Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v4.10.11
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
 
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 139DEFINE_MUTEX(tty_mutex);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233/**
 234 *	tty_name	-	return tty naming
 235 *	@tty: tty structure
 236 *
 237 *	Convert a tty structure into a name. The name reflects the kernel
 238 *	naming policy and if udev is in use may not reflect user space
 239 *
 240 *	Locking: none
 241 */
 242
 243const char *tty_name(const struct tty_struct *tty)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		return "NULL tty";
 247	return tty->name;
 248}
 249
 250EXPORT_SYMBOL(tty_name);
 251
 252const char *tty_driver_name(const struct tty_struct *tty)
 253{
 254	if (!tty || !tty->driver)
 255		return "";
 256	return tty->driver->name;
 257}
 258
 259static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 260			      const char *routine)
 261{
 262#ifdef TTY_PARANOIA_CHECK
 263	if (!tty) {
 264		pr_warn("(%d:%d): %s: NULL tty\n",
 265			imajor(inode), iminor(inode), routine);
 266		return 1;
 267	}
 268	if (tty->magic != TTY_MAGIC) {
 269		pr_warn("(%d:%d): %s: bad magic number\n",
 270			imajor(inode), iminor(inode), routine);
 271		return 1;
 272	}
 273#endif
 274	return 0;
 275}
 276
 277/* Caller must hold tty_lock */
 278static int check_tty_count(struct tty_struct *tty, const char *routine)
 279{
 280#ifdef CHECK_TTY_COUNT
 281	struct list_head *p;
 282	int count = 0;
 283
 284	spin_lock(&tty->files_lock);
 285	list_for_each(p, &tty->tty_files) {
 286		count++;
 287	}
 288	spin_unlock(&tty->files_lock);
 289	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 290	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 291	    tty->link && tty->link->count)
 292		count++;
 293	if (tty->count != count) {
 294		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 295			 routine, tty->count, count);
 296		return count;
 
 
 297	}
 298#endif
 299	return 0;
 300}
 301
 302/**
 303 *	get_tty_driver		-	find device of a tty
 304 *	@dev_t: device identifier
 305 *	@index: returns the index of the tty
 306 *
 307 *	This routine returns a tty driver structure, given a device number
 308 *	and also passes back the index number.
 309 *
 310 *	Locking: caller must hold tty_mutex
 311 */
 312
 313static struct tty_driver *get_tty_driver(dev_t device, int *index)
 314{
 315	struct tty_driver *p;
 316
 317	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 318		dev_t base = MKDEV(p->major, p->minor_start);
 319		if (device < base || device >= base + p->num)
 320			continue;
 321		*index = device - base;
 322		return tty_driver_kref_get(p);
 323	}
 324	return NULL;
 325}
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327#ifdef CONFIG_CONSOLE_POLL
 328
 329/**
 330 *	tty_find_polling_driver	-	find device of a polled tty
 331 *	@name: name string to match
 332 *	@line: pointer to resulting tty line nr
 333 *
 334 *	This routine returns a tty driver structure, given a name
 335 *	and the condition that the tty driver is capable of polled
 336 *	operation.
 337 */
 338struct tty_driver *tty_find_polling_driver(char *name, int *line)
 339{
 340	struct tty_driver *p, *res = NULL;
 341	int tty_line = 0;
 342	int len;
 343	char *str, *stp;
 344
 345	for (str = name; *str; str++)
 346		if ((*str >= '0' && *str <= '9') || *str == ',')
 347			break;
 348	if (!*str)
 349		return NULL;
 350
 351	len = str - name;
 352	tty_line = simple_strtoul(str, &str, 10);
 353
 354	mutex_lock(&tty_mutex);
 355	/* Search through the tty devices to look for a match */
 356	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 357		if (strncmp(name, p->name, len) != 0)
 358			continue;
 359		stp = str;
 360		if (*stp == ',')
 361			stp++;
 362		if (*stp == '\0')
 363			stp = NULL;
 364
 365		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 366		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 367			res = tty_driver_kref_get(p);
 368			*line = tty_line;
 369			break;
 370		}
 371	}
 372	mutex_unlock(&tty_mutex);
 373
 374	return res;
 375}
 376EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 377#endif
 378
 379static int is_ignored(int sig)
 380{
 381	return (sigismember(&current->blocked, sig) ||
 382		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 383}
 384
 385/**
 386 *	tty_check_change	-	check for POSIX terminal changes
 387 *	@tty: tty to check
 388 *
 389 *	If we try to write to, or set the state of, a terminal and we're
 390 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 391 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 392 *
 393 *	Locking: ctrl_lock
 394 */
 395
 396int __tty_check_change(struct tty_struct *tty, int sig)
 397{
 398	unsigned long flags;
 399	struct pid *pgrp, *tty_pgrp;
 400	int ret = 0;
 401
 402	if (current->signal->tty != tty)
 403		return 0;
 404
 405	rcu_read_lock();
 406	pgrp = task_pgrp(current);
 407
 408	spin_lock_irqsave(&tty->ctrl_lock, flags);
 409	tty_pgrp = tty->pgrp;
 410	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 411
 412	if (tty_pgrp && pgrp != tty->pgrp) {
 413		if (is_ignored(sig)) {
 414			if (sig == SIGTTIN)
 415				ret = -EIO;
 416		} else if (is_current_pgrp_orphaned())
 417			ret = -EIO;
 418		else {
 419			kill_pgrp(pgrp, sig, 1);
 420			set_thread_flag(TIF_SIGPENDING);
 421			ret = -ERESTARTSYS;
 422		}
 423	}
 424	rcu_read_unlock();
 425
 426	if (!tty_pgrp)
 427		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 428
 429	return ret;
 430}
 431
 432int tty_check_change(struct tty_struct *tty)
 433{
 434	return __tty_check_change(tty, SIGTTOU);
 435}
 436EXPORT_SYMBOL(tty_check_change);
 437
 438static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 439				size_t count, loff_t *ppos)
 440{
 441	return 0;
 442}
 443
 444static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 445				 size_t count, loff_t *ppos)
 446{
 447	return -EIO;
 448}
 449
 450/* No kernel lock held - none needed ;) */
 451static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 452{
 453	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 454}
 455
 456static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 457		unsigned long arg)
 458{
 459	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 460}
 461
 462static long hung_up_tty_compat_ioctl(struct file *file,
 463				     unsigned int cmd, unsigned long arg)
 464{
 465	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 466}
 467
 468static int hung_up_tty_fasync(int fd, struct file *file, int on)
 469{
 470	return -ENOTTY;
 471}
 472
 
