Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * fs/f2fs/data.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/buffer_head.h>
  14#include <linux/mpage.h>
  15#include <linux/writeback.h>
  16#include <linux/backing-dev.h>
  17#include <linux/pagevec.h>
  18#include <linux/blkdev.h>
  19#include <linux/bio.h>
 
  20#include <linux/prefetch.h>
  21#include <linux/uio.h>
  22#include <linux/mm.h>
  23#include <linux/memcontrol.h>
  24#include <linux/cleancache.h>
 
  25
  26#include "f2fs.h"
  27#include "node.h"
  28#include "segment.h"
  29#include "trace.h"
  30#include <trace/events/f2fs.h>
  31
 
 
 
 
 
  32static bool __is_cp_guaranteed(struct page *page)
  33{
  34	struct address_space *mapping = page->mapping;
  35	struct inode *inode;
  36	struct f2fs_sb_info *sbi;
  37
  38	if (!mapping)
  39		return false;
  40
  41	inode = mapping->host;
  42	sbi = F2FS_I_SB(inode);
  43
  44	if (inode->i_ino == F2FS_META_INO(sbi) ||
  45			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
  46			S_ISDIR(inode->i_mode) ||
 
 
  47			is_cold_data(page))
  48		return true;
  49	return false;
  50}
  51
  52static void f2fs_read_end_io(struct bio *bio)
  53{
  54	struct bio_vec *bvec;
  55	int i;
  56
  57#ifdef CONFIG_F2FS_FAULT_INJECTION
  58	if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO))
  59		bio->bi_error = -EIO;
  60#endif
  61
  62	if (f2fs_bio_encrypted(bio)) {
  63		if (bio->bi_error) {
  64			fscrypt_release_ctx(bio->bi_private);
  65		} else {
  66			fscrypt_decrypt_bio_pages(bio->bi_private, bio);
  67			return;
  68		}
  69	}
 
 
  70
  71	bio_for_each_segment_all(bvec, bio, i) {
  72		struct page *page = bvec->bv_page;
 
 
 
 
  73
  74		if (!bio->bi_error) {
  75			if (!PageUptodate(page))
  76				SetPageUptodate(page);
  77		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  78			ClearPageUptodate(page);
  79			SetPageError(page);
 
 
 
  80		}
 
  81		unlock_page(page);
  82	}
 
 
  83	bio_put(bio);
  84}
  85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  86static void f2fs_write_end_io(struct bio *bio)
  87{
  88	struct f2fs_sb_info *sbi = bio->bi_private;
  89	struct bio_vec *bvec;
  90	int i;
 
 
 
 
 
  91
  92	bio_for_each_segment_all(bvec, bio, i) {
  93		struct page *page = bvec->bv_page;
  94		enum count_type type = WB_DATA_TYPE(page);
  95
  96		fscrypt_pullback_bio_page(&page, true);
 
 
 
 
 
 
 
 
 
 
 
  97
  98		if (unlikely(bio->bi_error)) {
  99			mapping_set_error(page->mapping, -EIO);
 100			f2fs_stop_checkpoint(sbi, true);
 
 101		}
 
 
 
 
 102		dec_page_count(sbi, type);
 
 
 103		clear_cold_data(page);
 104		end_page_writeback(page);
 105	}
 106	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
 107				wq_has_sleeper(&sbi->cp_wait))
 108		wake_up(&sbi->cp_wait);
 109
 110	bio_put(bio);
 111}
 112
 113/*
 114 * Return true, if pre_bio's bdev is same as its target device.
 115 */
 116struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
 117				block_t blk_addr, struct bio *bio)
 118{
 119	struct block_device *bdev = sbi->sb->s_bdev;
 120	int i;
 121
 122	for (i = 0; i < sbi->s_ndevs; i++) {
 123		if (FDEV(i).start_blk <= blk_addr &&
 124					FDEV(i).end_blk >= blk_addr) {
 125			blk_addr -= FDEV(i).start_blk;
 126			bdev = FDEV(i).bdev;
 127			break;
 
 
 128		}
 129	}
 130	if (bio) {
 131		bio->bi_bdev = bdev;
 132		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
 133	}
 134	return bdev;
 135}
 136
 137int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
 138{
 139	int i;
 140
 
 
 
 141	for (i = 0; i < sbi->s_ndevs; i++)
 142		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
 143			return i;
 144	return 0;
 145}
 146
 147static bool __same_bdev(struct f2fs_sb_info *sbi,
 148				block_t blk_addr, struct bio *bio)
 149{
 150	return f2fs_target_device(sbi, blk_addr, NULL) == bio->bi_bdev;
 
 151}
 152
 153/*
 154 * Low-level block read/write IO operations.
 155 */
 156static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
 157				int npages, bool is_read)
 158{
 
 159	struct bio *bio;
 160
 161	bio = f2fs_bio_alloc(npages);
 162
 163	f2fs_target_device(sbi, blk_addr, bio);
 164	bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
 165	bio->bi_private = is_read ? NULL : sbi;
 
 
 
 
 
 
 
 
 
 166
 167	return bio;
 168}
 169
 170static inline void __submit_bio(struct f2fs_sb_info *sbi,
 171				struct bio *bio, enum page_type type)
 172{
 173	if (!is_read_io(bio_op(bio))) {
 174		if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
 175			current->plug && (type == DATA || type == NODE))
 
 
 
 
 176			blk_finish_plug(current->plug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177	}
 
 
 
 
 
 178	submit_bio(bio);
 179}
 180
 181static void __submit_merged_bio(struct f2fs_bio_info *io)
 182{
 183	struct f2fs_io_info *fio = &io->fio;
 184
 185	if (!io->bio)
 186		return;
 187
 
 
 188	if (is_read_io(fio->op))
 189		trace_f2fs_submit_read_bio(io->sbi->sb, fio, io->bio);
 190	else
 191		trace_f2fs_submit_write_bio(io->sbi->sb, fio, io->bio);
 192
 193	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
 194
 195	__submit_bio(io->sbi, io->bio, fio->type);
 196	io->bio = NULL;
 197}
 198
 199static bool __has_merged_page(struct f2fs_bio_info *io, struct inode *inode,
 200						struct page *page, nid_t ino)
 201{
 202	struct bio_vec *bvec;
 203	struct page *target;
 204	int i;
 205
 206	if (!io->bio)
 207		return false;
 208
 209	if (!inode && !page && !ino)
 210		return true;
 211
 212	bio_for_each_segment_all(bvec, io->bio, i) {
 213
 214		if (bvec->bv_page->mapping)
 215			target = bvec->bv_page;
 216		else
 217			target = fscrypt_control_page(bvec->bv_page);
 218
 219		if (inode && inode == target->mapping->host)
 220			return true;
 221		if (page && page == target)
 222			return true;
 223		if (ino && ino == ino_of_node(target))
 224			return true;
 225	}
 226
 227	return false;
 228}
 229
 230static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
 231						struct page *page, nid_t ino,
 232						enum page_type type)
 233{
 234	enum page_type btype = PAGE_TYPE_OF_BIO(type);
 235	struct f2fs_bio_info *io = &sbi->write_io[btype];
 236	bool ret;
 237
 238	down_read(&io->io_rwsem);
 239	ret = __has_merged_page(io, inode, page, ino);
 240	up_read(&io->io_rwsem);
 241	return ret;
 242}
 243
 244static void __f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
 245				struct inode *inode, struct page *page,
 246				nid_t ino, enum page_type type, int rw)
 247{
 248	enum page_type btype = PAGE_TYPE_OF_BIO(type);
 249	struct f2fs_bio_info *io;
 250
 251	io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
 252
 253	down_write(&io->io_rwsem);
 254
 255	if (!__has_merged_page(io, inode, page, ino))
 256		goto out;
 257
 258	/* change META to META_FLUSH in the checkpoint procedure */
 259	if (type >= META_FLUSH) {
 260		io->fio.type = META_FLUSH;
 261		io->fio.op = REQ_OP_WRITE;
 262		io->fio.op_flags = REQ_PREFLUSH | REQ_META | REQ_PRIO;
 263		if (!test_opt(sbi, NOBARRIER))
 264			io->fio.op_flags |= REQ_FUA;
 265	}
 266	__submit_merged_bio(io);
 267out:
 268	up_write(&io->io_rwsem);
 269}
 270
 271void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi, enum page_type type,
 272									int rw)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 273{
 274	__f2fs_submit_merged_bio(sbi, NULL, NULL, 0, type, rw);
 275}
 276
 277void f2fs_submit_merged_bio_cond(struct f2fs_sb_info *sbi,
 278				struct inode *inode, struct page *page,
 279				nid_t ino, enum page_type type, int rw)
 280{
 281	if (has_merged_page(sbi, inode, page, ino, type))
 282		__f2fs_submit_merged_bio(sbi, inode, page, ino, type, rw);
 283}
 284
 285void f2fs_flush_merged_bios(struct f2fs_sb_info *sbi)
 286{
 287	f2fs_submit_merged_bio(sbi, DATA, WRITE);
 288	f2fs_submit_merged_bio(sbi, NODE, WRITE);
 289	f2fs_submit_merged_bio(sbi, META, WRITE);
 290}
 291
 292/*
 293 * Fill the locked page with data located in the block address.
 294 * Return unlocked page.
 295 */
 296int f2fs_submit_page_bio(struct f2fs_io_info *fio)
 297{
 298	struct bio *bio;
 299	struct page *page = fio->encrypted_page ?
 300			fio->encrypted_page : fio->page;
 301
 
 
 
 
 
 302	trace_f2fs_submit_page_bio(page, fio);
 303	f2fs_trace_ios(fio, 0);
 304
 305	/* Allocate a new bio */
 306	bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
 307
 308	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 309		bio_put(bio);
 310		return -EFAULT;
 311	}
 
 
 
 
 312	bio_set_op_attrs(bio, fio->op, fio->op_flags);
 313
 
 
 
 314	__submit_bio(fio->sbi, bio, fio->type);
 315	return 0;
 316}
 317
 318void f2fs_submit_page_mbio(struct f2fs_io_info *fio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319{
 320	struct f2fs_sb_info *sbi = fio->sbi;
 321	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
 322	struct f2fs_bio_info *io;
 323	bool is_read = is_read_io(fio->op);
 324	struct page *bio_page;
 325
 326	io = is_read ? &sbi->read_io : &sbi->write_io[btype];
 327
 328	if (fio->old_blkaddr != NEW_ADDR)
 329		verify_block_addr(sbi, fio->old_blkaddr);
 330	verify_block_addr(sbi, fio->new_blkaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 331
 332	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
 333
 334	if (!is_read)
 335		inc_page_count(sbi, WB_DATA_TYPE(bio_page));
 336
 337	down_write(&io->io_rwsem);
 338
 339	if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
 340	    (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
 341			!__same_bdev(sbi, fio->new_blkaddr, io->bio)))
 342		__submit_merged_bio(io);
 343alloc_new:
 344	if (io->bio == NULL) {
 345		io->bio = __bio_alloc(sbi, fio->new_blkaddr,
 346						BIO_MAX_PAGES, is_read);
 
 
 
 
 
 
 347		io->fio = *fio;
 348	}
 349
 350	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) <
 351							PAGE_SIZE) {
 352		__submit_merged_bio(io);
 353		goto alloc_new;
 354	}
 355
 
 
 
 356	io->last_block_in_bio = fio->new_blkaddr;
 357	f2fs_trace_ios(fio, 0);
 358
 
 
 
 
 
 
 
 
 359	up_write(&io->io_rwsem);
 360	trace_f2fs_submit_page_mbio(fio->page, fio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361}
 362
 363static void __set_data_blkaddr(struct dnode_of_data *dn)
 364{
 365	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
 366	__le32 *addr_array;
 
 
 
 
 367
 368	/* Get physical address of data block */
 369	addr_array = blkaddr_in_node(rn);
 370	addr_array[dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
 371}
 372
 373/*
 374 * Lock ordering for the change of data block address:
 375 * ->data_page
 376 *  ->node_page
 377 *    update block addresses in the node page
 378 */
 379void set_data_blkaddr(struct dnode_of_data *dn)
 380{
 381	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
 382	__set_data_blkaddr(dn);
 383	if (set_page_dirty(dn->node_page))
 384		dn->node_changed = true;
 385}
 386
 387void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
 388{
 389	dn->data_blkaddr = blkaddr;
 390	set_data_blkaddr(dn);
 391	f2fs_update_extent_cache(dn);
 392}
 393
 394/* dn->ofs_in_node will be returned with up-to-date last block pointer */
 395int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
 396{
 397	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 
 398
 399	if (!count)
 400		return 0;
 401
 402	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
 403		return -EPERM;
 404	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
 405		return -ENOSPC;
 406
 407	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
 408						dn->ofs_in_node, count);
 409
 410	f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
 411
 412	for (; count > 0; dn->ofs_in_node++) {
 413		block_t blkaddr =
 414			datablock_addr(dn->node_page, dn->ofs_in_node);
 415		if (blkaddr == NULL_ADDR) {
 416			dn->data_blkaddr = NEW_ADDR;
 417			__set_data_blkaddr(dn);
 418			count--;
 419		}
 420	}
 421
 422	if (set_page_dirty(dn->node_page))
 423		dn->node_changed = true;
 424	return 0;
 425}
 426
 427/* Should keep dn->ofs_in_node unchanged */
 428int reserve_new_block(struct dnode_of_data *dn)
 429{
 430	unsigned int ofs_in_node = dn->ofs_in_node;
 431	int ret;
 432
 433	ret = reserve_new_blocks(dn, 1);
 434	dn->ofs_in_node = ofs_in_node;
 435	return ret;
 436}
 437
 438int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
 439{
 440	bool need_put = dn->inode_page ? false : true;
 441	int err;
 442
 443	err = get_dnode_of_data(dn, index, ALLOC_NODE);
 444	if (err)
 445		return err;
 446
 447	if (dn->data_blkaddr == NULL_ADDR)
 448		err = reserve_new_block(dn);
 449	if (err || need_put)
 450		f2fs_put_dnode(dn);
 451	return err;
 452}
 453
 454int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
 455{
 456	struct extent_info ei;
 457	struct inode *inode = dn->inode;
 458
 459	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 460		dn->data_blkaddr = ei.blk + index - ei.fofs;
 461		return 0;
 462	}
 463
 464	return f2fs_reserve_block(dn, index);
 465}
 466
 467struct page *get_read_data_page(struct inode *inode, pgoff_t index,
 468						int op_flags, bool for_write)
 469{
 470	struct address_space *mapping = inode->i_mapping;
 471	struct dnode_of_data dn;
 472	struct page *page;
 473	struct extent_info ei;
 474	int err;
 475	struct f2fs_io_info fio = {
 476		.sbi = F2FS_I_SB(inode),
 477		.type = DATA,
 478		.op = REQ_OP_READ,
 479		.op_flags = op_flags,
 480		.encrypted_page = NULL,
 481	};
 482
 483	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
 484		return read_mapping_page(mapping, index, NULL);
 485
 486	page = f2fs_grab_cache_page(mapping, index, for_write);
 487	if (!page)
 488		return ERR_PTR(-ENOMEM);
 489
 490	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 491		dn.data_blkaddr = ei.blk + index - ei.fofs;
 
 
 
 
 
 492		goto got_it;
 493	}
 494
 495	set_new_dnode(&dn, inode, NULL, NULL, 0);
 496	err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
 497	if (err)
 498		goto put_err;
 499	f2fs_put_dnode(&dn);
 500
 501	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
 502		err = -ENOENT;
 503		goto put_err;
 504	}
 
 
 
 
 
 
 
 505got_it:
 506	if (PageUptodate(page)) {
 507		unlock_page(page);
 508		return page;
 509	}
 510
 511	/*
 512	 * A new dentry page is allocated but not able to be written, since its
 513	 * new inode page couldn't be allocated due to -ENOSPC.
 514	 * In such the case, its blkaddr can be remained as NEW_ADDR.
 515	 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
 
 516	 */
 517	if (dn.data_blkaddr == NEW_ADDR) {
 518		zero_user_segment(page, 0, PAGE_SIZE);
 519		if (!PageUptodate(page))
 520			SetPageUptodate(page);
 521		unlock_page(page);
 522		return page;
 523	}
 524
 525	fio.new_blkaddr = fio.old_blkaddr = dn.data_blkaddr;
 526	fio.page = page;
 527	err = f2fs_submit_page_bio(&fio);
 528	if (err)
 529		goto put_err;
 530	return page;
 531
 532put_err:
 533	f2fs_put_page(page, 1);
 534	return ERR_PTR(err);
 535}
 536
 537struct page *find_data_page(struct inode *inode, pgoff_t index)
 538{
 539	struct address_space *mapping = inode->i_mapping;
 540	struct page *page;
 541
 542	page = find_get_page(mapping, index);
 543	if (page && PageUptodate(page))
 544		return page;
 545	f2fs_put_page(page, 0);
 546
 547	page = get_read_data_page(inode, index, 0, false);
 548	if (IS_ERR(page))
 549		return page;
 550
 551	if (PageUptodate(page))
 552		return page;
 553
 554	wait_on_page_locked(page);
 555	if (unlikely(!PageUptodate(page))) {
 556		f2fs_put_page(page, 0);
 557		return ERR_PTR(-EIO);
 558	}
 559	return page;
 560}
 561
 562/*
 563 * If it tries to access a hole, return an error.
 564 * Because, the callers, functions in dir.c and GC, should be able to know
 565 * whether this page exists or not.
 566 */
 567struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
 568							bool for_write)
 569{
 570	struct address_space *mapping = inode->i_mapping;
 571	struct page *page;
 572repeat:
 573	page = get_read_data_page(inode, index, 0, for_write);
 574	if (IS_ERR(page))
 575		return page;
 576
 577	/* wait for read completion */
 578	lock_page(page);
 579	if (unlikely(page->mapping != mapping)) {
 580		f2fs_put_page(page, 1);
 581		goto repeat;
 582	}
 583	if (unlikely(!PageUptodate(page))) {
 584		f2fs_put_page(page, 1);
 585		return ERR_PTR(-EIO);
 586	}
 587	return page;
 588}
 589
 590/*
 591 * Caller ensures that this data page is never allocated.
 592 * A new zero-filled data page is allocated in the page cache.
 593 *
 594 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
 595 * f2fs_unlock_op().
 596 * Note that, ipage is set only by make_empty_dir, and if any error occur,
 597 * ipage should be released by this function.
 598 */
 599struct page *get_new_data_page(struct inode *inode,
 600		struct page *ipage, pgoff_t index, bool new_i_size)
 601{
 602	struct address_space *mapping = inode->i_mapping;
 603	struct page *page;
 604	struct dnode_of_data dn;
 605	int err;
 606
 607	page = f2fs_grab_cache_page(mapping, index, true);
 608	if (!page) {
 609		/*
 610		 * before exiting, we should make sure ipage will be released
 611		 * if any error occur.
 612		 */
 613		f2fs_put_page(ipage, 1);
 614		return ERR_PTR(-ENOMEM);
 615	}
 616
 617	set_new_dnode(&dn, inode, ipage, NULL, 0);
 618	err = f2fs_reserve_block(&dn, index);
 619	if (err) {
 620		f2fs_put_page(page, 1);
 621		return ERR_PTR(err);
 622	}
 623	if (!ipage)
 624		f2fs_put_dnode(&dn);
 625
 626	if (PageUptodate(page))
 627		goto got_it;
 628
 629	if (dn.data_blkaddr == NEW_ADDR) {
 630		zero_user_segment(page, 0, PAGE_SIZE);
 631		if (!PageUptodate(page))
 632			SetPageUptodate(page);
 633	} else {
 634		f2fs_put_page(page, 1);
 635
 636		/* if ipage exists, blkaddr should be NEW_ADDR */
 637		f2fs_bug_on(F2FS_I_SB(inode), ipage);
 638		page = get_lock_data_page(inode, index, true);
 639		if (IS_ERR(page))
 640			return page;
 641	}
 642got_it:
 643	if (new_i_size && i_size_read(inode) <
 644				((loff_t)(index + 1) << PAGE_SHIFT))
 645		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
 646	return page;
 647}
 648
 649static int __allocate_data_block(struct dnode_of_data *dn)
 650{
 651	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 652	struct f2fs_summary sum;
 653	struct node_info ni;
 654	pgoff_t fofs;
 655	blkcnt_t count = 1;
 
 656
 657	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
 658		return -EPERM;
 659
 660	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 661	if (dn->data_blkaddr == NEW_ADDR)
 
 
 
 
 
 662		goto alloc;
 663
 664	if (unlikely(!inc_valid_block_count(sbi, dn->inode, &count)))
 665		return -ENOSPC;
 666
 667alloc:
 668	get_node_info(sbi, dn->nid, &ni);
 669	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
 
 
 
 
 
 
 
