Loading...
1/*
2 * Copyright (C) 2016 Oracle. All Rights Reserved.
3 *
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it would be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_shared.h"
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
26#include "xfs_bit.h"
27#include "xfs_sb.h"
28#include "xfs_mount.h"
29#include "xfs_defer.h"
30#include "xfs_trans.h"
31#include "xfs_trace.h"
32
33/*
34 * Deferred Operations in XFS
35 *
36 * Due to the way locking rules work in XFS, certain transactions (block
37 * mapping and unmapping, typically) have permanent reservations so that
38 * we can roll the transaction to adhere to AG locking order rules and
39 * to unlock buffers between metadata updates. Prior to rmap/reflink,
40 * the mapping code had a mechanism to perform these deferrals for
41 * extents that were going to be freed; this code makes that facility
42 * more generic.
43 *
44 * When adding the reverse mapping and reflink features, it became
45 * necessary to perform complex remapping multi-transactions to comply
46 * with AG locking order rules, and to be able to spread a single
47 * refcount update operation (an operation on an n-block extent can
48 * update as many as n records!) among multiple transactions. XFS can
49 * roll a transaction to facilitate this, but using this facility
50 * requires us to log "intent" items in case log recovery needs to
51 * redo the operation, and to log "done" items to indicate that redo
52 * is not necessary.
53 *
54 * Deferred work is tracked in xfs_defer_pending items. Each pending
55 * item tracks one type of deferred work. Incoming work items (which
56 * have not yet had an intent logged) are attached to a pending item
57 * on the dop_intake list, where they wait for the caller to finish
58 * the deferred operations.
59 *
60 * Finishing a set of deferred operations is an involved process. To
61 * start, we define "rolling a deferred-op transaction" as follows:
62 *
63 * > For each xfs_defer_pending item on the dop_intake list,
64 * - Sort the work items in AG order. XFS locking
65 * order rules require us to lock buffers in AG order.
66 * - Create a log intent item for that type.
67 * - Attach it to the pending item.
68 * - Move the pending item from the dop_intake list to the
69 * dop_pending list.
70 * > Roll the transaction.
71 *
72 * NOTE: To avoid exceeding the transaction reservation, we limit the
73 * number of items that we attach to a given xfs_defer_pending.
74 *
75 * The actual finishing process looks like this:
76 *
77 * > For each xfs_defer_pending in the dop_pending list,
78 * - Roll the deferred-op transaction as above.
79 * - Create a log done item for that type, and attach it to the
80 * log intent item.
81 * - For each work item attached to the log intent item,
82 * * Perform the described action.
83 * * Attach the work item to the log done item.
84 * * If the result of doing the work was -EAGAIN, ->finish work
85 * wants a new transaction. See the "Requesting a Fresh
86 * Transaction while Finishing Deferred Work" section below for
87 * details.
88 *
89 * The key here is that we must log an intent item for all pending
90 * work items every time we roll the transaction, and that we must log
91 * a done item as soon as the work is completed. With this mechanism
92 * we can perform complex remapping operations, chaining intent items
93 * as needed.
94 *
95 * Requesting a Fresh Transaction while Finishing Deferred Work
96 *
97 * If ->finish_item decides that it needs a fresh transaction to
98 * finish the work, it must ask its caller (xfs_defer_finish) for a
99 * continuation. The most likely cause of this circumstance are the
100 * refcount adjust functions deciding that they've logged enough items
101 * to be at risk of exceeding the transaction reservation.
102 *
103 * To get a fresh transaction, we want to log the existing log done
104 * item to prevent the log intent item from replaying, immediately log
105 * a new log intent item with the unfinished work items, roll the
106 * transaction, and re-call ->finish_item wherever it left off. The
107 * log done item and the new log intent item must be in the same
108 * transaction or atomicity cannot be guaranteed; defer_finish ensures
109 * that this happens.
110 *
111 * This requires some coordination between ->finish_item and
112 * defer_finish. Upon deciding to request a new transaction,
113 * ->finish_item should update the current work item to reflect the
114 * unfinished work. Next, it should reset the log done item's list
115 * count to the number of items finished, and return -EAGAIN.
116 * defer_finish sees the -EAGAIN, logs the new log intent item
117 * with the remaining work items, and leaves the xfs_defer_pending
118 * item at the head of the dop_work queue. Then it rolls the
119 * transaction and picks up processing where it left off. It is
120 * required that ->finish_item must be careful to leave enough
121 * transaction reservation to fit the new log intent item.
