Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * hcd.h - DesignWare HS OTG Controller host-mode declarations
  3 *
  4 * Copyright (C) 2004-2013 Synopsys, Inc.
  5 *
  6 * Redistribution and use in source and binary forms, with or without
  7 * modification, are permitted provided that the following conditions
  8 * are met:
  9 * 1. Redistributions of source code must retain the above copyright
 10 *    notice, this list of conditions, and the following disclaimer,
 11 *    without modification.
 12 * 2. Redistributions in binary form must reproduce the above copyright
 13 *    notice, this list of conditions and the following disclaimer in the
 14 *    documentation and/or other materials provided with the distribution.
 15 * 3. The names of the above-listed copyright holders may not be used
 16 *    to endorse or promote products derived from this software without
 17 *    specific prior written permission.
 18 *
 19 * ALTERNATIVELY, this software may be distributed under the terms of the
 20 * GNU General Public License ("GPL") as published by the Free Software
 21 * Foundation; either version 2 of the License, or (at your option) any
 22 * later version.
 23 *
 24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 35 */
 36#ifndef __DWC2_HCD_H__
 37#define __DWC2_HCD_H__
 38
 39/*
 40 * This file contains the structures, constants, and interfaces for the
 41 * Host Contoller Driver (HCD)
 42 *
 43 * The Host Controller Driver (HCD) is responsible for translating requests
 44 * from the USB Driver into the appropriate actions on the DWC_otg controller.
 45 * It isolates the USBD from the specifics of the controller by providing an
 46 * API to the USBD.
 47 */
 48
 49struct dwc2_qh;
 50
 51/**
 52 * struct dwc2_host_chan - Software host channel descriptor
 53 *
 54 * @hc_num:             Host channel number, used for register address lookup
 55 * @dev_addr:           Address of the device
 56 * @ep_num:             Endpoint of the device
 57 * @ep_is_in:           Endpoint direction
 58 * @speed:              Device speed. One of the following values:
 59 *                       - USB_SPEED_LOW
 60 *                       - USB_SPEED_FULL
 61 *                       - USB_SPEED_HIGH
 62 * @ep_type:            Endpoint type. One of the following values:
 63 *                       - USB_ENDPOINT_XFER_CONTROL: 0
 64 *                       - USB_ENDPOINT_XFER_ISOC:    1
 65 *                       - USB_ENDPOINT_XFER_BULK:    2
 66 *                       - USB_ENDPOINT_XFER_INTR:    3
 67 * @max_packet:         Max packet size in bytes
 68 * @data_pid_start:     PID for initial transaction.
 69 *                       0: DATA0
 70 *                       1: DATA2
 71 *                       2: DATA1
 72 *                       3: MDATA (non-Control EP),
 73 *                          SETUP (Control EP)
 74 * @multi_count:        Number of additional periodic transactions per
 75 *                      (micro)frame
 76 * @xfer_buf:           Pointer to current transfer buffer position
 77 * @xfer_dma:           DMA address of xfer_buf
 
 
 78 * @xfer_len:           Total number of bytes to transfer
 79 * @xfer_count:         Number of bytes transferred so far
 80 * @start_pkt_count:    Packet count at start of transfer
 81 * @xfer_started:       True if the transfer has been started
 82 * @ping:               True if a PING request should be issued on this channel
 83 * @error_state:        True if the error count for this transaction is non-zero
 84 * @halt_on_queue:      True if this channel should be halted the next time a
 85 *                      request is queued for the channel. This is necessary in
 86 *                      slave mode if no request queue space is available when
 87 *                      an attempt is made to halt the channel.
 88 * @halt_pending:       True if the host channel has been halted, but the core
 89 *                      is not finished flushing queued requests
 90 * @do_split:           Enable split for the channel
 91 * @complete_split:     Enable complete split
 92 * @hub_addr:           Address of high speed hub for the split
 93 * @hub_port:           Port of the low/full speed device for the split
 94 * @xact_pos:           Split transaction position. One of the following values:
 95 *                       - DWC2_HCSPLT_XACTPOS_MID
 96 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
 97 *                       - DWC2_HCSPLT_XACTPOS_END
 98 *                       - DWC2_HCSPLT_XACTPOS_ALL
 99 * @requests:           Number of requests issued for this channel since it was
100 *                      assigned to the current transfer (not counting PINGs)
101 * @schinfo:            Scheduling micro-frame bitmap
102 * @ntd:                Number of transfer descriptors for the transfer
103 * @halt_status:        Reason for halting the host channel
104 * @hcint               Contents of the HCINT register when the interrupt came
105 * @qh:                 QH for the transfer being processed by this channel
106 * @hc_list_entry:      For linking to list of host channels
107 * @desc_list_addr:     Current QH's descriptor list DMA address
108 * @desc_list_sz:       Current QH's descriptor list size
109 * @split_order_list_entry: List entry for keeping track of the order of splits
110 *
111 * This structure represents the state of a single host channel when acting in
112 * host mode. It contains the data items needed to transfer packets to an
113 * endpoint via a host channel.
114 */
115struct dwc2_host_chan {
116	u8 hc_num;
117
118	unsigned dev_addr:7;
119	unsigned ep_num:4;
120	unsigned ep_is_in:1;
121	unsigned speed:4;
122	unsigned ep_type:2;
123	unsigned max_packet:11;
124	unsigned data_pid_start:2;
125#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
126#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
127#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
128#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
129#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
130
131	unsigned multi_count:2;
132
133	u8 *xfer_buf;
134	dma_addr_t xfer_dma;
 
135	u32 xfer_len;
136	u32 xfer_count;
137	u16 start_pkt_count;
138	u8 xfer_started;
139	u8 do_ping;
140	u8 error_state;
141	u8 halt_on_queue;
142	u8 halt_pending;
143	u8 do_split;
144	u8 complete_split;
145	u8 hub_addr;
146	u8 hub_port;
147	u8 xact_pos;
148#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
149#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
150#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
151#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
152
153	u8 requests;
154	u8 schinfo;
155	u16 ntd;
156	enum dwc2_halt_status halt_status;
157	u32 hcint;
158	struct dwc2_qh *qh;
159	struct list_head hc_list_entry;
160	dma_addr_t desc_list_addr;
161	u32 desc_list_sz;
162	struct list_head split_order_list_entry;
163};
164
165struct dwc2_hcd_pipe_info {
166	u8 dev_addr;
167	u8 ep_num;
168	u8 pipe_type;
169	u8 pipe_dir;
170	u16 mps;
 