 670
 671	allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
 672						&sum, CURSEG_WARM_DATA);
 673	set_data_blkaddr(dn);
 674
 675	/* update i_size */
 676	fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
 677							dn->ofs_in_node;
 678	if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
 679		f2fs_i_size_write(dn->inode,
 680				((loff_t)(fofs + 1) << PAGE_SHIFT));
 681	return 0;
 682}
 683
 684static inline bool __force_buffered_io(struct inode *inode, int rw)
 685{
 686	return ((f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) ||
 687			(rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
 688			F2FS_I_SB(inode)->s_ndevs);
 689}
 690
 691int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
 692{
 693	struct inode *inode = file_inode(iocb->ki_filp);
 694	struct f2fs_map_blocks map;
 
 695	int err = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696
 697	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
 698	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
 699	if (map.m_len > map.m_lblk)
 700		map.m_len -= map.m_lblk;
 701	else
 702		map.m_len = 0;
 703
 704	map.m_next_pgofs = NULL;
 705
 706	if (iocb->ki_flags & IOCB_DIRECT) {
 707		err = f2fs_convert_inline_inode(inode);
 708		if (err)
 709			return err;
 710		return f2fs_map_blocks(inode, &map, 1,
 711			__force_buffered_io(inode, WRITE) ?
 712				F2FS_GET_BLOCK_PRE_AIO :
 713				F2FS_GET_BLOCK_PRE_DIO);
 
 714	}
 715	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA) {
 716		err = f2fs_convert_inline_inode(inode);
 717		if (err)
 718			return err;
 719	}
 720	if (!f2fs_has_inline_data(inode))
 721		return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
 
 
 
 
 
 
 
 
 
 
 722	return err;
 723}
 724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725/*
 726 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
 727 * f2fs_map_blocks structure.
 728 * If original data blocks are allocated, then give them to blockdev.
 729 * Otherwise,
 730 *     a. preallocate requested block addresses
 731 *     b. do not use extent cache for better performance
 732 *     c. give the block addresses to blockdev
 733 */
 734int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
 735						int create, int flag)
 736{
 737	unsigned int maxblocks = map->m_len;
 738	struct dnode_of_data dn;
 739	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 740	int mode = create ? ALLOC_NODE : LOOKUP_NODE;
 741	pgoff_t pgofs, end_offset, end;
 742	int err = 0, ofs = 1;
 743	unsigned int ofs_in_node, last_ofs_in_node;
 744	blkcnt_t prealloc;
 745	struct extent_info ei;
 746	block_t blkaddr;
 
 747
 748	if (!maxblocks)
 749		return 0;
 750
 751	map->m_len = 0;
 752	map->m_flags = 0;
 753
 754	/* it only supports block size == page size */
 755	pgofs =	(pgoff_t)map->m_lblk;
 756	end = pgofs + maxblocks;
 757
 758	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
 
 
 
 
 759		map->m_pblk = ei.blk + pgofs - ei.fofs;
 760		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
 761		map->m_flags = F2FS_MAP_MAPPED;
 
 
 
 
 
 
 
 762		goto out;
 763	}
 764
 765next_dnode:
 766	if (create)
 767		f2fs_lock_op(sbi);
 768
 769	/* When reading holes, we need its node page */
 770	set_new_dnode(&dn, inode, NULL, NULL, 0);
 771	err = get_dnode_of_data(&dn, pgofs, mode);
 772	if (err) {
 773		if (flag == F2FS_GET_BLOCK_BMAP)
 774			map->m_pblk = 0;
 775		if (err == -ENOENT) {
 776			err = 0;
 777			if (map->m_next_pgofs)
 778				*map->m_next_pgofs =
 779					get_next_page_offset(&dn, pgofs);
 
 
 
 780		}
 781		goto unlock_out;
 782	}
 783
 
 784	prealloc = 0;
 785	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
 786	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
 787
 788next_block:
 789	blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
 
 
 
 
 
 
 790
 791	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) {
 
 
 
 
 
 
 
 
 
 
 792		if (create) {
 793			if (unlikely(f2fs_cp_error(sbi))) {
 794				err = -EIO;
 795				goto sync_out;
 796			}
 797			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
 798				if (blkaddr == NULL_ADDR) {
 799					prealloc++;
 800					last_ofs_in_node = dn.ofs_in_node;
 801				}
 802			} else {
 803				err = __allocate_data_block(&dn);
 
 
 
 804				if (!err)
 805					set_inode_flag(inode, FI_APPEND_WRITE);
 806			}
 807			if (err)
 808				goto sync_out;
 809			map->m_flags = F2FS_MAP_NEW;
 810			blkaddr = dn.data_blkaddr;
 811		} else {
 812			if (flag == F2FS_GET_BLOCK_BMAP) {
 813				map->m_pblk = 0;
 814				goto sync_out;
 815			}
 
 
 816			if (flag == F2FS_GET_BLOCK_FIEMAP &&
 817						blkaddr == NULL_ADDR) {
 818				if (map->m_next_pgofs)
 819					*map->m_next_pgofs = pgofs + 1;
 
 820			}
 821			if (flag != F2FS_GET_BLOCK_FIEMAP ||
 822						blkaddr != NEW_ADDR)
 
 
 823				goto sync_out;
 
 824		}
 825	}
 826
 827	if (flag == F2FS_GET_BLOCK_PRE_AIO)
 828		goto skip;
 829
 830	if (map->m_len == 0) {
 831		/* preallocated unwritten block should be mapped for fiemap. */
 832		if (blkaddr == NEW_ADDR)
 833			map->m_flags |= F2FS_MAP_UNWRITTEN;
 834		map->m_flags |= F2FS_MAP_MAPPED;
 835
 836		map->m_pblk = blkaddr;
 837		map->m_len = 1;
 838	} else if ((map->m_pblk != NEW_ADDR &&
 839			blkaddr == (map->m_pblk + ofs)) ||
 840			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
 841			flag == F2FS_GET_BLOCK_PRE_DIO) {
 842		ofs++;
 843		map->m_len++;
 844	} else {
 845		goto sync_out;
 846	}
 847
 848skip:
 849	dn.ofs_in_node++;
 850	pgofs++;
 851
 852	/* preallocate blocks in batch for one dnode page */
 853	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
 854			(pgofs == end || dn.ofs_in_node == end_offset)) {
 855
 856		dn.ofs_in_node = ofs_in_node;
 857		err = reserve_new_blocks(&dn, prealloc);
 858		if (err)
 859			goto sync_out;
 860
 861		map->m_len += dn.ofs_in_node - ofs_in_node;
 862		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
 863			err = -ENOSPC;
 864			goto sync_out;
 865		}
 866		dn.ofs_in_node = end_offset;
 867	}
 868
 869	if (pgofs >= end)
 870		goto sync_out;
 871	else if (dn.ofs_in_node < end_offset)
 872		goto next_block;
 873
 
 
 
 
 
 
 
 
 
 
 874	f2fs_put_dnode(&dn);
 875
 876	if (create) {
 877		f2fs_unlock_op(sbi);
 878		f2fs_balance_fs(sbi, dn.node_changed);
 879	}
 880	goto next_dnode;
 881
 882sync_out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883	f2fs_put_dnode(&dn);
 884unlock_out:
 885	if (create) {
 886		f2fs_unlock_op(sbi);
 887		f2fs_balance_fs(sbi, dn.node_changed);
 888	}
 889out:
 890	trace_f2fs_map_blocks(inode, map, err);
 891	return err;
 892}
 893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894static int __get_data_block(struct inode *inode, sector_t iblock,
 895			struct buffer_head *bh, int create, int flag,
 896			pgoff_t *next_pgofs)
 897{
 898	struct f2fs_map_blocks map;
 899	int err;
 900
 901	map.m_lblk = iblock;
 902	map.m_len = bh->b_size >> inode->i_blkbits;
 903	map.m_next_pgofs = next_pgofs;
 
 
 
 904
 905	err = f2fs_map_blocks(inode, &map, create, flag);
 906	if (!err) {
 907		map_bh(bh, inode->i_sb, map.m_pblk);
 908		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
 909		bh->b_size = map.m_len << inode->i_blkbits;
 910	}
 911	return err;
 912}
 913
 914static int get_data_block(struct inode *inode, sector_t iblock,
 915			struct buffer_head *bh_result, int create, int flag,
 916			pgoff_t *next_pgofs)
 917{
 918	return __get_data_block(inode, iblock, bh_result, create,
 919							flag, next_pgofs);
 
 
 
 
 
 
 
 
 
 
 920}
 921
 922static int get_data_block_dio(struct inode *inode, sector_t iblock,
 923			struct buffer_head *bh_result, int create)
 924{
 925	return __get_data_block(inode, iblock, bh_result, create,
 926						F2FS_GET_BLOCK_DIO, NULL);
 
 
 927}
 928
 929static int get_data_block_bmap(struct inode *inode, sector_t iblock,
 930			struct buffer_head *bh_result, int create)
 931{
 932	/* Block number less than F2FS MAX BLOCKS */
 933	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
 934		return -EFBIG;
 935
 936	return __get_data_block(inode, iblock, bh_result, create,
 937						F2FS_GET_BLOCK_BMAP, NULL);
 
 938}
 939
 940static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
 941{
 942	return (offset >> inode->i_blkbits);
 943}
 944
 945static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
 946{
 947	return (blk << inode->i_blkbits);
 948}
 949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 950int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
 951		u64 start, u64 len)
 952{
 953	struct buffer_head map_bh;
 954	sector_t start_blk, last_blk;
 955	pgoff_t next_pgofs;
 956	u64 logical = 0, phys = 0, size = 0;
 957	u32 flags = 0;
 958	int ret = 0;
 959
 960	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
 
 
 
 
 
 
 961	if (ret)
 962		return ret;
 963
 964	if (f2fs_has_inline_data(inode)) {
 
 
 
 
 
 
 
 965		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
 966		if (ret != -EAGAIN)
 967			return ret;
 968	}
 969
 970	inode_lock(inode);
 971
 972	if (logical_to_blk(inode, len) == 0)
 973		len = blk_to_logical(inode, 1);
 974
 975	start_blk = logical_to_blk(inode, start);
 976	last_blk = logical_to_blk(inode, start + len - 1);
 977
 978next:
 979	memset(&map_bh, 0, sizeof(struct buffer_head));
 980	map_bh.b_size = len;
 981
 982	ret = get_data_block(inode, start_blk, &map_bh, 0,
 983					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
 984	if (ret)
 985		goto out;
 986
 987	/* HOLE */
 988	if (!buffer_mapped(&map_bh)) {
 989		start_blk = next_pgofs;
 990
 991		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
 992					F2FS_I_SB(inode)->max_file_blocks))
 993			goto prep_next;
 994
 995		flags |= FIEMAP_EXTENT_LAST;
 996	}
 997
 998	if (size) {
 999		if (f2fs_encrypted_inode(inode))
1000			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1001
1002		ret = fiemap_fill_next_extent(fieinfo, logical,
1003				phys, size, flags);
1004	}
1005
1006	if (start_blk > last_blk || ret)
1007		goto out;
1008
1009	logical = blk_to_logical(inode, start_blk);
1010	phys = blk_to_logical(inode, map_bh.b_blocknr);
1011	size = map_bh.b_size;
1012	flags = 0;
1013	if (buffer_unwritten(&map_bh))
1014		flags = FIEMAP_EXTENT_UNWRITTEN;
1015
1016	start_blk += logical_to_blk(inode, size);
1017
1018prep_next:
1019	cond_resched();
1020	if (fatal_signal_pending(current))
1021		ret = -EINTR;
1022	else
1023		goto next;
1024out:
1025	if (ret == 1)
1026		ret = 0;
1027
1028	inode_unlock(inode);
1029	return ret;
1030}
1031
1032static struct bio *f2fs_grab_bio(struct inode *inode, block_t blkaddr,
1033				 unsigned nr_pages)
1034{
1035	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1036	struct fscrypt_ctx *ctx = NULL;
1037	struct bio *bio;
1038
1039	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1040		ctx = fscrypt_get_ctx(inode, GFP_NOFS);
1041		if (IS_ERR(ctx))
1042			return ERR_CAST(ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044		/* wait the page to be moved by cleaning */
1045		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046	}
1047
1048	bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
1049	if (!bio) {
1050		if (ctx)
1051			fscrypt_release_ctx(ctx);
1052		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
1053	}
1054	f2fs_target_device(sbi, blkaddr, bio);
1055	bio->bi_end_io = f2fs_read_end_io;
1056	bio->bi_private = ctx;
1057
1058	return bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059}
1060
1061/*
1062 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1063 * Major change was from block_size == page_size in f2fs by default.
 
 
 
 
 
1064 */
1065static int f2fs_mpage_readpages(struct address_space *mapping,
1066			struct list_head *pages, struct page *page,
1067			unsigned nr_pages)
1068{
1069	struct bio *bio = NULL;
1070	unsigned page_idx;
1071	sector_t last_block_in_bio = 0;
1072	struct inode *inode = mapping->host;
1073	const unsigned blkbits = inode->i_blkbits;
1074	const unsigned blocksize = 1 << blkbits;
1075	sector_t block_in_file;
1076	sector_t last_block;
1077	sector_t last_block_in_file;
1078	sector_t block_nr;
1079	struct f2fs_map_blocks map;
 
1080
1081	map.m_pblk = 0;
1082	map.m_lblk = 0;
1083	map.m_len = 0;
1084	map.m_flags = 0;
1085	map.m_next_pgofs = NULL;
 
 
 
1086
1087	for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1088
1089		prefetchw(&page->flags);
1090		if (pages) {
1091			page = list_entry(pages->prev, struct page, lru);
 
 
1092			list_del(&page->lru);
1093			if (add_to_page_cache_lru(page, mapping,
1094						  page->index,
1095						  readahead_gfp_mask(mapping)))
1096				goto next_page;
1097		}
1098
1099		block_in_file = (sector_t)page->index;
1100		last_block = block_in_file + nr_pages;
1101		last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1102								blkbits;
1103		if (last_block > last_block_in_file)
1104			last_block = last_block_in_file;
1105
1106		/*
1107		 * Map blocks using the previous result first.
1108		 */
1109		if ((map.m_flags & F2FS_MAP_MAPPED) &&
1110				block_in_file > map.m_lblk &&
1111				block_in_file < (map.m_lblk + map.m_len))
1112			goto got_it;
1113
1114		/*
1115		 * Then do more f2fs_map_blocks() calls until we are
1116		 * done with this page.
1117		 */
1118		map.m_flags = 0;
1119
1120		if (block_in_file < last_block) {
1121			map.m_lblk = block_in_file;
1122			map.m_len = last_block - block_in_file;
1123
1124			if (f2fs_map_blocks(inode, &map, 0,
1125						F2FS_GET_BLOCK_READ))
1126				goto set_error_page;
1127		}
1128got_it:
1129		if ((map.m_flags & F2FS_MAP_MAPPED)) {
1130			block_nr = map.m_pblk + block_in_file - map.m_lblk;
1131			SetPageMappedToDisk(page);
1132
1133			if (!PageUptodate(page) && !cleancache_get_page(page)) {
1134				SetPageUptodate(page);
1135				goto confused;
1136			}
1137		} else {
1138			zero_user_segment(page, 0, PAGE_SIZE);
1139			if (!PageUptodate(page))
1140				SetPageUptodate(page);
1141			unlock_page(page);
1142			goto next_page;
1143		}
1144
1145		/*
1146		 * This page will go to BIO.  Do we need to send this
1147		 * BIO off first?
1148		 */
1149		if (bio && (last_block_in_bio != block_nr - 1 ||
1150			!__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1151submit_and_realloc:
1152			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1153			bio = NULL;
1154		}
1155		if (bio == NULL) {
1156			bio = f2fs_grab_bio(inode, block_nr, nr_pages);
1157			if (IS_ERR(bio)) {
1158				bio = NULL;
1159				goto set_error_page;
1160			}
1161			bio_set_op_attrs(bio, REQ_OP_READ, 0);
1162		}
1163
1164		if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1165			goto submit_and_realloc;
1166
1167		last_block_in_bio = block_nr;
1168		goto next_page;
1169set_error_page:
1170		SetPageError(page);
1171		zero_user_segment(page, 0, PAGE_SIZE);
1172		unlock_page(page);
1173		goto next_page;
1174confused:
1175		if (bio) {
1176			__submit_bio(F2FS_I_SB(inode), bio, DATA);
1177			bio = NULL;
1178		}
1179		unlock_page(page);
1180next_page:
1181		if (pages)
1182			put_page(page);
1183	}
1184	BUG_ON(pages && !list_empty(pages));
1185	if (bio)
1186		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1187	return 0;
1188}
1189
1190static int f2fs_read_data_page(struct file *file, struct page *page)
1191{
1192	struct inode *inode = page->mapping->host;
1193	int ret = -EAGAIN;
1194
1195	trace_f2fs_readpage(page, DATA);
1196
1197	/* If the file has inline data, try to read it directly */
1198	if (f2fs_has_inline_data(inode))
1199		ret = f2fs_read_inline_data(inode, page);
1200	if (ret == -EAGAIN)
1201		ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
 
1202	return ret;
1203}
1204
1205static int f2fs_read_data_pages(struct file *file,
1206			struct address_space *mapping,
1207			struct list_head *pages, unsigned nr_pages)
1208{
1209	struct inode *inode = file->f_mapping->host;
1210	struct page *page = list_entry(pages->prev, struct page, lru);
1211
1212	trace_f2fs_readpages(inode, page, nr_pages);
1213
1214	/* If the file has inline data, skip readpages */
1215	if (f2fs_has_inline_data(inode))
1216		return 0;
1217
1218	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1219}
1220
1221int do_write_data_page(struct f2fs_io_info *fio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222{
1223	struct page *page = fio->page;
1224	struct inode *inode = page->mapping->host;
1225	struct dnode_of_data dn;
 
 
 
1226	int err = 0;
1227
1228	set_new_dnode(&dn, inode, NULL, NULL, 0);
1229	err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230	if (err)
1231		return err;
1232
1233	fio->old_blkaddr = dn.data_blkaddr;
1234
1235	/* This page is already truncated */
1236	if (fio->old_blkaddr == NULL_ADDR) {
1237		ClearPageUptodate(page);
 
1238		goto out_writepage;
1239	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1240
1241	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode)) {
1242		gfp_t gfp_flags = GFP_NOFS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243
1244		/* wait for GCed encrypted page writeback */
1245		f2fs_wait_on_encrypted_page_writeback(F2FS_I_SB(inode),
1246							fio->old_blkaddr);
1247retry_encrypt:
1248		fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1249							PAGE_SIZE, 0,
1250							fio->page->index,
1251							gfp_flags);
1252		if (IS_ERR(fio->encrypted_page)) {
1253			err = PTR_ERR(fio->encrypted_page);
1254			if (err == -ENOMEM) {
1255				/* flush pending ios and wait for a while */
1256				f2fs_flush_merged_bios(F2FS_I_SB(inode));
1257				congestion_wait(BLK_RW_ASYNC, HZ/50);
1258				gfp_flags |= __GFP_NOFAIL;
1259				err = 0;
1260				goto retry_encrypt;
1261			}
1262			goto out_writepage;
1263		}
 
1264	}
1265
 
 
 
 
 
 
 
 
 
 
1266	set_page_writeback(page);
 
1267
1268	/*
1269	 * If current allocation needs SSR,
1270	 * it had better in-place writes for updated data.
1271	 */
1272	if (unlikely(fio->old_blkaddr != NEW_ADDR &&
1273			!is_cold_data(page) &&
1274			!IS_ATOMIC_WRITTEN_PAGE(page) &&
1275			need_inplace_update(inode))) {
1276		rewrite_data_page(fio);
1277		set_inode_flag(inode, FI_UPDATE_WRITE);
1278		trace_f2fs_do_write_data_page(page, IPU);
1279	} else {
1280		write_data_page(&dn, fio);
1281		trace_f2fs_do_write_data_page(page, OPU);
1282		set_inode_flag(inode, FI_APPEND_WRITE);
1283		if (page->index == 0)
1284			set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1285	}
1286out_writepage:
1287	f2fs_put_dnode(&dn);
 
 
 
1288	return err;
1289}
1290
1291static int f2fs_write_data_page(struct page *page,
1292					struct writeback_control *wbc)
 
 
 
1293{
1294	struct inode *inode = page->mapping->host;
1295	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1296	loff_t i_size = i_size_read(inode);
1297	const pgoff_t end_index = ((unsigned long long) i_size)
1298							>> PAGE_SHIFT;
1299	loff_t psize = (page->index + 1) << PAGE_SHIFT;
1300	unsigned offset = 0;
1301	bool need_balance_fs = false;
1302	int err = 0;
1303	struct f2fs_io_info fio = {
1304		.sbi = sbi,
 
1305		.type = DATA,
1306		.op = REQ_OP_WRITE,
1307		.op_flags = wbc_to_write_flags(wbc),
 
1308		.page = page,
1309		.encrypted_page = NULL,
 
 
 
 
 