 
 
 
 
 
 
 
 473static const struct file_operations tty_fops = {
 474	.llseek		= no_llseek,
 475	.read		= tty_read,
 476	.write		= tty_write,
 477	.poll		= tty_poll,
 478	.unlocked_ioctl	= tty_ioctl,
 479	.compat_ioctl	= tty_compat_ioctl,
 480	.open		= tty_open,
 481	.release	= tty_release,
 482	.fasync		= tty_fasync,
 
 483};
 484
 485static const struct file_operations console_fops = {
 486	.llseek		= no_llseek,
 487	.read		= tty_read,
 488	.write		= redirected_tty_write,
 489	.poll		= tty_poll,
 490	.unlocked_ioctl	= tty_ioctl,
 491	.compat_ioctl	= tty_compat_ioctl,
 492	.open		= tty_open,
 493	.release	= tty_release,
 494	.fasync		= tty_fasync,
 495};
 496
 497static const struct file_operations hung_up_tty_fops = {
 498	.llseek		= no_llseek,
 499	.read		= hung_up_tty_read,
 500	.write		= hung_up_tty_write,
 501	.poll		= hung_up_tty_poll,
 502	.unlocked_ioctl	= hung_up_tty_ioctl,
 503	.compat_ioctl	= hung_up_tty_compat_ioctl,
 504	.release	= tty_release,
 505	.fasync		= hung_up_tty_fasync,
 506};
 507
 508static DEFINE_SPINLOCK(redirect_lock);
 509static struct file *redirect;
 510
 511
 512void proc_clear_tty(struct task_struct *p)
 513{
 514	unsigned long flags;
 515	struct tty_struct *tty;
 516	spin_lock_irqsave(&p->sighand->siglock, flags);
 517	tty = p->signal->tty;
 518	p->signal->tty = NULL;
 519	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 520	tty_kref_put(tty);
 521}
 522
 523/**
 524 * proc_set_tty -  set the controlling terminal
 525 *
 526 * Only callable by the session leader and only if it does not already have
 527 * a controlling terminal.
 528 *
 529 * Caller must hold:  tty_lock()
 530 *		      a readlock on tasklist_lock
 531 *		      sighand lock
 532 */
 533static void __proc_set_tty(struct tty_struct *tty)
 534{
 535	unsigned long flags;
 536
 537	spin_lock_irqsave(&tty->ctrl_lock, flags);
 538	/*
 539	 * The session and fg pgrp references will be non-NULL if
 540	 * tiocsctty() is stealing the controlling tty
 541	 */
 542	put_pid(tty->session);
 543	put_pid(tty->pgrp);
 544	tty->pgrp = get_pid(task_pgrp(current));
 545	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 546	tty->session = get_pid(task_session(current));
 547	if (current->signal->tty) {
 548		tty_debug(tty, "current tty %s not NULL!!\n",
 549			  current->signal->tty->name);
 550		tty_kref_put(current->signal->tty);
 551	}
 552	put_pid(current->signal->tty_old_pgrp);
 553	current->signal->tty = tty_kref_get(tty);
 554	current->signal->tty_old_pgrp = NULL;
 555}
 556
 557static void proc_set_tty(struct tty_struct *tty)
 558{
 559	spin_lock_irq(&current->sighand->siglock);
 560	__proc_set_tty(tty);
 561	spin_unlock_irq(&current->sighand->siglock);
 562}
 563
 564struct tty_struct *get_current_tty(void)
 565{
 566	struct tty_struct *tty;
 567	unsigned long flags;
 568
 569	spin_lock_irqsave(&current->sighand->siglock, flags);
 570	tty = tty_kref_get(current->signal->tty);
 571	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 572	return tty;
 573}
 574EXPORT_SYMBOL_GPL(get_current_tty);
 575
 576static void session_clear_tty(struct pid *session)
 577{
 578	struct task_struct *p;
 579	do_each_pid_task(session, PIDTYPE_SID, p) {
 580		proc_clear_tty(p);
 581	} while_each_pid_task(session, PIDTYPE_SID, p);
 582}
 583
 584/**
 585 *	tty_wakeup	-	request more data
 586 *	@tty: terminal
 587 *
 588 *	Internal and external helper for wakeups of tty. This function
 589 *	informs the line discipline if present that the driver is ready
 590 *	to receive more output data.
 591 */
 592
 593void tty_wakeup(struct tty_struct *tty)
 594{
 595	struct tty_ldisc *ld;
 596
 597	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 598		ld = tty_ldisc_ref(tty);
 599		if (ld) {
 600			if (ld->ops->write_wakeup)
 601				ld->ops->write_wakeup(tty);
 602			tty_ldisc_deref(ld);
 603		}
 604	}
 605	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 606}
 607
 608EXPORT_SYMBOL_GPL(tty_wakeup);
 609
 610/**
 611 *	tty_signal_session_leader	- sends SIGHUP to session leader
 612 *	@tty		controlling tty
 613 *	@exit_session	if non-zero, signal all foreground group processes
 614 *
 615 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 616 *	Optionally, signal all processes in the foreground process group.
 617 *
 618 *	Returns the number of processes in the session with this tty
 619 *	as their controlling terminal. This value is used to drop
 620 *	tty references for those processes.
 621 */
 622static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 623{
 624	struct task_struct *p;
 625	int refs = 0;
 626	struct pid *tty_pgrp = NULL;
 627
 628	read_lock(&tasklist_lock);
 629	if (tty->session) {
 630		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 631			spin_lock_irq(&p->sighand->siglock);
 632			if (p->signal->tty == tty) {
 633				p->signal->tty = NULL;
 634				/* We defer the dereferences outside fo
 635				   the tasklist lock */
 636				refs++;
 637			}
 638			if (!p->signal->leader) {
 639				spin_unlock_irq(&p->sighand->siglock);
 640				continue;
 641			}
 642			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 643			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 644			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 645			spin_lock(&tty->ctrl_lock);
 646			tty_pgrp = get_pid(tty->pgrp);
 647			if (tty->pgrp)
 648				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 649			spin_unlock(&tty->ctrl_lock);
 650			spin_unlock_irq(&p->sighand->siglock);
 651		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 652	}
 653	read_unlock(&tasklist_lock);
 654
 655	if (tty_pgrp) {
 656		if (exit_session)
 657			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 658		put_pid(tty_pgrp);
 659	}
 660
 661	return refs;
 662}
 663
 664/**
 665 *	__tty_hangup		-	actual handler for hangup events
 666 *	@work: tty device
 667 *
 668 *	This can be called by a "kworker" kernel thread.  That is process
 669 *	synchronous but doesn't hold any locks, so we need to make sure we
 670 *	have the appropriate locks for what we're doing.
 671 *
 672 *	The hangup event clears any pending redirections onto the hung up
 673 *	device. It ensures future writes will error and it does the needed
 674 *	line discipline hangup and signal delivery. The tty object itself
 675 *	remains intact.
 676 *
 677 *	Locking:
 678 *		BTM
 679 *		  redirect lock for undoing redirection
 680 *		  file list lock for manipulating list of ttys
 681 *		  tty_ldiscs_lock from called functions
 682 *		  termios_rwsem resetting termios data
 683 *		  tasklist_lock to walk task list for hangup event
 684 *		    ->siglock to protect ->signal/->sighand
 685 */
 686static void __tty_hangup(struct tty_struct *tty, int exit_session)
 687{
 688	struct file *cons_filp = NULL;
 689	struct file *filp, *f = NULL;
 690	struct tty_file_private *priv;
 691	int    closecount = 0, n;
 692	int refs;
 693
 694	if (!tty)
 695		return;
 696
 697
 698	spin_lock(&redirect_lock);
 699	if (redirect && file_tty(redirect) == tty) {
 700		f = redirect;
 701		redirect = NULL;
 702	}
 703	spin_unlock(&redirect_lock);
 704
 705	tty_lock(tty);
 706
 707	if (test_bit(TTY_HUPPED, &tty->flags)) {
 708		tty_unlock(tty);
 709		return;
 710	}
 711
 
