Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/f2fs/file.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/stat.h>
  14#include <linux/buffer_head.h>
  15#include <linux/writeback.h>
  16#include <linux/blkdev.h>
  17#include <linux/falloc.h>
  18#include <linux/types.h>
  19#include <linux/compat.h>
  20#include <linux/uaccess.h>
  21#include <linux/mount.h>
  22#include <linux/pagevec.h>
 
  23#include <linux/uuid.h>
  24#include <linux/file.h>
 
  25
  26#include "f2fs.h"
  27#include "node.h"
  28#include "segment.h"
  29#include "xattr.h"
  30#include "acl.h"
  31#include "gc.h"
  32#include "trace.h"
  33#include <trace/events/f2fs.h>
  34
  35static int f2fs_vm_page_mkwrite(struct vm_area_struct *vma,
  36						struct vm_fault *vmf)
 
 
 
 
 
 
 
 
 
 
 
 
 
  37{
  38	struct page *page = vmf->page;
  39	struct inode *inode = file_inode(vma->vm_file);
  40	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  41	struct dnode_of_data dn;
  42	int err;
  43
  44	sb_start_pagefault(inode->i_sb);
  45
  46	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
 
  47
  48	/* block allocation */
  49	f2fs_lock_op(sbi);
  50	set_new_dnode(&dn, inode, NULL, NULL, 0);
  51	err = f2fs_reserve_block(&dn, page->index);
  52	if (err) {
  53		f2fs_unlock_op(sbi);
  54		goto out;
  55	}
  56	f2fs_put_dnode(&dn);
  57	f2fs_unlock_op(sbi);
  58
  59	f2fs_balance_fs(sbi, dn.node_changed);
  60
  61	file_update_time(vma->vm_file);
 
 
 
  62	lock_page(page);
  63	if (unlikely(page->mapping != inode->i_mapping ||
  64			page_offset(page) > i_size_read(inode) ||
  65			!PageUptodate(page))) {
  66		unlock_page(page);
  67		err = -EFAULT;
  68		goto out;
 
 
 
 
 
 
 
 
 
 
 
  69	}
  70
 
 
 
 
 
 
  71	/*
  72	 * check to see if the page is mapped already (no holes)
  73	 */
  74	if (PageMappedToDisk(page))
  75		goto mapped;
  76
  77	/* page is wholly or partially inside EOF */
  78	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
  79						i_size_read(inode)) {
  80		unsigned offset;
 
  81		offset = i_size_read(inode) & ~PAGE_MASK;
  82		zero_user_segment(page, offset, PAGE_SIZE);
  83	}
  84	set_page_dirty(page);
  85	if (!PageUptodate(page))
  86		SetPageUptodate(page);
  87
 
 
 
  88	trace_f2fs_vm_page_mkwrite(page, DATA);
  89mapped:
  90	/* fill the page */
  91	f2fs_wait_on_page_writeback(page, DATA, false);
  92
  93	/* wait for GCed encrypted page writeback */
  94	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
  95		f2fs_wait_on_encrypted_page_writeback(sbi, dn.data_blkaddr);
  96
  97out:
  98	sb_end_pagefault(inode->i_sb);
  99	f2fs_update_time(sbi, REQ_TIME);
 100	return block_page_mkwrite_return(err);
 101}
 102
 103static const struct vm_operations_struct f2fs_file_vm_ops = {
 104	.fault		= filemap_fault,
 105	.map_pages	= filemap_map_pages,
 106	.page_mkwrite	= f2fs_vm_page_mkwrite,
 107};
 108
 109static int get_parent_ino(struct inode *inode, nid_t *pino)
 110{
 111	struct dentry *dentry;
 112
 113	inode = igrab(inode);
 114	dentry = d_find_any_alias(inode);
 115	iput(inode);
 116	if (!dentry)
 117		return 0;
 118
 119	if (update_dent_inode(inode, inode, &dentry->d_name)) {
 120		dput(dentry);
 121		return 0;
 122	}
 123
 124	*pino = parent_ino(dentry);
 125	dput(dentry);
 126	return 1;
 127}
 128
 129static inline bool need_do_checkpoint(struct inode *inode)
 130{
 131	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 132	bool need_cp = false;
 133
 134	if (!S_ISREG(inode->i_mode) || inode->i_nlink != 1)
 135		need_cp = true;
 
 
 136	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
 137		need_cp = true;
 138	else if (file_wrong_pino(inode))
 139		need_cp = true;
 140	else if (!space_for_roll_forward(sbi))
 141		need_cp = true;
 142	else if (!is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
 143		need_cp = true;
 144	else if (F2FS_I(inode)->xattr_ver == cur_cp_version(F2FS_CKPT(sbi)))
 145		need_cp = true;
 146	else if (test_opt(sbi, FASTBOOT))
 147		need_cp = true;
 148	else if (sbi->active_logs == 2)
 149		need_cp = true;
 
 
 
 
 
 150
 151	return need_cp;
 152}
 153
 154static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
 155{
 156	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
 157	bool ret = false;
 158	/* But we need to avoid that there are some inode updates */
 159	if ((i && PageDirty(i)) || need_inode_block_update(sbi, ino))
 160		ret = true;
 161	f2fs_put_page(i, 0);
 162	return ret;
 163}
 164
 165static void try_to_fix_pino(struct inode *inode)
 166{
 167	struct f2fs_inode_info *fi = F2FS_I(inode);
 168	nid_t pino;
 169
 170	down_write(&fi->i_sem);
 171	fi->xattr_ver = 0;
 172	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
 173			get_parent_ino(inode, &pino)) {
 174		f2fs_i_pino_write(inode, pino);
 175		file_got_pino(inode);
 176	}
 177	up_write(&fi->i_sem);
 178}
 179
 180static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
 181						int datasync, bool atomic)
 182{
 183	struct inode *inode = file->f_mapping->host;
 184	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 185	nid_t ino = inode->i_ino;
 186	int ret = 0;
 187	bool need_cp = false;
 188	struct writeback_control wbc = {
 189		.sync_mode = WB_SYNC_ALL,
 190		.nr_to_write = LONG_MAX,
 191		.for_reclaim = 0,
 192	};
 
 193
 194	if (unlikely(f2fs_readonly(inode->i_sb)))
 
 195		return 0;
 196
 197	trace_f2fs_sync_file_enter(inode);
 198
 
 
 
 199	/* if fdatasync is triggered, let's do in-place-update */
 200	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
 201		set_inode_flag(inode, FI_NEED_IPU);
 202	ret = filemap_write_and_wait_range(inode->i_mapping, start, end);
 203	clear_inode_flag(inode, FI_NEED_IPU);
 204
 205	if (ret) {
 206		trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
 207		return ret;
 208	}
 209
 210	/* if the inode is dirty, let's recover all the time */
 211	if (!f2fs_skip_inode_update(inode, datasync)) {
 212		f2fs_write_inode(inode, NULL);
 213		goto go_write;
 214	}
 215
 216	/*
 217	 * if there is no written data, don't waste time to write recovery info.
 218	 */
 219	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
 220			!exist_written_data(sbi, ino, APPEND_INO)) {
 221
 222		/* it may call write_inode just prior to fsync */
 223		if (need_inode_page_update(sbi, ino))
 224			goto go_write;
 225
 226		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
 227				exist_written_data(sbi, ino, UPDATE_INO))
 228			goto flush_out;
 229		goto out;
 230	}
 231go_write:
 232	/*
 233	 * Both of fdatasync() and fsync() are able to be recovered from
 234	 * sudden-power-off.
 235	 */
 236	down_read(&F2FS_I(inode)->i_sem);
 237	need_cp = need_do_checkpoint(inode);
 238	up_read(&F2FS_I(inode)->i_sem);
 239
 240	if (need_cp) {
 241		/* all the dirty node pages should be flushed for POR */
 242		ret = f2fs_sync_fs(inode->i_sb, 1);
 243
 244		/*
 245		 * We've secured consistency through sync_fs. Following pino
 246		 * will be used only for fsynced inodes after checkpoint.
 247		 */
 248		try_to_fix_pino(inode);
 249		clear_inode_flag(inode, FI_APPEND_WRITE);
 250		clear_inode_flag(inode, FI_UPDATE_WRITE);
 251		goto out;
 252	}
 253sync_nodes:
 254	ret = fsync_node_pages(sbi, inode, &wbc, atomic);
 
 
 255	if (ret)
 256		goto out;
 257
 258	/* if cp_error was enabled, we should avoid infinite loop */
 259	if (unlikely(f2fs_cp_error(sbi))) {
 260		ret = -EIO;
 261		goto out;
 262	}
 263
 264	if (need_inode_block_update(sbi, ino)) {
 265		f2fs_mark_inode_dirty_sync(inode, true);
 266		f2fs_write_inode(inode, NULL);
 267		goto sync_nodes;
 268	}
 269
 270	ret = wait_on_node_pages_writeback(sbi, ino);
 271	if (ret)
 272		goto out;
 
 
 
 
 
 
 
 
 
 
 273
 274	/* once recovery info is written, don't need to tack this */
 275	remove_ino_entry(sbi, ino, APPEND_INO);
 276	clear_inode_flag(inode, FI_APPEND_WRITE);
 277flush_out:
 278	remove_ino_entry(sbi, ino, UPDATE_INO);
 279	clear_inode_flag(inode, FI_UPDATE_WRITE);
 280	ret = f2fs_issue_flush(sbi);
 
 
 
 
 281	f2fs_update_time(sbi, REQ_TIME);
 282out:
 283	trace_f2fs_sync_file_exit(inode, need_cp, datasync, ret);
 284	f2fs_trace_ios(NULL, 1);
 285	return ret;
 286}
 287
 288int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 289{
 
 
 290	return f2fs_do_sync_file(file, start, end, datasync, false);
 291}
 292
 293static pgoff_t __get_first_dirty_index(struct address_space *mapping,
 294						pgoff_t pgofs, int whence)
 295{
 296	struct pagevec pvec;
 297	int nr_pages;
 298
 299	if (whence != SEEK_DATA)
 300		return 0;
 301
 302	/* find first dirty page index */
 303	pagevec_init(&pvec, 0);
 304	nr_pages = pagevec_lookup_tag(&pvec, mapping, &pgofs,
 305					PAGECACHE_TAG_DIRTY, 1);
 306	pgofs = nr_pages ? pvec.pages[0]->index : ULONG_MAX;
 307	pagevec_release(&pvec);
 
 308	return pgofs;
 309}
 310
 311static bool __found_offset(block_t blkaddr, pgoff_t dirty, pgoff_t pgofs,
 312							int whence)
 313{
 314	switch (whence) {
 315	case SEEK_DATA:
 316		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
 317			(blkaddr != NEW_ADDR && blkaddr != NULL_ADDR))
 318			return true;
 319		break;
 320	case SEEK_HOLE:
 321		if (blkaddr == NULL_ADDR)
 322			return true;
 323		break;
 324	}
 325	return false;
 326}
 327
 328static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
 329{
 330	struct inode *inode = file->f_mapping->host;
 331	loff_t maxbytes = inode->i_sb->s_maxbytes;
 332	struct dnode_of_data dn;
 333	pgoff_t pgofs, end_offset, dirty;
 334	loff_t data_ofs = offset;
 335	loff_t isize;
 336	int err = 0;
 337
 338	inode_lock(inode);
 339
 340	isize = i_size_read(inode);
 341	if (offset >= isize)
 342		goto fail;
 343
 344	/* handle inline data case */
 345	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
 346		if (whence == SEEK_HOLE)
 347			data_ofs = isize;
 348		goto found;
 349	}
 350
 351	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
 352
 353	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
 354
 355	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 356		set_new_dnode(&dn, inode, NULL, NULL, 0);
 357		err = get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
 358		if (err && err != -ENOENT) {
 359			goto fail;
 360		} else if (err == -ENOENT) {
 361			/* direct node does not exists */
 362			if (whence == SEEK_DATA) {
 363				pgofs = get_next_page_offset(&dn, pgofs);
 364				continue;
 365			} else {
 366				goto found;
 367			}
 368		}
 369
 370		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 371
 372		/* find data/hole in dnode block */
 373		for (; dn.ofs_in_node < end_offset;
 374				dn.ofs_in_node++, pgofs++,
 375				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 376			block_t blkaddr;
 377			blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
 378
 379			if (__found_offset(blkaddr, dirty, pgofs, whence)) {
 
 
 
 
 
 
 
 
 
 
 
 380				f2fs_put_dnode(&dn);
 381				goto found;
 382			}
 383		}
 384		f2fs_put_dnode(&dn);
 385	}
 386
 387	if (whence == SEEK_DATA)
 388		goto fail;
 389found:
 390	if (whence == SEEK_HOLE && data_ofs > isize)
 391		data_ofs = isize;
 392	inode_unlock(inode);
 393	return vfs_setpos(file, data_ofs, maxbytes);
 394fail:
 395	inode_unlock(inode);
 396	return -ENXIO;
 397}
 398
 399static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
 400{
 401	struct inode *inode = file->f_mapping->host;
 402	loff_t maxbytes = inode->i_sb->s_maxbytes;
 403
 404	switch (whence) {
 405	case SEEK_SET:
 406	case SEEK_CUR:
 407	case SEEK_END:
 408		return generic_file_llseek_size(file, offset, whence,
 409						maxbytes, i_size_read(inode));
 410	case SEEK_DATA:
 411	case SEEK_HOLE:
 412		if (offset < 0)
 413			return -ENXIO;
 414		return f2fs_seek_block(file, offset, whence);
 415	}
 416
 417	return -EINVAL;
 418}
 419
 420static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
 421{
 422	struct inode *inode = file_inode(file);
 423	int err;
 424
 425	if (f2fs_encrypted_inode(inode)) {
 426		err = fscrypt_get_encryption_info(inode);
 427		if (err)
 428			return 0;
 429		if (!f2fs_encrypted_inode(inode))
 430			return -ENOKEY;
 431	}
 432
 433	/* we don't need to use inline_data strictly */
 434	err = f2fs_convert_inline_inode(inode);
 435	if (err)
 436		return err;
 437
 438	file_accessed(file);
 439	vma->vm_ops = &f2fs_file_vm_ops;
 440	return 0;
 441}
 442
 443static int f2fs_file_open(struct inode *inode, struct file *filp)
 444{
 445	int ret = generic_file_open(inode, filp);
 446	struct dentry *dir;
 447
 448	if (!ret && f2fs_encrypted_inode(inode)) {
 449		ret = fscrypt_get_encryption_info(inode);
 450		if (ret)
 451			return -EACCES;
 452		if (!fscrypt_has_encryption_key(inode))
 453			return -ENOKEY;
 454	}
 455	dir = dget_parent(file_dentry(filp));
 456	if (f2fs_encrypted_inode(d_inode(dir)) &&
 457			!fscrypt_has_permitted_context(d_inode(dir), inode)) {
 458		dput(dir);
 459		return -EPERM;
 460	}
 461	dput(dir);
 462	return ret;
 463}
 464
 465int truncate_data_blocks_range(struct dnode_of_data *dn, int count)
 466{
 467	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 468	struct f2fs_node *raw_node;
 469	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
 470	__le32 *addr;
 
 
 
 
 471
 472	raw_node = F2FS_NODE(dn->node_page);
 473	addr = blkaddr_in_node(raw_node) + ofs;
 474
 475	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
 476		block_t blkaddr = le32_to_cpu(*addr);
 
 477		if (blkaddr == NULL_ADDR)
 478			continue;
 479
 480		dn->data_blkaddr = NULL_ADDR;
 481		set_data_blkaddr(dn);
 482		invalidate_blocks(sbi, blkaddr);
 
 
 
 
 
 
 483		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
 484			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
 485		nr_free++;
 486	}
 487
 488	if (nr_free) {
 489		pgoff_t fofs;
 490		/*
 491		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
 492		 * we will invalidate all blkaddr in the whole range.
 493		 */
 494		fofs = start_bidx_of_node(ofs_of_node(dn->node_page),
 495							dn->inode) + ofs;
 496		f2fs_update_extent_cache_range(dn, fofs, 0, len);
 497		dec_valid_block_count(sbi, dn->inode, nr_free);
 498	}
 499	dn->ofs_in_node = ofs;
 500
 501	f2fs_update_time(sbi, REQ_TIME);
 502	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
 503					 dn->ofs_in_node, nr_free);
 504	return nr_free;
 505}
 506
 507void truncate_data_blocks(struct dnode_of_data *dn)
 508{
 509	truncate_data_blocks_range(dn, ADDRS_PER_BLOCK);
 510}
 511
 512static int truncate_partial_data_page(struct inode *inode, u64 from,
 513								bool cache_only)
 514{
 515	unsigned offset = from & (PAGE_SIZE - 1);
 516	pgoff_t index = from >> PAGE_SHIFT;
 517	struct address_space *mapping = inode->i_mapping;
 518	struct page *page;
 519
 520	if (!offset && !cache_only)
 521		return 0;
 522
 523	if (cache_only) {
 524		page = find_lock_page(mapping, index);
 525		if (page && PageUptodate(page))
 526			goto truncate_out;
 527		f2fs_put_page(page, 1);
 528		return 0;
 529	}
 530
 531	page = get_lock_data_page(inode, index, true);
 532	if (IS_ERR(page))
 533		return 0;
 534truncate_out:
 535	f2fs_wait_on_page_writeback(page, DATA, true);
 536	zero_user(page, offset, PAGE_SIZE - offset);
 537	if (!cache_only || !f2fs_encrypted_inode(inode) ||
 538					!S_ISREG(inode->i_mode))
 
 
 539		set_page_dirty(page);
 540	f2fs_put_page(page, 1);
 541	return 0;
 542}
 543
 544int truncate_blocks(struct inode *inode, u64 from, bool lock)
 545{
 546	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 547	unsigned int blocksize = inode->i_sb->s_blocksize;
 548	struct dnode_of_data dn;
 549	pgoff_t free_from;
 550	int count = 0, err = 0;
 551	struct page *ipage;
 552	bool truncate_page = false;
 553
 554	trace_f2fs_truncate_blocks_enter(inode, from);
 555
 556	free_from = (pgoff_t)F2FS_BYTES_TO_BLK(from + blocksize - 1);
 557
 558	if (free_from >= sbi->max_file_blocks)
 559		goto free_partial;
 560
 561	if (lock)
 562		f2fs_lock_op(sbi);
 563
 564	ipage = get_node_page(sbi, inode->i_ino);
 565	if (IS_ERR(ipage)) {
 566		err = PTR_ERR(ipage);
 567		goto out;
 568	}
 569
 570	if (f2fs_has_inline_data(inode)) {
 571		if (truncate_inline_inode(ipage, from))
 572			set_page_dirty(ipage);
 573		f2fs_put_page(ipage, 1);
 574		truncate_page = true;
 575		goto out;
 576	}
 577
 578	set_new_dnode(&dn, inode, ipage, NULL, 0);
 579	err = get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
 580	if (err) {
 581		if (err == -ENOENT)
 582			goto free_next;
 583		goto out;
 584	}
 585
 586	count = ADDRS_PER_PAGE(dn.node_page, inode);
 587
 588	count -= dn.ofs_in_node;
 589	f2fs_bug_on(sbi, count < 0);
 590
 591	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
 592		truncate_data_blocks_range(&dn, count);
 593		free_from += count;
 594	}
 595
 596	f2fs_put_dnode(&dn);
 597free_next:
 598	err = truncate_inode_blocks(inode, free_from);
 599out:
 600	if (lock)
 601		f2fs_unlock_op(sbi);
 602free_partial:
 603	/* lastly zero out the first data page */
 604	if (!err)
 605		err = truncate_partial_data_page(inode, from, truncate_page);
 606
 607	trace_f2fs_truncate_blocks_exit(inode, err);
 608	return err;
 609}
 610
 611int f2fs_truncate(struct inode *inode)
 612{
 613	int err;
 614
 
 
 
 615	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 616				S_ISLNK(inode->i_mode)))
 617		return 0;
 618
 619	trace_f2fs_truncate(inode);
 620
 
 
 
 
 
 621	/* we should check inline_data size */
 622	if (!f2fs_may_inline_data(inode)) {
 623		err = f2fs_convert_inline_inode(inode);
 624		if (err)
 625			return err;
 626	}
 627
 628	err = truncate_blocks(inode, i_size_read(inode), true);
 629	if (err)
 630		return err;
 631
 632	inode->i_mtime = inode->i_ctime = current_time(inode);
 633	f2fs_mark_inode_dirty_sync(inode, false);
 634	return 0;
 635}
 636
 637int f2fs_getattr(struct vfsmount *mnt,
 638			 struct dentry *dentry, struct kstat *stat)
 639{
 640	struct inode *inode = d_inode(dentry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641	generic_fillattr(inode, stat);
 642	stat->blocks <<= 3;
 
 
 
 
 
 643	return 0;
 644}
 645
 646#ifdef CONFIG_F2FS_FS_POSIX_ACL
 647static void __setattr_copy(struct inode *inode, const struct iattr *attr)
 648{
 649	unsigned int ia_valid = attr->ia_valid;
 650
 651	if (ia_valid & ATTR_UID)
 652		inode->i_uid = attr->ia_uid;
 653	if (ia_valid & ATTR_GID)
 654		inode->i_gid = attr->ia_gid;
 655	if (ia_valid & ATTR_ATIME)
 656		inode->i_atime = timespec_trunc(attr->ia_atime,
 657						inode->i_sb->s_time_gran);
 658	if (ia_valid & ATTR_MTIME)
 659		inode->i_mtime = timespec_trunc(attr->ia_mtime,
 660						inode->i_sb->s_time_gran);
 661	if (ia_valid & ATTR_CTIME)
 662		inode->i_ctime = timespec_trunc(attr->ia_ctime,
 663						inode->i_sb->s_time_gran);
 
 
 
 664	if (ia_valid & ATTR_MODE) {
 665		umode_t mode = attr->ia_mode;
 666
 667		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
 668			mode &= ~S_ISGID;
 669		set_acl_inode(inode, mode);
 670	}
 671}
 672#else
 673#define __setattr_copy setattr_copy
 674#endif
 675
 676int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
 677{
 678	struct inode *inode = d_inode(dentry);
 679	int err;
 680	bool size_changed = false;
 
 
 681
 682	err = setattr_prepare(dentry, attr);
 683	if (err)
 684		return err;
 685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686	if (attr->ia_valid & ATTR_SIZE) {
 687		if (f2fs_encrypted_inode(inode) &&
 688				fscrypt_get_encryption_info(inode))
 689			return -EACCES;
 690
 691		if (attr->ia_size <= i_size_read(inode)) {
 692			truncate_setsize(inode, attr->ia_size);
 693			err = f2fs_truncate(inode);
 694			if (err)
 695				return err;
 696		} else {
 697			/*
 698			 * do not trim all blocks after i_size if target size is
 699			 * larger than i_size.
 700			 */
 701			truncate_setsize(inode, attr->ia_size);
 702
 703			/* should convert inline inode here */
 704			if (!f2fs_may_inline_data(inode)) {
 705				err = f2fs_convert_inline_inode(inode);
 706				if (err)
 707					return err;
 708			}
 709			inode->i_mtime = inode->i_ctime = current_time(inode);
 710		}
 711
 712		size_changed = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713	}
 714
 715	__setattr_copy(inode, attr);
 716
 717	if (attr->ia_valid & ATTR_MODE) {
 718		err = posix_acl_chmod(inode, get_inode_mode(inode));
 719		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
 720			inode->i_mode = F2FS_I(inode)->i_acl_mode;
 721			clear_inode_flag(inode, FI_ACL_MODE);
 722		}
 723	}
 724
 725	/* file size may changed here */
 726	f2fs_mark_inode_dirty_sync(inode, size_changed);
 727
 728	/* inode change will produce dirty node pages flushed by checkpoint */
 729	f2fs_balance_fs(F2FS_I_SB(inode), true);
 730
 731	return err;
 732}
 733
 734const struct inode_operations f2fs_file_inode_operations = {
 735	.getattr	= f2fs_getattr,
 736	.setattr	= f2fs_setattr,
 737	.get_acl	= f2fs_get_acl,
 738	.set_acl	= f2fs_set_acl,
 739#ifdef CONFIG_F2FS_FS_XATTR
 740	.listxattr	= f2fs_listxattr,
 741#endif
 742	.fiemap		= f2fs_fiemap,
 743};
 744
 745static int fill_zero(struct inode *inode, pgoff_t index,
 746					loff_t start, loff_t len)
 747{
 748	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 749	struct page *page;
 750
 751	if (!len)
 752		return 0;
 753
 754	f2fs_balance_fs(sbi, true);
 755
 756	f2fs_lock_op(sbi);
 757	page = get_new_data_page(inode, NULL, index, false);
 758	f2fs_unlock_op(sbi);
 759
 760	if (IS_ERR(page))
 761		return PTR_ERR(page);
 762
 763	f2fs_wait_on_page_writeback(page, DATA, true);
 764	zero_user(page, start, len);
 765	set_page_dirty(page);
 766	f2fs_put_page(page, 1);
 767	return 0;
 768}
 769
 770int truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
 771{
 772	int err;
 773
 774	while (pg_start < pg_end) {
 775		struct dnode_of_data dn;
 776		pgoff_t end_offset, count;
 777
 778		set_new_dnode(&dn, inode, NULL, NULL, 0);
 779		err = get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
 780		if (err) {
 781			if (err == -ENOENT) {
 782				pg_start++;
 