171};
172
173struct dwc2_hcd_iso_packet_desc {
174	u32 offset;
175	u32 length;
176	u32 actual_length;
177	u32 status;
178};
179
180struct dwc2_qtd;
181
182struct dwc2_hcd_urb {
183	void *priv;
184	struct dwc2_qtd *qtd;
185	void *buf;
186	dma_addr_t dma;
187	void *setup_packet;
188	dma_addr_t setup_dma;
189	u32 length;
190	u32 actual_length;
191	u32 status;
192	u32 error_count;
193	u32 packet_count;
194	u32 flags;
195	u16 interval;
196	struct dwc2_hcd_pipe_info pipe_info;
197	struct dwc2_hcd_iso_packet_desc iso_descs[0];
198};
199
200/* Phases for control transfers */
201enum dwc2_control_phase {
202	DWC2_CONTROL_SETUP,
203	DWC2_CONTROL_DATA,
204	DWC2_CONTROL_STATUS,
205};
206
207/* Transaction types */
208enum dwc2_transaction_type {
209	DWC2_TRANSACTION_NONE,
210	DWC2_TRANSACTION_PERIODIC,
211	DWC2_TRANSACTION_NON_PERIODIC,
212	DWC2_TRANSACTION_ALL,
213};
214
215/* The number of elements per LS bitmap (per port on multi_tt) */
216#define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
217						     BITS_PER_LONG)
218
219/**
220 * struct dwc2_tt - dwc2 data associated with a usb_tt
221 *
222 * @refcount:           Number of Queue Heads (QHs) holding a reference.
223 * @usb_tt:             Pointer back to the official usb_tt.
224 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
225 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
226 *			elements (so sizeof(long) times that in bytes).
227 *
228 * This structure is stored in the hcpriv of the official usb_tt.
229 */
230struct dwc2_tt {
231	int refcount;
232	struct usb_tt *usb_tt;
233	unsigned long periodic_bitmaps[];
234};
235
236/**
237 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
238 *
239 * @start_schedule_usecs:  The start time on the main bus schedule.  Note that
240 *                         the main bus schedule is tightly packed and this
241 *			   time should be interpreted as tightly packed (so
242 *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
243 *			   instead of 125 us).
244 * @duration_us:           How long this transfer goes.
245 */
246
247struct dwc2_hs_transfer_time {
248	u32 start_schedule_us;
249	u16 duration_us;
250};
251
252/**
253 * struct dwc2_qh - Software queue head structure
254 *
255 * @hsotg:              The HCD state structure for the DWC OTG controller
256 * @ep_type:            Endpoint type. One of the following values:
257 *                       - USB_ENDPOINT_XFER_CONTROL
258 *                       - USB_ENDPOINT_XFER_BULK
259 *                       - USB_ENDPOINT_XFER_INT
260 *                       - USB_ENDPOINT_XFER_ISOC
261 * @ep_is_in:           Endpoint direction
262 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
 
263 * @dev_speed:          Device speed. One of the following values:
264 *                       - USB_SPEED_LOW
265 *                       - USB_SPEED_FULL
266 *                       - USB_SPEED_HIGH
267 * @data_toggle:        Determines the PID of the next data packet for
268 *                      non-controltransfers. Ignored for control transfers.
269 *                      One of the following values:
270 *                       - DWC2_HC_PID_DATA0
271 *                       - DWC2_HC_PID_DATA1
272 * @ping_state:         Ping state
273 * @do_split:           Full/low speed endpoint on high-speed hub requires split
274 * @td_first:           Index of first activated isochronous transfer descriptor
275 * @td_last:            Index of last activated isochronous transfer descriptor
276 * @host_us:            Bandwidth in microseconds per transfer as seen by host
277 * @device_us:          Bandwidth in microseconds per transfer as seen by device
278 * @host_interval:      Interval between transfers as seen by the host.  If
279 *                      the host is high speed and the device is low speed this
280 *                      will be 8 times device interval.
281 * @device_interval:    Interval between transfers as seen by the device.
282 *                      interval.
283 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
284 *                      the bus.  We'll move the qh to active here.  If the
285 *                      host is in high speed mode this will be a uframe.  If
286 *                      the host is in low speed mode this will be a full frame.
287 * @start_active_frame: If we are partway through a split transfer, this will be
288 *			what next_active_frame was when we started.  Otherwise
289 *			it should always be the same as next_active_frame.
290 * @num_hs_transfers:   Number of transfers in hs_transfers.
291 *                      Normally this is 1 but can be more than one for splits.
292 *                      Always >= 1 unless the host is in low/full speed mode.
293 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
294 *                      bus.  Not used if host is in low or full speed mode (but
295 *                      note that it IS USED if the device is low or full speed
296 *                      as long as the HOST is in high speed mode).
297 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
298 *                           schedule that's being used by this device.  This
299 *			     will be on the periodic_bitmap in a
300 *                           "struct dwc2_tt".  Not used if this device is high
301 *                           speed.  Note that this is in "schedule slice" which
302 *                           is tightly packed.
303 * @ls_duration_us:     Duration on the low speed bus schedule.
304 * @ntd:                Actual number of transfer descriptors in a list
 
 
 
305 * @qtd_list:           List of QTDs for this QH
306 * @channel:            Host channel currently processing transfers for this QH
307 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
308 *                      schedule
309 * @desc_list:          List of transfer descriptors
310 * @desc_list_dma:      Physical address of desc_list
311 * @desc_list_sz:       Size of descriptors list
312 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
313 *                      descriptor and indicates original XferSize value for the
314 *                      descriptor
315 * @unreserve_timer:    Timer for releasing periodic reservation.
316 * @dwc2_tt:            Pointer to our tt info (or NULL if no tt).
 
317 * @ttport:             Port number within our tt.
318 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
319 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
320 * @schedule_low_speed: True if we have a low/full speed component (either the
321 *			host is in low/full speed mode or do_split).
 
 
 
322 *
 
323 * A Queue Head (QH) holds the static characteristics of an endpoint and
324 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
325 * be entered in either the non-periodic or periodic schedule.
326 */
327struct dwc2_qh {
328	struct dwc2_hsotg *hsotg;
329	u8 ep_type;
330	u8 ep_is_in;
331	u16 maxp;
 
332	u8 dev_speed;
333	u8 data_toggle;
334	u8 ping_state;
335	u8 do_split;
336	u8 td_first;
337	u8 td_last;
338	u16 host_us;
339	u16 device_us;
340	u16 host_interval;
341	u16 device_interval;
342	u16 next_active_frame;
343	u16 start_active_frame;
344	s16 num_hs_transfers;
345	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
346	u32 ls_start_schedule_slice;
347	u16 ntd;
 
 
348	struct list_head qtd_list;
349	struct dwc2_host_chan *channel;
350	struct list_head qh_list_entry;
351	struct dwc2_dma_desc *desc_list;
352	dma_addr_t desc_list_dma;
353	u32 desc_list_sz;
354	u32 *n_bytes;
355	struct timer_list unreserve_timer;
 