 
 
 
 
 
 
 
 712	/* inuse_filps is protected by the single tty lock,
 713	   this really needs to change if we want to flush the
 714	   workqueue with the lock held */
 715	check_tty_count(tty, "tty_hangup");
 716
 717	spin_lock(&tty->files_lock);
 718	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 719	list_for_each_entry(priv, &tty->tty_files, list) {
 720		filp = priv->file;
 721		if (filp->f_op->write == redirected_tty_write)
 722			cons_filp = filp;
 723		if (filp->f_op->write != tty_write)
 724			continue;
 725		closecount++;
 726		__tty_fasync(-1, filp, 0);	/* can't block */
 727		filp->f_op = &hung_up_tty_fops;
 728	}
 729	spin_unlock(&tty->files_lock);
 730
 731	refs = tty_signal_session_leader(tty, exit_session);
 732	/* Account for the p->signal references we killed */
 733	while (refs--)
 734		tty_kref_put(tty);
 735
 736	tty_ldisc_hangup(tty, cons_filp != NULL);
 737
 738	spin_lock_irq(&tty->ctrl_lock);
 739	clear_bit(TTY_THROTTLED, &tty->flags);
 740	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 741	put_pid(tty->session);
 742	put_pid(tty->pgrp);
 743	tty->session = NULL;
 744	tty->pgrp = NULL;
 745	tty->ctrl_status = 0;
 746	spin_unlock_irq(&tty->ctrl_lock);
 747
 748	/*
 749	 * If one of the devices matches a console pointer, we
 750	 * cannot just call hangup() because that will cause
 751	 * tty->count and state->count to go out of sync.
 752	 * So we just call close() the right number of times.
 753	 */
 754	if (cons_filp) {
 755		if (tty->ops->close)
 756			for (n = 0; n < closecount; n++)
 757				tty->ops->close(tty, cons_filp);
 758	} else if (tty->ops->hangup)
 759		tty->ops->hangup(tty);
 760	/*
 761	 * We don't want to have driver/ldisc interactions beyond the ones
 762	 * we did here. The driver layer expects no calls after ->hangup()
 763	 * from the ldisc side, which is now guaranteed.
 764	 */
 765	set_bit(TTY_HUPPED, &tty->flags);
 