 783				continue;
 784			}
 785			return err;
 786		}
 787
 788		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 789		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
 790
 791		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
 792
 793		truncate_data_blocks_range(&dn, count);
 794		f2fs_put_dnode(&dn);
 795
 796		pg_start += count;
 797	}
 798	return 0;
 799}
 800
 801static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
 802{
 803	pgoff_t pg_start, pg_end;
 804	loff_t off_start, off_end;
 805	int ret;
 806
 807	ret = f2fs_convert_inline_inode(inode);
 808	if (ret)
 809		return ret;
 810
 811	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
 812	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
 813
 814	off_start = offset & (PAGE_SIZE - 1);
 815	off_end = (offset + len) & (PAGE_SIZE - 1);
 816
 817	if (pg_start == pg_end) {
 818		ret = fill_zero(inode, pg_start, off_start,
 819						off_end - off_start);
 820		if (ret)
 821			return ret;
 822	} else {
 823		if (off_start) {
 824			ret = fill_zero(inode, pg_start++, off_start,
 825						PAGE_SIZE - off_start);
 826			if (ret)
 827				return ret;
 828		}
 829		if (off_end) {
 830			ret = fill_zero(inode, pg_end, 0, off_end);
 831			if (ret)
 832				return ret;
 833		}
 834
 835		if (pg_start < pg_end) {
 836			struct address_space *mapping = inode->i_mapping;
 837			loff_t blk_start, blk_end;
 838			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 839
 840			f2fs_balance_fs(sbi, true);
 841
 842			blk_start = (loff_t)pg_start << PAGE_SHIFT;
 843			blk_end = (loff_t)pg_end << PAGE_SHIFT;
 
 
 
 
 844			truncate_inode_pages_range(mapping, blk_start,
 845					blk_end - 1);
 846
 847			f2fs_lock_op(sbi);
 848			ret = truncate_hole(inode, pg_start, pg_end);
 849			f2fs_unlock_op(sbi);
 
 
 
 850		}
 851	}
 852
 853	return ret;
 854}
 855
 856static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
 857				int *do_replace, pgoff_t off, pgoff_t len)
 858{
 859	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 860	struct dnode_of_data dn;
 861	int ret, done, i;
 862
 863next_dnode:
 864	set_new_dnode(&dn, inode, NULL, NULL, 0);
 865	ret = get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 866	if (ret && ret != -ENOENT) {
 867		return ret;
 868	} else if (ret == -ENOENT) {
 869		if (dn.max_level == 0)
 870			return -ENOENT;
 871		done = min((pgoff_t)ADDRS_PER_BLOCK - dn.ofs_in_node, len);
 
 872		blkaddr += done;
 873		do_replace += done;
 874		goto next;
 875	}
 876
 877	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
 878							dn.ofs_in_node, len);
 879	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
 880		*blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
 881		if (!is_checkpointed_data(sbi, *blkaddr)) {
 
 
 
 
 
 
 
 
 
 882
 883			if (test_opt(sbi, LFS)) {
 884				f2fs_put_dnode(&dn);
 885				return -ENOTSUPP;
 886			}
 887
 888			/* do not invalidate this block address */
 889			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 890			*do_replace = 1;
 891		}
 892	}
 893	f2fs_put_dnode(&dn);
 894next:
 895	len -= done;
 896	off += done;
 897	if (len)
 898		goto next_dnode;
 899	return 0;
 900}
 901
 902static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
 903				int *do_replace, pgoff_t off, int len)
 904{
 905	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 906	struct dnode_of_data dn;
 907	int ret, i;
 908
 909	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
 910		if (*do_replace == 0)
 911			continue;
 912
 913		set_new_dnode(&dn, inode, NULL, NULL, 0);
 914		ret = get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
 915		if (ret) {
 916			dec_valid_block_count(sbi, inode, 1);
 917			invalidate_blocks(sbi, *blkaddr);
 918		} else {
 919			f2fs_update_data_blkaddr(&dn, *blkaddr);
 920		}
 921		f2fs_put_dnode(&dn);
 922	}
 923	return 0;
 924}
 925
 926static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
 927			block_t *blkaddr, int *do_replace,
 928			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
 929{
 930	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
 931	pgoff_t i = 0;
 932	int ret;
 933
 934	while (i < len) {
 935		if (blkaddr[i] == NULL_ADDR && !full) {
 936			i++;
 937			continue;
 938		}
 939
 940		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
 941			struct dnode_of_data dn;
 942			struct node_info ni;
 943			size_t new_size;
 944			pgoff_t ilen;
 945
 946			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
 947			ret = get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
 948			if (ret)
 949				return ret;
 950
 951			get_node_info(sbi, dn.nid, &ni);
 
 
 
 
 
 952			ilen = min((pgoff_t)
 953				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
 954						dn.ofs_in_node, len - i);
 955			do {
 956				dn.data_blkaddr = datablock_addr(dn.node_page,
 957								dn.ofs_in_node);
 958				truncate_data_blocks_range(&dn, 1);
 959
 960				if (do_replace[i]) {
 961					f2fs_i_blocks_write(src_inode,
 962								1, false);
 963					f2fs_i_blocks_write(dst_inode,
 964								1, true);
 965					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 966					blkaddr[i], ni.version, true, false);
 967
 968					do_replace[i] = 0;
 969				}
 970				dn.ofs_in_node++;
 971				i++;
 972				new_size = (dst + i) << PAGE_SHIFT;
 973				if (dst_inode->i_size < new_size)
 974					f2fs_i_size_write(dst_inode, new_size);
 975			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
 976
 977			f2fs_put_dnode(&dn);
 978		} else {
 979			struct page *psrc, *pdst;
 980
 981			psrc = get_lock_data_page(src_inode, src + i, true);
 
 982			if (IS_ERR(psrc))
 983				return PTR_ERR(psrc);
 984			pdst = get_new_data_page(dst_inode, NULL, dst + i,
 985								true);
 986			if (IS_ERR(pdst)) {
 987				f2fs_put_page(psrc, 1);
 988				return PTR_ERR(pdst);
 989			}
 990			f2fs_copy_page(psrc, pdst);
 991			set_page_dirty(pdst);
 992			f2fs_put_page(pdst, 1);
 993			f2fs_put_page(psrc, 1);
 994
 995			ret = truncate_hole(src_inode, src + i, src + i + 1);
 
 996			if (ret)
 997				return ret;
 998			i++;
 999		}
1000	}
1001	return 0;
1002}
1003
1004static int __exchange_data_block(struct inode *src_inode,
1005			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1006			pgoff_t len, bool full)
1007{
1008	block_t *src_blkaddr;
1009	int *do_replace;
1010	pgoff_t olen;
1011	int ret;
1012
1013	while (len) {
1014		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK, len);
1015
1016		src_blkaddr = f2fs_kvzalloc(sizeof(block_t) * olen, GFP_KERNEL);
 
 
1017		if (!src_blkaddr)
1018			return -ENOMEM;
1019
1020		do_replace = f2fs_kvzalloc(sizeof(int) * olen, GFP_KERNEL);
 
 
1021		if (!do_replace) {
1022			kvfree(src_blkaddr);
1023			return -ENOMEM;
1024		}
1025
1026		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1027					do_replace, src, olen);
1028		if (ret)
1029			goto roll_back;
1030
1031		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1032					do_replace, src, dst, olen, full);
1033		if (ret)
1034			goto roll_back;
1035
1036		src += olen;
1037		dst += olen;
1038		len -= olen;
1039
1040		kvfree(src_blkaddr);
1041		kvfree(do_replace);
1042	}
1043	return 0;
1044
1045roll_back:
1046	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, len);
1047	kvfree(src_blkaddr);
1048	kvfree(do_replace);
1049	return ret;
1050}
1051
1052static int f2fs_do_collapse(struct inode *inode, pgoff_t start, pgoff_t end)
1053{
1054	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1055	pgoff_t nrpages = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
1056	int ret;
1057
1058	f2fs_balance_fs(sbi, true);
1059	f2fs_lock_op(sbi);
1060
1061	f2fs_drop_extent_tree(inode);
 
 
1062
 
 
 
1063	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1064	f2fs_unlock_op(sbi);
 
 
 
1065	return ret;
1066}
1067
1068static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1069{
1070	pgoff_t pg_start, pg_end;
1071	loff_t new_size;
1072	int ret;
1073
1074	if (offset + len >= i_size_read(inode))
1075		return -EINVAL;
1076
1077	/* collapse range should be aligned to block size of f2fs. */
1078	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1079		return -EINVAL;
1080
1081	ret = f2fs_convert_inline_inode(inode);
1082	if (ret)
1083		return ret;
1084
1085	pg_start = offset >> PAGE_SHIFT;
1086	pg_end = (offset + len) >> PAGE_SHIFT;
1087
1088	/* write out all dirty pages from offset */
1089	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1090	if (ret)
1091		return ret;
1092
1093	truncate_pagecache(inode, offset);
1094
1095	ret = f2fs_do_collapse(inode, pg_start, pg_end);
1096	if (ret)
1097		return ret;
1098
1099	/* write out all moved pages, if possible */
 
1100	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1101	truncate_pagecache(inode, offset);
1102
1103	new_size = i_size_read(inode) - len;
1104	truncate_pagecache(inode, new_size);
1105
1106	ret = truncate_blocks(inode, new_size, true);
 
1107	if (!ret)
1108		f2fs_i_size_write(inode, new_size);
1109
1110	return ret;
1111}
1112
1113static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1114								pgoff_t end)
1115{
1116	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1117	pgoff_t index = start;
1118	unsigned int ofs_in_node = dn->ofs_in_node;
1119	blkcnt_t count = 0;
1120	int ret;
1121
1122	for (; index < end; index++, dn->ofs_in_node++) {
1123		if (datablock_addr(dn->node_page, dn->ofs_in_node) == NULL_ADDR)
 
1124			count++;
1125	}
1126
1127	dn->ofs_in_node = ofs_in_node;
1128	ret = reserve_new_blocks(dn, count);
1129	if (ret)
1130		return ret;
1131
1132	dn->ofs_in_node = ofs_in_node;
1133	for (index = start; index < end; index++, dn->ofs_in_node++) {
1134		dn->data_blkaddr =
1135				datablock_addr(dn->node_page, dn->ofs_in_node);
1136		/*
1137		 * reserve_new_blocks will not guarantee entire block
1138		 * allocation.
1139		 */
1140		if (dn->data_blkaddr == NULL_ADDR) {
1141			ret = -ENOSPC;
1142			break;
1143		}
1144		if (dn->data_blkaddr != NEW_ADDR) {
1145			invalidate_blocks(sbi, dn->data_blkaddr);
1146			dn->data_blkaddr = NEW_ADDR;
1147			set_data_blkaddr(dn);
1148		}
1149	}
1150
1151	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1152
1153	return ret;
1154}
1155
1156static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1157								int mode)
1158{
1159	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1160	struct address_space *mapping = inode->i_mapping;
1161	pgoff_t index, pg_start, pg_end;
1162	loff_t new_size = i_size_read(inode);
1163	loff_t off_start, off_end;
1164	int ret = 0;
1165
1166	ret = inode_newsize_ok(inode, (len + offset));
1167	if (ret)
1168		return ret;
1169
1170	ret = f2fs_convert_inline_inode(inode);
1171	if (ret)
1172		return ret;
1173
1174	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1175	if (ret)
1176		return ret;
1177
1178	truncate_pagecache_range(inode, offset, offset + len - 1);
1179
1180	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1181	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1182
1183	off_start = offset & (PAGE_SIZE - 1);
1184	off_end = (offset + len) & (PAGE_SIZE - 1);
1185
1186	if (pg_start == pg_end) {
1187		ret = fill_zero(inode, pg_start, off_start,
1188						off_end - off_start);
1189		if (ret)
1190			return ret;
1191
1192		if (offset + len > new_size)
1193			new_size = offset + len;
1194		new_size = max_t(loff_t, new_size, offset + len);
1195	} else {
1196		if (off_start) {
1197			ret = fill_zero(inode, pg_start++, off_start,
1198						PAGE_SIZE - off_start);
1199			if (ret)
1200				return ret;
1201
1202			new_size = max_t(loff_t, new_size,
1203					(loff_t)pg_start << PAGE_SHIFT);
1204		}
1205
1206		for (index = pg_start; index < pg_end;) {
1207			struct dnode_of_data dn;
1208			unsigned int end_offset;
1209			pgoff_t end;
1210
 
 
 
 
 
 
 
1211			f2fs_lock_op(sbi);
1212
1213			set_new_dnode(&dn, inode, NULL, NULL, 0);
1214			ret = get_dnode_of_data(&dn, index, ALLOC_NODE);
1215			if (ret) {
1216				f2fs_unlock_op(sbi);
 
 
1217				goto out;
1218			}
1219
1220			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1221			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1222
1223			ret = f2fs_do_zero_range(&dn, index, end);
1224			f2fs_put_dnode(&dn);
 
1225			f2fs_unlock_op(sbi);
 
 
1226
1227			f2fs_balance_fs(sbi, dn.node_changed);
1228
1229			if (ret)
1230				goto out;
1231
1232			index = end;
1233			new_size = max_t(loff_t, new_size,
1234					(loff_t)index << PAGE_SHIFT);
1235		}
1236
1237		if (off_end) {
1238			ret = fill_zero(inode, pg_end, 0, off_end);
1239			if (ret)
1240				goto out;
1241
1242			new_size = max_t(loff_t, new_size, offset + len);
1243		}
1244	}
1245
1246out:
1247	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1248		f2fs_i_size_write(inode, new_size);
1249
 
 
 
1250	return ret;
1251}
1252
1253static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1254{
1255	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1256	pgoff_t nr, pg_start, pg_end, delta, idx;
1257	loff_t new_size;
1258	int ret = 0;
1259
1260	new_size = i_size_read(inode) + len;
1261	if (new_size > inode->i_sb->s_maxbytes)
1262		return -EFBIG;
 
1263
1264	if (offset >= i_size_read(inode))
1265		return -EINVAL;
1266
1267	/* insert range should be aligned to block size of f2fs. */
1268	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1269		return -EINVAL;
1270
1271	ret = f2fs_convert_inline_inode(inode);
1272	if (ret)
1273		return ret;
1274
1275	f2fs_balance_fs(sbi, true);
1276
1277	ret = truncate_blocks(inode, i_size_read(inode), true);
 
 
1278	if (ret)
1279		return ret;
1280
1281	/* write out all dirty pages from offset */
1282	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1283	if (ret)
1284		return ret;
1285
1286	truncate_pagecache(inode, offset);
1287
1288	pg_start = offset >> PAGE_SHIFT;
1289	pg_end = (offset + len) >> PAGE_SHIFT;
1290	delta = pg_end - pg_start;
1291	idx = (i_size_read(inode) + PAGE_SIZE - 1) / PAGE_SIZE;
 
 
 
 
 
1292
1293	while (!ret && idx > pg_start) {
1294		nr = idx - pg_start;
1295		if (nr > delta)
1296			nr = delta;
1297		idx -= nr;
1298
1299		f2fs_lock_op(sbi);
1300		f2fs_drop_extent_tree(inode);
1301
1302		ret = __exchange_data_block(inode, inode, idx,
1303					idx + delta, nr, false);
1304		f2fs_unlock_op(sbi);
1305	}
 
 
1306
1307	/* write out all moved pages, if possible */
 
1308	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1309	truncate_pagecache(inode, offset);
 
1310
1311	if (!ret)
1312		f2fs_i_size_write(inode, new_size);
1313	return ret;
1314}
1315
1316static int expand_inode_data(struct inode *inode, loff_t offset,
1317					loff_t len, int mode)
1318{
1319	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1320	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
 
 
1321	pgoff_t pg_end;
1322	loff_t new_size = i_size_read(inode);
1323	loff_t off_end;
1324	int err;
1325
1326	err = inode_newsize_ok(inode, (len + offset));
1327	if (err)
1328		return err;
1329
1330	err = f2fs_convert_inline_inode(inode);
1331	if (err)
1332		return err;
1333
1334	f2fs_balance_fs(sbi, true);
1335
1336	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1337	off_end = (offset + len) & (PAGE_SIZE - 1);
1338
1339	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1340	map.m_len = pg_end - map.m_lblk;
1341	if (off_end)
1342		map.m_len++;
1343
1344	err = f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
 
 
 
 
 
1345	if (err) {
1346		pgoff_t last_off;
1347
1348		if (!map.m_len)
1349			return err;
1350
1351		last_off = map.m_lblk + map.m_len - 1;
1352
1353		/* update new size to the failed position */
1354		new_size = (last_off == pg_end) ? offset + len:
1355					(loff_t)(last_off + 1) << PAGE_SHIFT;
1356	} else {
1357		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1358	}
1359
1360	if (!(mode & FALLOC_FL_KEEP_SIZE) && i_size_read(inode) < new_size)
1361		f2fs_i_size_write(inode, new_size);
 
 
 
 
1362
1363	return err;
1364}
1365
1366static long f2fs_fallocate(struct file *file, int mode,
1367				loff_t offset, loff_t len)
1368{
1369	struct inode *inode = file_inode(file);
1370	long ret = 0;
1371
 
 
 
 
 
1372	/* f2fs only support ->fallocate for regular file */
1373	if (!S_ISREG(inode->i_mode))
1374		return -EINVAL;
1375
1376	if (f2fs_encrypted_inode(inode) &&
1377		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1378		return -EOPNOTSUPP;
1379
1380	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1381			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1382			FALLOC_FL_INSERT_RANGE))
1383		return -EOPNOTSUPP;
1384
1385	inode_lock(inode);
1386
1387	if (mode & FALLOC_FL_PUNCH_HOLE) {
1388		if (offset >= inode->i_size)
1389			goto out;
1390
1391		ret = punch_hole(inode, offset, len);
1392	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1393		ret = f2fs_collapse_range(inode, offset, len);
1394	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1395		ret = f2fs_zero_range(inode, offset, len, mode);
1396	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1397		ret = f2fs_insert_range(inode, offset, len);
1398	} else {
1399		ret = expand_inode_data(inode, offset, len, mode);
1400	}
1401
1402	if (!ret) {
1403		inode->i_mtime = inode->i_ctime = current_time(inode);
1404		f2fs_mark_inode_dirty_sync(inode, false);
1405		if (mode & FALLOC_FL_KEEP_SIZE)
1406			file_set_keep_isize(inode);
1407		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1408	}
1409
1410out:
1411	inode_unlock(inode);
1412
1413	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1414	return ret;
1415}
1416
1417static int f2fs_release_file(struct inode *inode, struct file *filp)
1418{
1419	/*
1420	 * f2fs_relase_file is called at every close calls. So we should
1421	 * not drop any inmemory pages by close called by other process.
1422	 */
1423	if (!(filp->f_mode & FMODE_WRITE) ||
1424			atomic_read(&inode->i_writecount) != 1)
1425		return 0;
1426
1427	/* some remained atomic pages should discarded */
1428	if (f2fs_is_atomic_file(inode))
1429		drop_inmem_pages(inode);
1430	if (f2fs_is_volatile_file(inode)) {
1431		clear_inode_flag(inode, FI_VOLATILE_FILE);
1432		set_inode_flag(inode, FI_DROP_CACHE);
1433		filemap_fdatawrite(inode->i_mapping);
1434		clear_inode_flag(inode, FI_DROP_CACHE);
 
 
1435	}
1436	return 0;
1437}
1438
1439#define F2FS_REG_FLMASK		(~(FS_DIRSYNC_FL | FS_TOPDIR_FL))
1440#define F2FS_OTHER_FLMASK	(FS_NODUMP_FL | FS_NOATIME_FL)
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442static inline __u32 f2fs_mask_flags(umode_t mode, __u32 flags)
1443{
1444	if (S_ISDIR(mode))
1445		return flags;
1446	else if (S_ISREG(mode))
1447		return flags & F2FS_REG_FLMASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
1448	else
1449		return flags & F2FS_OTHER_FLMASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1450}
1451
1452static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1453{
1454	struct inode *inode = file_inode(filp);
1455	struct f2fs_inode_info *fi = F2FS_I(inode);
1456	unsigned int flags = fi->i_flags & FS_FL_USER_VISIBLE;
1457	return put_user(flags, (int __user *)arg);
 
 
 
 
 
 
 
 
 
 
 
 
1458}
1459
1460static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1461{
1462	struct inode *inode = file_inode(filp);
1463	struct f2fs_inode_info *fi = F2FS_I(inode);
1464	unsigned int flags;
1465	unsigned int oldflags;
1466	int ret;
1467
1468	if (!inode_owner_or_capable(inode))
1469		return -EACCES;
1470
1471	if (get_user(flags, (int __user *)arg))
1472		return -EFAULT;
1473
 
 
 
 
 
 
 
 
1474	ret = mnt_want_write_file(filp);
1475	if (ret)
1476		return ret;
1477
1478	flags = f2fs_mask_flags(inode->i_mode, flags);
1479
1480	inode_lock(inode);
1481
1482	oldflags = fi->i_flags;
1483
1484	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
1485		if (!capable(CAP_LINUX_IMMUTABLE)) {
1486			inode_unlock(inode);
1487			ret = -EPERM;
1488			goto out;
1489		}
1490	}
1491
1492	flags = flags & FS_FL_USER_MODIFIABLE;
1493	flags |= oldflags & ~FS_FL_USER_MODIFIABLE;
1494	fi->i_flags = flags;
1495	inode_unlock(inode);
1496
1497	inode->i_ctime = current_time(inode);
1498	f2fs_set_inode_flags(inode);
1499out:
 
1500	mnt_drop_write_file(filp);
1501	return ret;
1502}
1503
1504static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1505{
1506	struct inode *inode = file_inode(filp);
1507
1508	return put_user(inode->i_generation, (int __user *)arg);
1509}
1510
1511static int f2fs_ioc_start_atomic_write(struct file *filp)
1512{
1513	struct inode *inode = file_inode(filp);
 
 
1514	int ret;
1515
1516	if (!inode_owner_or_capable(inode))
1517		return -EACCES;
1518
 
 
 
 
 
 
1519	ret = mnt_want_write_file(filp);
1520	if (ret)
1521		return ret;
1522
1523	inode_lock(inode);
1524
1525	if (f2fs_is_atomic_file(inode))
 
 
1526		goto out;
 
1527
1528	ret = f2fs_convert_inline_inode(inode);
1529	if (ret)
1530		goto out;
1531
1532	set_inode_flag(inode, FI_ATOMIC_FILE);
1533	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1534
1535	if (!get_dirty_pages(inode))
 
 
 
 
 
 
 
 
 
1536		goto out;
 
1537
1538	f2fs_msg(F2FS_I_SB(inode)->sb, KERN_WARNING,
1539		"Unexpected flush for atomic writes: ino=%lu, npages=%u",
1540					inode->i_ino, get_dirty_pages(inode));
1541	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1542	if (ret)
1543		clear_inode_flag(inode, FI_ATOMIC_FILE);
 
 
 
 
 
 
 
 
1544out:
1545	inode_unlock(inode);
1546	mnt_drop_write_file(filp);
1547	return ret;
1548}
1549
1550static int f2fs_ioc_commit_atomic_write(struct file *filp)
1551{
1552	struct inode *inode = file_inode(filp);
1553	int ret;
1554
1555	if (!inode_owner_or_capable(inode))
1556		return -EACCES;
1557
1558	ret = mnt_want_write_file(filp);
1559	if (ret)
1560		return ret;
1561
 