122 *
123 * This is an example of remapping the extent (E, E+B) into file X at
124 * offset A and dealing with the extent (C, C+B) already being mapped
125 * there:
126 * +-------------------------------------------------+
127 * | Unmap file X startblock C offset A length B | t0
128 * | Intent to reduce refcount for extent (C, B) |
129 * | Intent to remove rmap (X, C, A, B) |
130 * | Intent to free extent (D, 1) (bmbt block) |
131 * | Intent to map (X, A, B) at startblock E |
132 * +-------------------------------------------------+
133 * | Map file X startblock E offset A length B | t1
134 * | Done mapping (X, E, A, B) |
135 * | Intent to increase refcount for extent (E, B) |
136 * | Intent to add rmap (X, E, A, B) |
137 * +-------------------------------------------------+
138 * | Reduce refcount for extent (C, B) | t2
139 * | Done reducing refcount for extent (C, 9) |
140 * | Intent to reduce refcount for extent (C+9, B-9) |
141 * | (ran out of space after 9 refcount updates) |
142 * +-------------------------------------------------+
143 * | Reduce refcount for extent (C+9, B+9) | t3
144 * | Done reducing refcount for extent (C+9, B-9) |
145 * | Increase refcount for extent (E, B) |
146 * | Done increasing refcount for extent (E, B) |
147 * | Intent to free extent (C, B) |
148 * | Intent to free extent (F, 1) (refcountbt block) |
149 * | Intent to remove rmap (F, 1, REFC) |
150 * +-------------------------------------------------+
151 * | Remove rmap (X, C, A, B) | t4
152 * | Done removing rmap (X, C, A, B) |
153 * | Add rmap (X, E, A, B) |
154 * | Done adding rmap (X, E, A, B) |
155 * | Remove rmap (F, 1, REFC) |
156 * | Done removing rmap (F, 1, REFC) |
157 * +-------------------------------------------------+
158 * | Free extent (C, B) | t5
159 * | Done freeing extent (C, B) |
160 * | Free extent (D, 1) |
161 * | Done freeing extent (D, 1) |
162 * | Free extent (F, 1) |
163 * | Done freeing extent (F, 1) |
164 * +-------------------------------------------------+
165 *
166 * If we should crash before t2 commits, log recovery replays
167 * the following intent items:
168 *
169 * - Intent to reduce refcount for extent (C, B)
170 * - Intent to remove rmap (X, C, A, B)
171 * - Intent to free extent (D, 1) (bmbt block)
172 * - Intent to increase refcount for extent (E, B)
173 * - Intent to add rmap (X, E, A, B)
174 *
175 * In the process of recovering, it should also generate and take care
176 * of these intent items:
177 *
178 * - Intent to free extent (C, B)
179 * - Intent to free extent (F, 1) (refcountbt block)
180 * - Intent to remove rmap (F, 1, REFC)
181 *
182 * Note that the continuation requested between t2 and t3 is likely to
183 * reoccur.
184 */
185
186static const struct xfs_defer_op_type *defer_op_types[XFS_DEFER_OPS_TYPE_MAX];
187
188/*
189 * For each pending item in the intake list, log its intent item and the
190 * associated extents, then add the entire intake list to the end of
191 * the pending list.
192 */
193STATIC void
194xfs_defer_intake_work(
195 struct xfs_trans *tp,
196 struct xfs_defer_ops *dop)
197{
198 struct list_head *li;
199 struct xfs_defer_pending *dfp;
200
201 list_for_each_entry(dfp, &dop->dop_intake, dfp_list) {
202 dfp->dfp_intent = dfp->dfp_type->create_intent(tp,
203 dfp->dfp_count);
204 trace_xfs_defer_intake_work(tp->t_mountp, dfp);
205 list_sort(tp->t_mountp, &dfp->dfp_work,
206 dfp->dfp_type->diff_items);
207 list_for_each(li, &dfp->dfp_work)
208 dfp->dfp_type->log_item(tp, dfp->dfp_intent, li);
209 }
210
211 list_splice_tail_init(&dop->dop_intake, &dop->dop_pending);
212}
213
214/* Abort all the intents that were committed. */
215STATIC void
216xfs_defer_trans_abort(
217 struct xfs_trans *tp,
218 struct xfs_defer_ops *dop,
219 int error)
220{
221 struct xfs_defer_pending *dfp;
222
223 trace_xfs_defer_trans_abort(tp->t_mountp, dop);
224
225 /* Abort intent items that don't have a done item. */
226 list_for_each_entry(dfp, &dop->dop_pending, dfp_list) {
227 trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
228 if (dfp->dfp_intent && !dfp->dfp_done) {
229 dfp->dfp_type->abort_intent(dfp->dfp_intent);
230 dfp->dfp_intent = NULL;
231 }
232 }
233
234 /* Shut down FS. */
235 xfs_force_shutdown(tp->t_mountp, (error == -EFSCORRUPTED) ?