 766	tty_unlock(tty);
 767
 768	if (f)
 769		fput(f);
 770}
 771
 772static void do_tty_hangup(struct work_struct *work)
 773{
 774	struct tty_struct *tty =
 775		container_of(work, struct tty_struct, hangup_work);
 776
 777	__tty_hangup(tty, 0);
 778}
 779
 780/**
 781 *	tty_hangup		-	trigger a hangup event
 782 *	@tty: tty to hangup
 783 *
 784 *	A carrier loss (virtual or otherwise) has occurred on this like
 785 *	schedule a hangup sequence to run after this event.
 786 */
 787
 788void tty_hangup(struct tty_struct *tty)
 789{
 790	tty_debug_hangup(tty, "hangup\n");
 791	schedule_work(&tty->hangup_work);
 792}
 793
 794EXPORT_SYMBOL(tty_hangup);
 795
 796/**
 797 *	tty_vhangup		-	process vhangup
 798 *	@tty: tty to hangup
 799 *
 800 *	The user has asked via system call for the terminal to be hung up.
 801 *	We do this synchronously so that when the syscall returns the process
 802 *	is complete. That guarantee is necessary for security reasons.
 803 */
 804
 805void tty_vhangup(struct tty_struct *tty)
 806{
 807	tty_debug_hangup(tty, "vhangup\n");
 808	__tty_hangup(tty, 0);
 809}
 810
 811EXPORT_SYMBOL(tty_vhangup);
 812
 813
 814/**
 815 *	tty_vhangup_self	-	process vhangup for own ctty
 816 *
 817 *	Perform a vhangup on the current controlling tty
 818 */
 819
 820void tty_vhangup_self(void)
 821{
 822	struct tty_struct *tty;
 823
 824	tty = get_current_tty();
 825	if (tty) {
 826		tty_vhangup(tty);
 827		tty_kref_put(tty);
 828	}
 829}
 830
 831/**
 832 *	tty_vhangup_session		-	hangup session leader exit
 833 *	@tty: tty to hangup
 834 *
 835 *	The session leader is exiting and hanging up its controlling terminal.
 836 *	Every process in the foreground process group is signalled SIGHUP.
 837 *
 838 *	We do this synchronously so that when the syscall returns the process
 839 *	is complete. That guarantee is necessary for security reasons.
 840 */
 841
 842static void tty_vhangup_session(struct tty_struct *tty)
 843{
 844	tty_debug_hangup(tty, "session hangup\n");
 845	__tty_hangup(tty, 1);
 846}
 847
 848/**
 849 *	tty_hung_up_p		-	was tty hung up
 850 *	@filp: file pointer of tty
 851 *
 852 *	Return true if the tty has been subject to a vhangup or a carrier
 853 *	loss
 854 */
 855
 856int tty_hung_up_p(struct file *filp)
 857{
 858	return (filp->f_op == &hung_up_tty_fops);
 859}
 860
 861EXPORT_SYMBOL(tty_hung_up_p);
 862
 863/**
 864 *	disassociate_ctty	-	disconnect controlling tty
 865 *	@on_exit: true if exiting so need to "hang up" the session
 866 *
 867 *	This function is typically called only by the session leader, when
 868 *	it wants to disassociate itself from its controlling tty.
 869 *
 870 *	It performs the following functions:
 871 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 872 * 	(2)  Clears the tty from being controlling the session
 873 * 	(3)  Clears the controlling tty for all processes in the
 874 * 		session group.
 875 *
 876 *	The argument on_exit is set to 1 if called when a process is
 877 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 878 *
 879 *	Locking:
 880 *		BTM is taken for hysterical raisins, and held when
 881 *		  called from no_tty().
 882 *		  tty_mutex is taken to protect tty
 883 *		  ->siglock is taken to protect ->signal/->sighand
 884 *		  tasklist_lock is taken to walk process list for sessions
 885 *		    ->siglock is taken to protect ->signal/->sighand
 886 */
 887
 888void disassociate_ctty(int on_exit)
 889{
 890	struct tty_struct *tty;
 891
 892	if (!current->signal->leader)
 893		return;
 894
 895	tty = get_current_tty();
 896	if (tty) {
 897		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 898			tty_vhangup_session(tty);
 899		} else {
 900			struct pid *tty_pgrp = tty_get_pgrp(tty);
 901			if (tty_pgrp) {
 902				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 903				if (!on_exit)
 904					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 905				put_pid(tty_pgrp);
 906			}
 907		}
 908		tty_kref_put(tty);
 909
 910	} else if (on_exit) {
 911		struct pid *old_pgrp;
 912		spin_lock_irq(&current->sighand->siglock);
 913		old_pgrp = current->signal->tty_old_pgrp;
 914		current->signal->tty_old_pgrp = NULL;
 915		spin_unlock_irq(&current->sighand->siglock);
 916		if (old_pgrp) {
 917			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 918			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 919			put_pid(old_pgrp);
 920		}
 921		return;
 922	}
 923
 924	spin_lock_irq(&current->sighand->siglock);
 925	put_pid(current->signal->tty_old_pgrp);
 926	current->signal->tty_old_pgrp = NULL;
 927
 928	tty = tty_kref_get(current->signal->tty);
 929	if (tty) {
 930		unsigned long flags;
 931		spin_lock_irqsave(&tty->ctrl_lock, flags);
 932		put_pid(tty->session);
 933		put_pid(tty->pgrp);
 934		tty->session = NULL;
 935		tty->pgrp = NULL;
 936		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 937		tty_kref_put(tty);
 938	} else
 939		tty_debug_hangup(tty, "no current tty\n");
 940
 941	spin_unlock_irq(&current->sighand->siglock);
 942	/* Now clear signal->tty under the lock */
 943	read_lock(&tasklist_lock);
 944	session_clear_tty(task_session(current));
 945	read_unlock(&tasklist_lock);
 946}
 947
 948/**
 949 *
 950 *	no_tty	- Ensure the current process does not have a controlling tty
 951 */
 952void no_tty(void)
 953{
 954	/* FIXME: Review locking here. The tty_lock never covered any race
 955	   between a new association and proc_clear_tty but possible we need
 956	   to protect against this anyway */
 957	struct task_struct *tsk = current;
 958	disassociate_ctty(0);
 959	proc_clear_tty(tsk);
 960}
 961
 962
 963/**
 964 *	stop_tty	-	propagate flow control
 965 *	@tty: tty to stop
 966 *
 967 *	Perform flow control to the driver. May be called
 968 *	on an already stopped device and will not re-call the driver
 969 *	method.
 970 *
 971 *	This functionality is used by both the line disciplines for
 972 *	halting incoming flow and by the driver. It may therefore be
 973 *	called from any context, may be under the tty atomic_write_lock
 974 *	but not always.
 975 *
 976 *	Locking:
 977 *		flow_lock
 978 */
 979
 980void __stop_tty(struct tty_struct *tty)
 981{
 982	if (tty->stopped)
 983		return;
 984	tty->stopped = 1;
 985	if (tty->ops->stop)
 986		tty->ops->stop(tty);
 987}
 988
 989void stop_tty(struct tty_struct *tty)
 990{
 991	unsigned long flags;
 992
 993	spin_lock_irqsave(&tty->flow_lock, flags);
 994	__stop_tty(tty);
 995	spin_unlock_irqrestore(&tty->flow_lock, flags);
 996}
 997EXPORT_SYMBOL(stop_tty);
 998
 999/**
1000 *	start_tty	-	propagate flow control
1001 *	@tty: tty to start
1002 *
1003 *	Start a tty that has been stopped if at all possible. If this
1004 *	tty was previous stopped and is now being started, the driver
1005 *	start method is invoked and the line discipline woken.
1006 *
1007 *	Locking:
1008 *		flow_lock
1009 */
1010
1011void __start_tty(struct tty_struct *tty)
1012{
1013	if (!tty->stopped || tty->flow_stopped)
1014		return;
1015	tty->stopped = 0;
1016	if (tty->ops->start)
1017		tty->ops->start(tty);
1018	tty_wakeup(tty);
1019}
1020
1021void start_tty(struct tty_struct *tty)
1022{
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&tty->flow_lock, flags);
1026	__start_tty(tty);
1027	spin_unlock_irqrestore(&tty->flow_lock, flags);
1028}
1029EXPORT_SYMBOL(start_tty);
1030
1031static void tty_update_time(struct timespec *time)
1032{
1033	unsigned long sec = get_seconds();
1034
1035	/*
1036	 * We only care if the two values differ in anything other than the
1037	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1038	 * the time of the tty device, otherwise it could be construded as a
1039	 * security leak to let userspace know the exact timing of the tty.
1040	 */
1041	if ((sec ^ time->tv_sec) & ~7)
1042		time->tv_sec = sec;
1043}
1044
1045/**
1046 *	tty_read	-	read method for tty device files
1047 *	@file: pointer to tty file
1048 *	@buf: user buffer
1049 *	@count: size of user buffer
1050 *	@ppos: unused
1051 *
1052 *	Perform the read system call function on this terminal device. Checks
1053 *	for hung up devices before calling the line discipline method.
1054 *
1055 *	Locking:
1056 *		Locks the line discipline internally while needed. Multiple
1057 *	read calls may be outstanding in parallel.
1058 */
1059
1060static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1061			loff_t *ppos)
1062{
1063	int i;
1064	struct inode *inode = file_inode(file);
1065	struct tty_struct *tty = file_tty(file);