 
1562	inode_lock(inode);
1563
1564	if (f2fs_is_volatile_file(inode))
 
1565		goto err_out;
 
1566
1567	if (f2fs_is_atomic_file(inode)) {
1568		clear_inode_flag(inode, FI_ATOMIC_FILE);
1569		ret = commit_inmem_pages(inode);
1570		if (ret) {
1571			set_inode_flag(inode, FI_ATOMIC_FILE);
1572			goto err_out;
1573		}
1574	}
1575
1576	ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
 
 
 
 
 
1577err_out:
 
 
 
 
1578	inode_unlock(inode);
1579	mnt_drop_write_file(filp);
1580	return ret;
1581}
1582
1583static int f2fs_ioc_start_volatile_write(struct file *filp)
1584{
1585	struct inode *inode = file_inode(filp);
1586	int ret;
1587
1588	if (!inode_owner_or_capable(inode))
1589		return -EACCES;
1590
 
 
 
1591	ret = mnt_want_write_file(filp);
1592	if (ret)
1593		return ret;
1594
1595	inode_lock(inode);
1596
1597	if (f2fs_is_volatile_file(inode))
1598		goto out;
1599
1600	ret = f2fs_convert_inline_inode(inode);
1601	if (ret)
1602		goto out;
1603
 
 
 
1604	set_inode_flag(inode, FI_VOLATILE_FILE);
1605	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1606out:
1607	inode_unlock(inode);
1608	mnt_drop_write_file(filp);
1609	return ret;
1610}
1611
1612static int f2fs_ioc_release_volatile_write(struct file *filp)
1613{
1614	struct inode *inode = file_inode(filp);
1615	int ret;
1616
1617	if (!inode_owner_or_capable(inode))
1618		return -EACCES;
1619
1620	ret = mnt_want_write_file(filp);
1621	if (ret)
1622		return ret;
1623
1624	inode_lock(inode);
1625
1626	if (!f2fs_is_volatile_file(inode))
1627		goto out;
1628
1629	if (!f2fs_is_first_block_written(inode)) {
1630		ret = truncate_partial_data_page(inode, 0, true);
1631		goto out;
1632	}
1633
1634	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
1635out:
1636	inode_unlock(inode);
1637	mnt_drop_write_file(filp);
1638	return ret;
1639}
1640
1641static int f2fs_ioc_abort_volatile_write(struct file *filp)
1642{
1643	struct inode *inode = file_inode(filp);
1644	int ret;
1645
1646	if (!inode_owner_or_capable(inode))
1647		return -EACCES;
1648
1649	ret = mnt_want_write_file(filp);
1650	if (ret)
1651		return ret;
1652
1653	inode_lock(inode);
1654
1655	if (f2fs_is_atomic_file(inode))
1656		drop_inmem_pages(inode);
1657	if (f2fs_is_volatile_file(inode)) {
1658		clear_inode_flag(inode, FI_VOLATILE_FILE);
 
1659		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1660	}
1661
 
 
1662	inode_unlock(inode);
1663
1664	mnt_drop_write_file(filp);
1665	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1666	return ret;
1667}
1668
1669static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
1670{
1671	struct inode *inode = file_inode(filp);
1672	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1673	struct super_block *sb = sbi->sb;
1674	__u32 in;
1675	int ret;
1676
1677	if (!capable(CAP_SYS_ADMIN))
1678		return -EPERM;
1679
1680	if (get_user(in, (__u32 __user *)arg))
1681		return -EFAULT;
1682
1683	ret = mnt_want_write_file(filp);
1684	if (ret)
1685		return ret;
 
 
1686
1687	switch (in) {
1688	case F2FS_GOING_DOWN_FULLSYNC:
1689		sb = freeze_bdev(sb->s_bdev);
1690		if (sb && !IS_ERR(sb)) {
 
 
 
 
1691			f2fs_stop_checkpoint(sbi, false);
 
1692			thaw_bdev(sb->s_bdev, sb);
1693		}
1694		break;
1695	case F2FS_GOING_DOWN_METASYNC:
1696		/* do checkpoint only */
1697		f2fs_sync_fs(sb, 1);
 
 
1698		f2fs_stop_checkpoint(sbi, false);
 
1699		break;
1700	case F2FS_GOING_DOWN_NOSYNC:
1701		f2fs_stop_checkpoint(sbi, false);
 
1702		break;
1703	case F2FS_GOING_DOWN_METAFLUSH:
1704		sync_meta_pages(sbi, META, LONG_MAX);
1705		f2fs_stop_checkpoint(sbi, false);
 
1706		break;
 
 
 
 
 
 
 
1707	default:
1708		ret = -EINVAL;
1709		goto out;
1710	}
 
 
 
 
 
 
 
1711	f2fs_update_time(sbi, REQ_TIME);
1712out:
1713	mnt_drop_write_file(filp);
 
 
 
 
1714	return ret;
1715}
1716
1717static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
1718{
1719	struct inode *inode = file_inode(filp);
1720	struct super_block *sb = inode->i_sb;
1721	struct request_queue *q = bdev_get_queue(sb->s_bdev);
1722	struct fstrim_range range;
1723	int ret;
1724
1725	if (!capable(CAP_SYS_ADMIN))
1726		return -EPERM;
1727
1728	if (!blk_queue_discard(q))
1729		return -EOPNOTSUPP;
1730
1731	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
1732				sizeof(range)))
1733		return -EFAULT;
1734
1735	ret = mnt_want_write_file(filp);
1736	if (ret)
1737		return ret;
1738
1739	range.minlen = max((unsigned int)range.minlen,
1740				q->limits.discard_granularity);
1741	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
1742	mnt_drop_write_file(filp);
1743	if (ret < 0)
1744		return ret;
1745
1746	if (copy_to_user((struct fstrim_range __user *)arg, &range,
1747				sizeof(range)))
1748		return -EFAULT;
1749	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1750	return 0;
1751}
1752
1753static bool uuid_is_nonzero(__u8 u[16])
1754{
1755	int i;
1756
1757	for (i = 0; i < 16; i++)
1758		if (u[i])
1759			return true;
1760	return false;
1761}
1762
1763static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
1764{
1765	struct inode *inode = file_inode(filp);
1766
 
 
 
1767	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1768
1769	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
1770}
1771
1772static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
1773{
 
 
1774	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
1775}
1776
1777static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
1778{
1779	struct inode *inode = file_inode(filp);
1780	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1781	int err;
1782
1783	if (!f2fs_sb_has_crypto(inode->i_sb))
1784		return -EOPNOTSUPP;
1785
1786	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
1787		goto got_it;
1788
1789	err = mnt_want_write_file(filp);
1790	if (err)
1791		return err;
1792
 
 
 
 
 
1793	/* update superblock with uuid */
1794	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
1795
1796	err = f2fs_commit_super(sbi, false);
1797	if (err) {
1798		/* undo new data */
1799		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
1800		mnt_drop_write_file(filp);
1801		return err;
1802	}
1803	mnt_drop_write_file(filp);
1804got_it:
1805	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
1806									16))
1807		return -EFAULT;
1808	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1809}
1810
1811static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
1812{
1813	struct inode *inode = file_inode(filp);
1814	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1815	__u32 sync;
1816	int ret;
1817
1818	if (!capable(CAP_SYS_ADMIN))
1819		return -EPERM;
1820
1821	if (get_user(sync, (__u32 __user *)arg))
1822		return -EFAULT;
1823
1824	if (f2fs_readonly(sbi->sb))
1825		return -EROFS;
1826
1827	ret = mnt_want_write_file(filp);
1828	if (ret)
1829		return ret;
1830
1831	if (!sync) {
1832		if (!mutex_trylock(&sbi->gc_mutex)) {
1833			ret = -EBUSY;
1834			goto out;
1835		}
1836	} else {
1837		mutex_lock(&sbi->gc_mutex);
1838	}
1839
1840	ret = f2fs_gc(sbi, sync, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841out:
1842	mnt_drop_write_file(filp);
1843	return ret;
1844}
1845
1846static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
1847{
1848	struct inode *inode = file_inode(filp);
1849	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1850	int ret;
1851
1852	if (!capable(CAP_SYS_ADMIN))
1853		return -EPERM;
1854
1855	if (f2fs_readonly(sbi->sb))
1856		return -EROFS;
1857
 
 
 
 
 
1858	ret = mnt_want_write_file(filp);
1859	if (ret)
1860		return ret;
1861
1862	ret = f2fs_sync_fs(sbi->sb, 1);
1863
1864	mnt_drop_write_file(filp);
1865	return ret;
1866}
1867
1868static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
1869					struct file *filp,
1870					struct f2fs_defragment *range)
1871{
1872	struct inode *inode = file_inode(filp);
1873	struct f2fs_map_blocks map = { .m_next_pgofs = NULL };
1874	struct extent_info ei;
1875	pgoff_t pg_start, pg_end;
 
 
1876	unsigned int blk_per_seg = sbi->blocks_per_seg;
1877	unsigned int total = 0, sec_num;
1878	unsigned int pages_per_sec = sbi->segs_per_sec * blk_per_seg;
1879	block_t blk_end = 0;
1880	bool fragmented = false;
1881	int err;
1882
1883	/* if in-place-update policy is enabled, don't waste time here */
1884	if (need_inplace_update(inode))
1885		return -EINVAL;
1886
1887	pg_start = range->start >> PAGE_SHIFT;
1888	pg_end = (range->start + range->len) >> PAGE_SHIFT;
1889
1890	f2fs_balance_fs(sbi, true);
1891
1892	inode_lock(inode);
1893
1894	/* writeback all dirty pages in the range */
1895	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
1896						range->start + range->len - 1);
1897	if (err)
1898		goto out;
1899
1900	/*
1901	 * lookup mapping info in extent cache, skip defragmenting if physical
1902	 * block addresses are continuous.
1903	 */
1904	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
1905		if (ei.fofs + ei.len >= pg_end)
1906			goto out;
1907	}
1908
1909	map.m_lblk = pg_start;
 
1910
1911	/*
1912	 * lookup mapping info in dnode page cache, skip defragmenting if all
1913	 * physical block addresses are continuous even if there are hole(s)
1914	 * in logical blocks.
1915	 */
1916	while (map.m_lblk < pg_end) {
1917		map.m_len = pg_end - map.m_lblk;
1918		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1919		if (err)
1920			goto out;
1921
1922		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1923			map.m_lblk++;
1924			continue;
1925		}
1926
1927		if (blk_end && blk_end != map.m_pblk) {
1928			fragmented = true;
1929			break;
1930		}
 
 
1931		blk_end = map.m_pblk + map.m_len;
1932
1933		map.m_lblk += map.m_len;
1934	}
1935
1936	if (!fragmented)
 
1937		goto out;
 
1938
1939	map.m_lblk = pg_start;
1940	map.m_len = pg_end - pg_start;
1941
1942	sec_num = (map.m_len + pages_per_sec - 1) / pages_per_sec;
1943
1944	/*
1945	 * make sure there are enough free section for LFS allocation, this can
1946	 * avoid defragment running in SSR mode when free section are allocated
1947	 * intensively
1948	 */
1949	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
1950		err = -EAGAIN;
1951		goto out;
1952	}
1953
 
 
 
 
1954	while (map.m_lblk < pg_end) {
1955		pgoff_t idx;
1956		int cnt = 0;
1957
1958do_map:
1959		map.m_len = pg_end - map.m_lblk;
1960		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_READ);
1961		if (err)
1962			goto clear_out;
1963
1964		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
1965			map.m_lblk++;
1966			continue;
1967		}
1968
1969		set_inode_flag(inode, FI_DO_DEFRAG);
1970
1971		idx = map.m_lblk;
1972		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
1973			struct page *page;
1974
1975			page = get_lock_data_page(inode, idx, true);
1976			if (IS_ERR(page)) {
1977				err = PTR_ERR(page);
1978				goto clear_out;
1979			}
1980
1981			set_page_dirty(page);
1982			f2fs_put_page(page, 1);
1983
1984			idx++;
1985			cnt++;
1986			total++;
1987		}
1988
1989		map.m_lblk = idx;
1990
1991		if (idx < pg_end && cnt < blk_per_seg)
1992			goto do_map;
1993
1994		clear_inode_flag(inode, FI_DO_DEFRAG);
1995
1996		err = filemap_fdatawrite(inode->i_mapping);
1997		if (err)
1998			goto out;
1999	}
2000clear_out:
2001	clear_inode_flag(inode, FI_DO_DEFRAG);
2002out:
2003	inode_unlock(inode);
2004	if (!err)
2005		range->len = (u64)total << PAGE_SHIFT;
2006	return err;
2007}
2008
2009static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2010{
2011	struct inode *inode = file_inode(filp);
2012	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2013	struct f2fs_defragment range;
2014	int err;
2015
2016	if (!capable(CAP_SYS_ADMIN))
2017		return -EPERM;
2018
2019	if (!S_ISREG(inode->i_mode))
2020		return -EINVAL;
2021
2022	err = mnt_want_write_file(filp);
2023	if (err)
2024		return err;
2025
2026	if (f2fs_readonly(sbi->sb)) {
2027		err = -EROFS;
2028		goto out;
2029	}
2030
2031	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2032							sizeof(range))) {
2033		err = -EFAULT;
2034		goto out;
2035	}
2036
2037	/* verify alignment of offset & size */
2038	if (range.start & (F2FS_BLKSIZE - 1) ||
2039		range.len & (F2FS_BLKSIZE - 1)) {
2040		err = -EINVAL;
2041		goto out;
2042	}
 
 
 
 
 
2043
2044	err = f2fs_defragment_range(sbi, filp, &range);
 
 
2045	f2fs_update_time(sbi, REQ_TIME);
2046	if (err < 0)
2047		goto out;
2048
2049	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2050							sizeof(range)))
2051		err = -EFAULT;
2052out:
2053	mnt_drop_write_file(filp);
2054	return err;
2055}
2056
2057static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2058			struct file *file_out, loff_t pos_out, size_t len)
2059{
2060	struct inode *src = file_inode(file_in);
2061	struct inode *dst = file_inode(file_out);
2062	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2063	size_t olen = len, dst_max_i_size = 0;
2064	size_t dst_osize;
2065	int ret;
2066
2067	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2068				src->i_sb != dst->i_sb)
2069		return -EXDEV;
2070
2071	if (unlikely(f2fs_readonly(src->i_sb)))
2072		return -EROFS;
2073
2074	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2075		return -EINVAL;
2076
2077	if (f2fs_encrypted_inode(src) || f2fs_encrypted_inode(dst))
2078		return -EOPNOTSUPP;
2079
2080	if (src == dst) {
2081		if (pos_in == pos_out)
2082			return 0;
2083		if (pos_out > pos_in && pos_out < pos_in + len)
2084			return -EINVAL;
2085	}
2086
2087	inode_lock(src);
2088	if (src != dst) {
2089		if (!inode_trylock(dst)) {
2090			ret = -EBUSY;
2091			goto out;
2092		}
2093	}
2094
2095	ret = -EINVAL;
2096	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2097		goto out_unlock;
2098	if (len == 0)
2099		olen = len = src->i_size - pos_in;
2100	if (pos_in + len == src->i_size)
2101		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2102	if (len == 0) {
2103		ret = 0;
2104		goto out_unlock;
2105	}
2106
2107	dst_osize = dst->i_size;
2108	if (pos_out + olen > dst->i_size)
2109		dst_max_i_size = pos_out + olen;
2110
2111	/* verify the end result is block aligned */
2112	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2113			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2114			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2115		goto out_unlock;
2116
2117	ret = f2fs_convert_inline_inode(src);
2118	if (ret)
2119		goto out_unlock;
2120
2121	ret = f2fs_convert_inline_inode(dst);
2122	if (ret)
2123		goto out_unlock;
2124
2125	/* write out all dirty pages from offset */
2126	ret = filemap_write_and_wait_range(src->i_mapping,
2127					pos_in, pos_in + len);
2128	if (ret)
2129		goto out_unlock;
2130
2131	ret = filemap_write_and_wait_range(dst->i_mapping,
2132					pos_out, pos_out + len);
2133	if (ret)
2134		goto out_unlock;
2135
2136	f2fs_balance_fs(sbi, true);
 
 
 
 
 
 
 
 
2137	f2fs_lock_op(sbi);
2138	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2139				pos_out >> F2FS_BLKSIZE_BITS,
2140				len >> F2FS_BLKSIZE_BITS, false);
2141
2142	if (!ret) {
2143		if (dst_max_i_size)
2144			f2fs_i_size_write(dst, dst_max_i_size);
2145		else if (dst_osize != dst->i_size)
2146			f2fs_i_size_write(dst, dst_osize);
2147	}
2148	f2fs_unlock_op(sbi);
 
 
 
 
 
2149out_unlock:
2150	if (src != dst)
2151		inode_unlock(dst);
2152out:
2153	inode_unlock(src);
2154	return ret;
2155}
2156
2157static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2158{
2159	struct f2fs_move_range range;
2160	struct fd dst;
2161	int err;
2162
2163	if (!(filp->f_mode & FMODE_READ) ||
2164			!(filp->f_mode & FMODE_WRITE))
2165		return -EBADF;
2166
2167	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2168							sizeof(range)))
2169		return -EFAULT;
2170
2171	dst = fdget(range.dst_fd);
2172	if (!dst.file)
2173		return -EBADF;
2174
2175	if (!(dst.file->f_mode & FMODE_WRITE)) {
2176		err = -EBADF;
2177		goto err_out;
2178	}
2179
2180	err = mnt_want_write_file(filp);
2181	if (err)
2182		goto err_out;
2183
2184	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2185					range.pos_out, range.len);
2186
2187	mnt_drop_write_file(filp);
 
 
2188
2189	if (copy_to_user((struct f2fs_move_range __user *)arg,
2190						&range, sizeof(range)))
2191		err = -EFAULT;
2192err_out:
2193	fdput(dst);
2194	return err;
2195}
2196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2197long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
2198{
 
 
 
 
 
2199	switch (cmd) {
2200	case F2FS_IOC_GETFLAGS:
2201		return f2fs_ioc_getflags(filp, arg);
2202	case F2FS_IOC_SETFLAGS:
2203		return f2fs_ioc_setflags(filp, arg);
2204	case F2FS_IOC_GETVERSION:
2205		return f2fs_ioc_getversion(filp, arg);
2206	case F2FS_IOC_START_ATOMIC_WRITE:
2207		return f2fs_ioc_start_atomic_write(filp);
2208	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2209		return f2fs_ioc_commit_atomic_write(filp);
2210	case F2FS_IOC_START_VOLATILE_WRITE:
2211		return f2fs_ioc_start_volatile_write(filp);
2212	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2213		return f2fs_ioc_release_volatile_write(filp);
2214	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2215		return f2fs_ioc_abort_volatile_write(filp);
2216	case F2FS_IOC_SHUTDOWN:
2217		return f2fs_ioc_shutdown(filp, arg);
2218	case FITRIM:
2219		return f2fs_ioc_fitrim(filp, arg);
2220	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2221		return f2fs_ioc_set_encryption_policy(filp, arg);
2222	case F2FS_IOC_GET_ENCRYPTION_POLICY:
2223		return f2fs_ioc_get_encryption_policy(filp, arg);
2224	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2225		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
 
 
 
 
 
 
 
 
 
 
2226	case F2FS_IOC_GARBAGE_COLLECT:
2227		return f2fs_ioc_gc(filp, arg);
 
 
2228	case F2FS_IOC_WRITE_CHECKPOINT:
2229		return f2fs_ioc_write_checkpoint(filp, arg);
2230	case F2FS_IOC_DEFRAGMENT:
2231		return f2fs_ioc_defragment(filp, arg);
2232	case F2FS_IOC_MOVE_RANGE:
2233		return f2fs_ioc_move_range(filp, arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2234	default:
2235		return -ENOTTY;
2236	}
2237}
2238
2239static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2240{
2241	struct file *file = iocb->ki_filp;
2242	struct inode *inode = file_inode(file);
2243	struct blk_plug plug;
2244	ssize_t ret;
2245
2246	if (f2fs_encrypted_inode(inode) &&
2247				!fscrypt_has_encryption_key(inode) &&
2248				fscrypt_get_encryption_info(inode))
2249		return -EACCES;
 
 
 
 
 
 
 
 
 
2250
2251	inode_lock(inode);
2252	ret = generic_write_checks(iocb, from);
2253	if (ret > 0) {
2254		int err = f2fs_preallocate_blocks(iocb, from);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2255
2256		if (err) {
2257			inode_unlock(inode);
2258			return err;
 
 
 
 
2259		}
2260		blk_start_plug(&plug);
2261		ret = __generic_file_write_iter(iocb, from);
2262		blk_finish_plug(&plug);
 
 
 
 
 
 
 
2263	}
2264	inode_unlock(inode);
2265
 
 
2266	if (ret > 0)
2267		ret = generic_write_sync(iocb, ret);
2268	return ret;
2269}
2270
2271#ifdef CONFIG_COMPAT
2272long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2273{
2274	switch (cmd) {
2275	case F2FS_IOC32_GETFLAGS:
2276		cmd = F2FS_IOC_GETFLAGS;
2277		break;
2278	case F2FS_IOC32_SETFLAGS:
2279		cmd = F2FS_IOC_SETFLAGS;
2280		break;
2281	case F2FS_IOC32_GETVERSION:
2282		cmd = F2FS_IOC_GETVERSION;
2283		break;
2284	case F2FS_IOC_START_ATOMIC_WRITE:
2285	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
2286	case F2FS_IOC_START_VOLATILE_WRITE:
2287	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
2288	case F2FS_IOC_ABORT_VOLATILE_WRITE:
2289	case F2FS_IOC_SHUTDOWN:
2290	case F2FS_IOC_SET_ENCRYPTION_POLICY:
2291	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
2292	case F2FS_IOC_GET_ENCRYPTION_POLICY:
 
 
 
 
 
2293	case F2FS_IOC_GARBAGE_COLLECT:
 
2294	case F2FS_IOC_WRITE_CHECKPOINT:
2295	case F2FS_IOC_DEFRAGMENT:
2296		break;
2297	case F2FS_IOC_MOVE_RANGE:
 
 
 
 
 
 
 
 
 
 
 
 
2298		break;
2299	default:
2300		return -ENOIOCTLCMD;
2301	}
2302	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
2303}
2304#endif
2305
2306const struct file_operations f2fs_file_operations = {
2307	.llseek		= f2fs_llseek,
2308	.read_iter	= generic_file_read_iter,
2309	.write_iter	= f2fs_file_write_iter,
2310	.open		= f2fs_file_open,
2311	.release	= f2fs_release_file,
2312	.mmap		= f2fs_file_mmap,
 
2313	.fsync		= f2fs_sync_file,
2314	.fallocate	= f2fs_fallocate,
2315	.unlocked_ioctl	= f2fs_ioctl,
2316#ifdef CONFIG_COMPAT
2317	.compat_ioctl	= f2fs_compat_ioctl,
2318#endif
2319	.splice_read	= generic_file_splice_read,
2320	.splice_write	= iter_file_splice_write,
2321};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/file.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/stat.h>
  11#include <linux/buffer_head.h>
  12#include <linux/writeback.h>
  13#include <linux/blkdev.h>
  14#include <linux/falloc.h>
  15#include <linux/types.h>
  16#include <linux/compat.h>
  17#include <linux/uaccess.h>
  18#include <linux/mount.h>
  19#include <linux/pagevec.h>
  20#include <linux/uio.h>
  21#include <linux/uuid.h>
  22#include <linux/file.h>
  23#include <linux/nls.h>
  24
  25#include "f2fs.h"
  26#include "node.h"
  27#include "segment.h"
  28#include "xattr.h"
  29#include "acl.h"
  30#include "gc.h"
  31#include "trace.h"
  32#include <trace/events/f2fs.h>
  33
  34static vm_fault_t f2fs_filemap_fault(struct vm_fault *vmf)
  35{
  36	struct inode *inode = file_inode(vmf->vma->vm_file);
  37	vm_fault_t ret;
  38
  39	down_read(&F2FS_I(inode)->i_mmap_sem);
  40	ret = filemap_fault(vmf);
  41	up_read(&F2FS_I(inode)->i_mmap_sem);
  42
  43	trace_f2fs_filemap_fault(inode, vmf->pgoff, (unsigned long)ret);
  44
  45	return ret;
  46}
  47
  48static vm_fault_t f2fs_vm_page_mkwrite(struct vm_fault *vmf)
  49{
  50	struct page *page = vmf->page;
  51	struct inode *inode = file_inode(vmf->vma->vm_file);
  52	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
  53	struct dnode_of_data dn = { .node_changed = false };
  54	int err;
  55
  56	if (unlikely(f2fs_cp_error(sbi))) {
  57		err = -EIO;
  58		goto err;
  59	}
  60
  61	if (!f2fs_is_checkpoint_ready(sbi)) {
  62		err = -ENOSPC;
  63		goto err;
 