356	struct dwc2_tt *dwc_tt;
357	int ttport;
358	unsigned tt_buffer_dirty:1;
359	unsigned unreserve_pending:1;
360	unsigned schedule_low_speed:1;
 
 
361};
362
363/**
364 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
365 *
366 * @control_phase:      Current phase for control transfers (Setup, Data, or
367 *                      Status)
368 * @in_process:         Indicates if this QTD is currently processed by HW
369 * @data_toggle:        Determines the PID of the next data packet for the
370 *                      data phase of control transfers. Ignored for other
371 *                      transfer types. One of the following values:
372 *                       - DWC2_HC_PID_DATA0
373 *                       - DWC2_HC_PID_DATA1
374 * @complete_split:     Keeps track of the current split type for FS/LS
375 *                      endpoints on a HS Hub
376 * @isoc_split_pos:     Position of the ISOC split in full/low speed
377 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
378 *                      transfer. A frame descriptor describes the buffer
379 *                      position and length of the data to be transferred in the
380 *                      next scheduled (micro)frame of an isochronous transfer.
381 *                      It also holds status for that transaction. The frame
382 *                      index starts at 0.
383 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
384 *                      current frame
385 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
386 * @error_count:        Holds the number of bus errors that have occurred for
387 *                      a transaction within this transfer
388 * @n_desc:             Number of DMA descriptors for this QTD
389 * @isoc_frame_index_last: Last activated frame (packet) index, used in
390 *                      descriptor DMA mode only
 
391 * @urb:                URB for this transfer
392 * @qh:                 Queue head for this QTD
393 * @qtd_list_entry:     For linking to the QH's list of QTDs
 
 
 
 
394 *
395 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
396 * interrupt, or isochronous transfer. A single QTD is created for each URB
397 * (of one of these types) submitted to the HCD. The transfer associated with
398 * a QTD may require one or multiple transactions.
399 *
400 * A QTD is linked to a Queue Head, which is entered in either the
401 * non-periodic or periodic schedule for execution. When a QTD is chosen for
402 * execution, some or all of its transactions may be executed. After
403 * execution, the state of the QTD is updated. The QTD may be retired if all
404 * its transactions are complete or if an error occurred. Otherwise, it
405 * remains in the schedule so more transactions can be executed later.
406 */
407struct dwc2_qtd {
408	enum dwc2_control_phase control_phase;
409	u8 in_process;
410	u8 data_toggle;
411	u8 complete_split;
412	u8 isoc_split_pos;
413	u16 isoc_frame_index;
414	u16 isoc_split_offset;
415	u16 isoc_td_last;
416	u16 isoc_td_first;
417	u32 ssplit_out_xfer_count;
418	u8 error_count;
419	u8 n_desc;
420	u16 isoc_frame_index_last;
 
421	struct dwc2_hcd_urb *urb;
422	struct dwc2_qh *qh;
423	struct list_head qtd_list_entry;
424};
425
426#ifdef DEBUG
427struct hc_xfer_info {
428	struct dwc2_hsotg *hsotg;
429	struct dwc2_host_chan *chan;
430};
431#endif
432
433u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
434
435/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
436static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
437{
438	return (struct usb_hcd *)hsotg->priv;
439}
440
441/*
442 * Inline used to disable one channel interrupt. Channel interrupts are
443 * disabled when the channel is halted or released by the interrupt handler.
444 * There is no need to handle further interrupts of that type until the
445 * channel is re-assigned. In fact, subsequent handling may cause crashes
446 * because the channel structures are cleaned up when the channel is released.
447 */
448static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
449{
450	u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
451
452	mask &= ~intr;
453	dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
454}
455
456void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
457void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
458		  enum dwc2_halt_status halt_status);
459void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
460				 struct dwc2_host_chan *chan);
461
462/*
463 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
464 * are read as 1, they won't clear when written back.
465 */
466static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
467{
468	u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
469
470	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
471	return hprt0;
472}
473
474static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
475{
476	return pipe->ep_num;
477}
478
479static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
480{
481	return pipe->pipe_type;
482}
483
484static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
485{
486	return pipe->mps;
 
 
 
 
 