1066	struct tty_ldisc *ld;
1067
1068	if (tty_paranoia_check(tty, inode, "tty_read"))
1069		return -EIO;
1070	if (!tty || tty_io_error(tty))
1071		return -EIO;
1072
1073	/* We want to wait for the line discipline to sort out in this
1074	   situation */
1075	ld = tty_ldisc_ref_wait(tty);
1076	if (!ld)
1077		return hung_up_tty_read(file, buf, count, ppos);
1078	if (ld->ops->read)
1079		i = ld->ops->read(tty, file, buf, count);
1080	else
1081		i = -EIO;
1082	tty_ldisc_deref(ld);
1083
1084	if (i > 0)
1085		tty_update_time(&inode->i_atime);
1086
1087	return i;
1088}
1089
1090static void tty_write_unlock(struct tty_struct *tty)
1091{
1092	mutex_unlock(&tty->atomic_write_lock);
1093	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1094}
1095
1096static int tty_write_lock(struct tty_struct *tty, int ndelay)
1097{
1098	if (!mutex_trylock(&tty->atomic_write_lock)) {
1099		if (ndelay)
1100			return -EAGAIN;
1101		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1102			return -ERESTARTSYS;
1103	}
1104	return 0;
1105}
1106
1107/*
1108 * Split writes up in sane blocksizes to avoid
1109 * denial-of-service type attacks
1110 */
1111static inline ssize_t do_tty_write(
1112	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1113	struct tty_struct *tty,
1114	struct file *file,
1115	const char __user *buf,
1116	size_t count)
1117{
1118	ssize_t ret, written = 0;
1119	unsigned int chunk;
1120
1121	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1122	if (ret < 0)
1123		return ret;
1124
1125	/*
1126	 * We chunk up writes into a temporary buffer. This
1127	 * simplifies low-level drivers immensely, since they
1128	 * don't have locking issues and user mode accesses.
1129	 *
1130	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1131	 * big chunk-size..
1132	 *
1133	 * The default chunk-size is 2kB, because the NTTY
1134	 * layer has problems with bigger chunks. It will
1135	 * claim to be able to handle more characters than
1136	 * it actually does.
1137	 *
1138	 * FIXME: This can probably go away now except that 64K chunks
1139	 * are too likely to fail unless switched to vmalloc...
1140	 */
1141	chunk = 2048;
1142	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1143		chunk = 65536;
1144	if (count < chunk)
1145		chunk = count;
1146
1147	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1148	if (tty->write_cnt < chunk) {
1149		unsigned char *buf_chunk;
1150
1151		if (chunk < 1024)
1152			chunk = 1024;
1153
1154		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1155		if (!buf_chunk) {
1156			ret = -ENOMEM;
1157			goto out;
1158		}
1159		kfree(tty->write_buf);
1160		tty->write_cnt = chunk;
1161		tty->write_buf = buf_chunk;
1162	}
1163
1164	/* Do the write .. */
1165	for (;;) {
1166		size_t size = count;
1167		if (size > chunk)
1168			size = chunk;
1169		ret = -EFAULT;
1170		if (copy_from_user(tty->write_buf, buf, size))
1171			break;
1172		ret = write(tty, file, tty->write_buf, size);
1173		if (ret <= 0)
1174			break;
1175		written += ret;
1176		buf += ret;
1177		count -= ret;
1178		if (!count)
1179			break;
1180		ret = -ERESTARTSYS;
1181		if (signal_pending(current))
1182			break;
1183		cond_resched();
1184	}
1185	if (written) {
1186		tty_update_time(&file_inode(file)->i_mtime);
1187		ret = written;
1188	}
1189out:
1190	tty_write_unlock(tty);
1191	return ret;
1192}
1193
1194/**
1195 * tty_write_message - write a message to a certain tty, not just the console.
1196 * @tty: the destination tty_struct
1197 * @msg: the message to write
1198 *
1199 * This is used for messages that need to be redirected to a specific tty.
1200 * We don't put it into the syslog queue right now maybe in the future if
1201 * really needed.
1202 *
1203 * We must still hold the BTM and test the CLOSING flag for the moment.
1204 */
1205
1206void tty_write_message(struct tty_struct *tty, char *msg)
1207{
1208	if (tty) {
1209		mutex_lock(&tty->atomic_write_lock);
1210		tty_lock(tty);
1211		if (tty->ops->write && tty->count > 0)
1212			tty->ops->write(tty, msg, strlen(msg));
1213		tty_unlock(tty);
1214		tty_write_unlock(tty);
1215	}
1216	return;
1217}
1218
1219
1220/**
1221 *	tty_write		-	write method for tty device file
1222 *	@file: tty file pointer
1223 *	@buf: user data to write
1224 *	@count: bytes to write
1225 *	@ppos: unused
1226 *
1227 *	Write data to a tty device via the line discipline.
1228 *
1229 *	Locking:
1230 *		Locks the line discipline as required
1231 *		Writes to the tty driver are serialized by the atomic_write_lock
1232 *	and are then processed in chunks to the device. The line discipline
1233 *	write method will not be invoked in parallel for each device.
1234 */
1235
1236static ssize_t tty_write(struct file *file, const char __user *buf,
1237						size_t count, loff_t *ppos)
1238{
1239	struct tty_struct *tty = file_tty(file);
1240 	struct tty_ldisc *ld;
1241	ssize_t ret;
1242
1243	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1244		return -EIO;
1245	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1246			return -EIO;
1247	/* Short term debug to catch buggy drivers */
1248	if (tty->ops->write_room == NULL)
1249		tty_err(tty, "missing write_room method\n");
1250	ld = tty_ldisc_ref_wait(tty);
1251	if (!ld)
1252		return hung_up_tty_write(file, buf, count, ppos);
1253	if (!ld->ops->write)
1254		ret = -EIO;
1255	else
1256		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1257	tty_ldisc_deref(ld);
1258	return ret;
1259}
1260
1261ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1262						size_t count, loff_t *ppos)
1263{
1264	struct file *p = NULL;
1265
1266	spin_lock(&redirect_lock);
1267	if (redirect)
1268		p = get_file(redirect);
1269	spin_unlock(&redirect_lock);
1270
1271	if (p) {
1272		ssize_t res;
1273		res = vfs_write(p, buf, count, &p->f_pos);
1274		fput(p);
1275		return res;
1276	}
1277	return tty_write(file, buf, count, ppos);
1278}
1279
1280/**
1281 *	tty_send_xchar	-	send priority character
1282 *
1283 *	Send a high priority character to the tty even if stopped
1284 *
1285 *	Locking: none for xchar method, write ordering for write method.
1286 */
1287
1288int tty_send_xchar(struct tty_struct *tty, char ch)
1289{
1290	int	was_stopped = tty->stopped;
1291
1292	if (tty->ops->send_xchar) {
1293		down_read(&tty->termios_rwsem);
1294		tty->ops->send_xchar(tty, ch);
1295		up_read(&tty->termios_rwsem);
1296		return 0;
1297	}
1298
1299	if (tty_write_lock(tty, 0) < 0)
1300		return -ERESTARTSYS;
1301
1302	down_read(&tty->termios_rwsem);
1303	if (was_stopped)
1304		start_tty(tty);
1305	tty->ops->write(tty, &ch, 1);
1306	if (was_stopped)
1307		stop_tty(tty);
1308	up_read(&tty->termios_rwsem);
1309	tty_write_unlock(tty);
1310	return 0;
1311}
1312
1313static char ptychar[] = "pqrstuvwxyzabcde";
1314
1315/**
1316 *	pty_line_name	-	generate name for a pty
1317 *	@driver: the tty driver in use
1318 *	@index: the minor number
1319 *	@p: output buffer of at least 6 bytes
1320 *
1321 *	Generate a name from a driver reference and write it to the output
1322 *	buffer.
1323 *
1324 *	Locking: None
1325 */
1326static void pty_line_name(struct tty_driver *driver, int index, char *p)
1327{
1328	int i = index + driver->name_base;
1329	/* ->name is initialized to "ttyp", but "tty" is expected */
1330	sprintf(p, "%s%c%x",
1331		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1332		ptychar[i >> 4 & 0xf], i & 0xf);
1333}
1334
1335/**
1336 *	tty_line_name	-	generate name for a tty
1337 *	@driver: the tty driver in use
1338 *	@index: the minor number
1339 *	@p: output buffer of at least 7 bytes
1340 *
1341 *	Generate a name from a driver reference and write it to the output
1342 *	buffer.
1343 *
1344 *	Locking: None
1345 */
1346static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1347{
1348	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1349		return sprintf(p, "%s", driver->name);
1350	else
1351		return sprintf(p, "%s%d", driver->name,
1352			       index + driver->name_base);
1353}
1354
1355/**
1356 *	tty_driver_lookup_tty() - find an existing tty, if any
1357 *	@driver: the driver for the tty
1358 *	@idx:	 the minor number
1359 *
1360 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1361 *	driver lookup() method returns an error.
1362 *
1363 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1364 */
1365static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1366		struct file *file, int idx)
1367{
1368	struct tty_struct *tty;
1369
1370	if (driver->ops->lookup)
1371		tty = driver->ops->lookup(driver, file, idx);
 