 
 
 
  64	}
 
 
  65
  66	sb_start_pagefault(inode->i_sb);
  67
  68	f2fs_bug_on(sbi, f2fs_has_inline_data(inode));
  69
  70	file_update_time(vmf->vma->vm_file);
  71	down_read(&F2FS_I(inode)->i_mmap_sem);
  72	lock_page(page);
  73	if (unlikely(page->mapping != inode->i_mapping ||
  74			page_offset(page) > i_size_read(inode) ||
  75			!PageUptodate(page))) {
  76		unlock_page(page);
  77		err = -EFAULT;
  78		goto out_sem;
  79	}
  80
  81	/* block allocation */
  82	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, true);
  83	set_new_dnode(&dn, inode, NULL, NULL, 0);
  84	err = f2fs_get_block(&dn, page->index);
  85	f2fs_put_dnode(&dn);
  86	__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO, false);
  87	if (err) {
  88		unlock_page(page);
  89		goto out_sem;
  90	}
  91
  92	/* fill the page */
  93	f2fs_wait_on_page_writeback(page, DATA, false, true);
  94
  95	/* wait for GCed page writeback via META_MAPPING */
  96	f2fs_wait_on_block_writeback(inode, dn.data_blkaddr);
  97
  98	/*
  99	 * check to see if the page is mapped already (no holes)
 100	 */
 101	if (PageMappedToDisk(page))
 102		goto out_sem;
 103
 104	/* page is wholly or partially inside EOF */
 105	if (((loff_t)(page->index + 1) << PAGE_SHIFT) >
 106						i_size_read(inode)) {
 107		loff_t offset;
 108
 109		offset = i_size_read(inode) & ~PAGE_MASK;
 110		zero_user_segment(page, offset, PAGE_SIZE);
 111	}
 112	set_page_dirty(page);
 113	if (!PageUptodate(page))
 114		SetPageUptodate(page);
 115
 116	f2fs_update_iostat(sbi, APP_MAPPED_IO, F2FS_BLKSIZE);
 117	f2fs_update_time(sbi, REQ_TIME);
 118
 119	trace_f2fs_vm_page_mkwrite(page, DATA);
 120out_sem:
 121	up_read(&F2FS_I(inode)->i_mmap_sem);
 
 122
 123	f2fs_balance_fs(sbi, dn.node_changed);
 
 
 124
 
 125	sb_end_pagefault(inode->i_sb);
 126err:
 127	return block_page_mkwrite_return(err);
 128}
 129
 130static const struct vm_operations_struct f2fs_file_vm_ops = {
 131	.fault		= f2fs_filemap_fault,
 132	.map_pages	= filemap_map_pages,
 133	.page_mkwrite	= f2fs_vm_page_mkwrite,
 134};
 135
 136static int get_parent_ino(struct inode *inode, nid_t *pino)
 137{
 138	struct dentry *dentry;
 139
 140	inode = igrab(inode);
 141	dentry = d_find_any_alias(inode);
 142	iput(inode);
 143	if (!dentry)
 144		return 0;
 145
 
 
 
 
 
 146	*pino = parent_ino(dentry);
 147	dput(dentry);
 148	return 1;
 149}
 150
 151static inline enum cp_reason_type need_do_checkpoint(struct inode *inode)
 152{
 153	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 154	enum cp_reason_type cp_reason = CP_NO_NEEDED;
 155
 156	if (!S_ISREG(inode->i_mode))
 157		cp_reason = CP_NON_REGULAR;
 158	else if (inode->i_nlink != 1)
 159		cp_reason = CP_HARDLINK;
 160	else if (is_sbi_flag_set(sbi, SBI_NEED_CP))
 161		cp_reason = CP_SB_NEED_CP;
 162	else if (file_wrong_pino(inode))
 163		cp_reason = CP_WRONG_PINO;
 164	else if (!f2fs_space_for_roll_forward(sbi))
 165		cp_reason = CP_NO_SPC_ROLL;
 166	else if (!f2fs_is_checkpointed_node(sbi, F2FS_I(inode)->i_pino))
 167		cp_reason = CP_NODE_NEED_CP;
 
 
 168	else if (test_opt(sbi, FASTBOOT))
 169		cp_reason = CP_FASTBOOT_MODE;
 170	else if (F2FS_OPTION(sbi).active_logs == 2)
 171		cp_reason = CP_SPEC_LOG_NUM;
 172	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT &&
 173		f2fs_need_dentry_mark(sbi, inode->i_ino) &&
 174		f2fs_exist_written_data(sbi, F2FS_I(inode)->i_pino,
 175							TRANS_DIR_INO))
 176		cp_reason = CP_RECOVER_DIR;
 177
 178	return cp_reason;
 179}
 180
 181static bool need_inode_page_update(struct f2fs_sb_info *sbi, nid_t ino)
 182{
 183	struct page *i = find_get_page(NODE_MAPPING(sbi), ino);
 184	bool ret = false;
 185	/* But we need to avoid that there are some inode updates */
 186	if ((i && PageDirty(i)) || f2fs_need_inode_block_update(sbi, ino))
 187		ret = true;
 188	f2fs_put_page(i, 0);
 189	return ret;
 190}
 191
 192static void try_to_fix_pino(struct inode *inode)
 193{
 194	struct f2fs_inode_info *fi = F2FS_I(inode);
 195	nid_t pino;
 196
 197	down_write(&fi->i_sem);
 
 198	if (file_wrong_pino(inode) && inode->i_nlink == 1 &&
 199			get_parent_ino(inode, &pino)) {
 200		f2fs_i_pino_write(inode, pino);
 201		file_got_pino(inode);
 202	}
 203	up_write(&fi->i_sem);
 204}
 205
 206static int f2fs_do_sync_file(struct file *file, loff_t start, loff_t end,
 207						int datasync, bool atomic)
 208{
 209	struct inode *inode = file->f_mapping->host;
 210	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 211	nid_t ino = inode->i_ino;
 212	int ret = 0;
 213	enum cp_reason_type cp_reason = 0;
 214	struct writeback_control wbc = {
 215		.sync_mode = WB_SYNC_ALL,
 216		.nr_to_write = LONG_MAX,
 217		.for_reclaim = 0,
 218	};
 219	unsigned int seq_id = 0;
 220
 221	if (unlikely(f2fs_readonly(inode->i_sb) ||
 222				is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 223		return 0;
 224
 225	trace_f2fs_sync_file_enter(inode);
 226
 227	if (S_ISDIR(inode->i_mode))
 228		goto go_write;
 229
 230	/* if fdatasync is triggered, let's do in-place-update */
 231	if (datasync || get_dirty_pages(inode) <= SM_I(sbi)->min_fsync_blocks)
 232		set_inode_flag(inode, FI_NEED_IPU);
 233	ret = file_write_and_wait_range(file, start, end);
 234	clear_inode_flag(inode, FI_NEED_IPU);
 235
 236	if (ret) {
 237		trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 238		return ret;
 239	}
 240
 241	/* if the inode is dirty, let's recover all the time */
 242	if (!f2fs_skip_inode_update(inode, datasync)) {
 243		f2fs_write_inode(inode, NULL);
 244		goto go_write;
 245	}
 246
 247	/*
 248	 * if there is no written data, don't waste time to write recovery info.
 249	 */
 250	if (!is_inode_flag_set(inode, FI_APPEND_WRITE) &&
 251			!f2fs_exist_written_data(sbi, ino, APPEND_INO)) {
 252
 253		/* it may call write_inode just prior to fsync */
 254		if (need_inode_page_update(sbi, ino))
 255			goto go_write;
 256
 257		if (is_inode_flag_set(inode, FI_UPDATE_WRITE) ||
 258				f2fs_exist_written_data(sbi, ino, UPDATE_INO))
 259			goto flush_out;
 260		goto out;
 261	}
 262go_write:
 263	/*
 264	 * Both of fdatasync() and fsync() are able to be recovered from
 265	 * sudden-power-off.
 266	 */
 267	down_read(&F2FS_I(inode)->i_sem);
 268	cp_reason = need_do_checkpoint(inode);
 269	up_read(&F2FS_I(inode)->i_sem);
 270
 271	if (cp_reason) {
 272		/* all the dirty node pages should be flushed for POR */
 273		ret = f2fs_sync_fs(inode->i_sb, 1);
 274
 275		/*
 276		 * We've secured consistency through sync_fs. Following pino
 277		 * will be used only for fsynced inodes after checkpoint.
 278		 */
 279		try_to_fix_pino(inode);
 280		clear_inode_flag(inode, FI_APPEND_WRITE);
 281		clear_inode_flag(inode, FI_UPDATE_WRITE);
 282		goto out;
 283	}
 284sync_nodes:
 285	atomic_inc(&sbi->wb_sync_req[NODE]);
 286	ret = f2fs_fsync_node_pages(sbi, inode, &wbc, atomic, &seq_id);
 287	atomic_dec(&sbi->wb_sync_req[NODE]);
 288	if (ret)
 289		goto out;
 290
 291	/* if cp_error was enabled, we should avoid infinite loop */
 292	if (unlikely(f2fs_cp_error(sbi))) {
 293		ret = -EIO;
 294		goto out;
 295	}
 296
 297	if (f2fs_need_inode_block_update(sbi, ino)) {
 298		f2fs_mark_inode_dirty_sync(inode, true);
 299		f2fs_write_inode(inode, NULL);
 300		goto sync_nodes;
 301	}
 302
 303	/*
 304	 * If it's atomic_write, it's just fine to keep write ordering. So
 305	 * here we don't need to wait for node write completion, since we use
 306	 * node chain which serializes node blocks. If one of node writes are
 307	 * reordered, we can see simply broken chain, resulting in stopping
 308	 * roll-forward recovery. It means we'll recover all or none node blocks
 309	 * given fsync mark.
 310	 */
 311	if (!atomic) {
 312		ret = f2fs_wait_on_node_pages_writeback(sbi, seq_id);
 313		if (ret)
 314			goto out;
 315	}
 316
 317	/* once recovery info is written, don't need to tack this */
 318	f2fs_remove_ino_entry(sbi, ino, APPEND_INO);
 319	clear_inode_flag(inode, FI_APPEND_WRITE);
 320flush_out:
 321	if (!atomic && F2FS_OPTION(sbi).fsync_mode != FSYNC_MODE_NOBARRIER)
 322		ret = f2fs_issue_flush(sbi, inode->i_ino);
 323	if (!ret) {
 324		f2fs_remove_ino_entry(sbi, ino, UPDATE_INO);
 325		clear_inode_flag(inode, FI_UPDATE_WRITE);
 326		f2fs_remove_ino_entry(sbi, ino, FLUSH_INO);
 327	}
 328	f2fs_update_time(sbi, REQ_TIME);
 329out:
 330	trace_f2fs_sync_file_exit(inode, cp_reason, datasync, ret);
 331	f2fs_trace_ios(NULL, 1);
 332	return ret;
 333}
 334
 335int f2fs_sync_file(struct file *file, loff_t start, loff_t end, int datasync)
 336{
 337	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(file)))))
 338		return -EIO;
 339	return f2fs_do_sync_file(file, start, end, datasync, false);
 340}
 341
 342static pgoff_t __get_first_dirty_index(struct address_space *mapping,
 343						pgoff_t pgofs, int whence)
 344{
 345	struct page *page;
 346	int nr_pages;
 347
 348	if (whence != SEEK_DATA)
 349		return 0;
 350
 351	/* find first dirty page index */
 352	nr_pages = find_get_pages_tag(mapping, &pgofs, PAGECACHE_TAG_DIRTY,
 353				      1, &page);
 354	if (!nr_pages)
 355		return ULONG_MAX;
 356	pgofs = page->index;
 357	put_page(page);
 358	return pgofs;
 359}
 360
 361static bool __found_offset(struct f2fs_sb_info *sbi, block_t blkaddr,
 362				pgoff_t dirty, pgoff_t pgofs, int whence)
 363{
 364	switch (whence) {
 365	case SEEK_DATA:
 366		if ((blkaddr == NEW_ADDR && dirty == pgofs) ||
 367			__is_valid_data_blkaddr(blkaddr))
 368			return true;
 369		break;
 370	case SEEK_HOLE:
 371		if (blkaddr == NULL_ADDR)
 372			return true;
 373		break;
 374	}
 375	return false;
 376}
 377
 378static loff_t f2fs_seek_block(struct file *file, loff_t offset, int whence)
 379{
 380	struct inode *inode = file->f_mapping->host;
 381	loff_t maxbytes = inode->i_sb->s_maxbytes;
 382	struct dnode_of_data dn;
 383	pgoff_t pgofs, end_offset, dirty;
 384	loff_t data_ofs = offset;
 385	loff_t isize;
 386	int err = 0;
 387
 388	inode_lock(inode);
 389
 390	isize = i_size_read(inode);
 391	if (offset >= isize)
 392		goto fail;
 393
 394	/* handle inline data case */
 395	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
 396		if (whence == SEEK_HOLE)
 397			data_ofs = isize;
 398		goto found;
 399	}
 400
 401	pgofs = (pgoff_t)(offset >> PAGE_SHIFT);
 402
 403	dirty = __get_first_dirty_index(inode->i_mapping, pgofs, whence);
 404
 405	for (; data_ofs < isize; data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 406		set_new_dnode(&dn, inode, NULL, NULL, 0);
 407		err = f2fs_get_dnode_of_data(&dn, pgofs, LOOKUP_NODE);
 408		if (err && err != -ENOENT) {
 409			goto fail;
 410		} else if (err == -ENOENT) {
 411			/* direct node does not exists */
 412			if (whence == SEEK_DATA) {
 413				pgofs = f2fs_get_next_page_offset(&dn, pgofs);
 414				continue;
 415			} else {
 416				goto found;
 417			}
 418		}
 419
 420		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 421
 422		/* find data/hole in dnode block */
 423		for (; dn.ofs_in_node < end_offset;
 424				dn.ofs_in_node++, pgofs++,
 425				data_ofs = (loff_t)pgofs << PAGE_SHIFT) {
 426			block_t blkaddr;
 
 427
 428			blkaddr = datablock_addr(dn.inode,
 429					dn.node_page, dn.ofs_in_node);
 430
 431			if (__is_valid_data_blkaddr(blkaddr) &&
 432				!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
 433					blkaddr, DATA_GENERIC_ENHANCE)) {
 434				f2fs_put_dnode(&dn);
 435				goto fail;
 436			}
 437
 438			if (__found_offset(F2FS_I_SB(inode), blkaddr, dirty,
 439							pgofs, whence)) {
 440				f2fs_put_dnode(&dn);
 441				goto found;
 442			}
 443		}
 444		f2fs_put_dnode(&dn);
 445	}
 446
 447	if (whence == SEEK_DATA)
 448		goto fail;
 449found:
 450	if (whence == SEEK_HOLE && data_ofs > isize)
 451		data_ofs = isize;
 452	inode_unlock(inode);
 453	return vfs_setpos(file, data_ofs, maxbytes);
 454fail:
 455	inode_unlock(inode);
 456	return -ENXIO;
 457}
 458
 459static loff_t f2fs_llseek(struct file *file, loff_t offset, int whence)
 460{
 461	struct inode *inode = file->f_mapping->host;
 462	loff_t maxbytes = inode->i_sb->s_maxbytes;
 463
 464	switch (whence) {
 465	case SEEK_SET:
 466	case SEEK_CUR:
 467	case SEEK_END:
 468		return generic_file_llseek_size(file, offset, whence,
 469						maxbytes, i_size_read(inode));
 470	case SEEK_DATA:
 471	case SEEK_HOLE:
 472		if (offset < 0)
 473			return -ENXIO;
 474		return f2fs_seek_block(file, offset, whence);
 475	}
 476
 477	return -EINVAL;
 478}
 479
 480static int f2fs_file_mmap(struct file *file, struct vm_area_struct *vma)
 481{
 482	struct inode *inode = file_inode(file);
 483	int err;
 484
 485	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 486		return -EIO;
 
 
 
 
 
 487
 488	/* we don't need to use inline_data strictly */
 489	err = f2fs_convert_inline_inode(inode);
 490	if (err)
 491		return err;
 492
 493	file_accessed(file);
 494	vma->vm_ops = &f2fs_file_vm_ops;
 495	return 0;
 496}
 497
 498static int f2fs_file_open(struct inode *inode, struct file *filp)
 499{
 500	int err = fscrypt_file_open(inode, filp);
 
 501
 502	if (err)
 503		return err;
 504
 505	err = fsverity_file_open(inode, filp);
 506	if (err)
 507		return err;
 508
 509	filp->f_mode |= FMODE_NOWAIT;
 510
 511	return dquot_file_open(inode, filp);
 
 
 
 
 
 512}
 513
 514void f2fs_truncate_data_blocks_range(struct dnode_of_data *dn, int count)
 515{
 516	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 517	struct f2fs_node *raw_node;
 518	int nr_free = 0, ofs = dn->ofs_in_node, len = count;
 519	__le32 *addr;
 520	int base = 0;
 521
 522	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
 523		base = get_extra_isize(dn->inode);
 524
 525	raw_node = F2FS_NODE(dn->node_page);
 526	addr = blkaddr_in_node(raw_node) + base + ofs;
 527
 528	for (; count > 0; count--, addr++, dn->ofs_in_node++) {
 529		block_t blkaddr = le32_to_cpu(*addr);
 530
 531		if (blkaddr == NULL_ADDR)
 532			continue;
 533
 534		dn->data_blkaddr = NULL_ADDR;
 535		f2fs_set_data_blkaddr(dn);
 536
 537		if (__is_valid_data_blkaddr(blkaddr) &&
 538			!f2fs_is_valid_blkaddr(sbi, blkaddr,
 539					DATA_GENERIC_ENHANCE))
 540			continue;
 541
 542		f2fs_invalidate_blocks(sbi, blkaddr);
 543		if (dn->ofs_in_node == 0 && IS_INODE(dn->node_page))
 544			clear_inode_flag(dn->inode, FI_FIRST_BLOCK_WRITTEN);
 545		nr_free++;
 546	}
 547
 548	if (nr_free) {
 549		pgoff_t fofs;
 550		/*
 551		 * once we invalidate valid blkaddr in range [ofs, ofs + count],
 552		 * we will invalidate all blkaddr in the whole range.
 553		 */
 554		fofs = f2fs_start_bidx_of_node(ofs_of_node(dn->node_page),
 555							dn->inode) + ofs;
 556		f2fs_update_extent_cache_range(dn, fofs, 0, len);
 557		dec_valid_block_count(sbi, dn->inode, nr_free);
 558	}
 559	dn->ofs_in_node = ofs;
 560
 561	f2fs_update_time(sbi, REQ_TIME);
 562	trace_f2fs_truncate_data_blocks_range(dn->inode, dn->nid,
 563					 dn->ofs_in_node, nr_free);
 
 564}
 565
 566void f2fs_truncate_data_blocks(struct dnode_of_data *dn)
 567{
 568	f2fs_truncate_data_blocks_range(dn, ADDRS_PER_BLOCK(dn->inode));
 569}
 570
 571static int truncate_partial_data_page(struct inode *inode, u64 from,
 572								bool cache_only)
 573{
 574	loff_t offset = from & (PAGE_SIZE - 1);
 575	pgoff_t index = from >> PAGE_SHIFT;
 576	struct address_space *mapping = inode->i_mapping;
 577	struct page *page;
 578
 579	if (!offset && !cache_only)
 580		return 0;
 581
 582	if (cache_only) {
 583		page = find_lock_page(mapping, index);
 584		if (page && PageUptodate(page))
 585			goto truncate_out;
 586		f2fs_put_page(page, 1);
 587		return 0;
 588	}
 589
 590	page = f2fs_get_lock_data_page(inode, index, true);
 591	if (IS_ERR(page))
 592		return PTR_ERR(page) == -ENOENT ? 0 : PTR_ERR(page);
 593truncate_out:
 594	f2fs_wait_on_page_writeback(page, DATA, true, true);
 595	zero_user(page, offset, PAGE_SIZE - offset);
 596
 597	/* An encrypted inode should have a key and truncate the last page. */
 598	f2fs_bug_on(F2FS_I_SB(inode), cache_only && IS_ENCRYPTED(inode));
 599	if (!cache_only)
 600		set_page_dirty(page);
 601	f2fs_put_page(page, 1);
 602	return 0;
 603}
 604
 605int f2fs_truncate_blocks(struct inode *inode, u64 from, bool lock)
 606{
 607	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 608	struct dnode_of_data dn;
 609	pgoff_t free_from;
 610	int count = 0, err = 0;
 611	struct page *ipage;
 612	bool truncate_page = false;
 613
 614	trace_f2fs_truncate_blocks_enter(inode, from);
 615
 616	free_from = (pgoff_t)F2FS_BLK_ALIGN(from);
 617
 618	if (free_from >= sbi->max_file_blocks)
 619		goto free_partial;
 620
 621	if (lock)
 622		f2fs_lock_op(sbi);
 623
 624	ipage = f2fs_get_node_page(sbi, inode->i_ino);
 625	if (IS_ERR(ipage)) {
 626		err = PTR_ERR(ipage);
 627		goto out;
 628	}
 629
 630	if (f2fs_has_inline_data(inode)) {
 631		f2fs_truncate_inline_inode(inode, ipage, from);
 