236 SHUTDOWN_CORRUPT_INCORE : SHUTDOWN_META_IO_ERROR);
237}
238
239/* Roll a transaction so we can do some deferred op processing. */
240STATIC int
241xfs_defer_trans_roll(
242 struct xfs_trans **tp,
243 struct xfs_defer_ops *dop,
244 struct xfs_inode *ip)
245{
246 int i;
247 int error;
248
249 /* Log all the joined inodes except the one we passed in. */
250 for (i = 0; i < XFS_DEFER_OPS_NR_INODES && dop->dop_inodes[i]; i++) {
251 if (dop->dop_inodes[i] == ip)
252 continue;
253 xfs_trans_log_inode(*tp, dop->dop_inodes[i], XFS_ILOG_CORE);
254 }
255
256 trace_xfs_defer_trans_roll((*tp)->t_mountp, dop);
257
258 /* Roll the transaction. */
259 error = xfs_trans_roll(tp, ip);
260 if (error) {
261 trace_xfs_defer_trans_roll_error((*tp)->t_mountp, dop, error);
262 xfs_defer_trans_abort(*tp, dop, error);
263 return error;
264 }
265 dop->dop_committed = true;
266
267 /* Rejoin the joined inodes except the one we passed in. */
268 for (i = 0; i < XFS_DEFER_OPS_NR_INODES && dop->dop_inodes[i]; i++) {
269 if (dop->dop_inodes[i] == ip)
270 continue;
271 xfs_trans_ijoin(*tp, dop->dop_inodes[i], 0);
272 }
273
274 return error;
275}
276
277/* Do we have any work items to finish? */
278bool
279xfs_defer_has_unfinished_work(
280 struct xfs_defer_ops *dop)
281{
282 return !list_empty(&dop->dop_pending) || !list_empty(&dop->dop_intake);
283}
284
285/*
286 * Add this inode to the deferred op. Each joined inode is relogged
287 * each time we roll the transaction, in addition to any inode passed
288 * to xfs_defer_finish().
289 */
290int
291xfs_defer_join(
292 struct xfs_defer_ops *dop,
293 struct xfs_inode *ip)
294{
295 int i;
296
297 for (i = 0; i < XFS_DEFER_OPS_NR_INODES; i++) {
298 if (dop->dop_inodes[i] == ip)
299 return 0;
300 else if (dop->dop_inodes[i] == NULL) {
301 dop->dop_inodes[i] = ip;
302 return 0;
303 }
304 }
305
306 return -EFSCORRUPTED;
307}
308
309/*
310 * Finish all the pending work. This involves logging intent items for
311 * any work items that wandered in since the last transaction roll (if
312 * one has even happened), rolling the transaction, and finishing the
313 * work items in the first item on the logged-and-pending list.
314 *
315 * If an inode is provided, relog it to the new transaction.
316 */
317int
318xfs_defer_finish(
319 struct xfs_trans **tp,
320 struct xfs_defer_ops *dop,
321 struct xfs_inode *ip)
322{
323 struct xfs_defer_pending *dfp;
324 struct list_head *li;
325 struct list_head *n;
326 void *state;
327 int error = 0;
328 void (*cleanup_fn)(struct xfs_trans *, void *, int);
329
330 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
331
332 trace_xfs_defer_finish((*tp)->t_mountp, dop);
333
334 /* Until we run out of pending work to finish... */
335 while (xfs_defer_has_unfinished_work(dop)) {
336 /* Log intents for work items sitting in the intake. */
337 xfs_defer_intake_work(*tp, dop);
338
339 /* Roll the transaction. */
340 error = xfs_defer_trans_roll(tp, dop, ip);
341 if (error)
342 goto out;
343
344 /* Log an intent-done item for the first pending item. */
345 dfp = list_first_entry(&dop->dop_pending,
346 struct xfs_defer_pending, dfp_list);
347 trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp);
348 dfp->dfp_done = dfp->dfp_type->create_done(*tp, dfp->dfp_intent,
349 dfp->dfp_count);
350 cleanup_fn = dfp->dfp_type->finish_cleanup;
351
352 /* Finish the work items. */
353 state = NULL;
354 list_for_each_safe(li, n, &dfp->dfp_work) {
355 list_del(li);
356 dfp->dfp_count--;
357 error = dfp->dfp_type->finish_item(*tp, dop, li,
358 dfp->dfp_done, &state);
359 if (error == -EAGAIN) {
360 /*
361 * Caller wants a fresh transaction;
362 * put the work item back on the list
363 * and jump out.
364 */
365 list_add(li, &dfp->dfp_work);
366 dfp->dfp_count++;
367 break;
368 } else if (error) {
369 /*
370 * Clean up after ourselves and jump out.
371 * xfs_defer_cancel will take care of freeing
372 * all these lists and stuff.
373 */
374 if (cleanup_fn)
375 cleanup_fn(*tp, state, error);
376 xfs_defer_trans_abort(*tp, dop, error);
377 goto out;
378 }
379 }
380 if (error == -EAGAIN) {
381 /*
382 * Caller wants a fresh transaction, so log a
383 * new log intent item to replace the old one
384 * and roll the transaction. See "Requesting
385 * a Fresh Transaction while Finishing
386 * Deferred Work" above.