 
1310	};
1311
1312	trace_f2fs_writepage(page, DATA);
1313
1314	if (page->index < end_index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315		goto write;
1316
1317	/*
1318	 * If the offset is out-of-range of file size,
1319	 * this page does not have to be written to disk.
1320	 */
1321	offset = i_size & (PAGE_SIZE - 1);
1322	if ((page->index >= end_index + 1) || !offset)
1323		goto out;
1324
1325	zero_user_segment(page, offset, PAGE_SIZE);
1326write:
1327	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1328		goto redirty_out;
1329	if (f2fs_is_drop_cache(inode))
1330		goto out;
1331	/* we should not write 0'th page having journal header */
1332	if (f2fs_is_volatile_file(inode) && (!page->index ||
1333			(!wbc->for_reclaim &&
1334			available_free_memory(sbi, BASE_CHECK))))
1335		goto redirty_out;
1336
1337	/* we should bypass data pages to proceed the kworkder jobs */
1338	if (unlikely(f2fs_cp_error(sbi))) {
1339		mapping_set_error(page->mapping, -EIO);
1340		goto out;
1341	}
1342
1343	/* Dentry blocks are controlled by checkpoint */
1344	if (S_ISDIR(inode->i_mode)) {
1345		err = do_write_data_page(&fio);
 
1346		goto done;
1347	}
1348
1349	if (!wbc->for_reclaim)
1350		need_balance_fs = true;
1351	else if (has_not_enough_free_secs(sbi, 0, 0))
1352		goto redirty_out;
 
 
1353
1354	err = -EAGAIN;
1355	f2fs_lock_op(sbi);
1356	if (f2fs_has_inline_data(inode))
1357		err = f2fs_write_inline_data(inode, page);
1358	if (err == -EAGAIN)
1359		err = do_write_data_page(&fio);
1360	if (F2FS_I(inode)->last_disk_size < psize)
1361		F2FS_I(inode)->last_disk_size = psize;
1362	f2fs_unlock_op(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1363done:
1364	if (err && err != -ENOENT)
1365		goto redirty_out;
1366
1367out:
1368	inode_dec_dirty_pages(inode);
1369	if (err)
1370		ClearPageUptodate(page);
 
 
1371
1372	if (wbc->for_reclaim) {
1373		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, DATA, WRITE);
1374		remove_dirty_inode(inode);
 
 
1375	}
1376
1377	unlock_page(page);
1378	f2fs_balance_fs(sbi, need_balance_fs);
 
 
 
 
 
 
 
 
 
 
1379
1380	if (unlikely(f2fs_cp_error(sbi)))
1381		f2fs_submit_merged_bio(sbi, DATA, WRITE);
1382
1383	return 0;
1384
1385redirty_out:
1386	redirty_page_for_writepage(wbc, page);
1387	if (!err)
 
 
 
 
 
 
1388		return AOP_WRITEPAGE_ACTIVATE;
1389	unlock_page(page);
1390	return err;
1391}
1392
 
 
 
 
 
 
1393/*
1394 * This function was copied from write_cche_pages from mm/page-writeback.c.
1395 * The major change is making write step of cold data page separately from
1396 * warm/hot data page.
1397 */
1398static int f2fs_write_cache_pages(struct address_space *mapping,
1399					struct writeback_control *wbc)
 
1400{
1401	int ret = 0;
1402	int done = 0;
1403	struct pagevec pvec;
 
 
 
1404	int nr_pages;
1405	pgoff_t uninitialized_var(writeback_index);
1406	pgoff_t index;
1407	pgoff_t end;		/* Inclusive */
1408	pgoff_t done_index;
1409	int cycled;
1410	int range_whole = 0;
1411	int tag;
1412	int nwritten = 0;
1413
1414	pagevec_init(&pvec, 0);
 
 
 
 
 
 
1415
1416	if (wbc->range_cyclic) {
1417		writeback_index = mapping->writeback_index; /* prev offset */
1418		index = writeback_index;
1419		if (index == 0)
1420			cycled = 1;
1421		else
1422			cycled = 0;
1423		end = -1;
1424	} else {
1425		index = wbc->range_start >> PAGE_SHIFT;
1426		end = wbc->range_end >> PAGE_SHIFT;
1427		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1428			range_whole = 1;
1429		cycled = 1; /* ignore range_cyclic tests */
1430	}
1431	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1432		tag = PAGECACHE_TAG_TOWRITE;
1433	else
1434		tag = PAGECACHE_TAG_DIRTY;
1435retry:
1436	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1437		tag_pages_for_writeback(mapping, index, end);
1438	done_index = index;
1439	while (!done && (index <= end)) {
1440		int i;
1441
1442		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1443			      min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1444		if (nr_pages == 0)
1445			break;
1446
1447		for (i = 0; i < nr_pages; i++) {
1448			struct page *page = pvec.pages[i];
 
1449
1450			if (page->index > end) {
 
 
1451				done = 1;
1452				break;
1453			}
1454
1455			done_index = page->index;
1456
1457			lock_page(page);
1458
1459			if (unlikely(page->mapping != mapping)) {
1460continue_unlock:
1461				unlock_page(page);
1462				continue;
1463			}
1464
1465			if (!PageDirty(page)) {
1466				/* someone wrote it for us */
1467				goto continue_unlock;
1468			}
1469
1470			if (PageWriteback(page)) {
1471				if (wbc->sync_mode != WB_SYNC_NONE)
1472					f2fs_wait_on_page_writeback(page,
1473								DATA, true);
1474				else
 
1475					goto continue_unlock;
 
1476			}
1477
1478			BUG_ON(PageWriteback(page));
1479			if (!clear_page_dirty_for_io(page))
1480				goto continue_unlock;
1481
1482			ret = mapping->a_ops->writepage(page, wbc);
 
1483			if (unlikely(ret)) {
1484				/*
1485				 * keep nr_to_write, since vfs uses this to
1486				 * get # of written pages.
1487				 */
1488				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1489					unlock_page(page);
1490					ret = 0;
1491					continue;
 
 
 
 
 
 
 
 
 
1492				}
1493				done_index = page->index + 1;
1494				done = 1;
1495				break;
1496			} else {
1497				nwritten++;
1498			}
1499
1500			if (--wbc->nr_to_write <= 0 &&
1501			    wbc->sync_mode == WB_SYNC_NONE) {
1502				done = 1;
1503				break;
1504			}
1505		}
1506		pagevec_release(&pvec);
1507		cond_resched();
1508	}
1509
1510	if (!cycled && !done) {
1511		cycled = 1;
1512		index = 0;
1513		end = writeback_index - 1;
1514		goto retry;
1515	}
1516	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1517		mapping->writeback_index = done_index;
1518
1519	if (nwritten)
1520		f2fs_submit_merged_bio_cond(F2FS_M_SB(mapping), mapping->host,
1521							NULL, 0, DATA, WRITE);
 
 
 
1522
1523	return ret;
1524}
1525
1526static int f2fs_write_data_pages(struct address_space *mapping,
1527			    struct writeback_control *wbc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528{
1529	struct inode *inode = mapping->host;
1530	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1531	struct blk_plug plug;
1532	int ret;
 
1533
1534	/* deal with chardevs and other special file */
1535	if (!mapping->a_ops->writepage)
1536		return 0;
1537
1538	/* skip writing if there is no dirty page in this inode */
1539	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1540		return 0;
1541
1542	if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
 
 
 
 
 
1543			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1544			available_free_memory(sbi, DIRTY_DENTS))
1545		goto skip_write;
1546
1547	/* skip writing during file defragment */
1548	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1549		goto skip_write;
1550
1551	/* during POR, we don't need to trigger writepage at all. */
1552	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 
 
 
 
1553		goto skip_write;
1554
1555	trace_f2fs_writepages(mapping->host, wbc, DATA);
 
 
 
1556
1557	blk_start_plug(&plug);
1558	ret = f2fs_write_cache_pages(mapping, wbc);
1559	blk_finish_plug(&plug);
 
 
 
 
 
 
1560	/*
1561	 * if some pages were truncated, we cannot guarantee its mapping->host
1562	 * to detect pending bios.
1563	 */
1564
1565	remove_dirty_inode(inode);
1566	return ret;
1567
1568skip_write:
1569	wbc->pages_skipped += get_dirty_pages(inode);
1570	trace_f2fs_writepages(mapping->host, wbc, DATA);
1571	return 0;
1572}
1573
 
 
 
 
 
 
 
 
 
 
1574static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1575{
1576	struct inode *inode = mapping->host;
1577	loff_t i_size = i_size_read(inode);
1578
1579	if (to > i_size) {
 
 
 
 
1580		truncate_pagecache(inode, i_size);
1581		truncate_blocks(inode, i_size, true);
 
 
 
 
1582	}
1583}
1584
1585static int prepare_write_begin(struct f2fs_sb_info *sbi,
1586			struct page *page, loff_t pos, unsigned len,
1587			block_t *blk_addr, bool *node_changed)
1588{
1589	struct inode *inode = page->mapping->host;
1590	pgoff_t index = page->index;
1591	struct dnode_of_data dn;
1592	struct page *ipage;
1593	bool locked = false;
1594	struct extent_info ei;
1595	int err = 0;
 
1596
1597	/*
1598	 * we already allocated all the blocks, so we don't need to get
1599	 * the block addresses when there is no need to fill the page.
1600	 */
1601	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE)
 
 
1602		return 0;
1603
 
 
 
 
 
 
1604	if (f2fs_has_inline_data(inode) ||
1605			(pos & PAGE_MASK) >= i_size_read(inode)) {
1606		f2fs_lock_op(sbi);
1607		locked = true;
1608	}
1609restart:
1610	/* check inline_data */
1611	ipage = get_node_page(sbi, inode->i_ino);
1612	if (IS_ERR(ipage)) {
1613		err = PTR_ERR(ipage);
1614		goto unlock_out;
1615	}
1616
1617	set_new_dnode(&dn, inode, ipage, ipage, 0);
1618
1619	if (f2fs_has_inline_data(inode)) {
1620		if (pos + len <= MAX_INLINE_DATA) {
1621			read_inline_data(page, ipage);
1622			set_inode_flag(inode, FI_DATA_EXIST);
1623			if (inode->i_nlink)
1624				set_inline_node(ipage);
1625		} else {
1626			err = f2fs_convert_inline_page(&dn, page);
1627			if (err)
1628				goto out;
1629			if (dn.data_blkaddr == NULL_ADDR)
1630				err = f2fs_get_block(&dn, index);
1631		}
1632	} else if (locked) {
1633		err = f2fs_get_block(&dn, index);
1634	} else {
1635		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1636			dn.data_blkaddr = ei.blk + index - ei.fofs;
1637		} else {
1638			/* hole case */
1639			err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1640			if (err || dn.data_blkaddr == NULL_ADDR) {
1641				f2fs_put_dnode(&dn);
1642				f2fs_lock_op(sbi);
 
 
1643				locked = true;
1644				goto restart;
1645			}
1646		}
1647	}
1648
1649	/* convert_inline_page can make node_changed */
1650	*blk_addr = dn.data_blkaddr;
1651	*node_changed = dn.node_changed;
1652out:
1653	f2fs_put_dnode(&dn);
1654unlock_out:
1655	if (locked)
1656		f2fs_unlock_op(sbi);
1657	return err;
1658}
1659
1660static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1661		loff_t pos, unsigned len, unsigned flags,
1662		struct page **pagep, void **fsdata)
1663{
1664	struct inode *inode = mapping->host;
1665	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1666	struct page *page = NULL;
1667	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1668	bool need_balance = false;
1669	block_t blkaddr = NULL_ADDR;
1670	int err = 0;
1671
1672	trace_f2fs_write_begin(inode, pos, len, flags);
1673
 
 
 
 
 
 
 
 
 
 
 
 
 
1674	/*
1675	 * We should check this at this moment to avoid deadlock on inode page
1676	 * and #0 page. The locking rule for inline_data conversion should be:
1677	 * lock_page(page #0) -> lock_page(inode_page)
1678	 */
1679	if (index != 0) {
1680		err = f2fs_convert_inline_inode(inode);
1681		if (err)
1682			goto fail;
1683	}
1684repeat:
1685	page = grab_cache_page_write_begin(mapping, index, flags);
 
 
 
 
 
1686	if (!page) {
1687		err = -ENOMEM;
1688		goto fail;
1689	}
1690
1691	*pagep = page;
1692
1693	err = prepare_write_begin(sbi, page, pos, len,
1694					&blkaddr, &need_balance);
1695	if (err)
1696		goto fail;
1697
1698	if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
 
1699		unlock_page(page);
1700		f2fs_balance_fs(sbi, true);
1701		lock_page(page);
1702		if (page->mapping != mapping) {
1703			/* The page got truncated from under us */
1704			f2fs_put_page(page, 1);
1705			goto repeat;
1706		}
1707	}
1708
1709	f2fs_wait_on_page_writeback(page, DATA, false);
1710
1711	/* wait for GCed encrypted page writeback */
1712	if (f2fs_encrypted_inode(inode) && S_ISREG(inode->i_mode))
1713		f2fs_wait_on_encrypted_page_writeback(sbi, blkaddr);
1714
1715	if (len == PAGE_SIZE || PageUptodate(page))
1716		return 0;
1717
 
 
 
 
 
 
1718	if (blkaddr == NEW_ADDR) {
1719		zero_user_segment(page, 0, PAGE_SIZE);
1720		SetPageUptodate(page);
1721	} else {
1722		struct bio *bio;
1723
1724		bio = f2fs_grab_bio(inode, blkaddr, 1);
1725		if (IS_ERR(bio)) {
1726			err = PTR_ERR(bio);
1727			goto fail;
1728		}
1729		bio->bi_opf = REQ_OP_READ;
1730		if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1731			bio_put(bio);
1732			err = -EFAULT;
1733			goto fail;
1734		}
1735
1736		__submit_bio(sbi, bio, DATA);
1737
1738		lock_page(page);
1739		if (unlikely(page->mapping != mapping)) {
1740			f2fs_put_page(page, 1);
1741			goto repeat;
1742		}
1743		if (unlikely(!PageUptodate(page))) {
1744			err = -EIO;
1745			goto fail;
1746		}
1747	}
1748	return 0;
1749
1750fail:
1751	f2fs_put_page(page, 1);
1752	f2fs_write_failed(mapping, pos + len);
 
 
1753	return err;
1754}
1755
1756static int f2fs_write_end(struct file *file,
1757			struct address_space *mapping,
1758			loff_t pos, unsigned len, unsigned copied,
1759			struct page *page, void *fsdata)
1760{
1761	struct inode *inode = page->mapping->host;
1762
1763	trace_f2fs_write_end(inode, pos, len, copied);
1764
1765	/*
1766	 * This should be come from len == PAGE_SIZE, and we expect copied
1767	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
1768	 * let generic_perform_write() try to copy data again through copied=0.
1769	 */
1770	if (!PageUptodate(page)) {
1771		if (unlikely(copied != PAGE_SIZE))
1772			copied = 0;
1773		else
1774			SetPageUptodate(page);
1775	}
1776	if (!copied)
1777		goto unlock_out;
1778
1779	set_page_dirty(page);
1780
1781	if (pos + copied > i_size_read(inode))
 
1782		f2fs_i_size_write(inode, pos + copied);
1783unlock_out:
1784	f2fs_put_page(page, 1);
1785	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
1786	return copied;
1787}
1788
1789static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
1790			   loff_t offset)
1791{
1792	unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1793
1794	if (offset & blocksize_mask)
1795		return -EINVAL;
1796
1797	if (iov_iter_alignment(iter) & blocksize_mask)
1798		return -EINVAL;
1799
1800	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1801}
1802
1803static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1804{
1805	struct address_space *mapping = iocb->ki_filp->f_mapping;
1806	struct inode *inode = mapping->host;
 
 
1807	size_t count = iov_iter_count(iter);
1808	loff_t offset = iocb->ki_pos;
1809	int rw = iov_iter_rw(iter);
1810	int err;
 
 
 
1811
1812	err = check_direct_IO(inode, iter, offset);
1813	if (err)
1814		return err;
1815
1816	if (__force_buffered_io(inode, rw))
1817		return 0;
1818
 
 
1819	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
1820
1821	down_read(&F2FS_I(inode)->dio_rwsem[rw]);
1822	err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
1823	up_read(&F2FS_I(inode)->dio_rwsem[rw]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824
1825	if (rw == WRITE) {
1826		if (err > 0)
1827			set_inode_flag(inode, FI_UPDATE_WRITE);
1828		else if (err < 0)
 
 
 
 
 
1829			f2fs_write_failed(mapping, offset + count);
 
1830	}
1831
 
1832	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
1833
1834	return err;
1835}
1836
1837void f2fs_invalidate_page(struct page *page, unsigned int offset,
1838							unsigned int length)
1839{
1840	struct inode *inode = page->mapping->host;
1841	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1842
1843	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
1844		(offset % PAGE_SIZE || length != PAGE_SIZE))
1845		return;
1846
1847	if (PageDirty(page)) {
1848		if (inode->i_ino == F2FS_META_INO(sbi)) {
1849			dec_page_count(sbi, F2FS_DIRTY_META);
1850		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
1851			dec_page_count(sbi, F2FS_DIRTY_NODES);
1852		} else {
1853			inode_dec_dirty_pages(inode);
1854			remove_dirty_inode(inode);
1855		}
1856	}
1857
1858	/* This is atomic written page, keep Private */
 
1859	if (IS_ATOMIC_WRITTEN_PAGE(page))
1860		return;
1861
1862	set_page_private(page, 0);
1863	ClearPagePrivate(page);
1864}
1865
1866int f2fs_release_page(struct page *page, gfp_t wait)
1867{
1868	/* If this is dirty page, keep PagePrivate */
1869	if (PageDirty(page))
1870		return 0;
1871
1872	/* This is atomic written page, keep Private */
1873	if (IS_ATOMIC_WRITTEN_PAGE(page))
1874		return 0;
1875
1876	set_page_private(page, 0);
1877	ClearPagePrivate(page);
1878	return 1;
1879}
1880
1881/*
1882 * This was copied from __set_page_dirty_buffers which gives higher performance
1883 * in very high speed storages. (e.g., pmem)
1884 */
1885void f2fs_set_page_dirty_nobuffers(struct page *page)
1886{
1887	struct address_space *mapping = page->mapping;
1888	unsigned long flags;
1889
1890	if (unlikely(!mapping))
1891		return;
1892
1893	spin_lock(&mapping->private_lock);
1894	lock_page_memcg(page);
1895	SetPageDirty(page);
1896	spin_unlock(&mapping->private_lock);
1897
1898	spin_lock_irqsave(&mapping->tree_lock, flags);
1899	WARN_ON_ONCE(!PageUptodate(page));
1900	account_page_dirtied(page, mapping);
1901	radix_tree_tag_set(&mapping->page_tree,
1902			page_index(page), PAGECACHE_TAG_DIRTY);
1903	spin_unlock_irqrestore(&mapping->tree_lock, flags);
1904	unlock_page_memcg(page);
1905
1906	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1907	return;
1908}
1909
1910static int f2fs_set_data_page_dirty(struct page *page)
1911{
1912	struct address_space *mapping = page->mapping;
1913	struct inode *inode = mapping->host;
1914
1915	trace_f2fs_set_page_dirty(page, DATA);
1916
1917	if (!PageUptodate(page))
1918		SetPageUptodate(page);
 
 
1919
1920	if (f2fs_is_atomic_file(inode)) {
1921		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
1922			register_inmem_page(inode, page);
1923			return 1;
1924		}
1925		/*
1926		 * Previously, this page has been registered, we just
1927		 * return here.
1928		 */
1929		return 0;
1930	}
1931
1932	if (!PageDirty(page)) {
1933		f2fs_set_page_dirty_nobuffers(page);
1934		update_dirty_page(inode, page);
1935		return 1;
1936	}
1937	return 0;
1938}
1939
1940static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1941{
1942	struct inode *inode = mapping->host;
1943
1944	if (f2fs_has_inline_data(inode))
1945		return 0;
1946
1947	/* make sure allocating whole blocks */
1948	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1949		filemap_write_and_wait(mapping);
1950
1951	return generic_block_bmap(mapping, block, get_data_block_bmap);
1952}
1953
1954#ifdef CONFIG_MIGRATION
1955#include <linux/migrate.h>
1956
1957int f2fs_migrate_page(struct address_space *mapping,
1958		struct page *newpage, struct page *page, enum migrate_mode mode)
1959{
1960	int rc, extra_count;
1961	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
1962	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
1963
1964	BUG_ON(PageWriteback(page));
1965
1966	/* migrating an atomic written page is safe with the inmem_lock hold */
1967	if (atomic_written && !mutex_trylock(&fi->inmem_lock))
1968		return -EAGAIN;
 
 
 