 632		f2fs_put_page(ipage, 1);
 633		truncate_page = true;
 634		goto out;
 635	}
 636
 637	set_new_dnode(&dn, inode, ipage, NULL, 0);
 638	err = f2fs_get_dnode_of_data(&dn, free_from, LOOKUP_NODE_RA);
 639	if (err) {
 640		if (err == -ENOENT)
 641			goto free_next;
 642		goto out;
 643	}
 644
 645	count = ADDRS_PER_PAGE(dn.node_page, inode);
 646
 647	count -= dn.ofs_in_node;
 648	f2fs_bug_on(sbi, count < 0);
 649
 650	if (dn.ofs_in_node || IS_INODE(dn.node_page)) {
 651		f2fs_truncate_data_blocks_range(&dn, count);
 652		free_from += count;
 653	}
 654
 655	f2fs_put_dnode(&dn);
 656free_next:
 657	err = f2fs_truncate_inode_blocks(inode, free_from);
 658out:
 659	if (lock)
 660		f2fs_unlock_op(sbi);
 661free_partial:
 662	/* lastly zero out the first data page */
 663	if (!err)
 664		err = truncate_partial_data_page(inode, from, truncate_page);
 665
 666	trace_f2fs_truncate_blocks_exit(inode, err);
 667	return err;
 668}
 669
 670int f2fs_truncate(struct inode *inode)
 671{
 672	int err;
 673
 674	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 675		return -EIO;
 676
 677	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 678				S_ISLNK(inode->i_mode)))
 679		return 0;
 680
 681	trace_f2fs_truncate(inode);
 682
 683	if (time_to_inject(F2FS_I_SB(inode), FAULT_TRUNCATE)) {
 684		f2fs_show_injection_info(FAULT_TRUNCATE);
 685		return -EIO;
 686	}
 687
 688	/* we should check inline_data size */
 689	if (!f2fs_may_inline_data(inode)) {
 690		err = f2fs_convert_inline_inode(inode);
 691		if (err)
 692			return err;
 693	}
 694
 695	err = f2fs_truncate_blocks(inode, i_size_read(inode), true);
 696	if (err)
 697		return err;
 698
 699	inode->i_mtime = inode->i_ctime = current_time(inode);
 700	f2fs_mark_inode_dirty_sync(inode, false);
 701	return 0;
 702}
 703
 704int f2fs_getattr(const struct path *path, struct kstat *stat,
 705		 u32 request_mask, unsigned int query_flags)
 706{
 707	struct inode *inode = d_inode(path->dentry);
 708	struct f2fs_inode_info *fi = F2FS_I(inode);
 709	struct f2fs_inode *ri;
 710	unsigned int flags;
 711
 712	if (f2fs_has_extra_attr(inode) &&
 713			f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
 714			F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
 715		stat->result_mask |= STATX_BTIME;
 716		stat->btime.tv_sec = fi->i_crtime.tv_sec;
 717		stat->btime.tv_nsec = fi->i_crtime.tv_nsec;
 718	}
 719
 720	flags = fi->i_flags;
 721	if (flags & F2FS_APPEND_FL)
 722		stat->attributes |= STATX_ATTR_APPEND;
 723	if (IS_ENCRYPTED(inode))
 724		stat->attributes |= STATX_ATTR_ENCRYPTED;
 725	if (flags & F2FS_IMMUTABLE_FL)
 726		stat->attributes |= STATX_ATTR_IMMUTABLE;
 727	if (flags & F2FS_NODUMP_FL)
 728		stat->attributes |= STATX_ATTR_NODUMP;
 729
 730	stat->attributes_mask |= (STATX_ATTR_APPEND |
 731				  STATX_ATTR_ENCRYPTED |
 732				  STATX_ATTR_IMMUTABLE |
 733				  STATX_ATTR_NODUMP);
 734
 735	generic_fillattr(inode, stat);
 736
 737	/* we need to show initial sectors used for inline_data/dentries */
 738	if ((S_ISREG(inode->i_mode) && f2fs_has_inline_data(inode)) ||
 739					f2fs_has_inline_dentry(inode))
 740		stat->blocks += (stat->size + 511) >> 9;
 741
 742	return 0;
 743}
 744
 745#ifdef CONFIG_F2FS_FS_POSIX_ACL
 746static void __setattr_copy(struct inode *inode, const struct iattr *attr)
 747{
 748	unsigned int ia_valid = attr->ia_valid;
 749
 750	if (ia_valid & ATTR_UID)
 751		inode->i_uid = attr->ia_uid;
 752	if (ia_valid & ATTR_GID)
 753		inode->i_gid = attr->ia_gid;
 754	if (ia_valid & ATTR_ATIME) {
 755		inode->i_atime = timestamp_truncate(attr->ia_atime,
 756						  inode);
 757	}
 758	if (ia_valid & ATTR_MTIME) {
 759		inode->i_mtime = timestamp_truncate(attr->ia_mtime,
 760						  inode);
 761	}
 762	if (ia_valid & ATTR_CTIME) {
 763		inode->i_ctime = timestamp_truncate(attr->ia_ctime,
 764						  inode);
 765	}
 766	if (ia_valid & ATTR_MODE) {
 767		umode_t mode = attr->ia_mode;
 768
 769		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
 770			mode &= ~S_ISGID;
 771		set_acl_inode(inode, mode);
 772	}
 773}
 774#else
 775#define __setattr_copy setattr_copy
 776#endif
 777
 778int f2fs_setattr(struct dentry *dentry, struct iattr *attr)
 779{
 780	struct inode *inode = d_inode(dentry);
 781	int err;
 782
 783	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
 784		return -EIO;
 785
 786	err = setattr_prepare(dentry, attr);
 787	if (err)
 788		return err;
 789
 790	err = fscrypt_prepare_setattr(dentry, attr);
 791	if (err)
 792		return err;
 793
 794	err = fsverity_prepare_setattr(dentry, attr);
 795	if (err)
 796		return err;
 797
 798	if (is_quota_modification(inode, attr)) {
 799		err = dquot_initialize(inode);
 800		if (err)
 801			return err;
 802	}
 803	if ((attr->ia_valid & ATTR_UID &&
 804		!uid_eq(attr->ia_uid, inode->i_uid)) ||
 805		(attr->ia_valid & ATTR_GID &&
 806		!gid_eq(attr->ia_gid, inode->i_gid))) {
 807		f2fs_lock_op(F2FS_I_SB(inode));
 808		err = dquot_transfer(inode, attr);
 809		if (err) {
 810			set_sbi_flag(F2FS_I_SB(inode),
 811					SBI_QUOTA_NEED_REPAIR);
 812			f2fs_unlock_op(F2FS_I_SB(inode));
 813			return err;
 814		}
 815		/*
 816		 * update uid/gid under lock_op(), so that dquot and inode can
 817		 * be updated atomically.
 818		 */
 819		if (attr->ia_valid & ATTR_UID)
 820			inode->i_uid = attr->ia_uid;
 821		if (attr->ia_valid & ATTR_GID)
 822			inode->i_gid = attr->ia_gid;
 823		f2fs_mark_inode_dirty_sync(inode, true);
 824		f2fs_unlock_op(F2FS_I_SB(inode));
 825	}
 826
 827	if (attr->ia_valid & ATTR_SIZE) {
 828		loff_t old_size = i_size_read(inode);
 
 
 829
 830		if (attr->ia_size > MAX_INLINE_DATA(inode)) {
 
 
 
 
 
 831			/*
 832			 * should convert inline inode before i_size_write to
 833			 * keep smaller than inline_data size with inline flag.
 834			 */
 835			err = f2fs_convert_inline_inode(inode);
 836			if (err)
 837				return err;
 
 
 
 
 
 
 838		}
 839
 840		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 841		down_write(&F2FS_I(inode)->i_mmap_sem);
 842
 843		truncate_setsize(inode, attr->ia_size);
 844
 845		if (attr->ia_size <= old_size)
 846			err = f2fs_truncate(inode);
 847		/*
 848		 * do not trim all blocks after i_size if target size is
 849		 * larger than i_size.
 850		 */
 851		up_write(&F2FS_I(inode)->i_mmap_sem);
 852		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 853		if (err)
 854			return err;
 855
 856		down_write(&F2FS_I(inode)->i_sem);
 857		inode->i_mtime = inode->i_ctime = current_time(inode);
 858		F2FS_I(inode)->last_disk_size = i_size_read(inode);
 859		up_write(&F2FS_I(inode)->i_sem);
 860	}
 861
 862	__setattr_copy(inode, attr);
 863
 864	if (attr->ia_valid & ATTR_MODE) {
 865		err = posix_acl_chmod(inode, f2fs_get_inode_mode(inode));
 866		if (err || is_inode_flag_set(inode, FI_ACL_MODE)) {
 867			inode->i_mode = F2FS_I(inode)->i_acl_mode;
 868			clear_inode_flag(inode, FI_ACL_MODE);
 869		}
 870	}
 871
 872	/* file size may changed here */
 873	f2fs_mark_inode_dirty_sync(inode, true);
 874
 875	/* inode change will produce dirty node pages flushed by checkpoint */
 876	f2fs_balance_fs(F2FS_I_SB(inode), true);
 877
 878	return err;
 879}
 880
 881const struct inode_operations f2fs_file_inode_operations = {
 882	.getattr	= f2fs_getattr,
 883	.setattr	= f2fs_setattr,
 884	.get_acl	= f2fs_get_acl,
 885	.set_acl	= f2fs_set_acl,
 886#ifdef CONFIG_F2FS_FS_XATTR
 887	.listxattr	= f2fs_listxattr,
 888#endif
 889	.fiemap		= f2fs_fiemap,
 890};
 891
 892static int fill_zero(struct inode *inode, pgoff_t index,
 893					loff_t start, loff_t len)
 894{
 895	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 896	struct page *page;
 897
 898	if (!len)
 899		return 0;
 900
 901	f2fs_balance_fs(sbi, true);
 902
 903	f2fs_lock_op(sbi);
 904	page = f2fs_get_new_data_page(inode, NULL, index, false);
 905	f2fs_unlock_op(sbi);
 906
 907	if (IS_ERR(page))
 908		return PTR_ERR(page);
 909
 910	f2fs_wait_on_page_writeback(page, DATA, true, true);
 911	zero_user(page, start, len);
 912	set_page_dirty(page);
 913	f2fs_put_page(page, 1);
 914	return 0;
 915}
 916
 917int f2fs_truncate_hole(struct inode *inode, pgoff_t pg_start, pgoff_t pg_end)
 918{
 919	int err;
 920
 921	while (pg_start < pg_end) {
 922		struct dnode_of_data dn;
 923		pgoff_t end_offset, count;
 924
 925		set_new_dnode(&dn, inode, NULL, NULL, 0);
 926		err = f2fs_get_dnode_of_data(&dn, pg_start, LOOKUP_NODE);
 927		if (err) {
 928			if (err == -ENOENT) {
 929				pg_start = f2fs_get_next_page_offset(&dn,
 930								pg_start);
 931				continue;
 932			}
 933			return err;
 934		}
 935
 936		end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 937		count = min(end_offset - dn.ofs_in_node, pg_end - pg_start);
 938
 939		f2fs_bug_on(F2FS_I_SB(inode), count == 0 || count > end_offset);
 940
 941		f2fs_truncate_data_blocks_range(&dn, count);
 942		f2fs_put_dnode(&dn);
 943
 944		pg_start += count;
 945	}
 946	return 0;
 947}
 948
 949static int punch_hole(struct inode *inode, loff_t offset, loff_t len)
 950{
 951	pgoff_t pg_start, pg_end;
 952	loff_t off_start, off_end;
 953	int ret;
 954
 955	ret = f2fs_convert_inline_inode(inode);
 956	if (ret)
 957		return ret;
 958
 959	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
 960	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
 961
 962	off_start = offset & (PAGE_SIZE - 1);
 963	off_end = (offset + len) & (PAGE_SIZE - 1);
 964
 965	if (pg_start == pg_end) {
 966		ret = fill_zero(inode, pg_start, off_start,
 967						off_end - off_start);
 968		if (ret)
 969			return ret;
 970	} else {
 971		if (off_start) {
 972			ret = fill_zero(inode, pg_start++, off_start,
 973						PAGE_SIZE - off_start);
 974			if (ret)
 975				return ret;
 976		}
 977		if (off_end) {
 978			ret = fill_zero(inode, pg_end, 0, off_end);
 979			if (ret)
 980				return ret;
 981		}
 982
 983		if (pg_start < pg_end) {
 984			struct address_space *mapping = inode->i_mapping;
 985			loff_t blk_start, blk_end;
 986			struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 987
 988			f2fs_balance_fs(sbi, true);
 989
 990			blk_start = (loff_t)pg_start << PAGE_SHIFT;
 991			blk_end = (loff_t)pg_end << PAGE_SHIFT;
 992
 993			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 994			down_write(&F2FS_I(inode)->i_mmap_sem);
 995
 996			truncate_inode_pages_range(mapping, blk_start,
 997					blk_end - 1);
 998
 999			f2fs_lock_op(sbi);
1000			ret = f2fs_truncate_hole(inode, pg_start, pg_end);
1001			f2fs_unlock_op(sbi);
1002
1003			up_write(&F2FS_I(inode)->i_mmap_sem);
1004			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1005		}
1006	}
1007
1008	return ret;
1009}
1010
1011static int __read_out_blkaddrs(struct inode *inode, block_t *blkaddr,
1012				int *do_replace, pgoff_t off, pgoff_t len)
1013{
1014	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1015	struct dnode_of_data dn;
1016	int ret, done, i;
1017
1018next_dnode:
1019	set_new_dnode(&dn, inode, NULL, NULL, 0);
1020	ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
1021	if (ret && ret != -ENOENT) {
1022		return ret;
1023	} else if (ret == -ENOENT) {
1024		if (dn.max_level == 0)
1025			return -ENOENT;
1026		done = min((pgoff_t)ADDRS_PER_BLOCK(inode) - dn.ofs_in_node,
1027									len);
1028		blkaddr += done;
1029		do_replace += done;
1030		goto next;
1031	}
1032
1033	done = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, inode) -
1034							dn.ofs_in_node, len);
1035	for (i = 0; i < done; i++, blkaddr++, do_replace++, dn.ofs_in_node++) {
1036		*blkaddr = datablock_addr(dn.inode,
1037					dn.node_page, dn.ofs_in_node);
1038
1039		if (__is_valid_data_blkaddr(*blkaddr) &&
1040			!f2fs_is_valid_blkaddr(sbi, *blkaddr,
1041					DATA_GENERIC_ENHANCE)) {
1042			f2fs_put_dnode(&dn);
1043			return -EFSCORRUPTED;
1044		}
1045
1046		if (!f2fs_is_checkpointed_data(sbi, *blkaddr)) {
1047
1048			if (test_opt(sbi, LFS)) {
1049				f2fs_put_dnode(&dn);
1050				return -EOPNOTSUPP;
1051			}
1052
1053			/* do not invalidate this block address */
1054			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
1055			*do_replace = 1;
1056		}
1057	}
1058	f2fs_put_dnode(&dn);
1059next:
1060	len -= done;
1061	off += done;
1062	if (len)
1063		goto next_dnode;
1064	return 0;
1065}
1066
1067static int __roll_back_blkaddrs(struct inode *inode, block_t *blkaddr,
1068				int *do_replace, pgoff_t off, int len)
1069{
1070	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1071	struct dnode_of_data dn;
1072	int ret, i;
1073
1074	for (i = 0; i < len; i++, do_replace++, blkaddr++) {
1075		if (*do_replace == 0)
1076			continue;
1077
1078		set_new_dnode(&dn, inode, NULL, NULL, 0);
1079		ret = f2fs_get_dnode_of_data(&dn, off + i, LOOKUP_NODE_RA);
1080		if (ret) {
1081			dec_valid_block_count(sbi, inode, 1);
1082			f2fs_invalidate_blocks(sbi, *blkaddr);
1083		} else {
1084			f2fs_update_data_blkaddr(&dn, *blkaddr);
1085		}
1086		f2fs_put_dnode(&dn);
1087	}
1088	return 0;
1089}
1090
1091static int __clone_blkaddrs(struct inode *src_inode, struct inode *dst_inode,
1092			block_t *blkaddr, int *do_replace,
1093			pgoff_t src, pgoff_t dst, pgoff_t len, bool full)
1094{
1095	struct f2fs_sb_info *sbi = F2FS_I_SB(src_inode);
1096	pgoff_t i = 0;
1097	int ret;
1098
1099	while (i < len) {
1100		if (blkaddr[i] == NULL_ADDR && !full) {
1101			i++;
1102			continue;
1103		}
1104
1105		if (do_replace[i] || blkaddr[i] == NULL_ADDR) {
1106			struct dnode_of_data dn;
1107			struct node_info ni;
1108			size_t new_size;
1109			pgoff_t ilen;
1110
1111			set_new_dnode(&dn, dst_inode, NULL, NULL, 0);
1112			ret = f2fs_get_dnode_of_data(&dn, dst + i, ALLOC_NODE);
1113			if (ret)
1114				return ret;
1115
1116			ret = f2fs_get_node_info(sbi, dn.nid, &ni);
1117			if (ret) {
1118				f2fs_put_dnode(&dn);
1119				return ret;
1120			}
1121
1122			ilen = min((pgoff_t)
1123				ADDRS_PER_PAGE(dn.node_page, dst_inode) -
1124						dn.ofs_in_node, len - i);
1125			do {
1126				dn.data_blkaddr = datablock_addr(dn.inode,
1127						dn.node_page, dn.ofs_in_node);
1128				f2fs_truncate_data_blocks_range(&dn, 1);
1129
1130				if (do_replace[i]) {
1131					f2fs_i_blocks_write(src_inode,
1132							1, false, false);
1133					f2fs_i_blocks_write(dst_inode,
1134							1, true, false);
1135					f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
1136					blkaddr[i], ni.version, true, false);
1137
1138					do_replace[i] = 0;
1139				}
1140				dn.ofs_in_node++;
1141				i++;
1142				new_size = (dst + i) << PAGE_SHIFT;
1143				if (dst_inode->i_size < new_size)
1144					f2fs_i_size_write(dst_inode, new_size);
1145			} while (--ilen && (do_replace[i] || blkaddr[i] == NULL_ADDR));
1146
1147			f2fs_put_dnode(&dn);
1148		} else {
1149			struct page *psrc, *pdst;
1150
1151			psrc = f2fs_get_lock_data_page(src_inode,
1152							src + i, true);
1153			if (IS_ERR(psrc))
1154				return PTR_ERR(psrc);
1155			pdst = f2fs_get_new_data_page(dst_inode, NULL, dst + i,
1156								true);
1157			if (IS_ERR(pdst)) {
1158				f2fs_put_page(psrc, 1);
1159				return PTR_ERR(pdst);
1160			}
1161			f2fs_copy_page(psrc, pdst);
1162			set_page_dirty(pdst);
1163			f2fs_put_page(pdst, 1);
1164			f2fs_put_page(psrc, 1);
1165
1166			ret = f2fs_truncate_hole(src_inode,
1167						src + i, src + i + 1);
1168			if (ret)
1169				return ret;
1170			i++;
1171		}
1172	}
1173	return 0;
1174}
1175
1176static int __exchange_data_block(struct inode *src_inode,
1177			struct inode *dst_inode, pgoff_t src, pgoff_t dst,
1178			pgoff_t len, bool full)
1179{
1180	block_t *src_blkaddr;
1181	int *do_replace;
1182	pgoff_t olen;
1183	int ret;
1184
1185	while (len) {
1186		olen = min((pgoff_t)4 * ADDRS_PER_BLOCK(src_inode), len);
1187
1188		src_blkaddr = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1189					array_size(olen, sizeof(block_t)),
1190					GFP_KERNEL);
1191		if (!src_blkaddr)
1192			return -ENOMEM;
1193
1194		do_replace = f2fs_kvzalloc(F2FS_I_SB(src_inode),
1195					array_size(olen, sizeof(int)),
1196					GFP_KERNEL);
1197		if (!do_replace) {
1198			kvfree(src_blkaddr);
1199			return -ENOMEM;
1200		}
1201
1202		ret = __read_out_blkaddrs(src_inode, src_blkaddr,
1203					do_replace, src, olen);
1204		if (ret)
1205			goto roll_back;
1206
1207		ret = __clone_blkaddrs(src_inode, dst_inode, src_blkaddr,
1208					do_replace, src, dst, olen, full);
1209		if (ret)
1210			goto roll_back;
1211
1212		src += olen;
1213		dst += olen;
1214		len -= olen;
1215
1216		kvfree(src_blkaddr);
1217		kvfree(do_replace);
1218	}
1219	return 0;
1220
1221roll_back:
1222	__roll_back_blkaddrs(src_inode, src_blkaddr, do_replace, src, olen);
1223	kvfree(src_blkaddr);
1224	kvfree(do_replace);
1225	return ret;
1226}
1227
1228static int f2fs_do_collapse(struct inode *inode, loff_t offset, loff_t len)
1229{
1230	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1231	pgoff_t nrpages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1232	pgoff_t start = offset >> PAGE_SHIFT;
1233	pgoff_t end = (offset + len) >> PAGE_SHIFT;
1234	int ret;
1235
1236	f2fs_balance_fs(sbi, true);
 
1237
1238	/* avoid gc operation during block exchange */
1239	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1240	down_write(&F2FS_I(inode)->i_mmap_sem);
1241
1242	f2fs_lock_op(sbi);
1243	f2fs_drop_extent_tree(inode);
1244	truncate_pagecache(inode, offset);
1245	ret = __exchange_data_block(inode, inode, end, start, nrpages - end, true);
1246	f2fs_unlock_op(sbi);
1247
1248	up_write(&F2FS_I(inode)->i_mmap_sem);
1249	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1250	return ret;
1251}
1252
1253static int f2fs_collapse_range(struct inode *inode, loff_t offset, loff_t len)
1254{
 
1255	loff_t new_size;
1256	int ret;
1257
1258	if (offset + len >= i_size_read(inode))
1259		return -EINVAL;
1260
1261	/* collapse range should be aligned to block size of f2fs. */
1262	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1263		return -EINVAL;
1264
1265	ret = f2fs_convert_inline_inode(inode);
1266	if (ret)
1267		return ret;
1268
 
 
 
1269	/* write out all dirty pages from offset */
1270	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1271	if (ret)
1272		return ret;
1273
1274	ret = f2fs_do_collapse(inode, offset, len);
 
 
1275	if (ret)
1276		return ret;
1277
1278	/* write out all moved pages, if possible */
1279	down_write(&F2FS_I(inode)->i_mmap_sem);
1280	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1281	truncate_pagecache(inode, offset);
1282
1283	new_size = i_size_read(inode) - len;
1284	truncate_pagecache(inode, new_size);
1285
1286	ret = f2fs_truncate_blocks(inode, new_size, true);
1287	up_write(&F2FS_I(inode)->i_mmap_sem);
1288	if (!ret)
1289		f2fs_i_size_write(inode, new_size);
 
1290	return ret;
1291}
1292
1293static int f2fs_do_zero_range(struct dnode_of_data *dn, pgoff_t start,
1294								pgoff_t end)
1295{
1296	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1297	pgoff_t index = start;
1298	unsigned int ofs_in_node = dn->ofs_in_node;
1299	blkcnt_t count = 0;
1300	int ret;
1301
1302	for (; index < end; index++, dn->ofs_in_node++) {
1303		if (datablock_addr(dn->inode, dn->node_page,
1304					dn->ofs_in_node) == NULL_ADDR)
1305			count++;
1306	}
1307
1308	dn->ofs_in_node = ofs_in_node;
1309	ret = f2fs_reserve_new_blocks(dn, count);
1310	if (ret)
1311		return ret;
1312
1313	dn->ofs_in_node = ofs_in_node;
1314	for (index = start; index < end; index++, dn->ofs_in_node++) {
1315		dn->data_blkaddr = datablock_addr(dn->inode,
1316					dn->node_page, dn->ofs_in_node);
1317		/*
1318		 * f2fs_reserve_new_blocks will not guarantee entire block
1319		 * allocation.
1320		 */
1321		if (dn->data_blkaddr == NULL_ADDR) {
1322			ret = -ENOSPC;
1323			break;
1324		}
1325		if (dn->data_blkaddr != NEW_ADDR) {
1326			f2fs_invalidate_blocks(sbi, dn->data_blkaddr);
1327			dn->data_blkaddr = NEW_ADDR;
1328			f2fs_set_data_blkaddr(dn);
1329		}
1330	}
1331
1332	f2fs_update_extent_cache_range(dn, start, 0, index - start);
1333
1334	return ret;
1335}
1336
1337static int f2fs_zero_range(struct inode *inode, loff_t offset, loff_t len,
1338								int mode)
1339{
1340	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1341	struct address_space *mapping = inode->i_mapping;
1342	pgoff_t index, pg_start, pg_end;
1343	loff_t new_size = i_size_read(inode);
1344	loff_t off_start, off_end;
1345	int ret = 0;
1346
1347	ret = inode_newsize_ok(inode, (len + offset));
1348	if (ret)
1349		return ret;
1350
1351	ret = f2fs_convert_inline_inode(inode);
1352	if (ret)
1353		return ret;
1354
1355	ret = filemap_write_and_wait_range(mapping, offset, offset + len - 1);
1356	if (ret)
1357		return ret;
1358
 
 
1359	pg_start = ((unsigned long long) offset) >> PAGE_SHIFT;
1360	pg_end = ((unsigned long long) offset + len) >> PAGE_SHIFT;
1361
1362	off_start = offset & (PAGE_SIZE - 1);
1363	off_end = (offset + len) & (PAGE_SIZE - 1);
1364
1365	if (pg_start == pg_end) {
1366		ret = fill_zero(inode, pg_start, off_start,
1367						off_end - off_start);
1368		if (ret)
1369			return ret;
1370
 