387 */
388 dfp->dfp_intent = dfp->dfp_type->create_intent(*tp,
389 dfp->dfp_count);
390 dfp->dfp_done = NULL;
391 list_for_each(li, &dfp->dfp_work)
392 dfp->dfp_type->log_item(*tp, dfp->dfp_intent,
393 li);
394 } else {
395 /* Done with the dfp, free it. */
396 list_del(&dfp->dfp_list);
397 kmem_free(dfp);
398 }
399
400 if (cleanup_fn)
401 cleanup_fn(*tp, state, error);
402 }
403
404out:
405 if (error)
406 trace_xfs_defer_finish_error((*tp)->t_mountp, dop, error);
407 else
408 trace_xfs_defer_finish_done((*tp)->t_mountp, dop);
409 return error;
410}
411
412/*
413 * Free up any items left in the list.
414 */
415void
416xfs_defer_cancel(
417 struct xfs_defer_ops *dop)
418{
419 struct xfs_defer_pending *dfp;
420 struct xfs_defer_pending *pli;
421 struct list_head *pwi;
422 struct list_head *n;
423
424 trace_xfs_defer_cancel(NULL, dop);
425
426 /*
427 * Free the pending items. Caller should already have arranged
428 * for the intent items to be released.
429 */
430 list_for_each_entry_safe(dfp, pli, &dop->dop_intake, dfp_list) {
431 trace_xfs_defer_intake_cancel(NULL, dfp);
432 list_del(&dfp->dfp_list);
433 list_for_each_safe(pwi, n, &dfp->dfp_work) {
434 list_del(pwi);
435 dfp->dfp_count--;
436 dfp->dfp_type->cancel_item(pwi);
437 }
438 ASSERT(dfp->dfp_count == 0);
439 kmem_free(dfp);
440 }
441 list_for_each_entry_safe(dfp, pli, &dop->dop_pending, dfp_list) {
442 trace_xfs_defer_pending_cancel(NULL, dfp);
443 list_del(&dfp->dfp_list);
444 list_for_each_safe(pwi, n, &dfp->dfp_work) {
445 list_del(pwi);
446 dfp->dfp_count--;
447 dfp->dfp_type->cancel_item(pwi);
448 }
449 ASSERT(dfp->dfp_count == 0);
450 kmem_free(dfp);
451 }
452}
453
454/* Add an item for later deferred processing. */
455void
456xfs_defer_add(
457 struct xfs_defer_ops *dop,
458 enum xfs_defer_ops_type type,
459 struct list_head *li)
460{
461 struct xfs_defer_pending *dfp = NULL;
462
463 /*
464 * Add the item to a pending item at the end of the intake list.
465 * If the last pending item has the same type, reuse it. Else,
466 * create a new pending item at the end of the intake list.
467 */
468 if (!list_empty(&dop->dop_intake)) {
469 dfp = list_last_entry(&dop->dop_intake,
470 struct xfs_defer_pending, dfp_list);
471 if (dfp->dfp_type->type != type ||
472 (dfp->dfp_type->max_items &&
473 dfp->dfp_count >= dfp->dfp_type->max_items))
474 dfp = NULL;
475 }
476 if (!dfp) {
477 dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
478 KM_SLEEP | KM_NOFS);
479 dfp->dfp_type = defer_op_types[type];
480 dfp->dfp_intent = NULL;
481 dfp->dfp_done = NULL;
482 dfp->dfp_count = 0;
483 INIT_LIST_HEAD(&dfp->dfp_work);
484 list_add_tail(&dfp->dfp_list, &dop->dop_intake);
485 }
486
487 list_add_tail(li, &dfp->dfp_work);
488 dfp->dfp_count++;
489}
490
491/* Initialize a deferred operation list. */
492void
493xfs_defer_init_op_type(
494 const struct xfs_defer_op_type *type)
495{
496 defer_op_types[type->type] = type;
497}
498
499/* Initialize a deferred operation. */
500void
501xfs_defer_init(
502 struct xfs_defer_ops *dop,
503 xfs_fsblock_t *fbp)
504{
505 dop->dop_committed = false;
506 dop->dop_low = false;
507 memset(&dop->dop_inodes, 0, sizeof(dop->dop_inodes));
508 *fbp = NULLFSBLOCK;
509 INIT_LIST_HEAD(&dop->dop_intake);
510 INIT_LIST_HEAD(&dop->dop_pending);
511 trace_xfs_defer_init(NULL, dop);
512}
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle. All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_trans.h"
15#include "xfs_buf_item.h"
16#include "xfs_inode.h"
17#include "xfs_inode_item.h"
18#include "xfs_trace.h"
19
20/*
21 * Deferred Operations in XFS
22 *
23 * Due to the way locking rules work in XFS, certain transactions (block
24 * mapping and unmapping, typically) have permanent reservations so that
25 * we can roll the transaction to adhere to AG locking order rules and
26 * to unlock buffers between metadata updates. Prior to rmap/reflink,
27 * the mapping code had a mechanism to perform these deferrals for
28 * extents that were going to be freed; this code makes that facility
29 * more generic.