487}
488
489static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
490{
491	return pipe->dev_addr;
492}
493
494static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
495{
496	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
497}
498
499static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
500{
501	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
502}
503
504static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
505{
506	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
507}
508
509static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
510{
511	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
512}
513
514static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
515{
516	return pipe->pipe_dir == USB_DIR_IN;
517}
518
519static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
520{
521	return !dwc2_hcd_is_pipe_in(pipe);
522}
523
524extern int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq);
525extern void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
526
527/* Transaction Execution Functions */
528extern enum dwc2_transaction_type dwc2_hcd_select_transactions(
529						struct dwc2_hsotg *hsotg);
530extern void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
531					enum dwc2_transaction_type tr_type);
532
533/* Schedule Queue Functions */
534/* Implemented in hcd_queue.c */
535extern struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
536					  struct dwc2_hcd_urb *urb,
537					  gfp_t mem_flags);
538extern void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
539extern int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
540extern void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
541extern void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
542				   int sched_csplit);
543
544extern void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
545extern int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
546			    struct dwc2_qh *qh);
547
548/* Unlinks and frees a QTD */
549static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
550						struct dwc2_qtd *qtd,
551						struct dwc2_qh *qh)
552{
553	list_del(&qtd->qtd_list_entry);
554	kfree(qtd);
555	qtd = NULL;
556}
557
558/* Descriptor DMA support functions */
559extern void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
560				     struct dwc2_qh *qh);
561extern void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
562					struct dwc2_host_chan *chan, int chnum,
563					enum dwc2_halt_status halt_status);
564
565extern int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
566				 gfp_t mem_flags);
567extern void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
568
569/* Check if QH is non-periodic */
570#define dwc2_qh_is_non_per(_qh_ptr_) \
571	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
572	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
573
574#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
575static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
576static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
577static inline bool dbg_urb(struct urb *urb) { return true; }
578static inline bool dbg_perio(void) { return true; }
579#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
580static inline bool dbg_hc(struct dwc2_host_chan *hc)
581{
582	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
583	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
584}
585
586static inline bool dbg_qh(struct dwc2_qh *qh)
587{
588	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
589	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
590}
591
592static inline bool dbg_urb(struct urb *urb)
593{
594	return usb_pipetype(urb->pipe) == PIPE_BULK ||
595	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
596}
597
598static inline bool dbg_perio(void) { return false; }
599#endif
600
601/* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
602#define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
603
604/* Packet size for any kind of endpoint descriptor */
605#define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
606
607/*
608 * Returns true if frame1 index is greater than frame2 index. The comparison
609 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
610 * frame number when the max index frame number is reached.
611 */
612static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
613{
614	u16 diff = fr_idx1 - fr_idx2;
615	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
616
617	return diff && !sign;
618}
619
620/*
621 * Returns true if frame1 is less than or equal to frame2. The comparison is
622 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
623 * frame number when the max frame number is reached.
624 */
625static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
626{
627	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
628}
629
630/*
631 * Returns true if frame1 is greater than frame2. The comparison is done
632 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
633 * number when the max frame number is reached.
634 */
635static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
636{
637	return (frame1 != frame2) &&
638	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
639}
640
641/*
642 * Increments frame by the amount specified by inc. The addition is done
643 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
644 */
645static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
646{
647	return (frame + inc) & HFNUM_MAX_FRNUM;
648}
649
650static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
651{
652	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
653}
654
655static inline u16 dwc2_full_frame_num(u16 frame)
656{
657	return (frame & HFNUM_MAX_FRNUM) >> 3;
658}
659
660static inline u16 dwc2_micro_frame_num(u16 frame)
661{
662	return frame & 0x7;
663}
664
665/*
666 * Returns the Core Interrupt Status register contents, ANDed with the Core
667 * Interrupt Mask register contents
668 */
669static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
670{
671	return dwc2_readl(hsotg->regs + GINTSTS) &
672	       dwc2_readl(hsotg->regs + GINTMSK);
673}
674
675static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
676{
677	return dwc2_urb->status;
678}
679
680static inline u32 dwc2_hcd_urb_get_actual_length(
681		struct dwc2_hcd_urb *dwc2_urb)
682{
683	return dwc2_urb->actual_length;
684}
685
686static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
687{
688	return dwc2_urb->error_count;
689}
690
691static inline void dwc2_hcd_urb_set_iso_desc_params(
692		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
693		u32 length)
694{
695	dwc2_urb->iso_descs[desc_num].offset = offset;
696	dwc2_urb->iso_descs[desc_num].length = length;
697}
698
699static inline u32 dwc2_hcd_urb_get_iso_desc_status(
700		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
701{
702	return dwc2_urb->iso_descs[desc_num].status;
703}
704
705static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
706		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
707{
708	return dwc2_urb->iso_descs[desc_num].actual_length;
709}
710
711static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
712						  struct usb_host_endpoint *ep)
713{
714	struct dwc2_qh *qh = ep->hcpriv;
715
716	if (qh && !list_empty(&qh->qh_list_entry))
717		return 1;
718
719	return 0;
720}
721
722static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
723					    struct usb_host_endpoint *ep)
724{
725	struct dwc2_qh *qh = ep->hcpriv;
726
727	if (!qh) {
728		WARN_ON(1);
729		return 0;
730	}
731
732	return qh->host_us;
733}
734
735extern void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
736				      struct dwc2_host_chan *chan, int chnum,
737				      struct dwc2_qtd *qtd);
738
739/* HCD Core API */
740
741/**
742 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
743 *
744 * @hsotg: The DWC2 HCD
745 *
746 * Returns IRQ_HANDLED if interrupt is handled
747 * Return IRQ_NONE if interrupt is not handled
748 */
749extern irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
750
751/**
752 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
753 *
754 * @hsotg: The DWC2 HCD
755 */