 
1371		new_size = max_t(loff_t, new_size, offset + len);
1372	} else {
1373		if (off_start) {
1374			ret = fill_zero(inode, pg_start++, off_start,
1375						PAGE_SIZE - off_start);
1376			if (ret)
1377				return ret;
1378
1379			new_size = max_t(loff_t, new_size,
1380					(loff_t)pg_start << PAGE_SHIFT);
1381		}
1382
1383		for (index = pg_start; index < pg_end;) {
1384			struct dnode_of_data dn;
1385			unsigned int end_offset;
1386			pgoff_t end;
1387
1388			down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1389			down_write(&F2FS_I(inode)->i_mmap_sem);
1390
1391			truncate_pagecache_range(inode,
1392				(loff_t)index << PAGE_SHIFT,
1393				((loff_t)pg_end << PAGE_SHIFT) - 1);
1394
1395			f2fs_lock_op(sbi);
1396
1397			set_new_dnode(&dn, inode, NULL, NULL, 0);
1398			ret = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
1399			if (ret) {
1400				f2fs_unlock_op(sbi);
1401				up_write(&F2FS_I(inode)->i_mmap_sem);
1402				up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1403				goto out;
1404			}
1405
1406			end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1407			end = min(pg_end, end_offset - dn.ofs_in_node + index);
1408
1409			ret = f2fs_do_zero_range(&dn, index, end);
1410			f2fs_put_dnode(&dn);
1411
1412			f2fs_unlock_op(sbi);
1413			up_write(&F2FS_I(inode)->i_mmap_sem);
1414			up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1415
1416			f2fs_balance_fs(sbi, dn.node_changed);
1417
1418			if (ret)
1419				goto out;
1420
1421			index = end;
1422			new_size = max_t(loff_t, new_size,
1423					(loff_t)index << PAGE_SHIFT);
1424		}
1425
1426		if (off_end) {
1427			ret = fill_zero(inode, pg_end, 0, off_end);
1428			if (ret)
1429				goto out;
1430
1431			new_size = max_t(loff_t, new_size, offset + len);
1432		}
1433	}
1434
1435out:
1436	if (new_size > i_size_read(inode)) {
1437		if (mode & FALLOC_FL_KEEP_SIZE)
1438			file_set_keep_isize(inode);
1439		else
1440			f2fs_i_size_write(inode, new_size);
1441	}
1442	return ret;
1443}
1444
1445static int f2fs_insert_range(struct inode *inode, loff_t offset, loff_t len)
1446{
1447	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1448	pgoff_t nr, pg_start, pg_end, delta, idx;
1449	loff_t new_size;
1450	int ret = 0;
1451
1452	new_size = i_size_read(inode) + len;
1453	ret = inode_newsize_ok(inode, new_size);
1454	if (ret)
1455		return ret;
1456
1457	if (offset >= i_size_read(inode))
1458		return -EINVAL;
1459
1460	/* insert range should be aligned to block size of f2fs. */
1461	if (offset & (F2FS_BLKSIZE - 1) || len & (F2FS_BLKSIZE - 1))
1462		return -EINVAL;
1463
1464	ret = f2fs_convert_inline_inode(inode);
1465	if (ret)
1466		return ret;
1467
1468	f2fs_balance_fs(sbi, true);
1469
1470	down_write(&F2FS_I(inode)->i_mmap_sem);
1471	ret = f2fs_truncate_blocks(inode, i_size_read(inode), true);
1472	up_write(&F2FS_I(inode)->i_mmap_sem);
1473	if (ret)
1474		return ret;
1475
1476	/* write out all dirty pages from offset */
1477	ret = filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1478	if (ret)
1479		return ret;
1480
 
 
1481	pg_start = offset >> PAGE_SHIFT;
1482	pg_end = (offset + len) >> PAGE_SHIFT;
1483	delta = pg_end - pg_start;
1484	idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1485
1486	/* avoid gc operation during block exchange */
1487	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1488	down_write(&F2FS_I(inode)->i_mmap_sem);
1489	truncate_pagecache(inode, offset);
1490
1491	while (!ret && idx > pg_start) {
1492		nr = idx - pg_start;
1493		if (nr > delta)
1494			nr = delta;
1495		idx -= nr;
1496
1497		f2fs_lock_op(sbi);
1498		f2fs_drop_extent_tree(inode);
1499
1500		ret = __exchange_data_block(inode, inode, idx,
1501					idx + delta, nr, false);
1502		f2fs_unlock_op(sbi);
1503	}
1504	up_write(&F2FS_I(inode)->i_mmap_sem);
1505	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1506
1507	/* write out all moved pages, if possible */
1508	down_write(&F2FS_I(inode)->i_mmap_sem);
1509	filemap_write_and_wait_range(inode->i_mapping, offset, LLONG_MAX);
1510	truncate_pagecache(inode, offset);
1511	up_write(&F2FS_I(inode)->i_mmap_sem);
1512
1513	if (!ret)
1514		f2fs_i_size_write(inode, new_size);
1515	return ret;
1516}
1517
1518static int expand_inode_data(struct inode *inode, loff_t offset,
1519					loff_t len, int mode)
1520{
1521	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1522	struct f2fs_map_blocks map = { .m_next_pgofs = NULL,
1523			.m_next_extent = NULL, .m_seg_type = NO_CHECK_TYPE,
1524			.m_may_create = true };
1525	pgoff_t pg_end;
1526	loff_t new_size = i_size_read(inode);
1527	loff_t off_end;
1528	int err;
1529
1530	err = inode_newsize_ok(inode, (len + offset));
1531	if (err)
1532		return err;
1533
1534	err = f2fs_convert_inline_inode(inode);
1535	if (err)
1536		return err;
1537
1538	f2fs_balance_fs(sbi, true);
1539
1540	pg_end = ((unsigned long long)offset + len) >> PAGE_SHIFT;
1541	off_end = (offset + len) & (PAGE_SIZE - 1);
1542
1543	map.m_lblk = ((unsigned long long)offset) >> PAGE_SHIFT;
1544	map.m_len = pg_end - map.m_lblk;
1545	if (off_end)
1546		map.m_len++;
1547
1548	if (f2fs_is_pinned_file(inode))
1549		map.m_seg_type = CURSEG_COLD_DATA;
1550
1551	err = f2fs_map_blocks(inode, &map, 1, (f2fs_is_pinned_file(inode) ?
1552						F2FS_GET_BLOCK_PRE_DIO :
1553						F2FS_GET_BLOCK_PRE_AIO));
1554	if (err) {
1555		pgoff_t last_off;
1556
1557		if (!map.m_len)
1558			return err;
1559
1560		last_off = map.m_lblk + map.m_len - 1;
1561
1562		/* update new size to the failed position */
1563		new_size = (last_off == pg_end) ? offset + len :
1564					(loff_t)(last_off + 1) << PAGE_SHIFT;
1565	} else {
1566		new_size = ((loff_t)pg_end << PAGE_SHIFT) + off_end;
1567	}
1568
1569	if (new_size > i_size_read(inode)) {
1570		if (mode & FALLOC_FL_KEEP_SIZE)
1571			file_set_keep_isize(inode);
1572		else
1573			f2fs_i_size_write(inode, new_size);
1574	}
1575
1576	return err;
1577}
1578
1579static long f2fs_fallocate(struct file *file, int mode,
1580				loff_t offset, loff_t len)
1581{
1582	struct inode *inode = file_inode(file);
1583	long ret = 0;
1584
1585	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
1586		return -EIO;
1587	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(inode)))
1588		return -ENOSPC;
1589
1590	/* f2fs only support ->fallocate for regular file */
1591	if (!S_ISREG(inode->i_mode))
1592		return -EINVAL;
1593
1594	if (IS_ENCRYPTED(inode) &&
1595		(mode & (FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_INSERT_RANGE)))
1596		return -EOPNOTSUPP;
1597
1598	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |
1599			FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |
1600			FALLOC_FL_INSERT_RANGE))
1601		return -EOPNOTSUPP;
1602
1603	inode_lock(inode);
1604
1605	if (mode & FALLOC_FL_PUNCH_HOLE) {
1606		if (offset >= inode->i_size)
1607			goto out;
1608
1609		ret = punch_hole(inode, offset, len);
1610	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
1611		ret = f2fs_collapse_range(inode, offset, len);
1612	} else if (mode & FALLOC_FL_ZERO_RANGE) {
1613		ret = f2fs_zero_range(inode, offset, len, mode);
1614	} else if (mode & FALLOC_FL_INSERT_RANGE) {
1615		ret = f2fs_insert_range(inode, offset, len);
1616	} else {
1617		ret = expand_inode_data(inode, offset, len, mode);
1618	}
1619
1620	if (!ret) {
1621		inode->i_mtime = inode->i_ctime = current_time(inode);
1622		f2fs_mark_inode_dirty_sync(inode, false);
 
 
1623		f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1624	}
1625
1626out:
1627	inode_unlock(inode);
1628
1629	trace_f2fs_fallocate(inode, mode, offset, len, ret);
1630	return ret;
1631}
1632
1633static int f2fs_release_file(struct inode *inode, struct file *filp)
1634{
1635	/*
1636	 * f2fs_relase_file is called at every close calls. So we should
1637	 * not drop any inmemory pages by close called by other process.
1638	 */
1639	if (!(filp->f_mode & FMODE_WRITE) ||
1640			atomic_read(&inode->i_writecount) != 1)
1641		return 0;
1642
1643	/* some remained atomic pages should discarded */
1644	if (f2fs_is_atomic_file(inode))
1645		f2fs_drop_inmem_pages(inode);
1646	if (f2fs_is_volatile_file(inode)) {
 
1647		set_inode_flag(inode, FI_DROP_CACHE);
1648		filemap_fdatawrite(inode->i_mapping);
1649		clear_inode_flag(inode, FI_DROP_CACHE);
1650		clear_inode_flag(inode, FI_VOLATILE_FILE);
1651		stat_dec_volatile_write(inode);
1652	}
1653	return 0;
1654}
1655
1656static int f2fs_file_flush(struct file *file, fl_owner_t id)
1657{
1658	struct inode *inode = file_inode(file);
1659
1660	/*
1661	 * If the process doing a transaction is crashed, we should do
1662	 * roll-back. Otherwise, other reader/write can see corrupted database
1663	 * until all the writers close its file. Since this should be done
1664	 * before dropping file lock, it needs to do in ->flush.
1665	 */
1666	if (f2fs_is_atomic_file(inode) &&
1667			F2FS_I(inode)->inmem_task == current)
1668		f2fs_drop_inmem_pages(inode);
1669	return 0;
1670}
1671
1672static int f2fs_setflags_common(struct inode *inode, u32 iflags, u32 mask)
1673{
1674	struct f2fs_inode_info *fi = F2FS_I(inode);
1675
1676	/* Is it quota file? Do not allow user to mess with it */
1677	if (IS_NOQUOTA(inode))
1678		return -EPERM;
1679
1680	if ((iflags ^ fi->i_flags) & F2FS_CASEFOLD_FL) {
1681		if (!f2fs_sb_has_casefold(F2FS_I_SB(inode)))
1682			return -EOPNOTSUPP;
1683		if (!f2fs_empty_dir(inode))
1684			return -ENOTEMPTY;
1685	}
1686
1687	fi->i_flags = iflags | (fi->i_flags & ~mask);
1688
1689	if (fi->i_flags & F2FS_PROJINHERIT_FL)
1690		set_inode_flag(inode, FI_PROJ_INHERIT);
1691	else
1692		clear_inode_flag(inode, FI_PROJ_INHERIT);
1693
1694	inode->i_ctime = current_time(inode);
1695	f2fs_set_inode_flags(inode);
1696	f2fs_mark_inode_dirty_sync(inode, true);
1697	return 0;
1698}
1699
1700/* FS_IOC_GETFLAGS and FS_IOC_SETFLAGS support */
1701
1702/*
1703 * To make a new on-disk f2fs i_flag gettable via FS_IOC_GETFLAGS, add an entry
1704 * for it to f2fs_fsflags_map[], and add its FS_*_FL equivalent to
1705 * F2FS_GETTABLE_FS_FL.  To also make it settable via FS_IOC_SETFLAGS, also add
1706 * its FS_*_FL equivalent to F2FS_SETTABLE_FS_FL.
1707 */
1708
1709static const struct {
1710	u32 iflag;
1711	u32 fsflag;
1712} f2fs_fsflags_map[] = {
1713	{ F2FS_SYNC_FL,		FS_SYNC_FL },
1714	{ F2FS_IMMUTABLE_FL,	FS_IMMUTABLE_FL },
1715	{ F2FS_APPEND_FL,	FS_APPEND_FL },
1716	{ F2FS_NODUMP_FL,	FS_NODUMP_FL },
1717	{ F2FS_NOATIME_FL,	FS_NOATIME_FL },
1718	{ F2FS_INDEX_FL,	FS_INDEX_FL },
1719	{ F2FS_DIRSYNC_FL,	FS_DIRSYNC_FL },
1720	{ F2FS_PROJINHERIT_FL,	FS_PROJINHERIT_FL },
1721	{ F2FS_CASEFOLD_FL,	FS_CASEFOLD_FL },
1722};
1723
1724#define F2FS_GETTABLE_FS_FL (		\
1725		FS_SYNC_FL |		\
1726		FS_IMMUTABLE_FL |	\
1727		FS_APPEND_FL |		\
1728		FS_NODUMP_FL |		\
1729		FS_NOATIME_FL |		\
1730		FS_INDEX_FL |		\
1731		FS_DIRSYNC_FL |		\
1732		FS_PROJINHERIT_FL |	\
1733		FS_ENCRYPT_FL |		\
1734		FS_INLINE_DATA_FL |	\
1735		FS_NOCOW_FL |		\
1736		FS_VERITY_FL |		\
1737		FS_CASEFOLD_FL)
1738
1739#define F2FS_SETTABLE_FS_FL (		\
1740		FS_SYNC_FL |		\
1741		FS_IMMUTABLE_FL |	\
1742		FS_APPEND_FL |		\
1743		FS_NODUMP_FL |		\
1744		FS_NOATIME_FL |		\
1745		FS_DIRSYNC_FL |		\
1746		FS_PROJINHERIT_FL |	\
1747		FS_CASEFOLD_FL)
1748
1749/* Convert f2fs on-disk i_flags to FS_IOC_{GET,SET}FLAGS flags */
1750static inline u32 f2fs_iflags_to_fsflags(u32 iflags)
1751{
1752	u32 fsflags = 0;
1753	int i;
1754
1755	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1756		if (iflags & f2fs_fsflags_map[i].iflag)
1757			fsflags |= f2fs_fsflags_map[i].fsflag;
1758
1759	return fsflags;
1760}
1761
1762/* Convert FS_IOC_{GET,SET}FLAGS flags to f2fs on-disk i_flags */
1763static inline u32 f2fs_fsflags_to_iflags(u32 fsflags)
1764{
1765	u32 iflags = 0;
1766	int i;
1767
1768	for (i = 0; i < ARRAY_SIZE(f2fs_fsflags_map); i++)
1769		if (fsflags & f2fs_fsflags_map[i].fsflag)
1770			iflags |= f2fs_fsflags_map[i].iflag;
1771
1772	return iflags;
1773}
1774
1775static int f2fs_ioc_getflags(struct file *filp, unsigned long arg)
1776{
1777	struct inode *inode = file_inode(filp);
1778	struct f2fs_inode_info *fi = F2FS_I(inode);
1779	u32 fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1780
1781	if (IS_ENCRYPTED(inode))
1782		fsflags |= FS_ENCRYPT_FL;
1783	if (IS_VERITY(inode))
1784		fsflags |= FS_VERITY_FL;
1785	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode))
1786		fsflags |= FS_INLINE_DATA_FL;
1787	if (is_inode_flag_set(inode, FI_PIN_FILE))
1788		fsflags |= FS_NOCOW_FL;
1789
1790	fsflags &= F2FS_GETTABLE_FS_FL;
1791
1792	return put_user(fsflags, (int __user *)arg);
1793}
1794
1795static int f2fs_ioc_setflags(struct file *filp, unsigned long arg)
1796{
1797	struct inode *inode = file_inode(filp);
1798	struct f2fs_inode_info *fi = F2FS_I(inode);
1799	u32 fsflags, old_fsflags;
1800	u32 iflags;
1801	int ret;
1802
1803	if (!inode_owner_or_capable(inode))
1804		return -EACCES;
1805
1806	if (get_user(fsflags, (int __user *)arg))
1807		return -EFAULT;
1808
1809	if (fsflags & ~F2FS_GETTABLE_FS_FL)
1810		return -EOPNOTSUPP;
1811	fsflags &= F2FS_SETTABLE_FS_FL;
1812
1813	iflags = f2fs_fsflags_to_iflags(fsflags);
1814	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
1815		return -EOPNOTSUPP;
1816
1817	ret = mnt_want_write_file(filp);
1818	if (ret)
1819		return ret;
1820
 
 
1821	inode_lock(inode);
1822
1823	old_fsflags = f2fs_iflags_to_fsflags(fi->i_flags);
1824	ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags);
1825	if (ret)
1826		goto out;
 
 
 
 
 
 
 
 
 
 
1827
1828	ret = f2fs_setflags_common(inode, iflags,
1829			f2fs_fsflags_to_iflags(F2FS_SETTABLE_FS_FL));
1830out:
1831	inode_unlock(inode);
1832	mnt_drop_write_file(filp);
1833	return ret;
1834}
1835
1836static int f2fs_ioc_getversion(struct file *filp, unsigned long arg)
1837{
1838	struct inode *inode = file_inode(filp);
1839
1840	return put_user(inode->i_generation, (int __user *)arg);
1841}
1842
1843static int f2fs_ioc_start_atomic_write(struct file *filp)
1844{
1845	struct inode *inode = file_inode(filp);
1846	struct f2fs_inode_info *fi = F2FS_I(inode);
1847	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1848	int ret;
1849
1850	if (!inode_owner_or_capable(inode))
1851		return -EACCES;
1852
1853	if (!S_ISREG(inode->i_mode))
1854		return -EINVAL;
1855
1856	if (filp->f_flags & O_DIRECT)
1857		return -EINVAL;
1858
1859	ret = mnt_want_write_file(filp);
1860	if (ret)
1861		return ret;
1862
1863	inode_lock(inode);
1864
1865	if (f2fs_is_atomic_file(inode)) {
1866		if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST))
1867			ret = -EINVAL;
1868		goto out;
1869	}
1870
1871	ret = f2fs_convert_inline_inode(inode);
1872	if (ret)
1873		goto out;
1874
1875	down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
 
1876
1877	/*
1878	 * Should wait end_io to count F2FS_WB_CP_DATA correctly by
1879	 * f2fs_is_atomic_file.
1880	 */
1881	if (get_dirty_pages(inode))
1882		f2fs_warn(F2FS_I_SB(inode), "Unexpected flush for atomic writes: ino=%lu, npages=%u",
1883			  inode->i_ino, get_dirty_pages(inode));
1884	ret = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
1885	if (ret) {
1886		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1887		goto out;
1888	}
1889
1890	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
1891	if (list_empty(&fi->inmem_ilist))
1892		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
1893	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
1894
1895	/* add inode in inmem_list first and set atomic_file */
1896	set_inode_flag(inode, FI_ATOMIC_FILE);
1897	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1898	up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
1899
1900	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1901	F2FS_I(inode)->inmem_task = current;
1902	stat_inc_atomic_write(inode);
1903	stat_update_max_atomic_write(inode);
1904out:
1905	inode_unlock(inode);
1906	mnt_drop_write_file(filp);
1907	return ret;
1908}
1909
1910static int f2fs_ioc_commit_atomic_write(struct file *filp)
1911{
1912	struct inode *inode = file_inode(filp);
1913	int ret;
1914
1915	if (!inode_owner_or_capable(inode))
1916		return -EACCES;
1917
1918	ret = mnt_want_write_file(filp);
1919	if (ret)
1920		return ret;
1921
1922	f2fs_balance_fs(F2FS_I_SB(inode), true);
1923
1924	inode_lock(inode);
1925
1926	if (f2fs_is_volatile_file(inode)) {
1927		ret = -EINVAL;
1928		goto err_out;
1929	}
1930
1931	if (f2fs_is_atomic_file(inode)) {
1932		ret = f2fs_commit_inmem_pages(inode);
1933		if (ret)
 
 
1934			goto err_out;
 
 
1935
1936		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
1937		if (!ret)
1938			f2fs_drop_inmem_pages(inode);
1939	} else {
1940		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 1, false);
1941	}
1942err_out:
1943	if (is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
1944		clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
1945		ret = -EINVAL;
1946	}
1947	inode_unlock(inode);
1948	mnt_drop_write_file(filp);
1949	return ret;
1950}
1951
1952static int f2fs_ioc_start_volatile_write(struct file *filp)
1953{
1954	struct inode *inode = file_inode(filp);
1955	int ret;
1956
1957	if (!inode_owner_or_capable(inode))
1958		return -EACCES;
1959
1960	if (!S_ISREG(inode->i_mode))
1961		return -EINVAL;
1962
1963	ret = mnt_want_write_file(filp);
1964	if (ret)
1965		return ret;
1966
1967	inode_lock(inode);
1968
1969	if (f2fs_is_volatile_file(inode))
1970		goto out;
1971
1972	ret = f2fs_convert_inline_inode(inode);
1973	if (ret)
1974		goto out;
1975
1976	stat_inc_volatile_write(inode);
1977	stat_update_max_volatile_write(inode);
1978
1979	set_inode_flag(inode, FI_VOLATILE_FILE);
1980	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1981out:
1982	inode_unlock(inode);
1983	mnt_drop_write_file(filp);
1984	return ret;
1985}
1986
1987static int f2fs_ioc_release_volatile_write(struct file *filp)
1988{
1989	struct inode *inode = file_inode(filp);
1990	int ret;
1991
1992	if (!inode_owner_or_capable(inode))
1993		return -EACCES;
1994
1995	ret = mnt_want_write_file(filp);
1996	if (ret)
1997		return ret;
1998
1999	inode_lock(inode);
2000
2001	if (!f2fs_is_volatile_file(inode))
2002		goto out;
2003
2004	if (!f2fs_is_first_block_written(inode)) {
2005		ret = truncate_partial_data_page(inode, 0, true);
2006		goto out;
2007	}
2008
2009	ret = punch_hole(inode, 0, F2FS_BLKSIZE);
2010out:
2011	inode_unlock(inode);
2012	mnt_drop_write_file(filp);
2013	return ret;
2014}
2015
2016static int f2fs_ioc_abort_volatile_write(struct file *filp)
2017{
2018	struct inode *inode = file_inode(filp);
2019	int ret;
2020
2021	if (!inode_owner_or_capable(inode))
2022		return -EACCES;
2023
2024	ret = mnt_want_write_file(filp);
2025	if (ret)
2026		return ret;
2027
2028	inode_lock(inode);
2029
2030	if (f2fs_is_atomic_file(inode))
2031		f2fs_drop_inmem_pages(inode);
2032	if (f2fs_is_volatile_file(inode)) {
2033		clear_inode_flag(inode, FI_VOLATILE_FILE);
2034		stat_dec_volatile_write(inode);
2035		ret = f2fs_do_sync_file(filp, 0, LLONG_MAX, 0, true);
2036	}
2037
2038	clear_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
2039
2040	inode_unlock(inode);
2041
2042	mnt_drop_write_file(filp);
2043	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2044	return ret;
2045}
2046
2047static int f2fs_ioc_shutdown(struct file *filp, unsigned long arg)
2048{
2049	struct inode *inode = file_inode(filp);
2050	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2051	struct super_block *sb = sbi->sb;
2052	__u32 in;
2053	int ret = 0;
2054
2055	if (!capable(CAP_SYS_ADMIN))
2056		return -EPERM;
2057
2058	if (get_user(in, (__u32 __user *)arg))
2059		return -EFAULT;
2060
2061	if (in != F2FS_GOING_DOWN_FULLSYNC) {
2062		ret = mnt_want_write_file(filp);
2063		if (ret)
2064			return ret;
2065	}
2066
2067	switch (in) {
2068	case F2FS_GOING_DOWN_FULLSYNC:
2069		sb = freeze_bdev(sb->s_bdev);
2070		if (IS_ERR(sb)) {
2071			ret = PTR_ERR(sb);
2072			goto out;
2073		}
2074		if (sb) {
2075			f2fs_stop_checkpoint(sbi, false);
2076			set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2077			thaw_bdev(sb->s_bdev, sb);
2078		}
2079		break;
2080	case F2FS_GOING_DOWN_METASYNC:
2081		/* do checkpoint only */
2082		ret = f2fs_sync_fs(sb, 1);
2083		if (ret)
2084			goto out;
2085		f2fs_stop_checkpoint(sbi, false);
2086		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2087		break;
2088	case F2FS_GOING_DOWN_NOSYNC:
2089		f2fs_stop_checkpoint(sbi, false);
2090		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2091		break;
2092	case F2FS_GOING_DOWN_METAFLUSH:
2093		f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_META_IO);
2094		f2fs_stop_checkpoint(sbi, false);
2095		set_sbi_flag(sbi, SBI_IS_SHUTDOWN);
2096		break;
2097	case F2FS_GOING_DOWN_NEED_FSCK:
2098		set_sbi_flag(sbi, SBI_NEED_FSCK);
2099		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
2100		set_sbi_flag(sbi, SBI_IS_DIRTY);
2101		/* do checkpoint only */
2102		ret = f2fs_sync_fs(sb, 1);
2103		goto out;
2104	default:
2105		ret = -EINVAL;
2106		goto out;
2107	}
2108
2109	f2fs_stop_gc_thread(sbi);
2110	f2fs_stop_discard_thread(sbi);
2111
2112	f2fs_drop_discard_cmd(sbi);
2113	clear_opt(sbi, DISCARD);
2114
2115	f2fs_update_time(sbi, REQ_TIME);
2116out:
2117	if (in != F2FS_GOING_DOWN_FULLSYNC)
2118		mnt_drop_write_file(filp);
2119
2120	trace_f2fs_shutdown(sbi, in, ret);
2121
2122	return ret;
2123}
2124
2125static int f2fs_ioc_fitrim(struct file *filp, unsigned long arg)
2126{
2127	struct inode *inode = file_inode(filp);
2128	struct super_block *sb = inode->i_sb;
2129	struct request_queue *q = bdev_get_queue(sb->s_bdev);
2130	struct fstrim_range range;
2131	int ret;
2132
2133	if (!capable(CAP_SYS_ADMIN))
2134		return -EPERM;
2135
2136	if (!f2fs_hw_support_discard(F2FS_SB(sb)))
2137		return -EOPNOTSUPP;
2138
2139	if (copy_from_user(&range, (struct fstrim_range __user *)arg,
2140				sizeof(range)))
2141		return -EFAULT;
2142
2143	ret = mnt_want_write_file(filp);
2144	if (ret)
2145		return ret;
2146
2147	range.minlen = max((unsigned int)range.minlen,
2148				q->limits.discard_granularity);
2149	ret = f2fs_trim_fs(F2FS_SB(sb), &range);
2150	mnt_drop_write_file(filp);
2151	if (ret < 0)
2152		return ret;
2153
2154	if (copy_to_user((struct fstrim_range __user *)arg, &range,
2155				sizeof(range)))
2156		return -EFAULT;
2157	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2158	return 0;
2159}
2160
2161static bool uuid_is_nonzero(__u8 u[16])
2162{
2163	int i;
2164
2165	for (i = 0; i < 16; i++)
2166		if (u[i])
2167			return true;
2168	return false;
2169}
2170
2171static int f2fs_ioc_set_encryption_policy(struct file *filp, unsigned long arg)
2172{
2173	struct inode *inode = file_inode(filp);
2174
2175	if (!f2fs_sb_has_encrypt(F2FS_I_SB(inode)))
2176		return -EOPNOTSUPP;
2177
2178	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2179
2180	return fscrypt_ioctl_set_policy(filp, (const void __user *)arg);
2181}
2182
2183static int f2fs_ioc_get_encryption_policy(struct file *filp, unsigned long arg)
2184{
2185	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2186		return -EOPNOTSUPP;
2187	return fscrypt_ioctl_get_policy(filp, (void __user *)arg);
2188}
2189
2190static int f2fs_ioc_get_encryption_pwsalt(struct file *filp, unsigned long arg)
2191{
2192	struct inode *inode = file_inode(filp);
2193	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2194	int err;
2195
2196	if (!f2fs_sb_has_encrypt(sbi))
2197		return -EOPNOTSUPP;
2198
 
