exclusively for this transaction. i.e. if the transaction is larger
3618 * than the iclog, it will be the only thing in that iclog.
3619 * Fundamentally, this means we must pass the entire log vector to
3620 * xlog_write to guarantee this.
3621 */
3622 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3623 num_headers = howmany(unit_bytes, iclog_space);
3624
3625 /* for split-recs - ophdrs added when data split over LRs */
3626 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3627
3628 /* add extra header reservations if we overrun */
3629 while (!num_headers ||
3630 howmany(unit_bytes, iclog_space) > num_headers) {
3631 unit_bytes += sizeof(xlog_op_header_t);
3632 num_headers++;
3633 }
3634 unit_bytes += log->l_iclog_hsize * num_headers;
3635
3636 /* for commit-rec LR header - note: padding will subsume the ophdr */
3637 unit_bytes += log->l_iclog_hsize;
3638
3639 /* for roundoff padding for transaction data and one for commit record */
3640 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3641 /* log su roundoff */
3642 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3643 } else {
3644 /* BB roundoff */
3645 unit_bytes += 2 * BBSIZE;
3646 }
3647
3648 return unit_bytes;
3649}
3650
3651/*
3652 * Allocate and initialise a new log ticket.
3653 */
3654struct xlog_ticket *
3655xlog_ticket_alloc(
3656 struct xlog *log,
3657 int unit_bytes,
3658 int cnt,
3659 char client,
3660 bool permanent,
3661 xfs_km_flags_t alloc_flags)
3662{
3663 struct xlog_ticket *tic;
3664 int unit_res;
3665
3666 tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3667 if (!tic)
3668 return NULL;
3669
3670 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3671
3672 atomic_set(&tic->t_ref, 1);
3673 tic->t_task = current;
3674 INIT_LIST_HEAD(&tic->t_queue);
3675 tic->t_unit_res = unit_res;
3676 tic->t_curr_res = unit_res;
3677 tic->t_cnt = cnt;
3678 tic->t_ocnt = cnt;
3679 tic->t_tid = prandom_u32();
3680 tic->t_clientid = client;
3681 tic->t_flags = XLOG_TIC_INITED;
3682 if (permanent)
3683 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3684
3685 xlog_tic_reset_res(tic);
3686
3687 return tic;
3688}
3689
3690
3691/******************************************************************************
3692 *
3693 * Log debug routines
3694 *
3695 ******************************************************************************
3696 */
3697#if defined(DEBUG)
3698/*
3699 * Make sure that the destination ptr is within the valid data region of
3700 * one of the iclogs. This uses backup pointers stored in a different
3701 * part of the log in case we trash the log structure.
3702 */
3703STATIC void
3704xlog_verify_dest_ptr(
3705 struct xlog *log,
3706 void *ptr)
3707{
3708 int i;
3709 int good_ptr = 0;
3710
3711 for (i = 0; i < log->l_iclog_bufs; i++) {
3712 if (ptr >= log->l_iclog_bak[i] &&
3713 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3714 good_ptr++;
3715 }
3716
3717 if (!good_ptr)
3718 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3719}
3720
3721/*
3722 * Check to make sure the grant write head didn't just over lap the tail. If
3723 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3724 * the cycles differ by exactly one and check the byte count.
3725 *
3726 * This check is run unlocked, so can give false positives. Rather than assert
3727 * on failures, use a warn-once flag and a panic tag to allow the admin to
3728 * determine if they want to panic the machine when such an error occurs. For
3729 * debug kernels this will have the same effect as using an assert but, unlinke
3730 * an assert, it can be turned off at runtime.
3731 */
3732STATIC void
3733xlog_verify_grant_tail(
3734 struct xlog *log)
3735{
3736 int tail_cycle, tail_blocks;
3737 int cycle, space;
3738
3739 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3740 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3741 if (tail_cycle != cycle) {
3742 if (cycle - 1 != tail_cycle &&
3743 !(log->l_flags & XLOG_TAIL_WARN)) {
3744 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3745 "%s: cycle - 1 != tail_cycle", __func__);
3746 log->l_flags |= XLOG_TAIL_WARN;
3747 }
3748
3749 if (space > BBTOB(tail_blocks) &&
3750 !(log->l_flags & XLOG_TAIL_WARN)) {
3751 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3752 "%s: space > BBTOB(tail_blocks)", __func__);
3753 log->l_flags |= XLOG_TAIL_WARN;
3754 }
3755 }
3756}
3757
3758/* check if it will fit */
3759STATIC void
3760xlog_verify_tail_lsn(
3761 struct xlog *log,
3762 struct xlog_in_core *iclog,
3763 xfs_lsn_t tail_lsn)
3764{
3765 int blocks;
3766
3767 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3768 blocks =
3769 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3770 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3771 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3772 } else {
3773 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3774
3775 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3776 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3777
3778 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3779 if (blocks < BTOBB(iclog->ic_offset) + 1)
3780 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3781 }
3782} /* xlog_verify_tail_lsn */
3783
3784/*
3785 * Perform a number of checks on the iclog before writing to disk.