 
 
1372	else
1373		tty = driver->ttys[idx];
1374
1375	if (!IS_ERR(tty))
1376		tty_kref_get(tty);
1377	return tty;
1378}
1379
1380/**
1381 *	tty_init_termios	-  helper for termios setup
1382 *	@tty: the tty to set up
1383 *
1384 *	Initialise the termios structures for this tty. Thus runs under
1385 *	the tty_mutex currently so we can be relaxed about ordering.
1386 */
1387
1388void tty_init_termios(struct tty_struct *tty)
1389{
1390	struct ktermios *tp;
1391	int idx = tty->index;
1392
1393	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1394		tty->termios = tty->driver->init_termios;
1395	else {
1396		/* Check for lazy saved data */
1397		tp = tty->driver->termios[idx];
1398		if (tp != NULL) {
1399			tty->termios = *tp;
1400			tty->termios.c_line  = tty->driver->init_termios.c_line;
1401		} else
1402			tty->termios = tty->driver->init_termios;
1403	}
1404	/* Compatibility until drivers always set this */
1405	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1406	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1407}
1408EXPORT_SYMBOL_GPL(tty_init_termios);
1409
1410int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1411{
1412	tty_init_termios(tty);
1413	tty_driver_kref_get(driver);
1414	tty->count++;
1415	driver->ttys[tty->index] = tty;
1416	return 0;
1417}
1418EXPORT_SYMBOL_GPL(tty_standard_install);
1419
1420/**
1421 *	tty_driver_install_tty() - install a tty entry in the driver
1422 *	@driver: the driver for the tty
1423 *	@tty: the tty
1424 *
1425 *	Install a tty object into the driver tables. The tty->index field
1426 *	will be set by the time this is called. This method is responsible
1427 *	for ensuring any need additional structures are allocated and
1428 *	configured.
1429 *
1430 *	Locking: tty_mutex for now
1431 */
1432static int tty_driver_install_tty(struct tty_driver *driver,
1433						struct tty_struct *tty)
1434{
1435	return driver->ops->install ? driver->ops->install(driver, tty) :
1436		tty_standard_install(driver, tty);
1437}
1438
1439/**
1440 *	tty_driver_remove_tty() - remove a tty from the driver tables
1441 *	@driver: the driver for the tty
1442 *	@idx:	 the minor number
1443 *
1444 *	Remvoe a tty object from the driver tables. The tty->index field
1445 *	will be set by the time this is called.
1446 *
1447 *	Locking: tty_mutex for now
1448 */
1449static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1450{
1451	if (driver->ops->remove)
1452		driver->ops->remove(driver, tty);
1453	else
1454		driver->ttys[tty->index] = NULL;
1455}
1456
1457/*
1458 * 	tty_reopen()	- fast re-open of an open tty
1459 * 	@tty	- the tty to open
1460 *
1461 *	Return 0 on success, -errno on error.
1462 *	Re-opens on master ptys are not allowed and return -EIO.
1463 *
1464 *	Locking: Caller must hold tty_lock
1465 */
1466static int tty_reopen(struct tty_struct *tty)
1467{
1468	struct tty_driver *driver = tty->driver;
 