 
 
2199	err = mnt_want_write_file(filp);
2200	if (err)
2201		return err;
2202
2203	down_write(&sbi->sb_lock);
2204
2205	if (uuid_is_nonzero(sbi->raw_super->encrypt_pw_salt))
2206		goto got_it;
2207
2208	/* update superblock with uuid */
2209	generate_random_uuid(sbi->raw_super->encrypt_pw_salt);
2210
2211	err = f2fs_commit_super(sbi, false);
2212	if (err) {
2213		/* undo new data */
2214		memset(sbi->raw_super->encrypt_pw_salt, 0, 16);
2215		goto out_err;
 
2216	}
 
2217got_it:
2218	if (copy_to_user((__u8 __user *)arg, sbi->raw_super->encrypt_pw_salt,
2219									16))
2220		err = -EFAULT;
2221out_err:
2222	up_write(&sbi->sb_lock);
2223	mnt_drop_write_file(filp);
2224	return err;
2225}
2226
2227static int f2fs_ioc_get_encryption_policy_ex(struct file *filp,
2228					     unsigned long arg)
2229{
2230	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2231		return -EOPNOTSUPP;
2232
2233	return fscrypt_ioctl_get_policy_ex(filp, (void __user *)arg);
2234}
2235
2236static int f2fs_ioc_add_encryption_key(struct file *filp, unsigned long arg)
2237{
2238	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2239		return -EOPNOTSUPP;
2240
2241	return fscrypt_ioctl_add_key(filp, (void __user *)arg);
2242}
2243
2244static int f2fs_ioc_remove_encryption_key(struct file *filp, unsigned long arg)
2245{
2246	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2247		return -EOPNOTSUPP;
2248
2249	return fscrypt_ioctl_remove_key(filp, (void __user *)arg);
2250}
2251
2252static int f2fs_ioc_remove_encryption_key_all_users(struct file *filp,
2253						    unsigned long arg)
2254{
2255	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2256		return -EOPNOTSUPP;
2257
2258	return fscrypt_ioctl_remove_key_all_users(filp, (void __user *)arg);
2259}
2260
2261static int f2fs_ioc_get_encryption_key_status(struct file *filp,
2262					      unsigned long arg)
2263{
2264	if (!f2fs_sb_has_encrypt(F2FS_I_SB(file_inode(filp))))
2265		return -EOPNOTSUPP;
2266
2267	return fscrypt_ioctl_get_key_status(filp, (void __user *)arg);
2268}
2269
2270static int f2fs_ioc_gc(struct file *filp, unsigned long arg)
2271{
2272	struct inode *inode = file_inode(filp);
2273	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2274	__u32 sync;
2275	int ret;
2276
2277	if (!capable(CAP_SYS_ADMIN))
2278		return -EPERM;
2279
2280	if (get_user(sync, (__u32 __user *)arg))
2281		return -EFAULT;
2282
2283	if (f2fs_readonly(sbi->sb))
2284		return -EROFS;
2285
2286	ret = mnt_want_write_file(filp);
2287	if (ret)
2288		return ret;
2289
2290	if (!sync) {
2291		if (!mutex_trylock(&sbi->gc_mutex)) {
2292			ret = -EBUSY;
2293			goto out;
2294		}
2295	} else {
2296		mutex_lock(&sbi->gc_mutex);
2297	}
2298
2299	ret = f2fs_gc(sbi, sync, true, NULL_SEGNO);
2300out:
2301	mnt_drop_write_file(filp);
2302	return ret;
2303}
2304
2305static int f2fs_ioc_gc_range(struct file *filp, unsigned long arg)
2306{
2307	struct inode *inode = file_inode(filp);
2308	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2309	struct f2fs_gc_range range;
2310	u64 end;
2311	int ret;
2312
2313	if (!capable(CAP_SYS_ADMIN))
2314		return -EPERM;
2315
2316	if (copy_from_user(&range, (struct f2fs_gc_range __user *)arg,
2317							sizeof(range)))
2318		return -EFAULT;
2319
2320	if (f2fs_readonly(sbi->sb))
2321		return -EROFS;
2322
2323	end = range.start + range.len;
2324	if (end < range.start || range.start < MAIN_BLKADDR(sbi) ||
2325					end >= MAX_BLKADDR(sbi))
2326		return -EINVAL;
2327
2328	ret = mnt_want_write_file(filp);
2329	if (ret)
2330		return ret;
2331
2332do_more:
2333	if (!range.sync) {
2334		if (!mutex_trylock(&sbi->gc_mutex)) {
2335			ret = -EBUSY;
2336			goto out;
2337		}
2338	} else {
2339		mutex_lock(&sbi->gc_mutex);
2340	}
2341
2342	ret = f2fs_gc(sbi, range.sync, true, GET_SEGNO(sbi, range.start));
2343	range.start += BLKS_PER_SEC(sbi);
2344	if (range.start <= end)
2345		goto do_more;
2346out:
2347	mnt_drop_write_file(filp);
2348	return ret;
2349}
2350
2351static int f2fs_ioc_write_checkpoint(struct file *filp, unsigned long arg)
2352{
2353	struct inode *inode = file_inode(filp);
2354	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2355	int ret;
2356
2357	if (!capable(CAP_SYS_ADMIN))
2358		return -EPERM;
2359
2360	if (f2fs_readonly(sbi->sb))
2361		return -EROFS;
2362
2363	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2364		f2fs_info(sbi, "Skipping Checkpoint. Checkpoints currently disabled.");
2365		return -EINVAL;
2366	}
2367
2368	ret = mnt_want_write_file(filp);
2369	if (ret)
2370		return ret;
2371
2372	ret = f2fs_sync_fs(sbi->sb, 1);
2373
2374	mnt_drop_write_file(filp);
2375	return ret;
2376}
2377
2378static int f2fs_defragment_range(struct f2fs_sb_info *sbi,
2379					struct file *filp,
2380					struct f2fs_defragment *range)
2381{
2382	struct inode *inode = file_inode(filp);
2383	struct f2fs_map_blocks map = { .m_next_extent = NULL,
2384					.m_seg_type = NO_CHECK_TYPE ,
2385					.m_may_create = false };
2386	struct extent_info ei = {0, 0, 0};
2387	pgoff_t pg_start, pg_end, next_pgofs;
2388	unsigned int blk_per_seg = sbi->blocks_per_seg;
2389	unsigned int total = 0, sec_num;
 
2390	block_t blk_end = 0;
2391	bool fragmented = false;
2392	int err;
2393
2394	/* if in-place-update policy is enabled, don't waste time here */
2395	if (f2fs_should_update_inplace(inode, NULL))
2396		return -EINVAL;
2397
2398	pg_start = range->start >> PAGE_SHIFT;
2399	pg_end = (range->start + range->len) >> PAGE_SHIFT;
2400
2401	f2fs_balance_fs(sbi, true);
2402
2403	inode_lock(inode);
2404
2405	/* writeback all dirty pages in the range */
2406	err = filemap_write_and_wait_range(inode->i_mapping, range->start,
2407						range->start + range->len - 1);
2408	if (err)
2409		goto out;
2410
2411	/*
2412	 * lookup mapping info in extent cache, skip defragmenting if physical
2413	 * block addresses are continuous.
2414	 */
2415	if (f2fs_lookup_extent_cache(inode, pg_start, &ei)) {
2416		if (ei.fofs + ei.len >= pg_end)
2417			goto out;
2418	}
2419
2420	map.m_lblk = pg_start;
2421	map.m_next_pgofs = &next_pgofs;
2422
2423	/*
2424	 * lookup mapping info in dnode page cache, skip defragmenting if all
2425	 * physical block addresses are continuous even if there are hole(s)
2426	 * in logical blocks.
2427	 */
2428	while (map.m_lblk < pg_end) {
2429		map.m_len = pg_end - map.m_lblk;
2430		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2431		if (err)
2432			goto out;
2433
2434		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2435			map.m_lblk = next_pgofs;
2436			continue;
2437		}
2438
2439		if (blk_end && blk_end != map.m_pblk)
2440			fragmented = true;
2441
2442		/* record total count of block that we're going to move */
2443		total += map.m_len;
2444
2445		blk_end = map.m_pblk + map.m_len;
2446
2447		map.m_lblk += map.m_len;
2448	}
2449
2450	if (!fragmented) {
2451		total = 0;
2452		goto out;
2453	}
2454
2455	sec_num = DIV_ROUND_UP(total, BLKS_PER_SEC(sbi));
 
 
 
2456
2457	/*
2458	 * make sure there are enough free section for LFS allocation, this can
2459	 * avoid defragment running in SSR mode when free section are allocated
2460	 * intensively
2461	 */
2462	if (has_not_enough_free_secs(sbi, 0, sec_num)) {
2463		err = -EAGAIN;
2464		goto out;
2465	}
2466
2467	map.m_lblk = pg_start;
2468	map.m_len = pg_end - pg_start;
2469	total = 0;
2470
2471	while (map.m_lblk < pg_end) {
2472		pgoff_t idx;
2473		int cnt = 0;
2474
2475do_map:
2476		map.m_len = pg_end - map.m_lblk;
2477		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
2478		if (err)
2479			goto clear_out;
2480
2481		if (!(map.m_flags & F2FS_MAP_FLAGS)) {
2482			map.m_lblk = next_pgofs;
2483			goto check;
2484		}
2485
2486		set_inode_flag(inode, FI_DO_DEFRAG);
2487
2488		idx = map.m_lblk;
2489		while (idx < map.m_lblk + map.m_len && cnt < blk_per_seg) {
2490			struct page *page;
2491
2492			page = f2fs_get_lock_data_page(inode, idx, true);
2493			if (IS_ERR(page)) {
2494				err = PTR_ERR(page);
2495				goto clear_out;
2496			}
2497
2498			set_page_dirty(page);
2499			f2fs_put_page(page, 1);
2500
2501			idx++;
2502			cnt++;
2503			total++;
2504		}
2505
2506		map.m_lblk = idx;
2507check:
2508		if (map.m_lblk < pg_end && cnt < blk_per_seg)
2509			goto do_map;
2510
2511		clear_inode_flag(inode, FI_DO_DEFRAG);
2512
2513		err = filemap_fdatawrite(inode->i_mapping);
2514		if (err)
2515			goto out;
2516	}
2517clear_out:
2518	clear_inode_flag(inode, FI_DO_DEFRAG);
2519out:
2520	inode_unlock(inode);
2521	if (!err)
2522		range->len = (u64)total << PAGE_SHIFT;
2523	return err;
2524}
2525
2526static int f2fs_ioc_defragment(struct file *filp, unsigned long arg)
2527{
2528	struct inode *inode = file_inode(filp);
2529	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2530	struct f2fs_defragment range;
2531	int err;
2532
2533	if (!capable(CAP_SYS_ADMIN))
2534		return -EPERM;
2535
2536	if (!S_ISREG(inode->i_mode) || f2fs_is_atomic_file(inode))
2537		return -EINVAL;
2538
2539	if (f2fs_readonly(sbi->sb))
2540		return -EROFS;
 
 
 
 
 
 
2541
2542	if (copy_from_user(&range, (struct f2fs_defragment __user *)arg,
2543							sizeof(range)))
2544		return -EFAULT;
 
 
2545
2546	/* verify alignment of offset & size */
2547	if (range.start & (F2FS_BLKSIZE - 1) || range.len & (F2FS_BLKSIZE - 1))
2548		return -EINVAL;
2549
2550	if (unlikely((range.start + range.len) >> PAGE_SHIFT >
2551					sbi->max_file_blocks))
2552		return -EINVAL;
2553
2554	err = mnt_want_write_file(filp);
2555	if (err)
2556		return err;
2557
2558	err = f2fs_defragment_range(sbi, filp, &range);
2559	mnt_drop_write_file(filp);
2560
2561	f2fs_update_time(sbi, REQ_TIME);
2562	if (err < 0)
2563		return err;
2564
2565	if (copy_to_user((struct f2fs_defragment __user *)arg, &range,
2566							sizeof(range)))
2567		return -EFAULT;
2568
2569	return 0;
 
2570}
2571
2572static int f2fs_move_file_range(struct file *file_in, loff_t pos_in,
2573			struct file *file_out, loff_t pos_out, size_t len)
2574{
2575	struct inode *src = file_inode(file_in);
2576	struct inode *dst = file_inode(file_out);
2577	struct f2fs_sb_info *sbi = F2FS_I_SB(src);
2578	size_t olen = len, dst_max_i_size = 0;
2579	size_t dst_osize;
2580	int ret;
2581
2582	if (file_in->f_path.mnt != file_out->f_path.mnt ||
2583				src->i_sb != dst->i_sb)
2584		return -EXDEV;
2585
2586	if (unlikely(f2fs_readonly(src->i_sb)))
2587		return -EROFS;
2588
2589	if (!S_ISREG(src->i_mode) || !S_ISREG(dst->i_mode))
2590		return -EINVAL;
2591
2592	if (IS_ENCRYPTED(src) || IS_ENCRYPTED(dst))
2593		return -EOPNOTSUPP;
2594
2595	if (src == dst) {
2596		if (pos_in == pos_out)
2597			return 0;
2598		if (pos_out > pos_in && pos_out < pos_in + len)
2599			return -EINVAL;
2600	}
2601
2602	inode_lock(src);
2603	if (src != dst) {
2604		ret = -EBUSY;
2605		if (!inode_trylock(dst))
2606			goto out;
 