30 *
31 * When adding the reverse mapping and reflink features, it became
32 * necessary to perform complex remapping multi-transactions to comply
33 * with AG locking order rules, and to be able to spread a single
34 * refcount update operation (an operation on an n-block extent can
35 * update as many as n records!) among multiple transactions. XFS can
36 * roll a transaction to facilitate this, but using this facility
37 * requires us to log "intent" items in case log recovery needs to
38 * redo the operation, and to log "done" items to indicate that redo
39 * is not necessary.
40 *
41 * Deferred work is tracked in xfs_defer_pending items. Each pending
42 * item tracks one type of deferred work. Incoming work items (which
43 * have not yet had an intent logged) are attached to a pending item
44 * on the dop_intake list, where they wait for the caller to finish
45 * the deferred operations.
46 *
47 * Finishing a set of deferred operations is an involved process. To
48 * start, we define "rolling a deferred-op transaction" as follows:
49 *
50 * > For each xfs_defer_pending item on the dop_intake list,
51 * - Sort the work items in AG order. XFS locking
52 * order rules require us to lock buffers in AG order.
53 * - Create a log intent item for that type.
54 * - Attach it to the pending item.
55 * - Move the pending item from the dop_intake list to the
56 * dop_pending list.
57 * > Roll the transaction.
58 *
59 * NOTE: To avoid exceeding the transaction reservation, we limit the
60 * number of items that we attach to a given xfs_defer_pending.
61 *
62 * The actual finishing process looks like this:
63 *
64 * > For each xfs_defer_pending in the dop_pending list,
65 * - Roll the deferred-op transaction as above.
66 * - Create a log done item for that type, and attach it to the
67 * log intent item.
68 * - For each work item attached to the log intent item,
69 * * Perform the described action.
70 * * Attach the work item to the log done item.
71 * * If the result of doing the work was -EAGAIN, ->finish work
72 * wants a new transaction. See the "Requesting a Fresh
73 * Transaction while Finishing Deferred Work" section below for
74 * details.
75 *
76 * The key here is that we must log an intent item for all pending
77 * work items every time we roll the transaction, and that we must log
78 * a done item as soon as the work is completed. With this mechanism
79 * we can perform complex remapping operations, chaining intent items
80 * as needed.
81 *
82 * Requesting a Fresh Transaction while Finishing Deferred Work
83 *
84 * If ->finish_item decides that it needs a fresh transaction to
85 * finish the work, it must ask its caller (xfs_defer_finish) for a
86 * continuation. The most likely cause of this circumstance are the
87 * refcount adjust functions deciding that they've logged enough items
88 * to be at risk of exceeding the transaction reservation.
89 *
90 * To get a fresh transaction, we want to log the existing log done
91 * item to prevent the log intent item from replaying, immediately log
92 * a new log intent item with the unfinished work items, roll the
93 * transaction, and re-call ->finish_item wherever it left off. The
94 * log done item and the new log intent item must be in the same
95 * transaction or atomicity cannot be guaranteed; defer_finish ensures
96 * that this happens.
97 *
98 * This requires some coordination between ->finish_item and
99 * defer_finish. Upon deciding to request a new transaction,
100 * ->finish_item should update the current work item to reflect the
101 * unfinished work. Next, it should reset the log done item's list
102 * count to the number of items finished, and return -EAGAIN.
103 * defer_finish sees the -EAGAIN, logs the new log intent item
104 * with the remaining work items, and leaves the xfs_defer_pending
105 * item at the head of the dop_work queue. Then it rolls the
106 * transaction and picks up processing where it left off. It is
107 * required that ->finish_item must be careful to leave enough
108 * transaction reservation to fit the new log intent item.