 
1969
1970	/*
1971	 * A reference is expected if PagePrivate set when move mapping,
1972	 * however F2FS breaks this for maintaining dirty page counts when
1973	 * truncating pages. So here adjusting the 'extra_count' make it work.
1974	 */
1975	extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
1976	rc = migrate_page_move_mapping(mapping, newpage,
1977				page, NULL, mode, extra_count);
1978	if (rc != MIGRATEPAGE_SUCCESS) {
1979		if (atomic_written)
1980			mutex_unlock(&fi->inmem_lock);
1981		return rc;
1982	}
1983
1984	if (atomic_written) {
1985		struct inmem_pages *cur;
1986		list_for_each_entry(cur, &fi->inmem_pages, list)
1987			if (cur->page == page) {
1988				cur->page = newpage;
1989				break;
1990			}
1991		mutex_unlock(&fi->inmem_lock);
1992		put_page(page);
1993		get_page(newpage);
1994	}
1995
1996	if (PagePrivate(page))
1997		SetPagePrivate(newpage);
1998	set_page_private(newpage, page_private(page));
 
1999
2000	migrate_page_copy(newpage, page);
 
 
 
2001
2002	return MIGRATEPAGE_SUCCESS;
2003}
2004#endif
2005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2006const struct address_space_operations f2fs_dblock_aops = {
2007	.readpage	= f2fs_read_data_page,
2008	.readpages	= f2fs_read_data_pages,
2009	.writepage	= f2fs_write_data_page,
2010	.writepages	= f2fs_write_data_pages,
2011	.write_begin	= f2fs_write_begin,
2012	.write_end	= f2fs_write_end,
2013	.set_page_dirty	= f2fs_set_data_page_dirty,
2014	.invalidatepage	= f2fs_invalidate_page,
2015	.releasepage	= f2fs_release_page,
2016	.direct_IO	= f2fs_direct_IO,
2017	.bmap		= f2fs_bmap,
 
 
2018#ifdef CONFIG_MIGRATION
2019	.migratepage    = f2fs_migrate_page,
2020#endif
2021};
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/data.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/buffer_head.h>
  11#include <linux/mpage.h>
  12#include <linux/writeback.h>
  13#include <linux/backing-dev.h>
  14#include <linux/pagevec.h>
  15#include <linux/blkdev.h>
  16#include <linux/bio.h>
  17#include <linux/swap.h>
  18#include <linux/prefetch.h>
  19#include <linux/uio.h>
 
 
  20#include <linux/cleancache.h>
  21#include <linux/sched/signal.h>
  22
  23#include "f2fs.h"
  24#include "node.h"
  25#include "segment.h"
  26#include "trace.h"
  27#include <trace/events/f2fs.h>
  28
  29#define NUM_PREALLOC_POST_READ_CTXS	128
  30
  31static struct kmem_cache *bio_post_read_ctx_cache;
  32static mempool_t *bio_post_read_ctx_pool;
  33
  34static bool __is_cp_guaranteed(struct page *page)
  35{
  36	struct address_space *mapping = page->mapping;
  37	struct inode *inode;
  38	struct f2fs_sb_info *sbi;
  39
  40	if (!mapping)
  41		return false;
  42
  43	inode = mapping->host;
  44	sbi = F2FS_I_SB(inode);
  45
  46	if (inode->i_ino == F2FS_META_INO(sbi) ||
  47			inode->i_ino ==  F2FS_NODE_INO(sbi) ||
  48			S_ISDIR(inode->i_mode) ||
  49			(S_ISREG(inode->i_mode) &&
  50			(f2fs_is_atomic_file(inode) || IS_NOQUOTA(inode))) ||
  51			is_cold_data(page))
  52		return true;
  53	return false;
  54}
  55
  56static enum count_type __read_io_type(struct page *page)
  57{
  58	struct address_space *mapping = page_file_mapping(page);
 
  59
  60	if (mapping) {
  61		struct inode *inode = mapping->host;
  62		struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
  63
  64		if (inode->i_ino == F2FS_META_INO(sbi))
  65			return F2FS_RD_META;
  66
  67		if (inode->i_ino == F2FS_NODE_INO(sbi))
  68			return F2FS_RD_NODE;
 
 
  69	}
  70	return F2FS_RD_DATA;
  71}
  72
  73/* postprocessing steps for read bios */
  74enum bio_post_read_step {
  75	STEP_INITIAL = 0,
  76	STEP_DECRYPT,
  77	STEP_VERITY,
  78};
  79
  80struct bio_post_read_ctx {
  81	struct bio *bio;
  82	struct work_struct work;
  83	unsigned int cur_step;
  84	unsigned int enabled_steps;
  85};
  86
  87static void __read_end_io(struct bio *bio)
  88{
  89	struct page *page;
  90	struct bio_vec *bv;
  91	struct bvec_iter_all iter_all;
  92
  93	bio_for_each_segment_all(bv, bio, iter_all) {
  94		page = bv->bv_page;
  95
  96		/* PG_error was set if any post_read step failed */
  97		if (bio->bi_status || PageError(page)) {
  98			ClearPageUptodate(page);
  99			/* will re-read again later */
 100			ClearPageError(page);
 101		} else {
 102			SetPageUptodate(page);
 103		}
 104		dec_page_count(F2FS_P_SB(page), __read_io_type(page));
 105		unlock_page(page);
 106	}
 107	if (bio->bi_private)
 108		mempool_free(bio->bi_private, bio_post_read_ctx_pool);
 109	bio_put(bio);
 110}
 111
 112static void bio_post_read_processing(struct bio_post_read_ctx *ctx);
 113
 114static void decrypt_work(struct work_struct *work)
 115{
 116	struct bio_post_read_ctx *ctx =
 117		container_of(work, struct bio_post_read_ctx, work);
 118
 119	fscrypt_decrypt_bio(ctx->bio);
 120
 121	bio_post_read_processing(ctx);
 122}
 123
 124static void verity_work(struct work_struct *work)
 125{
 126	struct bio_post_read_ctx *ctx =
 127		container_of(work, struct bio_post_read_ctx, work);
 128
 129	fsverity_verify_bio(ctx->bio);
 130
 131	bio_post_read_processing(ctx);
 132}
 133
 134static void bio_post_read_processing(struct bio_post_read_ctx *ctx)
 135{
 136	/*
 137	 * We use different work queues for decryption and for verity because
 138	 * verity may require reading metadata pages that need decryption, and
 139	 * we shouldn't recurse to the same workqueue.
 140	 */
 141	switch (++ctx->cur_step) {
 142	case STEP_DECRYPT:
 143		if (ctx->enabled_steps & (1 << STEP_DECRYPT)) {
 144			INIT_WORK(&ctx->work, decrypt_work);
 145			fscrypt_enqueue_decrypt_work(&ctx->work);
 146			return;
 147		}
 148		ctx->cur_step++;
 149		/* fall-through */
 150	case STEP_VERITY:
 151		if (ctx->enabled_steps & (1 << STEP_VERITY)) {
 152			INIT_WORK(&ctx->work, verity_work);
 153			fsverity_enqueue_verify_work(&ctx->work);
 154			return;
 155		}
 156		ctx->cur_step++;
 157		/* fall-through */
 158	default:
 159		__read_end_io(ctx->bio);
 160	}
 161}
 162
 163static bool f2fs_bio_post_read_required(struct bio *bio)
 164{
 165	return bio->bi_private && !bio->bi_status;
 166}
 167
 168static void f2fs_read_end_io(struct bio *bio)
 169{
 170	if (time_to_inject(F2FS_P_SB(bio_first_page_all(bio)),
 171						FAULT_READ_IO)) {
 172		f2fs_show_injection_info(FAULT_READ_IO);
 173		bio->bi_status = BLK_STS_IOERR;
 174	}
 175
 176	if (f2fs_bio_post_read_required(bio)) {
 177		struct bio_post_read_ctx *ctx = bio->bi_private;
 178
 179		ctx->cur_step = STEP_INITIAL;
 180		bio_post_read_processing(ctx);
 181		return;
 182	}
 183
 184	__read_end_io(bio);
 185}
 186
 187static void f2fs_write_end_io(struct bio *bio)
 188{
 189	struct f2fs_sb_info *sbi = bio->bi_private;
 190	struct bio_vec *bvec;
 191	struct bvec_iter_all iter_all;
 192
 193	if (time_to_inject(sbi, FAULT_WRITE_IO)) {
 194		f2fs_show_injection_info(FAULT_WRITE_IO);
 195		bio->bi_status = BLK_STS_IOERR;
 196	}
 197
 198	bio_for_each_segment_all(bvec, bio, iter_all) {
 199		struct page *page = bvec->bv_page;
 200		enum count_type type = WB_DATA_TYPE(page);
 201
 202		if (IS_DUMMY_WRITTEN_PAGE(page)) {
 203			set_page_private(page, (unsigned long)NULL);
 204			ClearPagePrivate(page);
 205			unlock_page(page);
 206			mempool_free(page, sbi->write_io_dummy);
 207
 208			if (unlikely(bio->bi_status))
 209				f2fs_stop_checkpoint(sbi, true);
 210			continue;
 211		}
 212
 213		fscrypt_finalize_bounce_page(&page);
 214
 215		if (unlikely(bio->bi_status)) {
 216			mapping_set_error(page->mapping, -EIO);
 217			if (type == F2FS_WB_CP_DATA)
 218				f2fs_stop_checkpoint(sbi, true);
 219		}
 220
 221		f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
 222					page->index != nid_of_node(page));
 223
 224		dec_page_count(sbi, type);
 225		if (f2fs_in_warm_node_list(sbi, page))
 226			f2fs_del_fsync_node_entry(sbi, page);
 227		clear_cold_data(page);
 228		end_page_writeback(page);
 229	}
 230	if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
 231				wq_has_sleeper(&sbi->cp_wait))
 232		wake_up(&sbi->cp_wait);
 233
 234	bio_put(bio);
 235}
 236
 237/*
 238 * Return true, if pre_bio's bdev is same as its target device.
 239 */
 240struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
 241				block_t blk_addr, struct bio *bio)
 242{
 243	struct block_device *bdev = sbi->sb->s_bdev;
 244	int i;
 245
 246	if (f2fs_is_multi_device(sbi)) {
 247		for (i = 0; i < sbi->s_ndevs; i++) {
 248			if (FDEV(i).start_blk <= blk_addr &&
 249			    FDEV(i).end_blk >= blk_addr) {
 250				blk_addr -= FDEV(i).start_blk;
 251				bdev = FDEV(i).bdev;
 252				break;
 253			}
 254		}
 255	}
 256	if (bio) {
 257		bio_set_dev(bio, bdev);
 258		bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
 259	}
 260	return bdev;
 261}
 262
 263int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
 264{
 265	int i;
 266
 267	if (!f2fs_is_multi_device(sbi))
 268		return 0;
 269
 270	for (i = 0; i < sbi->s_ndevs; i++)
 271		if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
 272			return i;
 273	return 0;
 274}
 275
 276static bool __same_bdev(struct f2fs_sb_info *sbi,
 277				block_t blk_addr, struct bio *bio)
 278{
 279	struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
 280	return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
 281}
 282
 283/*
 284 * Low-level block read/write IO operations.
 285 */
 286static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
 
 287{
 288	struct f2fs_sb_info *sbi = fio->sbi;
 289	struct bio *bio;
 290
 291	bio = f2fs_bio_alloc(sbi, npages, true);
 292
 293	f2fs_target_device(sbi, fio->new_blkaddr, bio);
 294	if (is_read_io(fio->op)) {
 295		bio->bi_end_io = f2fs_read_end_io;
 296		bio->bi_private = NULL;
 297	} else {
 298		bio->bi_end_io = f2fs_write_end_io;
 299		bio->bi_private = sbi;
 300		bio->bi_write_hint = f2fs_io_type_to_rw_hint(sbi,
 301						fio->type, fio->temp);
 302	}
 303	if (fio->io_wbc)
 304		wbc_init_bio(fio->io_wbc, bio);
 305
 306	return bio;
 307}
 308
 309static inline void __submit_bio(struct f2fs_sb_info *sbi,
 310				struct bio *bio, enum page_type type)
 311{
 312	if (!is_read_io(bio_op(bio))) {
 313		unsigned int start;
 314
 315		if (type != DATA && type != NODE)
 316			goto submit_io;
 317
 318		if (test_opt(sbi, LFS) && current->plug)
 319			blk_finish_plug(current->plug);
 320
 321		if (F2FS_IO_ALIGNED(sbi))
 322			goto submit_io;
 323
 324		start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
 325		start %= F2FS_IO_SIZE(sbi);
 326
 327		if (start == 0)
 328			goto submit_io;
 329
 330		/* fill dummy pages */
 331		for (; start < F2FS_IO_SIZE(sbi); start++) {
 332			struct page *page =
 333				mempool_alloc(sbi->write_io_dummy,
 334					      GFP_NOIO | __GFP_NOFAIL);
 335			f2fs_bug_on(sbi, !page);
 336
 337			zero_user_segment(page, 0, PAGE_SIZE);
 338			SetPagePrivate(page);
 339			set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
 340			lock_page(page);
 341			if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
 342				f2fs_bug_on(sbi, 1);
 343		}
 344		/*
 345		 * In the NODE case, we lose next block address chain. So, we
 346		 * need to do checkpoint in f2fs_sync_file.
 347		 */
 348		if (type == NODE)
 349			set_sbi_flag(sbi, SBI_NEED_CP);
 350	}
 351submit_io:
 352	if (is_read_io(bio_op(bio)))
 353		trace_f2fs_submit_read_bio(sbi->sb, type, bio);
 354	else
 355		trace_f2fs_submit_write_bio(sbi->sb, type, bio);
 356	submit_bio(bio);
 357}
 358
 359static void __submit_merged_bio(struct f2fs_bio_info *io)
 360{
 361	struct f2fs_io_info *fio = &io->fio;
 362
 363	if (!io->bio)
 364		return;
 365
 366	bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
 367
 368	if (is_read_io(fio->op))
 369		trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
 370	else
 371		trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
 
 
 372
 373	__submit_bio(io->sbi, io->bio, fio->type);
 374	io->bio = NULL;
 375}
 376
 377static bool __has_merged_page(struct bio *bio, struct inode *inode,
 378						struct page *page, nid_t ino)
 379{
 380	struct bio_vec *bvec;
 381	struct page *target;
 382	struct bvec_iter_all iter_all;
 383
 384	if (!bio)
 385		return false;
 386
 387	if (!inode && !page && !ino)
 388		return true;
 389
 390	bio_for_each_segment_all(bvec, bio, iter_all) {
 391
 392		target = bvec->bv_page;
 393		if (fscrypt_is_bounce_page(target))
 394			target = fscrypt_pagecache_page(target);
 
 395
 396		if (inode && inode == target->mapping->host)
 397			return true;
 398		if (page && page == target)
 399			return true;
 400		if (ino && ino == ino_of_node(target))
 401			return true;
 402	}
 403
 404	return false;
 405}
 406
 407static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
 408				enum page_type type, enum temp_type temp)
 
 409{
 410	enum page_type btype = PAGE_TYPE_OF_BIO(type);
 411	struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412
 413	down_write(&io->io_rwsem);
 414
 
 
 
 415	/* change META to META_FLUSH in the checkpoint procedure */
 416	if (type >= META_FLUSH) {
 417		io->fio.type = META_FLUSH;
 418		io->fio.op = REQ_OP_WRITE;
 419		io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
 420		if (!test_opt(sbi, NOBARRIER))
 421			io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
 422	}
 423	__submit_merged_bio(io);
 
 424	up_write(&io->io_rwsem);
 425}
 426
 427static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
 428				struct inode *inode, struct page *page,
 429				nid_t ino, enum page_type type, bool force)
 430{
 431	enum temp_type temp;
 432	bool ret = true;
 433
 434	for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
 435		if (!force)	{
 436			enum page_type btype = PAGE_TYPE_OF_BIO(type);
 437			struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
 438
 439			down_read(&io->io_rwsem);
 440			ret = __has_merged_page(io->bio, inode, page, ino);
 441			up_read(&io->io_rwsem);
 442		}
 443		if (ret)
 444			__f2fs_submit_merged_write(sbi, type, temp);
 445
 446		/* TODO: use HOT temp only for meta pages now. */
 447		if (type >= META)
 448			break;
 449	}
 450}
 451
 452void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
 453{
 454	__submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
 455}
 456
 457void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
 458				struct inode *inode, struct page *page,
 459				nid_t ino, enum page_type type)
 460{
 461	__submit_merged_write_cond(sbi, inode, page, ino, type, false);
 
 462}
 463
 464void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
 465{
 466	f2fs_submit_merged_write(sbi, DATA);
 467	f2fs_submit_merged_write(sbi, NODE);
 468	f2fs_submit_merged_write(sbi, META);
 469}
 470
 471/*
 472 * Fill the locked page with data located in the block address.
 473 * A caller needs to unlock the page on failure.
 474 */
 475int f2fs_submit_page_bio(struct f2fs_io_info *fio)
 476{
 477	struct bio *bio;
 478	struct page *page = fio->encrypted_page ?
 479			fio->encrypted_page : fio->page;
 480
 481	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 482			fio->is_por ? META_POR : (__is_meta_io(fio) ?
 483			META_GENERIC : DATA_GENERIC_ENHANCE)))
 484		return -EFSCORRUPTED;
 485
 486	trace_f2fs_submit_page_bio(page, fio);
 487	f2fs_trace_ios(fio, 0);
 488
 489	/* Allocate a new bio */
 490	bio = __bio_alloc(fio, 1);
 491
 492	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 493		bio_put(bio);
 494		return -EFAULT;
 495	}
 496
 497	if (fio->io_wbc && !is_read_io(fio->op))
 498		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 499
 500	bio_set_op_attrs(bio, fio->op, fio->op_flags);
 501
 502	inc_page_count(fio->sbi, is_read_io(fio->op) ?
 503			__read_io_type(page): WB_DATA_TYPE(fio->page));
 504
 505	__submit_bio(fio->sbi, bio, fio->type);
 506	return 0;
 507}
 508
 509static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 510				block_t last_blkaddr, block_t cur_blkaddr)
 511{
 512	if (last_blkaddr + 1 != cur_blkaddr)
 513		return false;
 514	return __same_bdev(sbi, cur_blkaddr, bio);
 515}
 516
 517static bool io_type_is_mergeable(struct f2fs_bio_info *io,
 518						struct f2fs_io_info *fio)
 519{
 520	if (io->fio.op != fio->op)
 521		return false;
 522	return io->fio.op_flags == fio->op_flags;
 523}
 524
 525static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
 526					struct f2fs_bio_info *io,
 527					struct f2fs_io_info *fio,
 528					block_t last_blkaddr,
 529					block_t cur_blkaddr)
 530{
 531	if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
 532		unsigned int filled_blocks =
 533				F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
 534		unsigned int io_size = F2FS_IO_SIZE(sbi);
 535		unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
 536
 537		/* IOs in bio is aligned and left space of vectors is not enough */
 538		if (!(filled_blocks % io_size) && left_vecs < io_size)
 539			return false;
 540	}
 541	if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
 542		return false;
 543	return io_type_is_mergeable(io, fio);
 544}
 545
 546int f2fs_merge_page_bio(struct f2fs_io_info *fio)
 547{
 548	struct bio *bio = *fio->bio;
 549	struct page *page = fio->encrypted_page ?
 550			fio->encrypted_page : fio->page;
 551
 552	if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
 553			__is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
 554		return -EFSCORRUPTED;
 555
 556	trace_f2fs_submit_page_bio(page, fio);
 557	f2fs_trace_ios(fio, 0);
 558
 559	if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
 560						fio->new_blkaddr)) {
 561		__submit_bio(fio->sbi, bio, fio->type);
 562		bio = NULL;
 563	}
 564alloc_new:
 565	if (!bio) {
 566		bio = __bio_alloc(fio, BIO_MAX_PAGES);
 567		bio_set_op_attrs(bio, fio->op, fio->op_flags);
 568	}
 569
 570	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 571		__submit_bio(fio->sbi, bio, fio->type);
 572		bio = NULL;
 573		goto alloc_new;
 574	}
 575
 576	if (fio->io_wbc)
 577		wbc_account_cgroup_owner(fio->io_wbc, page, PAGE_SIZE);
 578
 579	inc_page_count(fio->sbi, WB_DATA_TYPE(page));
 580
 581	*fio->last_block = fio->new_blkaddr;
 582	*fio->bio = bio;
 583
 584	return 0;
 585}
 586
 587static void f2fs_submit_ipu_bio(struct f2fs_sb_info *sbi, struct bio **bio,
 588							struct page *page)
 589{
 590	if (!bio)
 591		return;
 592
 593	if (!__has_merged_page(*bio, NULL, page, 0))
 594		return;
 595
 596	__submit_bio(sbi, *bio, DATA);
 597	*bio = NULL;
 598}
 599
 600void f2fs_submit_page_write(struct f2fs_io_info *fio)
 601{
 602	struct f2fs_sb_info *sbi = fio->sbi;
 603	enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
 604	struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
 