 
1469
1470	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1471	    driver->subtype == PTY_TYPE_MASTER)
1472		return -EIO;
1473
1474	if (!tty->count)
1475		return -EAGAIN;
1476
1477	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1478		return -EBUSY;
1479
1480	tty->count++;
 
 
 
 
 
 
1481
1482	if (!tty->ldisc)
1483		return tty_ldisc_reinit(tty, tty->termios.c_line);
 
 
1484
1485	return 0;
 
 
 
1486}
1487
1488/**
1489 *	tty_init_dev		-	initialise a tty device
1490 *	@driver: tty driver we are opening a device on
1491 *	@idx: device index
1492 *	@ret_tty: returned tty structure
1493 *
1494 *	Prepare a tty device. This may not be a "new" clean device but
1495 *	could also be an active device. The pty drivers require special
1496 *	handling because of this.
1497 *
1498 *	Locking:
1499 *		The function is called under the tty_mutex, which
1500 *	protects us from the tty struct or driver itself going away.
1501 *
1502 *	On exit the tty device has the line discipline attached and
1503 *	a reference count of 1. If a pair was created for pty/tty use
1504 *	and the other was a pty master then it too has a reference count of 1.
1505 *
1506 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1507 * failed open.  The new code protects the open with a mutex, so it's
1508 * really quite straightforward.  The mutex locking can probably be
1509 * relaxed for the (most common) case of reopening a tty.
1510 */
1511
1512struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1513{
1514	struct tty_struct *tty;
1515	int retval;
1516
1517	/*
1518	 * First time open is complex, especially for PTY devices.
1519	 * This code guarantees that either everything succeeds and the
1520	 * TTY is ready for operation, or else the table slots are vacated
1521	 * and the allocated memory released.  (Except that the termios
1522	 * and locked termios may be retained.)
1523	 */
1524
1525	if (!try_module_get(driver->owner))
1526		return ERR_PTR(-ENODEV);
1527
1528	tty = alloc_tty_struct(driver, idx);
1529	if (!tty) {
1530		retval = -ENOMEM;
1531		goto err_module_put;
1532	}
1533
1534	tty_lock(tty);
1535	retval = tty_driver_install_tty(driver, tty);
1536	if (retval < 0)
1537		goto err_free_tty;
1538
1539	if (!tty->port)
1540		tty->port = driver->ports[idx];
1541
1542	WARN_RATELIMIT(!tty->port,
1543			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1544			__func__, tty->driver->name);
1545
 