109 *
110 * This is an example of remapping the extent (E, E+B) into file X at
111 * offset A and dealing with the extent (C, C+B) already being mapped
112 * there:
113 * +-------------------------------------------------+
114 * | Unmap file X startblock C offset A length B | t0
115 * | Intent to reduce refcount for extent (C, B) |
116 * | Intent to remove rmap (X, C, A, B) |
117 * | Intent to free extent (D, 1) (bmbt block) |
118 * | Intent to map (X, A, B) at startblock E |
119 * +-------------------------------------------------+
120 * | Map file X startblock E offset A length B | t1
121 * | Done mapping (X, E, A, B) |
122 * | Intent to increase refcount for extent (E, B) |
123 * | Intent to add rmap (X, E, A, B) |
124 * +-------------------------------------------------+
125 * | Reduce refcount for extent (C, B) | t2
126 * | Done reducing refcount for extent (C, 9) |
127 * | Intent to reduce refcount for extent (C+9, B-9) |
128 * | (ran out of space after 9 refcount updates) |
129 * +-------------------------------------------------+
130 * | Reduce refcount for extent (C+9, B+9) | t3
131 * | Done reducing refcount for extent (C+9, B-9) |
132 * | Increase refcount for extent (E, B) |
133 * | Done increasing refcount for extent (E, B) |
134 * | Intent to free extent (C, B) |
135 * | Intent to free extent (F, 1) (refcountbt block) |
136 * | Intent to remove rmap (F, 1, REFC) |
137 * +-------------------------------------------------+
138 * | Remove rmap (X, C, A, B) | t4
139 * | Done removing rmap (X, C, A, B) |
140 * | Add rmap (X, E, A, B) |
141 * | Done adding rmap (X, E, A, B) |
142 * | Remove rmap (F, 1, REFC) |
143 * | Done removing rmap (F, 1, REFC) |
144 * +-------------------------------------------------+
145 * | Free extent (C, B) | t5
146 * | Done freeing extent (C, B) |
147 * | Free extent (D, 1) |
148 * | Done freeing extent (D, 1) |
149 * | Free extent (F, 1) |
150 * | Done freeing extent (F, 1) |
151 * +-------------------------------------------------+
152 *
153 * If we should crash before t2 commits, log recovery replays
154 * the following intent items:
155 *
156 * - Intent to reduce refcount for extent (C, B)
157 * - Intent to remove rmap (X, C, A, B)
158 * - Intent to free extent (D, 1) (bmbt block)
159 * - Intent to increase refcount for extent (E, B)
160 * - Intent to add rmap (X, E, A, B)
161 *
162 * In the process of recovering, it should also generate and take care
163 * of these intent items:
164 *
165 * - Intent to free extent (C, B)
166 * - Intent to free extent (F, 1) (refcountbt block)
167 * - Intent to remove rmap (F, 1, REFC)
168 *
169 * Note that the continuation requested between t2 and t3 is likely to
170 * reoccur.
171 */
172
173static const struct xfs_defer_op_type *defer_op_types[] = {
174 [XFS_DEFER_OPS_TYPE_BMAP] = &xfs_bmap_update_defer_type,
175 [XFS_DEFER_OPS_TYPE_REFCOUNT] = &xfs_refcount_update_defer_type,
176 [XFS_DEFER_OPS_TYPE_RMAP] = &xfs_rmap_update_defer_type,
177 [XFS_DEFER_OPS_TYPE_FREE] = &xfs_extent_free_defer_type,
178 [XFS_DEFER_OPS_TYPE_AGFL_FREE] = &xfs_agfl_free_defer_type,
179};
180
181/*
182 * For each pending item in the intake list, log its intent item and the
183 * associated extents, then add the entire intake list to the end of
184 * the pending list.
185 */
186STATIC void
187xfs_defer_create_intents(
188 struct xfs_trans *tp)
189{
190 struct list_head *li;
191 struct xfs_defer_pending *dfp;
192 const struct xfs_defer_op_type *ops;
193
194 list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
195 ops = defer_op_types[dfp->dfp_type];
196 dfp->dfp_intent = ops->create_intent(tp, dfp->dfp_count);
197 trace_xfs_defer_create_intent(tp->t_mountp, dfp);
198 list_sort(tp->t_mountp, &dfp->dfp_work, ops->diff_items);
199 list_for_each(li, &dfp->dfp_work)
200 ops->log_item(tp, dfp->dfp_intent, li);
201 }
202}
203
204/* Abort all the intents that were committed. */
205STATIC void
206xfs_defer_trans_abort(
207 struct xfs_trans *tp,
208 struct list_head *dop_pending)
209{
210 struct xfs_defer_pending *dfp;
211 const struct xfs_defer_op_type *ops;
212
213 trace_xfs_defer_trans_abort(tp, _RET_IP_);
214
215 /* Abort intent items that don't have a done item. */
216 list_for_each_entry(dfp, dop_pending, dfp_list) {
217 ops = defer_op_types[dfp->dfp_type];
218 trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
219 if (dfp->dfp_intent && !dfp->dfp_done) {
220 ops->abort_intent(dfp->dfp_intent);
221 dfp->dfp_intent = NULL;
222 }
223 }
224}
225
226/* Roll a transaction so we can do some deferred op processing. */
227STATIC int
228xfs_defer_trans_roll(
229 struct xfs_trans **tpp)
230{
231 struct xfs_trans *tp = *tpp;
232 struct xfs_buf_log_item *bli;
233 struct xfs_inode_log_item *ili;
234 struct xfs_log_item *lip;
235 struct xfs_buf *bplist[XFS_DEFER_OPS_NR_BUFS];
236 struct xfs_inode *iplist[XFS_DEFER_OPS_NR_INODES];
237 int bpcount = 0, ipcount = 0;
238 int i;
239 int error;
240
241 list_for_each_entry(lip, &tp->t_items, li_trans) {
242 switch (lip->li_type) {
243 case XFS_LI_BUF:
244 bli = container_of(lip, struct xfs_buf_log_item,
245 bli_item);
246 if (bli->bli_flags & XFS_BLI_HOLD) {
247 if (bpcount >= XFS_DEFER_OPS_NR_BUFS) {
248 ASSERT(0);
249 return -EFSCORRUPTED;
250 }
251 xfs_trans_dirty_buf(tp, bli->bli_buf);
252 bplist[bpcount++] = bli->bli_buf;
253 }
254 break;
255 case XFS_LI_INODE:
256 ili = container_of(lip, struct xfs_inode_log_item,
257 ili_item);
258 if (ili->ili_lock_flags == 0) {
259 if (ipcount >= XFS_DEFER_OPS_NR_INODES) {
260 ASSERT(0);
261 return -EFSCORRUPTED;
262 }
263 xfs_trans_log_inode(tp, ili->ili_inode,
264 XFS_ILOG_CORE);
265 iplist[ipcount++] = ili->ili_inode;
266 }
267 break;
268 default:
269 break;
270 }
271 }
272
273 trace_xfs_defer_trans_roll(tp, _RET_IP_);
274
275 /*
276 * Roll the transaction. Rolling always given a new transaction (even
277 * if committing the old one fails!) to hand back to the caller, so we
278 * join the held resources to the new transaction so that we always
279 * return with the held resources joined to @tpp, no matter what
280 * happened.