 605	struct page *bio_page;
 606
 607	f2fs_bug_on(sbi, is_read_io(fio->op));
 608
 609	down_write(&io->io_rwsem);
 610next:
 611	if (fio->in_list) {
 612		spin_lock(&io->io_lock);
 613		if (list_empty(&io->io_list)) {
 614			spin_unlock(&io->io_lock);
 615			goto out;
 616		}
 617		fio = list_first_entry(&io->io_list,
 618						struct f2fs_io_info, list);
 619		list_del(&fio->list);
 620		spin_unlock(&io->io_lock);
 621	}
 622
 623	verify_fio_blkaddr(fio);
 624
 625	bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
 626
 627	/* set submitted = true as a return value */
 628	fio->submitted = true;
 629
 630	inc_page_count(sbi, WB_DATA_TYPE(bio_page));
 631
 632	if (io->bio && !io_is_mergeable(sbi, io->bio, io, fio,
 633			io->last_block_in_bio, fio->new_blkaddr))
 
 634		__submit_merged_bio(io);
 635alloc_new:
 636	if (io->bio == NULL) {
 637		if (F2FS_IO_ALIGNED(sbi) &&
 638				(fio->type == DATA || fio->type == NODE) &&
 639				fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
 640			dec_page_count(sbi, WB_DATA_TYPE(bio_page));
 641			fio->retry = true;
 642			goto skip;
 643		}
 644		io->bio = __bio_alloc(fio, BIO_MAX_PAGES);
 645		io->fio = *fio;
 646	}
 647
 648	if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
 
 649		__submit_merged_bio(io);
 650		goto alloc_new;
 651	}
 652
 653	if (fio->io_wbc)
 654		wbc_account_cgroup_owner(fio->io_wbc, bio_page, PAGE_SIZE);
 655
 656	io->last_block_in_bio = fio->new_blkaddr;
 657	f2fs_trace_ios(fio, 0);
 658
 659	trace_f2fs_submit_page_write(fio->page, fio);
 660skip:
 661	if (fio->in_list)
 662		goto next;
 663out:
 664	if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
 665				!f2fs_is_checkpoint_ready(sbi))
 666		__submit_merged_bio(io);
 667	up_write(&io->io_rwsem);
 668}
 669
 670static inline bool f2fs_need_verity(const struct inode *inode, pgoff_t idx)
 671{
 672	return fsverity_active(inode) &&
 673	       idx < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
 674}
 675
 676static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
 677				      unsigned nr_pages, unsigned op_flag,
 678				      pgoff_t first_idx)
 679{
 680	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 681	struct bio *bio;
 682	struct bio_post_read_ctx *ctx;
 683	unsigned int post_read_steps = 0;
 684
 685	bio = f2fs_bio_alloc(sbi, min_t(int, nr_pages, BIO_MAX_PAGES), false);
 686	if (!bio)
 687		return ERR_PTR(-ENOMEM);
 688	f2fs_target_device(sbi, blkaddr, bio);
 689	bio->bi_end_io = f2fs_read_end_io;
 690	bio_set_op_attrs(bio, REQ_OP_READ, op_flag);
 691
 692	if (f2fs_encrypted_file(inode))
 693		post_read_steps |= 1 << STEP_DECRYPT;
 694
 695	if (f2fs_need_verity(inode, first_idx))
 696		post_read_steps |= 1 << STEP_VERITY;
 697
 698	if (post_read_steps) {
 699		ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
 700		if (!ctx) {
 701			bio_put(bio);
 702			return ERR_PTR(-ENOMEM);
 703		}
 704		ctx->bio = bio;
 705		ctx->enabled_steps = post_read_steps;
 706		bio->bi_private = ctx;
 707	}
 708
 709	return bio;
 710}
 711
 712/* This can handle encryption stuffs */
 713static int f2fs_submit_page_read(struct inode *inode, struct page *page,
 714							block_t blkaddr)
 715{
 716	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 717	struct bio *bio;
 718
 719	bio = f2fs_grab_read_bio(inode, blkaddr, 1, 0, page->index);
 720	if (IS_ERR(bio))
 721		return PTR_ERR(bio);
 722
 723	/* wait for GCed page writeback via META_MAPPING */
 724	f2fs_wait_on_block_writeback(inode, blkaddr);
 725
 726	if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
 727		bio_put(bio);
 728		return -EFAULT;
 729	}
 730	ClearPageError(page);
 731	inc_page_count(sbi, F2FS_RD_DATA);
 732	__submit_bio(sbi, bio, DATA);
 733	return 0;
 734}
 735
 736static void __set_data_blkaddr(struct dnode_of_data *dn)
 737{
 738	struct f2fs_node *rn = F2FS_NODE(dn->node_page);
 739	__le32 *addr_array;
 740	int base = 0;
 741
 742	if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
 743		base = get_extra_isize(dn->inode);
 744
 745	/* Get physical address of data block */
 746	addr_array = blkaddr_in_node(rn);
 747	addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
 748}
 749
 750/*
 751 * Lock ordering for the change of data block address:
 752 * ->data_page
 753 *  ->node_page
 754 *    update block addresses in the node page
 755 */
 756void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
 757{
 758	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
 759	__set_data_blkaddr(dn);
 760	if (set_page_dirty(dn->node_page))
 761		dn->node_changed = true;
 762}
 763
 764void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
 765{
 766	dn->data_blkaddr = blkaddr;
 767	f2fs_set_data_blkaddr(dn);
 768	f2fs_update_extent_cache(dn);
 769}
 770
 771/* dn->ofs_in_node will be returned with up-to-date last block pointer */
 772int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
 773{
 774	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 775	int err;
 776
 777	if (!count)
 778		return 0;
 779
 780	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
 781		return -EPERM;
 782	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
 783		return err;
 784
 785	trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
 786						dn->ofs_in_node, count);
 787
 788	f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
 789
 790	for (; count > 0; dn->ofs_in_node++) {
 791		block_t blkaddr = datablock_addr(dn->inode,
 792					dn->node_page, dn->ofs_in_node);
 793		if (blkaddr == NULL_ADDR) {
 794			dn->data_blkaddr = NEW_ADDR;
 795			__set_data_blkaddr(dn);
 796			count--;
 797		}
 798	}
 799
 800	if (set_page_dirty(dn->node_page))
 801		dn->node_changed = true;
 802	return 0;
 803}
 804
 805/* Should keep dn->ofs_in_node unchanged */
 806int f2fs_reserve_new_block(struct dnode_of_data *dn)
 807{
 808	unsigned int ofs_in_node = dn->ofs_in_node;
 809	int ret;
 810
 811	ret = f2fs_reserve_new_blocks(dn, 1);
 812	dn->ofs_in_node = ofs_in_node;
 813	return ret;
 814}
 815
 816int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
 817{
 818	bool need_put = dn->inode_page ? false : true;
 819	int err;
 820
 821	err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
 822	if (err)
 823		return err;
 824
 825	if (dn->data_blkaddr == NULL_ADDR)
 826		err = f2fs_reserve_new_block(dn);
 827	if (err || need_put)
 828		f2fs_put_dnode(dn);
 829	return err;
 830}
 831
 832int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
 833{
 834	struct extent_info ei  = {0,0,0};
 835	struct inode *inode = dn->inode;
 836
 837	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 838		dn->data_blkaddr = ei.blk + index - ei.fofs;
 839		return 0;
 840	}
 841
 842	return f2fs_reserve_block(dn, index);
 843}
 844
 845struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
 846						int op_flags, bool for_write)
 847{
 848	struct address_space *mapping = inode->i_mapping;
 849	struct dnode_of_data dn;
 850	struct page *page;
 851	struct extent_info ei = {0,0,0};
 852	int err;
 
 
 
 
 
 
 
 
 
 
 853
 854	page = f2fs_grab_cache_page(mapping, index, for_write);
 855	if (!page)
 856		return ERR_PTR(-ENOMEM);
 857
 858	if (f2fs_lookup_extent_cache(inode, index, &ei)) {
 859		dn.data_blkaddr = ei.blk + index - ei.fofs;
 860		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
 861						DATA_GENERIC_ENHANCE_READ)) {
 862			err = -EFSCORRUPTED;
 863			goto put_err;
 864		}
 865		goto got_it;
 866	}
 867
 868	set_new_dnode(&dn, inode, NULL, NULL, 0);
 869	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
 870	if (err)
 871		goto put_err;
 872	f2fs_put_dnode(&dn);
 873
 874	if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
 875		err = -ENOENT;
 876		goto put_err;
 877	}
 878	if (dn.data_blkaddr != NEW_ADDR &&
 879			!f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
 880						dn.data_blkaddr,
 881						DATA_GENERIC_ENHANCE)) {
 882		err = -EFSCORRUPTED;
 883		goto put_err;
 884	}
 885got_it:
 886	if (PageUptodate(page)) {
 887		unlock_page(page);
 888		return page;
 889	}
 890
 891	/*
 892	 * A new dentry page is allocated but not able to be written, since its
 893	 * new inode page couldn't be allocated due to -ENOSPC.
 894	 * In such the case, its blkaddr can be remained as NEW_ADDR.
 895	 * see, f2fs_add_link -> f2fs_get_new_data_page ->
 896	 * f2fs_init_inode_metadata.
 897	 */
 898	if (dn.data_blkaddr == NEW_ADDR) {
 899		zero_user_segment(page, 0, PAGE_SIZE);
 900		if (!PageUptodate(page))
 901			SetPageUptodate(page);
 902		unlock_page(page);
 903		return page;
 904	}
 905
 906	err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
 
 
 907	if (err)
 908		goto put_err;
 909	return page;
 910
 911put_err:
 912	f2fs_put_page(page, 1);
 913	return ERR_PTR(err);
 914}
 915
 916struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index)
 917{
 918	struct address_space *mapping = inode->i_mapping;
 919	struct page *page;
 920
 921	page = find_get_page(mapping, index);
 922	if (page && PageUptodate(page))
 923		return page;
 924	f2fs_put_page(page, 0);
 925
 926	page = f2fs_get_read_data_page(inode, index, 0, false);
 927	if (IS_ERR(page))
 928		return page;
 929
 930	if (PageUptodate(page))
 931		return page;
 932
 933	wait_on_page_locked(page);
 934	if (unlikely(!PageUptodate(page))) {
 935		f2fs_put_page(page, 0);
 936		return ERR_PTR(-EIO);
 937	}
 938	return page;
 939}
 940
 941/*
 942 * If it tries to access a hole, return an error.
 943 * Because, the callers, functions in dir.c and GC, should be able to know
 944 * whether this page exists or not.
 945 */
 946struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
 947							bool for_write)
 948{
 949	struct address_space *mapping = inode->i_mapping;
 950	struct page *page;
 951repeat:
 952	page = f2fs_get_read_data_page(inode, index, 0, for_write);
 953	if (IS_ERR(page))
 954		return page;
 955
 956	/* wait for read completion */
 957	lock_page(page);
 958	if (unlikely(page->mapping != mapping)) {
 959		f2fs_put_page(page, 1);
 960		goto repeat;
 961	}
 962	if (unlikely(!PageUptodate(page))) {
 963		f2fs_put_page(page, 1);
 964		return ERR_PTR(-EIO);
 965	}
 966	return page;
 967}
 968
 969/*
 970 * Caller ensures that this data page is never allocated.
 971 * A new zero-filled data page is allocated in the page cache.
 972 *
 973 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
 974 * f2fs_unlock_op().
 975 * Note that, ipage is set only by make_empty_dir, and if any error occur,
 976 * ipage should be released by this function.
 977 */
 978struct page *f2fs_get_new_data_page(struct inode *inode,
 979		struct page *ipage, pgoff_t index, bool new_i_size)
 980{
 981	struct address_space *mapping = inode->i_mapping;
 982	struct page *page;
 983	struct dnode_of_data dn;
 984	int err;
 985
 986	page = f2fs_grab_cache_page(mapping, index, true);
 987	if (!page) {
 988		/*
 989		 * before exiting, we should make sure ipage will be released
 990		 * if any error occur.
 991		 */
 992		f2fs_put_page(ipage, 1);
 993		return ERR_PTR(-ENOMEM);
 994	}
 995
 996	set_new_dnode(&dn, inode, ipage, NULL, 0);
 997	err = f2fs_reserve_block(&dn, index);
 998	if (err) {
 999		f2fs_put_page(page, 1);
1000		return ERR_PTR(err);
1001	}
1002	if (!ipage)
1003		f2fs_put_dnode(&dn);
1004
1005	if (PageUptodate(page))
1006		goto got_it;
1007
1008	if (dn.data_blkaddr == NEW_ADDR) {
1009		zero_user_segment(page, 0, PAGE_SIZE);
1010		if (!PageUptodate(page))
1011			SetPageUptodate(page);
1012	} else {
1013		f2fs_put_page(page, 1);
1014
1015		/* if ipage exists, blkaddr should be NEW_ADDR */
1016		f2fs_bug_on(F2FS_I_SB(inode), ipage);
1017		page = f2fs_get_lock_data_page(inode, index, true);
1018		if (IS_ERR(page))
1019			return page;
1020	}
1021got_it:
1022	if (new_i_size && i_size_read(inode) <
1023				((loff_t)(index + 1) << PAGE_SHIFT))
1024		f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1025	return page;
1026}
1027
1028static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1029{
1030	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1031	struct f2fs_summary sum;
1032	struct node_info ni;
1033	block_t old_blkaddr;
1034	blkcnt_t count = 1;
1035	int err;
1036
1037	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1038		return -EPERM;
1039
1040	err = f2fs_get_node_info(sbi, dn->nid, &ni);
1041	if (err)
1042		return err;
1043
1044	dn->data_blkaddr = datablock_addr(dn->inode,
1045				dn->node_page, dn->ofs_in_node);
1046	if (dn->data_blkaddr != NULL_ADDR)
1047		goto alloc;
1048
1049	if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1050		return err;
1051
1052alloc:
 
1053	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1054	old_blkaddr = dn->data_blkaddr;
1055	f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1056					&sum, seg_type, NULL, false);
1057	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1058		invalidate_mapping_pages(META_MAPPING(sbi),
1059					old_blkaddr, old_blkaddr);
1060	f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1061
1062	/*
1063	 * i_size will be updated by direct_IO. Otherwise, we'll get stale
1064	 * data from unwritten block via dio_read.
1065	 */
 
 
 
 
 
 
1066	return 0;
1067}
1068
 
 
 
 
 
 
 