756extern void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
757
758/**
759 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
760 * and 0 otherwise
761 *
762 * @hsotg: The DWC2 HCD
763 */
764extern int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
765
766/**
767 * dwc2_hcd_dump_state() - Dumps hsotg state
768 *
769 * @hsotg: The DWC2 HCD
770 *
771 * NOTE: This function will be removed once the peripheral controller code
772 * is integrated and the driver is stable
773 */
774extern void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
775
776/**
777 * dwc2_hcd_dump_frrem() - Dumps the average frame remaining at SOF
778 *
779 * @hsotg: The DWC2 HCD
780 *
781 * This can be used to determine average interrupt latency. Frame remaining is
782 * also shown for start transfer and two additional sample points.
783 *
784 * NOTE: This function will be removed once the peripheral controller code
785 * is integrated and the driver is stable
786 */
787extern void dwc2_hcd_dump_frrem(struct dwc2_hsotg *hsotg);
788
789/* URB interface */
790
791/* Transfer flags */
792#define URB_GIVEBACK_ASAP	0x1
793#define URB_SEND_ZERO_PACKET	0x2
794
795/* Host driver callbacks */
796extern struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
797					     void *context, gfp_t mem_flags,
798					     int *ttport);
799
800extern void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
801				  struct dwc2_tt *dwc_tt);
802extern int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
803extern void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
804			       int status);
805
806#ifdef DEBUG
807/*
808 * Macro to sample the remaining PHY clocks left in the current frame. This
809 * may be used during debugging to determine the average time it takes to
810 * execute sections of code. There are two possible sample points, "a" and
811 * "b", so the _letter_ argument must be one of these values.
812 *
813 * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
814 * example, "cat /sys/devices/lm0/hcd_frrem".
815 */
816#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)			\
817do {									\
818	struct hfnum_data _hfnum_;					\
819	struct dwc2_qtd *_qtd_;						\
820									\
821	_qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd,	\
822			   qtd_list_entry);				\
823	if (usb_pipeint(_qtd_->urb->pipe) &&				\
824	    (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
825		_hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM);	\
826		switch (_hfnum_.b.frnum & 0x7) {			\
827		case 7:							\
828			(_hcd_)->hfnum_7_samples_##_letter_++;		\
829			(_hcd_)->hfnum_7_frrem_accum_##_letter_ +=	\
830				_hfnum_.b.frrem;			\
831			break;						\
832		case 0:							\
833			(_hcd_)->hfnum_0_samples_##_letter_++;		\
834			(_hcd_)->hfnum_0_frrem_accum_##_letter_ +=	\
835				_hfnum_.b.frrem;			\
836			break;						\
837		default:						\
838			(_hcd_)->hfnum_other_samples_##_letter_++;	\
839			(_hcd_)->hfnum_other_frrem_accum_##_letter_ +=	\
840				_hfnum_.b.frrem;			\
841			break;						\
842		}							\
843	}								\
844} while (0)
845#else
846#define dwc2_sample_frrem(_hcd_, _qh_, _letter_)	do {} while (0)
847#endif
848
849#endif /* __DWC2_HCD_H__ */
v5.4
  1// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
  2/*
  3 * hcd.h - DesignWare HS OTG Controller host-mode declarations
  4 *
  5 * Copyright (C) 2004-2013 Synopsys, Inc.
  6 *
  7 * Redistribution and use in source and binary forms, with or without
  8 * modification, are permitted provided that the following conditions
  9 * are met:
 10 * 1. Redistributions of source code must retain the above copyright
 11 *    notice, this list of conditions, and the following disclaimer,
 12 *    without modification.
 13 * 2. Redistributions in binary form must reproduce the above copyright
 14 *    notice, this list of conditions and the following disclaimer in the
 15 *    documentation and/or other materials provided with the distribution.
 16 * 3. The names of the above-listed copyright holders may not be used
 17 *    to endorse or promote products derived from this software without
 18 *    specific prior written permission.
 19 *
 20 * ALTERNATIVELY, this software may be distributed under the terms of the
 21 * GNU General Public License ("GPL") as published by the Free Software
 22 * Foundation; either version 2 of the License, or (at your option) any
 23 * later version.
 24 *
 25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
 26 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 27 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 28 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 29 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 30 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 31 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 32 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 36 */
 37#ifndef __DWC2_HCD_H__
 38#define __DWC2_HCD_H__
 39
 40/*
 41 * This file contains the structures, constants, and interfaces for the
 42 * Host Contoller Driver (HCD)
 43 *
 44 * The Host Controller Driver (HCD) is responsible for translating requests
 45 * from the USB Driver into the appropriate actions on the DWC_otg controller.
 46 * It isolates the USBD from the specifics of the controller by providing an
 47 * API to the USBD.
 48 */
 49
 50struct dwc2_qh;
 51
 52/**
 53 * struct dwc2_host_chan - Software host channel descriptor
 54 *
 55 * @hc_num:             Host channel number, used for register address lookup
 56 * @dev_addr:           Address of the device
 57 * @ep_num:             Endpoint of the device
 58 * @ep_is_in:           Endpoint direction
 59 * @speed:              Device speed. One of the following values:
 60 *                       - USB_SPEED_LOW
 61 *                       - USB_SPEED_FULL
 62 *                       - USB_SPEED_HIGH
 63 * @ep_type:            Endpoint type. One of the following values:
 64 *                       - USB_ENDPOINT_XFER_CONTROL: 0
 65 *                       - USB_ENDPOINT_XFER_ISOC:    1
 66 *                       - USB_ENDPOINT_XFER_BULK:    2
 67 *                       - USB_ENDPOINT_XFER_INTR:    3
 68 * @max_packet:         Max packet size in bytes
 69 * @data_pid_start:     PID for initial transaction.
 70 *                       0: DATA0
 71 *                       1: DATA2
 72 *                       2: DATA1
 73 *                       3: MDATA (non-Control EP),
 74 *                          SETUP (Control EP)
 75 * @multi_count:        Number of additional periodic transactions per
 76 *                      (micro)frame
 77 * @xfer_buf:           Pointer to current transfer buffer position
 78 * @xfer_dma:           DMA address of xfer_buf
 79 * @align_buf:          In Buffer DMA mode this will be used if xfer_buf is not
 80 *                      DWORD aligned
 81 * @xfer_len:           Total number of bytes to transfer
 82 * @xfer_count:         Number of bytes transferred so far
 83 * @start_pkt_count:    Packet count at start of transfer
 84 * @xfer_started:       True if the transfer has been started
 85 * @do_ping:            True if a PING request should be issued on this channel
 86 * @error_state:        True if the error count for this transaction is non-zero
 87 * @halt_on_queue:      True if this channel should be halted the next time a
 88 *                      request is queued for the channel. This is necessary in
 89 *                      slave mode if no request queue space is available when
 90 *                      an attempt is made to halt the channel.
 91 * @halt_pending:       True if the host channel has been halted, but the core
 92 *                      is not finished flushing queued requests
 93 * @do_split:           Enable split for the channel
 94 * @complete_split:     Enable complete split
 95 * @hub_addr:           Address of high speed hub for the split
 96 * @hub_port:           Port of the low/full speed device for the split
 97 * @xact_pos:           Split transaction position. One of the following values:
 98 *                       - DWC2_HCSPLT_XACTPOS_MID
 99 *                       - DWC2_HCSPLT_XACTPOS_BEGIN
100 *                       - DWC2_HCSPLT_XACTPOS_END