2607	}
2608
2609	ret = -EINVAL;
2610	if (pos_in + len > src->i_size || pos_in + len < pos_in)
2611		goto out_unlock;
2612	if (len == 0)
2613		olen = len = src->i_size - pos_in;
2614	if (pos_in + len == src->i_size)
2615		len = ALIGN(src->i_size, F2FS_BLKSIZE) - pos_in;
2616	if (len == 0) {
2617		ret = 0;
2618		goto out_unlock;
2619	}
2620
2621	dst_osize = dst->i_size;
2622	if (pos_out + olen > dst->i_size)
2623		dst_max_i_size = pos_out + olen;
2624
2625	/* verify the end result is block aligned */
2626	if (!IS_ALIGNED(pos_in, F2FS_BLKSIZE) ||
2627			!IS_ALIGNED(pos_in + len, F2FS_BLKSIZE) ||
2628			!IS_ALIGNED(pos_out, F2FS_BLKSIZE))
2629		goto out_unlock;
2630
2631	ret = f2fs_convert_inline_inode(src);
2632	if (ret)
2633		goto out_unlock;
2634
2635	ret = f2fs_convert_inline_inode(dst);
2636	if (ret)
2637		goto out_unlock;
2638
2639	/* write out all dirty pages from offset */
2640	ret = filemap_write_and_wait_range(src->i_mapping,
2641					pos_in, pos_in + len);
2642	if (ret)
2643		goto out_unlock;
2644
2645	ret = filemap_write_and_wait_range(dst->i_mapping,
2646					pos_out, pos_out + len);
2647	if (ret)
2648		goto out_unlock;
2649
2650	f2fs_balance_fs(sbi, true);
2651
2652	down_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2653	if (src != dst) {
2654		ret = -EBUSY;
2655		if (!down_write_trylock(&F2FS_I(dst)->i_gc_rwsem[WRITE]))
2656			goto out_src;
2657	}
2658
2659	f2fs_lock_op(sbi);
2660	ret = __exchange_data_block(src, dst, pos_in >> F2FS_BLKSIZE_BITS,
2661				pos_out >> F2FS_BLKSIZE_BITS,
2662				len >> F2FS_BLKSIZE_BITS, false);
2663
2664	if (!ret) {
2665		if (dst_max_i_size)
2666			f2fs_i_size_write(dst, dst_max_i_size);
2667		else if (dst_osize != dst->i_size)
2668			f2fs_i_size_write(dst, dst_osize);
2669	}
2670	f2fs_unlock_op(sbi);
2671
2672	if (src != dst)
2673		up_write(&F2FS_I(dst)->i_gc_rwsem[WRITE]);
2674out_src:
2675	up_write(&F2FS_I(src)->i_gc_rwsem[WRITE]);
2676out_unlock:
2677	if (src != dst)
2678		inode_unlock(dst);
2679out:
2680	inode_unlock(src);
2681	return ret;
2682}
2683
2684static int f2fs_ioc_move_range(struct file *filp, unsigned long arg)
2685{
2686	struct f2fs_move_range range;
2687	struct fd dst;
2688	int err;
2689
2690	if (!(filp->f_mode & FMODE_READ) ||
2691			!(filp->f_mode & FMODE_WRITE))
2692		return -EBADF;
2693
2694	if (copy_from_user(&range, (struct f2fs_move_range __user *)arg,
2695							sizeof(range)))
2696		return -EFAULT;
2697
2698	dst = fdget(range.dst_fd);
2699	if (!dst.file)
2700		return -EBADF;
2701
2702	if (!(dst.file->f_mode & FMODE_WRITE)) {
2703		err = -EBADF;
2704		goto err_out;
2705	}
2706
2707	err = mnt_want_write_file(filp);
2708	if (err)
2709		goto err_out;
2710
2711	err = f2fs_move_file_range(filp, range.pos_in, dst.file,
2712					range.pos_out, range.len);
2713
2714	mnt_drop_write_file(filp);
2715	if (err)
2716		goto err_out;
2717
2718	if (copy_to_user((struct f2fs_move_range __user *)arg,
2719						&range, sizeof(range)))
2720		err = -EFAULT;
2721err_out:
2722	fdput(dst);
2723	return err;
2724}
2725
2726static int f2fs_ioc_flush_device(struct file *filp, unsigned long arg)
2727{
2728	struct inode *inode = file_inode(filp);
2729	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2730	struct sit_info *sm = SIT_I(sbi);
2731	unsigned int start_segno = 0, end_segno = 0;
2732	unsigned int dev_start_segno = 0, dev_end_segno = 0;
2733	struct f2fs_flush_device range;
2734	int ret;
2735
2736	if (!capable(CAP_SYS_ADMIN))
2737		return -EPERM;
2738
2739	if (f2fs_readonly(sbi->sb))
2740		return -EROFS;
2741
2742	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2743		return -EINVAL;
2744
2745	if (copy_from_user(&range, (struct f2fs_flush_device __user *)arg,
2746							sizeof(range)))
2747		return -EFAULT;
2748
2749	if (!f2fs_is_multi_device(sbi) || sbi->s_ndevs - 1 <= range.dev_num ||
2750			__is_large_section(sbi)) {
2751		f2fs_warn(sbi, "Can't flush %u in %d for segs_per_sec %u != 1",
2752			  range.dev_num, sbi->s_ndevs, sbi->segs_per_sec);
2753		return -EINVAL;
2754	}
2755
2756	ret = mnt_want_write_file(filp);
2757	if (ret)
2758		return ret;
2759
2760	if (range.dev_num != 0)
2761		dev_start_segno = GET_SEGNO(sbi, FDEV(range.dev_num).start_blk);
2762	dev_end_segno = GET_SEGNO(sbi, FDEV(range.dev_num).end_blk);
2763
2764	start_segno = sm->last_victim[FLUSH_DEVICE];
2765	if (start_segno < dev_start_segno || start_segno >= dev_end_segno)
2766		start_segno = dev_start_segno;
2767	end_segno = min(start_segno + range.segments, dev_end_segno);
2768
2769	while (start_segno < end_segno) {
2770		if (!mutex_trylock(&sbi->gc_mutex)) {
2771			ret = -EBUSY;
2772			goto out;
2773		}
2774		sm->last_victim[GC_CB] = end_segno + 1;
2775		sm->last_victim[GC_GREEDY] = end_segno + 1;
2776		sm->last_victim[ALLOC_NEXT] = end_segno + 1;
2777		ret = f2fs_gc(sbi, true, true, start_segno);
2778		if (ret == -EAGAIN)
2779			ret = 0;
2780		else if (ret < 0)
2781			break;
2782		start_segno++;
2783	}
2784out:
2785	mnt_drop_write_file(filp);
2786	return ret;
2787}
2788
2789static int f2fs_ioc_get_features(struct file *filp, unsigned long arg)
2790{
2791	struct inode *inode = file_inode(filp);
2792	u32 sb_feature = le32_to_cpu(F2FS_I_SB(inode)->raw_super->feature);
2793
2794	/* Must validate to set it with SQLite behavior in Android. */
2795	sb_feature |= F2FS_FEATURE_ATOMIC_WRITE;
2796
2797	return put_user(sb_feature, (u32 __user *)arg);
2798}
2799
2800#ifdef CONFIG_QUOTA
2801int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2802{
2803	struct dquot *transfer_to[MAXQUOTAS] = {};
2804	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2805	struct super_block *sb = sbi->sb;
2806	int err = 0;
2807
2808	transfer_to[PRJQUOTA] = dqget(sb, make_kqid_projid(kprojid));
2809	if (!IS_ERR(transfer_to[PRJQUOTA])) {
2810		err = __dquot_transfer(inode, transfer_to);
2811		if (err)
2812			set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2813		dqput(transfer_to[PRJQUOTA]);
2814	}
2815	return err;
2816}
2817
2818static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2819{
2820	struct inode *inode = file_inode(filp);
2821	struct f2fs_inode_info *fi = F2FS_I(inode);
2822	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2823	struct page *ipage;
2824	kprojid_t kprojid;
2825	int err;
2826
2827	if (!f2fs_sb_has_project_quota(sbi)) {
2828		if (projid != F2FS_DEF_PROJID)
2829			return -EOPNOTSUPP;
2830		else
2831			return 0;
2832	}
2833
2834	if (!f2fs_has_extra_attr(inode))
2835		return -EOPNOTSUPP;
2836
2837	kprojid = make_kprojid(&init_user_ns, (projid_t)projid);
2838
2839	if (projid_eq(kprojid, F2FS_I(inode)->i_projid))
2840		return 0;
2841
2842	err = -EPERM;
2843	/* Is it quota file? Do not allow user to mess with it */
2844	if (IS_NOQUOTA(inode))
2845		return err;
2846
2847	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2848	if (IS_ERR(ipage))
2849		return PTR_ERR(ipage);
2850
2851	if (!F2FS_FITS_IN_INODE(F2FS_INODE(ipage), fi->i_extra_isize,
2852								i_projid)) {
2853		err = -EOVERFLOW;
2854		f2fs_put_page(ipage, 1);
2855		return err;
2856	}
2857	f2fs_put_page(ipage, 1);
2858
2859	err = dquot_initialize(inode);
2860	if (err)
2861		return err;
2862
2863	f2fs_lock_op(sbi);
2864	err = f2fs_transfer_project_quota(inode, kprojid);
2865	if (err)
2866		goto out_unlock;
2867
2868	F2FS_I(inode)->i_projid = kprojid;
2869	inode->i_ctime = current_time(inode);
2870	f2fs_mark_inode_dirty_sync(inode, true);
2871out_unlock:
2872	f2fs_unlock_op(sbi);
2873	return err;
2874}
2875#else
2876int f2fs_transfer_project_quota(struct inode *inode, kprojid_t kprojid)
2877{
2878	return 0;
2879}
2880
2881static int f2fs_ioc_setproject(struct file *filp, __u32 projid)
2882{
2883	if (projid != F2FS_DEF_PROJID)
2884		return -EOPNOTSUPP;
2885	return 0;
2886}
2887#endif
2888
2889/* FS_IOC_FSGETXATTR and FS_IOC_FSSETXATTR support */
2890
2891/*
2892 * To make a new on-disk f2fs i_flag gettable via FS_IOC_FSGETXATTR and settable
2893 * via FS_IOC_FSSETXATTR, add an entry for it to f2fs_xflags_map[], and add its
2894 * FS_XFLAG_* equivalent to F2FS_SUPPORTED_XFLAGS.
2895 */
2896
2897static const struct {
2898	u32 iflag;
2899	u32 xflag;
2900} f2fs_xflags_map[] = {
2901	{ F2FS_SYNC_FL,		FS_XFLAG_SYNC },
2902	{ F2FS_IMMUTABLE_FL,	FS_XFLAG_IMMUTABLE },
2903	{ F2FS_APPEND_FL,	FS_XFLAG_APPEND },
2904	{ F2FS_NODUMP_FL,	FS_XFLAG_NODUMP },
2905	{ F2FS_NOATIME_FL,	FS_XFLAG_NOATIME },
2906	{ F2FS_PROJINHERIT_FL,	FS_XFLAG_PROJINHERIT },
2907};
2908
2909#define F2FS_SUPPORTED_XFLAGS (		\
2910		FS_XFLAG_SYNC |		\
2911		FS_XFLAG_IMMUTABLE |	\
2912		FS_XFLAG_APPEND |	\
2913		FS_XFLAG_NODUMP |	\
2914		FS_XFLAG_NOATIME |	\
2915		FS_XFLAG_PROJINHERIT)
2916
2917/* Convert f2fs on-disk i_flags to FS_IOC_FS{GET,SET}XATTR flags */
2918static inline u32 f2fs_iflags_to_xflags(u32 iflags)
2919{
2920	u32 xflags = 0;
2921	int i;
2922
2923	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
2924		if (iflags & f2fs_xflags_map[i].iflag)
2925			xflags |= f2fs_xflags_map[i].xflag;
2926
2927	return xflags;
2928}
2929
2930/* Convert FS_IOC_FS{GET,SET}XATTR flags to f2fs on-disk i_flags */
2931static inline u32 f2fs_xflags_to_iflags(u32 xflags)
2932{
2933	u32 iflags = 0;
2934	int i;
2935
2936	for (i = 0; i < ARRAY_SIZE(f2fs_xflags_map); i++)
2937		if (xflags & f2fs_xflags_map[i].xflag)
2938			iflags |= f2fs_xflags_map[i].iflag;
2939
2940	return iflags;
2941}
2942
2943static void f2fs_fill_fsxattr(struct inode *inode, struct fsxattr *fa)
2944{
2945	struct f2fs_inode_info *fi = F2FS_I(inode);
2946
2947	simple_fill_fsxattr(fa, f2fs_iflags_to_xflags(fi->i_flags));
2948
2949	if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)))
2950		fa->fsx_projid = from_kprojid(&init_user_ns, fi->i_projid);
2951}
2952
2953static int f2fs_ioc_fsgetxattr(struct file *filp, unsigned long arg)
2954{
2955	struct inode *inode = file_inode(filp);
2956	struct fsxattr fa;
2957
2958	f2fs_fill_fsxattr(inode, &fa);
2959
2960	if (copy_to_user((struct fsxattr __user *)arg, &fa, sizeof(fa)))
2961		return -EFAULT;
2962	return 0;
2963}
2964
2965static int f2fs_ioc_fssetxattr(struct file *filp, unsigned long arg)
2966{
2967	struct inode *inode = file_inode(filp);
2968	struct fsxattr fa, old_fa;
2969	u32 iflags;
2970	int err;
2971
2972	if (copy_from_user(&fa, (struct fsxattr __user *)arg, sizeof(fa)))
2973		return -EFAULT;
2974
2975	/* Make sure caller has proper permission */
2976	if (!inode_owner_or_capable(inode))
2977		return -EACCES;
2978
2979	if (fa.fsx_xflags & ~F2FS_SUPPORTED_XFLAGS)
2980		return -EOPNOTSUPP;
2981
2982	iflags = f2fs_xflags_to_iflags(fa.fsx_xflags);
2983	if (f2fs_mask_flags(inode->i_mode, iflags) != iflags)
2984		return -EOPNOTSUPP;
2985
2986	err = mnt_want_write_file(filp);
2987	if (err)
2988		return err;
2989
2990	inode_lock(inode);
2991
2992	f2fs_fill_fsxattr(inode, &old_fa);
2993	err = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa);
2994	if (err)
2995		goto out;
2996
2997	err = f2fs_setflags_common(inode, iflags,
2998			f2fs_xflags_to_iflags(F2FS_SUPPORTED_XFLAGS));
2999	if (err)
3000		goto out;
3001
3002	err = f2fs_ioc_setproject(filp, fa.fsx_projid);
3003out:
3004	inode_unlock(inode);
3005	mnt_drop_write_file(filp);
3006	return err;
3007}
3008
3009int f2fs_pin_file_control(struct inode *inode, bool inc)
3010{
3011	struct f2fs_inode_info *fi = F2FS_I(inode);
3012	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3013
3014	/* Use i_gc_failures for normal file as a risk signal. */
3015	if (inc)
3016		f2fs_i_gc_failures_write(inode,
3017				fi->i_gc_failures[GC_FAILURE_PIN] + 1);
3018
3019	if (fi->i_gc_failures[GC_FAILURE_PIN] > sbi->gc_pin_file_threshold) {
3020		f2fs_warn(sbi, "%s: Enable GC = ino %lx after %x GC trials",
3021			  __func__, inode->i_ino,
3022			  fi->i_gc_failures[GC_FAILURE_PIN]);
3023		clear_inode_flag(inode, FI_PIN_FILE);
3024		return -EAGAIN;
3025	}
3026	return 0;
3027}
3028
3029static int f2fs_ioc_set_pin_file(struct file *filp, unsigned long arg)
3030{
3031	struct inode *inode = file_inode(filp);
3032	__u32 pin;
3033	int ret = 0;
3034
3035	if (get_user(pin, (__u32 __user *)arg))
3036		return -EFAULT;
3037
3038	if (!S_ISREG(inode->i_mode))
3039		return -EINVAL;
3040
3041	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3042		return -EROFS;
3043
3044	ret = mnt_want_write_file(filp);
3045	if (ret)
3046		return ret;
3047
3048	inode_lock(inode);
3049
3050	if (f2fs_should_update_outplace(inode, NULL)) {
3051		ret = -EINVAL;
3052		goto out;
3053	}
3054
3055	if (!pin) {
3056		clear_inode_flag(inode, FI_PIN_FILE);
3057		f2fs_i_gc_failures_write(inode, 0);
3058		goto done;
3059	}
3060
3061	if (f2fs_pin_file_control(inode, false)) {
3062		ret = -EAGAIN;
3063		goto out;
3064	}
3065	ret = f2fs_convert_inline_inode(inode);
3066	if (ret)
3067		goto out;
3068
3069	set_inode_flag(inode, FI_PIN_FILE);
3070	ret = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3071done:
3072	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3073out:
3074	inode_unlock(inode);
3075	mnt_drop_write_file(filp);
3076	return ret;
3077}
3078
3079static int f2fs_ioc_get_pin_file(struct file *filp, unsigned long arg)
3080{
3081	struct inode *inode = file_inode(filp);
3082	__u32 pin = 0;
3083
3084	if (is_inode_flag_set(inode, FI_PIN_FILE))
3085		pin = F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN];
3086	return put_user(pin, (u32 __user *)arg);
3087}
3088
3089int f2fs_precache_extents(struct inode *inode)
3090{
3091	struct f2fs_inode_info *fi = F2FS_I(inode);
3092	struct f2fs_map_blocks map;
3093	pgoff_t m_next_extent;
3094	loff_t end;
3095	int err;
3096
3097	if (is_inode_flag_set(inode, FI_NO_EXTENT))
3098		return -EOPNOTSUPP;
3099
3100	map.m_lblk = 0;
3101	map.m_next_pgofs = NULL;
3102	map.m_next_extent = &m_next_extent;
3103	map.m_seg_type = NO_CHECK_TYPE;
3104	map.m_may_create = false;
3105	end = F2FS_I_SB(inode)->max_file_blocks;
3106
3107	while (map.m_lblk < end) {
3108		map.m_len = end - map.m_lblk;
3109
3110		down_write(&fi->i_gc_rwsem[WRITE]);
3111		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_PRECACHE);
3112		up_write(&fi->i_gc_rwsem[WRITE]);
3113		if (err)
3114			return err;
3115
3116		map.m_lblk = m_next_extent;
3117	}
3118
3119	return err;
3120}
3121
3122static int f2fs_ioc_precache_extents(struct file *filp, unsigned long arg)
3123{
3124	return f2fs_precache_extents(file_inode(filp));
3125}
3126
3127static int f2fs_ioc_resize_fs(struct file *filp, unsigned long arg)
3128{
3129	struct f2fs_sb_info *sbi = F2FS_I_SB(file_inode(filp));
3130	__u64 block_count;
3131	int ret;
3132
3133	if (!capable(CAP_SYS_ADMIN))
3134		return -EPERM;
3135
3136	if (f2fs_readonly(sbi->sb))
3137		return -EROFS;
3138
3139	if (copy_from_user(&block_count, (void __user *)arg,
3140			   sizeof(block_count)))
3141		return -EFAULT;
3142
3143	ret = f2fs_resize_fs(sbi, block_count);
3144
3145	return ret;
3146}
3147
3148static int f2fs_ioc_enable_verity(struct file *filp, unsigned long arg)
3149{
3150	struct inode *inode = file_inode(filp);
3151
3152	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3153
3154	if (!f2fs_sb_has_verity(F2FS_I_SB(inode))) {
3155		f2fs_warn(F2FS_I_SB(inode),
3156			  "Can't enable fs-verity on inode %lu: the verity feature is not enabled on this filesystem.\n",
3157			  inode->i_ino);
3158		return -EOPNOTSUPP;
3159	}
3160
3161	return fsverity_ioctl_enable(filp, (const void __user *)arg);
3162}
3163
3164static int f2fs_ioc_measure_verity(struct file *filp, unsigned long arg)
3165{
3166	if (!f2fs_sb_has_verity(F2FS_I_SB(file_inode(filp))))
3167		return -EOPNOTSUPP;
3168
3169	return fsverity_ioctl_measure(filp, (void __user *)arg);
3170}
3171
3172static int f2fs_get_volume_name(struct file *filp, unsigned long arg)
3173{
3174	struct inode *inode = file_inode(filp);
3175	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3176	char *vbuf;
3177	int count;
3178	int err = 0;
3179
3180	vbuf = f2fs_kzalloc(sbi, MAX_VOLUME_NAME, GFP_KERNEL);
3181	if (!vbuf)
3182		return -ENOMEM;
3183
3184	down_read(&sbi->sb_lock);
3185	count = utf16s_to_utf8s(sbi->raw_super->volume_name,
3186			ARRAY_SIZE(sbi->raw_super->volume_name),
3187			UTF16_LITTLE_ENDIAN, vbuf, MAX_VOLUME_NAME);
3188	up_read(&sbi->sb_lock);
3189
3190	if (copy_to_user((char __user *)arg, vbuf,
3191				min(FSLABEL_MAX, count)))
3192		err = -EFAULT;
3193
3194	kvfree(vbuf);
3195	return err;
3196}
3197
3198static int f2fs_set_volume_name(struct file *filp, unsigned long arg)
3199{
3200	struct inode *inode = file_inode(filp);
3201	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3202	char *vbuf;
3203	int err = 0;
3204
3205	if (!capable(CAP_SYS_ADMIN))
3206		return -EPERM;
3207
3208	vbuf = strndup_user((const char __user *)arg, FSLABEL_MAX);
3209	if (IS_ERR(vbuf))
3210		return PTR_ERR(vbuf);
3211
3212	err = mnt_want_write_file(filp);
3213	if (err)
3214		goto out;
3215
3216	down_write(&sbi->sb_lock);
3217
3218	memset(sbi->raw_super->volume_name, 0,
3219			sizeof(sbi->raw_super->volume_name));
3220	utf8s_to_utf16s(vbuf, strlen(vbuf), UTF16_LITTLE_ENDIAN,
3221			sbi->raw_super->volume_name,
3222			ARRAY_SIZE(sbi->raw_super->volume_name));
3223
3224	err = f2fs_commit_super(sbi, false);
3225
3226	up_write(&sbi->sb_lock);
3227
3228	mnt_drop_write_file(filp);
3229out:
3230	kfree(vbuf);
3231	return err;
3232}
3233
3234long f2fs_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
3235{
3236	if (unlikely(f2fs_cp_error(F2FS_I_SB(file_inode(filp)))))
3237		return -EIO;
3238	if (!f2fs_is_checkpoint_ready(F2FS_I_SB(file_inode(filp))))
3239		return -ENOSPC;
3240
3241	switch (cmd) {
3242	case F2FS_IOC_GETFLAGS:
3243		return f2fs_ioc_getflags(filp, arg);
3244	case F2FS_IOC_SETFLAGS:
3245		return f2fs_ioc_setflags(filp, arg);
3246	case F2FS_IOC_GETVERSION:
3247		return f2fs_ioc_getversion(filp, arg);
3248	case F2FS_IOC_START_ATOMIC_WRITE:
3249		return f2fs_ioc_start_atomic_write(filp);
3250	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3251		return f2fs_ioc_commit_atomic_write(filp);
3252	case F2FS_IOC_START_VOLATILE_WRITE:
3253		return f2fs_ioc_start_volatile_write(filp);
3254	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3255		return f2fs_ioc_release_volatile_write(filp);
3256	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3257		return f2fs_ioc_abort_volatile_write(filp);
3258	case F2FS_IOC_SHUTDOWN:
3259		return f2fs_ioc_shutdown(filp, arg);
3260	case FITRIM:
3261		return f2fs_ioc_fitrim(filp, arg);
3262	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3263		return f2fs_ioc_set_encryption_policy(filp, arg);
3264	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3265		return f2fs_ioc_get_encryption_policy(filp, arg);
3266	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3267		return f2fs_ioc_get_encryption_pwsalt(filp, arg);
3268	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3269		return f2fs_ioc_get_encryption_policy_ex(filp, arg);
3270	case FS_IOC_ADD_ENCRYPTION_KEY:
3271		return f2fs_ioc_add_encryption_key(filp, arg);
3272	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3273		return f2fs_ioc_remove_encryption_key(filp, arg);
3274	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3275		return f2fs_ioc_remove_encryption_key_all_users(filp, arg);
3276	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3277		return f2fs_ioc_get_encryption_key_status(filp, arg);
3278	case F2FS_IOC_GARBAGE_COLLECT:
3279		return f2fs_ioc_gc(filp, arg);
3280	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3281		return f2fs_ioc_gc_range(filp, arg);
3282	case F2FS_IOC_WRITE_CHECKPOINT:
3283		return f2fs_ioc_write_checkpoint(filp, arg);
3284	case F2FS_IOC_DEFRAGMENT:
3285		return f2fs_ioc_defragment(filp, arg);
3286	case F2FS_IOC_MOVE_RANGE:
3287		return f2fs_ioc_move_range(filp, arg);
3288	case F2FS_IOC_FLUSH_DEVICE:
3289		return f2fs_ioc_flush_device(filp, arg);
3290	case F2FS_IOC_GET_FEATURES:
3291		return f2fs_ioc_get_features(filp, arg);
3292	case F2FS_IOC_FSGETXATTR:
3293		return f2fs_ioc_fsgetxattr(filp, arg);
3294	case F2FS_IOC_FSSETXATTR:
3295		return f2fs_ioc_fssetxattr(filp, arg);
3296	case F2FS_IOC_GET_PIN_FILE:
3297		return f2fs_ioc_get_pin_file(filp, arg);
3298	case F2FS_IOC_SET_PIN_FILE:
3299		return f2fs_ioc_set_pin_file(filp, arg);
3300	case F2FS_IOC_PRECACHE_EXTENTS:
3301		return f2fs_ioc_precache_extents(filp, arg);
3302	case F2FS_IOC_RESIZE_FS:
3303		return f2fs_ioc_resize_fs(filp, arg);
3304	case FS_IOC_ENABLE_VERITY:
3305		return f2fs_ioc_enable_verity(filp, arg);
3306	case FS_IOC_MEASURE_VERITY:
3307		return f2fs_ioc_measure_verity(filp, arg);
3308	case F2FS_IOC_GET_VOLUME_NAME:
3309		return f2fs_get_volume_name(filp, arg);
3310	case F2FS_IOC_SET_VOLUME_NAME:
3311		return f2fs_set_volume_name(filp, arg);
3312	default:
3313		return -ENOTTY;
3314	}
3315}
3316
3317static ssize_t f2fs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3318{
3319	struct file *file = iocb->ki_filp;
3320	struct inode *inode = file_inode(file);
 
3321	ssize_t ret;
3322
3323	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
3324		ret = -EIO;
3325		goto out;
3326	}
3327
3328	if (iocb->ki_flags & IOCB_NOWAIT) {
3329		if (!inode_trylock(inode)) {
3330			ret = -EAGAIN;
3331			goto out;
3332		}
3333	} else {
3334		inode_lock(inode);
3335	}
3336
 
3337	ret = generic_write_checks(iocb, from);
3338	if (ret > 0) {
3339		bool preallocated = false;
3340		size_t target_size = 0;
3341		int err;
3342
3343		if (iov_iter_fault_in_readable(from, iov_iter_count(from)))
3344			set_inode_flag(inode, FI_NO_PREALLOC);
3345
3346		if ((iocb->ki_flags & IOCB_NOWAIT)) {
3347			if (!f2fs_overwrite_io(inode, iocb->ki_pos,
3348						iov_iter_count(from)) ||
3349				f2fs_has_inline_data(inode) ||
3350				f2fs_force_buffered_io(inode, iocb, from)) {
3351				clear_inode_flag(inode, FI_NO_PREALLOC);
3352				inode_unlock(inode);
3353				ret = -EAGAIN;
3354				goto out;
3355			}
3356		} else {
3357			preallocated = true;
3358			target_size = iocb->ki_pos + iov_iter_count(from);
3359
3360			err = f2fs_preallocate_blocks(iocb, from);
3361			if (err) {
3362				clear_inode_flag(inode, FI_NO_PREALLOC);
3363				inode_unlock(inode);
3364				ret = err;
3365				goto out;
3366			}
3367		}
 
3368		ret = __generic_file_write_iter(iocb, from);
3369		clear_inode_flag(inode, FI_NO_PREALLOC);
3370
3371		/* if we couldn't write data, we should deallocate blocks. */
3372		if (preallocated && i_size_read(inode) < target_size)
3373			f2fs_truncate(inode);
3374
3375		if (ret > 0)
3376			f2fs_update_iostat(F2FS_I_SB(inode), APP_WRITE_IO, ret);
3377	}
3378	inode_unlock(inode);
3379out:
3380	trace_f2fs_file_write_iter(inode, iocb->ki_pos,
3381					iov_iter_count(from), ret);
3382	if (ret > 0)
3383		ret = generic_write_sync(iocb, ret);
3384	return ret;
3385}
3386
3387#ifdef CONFIG_COMPAT
3388long f2fs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3389{
3390	switch (cmd) {
3391	case F2FS_IOC32_GETFLAGS:
3392		cmd = F2FS_IOC_GETFLAGS;
3393		break;
3394	case F2FS_IOC32_SETFLAGS:
3395		cmd = F2FS_IOC_SETFLAGS;
3396		break;
3397	case F2FS_IOC32_GETVERSION:
3398		cmd = F2FS_IOC_GETVERSION;
3399		break;
3400	case F2FS_IOC_START_ATOMIC_WRITE:
3401	case F2FS_IOC_COMMIT_ATOMIC_WRITE:
3402	case F2FS_IOC_START_VOLATILE_WRITE:
3403	case F2FS_IOC_RELEASE_VOLATILE_WRITE:
3404	case F2FS_IOC_ABORT_VOLATILE_WRITE:
3405	case F2FS_IOC_SHUTDOWN:
3406	case F2FS_IOC_SET_ENCRYPTION_POLICY:
3407	case F2FS_IOC_GET_ENCRYPTION_PWSALT:
3408	case F2FS_IOC_GET_ENCRYPTION_POLICY:
3409	case FS_IOC_GET_ENCRYPTION_POLICY_EX:
3410	case FS_IOC_ADD_ENCRYPTION_KEY:
3411	case FS_IOC_REMOVE_ENCRYPTION_KEY:
3412	case FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS:
3413	case FS_IOC_GET_ENCRYPTION_KEY_STATUS:
3414	case F2FS_IOC_GARBAGE_COLLECT:
3415	case F2FS_IOC_GARBAGE_COLLECT_RANGE:
3416	case F2FS_IOC_WRITE_CHECKPOINT:
3417	case F2FS_IOC_DEFRAGMENT:
 
3418	case F2FS_IOC_MOVE_RANGE:
3419	case F2FS_IOC_FLUSH_DEVICE:
3420	case F2FS_IOC_GET_FEATURES:
3421	case F2FS_IOC_FSGETXATTR:
3422	case F2FS_IOC_FSSETXATTR:
3423	case F2FS_IOC_GET_PIN_FILE:
3424	case F2FS_IOC_SET_PIN_FILE:
3425	case F2FS_IOC_PRECACHE_EXTENTS:
3426	case F2FS_IOC_RESIZE_FS:
3427	case FS_IOC_ENABLE_VERITY:
3428	case FS_IOC_MEASURE_VERITY:
3429	case F2FS_IOC_GET_VOLUME_NAME:
3430	case F2FS_IOC_SET_VOLUME_NAME:
3431		break;
3432	default:
3433		return -ENOIOCTLCMD;
3434	}
3435	return f2fs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
3436}
3437#endif
3438
3439const struct file_operations f2fs_file_operations = {
3440	.llseek		= f2fs_llseek,
3441	.read_iter	= generic_file_read_iter,
3442	.write_iter	= f2fs_file_write_iter,
3443	.open		= f2fs_file_open,
3444	.release	= f2fs_release_file,
3445	.mmap		= f2fs_file_mmap,
3446	.flush		= f2fs_file_flush,
3447	.fsync		= f2fs_sync_file,
3448	.fallocate	= f2fs_fallocate,
3449	.unlocked_ioctl	= f2fs_ioctl,
3450#ifdef CONFIG_COMPAT
3451	.compat_ioctl	= f2fs_compat_ioctl,
3452#endif
3453	.splice_read	= generic_file_splice_read,
3454	.splice_write	= iter_file_splice_write,
3455};