1069int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
1070{
1071	struct inode *inode = file_inode(iocb->ki_filp);
1072	struct f2fs_map_blocks map;
1073	int flag;
1074	int err = 0;
1075	bool direct_io = iocb->ki_flags & IOCB_DIRECT;
1076
1077	/* convert inline data for Direct I/O*/
1078	if (direct_io) {
1079		err = f2fs_convert_inline_inode(inode);
1080		if (err)
1081			return err;
1082	}
1083
1084	if (direct_io && allow_outplace_dio(inode, iocb, from))
1085		return 0;
1086
1087	if (is_inode_flag_set(inode, FI_NO_PREALLOC))
1088		return 0;
1089
1090	map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
1091	map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
1092	if (map.m_len > map.m_lblk)
1093		map.m_len -= map.m_lblk;
1094	else
1095		map.m_len = 0;
1096
1097	map.m_next_pgofs = NULL;
1098	map.m_next_extent = NULL;
1099	map.m_seg_type = NO_CHECK_TYPE;
1100	map.m_may_create = true;
1101
1102	if (direct_io) {
1103		map.m_seg_type = f2fs_rw_hint_to_seg_type(iocb->ki_hint);
1104		flag = f2fs_force_buffered_io(inode, iocb, from) ?
1105					F2FS_GET_BLOCK_PRE_AIO :
1106					F2FS_GET_BLOCK_PRE_DIO;
1107		goto map_blocks;
1108	}
1109	if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
1110		err = f2fs_convert_inline_inode(inode);
1111		if (err)
1112			return err;
1113	}
1114	if (f2fs_has_inline_data(inode))
1115		return err;
1116
1117	flag = F2FS_GET_BLOCK_PRE_AIO;
1118
1119map_blocks:
1120	err = f2fs_map_blocks(inode, &map, 1, flag);
1121	if (map.m_len > 0 && err == -ENOSPC) {
1122		if (!direct_io)
1123			set_inode_flag(inode, FI_NO_PREALLOC);
1124		err = 0;
1125	}
1126	return err;
1127}
1128
1129void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
1130{
1131	if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1132		if (lock)
1133			down_read(&sbi->node_change);
1134		else
1135			up_read(&sbi->node_change);
1136	} else {
1137		if (lock)
1138			f2fs_lock_op(sbi);
1139		else
1140			f2fs_unlock_op(sbi);
1141	}
1142}
1143
1144/*
1145 * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
1146 * f2fs_map_blocks structure.
1147 * If original data blocks are allocated, then give them to blockdev.
1148 * Otherwise,
1149 *     a. preallocate requested block addresses
1150 *     b. do not use extent cache for better performance
1151 *     c. give the block addresses to blockdev
1152 */
1153int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
1154						int create, int flag)
1155{
1156	unsigned int maxblocks = map->m_len;
1157	struct dnode_of_data dn;
1158	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159	int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1160	pgoff_t pgofs, end_offset, end;
1161	int err = 0, ofs = 1;
1162	unsigned int ofs_in_node, last_ofs_in_node;
1163	blkcnt_t prealloc;
1164	struct extent_info ei = {0,0,0};
1165	block_t blkaddr;
1166	unsigned int start_pgofs;
1167
1168	if (!maxblocks)
1169		return 0;
1170
1171	map->m_len = 0;
1172	map->m_flags = 0;
1173
1174	/* it only supports block size == page size */
1175	pgofs =	(pgoff_t)map->m_lblk;
1176	end = pgofs + maxblocks;
1177
1178	if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
1179		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1180							map->m_may_create)
1181			goto next_dnode;
1182
1183		map->m_pblk = ei.blk + pgofs - ei.fofs;
1184		map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
1185		map->m_flags = F2FS_MAP_MAPPED;
1186		if (map->m_next_extent)
1187			*map->m_next_extent = pgofs + map->m_len;
1188
1189		/* for hardware encryption, but to avoid potential issue in future */
1190		if (flag == F2FS_GET_BLOCK_DIO)
1191			f2fs_wait_on_block_writeback_range(inode,
1192						map->m_pblk, map->m_len);
1193		goto out;
1194	}
1195
1196next_dnode:
1197	if (map->m_may_create)
1198		__do_map_lock(sbi, flag, true);
1199
1200	/* When reading holes, we need its node page */
1201	set_new_dnode(&dn, inode, NULL, NULL, 0);
1202	err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1203	if (err) {
1204		if (flag == F2FS_GET_BLOCK_BMAP)
1205			map->m_pblk = 0;
1206		if (err == -ENOENT) {
1207			err = 0;
1208			if (map->m_next_pgofs)
1209				*map->m_next_pgofs =
1210					f2fs_get_next_page_offset(&dn, pgofs);
1211			if (map->m_next_extent)
1212				*map->m_next_extent =
1213					f2fs_get_next_page_offset(&dn, pgofs);
1214		}
1215		goto unlock_out;
1216	}
1217
1218	start_pgofs = pgofs;
1219	prealloc = 0;
1220	last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1221	end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1222
1223next_block:
1224	blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
1225
1226	if (__is_valid_data_blkaddr(blkaddr) &&
1227		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1228		err = -EFSCORRUPTED;
1229		goto sync_out;
1230	}
1231
1232	if (__is_valid_data_blkaddr(blkaddr)) {
1233		/* use out-place-update for driect IO under LFS mode */
1234		if (test_opt(sbi, LFS) && flag == F2FS_GET_BLOCK_DIO &&
1235							map->m_may_create) {
1236			err = __allocate_data_block(&dn, map->m_seg_type);
1237			if (err)
1238				goto sync_out;
1239			blkaddr = dn.data_blkaddr;
1240			set_inode_flag(inode, FI_APPEND_WRITE);
1241		}
1242	} else {
1243		if (create) {
1244			if (unlikely(f2fs_cp_error(sbi))) {
1245				err = -EIO;
1246				goto sync_out;
1247			}
1248			if (flag == F2FS_GET_BLOCK_PRE_AIO) {
1249				if (blkaddr == NULL_ADDR) {
1250					prealloc++;
1251					last_ofs_in_node = dn.ofs_in_node;
1252				}
1253			} else {
1254				WARN_ON(flag != F2FS_GET_BLOCK_PRE_DIO &&
1255					flag != F2FS_GET_BLOCK_DIO);
1256				err = __allocate_data_block(&dn,
1257							map->m_seg_type);
1258				if (!err)
1259					set_inode_flag(inode, FI_APPEND_WRITE);
1260			}
1261			if (err)
1262				goto sync_out;
1263			map->m_flags |= F2FS_MAP_NEW;
1264			blkaddr = dn.data_blkaddr;
1265		} else {
1266			if (flag == F2FS_GET_BLOCK_BMAP) {
1267				map->m_pblk = 0;
1268				goto sync_out;
1269			}
1270			if (flag == F2FS_GET_BLOCK_PRECACHE)
1271				goto sync_out;
1272			if (flag == F2FS_GET_BLOCK_FIEMAP &&
1273						blkaddr == NULL_ADDR) {
1274				if (map->m_next_pgofs)
1275					*map->m_next_pgofs = pgofs + 1;
1276				goto sync_out;
1277			}
1278			if (flag != F2FS_GET_BLOCK_FIEMAP) {
1279				/* for defragment case */
1280				if (map->m_next_pgofs)
1281					*map->m_next_pgofs = pgofs + 1;
1282				goto sync_out;
1283			}
1284		}
1285	}
1286
1287	if (flag == F2FS_GET_BLOCK_PRE_AIO)
1288		goto skip;
1289
1290	if (map->m_len == 0) {
1291		/* preallocated unwritten block should be mapped for fiemap. */
1292		if (blkaddr == NEW_ADDR)
1293			map->m_flags |= F2FS_MAP_UNWRITTEN;
1294		map->m_flags |= F2FS_MAP_MAPPED;
1295
1296		map->m_pblk = blkaddr;
1297		map->m_len = 1;
1298	} else if ((map->m_pblk != NEW_ADDR &&
1299			blkaddr == (map->m_pblk + ofs)) ||
1300			(map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1301			flag == F2FS_GET_BLOCK_PRE_DIO) {
1302		ofs++;
1303		map->m_len++;
1304	} else {
1305		goto sync_out;
1306	}
1307
1308skip:
1309	dn.ofs_in_node++;
1310	pgofs++;
1311
1312	/* preallocate blocks in batch for one dnode page */
1313	if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1314			(pgofs == end || dn.ofs_in_node == end_offset)) {
1315
1316		dn.ofs_in_node = ofs_in_node;
1317		err = f2fs_reserve_new_blocks(&dn, prealloc);
1318		if (err)
1319			goto sync_out;
1320
1321		map->m_len += dn.ofs_in_node - ofs_in_node;
1322		if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1323			err = -ENOSPC;
1324			goto sync_out;
1325		}
1326		dn.ofs_in_node = end_offset;
1327	}
1328
1329	if (pgofs >= end)
1330		goto sync_out;
1331	else if (dn.ofs_in_node < end_offset)
1332		goto next_block;
1333
1334	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1335		if (map->m_flags & F2FS_MAP_MAPPED) {
1336			unsigned int ofs = start_pgofs - map->m_lblk;
1337
1338			f2fs_update_extent_cache_range(&dn,
1339				start_pgofs, map->m_pblk + ofs,
1340				map->m_len - ofs);
1341		}
1342	}
1343
1344	f2fs_put_dnode(&dn);
1345
1346	if (map->m_may_create) {
1347		__do_map_lock(sbi, flag, false);
1348		f2fs_balance_fs(sbi, dn.node_changed);
1349	}
1350	goto next_dnode;
1351
1352sync_out:
1353
1354	/* for hardware encryption, but to avoid potential issue in future */
1355	if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED)
1356		f2fs_wait_on_block_writeback_range(inode,
1357						map->m_pblk, map->m_len);
1358
1359	if (flag == F2FS_GET_BLOCK_PRECACHE) {
1360		if (map->m_flags & F2FS_MAP_MAPPED) {
1361			unsigned int ofs = start_pgofs - map->m_lblk;
1362
1363			f2fs_update_extent_cache_range(&dn,
1364				start_pgofs, map->m_pblk + ofs,
1365				map->m_len - ofs);
1366		}
1367		if (map->m_next_extent)
1368			*map->m_next_extent = pgofs + 1;
1369	}
1370	f2fs_put_dnode(&dn);
1371unlock_out:
1372	if (map->m_may_create) {
1373		__do_map_lock(sbi, flag, false);
1374		f2fs_balance_fs(sbi, dn.node_changed);
1375	}
1376out:
1377	trace_f2fs_map_blocks(inode, map, err);
1378	return err;
1379}
1380
1381bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1382{
1383	struct f2fs_map_blocks map;
1384	block_t last_lblk;
1385	int err;
1386
1387	if (pos + len > i_size_read(inode))
1388		return false;
1389
1390	map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1391	map.m_next_pgofs = NULL;
1392	map.m_next_extent = NULL;
1393	map.m_seg_type = NO_CHECK_TYPE;
1394	map.m_may_create = false;
1395	last_lblk = F2FS_BLK_ALIGN(pos + len);
1396
1397	while (map.m_lblk < last_lblk) {
1398		map.m_len = last_lblk - map.m_lblk;
1399		err = f2fs_map_blocks(inode, &map, 0, F2FS_GET_BLOCK_DEFAULT);
1400		if (err || map.m_len == 0)
1401			return false;
1402		map.m_lblk += map.m_len;
1403	}
1404	return true;
1405}
1406
1407static int __get_data_block(struct inode *inode, sector_t iblock,
1408			struct buffer_head *bh, int create, int flag,
1409			pgoff_t *next_pgofs, int seg_type, bool may_write)
1410{
1411	struct f2fs_map_blocks map;
1412	int err;
1413
1414	map.m_lblk = iblock;
1415	map.m_len = bh->b_size >> inode->i_blkbits;
1416	map.m_next_pgofs = next_pgofs;
1417	map.m_next_extent = NULL;
1418	map.m_seg_type = seg_type;
1419	map.m_may_create = may_write;
1420
1421	err = f2fs_map_blocks(inode, &map, create, flag);
1422	if (!err) {
1423		map_bh(bh, inode->i_sb, map.m_pblk);
1424		bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1425		bh->b_size = (u64)map.m_len << inode->i_blkbits;
1426	}
1427	return err;
1428}
1429
1430static int get_data_block(struct inode *inode, sector_t iblock,
1431			struct buffer_head *bh_result, int create, int flag,
1432			pgoff_t *next_pgofs)
1433{
1434	return __get_data_block(inode, iblock, bh_result, create,
1435							flag, next_pgofs,
1436							NO_CHECK_TYPE, create);
1437}
1438
1439static int get_data_block_dio_write(struct inode *inode, sector_t iblock,
1440			struct buffer_head *bh_result, int create)
1441{
1442	return __get_data_block(inode, iblock, bh_result, create,
1443				F2FS_GET_BLOCK_DIO, NULL,
1444				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1445				IS_SWAPFILE(inode) ? false : true);
1446}
1447
1448static int get_data_block_dio(struct inode *inode, sector_t iblock,
1449			struct buffer_head *bh_result, int create)
1450{
1451	return __get_data_block(inode, iblock, bh_result, create,
1452				F2FS_GET_BLOCK_DIO, NULL,
1453				f2fs_rw_hint_to_seg_type(inode->i_write_hint),
1454				false);
1455}
1456
1457static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1458			struct buffer_head *bh_result, int create)
1459{
1460	/* Block number less than F2FS MAX BLOCKS */
1461	if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1462		return -EFBIG;
1463
1464	return __get_data_block(inode, iblock, bh_result, create,
1465						F2FS_GET_BLOCK_BMAP, NULL,
1466						NO_CHECK_TYPE, create);
1467}
1468
1469static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1470{
1471	return (offset >> inode->i_blkbits);
1472}
1473
1474static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1475{
1476	return (blk << inode->i_blkbits);
1477}
1478
1479static int f2fs_xattr_fiemap(struct inode *inode,
1480				struct fiemap_extent_info *fieinfo)
1481{
1482	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1483	struct page *page;
1484	struct node_info ni;
1485	__u64 phys = 0, len;
1486	__u32 flags;
1487	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1488	int err = 0;
1489
1490	if (f2fs_has_inline_xattr(inode)) {
1491		int offset;
1492
1493		page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1494						inode->i_ino, false);
1495		if (!page)
1496			return -ENOMEM;
1497
1498		err = f2fs_get_node_info(sbi, inode->i_ino, &ni);
1499		if (err) {
1500			f2fs_put_page(page, 1);
1501			return err;
1502		}
1503
1504		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1505		offset = offsetof(struct f2fs_inode, i_addr) +
1506					sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1507					get_inline_xattr_addrs(inode));
1508
1509		phys += offset;
1510		len = inline_xattr_size(inode);
1511
1512		f2fs_put_page(page, 1);
1513
1514		flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1515
1516		if (!xnid)
1517			flags |= FIEMAP_EXTENT_LAST;
1518
1519		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1520		if (err || err == 1)
1521			return err;
1522	}
1523
1524	if (xnid) {
1525		page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1526		if (!page)
1527			return -ENOMEM;
1528
1529		err = f2fs_get_node_info(sbi, xnid, &ni);
1530		if (err) {
1531			f2fs_put_page(page, 1);
1532			return err;
1533		}
1534
1535		phys = (__u64)blk_to_logical(inode, ni.blk_addr);
1536		len = inode->i_sb->s_blocksize;
1537
1538		f2fs_put_page(page, 1);
1539
1540		flags = FIEMAP_EXTENT_LAST;
1541	}
1542
1543	if (phys)
1544		err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1545
1546	return (err < 0 ? err : 0);
1547}
1548
1549int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1550		u64 start, u64 len)
1551{
1552	struct buffer_head map_bh;
1553	sector_t start_blk, last_blk;
1554	pgoff_t next_pgofs;
1555	u64 logical = 0, phys = 0, size = 0;
1556	u32 flags = 0;
1557	int ret = 0;
1558
1559	if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1560		ret = f2fs_precache_extents(inode);
1561		if (ret)
1562			return ret;
1563	}
1564
1565	ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC | FIEMAP_FLAG_XATTR);
1566	if (ret)
1567		return ret;
1568
1569	inode_lock(inode);
1570
1571	if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1572		ret = f2fs_xattr_fiemap(inode, fieinfo);
1573		goto out;
1574	}
1575
1576	if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1577		ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1578		if (ret != -EAGAIN)
1579			goto out;
1580	}
1581
 
 
1582	if (logical_to_blk(inode, len) == 0)
1583		len = blk_to_logical(inode, 1);
1584
1585	start_blk = logical_to_blk(inode, start);
1586	last_blk = logical_to_blk(inode, start + len - 1);
1587
1588next:
1589	memset(&map_bh, 0, sizeof(struct buffer_head));
1590	map_bh.b_size = len;
1591
1592	ret = get_data_block(inode, start_blk, &map_bh, 0,
1593					F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1594	if (ret)
1595		goto out;
1596
1597	/* HOLE */
1598	if (!buffer_mapped(&map_bh)) {
1599		start_blk = next_pgofs;
1600
1601		if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1602					F2FS_I_SB(inode)->max_file_blocks))
1603			goto prep_next;
1604
1605		flags |= FIEMAP_EXTENT_LAST;
1606	}
1607
1608	if (size) {
1609		if (IS_ENCRYPTED(inode))
1610			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1611
1612		ret = fiemap_fill_next_extent(fieinfo, logical,
1613				phys, size, flags);
1614	}
1615
1616	if (start_blk > last_blk || ret)
1617		goto out;
1618
1619	logical = blk_to_logical(inode, start_blk);
1620	phys = blk_to_logical(inode, map_bh.b_blocknr);
1621	size = map_bh.b_size;
1622	flags = 0;
1623	if (buffer_unwritten(&map_bh))
1624		flags = FIEMAP_EXTENT_UNWRITTEN;
1625
1626	start_blk += logical_to_blk(inode, size);
1627
1628prep_next:
1629	cond_resched();
1630	if (fatal_signal_pending(current))
1631		ret = -EINTR;
1632	else
1633		goto next;
1634out:
1635	if (ret == 1)
1636		ret = 0;
1637
1638	inode_unlock(inode);
1639	return ret;
1640}
1641
1642static inline loff_t f2fs_readpage_limit(struct inode *inode)
 
1643{
1644	if (IS_ENABLED(CONFIG_FS_VERITY) &&
1645	    (IS_VERITY(inode) || f2fs_verity_in_progress(inode)))
1646		return inode->i_sb->s_maxbytes;
1647
1648	return i_size_read(inode);
1649}
1650
1651static int f2fs_read_single_page(struct inode *inode, struct page *page,
1652					unsigned nr_pages,
1653					struct f2fs_map_blocks *map,
1654					struct bio **bio_ret,
1655					sector_t *last_block_in_bio,
1656					bool is_readahead)
1657{
1658	struct bio *bio = *bio_ret;
1659	const unsigned blkbits = inode->i_blkbits;
1660	const unsigned blocksize = 1 << blkbits;
1661	sector_t block_in_file;
1662	sector_t last_block;
1663	sector_t last_block_in_file;
1664	sector_t block_nr;
1665	int ret = 0;
1666
1667	block_in_file = (sector_t)page_index(page);
1668	last_block = block_in_file + nr_pages;
1669	last_block_in_file = (f2fs_readpage_limit(inode) + blocksize - 1) >>
1670							blkbits;
1671	if (last_block > last_block_in_file)
1672		last_block = last_block_in_file;
1673
1674	/* just zeroing out page which is beyond EOF */
1675	if (block_in_file >= last_block)
1676		goto zero_out;
1677	/*
1678	 * Map blocks using the previous result first.
1679	 */
1680	if ((map->m_flags & F2FS_MAP_MAPPED) &&
1681			block_in_file > map->m_lblk &&
1682			block_in_file < (map->m_lblk + map->m_len))
1683		goto got_it;
1684
1685	/*
1686	 * Then do more f2fs_map_blocks() calls until we are
1687	 * done with this page.
1688	 */
1689	map->m_lblk = block_in_file;
1690	map->m_len = last_block - block_in_file;
1691
1692	ret = f2fs_map_blocks(inode, map, 0, F2FS_GET_BLOCK_DEFAULT);
1693	if (ret)
1694		goto out;
1695got_it:
1696	if ((map->m_flags & F2FS_MAP_MAPPED)) {
1697		block_nr = map->m_pblk + block_in_file - map->m_lblk;
1698		SetPageMappedToDisk(page);
1699
1700		if (!PageUptodate(page) && (!PageSwapCache(page) &&
1701					!cleancache_get_page(page))) {
1702			SetPageUptodate(page);
1703			goto confused;
1704		}
1705
1706		if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1707						DATA_GENERIC_ENHANCE_READ)) {
1708			ret = -EFSCORRUPTED;
1709			goto out;
1710		}
1711	} else {
1712zero_out:
1713		zero_user_segment(page, 0, PAGE_SIZE);
1714		if (f2fs_need_verity(inode, page->index) &&
1715		    !fsverity_verify_page(page)) {
1716			ret = -EIO;
1717			goto out;
1718		}
1719		if (!PageUptodate(page))
1720			SetPageUptodate(page);
1721		unlock_page(page);
1722		goto out;
1723	}
1724
1725	/*
1726	 * This page will go to BIO.  Do we need to send this
1727	 * BIO off first?
1728	 */
1729	if (bio && !page_is_mergeable(F2FS_I_SB(inode), bio,
1730				*last_block_in_bio, block_nr)) {
1731submit_and_realloc:
1732		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1733		bio = NULL;
1734	}
1735	if (bio == NULL) {
1736		bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
1737				is_readahead ? REQ_RAHEAD : 0, page->index);
1738		if (IS_ERR(bio)) {
1739			ret = PTR_ERR(bio);
1740			bio = NULL;
1741			goto out;
1742		}
1743	}
 
 
 
1744
1745	/*
1746	 * If the page is under writeback, we need to wait for
1747	 * its completion to see the correct decrypted data.
1748	 */
1749	f2fs_wait_on_block_writeback(inode, block_nr);
1750
1751	if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1752		goto submit_and_realloc;
1753
1754	inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
1755	ClearPageError(page);
1756	*last_block_in_bio = block_nr;
1757	goto out;
1758confused:
1759	if (bio) {
1760		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1761		bio = NULL;
1762	}
1763	unlock_page(page);
1764out:
1765	*bio_ret = bio;
1766	return ret;
1767}
1768
1769/*
1770 * This function was originally taken from fs/mpage.c, and customized for f2fs.
1771 * Major change was from block_size == page_size in f2fs by default.
1772 *
1773 * Note that the aops->readpages() function is ONLY used for read-ahead. If
1774 * this function ever deviates from doing just read-ahead, it should either
1775 * use ->readpage() or do the necessary surgery to decouple ->readpages()
1776 * from read-ahead.
1777 */
1778static int f2fs_mpage_readpages(struct address_space *mapping,
1779			struct list_head *pages, struct page *page,
1780			unsigned nr_pages, bool is_readahead)
1781{
1782	struct bio *bio = NULL;
 
1783	sector_t last_block_in_bio = 0;
1784	struct inode *inode = mapping->host;
 
 
 
 
 
 
1785	struct f2fs_map_blocks map;
1786	int ret = 0;
1787
1788	map.m_pblk = 0;
1789	map.m_lblk = 0;
1790	map.m_len = 0;
1791	map.m_flags = 0;
1792	map.m_next_pgofs = NULL;
1793	map.m_next_extent = NULL;
1794	map.m_seg_type = NO_CHECK_TYPE;
1795	map.m_may_create = false;
1796
1797	for (; nr_pages; nr_pages--) {
 
 
1798		if (pages) {
1799			page = list_last_entry(pages, struct page, lru);
1800
1801			prefetchw(&page->flags);
1802			list_del(&page->lru);
1803			if (add_to_page_cache_lru(page, mapping,
1804						  page_index(page),
1805						  readahead_gfp_mask(mapping)))
1806				goto next_page;
1807		}
1808
1809		ret = f2fs_read_single_page(inode, page, nr_pages, &map, &bio,
1810					&last_block_in_bio, is_readahead);
1811		if (ret) {
1812			SetPageError(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813			zero_user_segment(page, 0, PAGE_SIZE);
 