101 *                       - DWC2_HCSPLT_XACTPOS_ALL
102 * @requests:           Number of requests issued for this channel since it was
103 *                      assigned to the current transfer (not counting PINGs)
104 * @schinfo:            Scheduling micro-frame bitmap
105 * @ntd:                Number of transfer descriptors for the transfer
106 * @halt_status:        Reason for halting the host channel
107 * @hcint:               Contents of the HCINT register when the interrupt came
108 * @qh:                 QH for the transfer being processed by this channel
109 * @hc_list_entry:      For linking to list of host channels
110 * @desc_list_addr:     Current QH's descriptor list DMA address
111 * @desc_list_sz:       Current QH's descriptor list size
112 * @split_order_list_entry: List entry for keeping track of the order of splits
113 *
114 * This structure represents the state of a single host channel when acting in
115 * host mode. It contains the data items needed to transfer packets to an
116 * endpoint via a host channel.
117 */
118struct dwc2_host_chan {
119	u8 hc_num;
120
121	unsigned dev_addr:7;
122	unsigned ep_num:4;
123	unsigned ep_is_in:1;
124	unsigned speed:4;
125	unsigned ep_type:2;
126	unsigned max_packet:11;
127	unsigned data_pid_start:2;
128#define DWC2_HC_PID_DATA0	TSIZ_SC_MC_PID_DATA0
129#define DWC2_HC_PID_DATA2	TSIZ_SC_MC_PID_DATA2
130#define DWC2_HC_PID_DATA1	TSIZ_SC_MC_PID_DATA1
131#define DWC2_HC_PID_MDATA	TSIZ_SC_MC_PID_MDATA
132#define DWC2_HC_PID_SETUP	TSIZ_SC_MC_PID_SETUP
133
134	unsigned multi_count:2;
135
136	u8 *xfer_buf;
137	dma_addr_t xfer_dma;
138	dma_addr_t align_buf;
139	u32 xfer_len;
140	u32 xfer_count;
141	u16 start_pkt_count;
142	u8 xfer_started;
143	u8 do_ping;
144	u8 error_state;
145	u8 halt_on_queue;
146	u8 halt_pending;
147	u8 do_split;
148	u8 complete_split;
149	u8 hub_addr;
150	u8 hub_port;
151	u8 xact_pos;
152#define DWC2_HCSPLT_XACTPOS_MID	HCSPLT_XACTPOS_MID
153#define DWC2_HCSPLT_XACTPOS_END	HCSPLT_XACTPOS_END
154#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
155#define DWC2_HCSPLT_XACTPOS_ALL	HCSPLT_XACTPOS_ALL
156
157	u8 requests;
158	u8 schinfo;
159	u16 ntd;
160	enum dwc2_halt_status halt_status;
161	u32 hcint;
162	struct dwc2_qh *qh;
163	struct list_head hc_list_entry;
164	dma_addr_t desc_list_addr;
165	u32 desc_list_sz;
166	struct list_head split_order_list_entry;
167};
168
169struct dwc2_hcd_pipe_info {
170	u8 dev_addr;
171	u8 ep_num;
172	u8 pipe_type;
173	u8 pipe_dir;
174	u16 maxp;
175	u16 maxp_mult;
176};
177
178struct dwc2_hcd_iso_packet_desc {
179	u32 offset;
180	u32 length;
181	u32 actual_length;
182	u32 status;
183};
184
185struct dwc2_qtd;
186
187struct dwc2_hcd_urb {
188	void *priv;
189	struct dwc2_qtd *qtd;
190	void *buf;
191	dma_addr_t dma;
192	void *setup_packet;
193	dma_addr_t setup_dma;
194	u32 length;
195	u32 actual_length;
196	u32 status;
197	u32 error_count;
198	u32 packet_count;
199	u32 flags;
200	u16 interval;
201	struct dwc2_hcd_pipe_info pipe_info;
202	struct dwc2_hcd_iso_packet_desc iso_descs[0];
203};
204
205/* Phases for control transfers */
206enum dwc2_control_phase {
207	DWC2_CONTROL_SETUP,
208	DWC2_CONTROL_DATA,
209	DWC2_CONTROL_STATUS,
210};
211
212/* Transaction types */
213enum dwc2_transaction_type {
214	DWC2_TRANSACTION_NONE,
215	DWC2_TRANSACTION_PERIODIC,
216	DWC2_TRANSACTION_NON_PERIODIC,
217	DWC2_TRANSACTION_ALL,
218};
219
220/* The number of elements per LS bitmap (per port on multi_tt) */
221#define DWC2_ELEMENTS_PER_LS_BITMAP	DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
222						     BITS_PER_LONG)
223
224/**
225 * struct dwc2_tt - dwc2 data associated with a usb_tt
226 *
227 * @refcount:           Number of Queue Heads (QHs) holding a reference.
228 * @usb_tt:             Pointer back to the official usb_tt.
229 * @periodic_bitmaps:   Bitmap for which parts of the 1ms frame are accounted
230 *                      for already.  Each is DWC2_ELEMENTS_PER_LS_BITMAP
231 *			elements (so sizeof(long) times that in bytes).
232 *
233 * This structure is stored in the hcpriv of the official usb_tt.
234 */
235struct dwc2_tt {
236	int refcount;
237	struct usb_tt *usb_tt;
238	unsigned long periodic_bitmaps[];
239};
240
241/**
242 * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
243 *
244 * @start_schedule_us:  The start time on the main bus schedule.  Note that
245 *                         the main bus schedule is tightly packed and this
246 *			   time should be interpreted as tightly packed (so
247 *			   uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
248 *			   instead of 125 us).
249 * @duration_us:           How long this transfer goes.
250 */
251
252struct dwc2_hs_transfer_time {
253	u32 start_schedule_us;
254	u16 duration_us;
255};
256
257/**
258 * struct dwc2_qh - Software queue head structure
259 *
260 * @hsotg:              The HCD state structure for the DWC OTG controller
261 * @ep_type:            Endpoint type. One of the following values:
262 *                       - USB_ENDPOINT_XFER_CONTROL
263 *                       - USB_ENDPOINT_XFER_BULK
264 *                       - USB_ENDPOINT_XFER_INT
265 *                       - USB_ENDPOINT_XFER_ISOC
266 * @ep_is_in:           Endpoint direction
267 * @maxp:               Value from wMaxPacketSize field of Endpoint Descriptor
268 * @maxp_mult:          Multiplier for maxp
269 * @dev_speed:          Device speed. One of the following values:
270 *                       - USB_SPEED_LOW
271 *                       - USB_SPEED_FULL
272 *                       - USB_SPEED_HIGH
273 * @data_toggle:        Determines the PID of the next data packet for
274 *                      non-controltransfers. Ignored for control transfers.
275 *                      One of the following values:
276 *                       - DWC2_HC_PID_DATA0
277 *                       - DWC2_HC_PID_DATA1
278 * @ping_state:         Ping state
279 * @do_split:           Full/low speed endpoint on high-speed hub requires split
280 * @td_first:           Index of first activated isochronous transfer descriptor
281 * @td_last:            Index of last activated isochronous transfer descriptor
282 * @host_us:            Bandwidth in microseconds per transfer as seen by host
283 * @device_us:          Bandwidth in microseconds per transfer as seen by device
284 * @host_interval:      Interval between transfers as seen by the host.  If
285 *                      the host is high speed and the device is low speed this
286 *                      will be 8 times device interval.
287 * @device_interval:    Interval between transfers as seen by the device.
288 *                      interval.
289 * @next_active_frame:  (Micro)frame _before_ we next need to put something on
290 *                      the bus.  We'll move the qh to active here.  If the
291 *                      host is in high speed mode this will be a uframe.  If
292 *                      the host is in low speed mode this will be a full frame.
293 * @start_active_frame: If we are partway through a split transfer, this will be
294 *			what next_active_frame was when we started.  Otherwise
295 *			it should always be the same as next_active_frame.
296 * @num_hs_transfers:   Number of transfers in hs_transfers.
297 *                      Normally this is 1 but can be more than one for splits.
298 *                      Always >= 1 unless the host is in low/full speed mode.
299 * @hs_transfers:       Transfers that are scheduled as seen by the high speed
300 *                      bus.  Not used if host is in low or full speed mode (but
301 *                      note that it IS USED if the device is low or full speed
302 *                      as long as the HOST is in high speed mode).
303 * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
304 *                           schedule that's being used by this device.  This
305 *			     will be on the periodic_bitmap in a
306 *                           "struct dwc2_tt".  Not used if this device is high
307 *                           speed.  Note that this is in "schedule slice" which
308 *                           is tightly packed.
 