3786 *
3787 * 1. Make sure the iclogs are still circular
3788 * 2. Make sure we have a good magic number
3789 * 3. Make sure we don't have magic numbers in the data
3790 * 4. Check fields of each log operation header for:
3791 * A. Valid client identifier
3792 * B. tid ptr value falls in valid ptr space (user space code)
3793 * C. Length in log record header is correct according to the
3794 * individual operation headers within record.
3795 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3796 * log, check the preceding blocks of the physical log to make sure all
3797 * the cycle numbers agree with the current cycle number.
3798 */
3799STATIC void
3800xlog_verify_iclog(
3801 struct xlog *log,
3802 struct xlog_in_core *iclog,
3803 int count)
3804{
3805 xlog_op_header_t *ophead;
3806 xlog_in_core_t *icptr;
3807 xlog_in_core_2_t *xhdr;
3808 void *base_ptr, *ptr, *p;
3809 ptrdiff_t field_offset;
3810 uint8_t clientid;
3811 int len, i, j, k, op_len;
3812 int idx;
3813
3814 /* check validity of iclog pointers */
3815 spin_lock(&log->l_icloglock);
3816 icptr = log->l_iclog;
3817 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3818 ASSERT(icptr);
3819
3820 if (icptr != log->l_iclog)
3821 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3822 spin_unlock(&log->l_icloglock);
3823
3824 /* check log magic numbers */
3825 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3826 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3827
3828 base_ptr = ptr = &iclog->ic_header;
3829 p = &iclog->ic_header;
3830 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3831 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3832 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3833 __func__);
3834 }
3835
3836 /* check fields */
3837 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3838 base_ptr = ptr = iclog->ic_datap;
3839 ophead = ptr;
3840 xhdr = iclog->ic_data;
3841 for (i = 0; i < len; i++) {
3842 ophead = ptr;
3843
3844 /* clientid is only 1 byte */
3845 p = &ophead->oh_clientid;
3846 field_offset = p - base_ptr;
3847 if (field_offset & 0x1ff) {
3848 clientid = ophead->oh_clientid;
3849 } else {
3850 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3851 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3852 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3853 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3854 clientid = xlog_get_client_id(
3855 xhdr[j].hic_xheader.xh_cycle_data[k]);
3856 } else {
3857 clientid = xlog_get_client_id(
3858 iclog->ic_header.h_cycle_data[idx]);
3859 }
3860 }
3861 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3862 xfs_warn(log->l_mp,
3863 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3864 __func__, clientid, ophead,
3865 (unsigned long)field_offset);
3866
3867 /* check length */
3868 p = &ophead->oh_len;
3869 field_offset = p - base_ptr;
3870 if (field_offset & 0x1ff) {
3871 op_len = be32_to_cpu(ophead->oh_len);
3872 } else {
3873 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3874 (uintptr_t)iclog->ic_datap);
3875 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3876 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3877 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3878 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3879 } else {
3880 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3881 }
3882 }
3883 ptr += sizeof(xlog_op_header_t) + op_len;
3884 }
3885} /* xlog_verify_iclog */
3886#endif
3887
3888/*
3889 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3890 */
3891STATIC int
3892xlog_state_ioerror(
3893 struct xlog *log)
3894{
3895 xlog_in_core_t *iclog, *ic;
3896
3897 iclog = log->l_iclog;
3898 if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3899 /*
3900 * Mark all the incore logs IOERROR.
3901 * From now on, no log flushes will result.
3902 */
3903 ic = iclog;
3904 do {
3905 ic->ic_state = XLOG_STATE_IOERROR;
3906 ic = ic->ic_next;
3907 } while (ic != iclog);
3908 return 0;
3909 }
3910 /*
3911 * Return non-zero, if state transition has already happened.
3912 */
3913 return 1;
3914}
3915
3916/*
3917 * This is called from xfs_force_shutdown, when we're forcibly
3918 * shutting down the filesystem, typically because of an IO error.
3919 * Our main objectives here are to make sure that:
3920 * a. if !logerror, flush the logs to disk. Anything modified
3921 * after this is ignored.
3922 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3923 * parties to find out, 'atomically'.
3924 * c. those who're sleeping on log reservations, pinned objects and
3925 * other resources get woken up, and be told the bad news.
3926 * d. nothing new gets queued up after (b) and (c) are done.
3927 *
3928 * Note: for the !logerror case we need to flush the regions held in memory out
3929 * to disk first. This needs to be done before the log is marked as shutdown,
3930 * otherwise the iclog writes will fail.
3931 */
3932int
3933xfs_log_force_umount(
3934 struct xfs_mount *mp,
3935 int logerror)
3936{
3937 struct xlog *log;
3938 int retval;
3939
3940 log = mp->m_log;
3941
3942 /*
3943 * If this happens during log recovery, don't worry about
3944 * locking; the log isn't open for business yet.