281 */
282 error = xfs_trans_roll(tpp);
283 tp = *tpp;
284
285 /* Rejoin the joined inodes. */
286 for (i = 0; i < ipcount; i++)
287 xfs_trans_ijoin(tp, iplist[i], 0);
288
289 /* Rejoin the buffers and dirty them so the log moves forward. */
290 for (i = 0; i < bpcount; i++) {
291 xfs_trans_bjoin(tp, bplist[i]);
292 xfs_trans_bhold(tp, bplist[i]);
293 }
294
295 if (error)
296 trace_xfs_defer_trans_roll_error(tp, error);
297 return error;
298}
299
300/*
301 * Reset an already used dfops after finish.
302 */
303static void
304xfs_defer_reset(
305 struct xfs_trans *tp)
306{
307 ASSERT(list_empty(&tp->t_dfops));
308
309 /*
310 * Low mode state transfers across transaction rolls to mirror dfops
311 * lifetime. Clear it now that dfops is reset.
312 */
313 tp->t_flags &= ~XFS_TRANS_LOWMODE;
314}
315
316/*
317 * Free up any items left in the list.
318 */
319static void
320xfs_defer_cancel_list(
321 struct xfs_mount *mp,
322 struct list_head *dop_list)
323{
324 struct xfs_defer_pending *dfp;
325 struct xfs_defer_pending *pli;
326 struct list_head *pwi;
327 struct list_head *n;
328 const struct xfs_defer_op_type *ops;
329
330 /*
331 * Free the pending items. Caller should already have arranged
332 * for the intent items to be released.
333 */
334 list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
335 ops = defer_op_types[dfp->dfp_type];
336 trace_xfs_defer_cancel_list(mp, dfp);
337 list_del(&dfp->dfp_list);
338 list_for_each_safe(pwi, n, &dfp->dfp_work) {
339 list_del(pwi);
340 dfp->dfp_count--;
341 ops->cancel_item(pwi);
342 }
343 ASSERT(dfp->dfp_count == 0);
344 kmem_free(dfp);
345 }
346}
347
348/*
349 * Finish all the pending work. This involves logging intent items for
350 * any work items that wandered in since the last transaction roll (if
351 * one has even happened), rolling the transaction, and finishing the
352 * work items in the first item on the logged-and-pending list.
353 *
354 * If an inode is provided, relog it to the new transaction.
355 */
356int
357xfs_defer_finish_noroll(
358 struct xfs_trans **tp)
359{
360 struct xfs_defer_pending *dfp;
361 struct list_head *li;
362 struct list_head *n;
363 void *state;
364 int error = 0;
365 const struct xfs_defer_op_type *ops;
366 LIST_HEAD(dop_pending);
367
368 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
369
370 trace_xfs_defer_finish(*tp, _RET_IP_);
371
372 /* Until we run out of pending work to finish... */
373 while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
374 /* log intents and pull in intake items */
375 xfs_defer_create_intents(*tp);
376 list_splice_tail_init(&(*tp)->t_dfops, &dop_pending);
377
378 /*
379 * Roll the transaction.
380 */
381 error = xfs_defer_trans_roll(tp);
382 if (error)
383 goto out;
384
385 /* Log an intent-done item for the first pending item. */
386 dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
387 dfp_list);
388 ops = defer_op_types[dfp->dfp_type];
389 trace_xfs_defer_pending_finish((*tp)->t_mountp, dfp);
390 dfp->dfp_done = ops->create_done(*tp, dfp->dfp_intent,
391 dfp->dfp_count);
392
393 /* Finish the work items. */
394 state = NULL;
395 list_for_each_safe(li, n, &dfp->dfp_work) {
396 list_del(li);
397 dfp->dfp_count--;
398 error = ops->finish_item(*tp, li, dfp->dfp_done,
399 &state);
400 if (error == -EAGAIN) {
401 /*
402 * Caller wants a fresh transaction;
403 * put the work item back on the list
404 * and jump out.