309 * @ntd:                Actual number of transfer descriptors in a list
310 * @dw_align_buf:       Used instead of original buffer if its physical address
311 *                      is not dword-aligned
312 * @dw_align_buf_dma:   DMA address for dw_align_buf
313 * @qtd_list:           List of QTDs for this QH
314 * @channel:            Host channel currently processing transfers for this QH
315 * @qh_list_entry:      Entry for QH in either the periodic or non-periodic
316 *                      schedule
317 * @desc_list:          List of transfer descriptors
318 * @desc_list_dma:      Physical address of desc_list
319 * @desc_list_sz:       Size of descriptors list
320 * @n_bytes:            Xfer Bytes array. Each element corresponds to a transfer
321 *                      descriptor and indicates original XferSize value for the
322 *                      descriptor
323 * @unreserve_timer:    Timer for releasing periodic reservation.
324 * @wait_timer:         Timer used to wait before re-queuing.
325 * @dwc_tt:            Pointer to our tt info (or NULL if no tt).
326 * @ttport:             Port number within our tt.
327 * @tt_buffer_dirty     True if clear_tt_buffer_complete is pending
328 * @unreserve_pending:  True if we planned to unreserve but haven't yet.
329 * @schedule_low_speed: True if we have a low/full speed component (either the
330 *			host is in low/full speed mode or do_split).
331 * @want_wait:          We should wait before re-queuing; only matters for non-
332 *                      periodic transfers and is ignored for periodic ones.
333 * @wait_timer_cancel:  Set to true to cancel the wait_timer.
334 *
335 * @tt_buffer_dirty:	True if EP's TT buffer is not clean.
336 * A Queue Head (QH) holds the static characteristics of an endpoint and
337 * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
338 * be entered in either the non-periodic or periodic schedule.
339 */
340struct dwc2_qh {
341	struct dwc2_hsotg *hsotg;
342	u8 ep_type;
343	u8 ep_is_in;
344	u16 maxp;
345	u16 maxp_mult;
346	u8 dev_speed;
347	u8 data_toggle;
348	u8 ping_state;
349	u8 do_split;
350	u8 td_first;
351	u8 td_last;
352	u16 host_us;
353	u16 device_us;
354	u16 host_interval;
355	u16 device_interval;
356	u16 next_active_frame;
357	u16 start_active_frame;
358	s16 num_hs_transfers;
359	struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
360	u32 ls_start_schedule_slice;
361	u16 ntd;
362	u8 *dw_align_buf;
363	dma_addr_t dw_align_buf_dma;
364	struct list_head qtd_list;
365	struct dwc2_host_chan *channel;
366	struct list_head qh_list_entry;
367	struct dwc2_dma_desc *desc_list;
368	dma_addr_t desc_list_dma;
369	u32 desc_list_sz;
370	u32 *n_bytes;
371	struct timer_list unreserve_timer;
372	struct hrtimer wait_timer;
373	struct dwc2_tt *dwc_tt;
374	int ttport;
375	unsigned tt_buffer_dirty:1;
376	unsigned unreserve_pending:1;
377	unsigned schedule_low_speed:1;
378	unsigned want_wait:1;
379	unsigned wait_timer_cancel:1;
380};
381
382/**
383 * struct dwc2_qtd - Software queue transfer descriptor (QTD)
384 *
385 * @control_phase:      Current phase for control transfers (Setup, Data, or
386 *                      Status)
387 * @in_process:         Indicates if this QTD is currently processed by HW
388 * @data_toggle:        Determines the PID of the next data packet for the
389 *                      data phase of control transfers. Ignored for other
390 *                      transfer types. One of the following values:
391 *                       - DWC2_HC_PID_DATA0
392 *                       - DWC2_HC_PID_DATA1
393 * @complete_split:     Keeps track of the current split type for FS/LS
394 *                      endpoints on a HS Hub
395 * @isoc_split_pos:     Position of the ISOC split in full/low speed
396 * @isoc_frame_index:   Index of the next frame descriptor for an isochronous
397 *                      transfer. A frame descriptor describes the buffer
398 *                      position and length of the data to be transferred in the
399 *                      next scheduled (micro)frame of an isochronous transfer.
400 *                      It also holds status for that transaction. The frame
401 *                      index starts at 0.
402 * @isoc_split_offset:  Position of the ISOC split in the buffer for the
403 *                      current frame
404 * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
405 * @error_count:        Holds the number of bus errors that have occurred for
406 *                      a transaction within this transfer
407 * @n_desc:             Number of DMA descriptors for this QTD
408 * @isoc_frame_index_last: Last activated frame (packet) index, used in
409 *                      descriptor DMA mode only
410 * @num_naks:           Number of NAKs received on this QTD.
411 * @urb:                URB for this transfer
412 * @qh:                 Queue head for this QTD
413 * @qtd_list_entry:     For linking to the QH's list of QTDs
414 * @isoc_td_first:	Index of first activated isochronous transfer
415 *			descriptor in Descriptor DMA mode
416 * @isoc_td_last:	Index of last activated isochronous transfer
417 *			descriptor in Descriptor DMA mode
418 *
419 * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
420 * interrupt, or isochronous transfer. A single QTD is created for each URB
421 * (of one of these types) submitted to the HCD. The transfer associated with
422 * a QTD may require one or multiple transactions.
423 *
424 * A QTD is linked to a Queue Head, which is entered in either the
425 * non-periodic or periodic schedule for execution. When a QTD is chosen for
426 * execution, some or all of its transactions may be executed. After
427 * execution, the state of the QTD is updated. The QTD may be retired if all
428 * its transactions are complete or if an error occurred. Otherwise, it
429 * remains in the schedule so more transactions can be executed later.
430 */
431struct dwc2_qtd {
432	enum dwc2_control_phase control_phase;
433	u8 in_process;
434	u8 data_toggle;
435	u8 complete_split;
436	u8 isoc_split_pos;
437	u16 isoc_frame_index;
438	u16 isoc_split_offset;
439	u16 isoc_td_last;
440	u16 isoc_td_first;
441	u32 ssplit_out_xfer_count;
442	u8 error_count;
443	u8 n_desc;
444	u16 isoc_frame_index_last;
445	u16 num_naks;
446	struct dwc2_hcd_urb *urb;
447	struct dwc2_qh *qh;
448	struct list_head qtd_list_entry;
449};
450
451#ifdef DEBUG
452struct hc_xfer_info {
453	struct dwc2_hsotg *hsotg;
454	struct dwc2_host_chan *chan;
455};
456#endif
457
458u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
459
460/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
461static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
462{
463	return (struct usb_hcd *)hsotg->priv;
464}
465
466/*
467 * Inline used to disable one channel interrupt. Channel interrupts are
468 * disabled when the channel is halted or released by the interrupt handler.
469 * There is no need to handle further interrupts of that type until the
470 * channel is re-assigned. In fact, subsequent handling may cause crashes
471 * because the channel structures are cleaned up when the channel is released.
472 */
473static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
474{
475	u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
476
477	mask &= ~intr;
478	dwc2_writel(hsotg, mask, HCINTMSK(chnum));
479}
480
481void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
482void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
483		  enum dwc2_halt_status halt_status);
484void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
485				 struct dwc2_host_chan *chan);
486
487/*
488 * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
489 * are read as 1, they won't clear when written back.
490 */
491static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
492{
493	u32 hprt0 = dwc2_readl(hsotg, HPRT0);
494
495	hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
496	return hprt0;
497}
498
499static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
500{
501	return pipe->ep_num;
502}
503
504static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
505{
506	return pipe->pipe_type;
507}
508
509static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
510{
511	return pipe->maxp;
512}
513
514static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
515{
516	return pipe->maxp_mult;
517}
518
519static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
520{
521	return pipe->dev_addr;
522}
523
524static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
525{
526	return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
527}
528
529static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
530{
531	return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
532}
533
534static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
535{
536	return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
537}
538
539static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
540{
541	return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
542}
543
544static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
545{
546	return pipe->pipe_dir == USB_DIR_IN;
547}
548
549static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
550{
551	return !dwc2_hcd_is_pipe_in(pipe);
552}
553
554int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
555void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
556
557/* Transaction Execution Functions */
558enum dwc2_transaction_type dwc2_hcd_select_transactions(
559						struct dwc2_hsotg *hsotg);
560void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
561				 enum dwc2_transaction_type tr_type);
562
563/* Schedule Queue Functions */
564/* Implemented in hcd_queue.c */
565struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
566				   struct dwc2_hcd_urb *urb,
567					  gfp_t mem_flags);
568void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
569int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
570void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
571void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
572			    int sched_csplit);
573
574void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
575int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
576		     struct dwc2_qh *qh);
577
578/* Unlinks and frees a QTD */
579static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
580						struct dwc2_qtd *qtd,
581						struct dwc2_qh *qh)
582{
583	list_del(&qtd->qtd_list_entry);
584	kfree(qtd);
 