3945 */
3946 if (!log ||
3947 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3948 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3949 if (mp->m_sb_bp)
3950 mp->m_sb_bp->b_flags |= XBF_DONE;
3951 return 0;
3952 }
3953
3954 /*
3955 * Somebody could've already done the hard work for us.
3956 * No need to get locks for this.
3957 */
3958 if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3959 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3960 return 1;
3961 }
3962
3963 /*
3964 * Flush all the completed transactions to disk before marking the log
3965 * being shut down. We need to do it in this order to ensure that
3966 * completed operations are safely on disk before we shut down, and that
3967 * we don't have to issue any buffer IO after the shutdown flags are set
3968 * to guarantee this.
3969 */
3970 if (!logerror)
3971 xfs_log_force(mp, XFS_LOG_SYNC);
3972
3973 /*
3974 * mark the filesystem and the as in a shutdown state and wake
3975 * everybody up to tell them the bad news.
3976 */
3977 spin_lock(&log->l_icloglock);
3978 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3979 if (mp->m_sb_bp)
3980 mp->m_sb_bp->b_flags |= XBF_DONE;
3981
3982 /*
3983 * Mark the log and the iclogs with IO error flags to prevent any
3984 * further log IO from being issued or completed.
3985 */
3986 log->l_flags |= XLOG_IO_ERROR;
3987 retval = xlog_state_ioerror(log);
3988 spin_unlock(&log->l_icloglock);
3989
3990 /*
3991 * We don't want anybody waiting for log reservations after this. That
3992 * means we have to wake up everybody queued up on reserveq as well as
3993 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3994 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3995 * action is protected by the grant locks.
3996 */
3997 xlog_grant_head_wake_all(&log->l_reserve_head);
3998 xlog_grant_head_wake_all(&log->l_write_head);
3999
4000 /*
4001 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4002 * as if the log writes were completed. The abort handling in the log
4003 * item committed callback functions will do this again under lock to
4004 * avoid races.
4005 */
4006 spin_lock(&log->l_cilp->xc_push_lock);
4007 wake_up_all(&log->l_cilp->xc_commit_wait);
4008 spin_unlock(&log->l_cilp->xc_push_lock);
4009 xlog_state_do_callback(log, true, NULL);
4010
4011#ifdef XFSERRORDEBUG
4012 {
4013 xlog_in_core_t *iclog;
4014
4015 spin_lock(&log->l_icloglock);
4016 iclog = log->l_iclog;
4017 do {
4018 ASSERT(iclog->ic_callback == 0);
4019 iclog = iclog->ic_next;
4020 } while (iclog != log->l_iclog);
4021 spin_unlock(&log->l_icloglock);
4022 }
4023#endif
4024 /* return non-zero if log IOERROR transition had already happened */
4025 return retval;
4026}
4027
4028STATIC int
4029xlog_iclogs_empty(
4030 struct xlog *log)
4031{
4032 xlog_in_core_t *iclog;
4033
4034 iclog = log->l_iclog;
4035 do {
4036 /* endianness does not matter here, zero is zero in
4037 * any language.
4038 */
4039 if (iclog->ic_header.h_num_logops)
4040 return 0;
4041 iclog = iclog->ic_next;
4042 } while (iclog != log->l_iclog);
4043 return 1;
4044}
4045
4046/*
4047 * Verify that an LSN stamped into a piece of metadata is valid. This is
4048 * intended for use in read verifiers on v5 superblocks.
4049 */
4050bool
4051xfs_log_check_lsn(
4052 struct xfs_mount *mp,
4053 xfs_lsn_t lsn)
4054{
4055 struct xlog *log = mp->m_log;
4056 bool valid;
4057
4058 /*
4059 * norecovery mode skips mount-time log processing and unconditionally
4060 * resets the in-core LSN. We can't validate in this mode, but
4061 * modifications are not allowed anyways so just return true.
4062 */
4063 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4064 return true;
4065
4066 /*
4067 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4068 * handled by recovery and thus safe to ignore here.
4069 */
4070 if (lsn == NULLCOMMITLSN)
4071 return true;
4072
4073 valid = xlog_valid_lsn(mp->m_log, lsn);
4074
4075 /* warn the user about what's gone wrong before verifier failure */
4076 if (!valid) {
4077 spin_lock(&log->l_icloglock);
4078 xfs_warn(mp,
4079"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4080"Please unmount and run xfs_repair (>= v4.3) to resolve.",
4081 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4082 log->l_curr_cycle, log->l_curr_block);
4083 spin_unlock(&log->l_icloglock);
4084 }
4085
4086 return valid;
4087}
4088
4089bool
4090xfs_log_in_recovery(
4091 struct xfs_mount *mp)
4092{
4093 struct xlog *log = mp->m_log;
4094
4095 return log->l_flags & XLOG_ACTIVE_RECOVERY;
4096}