405 */
406 list_add(li, &dfp->dfp_work);
407 dfp->dfp_count++;
408 break;
409 } else if (error) {
410 /*
411 * Clean up after ourselves and jump out.
412 * xfs_defer_cancel will take care of freeing
413 * all these lists and stuff.
414 */
415 if (ops->finish_cleanup)
416 ops->finish_cleanup(*tp, state, error);
417 goto out;
418 }
419 }
420 if (error == -EAGAIN) {
421 /*
422 * Caller wants a fresh transaction, so log a
423 * new log intent item to replace the old one
424 * and roll the transaction. See "Requesting
425 * a Fresh Transaction while Finishing
426 * Deferred Work" above.
427 */
428 dfp->dfp_intent = ops->create_intent(*tp,
429 dfp->dfp_count);
430 dfp->dfp_done = NULL;
431 list_for_each(li, &dfp->dfp_work)
432 ops->log_item(*tp, dfp->dfp_intent, li);
433 } else {
434 /* Done with the dfp, free it. */
435 list_del(&dfp->dfp_list);
436 kmem_free(dfp);
437 }
438
439 if (ops->finish_cleanup)
440 ops->finish_cleanup(*tp, state, error);
441 }
442
443out:
444 if (error) {
445 xfs_defer_trans_abort(*tp, &dop_pending);
446 xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
447 trace_xfs_defer_finish_error(*tp, error);
448 xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
449 xfs_defer_cancel(*tp);
450 return error;
451 }
452
453 trace_xfs_defer_finish_done(*tp, _RET_IP_);
454 return 0;
455}
456
457int
458xfs_defer_finish(
459 struct xfs_trans **tp)
460{
461 int error;
462
463 /*
464 * Finish and roll the transaction once more to avoid returning to the
465 * caller with a dirty transaction.
466 */
467 error = xfs_defer_finish_noroll(tp);
468 if (error)
469 return error;
470 if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
471 error = xfs_defer_trans_roll(tp);
472 if (error) {
473 xfs_force_shutdown((*tp)->t_mountp,
474 SHUTDOWN_CORRUPT_INCORE);
475 return error;
476 }
477 }
478 xfs_defer_reset(*tp);
479 return 0;
480}
481
482void
483xfs_defer_cancel(
484 struct xfs_trans *tp)
485{
486 struct xfs_mount *mp = tp->t_mountp;
487
488 trace_xfs_defer_cancel(tp, _RET_IP_);
489 xfs_defer_cancel_list(mp, &tp->t_dfops);
490}
491
492/* Add an item for later deferred processing. */
493void
494xfs_defer_add(
495 struct xfs_trans *tp,
496 enum xfs_defer_ops_type type,
497 struct list_head *li)
498{
499 struct xfs_defer_pending *dfp = NULL;
500 const struct xfs_defer_op_type *ops;
501
502 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
503 BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
504
505 /*
506 * Add the item to a pending item at the end of the intake list.
507 * If the last pending item has the same type, reuse it. Else,
508 * create a new pending item at the end of the intake list.
509 */
510 if (!list_empty(&tp->t_dfops)) {
511 dfp = list_last_entry(&tp->t_dfops,
512 struct xfs_defer_pending, dfp_list);
513 ops = defer_op_types[dfp->dfp_type];
514 if (dfp->dfp_type != type ||
515 (ops->max_items && dfp->dfp_count >= ops->max_items))
516 dfp = NULL;
517 }
518 if (!dfp) {
519 dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
520 KM_NOFS);
521 dfp->dfp_type = type;
522 dfp->dfp_intent = NULL;
523 dfp->dfp_done = NULL;
524 dfp->dfp_count = 0;
525 INIT_LIST_HEAD(&dfp->dfp_work);
526 list_add_tail(&dfp->dfp_list, &tp->t_dfops);
527 }
528
529 list_add_tail(li, &dfp->dfp_work);
530 dfp->dfp_count++;
531}
532
533/*
534 * Move deferred ops from one transaction to another and reset the source to
535 * initial state. This is primarily used to carry state forward across
536 * transaction rolls with pending dfops.
537 */
538void
539xfs_defer_move(
540 struct xfs_trans *dtp,
541 struct xfs_trans *stp)
542{
543 list_splice_init(&stp->t_dfops, &dtp->t_dfops);
544
545 /*
546 * Low free space mode was historically controlled by a dfops field.
547 * This meant that low mode state potentially carried across multiple
548 * transaction rolls. Transfer low mode on a dfops move to preserve
549 * that behavior.
550 */
551 dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
552
553 xfs_defer_reset(stp);
554}