585}
586
587/* Descriptor DMA support functions */
588void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
589			      struct dwc2_qh *qh);
590void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
591				 struct dwc2_host_chan *chan, int chnum,
592					enum dwc2_halt_status halt_status);
593
594int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
595			  gfp_t mem_flags);
596void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
597
598/* Check if QH is non-periodic */
599#define dwc2_qh_is_non_per(_qh_ptr_) \
600	((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
601	 (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
602
603#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
604static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
605static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
606static inline bool dbg_urb(struct urb *urb) { return true; }
607static inline bool dbg_perio(void) { return true; }
608#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
609static inline bool dbg_hc(struct dwc2_host_chan *hc)
610{
611	return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
612	       hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
613}
614
615static inline bool dbg_qh(struct dwc2_qh *qh)
616{
617	return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
618	       qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
619}
620
621static inline bool dbg_urb(struct urb *urb)
622{
623	return usb_pipetype(urb->pipe) == PIPE_BULK ||
624	       usb_pipetype(urb->pipe) == PIPE_CONTROL;
625}
626
627static inline bool dbg_perio(void) { return false; }
628#endif
629
 
 
 
 
 
 
630/*
631 * Returns true if frame1 index is greater than frame2 index. The comparison
632 * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
633 * frame number when the max index frame number is reached.
634 */
635static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
636{
637	u16 diff = fr_idx1 - fr_idx2;
638	u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
639
640	return diff && !sign;
641}
642
643/*
644 * Returns true if frame1 is less than or equal to frame2. The comparison is
645 * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
646 * frame number when the max frame number is reached.
647 */
648static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
649{
650	return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
651}
652
653/*
654 * Returns true if frame1 is greater than frame2. The comparison is done
655 * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
656 * number when the max frame number is reached.
657 */
658static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
659{
660	return (frame1 != frame2) &&
661	       ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
662}
663
664/*
665 * Increments frame by the amount specified by inc. The addition is done
666 * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
667 */
668static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
669{
670	return (frame + inc) & HFNUM_MAX_FRNUM;
671}
672
673static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
674{
675	return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
676}
677
678static inline u16 dwc2_full_frame_num(u16 frame)
679{
680	return (frame & HFNUM_MAX_FRNUM) >> 3;
681}
682
683static inline u16 dwc2_micro_frame_num(u16 frame)
684{
685	return frame & 0x7;
686}
687
688/*
689 * Returns the Core Interrupt Status register contents, ANDed with the Core
690 * Interrupt Mask register contents
691 */
692static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
693{
694	return dwc2_readl(hsotg, GINTSTS) &
695	       dwc2_readl(hsotg, GINTMSK);
696}
697
698static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
699{
700	return dwc2_urb->status;
701}
702
703static inline u32 dwc2_hcd_urb_get_actual_length(
704		struct dwc2_hcd_urb *dwc2_urb)
705{
706	return dwc2_urb->actual_length;
707}
708
709static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
710{
711	return dwc2_urb->error_count;
712}
713
714static inline void dwc2_hcd_urb_set_iso_desc_params(
715		struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
716		u32 length)
717{
718	dwc2_urb->iso_descs[desc_num].offset = offset;
719	dwc2_urb->iso_descs[desc_num].length = length;
720}
721
722static inline u32 dwc2_hcd_urb_get_iso_desc_status(
723		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
724{
725	return dwc2_urb->iso_descs[desc_num].status;
726}
727
728static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
729		struct dwc2_hcd_urb *dwc2_urb, int desc_num)
730{
731	return dwc2_urb->iso_descs[desc_num].actual_length;
732}
733
734static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
735						  struct usb_host_endpoint *ep)
736{
737	struct dwc2_qh *qh = ep->hcpriv;
738
739	if (qh && !list_empty(&qh->qh_list_entry))
740		return 1;
741
742	return 0;
743}
744
745static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
746					    struct usb_host_endpoint *ep)
747{
748	struct dwc2_qh *qh = ep->hcpriv;
749
750	if (!qh) {
751		WARN_ON(1);
752		return 0;
753	}
754
755	return qh->host_us;
756}
757
758void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
759			       struct dwc2_host_chan *chan, int chnum,
760				      struct dwc2_qtd *qtd);
761
762/* HCD Core API */
763
764/**
765 * dwc2_handle_hcd_intr() - Called on every hardware interrupt
766 *
767 * @hsotg: The DWC2 HCD
768 *
769 * Returns IRQ_HANDLED if interrupt is handled
770 * Return IRQ_NONE if interrupt is not handled
771 */
772irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
773
774/**
775 * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
776 *
777 * @hsotg: The DWC2 HCD
778 */
779void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
780
781/**
782 * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
783 * and 0 otherwise
784 *
785 * @hsotg: The DWC2 HCD
786 */
787int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
788
789/**
790 * dwc2_hcd_dump_state() - Dumps hsotg state
791 *
792 * @hsotg: The DWC2 HCD
793 *
794 * NOTE: This function will be removed once the peripheral controller code
795 * is integrated and the driver is stable
796 */
797void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
 
 
 
 
 
 
 
 
 
 
 
 
 
798
799/* URB interface */
800
801/* Transfer flags */
802#define URB_GIVEBACK_ASAP	0x1
803#define URB_SEND_ZERO_PACKET	0x2
804
805/* Host driver callbacks */
806struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
807				      void *context, gfp_t mem_flags,
808				      int *ttport);
809
810void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
811			   struct dwc2_tt *dwc_tt);
812int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
813void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
814			int status);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
815
816#endif /* __DWC2_HCD_H__ */