 
1814			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815		}
 
1816next_page:
1817		if (pages)
1818			put_page(page);
1819	}
1820	BUG_ON(pages && !list_empty(pages));
1821	if (bio)
1822		__submit_bio(F2FS_I_SB(inode), bio, DATA);
1823	return pages ? 0 : ret;
1824}
1825
1826static int f2fs_read_data_page(struct file *file, struct page *page)
1827{
1828	struct inode *inode = page_file_mapping(page)->host;
1829	int ret = -EAGAIN;
1830
1831	trace_f2fs_readpage(page, DATA);
1832
1833	/* If the file has inline data, try to read it directly */
1834	if (f2fs_has_inline_data(inode))
1835		ret = f2fs_read_inline_data(inode, page);
1836	if (ret == -EAGAIN)
1837		ret = f2fs_mpage_readpages(page_file_mapping(page),
1838						NULL, page, 1, false);
1839	return ret;
1840}
1841
1842static int f2fs_read_data_pages(struct file *file,
1843			struct address_space *mapping,
1844			struct list_head *pages, unsigned nr_pages)
1845{
1846	struct inode *inode = mapping->host;
1847	struct page *page = list_last_entry(pages, struct page, lru);
1848
1849	trace_f2fs_readpages(inode, page, nr_pages);
1850
1851	/* If the file has inline data, skip readpages */
1852	if (f2fs_has_inline_data(inode))
1853		return 0;
1854
1855	return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages, true);
1856}
1857
1858static int encrypt_one_page(struct f2fs_io_info *fio)
1859{
1860	struct inode *inode = fio->page->mapping->host;
1861	struct page *mpage;
1862	gfp_t gfp_flags = GFP_NOFS;
1863
1864	if (!f2fs_encrypted_file(inode))
1865		return 0;
1866
1867	/* wait for GCed page writeback via META_MAPPING */
1868	f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
1869
1870retry_encrypt:
1871	fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(fio->page,
1872							       PAGE_SIZE, 0,
1873							       gfp_flags);
1874	if (IS_ERR(fio->encrypted_page)) {
1875		/* flush pending IOs and wait for a while in the ENOMEM case */
1876		if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1877			f2fs_flush_merged_writes(fio->sbi);
1878			congestion_wait(BLK_RW_ASYNC, HZ/50);
1879			gfp_flags |= __GFP_NOFAIL;
1880			goto retry_encrypt;
1881		}
1882		return PTR_ERR(fio->encrypted_page);
1883	}
1884
1885	mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
1886	if (mpage) {
1887		if (PageUptodate(mpage))
1888			memcpy(page_address(mpage),
1889				page_address(fio->encrypted_page), PAGE_SIZE);
1890		f2fs_put_page(mpage, 1);
1891	}
1892	return 0;
1893}
1894
1895static inline bool check_inplace_update_policy(struct inode *inode,
1896				struct f2fs_io_info *fio)
1897{
1898	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1899	unsigned int policy = SM_I(sbi)->ipu_policy;
1900
1901	if (policy & (0x1 << F2FS_IPU_FORCE))
1902		return true;
1903	if (policy & (0x1 << F2FS_IPU_SSR) && f2fs_need_SSR(sbi))
1904		return true;
1905	if (policy & (0x1 << F2FS_IPU_UTIL) &&
1906			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1907		return true;
1908	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && f2fs_need_SSR(sbi) &&
1909			utilization(sbi) > SM_I(sbi)->min_ipu_util)
1910		return true;
1911
1912	/*
1913	 * IPU for rewrite async pages
1914	 */
1915	if (policy & (0x1 << F2FS_IPU_ASYNC) &&
1916			fio && fio->op == REQ_OP_WRITE &&
1917			!(fio->op_flags & REQ_SYNC) &&
1918			!IS_ENCRYPTED(inode))
1919		return true;
1920
1921	/* this is only set during fdatasync */
1922	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
1923			is_inode_flag_set(inode, FI_NEED_IPU))
1924		return true;
1925
1926	if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1927			!f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1928		return true;
1929
1930	return false;
1931}
1932
1933bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
1934{
1935	if (f2fs_is_pinned_file(inode))
1936		return true;
1937
1938	/* if this is cold file, we should overwrite to avoid fragmentation */
1939	if (file_is_cold(inode))
1940		return true;
1941
1942	return check_inplace_update_policy(inode, fio);
1943}
1944
1945bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
1946{
1947	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1948
1949	if (test_opt(sbi, LFS))
1950		return true;
1951	if (S_ISDIR(inode->i_mode))
1952		return true;
1953	if (IS_NOQUOTA(inode))
1954		return true;
1955	if (f2fs_is_atomic_file(inode))
1956		return true;
1957	if (fio) {
1958		if (is_cold_data(fio->page))
1959			return true;
1960		if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1961			return true;
1962		if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1963			f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
1964			return true;
1965	}
1966	return false;
1967}
1968
1969static inline bool need_inplace_update(struct f2fs_io_info *fio)
1970{
1971	struct inode *inode = fio->page->mapping->host;
1972
1973	if (f2fs_should_update_outplace(inode, fio))
1974		return false;
1975
1976	return f2fs_should_update_inplace(inode, fio);
1977}
1978
1979int f2fs_do_write_data_page(struct f2fs_io_info *fio)
1980{
1981	struct page *page = fio->page;
1982	struct inode *inode = page->mapping->host;
1983	struct dnode_of_data dn;
1984	struct extent_info ei = {0,0,0};
1985	struct node_info ni;
1986	bool ipu_force = false;
1987	int err = 0;
1988
1989	set_new_dnode(&dn, inode, NULL, NULL, 0);
1990	if (need_inplace_update(fio) &&
1991			f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1992		fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1993
1994		if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1995						DATA_GENERIC_ENHANCE))
1996			return -EFSCORRUPTED;
1997
1998		ipu_force = true;
1999		fio->need_lock = LOCK_DONE;
2000		goto got_it;
2001	}
2002
2003	/* Deadlock due to between page->lock and f2fs_lock_op */
2004	if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2005		return -EAGAIN;
2006
2007	err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2008	if (err)
2009		goto out;
2010
2011	fio->old_blkaddr = dn.data_blkaddr;
2012
2013	/* This page is already truncated */
2014	if (fio->old_blkaddr == NULL_ADDR) {
2015		ClearPageUptodate(page);
2016		clear_cold_data(page);
2017		goto out_writepage;
2018	}
2019got_it:
2020	if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2021		!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2022						DATA_GENERIC_ENHANCE)) {
2023		err = -EFSCORRUPTED;
2024		goto out_writepage;
2025	}
2026	/*
2027	 * If current allocation needs SSR,
2028	 * it had better in-place writes for updated data.
2029	 */
2030	if (ipu_force ||
2031		(__is_valid_data_blkaddr(fio->old_blkaddr) &&
2032					need_inplace_update(fio))) {
2033		err = encrypt_one_page(fio);
2034		if (err)
2035			goto out_writepage;
2036
2037		set_page_writeback(page);
2038		ClearPageError(page);
2039		f2fs_put_dnode(&dn);
2040		if (fio->need_lock == LOCK_REQ)
2041			f2fs_unlock_op(fio->sbi);
2042		err = f2fs_inplace_write_data(fio);
2043		if (err) {
2044			if (f2fs_encrypted_file(inode))
2045				fscrypt_finalize_bounce_page(&fio->encrypted_page);
2046			if (PageWriteback(page))
2047				end_page_writeback(page);
2048		} else {
2049			set_inode_flag(inode, FI_UPDATE_WRITE);
2050		}
2051		trace_f2fs_do_write_data_page(fio->page, IPU);
2052		return err;
2053	}
2054
2055	if (fio->need_lock == LOCK_RETRY) {
2056		if (!f2fs_trylock_op(fio->sbi)) {
2057			err = -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2058			goto out_writepage;
2059		}
2060		fio->need_lock = LOCK_REQ;
2061	}
2062
2063	err = f2fs_get_node_info(fio->sbi, dn.nid, &ni);
2064	if (err)
2065		goto out_writepage;
2066
2067	fio->version = ni.version;
2068
2069	err = encrypt_one_page(fio);
2070	if (err)
2071		goto out_writepage;
2072
2073	set_page_writeback(page);
2074	ClearPageError(page);
2075
2076	/* LFS mode write path */
2077	f2fs_outplace_write_data(&dn, fio);
2078	trace_f2fs_do_write_data_page(page, OPU);
2079	set_inode_flag(inode, FI_APPEND_WRITE);
2080	if (page->index == 0)
2081		set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
 
 
 
 
 
 
 
 
 
 
 
 
2082out_writepage:
2083	f2fs_put_dnode(&dn);
2084out:
2085	if (fio->need_lock == LOCK_REQ)
2086		f2fs_unlock_op(fio->sbi);
2087	return err;
2088}
2089
2090static int __write_data_page(struct page *page, bool *submitted,
2091				struct bio **bio,
2092				sector_t *last_block,
2093				struct writeback_control *wbc,
2094				enum iostat_type io_type)
2095{
2096	struct inode *inode = page->mapping->host;
2097	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2098	loff_t i_size = i_size_read(inode);
2099	const pgoff_t end_index = ((unsigned long long) i_size)
2100							>> PAGE_SHIFT;
2101	loff_t psize = (page->index + 1) << PAGE_SHIFT;
2102	unsigned offset = 0;
2103	bool need_balance_fs = false;
2104	int err = 0;
2105	struct f2fs_io_info fio = {
2106		.sbi = sbi,
2107		.ino = inode->i_ino,
2108		.type = DATA,
2109		.op = REQ_OP_WRITE,
2110		.op_flags = wbc_to_write_flags(wbc),
2111		.old_blkaddr = NULL_ADDR,
2112		.page = page,
2113		.encrypted_page = NULL,
2114		.submitted = false,
2115		.need_lock = LOCK_RETRY,
2116		.io_type = io_type,
2117		.io_wbc = wbc,
2118		.bio = bio,
2119		.last_block = last_block,
2120	};
2121
2122	trace_f2fs_writepage(page, DATA);
2123
2124	/* we should bypass data pages to proceed the kworkder jobs */
2125	if (unlikely(f2fs_cp_error(sbi))) {
2126		mapping_set_error(page->mapping, -EIO);
2127		/*
2128		 * don't drop any dirty dentry pages for keeping lastest
2129		 * directory structure.
2130		 */
2131		if (S_ISDIR(inode->i_mode))
2132			goto redirty_out;
2133		goto out;
2134	}
2135
2136	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2137		goto redirty_out;
2138
2139	if (page->index < end_index || f2fs_verity_in_progress(inode))
2140		goto write;
2141
2142	/*
2143	 * If the offset is out-of-range of file size,
2144	 * this page does not have to be written to disk.
2145	 */
2146	offset = i_size & (PAGE_SIZE - 1);
2147	if ((page->index >= end_index + 1) || !offset)
2148		goto out;
2149
2150	zero_user_segment(page, offset, PAGE_SIZE);
2151write:
 
 
2152	if (f2fs_is_drop_cache(inode))
2153		goto out;
2154	/* we should not write 0'th page having journal header */
2155	if (f2fs_is_volatile_file(inode) && (!page->index ||
2156			(!wbc->for_reclaim &&
2157			f2fs_available_free_memory(sbi, BASE_CHECK))))
2158		goto redirty_out;
2159
 
 
 
 
 
 
2160	/* Dentry blocks are controlled by checkpoint */
2161	if (S_ISDIR(inode->i_mode)) {
2162		fio.need_lock = LOCK_DONE;
2163		err = f2fs_do_write_data_page(&fio);
2164		goto done;
2165	}
2166
2167	if (!wbc->for_reclaim)
2168		need_balance_fs = true;
2169	else if (has_not_enough_free_secs(sbi, 0, 0))
2170		goto redirty_out;
2171	else
2172		set_inode_flag(inode, FI_HOT_DATA);
2173
2174	err = -EAGAIN;
2175	if (f2fs_has_inline_data(inode)) {
 
2176		err = f2fs_write_inline_data(inode, page);
2177		if (!err)
2178			goto out;
2179	}
2180
2181	if (err == -EAGAIN) {
2182		err = f2fs_do_write_data_page(&fio);
2183		if (err == -EAGAIN) {
2184			fio.need_lock = LOCK_REQ;
2185			err = f2fs_do_write_data_page(&fio);
2186		}
2187	}
2188
2189	if (err) {
2190		file_set_keep_isize(inode);
2191	} else {
2192		down_write(&F2FS_I(inode)->i_sem);
2193		if (F2FS_I(inode)->last_disk_size < psize)
2194			F2FS_I(inode)->last_disk_size = psize;
2195		up_write(&F2FS_I(inode)->i_sem);
2196	}
2197
2198done:
2199	if (err && err != -ENOENT)
2200		goto redirty_out;
2201
2202out:
2203	inode_dec_dirty_pages(inode);
2204	if (err) {
2205		ClearPageUptodate(page);
2206		clear_cold_data(page);
2207	}
2208
2209	if (wbc->for_reclaim) {
2210		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2211		clear_inode_flag(inode, FI_HOT_DATA);
2212		f2fs_remove_dirty_inode(inode);
2213		submitted = NULL;
2214	}
2215
2216	unlock_page(page);
2217	if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2218					!F2FS_I(inode)->cp_task) {
2219		f2fs_submit_ipu_bio(sbi, bio, page);
2220		f2fs_balance_fs(sbi, need_balance_fs);
2221	}
2222
2223	if (unlikely(f2fs_cp_error(sbi))) {
2224		f2fs_submit_ipu_bio(sbi, bio, page);
2225		f2fs_submit_merged_write(sbi, DATA);
2226		submitted = NULL;
2227	}
2228
2229	if (submitted)
2230		*submitted = fio.submitted;
2231
2232	return 0;
2233
2234redirty_out:
2235	redirty_page_for_writepage(wbc, page);
2236	/*
2237	 * pageout() in MM traslates EAGAIN, so calls handle_write_error()
2238	 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2239	 * file_write_and_wait_range() will see EIO error, which is critical
2240	 * to return value of fsync() followed by atomic_write failure to user.
2241	 */
2242	if (!err || wbc->for_reclaim)
2243		return AOP_WRITEPAGE_ACTIVATE;
2244	unlock_page(page);
2245	return err;
2246}
2247
2248static int f2fs_write_data_page(struct page *page,
2249					struct writeback_control *wbc)
2250{
2251	return __write_data_page(page, NULL, NULL, NULL, wbc, FS_DATA_IO);
2252}
2253
2254/*
2255 * This function was copied from write_cche_pages from mm/page-writeback.c.
2256 * The major change is making write step of cold data page separately from
2257 * warm/hot data page.
2258 */
2259static int f2fs_write_cache_pages(struct address_space *mapping,
2260					struct writeback_control *wbc,
2261					enum iostat_type io_type)
2262{
2263	int ret = 0;
2264	int done = 0;
2265	struct pagevec pvec;
2266	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2267	struct bio *bio = NULL;
2268	sector_t last_block;
2269	int nr_pages;
2270	pgoff_t uninitialized_var(writeback_index);
2271	pgoff_t index;
2272	pgoff_t end;		/* Inclusive */
2273	pgoff_t done_index;
2274	int cycled;
2275	int range_whole = 0;
2276	xa_mark_t tag;
2277	int nwritten = 0;
2278
2279	pagevec_init(&pvec);
2280
2281	if (get_dirty_pages(mapping->host) <=
2282				SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
2283		set_inode_flag(mapping->host, FI_HOT_DATA);
2284	else
2285		clear_inode_flag(mapping->host, FI_HOT_DATA);
2286
2287	if (wbc->range_cyclic) {
2288		writeback_index = mapping->writeback_index; /* prev offset */
2289		index = writeback_index;
2290		if (index == 0)
2291			cycled = 1;
2292		else
2293			cycled = 0;
2294		end = -1;
2295	} else {
2296		index = wbc->range_start >> PAGE_SHIFT;
2297		end = wbc->range_end >> PAGE_SHIFT;
2298		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2299			range_whole = 1;
2300		cycled = 1; /* ignore range_cyclic tests */
2301	}
2302	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2303		tag = PAGECACHE_TAG_TOWRITE;
2304	else
2305		tag = PAGECACHE_TAG_DIRTY;
2306retry:
2307	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2308		tag_pages_for_writeback(mapping, index, end);
2309	done_index = index;
2310	while (!done && (index <= end)) {
2311		int i;
2312
2313		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2314				tag);
2315		if (nr_pages == 0)
2316			break;
2317
2318		for (i = 0; i < nr_pages; i++) {
2319			struct page *page = pvec.pages[i];
2320			bool submitted = false;
2321
2322			/* give a priority to WB_SYNC threads */
2323			if (atomic_read(&sbi->wb_sync_req[DATA]) &&
2324					wbc->sync_mode == WB_SYNC_NONE) {
2325				done = 1;
2326				break;
2327			}
2328
2329			done_index = page->index;
2330retry_write:
2331			lock_page(page);
2332
2333			if (unlikely(page->mapping != mapping)) {
2334continue_unlock:
2335				unlock_page(page);
2336				continue;
2337			}
2338
2339			if (!PageDirty(page)) {
2340				/* someone wrote it for us */
2341				goto continue_unlock;
2342			}
2343
2344			if (PageWriteback(page)) {
2345				if (wbc->sync_mode != WB_SYNC_NONE) {
2346					f2fs_wait_on_page_writeback(page,
2347							DATA, true, true);
2348					f2fs_submit_ipu_bio(sbi, &bio, page);
2349				} else {
2350					goto continue_unlock;
2351				}
2352			}
2353
 
2354			if (!clear_page_dirty_for_io(page))
2355				goto continue_unlock;
2356
2357			ret = __write_data_page(page, &submitted, &bio,
2358					&last_block, wbc, io_type);
2359			if (unlikely(ret)) {
2360				/*
2361				 * keep nr_to_write, since vfs uses this to
2362				 * get # of written pages.
2363				 */
2364				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2365					unlock_page(page);
2366					ret = 0;
2367					continue;
2368				} else if (ret == -EAGAIN) {
2369					ret = 0;
2370					if (wbc->sync_mode == WB_SYNC_ALL) {
2371						cond_resched();
2372						congestion_wait(BLK_RW_ASYNC,
2373									HZ/50);
2374						goto retry_write;
2375					}
2376					continue;
2377				}
2378				done_index = page->index + 1;
2379				done = 1;
2380				break;
2381			} else if (submitted) {
2382				nwritten++;
2383			}
2384
2385			if (--wbc->nr_to_write <= 0 &&
2386					wbc->sync_mode == WB_SYNC_NONE) {
2387				done = 1;
2388				break;
2389			}
2390		}
2391		pagevec_release(&pvec);
2392		cond_resched();
2393	}
2394
2395	if (!cycled && !done) {
2396		cycled = 1;
2397		index = 0;
2398		end = writeback_index - 1;
2399		goto retry;
2400	}
2401	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2402		mapping->writeback_index = done_index;
2403
2404	if (nwritten)
2405		f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
2406								NULL, 0, DATA);
2407	/* submit cached bio of IPU write */
2408	if (bio)
2409		__submit_bio(sbi, bio, DATA);
2410
2411	return ret;
2412}
2413
2414static inline bool __should_serialize_io(struct inode *inode,
2415					struct writeback_control *wbc)
2416{
2417	if (!S_ISREG(inode->i_mode))
2418		return false;
2419	if (IS_NOQUOTA(inode))
2420		return false;
2421	/* to avoid deadlock in path of data flush */
2422	if (F2FS_I(inode)->cp_task)
2423		return false;
2424	if (wbc->sync_mode != WB_SYNC_ALL)
2425		return true;
2426	if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
2427		return true;
2428	return false;
2429}
2430
2431static int __f2fs_write_data_pages(struct address_space *mapping,
2432						struct writeback_control *wbc,
2433						enum iostat_type io_type)
2434{
2435	struct inode *inode = mapping->host;
2436	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2437	struct blk_plug plug;
2438	int ret;
2439	bool locked = false;
2440
2441	/* deal with chardevs and other special file */
2442	if (!mapping->a_ops->writepage)
2443		return 0;
2444
2445	/* skip writing if there is no dirty page in this inode */
2446	if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
2447		return 0;
2448
2449	/* during POR, we don't need to trigger writepage at all. */
2450	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2451		goto skip_write;
2452
2453	if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
2454			wbc->sync_mode == WB_SYNC_NONE &&
2455			get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
2456			f2fs_available_free_memory(sbi, DIRTY_DENTS))
2457		goto skip_write;
2458
2459	/* skip writing during file defragment */
2460	if (is_inode_flag_set(inode, FI_DO_DEFRAG))
2461		goto skip_write;
2462
2463	trace_f2fs_writepages(mapping->host, wbc, DATA);
2464
2465	/* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
2466	if (wbc->sync_mode == WB_SYNC_ALL)
2467		atomic_inc(&sbi->wb_sync_req[DATA]);
2468	else if (atomic_read(&sbi->wb_sync_req[DATA]))
2469		goto skip_write;
2470
2471	if (__should_serialize_io(inode, wbc)) {
2472		mutex_lock(&sbi->writepages);
2473		locked = true;
2474	}
2475
2476	blk_start_plug(&plug);
2477	ret = f2fs_write_cache_pages(mapping, wbc, io_type);
2478	blk_finish_plug(&plug);
2479
2480	if (locked)
2481		mutex_unlock(&sbi->writepages);
2482
2483	if (wbc->sync_mode == WB_SYNC_ALL)
2484		atomic_dec(&sbi->wb_sync_req[DATA]);
2485	/*
2486	 * if some pages were truncated, we cannot guarantee its mapping->host
2487	 * to detect pending bios.
2488	 */
2489
2490	f2fs_remove_dirty_inode(inode);
2491	return ret;
2492
2493skip_write:
2494	wbc->pages_skipped += get_dirty_pages(inode);
2495	trace_f2fs_writepages(mapping->host, wbc, DATA);
2496	return 0;
2497}
2498
2499static int f2fs_write_data_pages(struct address_space *mapping,
2500			    struct writeback_control *wbc)
2501{
2502	struct inode *inode = mapping->host;
2503
2504	return __f2fs_write_data_pages(mapping, wbc,
2505			F2FS_I(inode)->cp_task == current ?
2506			FS_CP_DATA_IO : FS_DATA_IO);
2507}
2508
2509static void f2fs_write_failed(struct address_space *mapping, loff_t to)
2510{
2511	struct inode *inode = mapping->host;
2512	loff_t i_size = i_size_read(inode);
2513
2514	/* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
2515	if (to > i_size && !f2fs_verity_in_progress(inode)) {
2516		down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2517		down_write(&F2FS_I(inode)->i_mmap_sem);
2518
2519		truncate_pagecache(inode, i_size);
2520		if (!IS_NOQUOTA(inode))
2521			f2fs_truncate_blocks(inode, i_size, true);
2522
2523		up_write(&F2FS_I(inode)->i_mmap_sem);
2524		up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
2525	}
2526}
2527
2528static int prepare_write_begin(struct f2fs_sb_info *sbi,
2529			struct page *page, loff_t pos, unsigned len,
2530			block_t *blk_addr, bool *node_changed)
2531{
2532	struct inode *inode = page->mapping->host;
2533	pgoff_t index = page->index;
2534	struct dnode_of_data dn;
2535	struct page *ipage;
2536	bool locked = false;
2537	struct extent_info ei = {0,0,0};
2538	int err = 0;
2539	int flag;
2540
2541	/*
2542	 * we already allocated all the blocks, so we don't need to get
2543	 * the block addresses when there is no need to fill the page.
2544	 */
2545	if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
2546	    !is_inode_flag_set(inode, FI_NO_PREALLOC) &&
2547	    !f2fs_verity_in_progress(inode))
2548		return 0;
2549
2550	/* f2fs_lock_op avoids race between write CP and convert_inline_page */
2551	if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
2552		flag = F2FS_GET_BLOCK_DEFAULT;
2553	else
2554		flag = F2FS_GET_BLOCK_PRE_AIO;
2555
2556	if (f2fs_has_inline_data(inode) ||
2557			(pos & PAGE_MASK) >= i_size_read(inode)) {
2558		__do_map_lock(sbi, flag, true);
2559		locked = true;
2560	}
2561restart:
2562	/* check inline_data */
2563	ipage = f2fs_get_node_page(sbi, inode->i_ino);
2564	if (IS_ERR(ipage)) {
2565		err = PTR_ERR(ipage);
2566		goto unlock_out;
2567	}
2568
2569	set_new_dnode(&dn, inode, ipage, ipage, 0);
2570
2571	if (f2fs_has_inline_data(inode)) {
2572		if (pos + len <= MAX_INLINE_DATA(inode)) {
2573			f2fs_do_read_inline_data(page, ipage);
2574			set_inode_flag(inode, FI_DATA_EXIST);
2575			if (inode->i_nlink)
2576				set_inline_node(ipage);
2577		} else {
2578			err = f2fs_convert_inline_page(&dn, page);
2579			if (err)
2580				goto out;
2581			if (dn.data_blkaddr == NULL_ADDR)
2582				err = f2fs_get_block(&dn, index);
2583		}
2584	} else if (locked) {
2585		err = f2fs_get_block(&dn, index);
2586	} else {
2587		if (f2fs_lookup_extent_cache(inode, index, &ei)) {
2588			dn.data_blkaddr = ei.blk + index - ei.fofs;
2589		} else {
2590			/* hole case */
2591			err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
2592			if (err || dn.data_blkaddr == NULL_ADDR) {
2593				f2fs_put_dnode(&dn);
2594				__do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
2595								true);
2596				WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
2597				locked = true;
2598				goto restart;
2599			}
2600		}
2601	}
2602
2603	/* convert_inline_page can make node_changed */
2604	*blk_addr = dn.data_blkaddr;
2605	*node_changed = dn.node_changed;
2606out:
2607	f2fs_put_dnode(&dn);
2608unlock_out:
2609	if (locked)
2610		__do_map_lock(sbi, flag, false);
2611	return err;
2612}
2613
2614static int f2fs_write_begin(struct file *file, struct address_space *mapping,
2615		loff_t pos, unsigned len, unsigned flags,
2616		struct page **pagep, void **fsdata)
2617{
2618	struct inode *inode = mapping->host;
2619	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2620	struct page *page = NULL;
2621	pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
2622	bool need_balance = false, drop_atomic = false;
2623	block_t blkaddr = NULL_ADDR;
2624	int err = 0;
2625
2626	trace_f2fs_write_begin(inode, pos, len, flags);
2627
2628	if (!f2fs_is_checkpoint_ready(sbi)) {
2629		err = -ENOSPC;
2630		goto fail;
2631	}
2632
2633	if ((f2fs_is_atomic_file(inode) &&
2634			!f2fs_available_free_memory(sbi, INMEM_PAGES)) ||
2635			is_inode_flag_set(inode, FI_ATOMIC_REVOKE_REQUEST)) {
2636		err = -ENOMEM;
2637		drop_atomic = true;
2638		goto fail;
2639	}
2640
2641	/*
2642	 * We should check this at this moment to avoid deadlock on inode page
2643	 * and #0 page. The locking rule for inline_data conversion should be:
2644	 * lock_page(page #0) -> lock_page(inode_page)
2645	 */
2646	if (index != 0) {
2647		err = f2fs_convert_inline_inode(inode);
2648		if (err)
2649			goto fail;
2650	}
2651repeat:
2652	/*
2653	 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
2654	 * wait_for_stable_page. Will wait that below with our IO control.
2655	 */
2656	page = f2fs_pagecache_get_page(mapping, index,
2657				FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
2658	if (!page) {
2659		err = -ENOMEM;
2660		goto fail;
2661	}
2662
2663	*pagep = page;
2664
2665	err = prepare_write_begin(sbi, page, pos, len,
2666					&blkaddr, &need_balance);
2667	if (err)
2668		goto fail;
2669
2670	if (need_balance && !IS_NOQUOTA(inode) &&
2671			has_not_enough_free_secs(sbi, 0, 0)) {
2672		unlock_page(page);
2673		f2fs_balance_fs(sbi, true);
2674		lock_page(page);
2675		if (page->mapping != mapping) {
2676			/* The page got truncated from under us */
2677			f2fs_put_page(page, 1);
2678			goto repeat;
2679		}
2680	}
2681
2682	f2fs_wait_on_page_writeback(page, DATA, false, true);
 
 
 
 
2683
2684	if (len == PAGE_SIZE || PageUptodate(page))
2685		return 0;
2686
2687	if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
2688	    !f2fs_verity_in_progress(inode)) {
2689		zero_user_segment(page, len, PAGE_SIZE);
2690		return 0;
2691	}
2692
2693	if (blkaddr == NEW_ADDR) {
2694		zero_user_segment(page, 0, PAGE_SIZE);
2695		SetPageUptodate(page);
2696	} else {
2697		if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
2698				DATA_GENERIC_ENHANCE_READ)) {
2699			err = -EFSCORRUPTED;
 
 
2700			goto fail;
2701		}
2702		err = f2fs_submit_page_read(inode, page, blkaddr);
2703		if (err)
 
 
2704			goto fail;
 
 
 
2705
2706		lock_page(page);
2707		if (unlikely(page->mapping != mapping)) {
2708			f2fs_put_page(page, 1);
2709			goto repeat;
2710		}
2711		if (unlikely(!PageUptodate(page))) {
2712			err = -EIO;
2713			goto fail;
2714		}
2715	}
2716	return 0;
2717
2718fail:
2719	f2fs_put_page(page, 1);
2720	f2fs_write_failed(mapping, pos + len);
2721	if (drop_atomic)
2722		f2fs_drop_inmem_pages_all(sbi, false);
2723	return err;
2724}
2725
2726static int f2fs_write_end(struct file *file,
2727			struct address_space *mapping,
2728			loff_t pos, unsigned len, unsigned copied,
2729			struct page *page, void *fsdata)
2730{
2731	struct inode *inode = page->mapping->host;
2732
2733	trace_f2fs_write_end(inode, pos, len, copied);
2734
2735	/*
2736	 * This should be come from len == PAGE_SIZE, and we expect copied
2737	 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2738	 * let generic_perform_write() try to copy data again through copied=0.
2739	 */
2740	if (!PageUptodate(page)) {
2741		if (unlikely(copied != len))
2742			copied = 0;
2743		else
2744			SetPageUptodate(page);
2745	}
2746	if (!copied)
2747		goto unlock_out;
2748
2749	set_page_dirty(page);
2750
2751	if (pos + copied > i_size_read(inode) &&
2752	    !f2fs_verity_in_progress(inode))
2753		f2fs_i_size_write(inode, pos + copied);
2754unlock_out:
2755	f2fs_put_page(page, 1);
2756	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2757	return copied;
2758}
2759
2760static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2761			   loff_t offset)
2762{
2763	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
2764	unsigned blkbits = i_blkbits;
2765	unsigned blocksize_mask = (1 << blkbits) - 1;
2766	unsigned long align = offset | iov_iter_alignment(iter);
2767	struct block_device *bdev = inode->i_sb->s_bdev;
2768
2769	if (align & blocksize_mask) {
2770		if (bdev)
2771			blkbits = blksize_bits(bdev_logical_block_size(bdev));
2772		blocksize_mask = (1 << blkbits) - 1;
2773		if (align & blocksize_mask)
2774			return -EINVAL;
2775		return 1;
2776	}
2777	return 0;
2778}
2779
2780static void f2fs_dio_end_io(struct bio *bio)
2781{
2782	struct f2fs_private_dio *dio = bio->bi_private;
2783
2784	dec_page_count(F2FS_I_SB(dio->inode),
2785			dio->write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2786
2787	bio->bi_private = dio->orig_private;
2788	bio->bi_end_io = dio->orig_end_io;
2789
2790	kvfree(dio);
2791
2792	bio_endio(bio);
2793}
2794
2795static void f2fs_dio_submit_bio(struct bio *bio, struct inode *inode,
2796							loff_t file_offset)
2797{
2798	struct f2fs_private_dio *dio;
2799	bool write = (bio_op(bio) == REQ_OP_WRITE);
2800
2801	dio = f2fs_kzalloc(F2FS_I_SB(inode),
2802			sizeof(struct f2fs_private_dio), GFP_NOFS);
2803	if (!dio)
2804		goto out;
2805
2806	dio->inode = inode;
2807	dio->orig_end_io = bio->bi_end_io;
2808	dio->orig_private = bio->bi_private;
2809	dio->write = write;
2810
2811	bio->bi_end_io = f2fs_dio_end_io;
2812	bio->bi_private = dio;
2813
2814	inc_page_count(F2FS_I_SB(inode),
2815			write ? F2FS_DIO_WRITE : F2FS_DIO_READ);
2816
2817	submit_bio(bio);
2818	return;
2819out:
2820	bio->bi_status = BLK_STS_IOERR;
2821	bio_endio(bio);
2822}
2823
2824static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2825{
2826	struct address_space *mapping = iocb->ki_filp->f_mapping;
2827	struct inode *inode = mapping->host;
2828	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2829	struct f2fs_inode_info *fi = F2FS_I(inode);
2830	size_t count = iov_iter_count(iter);
2831	loff_t offset = iocb->ki_pos;
2832	int rw = iov_iter_rw(iter);
2833	int err;
2834	enum rw_hint hint = iocb->ki_hint;
2835	int whint_mode = F2FS_OPTION(sbi).whint_mode;
2836	bool do_opu;
2837
2838	err = check_direct_IO(inode, iter, offset);
2839	if (err)
2840		return err < 0 ? err : 0;
2841
2842	if (f2fs_force_buffered_io(inode, iocb, iter))
2843		return 0;
2844
2845	do_opu = allow_outplace_dio(inode, iocb, iter);
2846
2847	trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2848
2849	if (rw == WRITE && whint_mode == WHINT_MODE_OFF)
2850		iocb->ki_hint = WRITE_LIFE_NOT_SET;
2851
2852	if (iocb->ki_flags & IOCB_NOWAIT) {
2853		if (!down_read_trylock(&fi->i_gc_rwsem[rw])) {
2854			iocb->ki_hint = hint;
2855			err = -EAGAIN;
2856			goto out;
2857		}
2858		if (do_opu && !down_read_trylock(&fi->i_gc_rwsem[READ])) {
2859			up_read(&fi->i_gc_rwsem[rw]);
2860			iocb->ki_hint = hint;
2861			err = -EAGAIN;
2862			goto out;
2863		}
2864	} else {
2865		down_read(&fi->i_gc_rwsem[rw]);
2866		if (do_opu)
2867			down_read(&fi->i_gc_rwsem[READ]);
2868	}
2869
2870	err = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2871			iter, rw == WRITE ? get_data_block_dio_write :
2872			get_data_block_dio, NULL, f2fs_dio_submit_bio,
2873			DIO_LOCKING | DIO_SKIP_HOLES);
2874
2875	if (do_opu)
2876		up_read(&fi->i_gc_rwsem[READ]);
2877
2878	up_read(&fi->i_gc_rwsem[rw]);
2879
2880	if (rw == WRITE) {
2881		if (whint_mode == WHINT_MODE_OFF)
2882			iocb->ki_hint = hint;
2883		if (err > 0) {
2884			f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2885									err);
2886			if (!do_opu)
2887				set_inode_flag(inode, FI_UPDATE_WRITE);
2888		} else if (err < 0) {
2889			f2fs_write_failed(mapping, offset + count);
2890		}
2891	}
2892
2893out:
2894	trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2895
2896	return err;
2897}
2898
2899void f2fs_invalidate_page(struct page *page, unsigned int offset,
2900							unsigned int length)
2901{
2902	struct inode *inode = page->mapping->host;
2903	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2904
2905	if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2906		(offset % PAGE_SIZE || length != PAGE_SIZE))
2907		return;
2908
2909	if (PageDirty(page)) {
2910		if (inode->i_ino == F2FS_META_INO(sbi)) {
2911			dec_page_count(sbi, F2FS_DIRTY_META);
2912		} else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2913			dec_page_count(sbi, F2FS_DIRTY_NODES);
2914		} else {
2915			inode_dec_dirty_pages(inode);
2916			f2fs_remove_dirty_inode(inode);
2917		}
2918	}
2919
2920	clear_cold_data(page);
2921
2922	if (IS_ATOMIC_WRITTEN_PAGE(page))
2923		return f2fs_drop_inmem_page(inode, page);
2924
2925	f2fs_clear_page_private(page);
 
2926}
2927
2928int f2fs_release_page(struct page *page, gfp_t wait)
2929{
2930	/* If this is dirty page, keep PagePrivate */
2931	if (PageDirty(page))
2932		return 0;
2933
2934	/* This is atomic written page, keep Private */
2935	if (IS_ATOMIC_WRITTEN_PAGE(page))
2936		return 0;
2937
2938	clear_cold_data(page);
2939	f2fs_clear_page_private(page);
2940	return 1;
2941}
2942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2943static int f2fs_set_data_page_dirty(struct page *page)
2944{
2945	struct inode *inode = page_file_mapping(page)->host;
 
2946
2947	trace_f2fs_set_page_dirty(page, DATA);
2948
2949	if (!PageUptodate(page))
2950		SetPageUptodate(page);
2951	if (PageSwapCache(page))
2952		return __set_page_dirty_nobuffers(page);
2953
2954	if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2955		if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2956			f2fs_register_inmem_page(inode, page);
2957			return 1;
2958		}
2959		/*
2960		 * Previously, this page has been registered, we just
2961		 * return here.
2962		 */
2963		return 0;
2964	}
2965
2966	if (!PageDirty(page)) {
2967		__set_page_dirty_nobuffers(page);
2968		f2fs_update_dirty_page(inode, page);
2969		return 1;
2970	}
2971	return 0;
2972}
2973
2974static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2975{
2976	struct inode *inode = mapping->host;
2977
2978	if (f2fs_has_inline_data(inode))
2979		return 0;
2980
2981	/* make sure allocating whole blocks */
2982	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2983		filemap_write_and_wait(mapping);
2984
2985	return generic_block_bmap(mapping, block, get_data_block_bmap);
2986}
2987
2988#ifdef CONFIG_MIGRATION
2989#include <linux/migrate.h>
2990
2991int f2fs_migrate_page(struct address_space *mapping,
2992		struct page *newpage, struct page *page, enum migrate_mode mode)
2993{
2994	int rc, extra_count;
2995	struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2996	bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2997
2998	BUG_ON(PageWriteback(page));
2999
3000	/* migrating an atomic written page is safe with the inmem_lock hold */
3001	if (atomic_written) {
3002		if (mode != MIGRATE_SYNC)
3003			return -EBUSY;
3004		if (!mutex_trylock(&fi->inmem_lock))
3005			return -EAGAIN;
3006	}
3007
3008	/* one extra reference was held for atomic_write page */
3009	extra_count = atomic_written ? 1 : 0;
 
 
 
 
3010	rc = migrate_page_move_mapping(mapping, newpage,
3011				page, extra_count);
3012	if (rc != MIGRATEPAGE_SUCCESS) {
3013		if (atomic_written)
3014			mutex_unlock(&fi->inmem_lock);
3015		return rc;
3016	}
3017
3018	if (atomic_written) {
3019		struct inmem_pages *cur;
3020		list_for_each_entry(cur, &fi->inmem_pages, list)
3021			if (cur->page == page) {
3022				cur->page = newpage;
3023				break;
3024			}
3025		mutex_unlock(&fi->inmem_lock);
3026		put_page(page);
3027		get_page(newpage);
3028	}
3029
3030	if (PagePrivate(page)) {
3031		f2fs_set_page_private(newpage, page_private(page));
3032		f2fs_clear_page_private(page);
3033	}
3034
3035	if (mode != MIGRATE_SYNC_NO_COPY)
3036		migrate_page_copy(newpage, page);
3037	else
3038		migrate_page_states(newpage, page);
3039
3040	return MIGRATEPAGE_SUCCESS;
3041}
3042#endif
3043
3044#ifdef CONFIG_SWAP
3045/* Copied from generic_swapfile_activate() to check any holes */
3046static int check_swap_activate(struct file *swap_file, unsigned int max)
3047{
3048	struct address_space *mapping = swap_file->f_mapping;
3049	struct inode *inode = mapping->host;
3050	unsigned blocks_per_page;
3051	unsigned long page_no;
3052	unsigned blkbits;
3053	sector_t probe_block;
3054	sector_t last_block;
3055	sector_t lowest_block = -1;
3056	sector_t highest_block = 0;
3057
3058	blkbits = inode->i_blkbits;
3059	blocks_per_page = PAGE_SIZE >> blkbits;
3060
3061	/*
3062	 * Map all the blocks into the extent list.  This code doesn't try
3063	 * to be very smart.
3064	 */
3065	probe_block = 0;
3066	page_no = 0;
3067	last_block = i_size_read(inode) >> blkbits;
3068	while ((probe_block + blocks_per_page) <= last_block && page_no < max) {
3069		unsigned block_in_page;
3070		sector_t first_block;
3071
3072		cond_resched();
3073
3074		first_block = bmap(inode, probe_block);
3075		if (first_block == 0)
3076			goto bad_bmap;
3077
3078		/*
3079		 * It must be PAGE_SIZE aligned on-disk
3080		 */
3081		if (first_block & (blocks_per_page - 1)) {
3082			probe_block++;
3083			goto reprobe;
3084		}
3085
3086		for (block_in_page = 1; block_in_page < blocks_per_page;
3087					block_in_page++) {
3088			sector_t block;
3089
3090			block = bmap(inode, probe_block + block_in_page);
3091			if (block == 0)
3092				goto bad_bmap;
3093			if (block != first_block + block_in_page) {
3094				/* Discontiguity */
3095				probe_block++;
3096				goto reprobe;
3097			}
3098		}
3099
3100		first_block >>= (PAGE_SHIFT - blkbits);
3101		if (page_no) {	/* exclude the header page */
3102			if (first_block < lowest_block)
3103				lowest_block = first_block;
3104			if (first_block > highest_block)
3105				highest_block = first_block;
3106		}
3107
3108		page_no++;
3109		probe_block += blocks_per_page;
3110reprobe:
3111		continue;
3112	}
3113	return 0;
3114
3115bad_bmap:
3116	pr_err("swapon: swapfile has holes\n");
3117	return -EINVAL;
3118}
3119
3120static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3121				sector_t *span)
3122{
3123	struct inode *inode = file_inode(file);
3124	int ret;
3125
3126	if (!S_ISREG(inode->i_mode))
3127		return -EINVAL;
3128
3129	if (f2fs_readonly(F2FS_I_SB(inode)->sb))
3130		return -EROFS;
3131
3132	ret = f2fs_convert_inline_inode(inode);
3133	if (ret)
3134		return ret;
3135
3136	ret = check_swap_activate(file, sis->max);
3137	if (ret)
3138		return ret;
3139
3140	set_inode_flag(inode, FI_PIN_FILE);
3141	f2fs_precache_extents(inode);
3142	f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3143	return 0;
3144}
3145
3146static void f2fs_swap_deactivate(struct file *file)
3147{
3148	struct inode *inode = file_inode(file);
3149
3150	clear_inode_flag(inode, FI_PIN_FILE);
3151}
3152#else
3153static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
3154				sector_t *span)
3155{
3156	return -EOPNOTSUPP;
3157}
3158
3159static void f2fs_swap_deactivate(struct file *file)
3160{
3161}
3162#endif
3163
3164const struct address_space_operations f2fs_dblock_aops = {
3165	.readpage	= f2fs_read_data_page,
3166	.readpages	= f2fs_read_data_pages,
3167	.writepage	= f2fs_write_data_page,
3168	.writepages	= f2fs_write_data_pages,
3169	.write_begin	= f2fs_write_begin,
3170	.write_end	= f2fs_write_end,
3171	.set_page_dirty	= f2fs_set_data_page_dirty,
3172	.invalidatepage	= f2fs_invalidate_page,
3173	.releasepage	= f2fs_release_page,
3174	.direct_IO	= f2fs_direct_IO,
3175	.bmap		= f2fs_bmap,
3176	.swap_activate  = f2fs_swap_activate,
3177	.swap_deactivate = f2fs_swap_deactivate,
3178#ifdef CONFIG_MIGRATION
3179	.migratepage    = f2fs_migrate_page,
3180#endif
3181};
3182
3183void f2fs_clear_page_cache_dirty_tag(struct page *page)
3184{
3185	struct address_space *mapping = page_mapping(page);
3186	unsigned long flags;
3187
3188	xa_lock_irqsave(&mapping->i_pages, flags);
3189	__xa_clear_mark(&mapping->i_pages, page_index(page),
3190						PAGECACHE_TAG_DIRTY);
3191	xa_unlock_irqrestore(&mapping->i_pages, flags);
3192}
3193
3194int __init f2fs_init_post_read_processing(void)
3195{
3196	bio_post_read_ctx_cache =
3197		kmem_cache_create("f2fs_bio_post_read_ctx",
3198				  sizeof(struct bio_post_read_ctx), 0, 0, NULL);
3199	if (!bio_post_read_ctx_cache)
3200		goto fail;
3201	bio_post_read_ctx_pool =
3202		mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
3203					 bio_post_read_ctx_cache);
3204	if (!bio_post_read_ctx_pool)
3205		goto fail_free_cache;
3206	return 0;
3207
3208fail_free_cache:
3209	kmem_cache_destroy(bio_post_read_ctx_cache);
3210fail:
3211	return -ENOMEM;
3212}
3213
3214void __exit f2fs_destroy_post_read_processing(void)
3215{
3216	mempool_destroy(bio_post_read_ctx_pool);
3217	kmem_cache_destroy(bio_post_read_ctx_cache);
3218}