 
 
1546	tty->port->itty = tty;
1547
1548	/*
1549	 * Structures all installed ... call the ldisc open routines.
1550	 * If we fail here just call release_tty to clean up.  No need
1551	 * to decrement the use counts, as release_tty doesn't care.
1552	 */
1553	retval = tty_ldisc_setup(tty, tty->link);
1554	if (retval)
1555		goto err_release_tty;
 
1556	/* Return the tty locked so that it cannot vanish under the caller */
1557	return tty;
1558
1559err_free_tty:
1560	tty_unlock(tty);
1561	free_tty_struct(tty);
1562err_module_put:
1563	module_put(driver->owner);
1564	return ERR_PTR(retval);
1565
1566	/* call the tty release_tty routine to clean out this slot */
1567err_release_tty:
1568	tty_unlock(tty);
1569	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1570			     retval, idx);
 
 
1571	release_tty(tty, idx);
1572	return ERR_PTR(retval);
1573}
1574
1575static void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1576{
1577	struct ktermios *tp;
1578	int idx = tty->index;
1579
1580	/* If the port is going to reset then it has no termios to save */
1581	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1582		return;
1583
1584	/* Stash the termios data */
1585	tp = tty->driver->termios[idx];
1586	if (tp == NULL) {
1587		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1588		if (tp == NULL)
1589			return;
1590		tty->driver->termios[idx] = tp;
1591	}
1592	*tp = tty->termios;
1593}
 
1594
1595/**
1596 *	tty_flush_works		-	flush all works of a tty/pty pair
1597 *	@tty: tty device to flush works for (or either end of a pty pair)
1598 *
1599 *	Sync flush all works belonging to @tty (and the 'other' tty).
1600 */
1601static void tty_flush_works(struct tty_struct *tty)
1602{
1603	flush_work(&tty->SAK_work);
1604	flush_work(&tty->hangup_work);
1605	if (tty->link) {
1606		flush_work(&tty->link->SAK_work);
1607		flush_work(&tty->link->hangup_work);
1608	}
1609}
1610
1611/**
1612 *	release_one_tty		-	release tty structure memory
1613 *	@kref: kref of tty we are obliterating
1614 *
1615 *	Releases memory associated with a tty structure, and clears out the
1616 *	driver table slots. This function is called when a device is no longer
1617 *	in use. It also gets called when setup of a device fails.
1618 *
1619 *	Locking:
1620 *		takes the file list lock internally when working on the list
1621 *	of ttys that the driver keeps.
1622 *
1623 *	This method gets called from a work queue so that the driver private
1624 *	cleanup ops can sleep (needed for USB at least)
1625 */
1626static void release_one_tty(struct work_struct *work)
1627{
1628	struct tty_struct *tty =
1629		container_of(work, struct tty_struct, hangup_work);
1630	struct tty_driver *driver = tty->driver;
1631	struct module *owner = driver->owner;
1632
1633	if (tty->ops->cleanup)
1634		tty->ops->cleanup(tty);
1635
1636	tty->magic = 0;
1637	tty_driver_kref_put(driver);
1638	module_put(owner);
1639
1640	spin_lock(&tty->files_lock);
1641	list_del_init(&tty->tty_files);
1642	spin_unlock(&tty->files_lock);
1643
1644	put_pid(tty->pgrp);
1645	put_pid(tty->session);
1646	free_tty_struct(tty);
1647}
1648
1649static void queue_release_one_tty(struct kref *kref)
1650{
1651	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1652
1653	/* The hangup queue is now free so we can reuse it rather than
1654	   waste a chunk of memory for each port */
1655	INIT_WORK(&tty->hangup_work, release_one_tty);
1656	schedule_work(&tty->hangup_work);
1657}
1658
1659/**
1660 *	tty_kref_put		-	release a tty kref
1661 *	@tty: tty device
1662 *
1663 *	Release a reference to a tty device and if need be let the kref
1664 *	layer destruct the object for us
1665 */
1666
1667void tty_kref_put(struct tty_struct *tty)
1668{
1669	if (tty)
1670		kref_put(&tty->kref, queue_release_one_tty);
1671}
1672EXPORT_SYMBOL(tty_kref_put);
1673
1674/**
1675 *	release_tty		-	release tty structure memory
1676 *
1677 *	Release both @tty and a possible linked partner (think pty pair),
1678 *	and decrement the refcount of the backing module.
1679 *
1680 *	Locking:
1681 *		tty_mutex
1682 *		takes the file list lock internally when working on the list
1683 *	of ttys that the driver keeps.
1684 *
1685 */
1686static void release_tty(struct tty_struct *tty, int idx)
1687{
1688	/* This should always be true but check for the moment */
1689	WARN_ON(tty->index != idx);
1690	WARN_ON(!mutex_is_locked(&tty_mutex));
1691	if (tty->ops->shutdown)
1692		tty->ops->shutdown(tty);
1693	tty_free_termios(tty);
1694	tty_driver_remove_tty(tty->driver, tty);
1695	tty->port->itty = NULL;
1696	if (tty->link)
1697		tty->link->port->itty = NULL;
1698	tty_buffer_cancel_work(tty->port);
 
 
1699
1700	tty_kref_put(tty->link);
1701	tty_kref_put(tty);
1702}
1703
1704/**
1705 *	tty_release_checks - check a tty before real release
1706 *	@tty: tty to check
1707 *	@o_tty: link of @tty (if any)
1708 *	@idx: index of the tty
1709 *
1710 *	Performs some paranoid checking before true release of the @tty.
1711 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1712 */
1713static int tty_release_checks(struct tty_struct *tty, int idx)
1714{
1715#ifdef TTY_PARANOIA_CHECK
1716	if (idx < 0 || idx >= tty->driver->num) {
1717		tty_debug(tty, "bad idx %d\n", idx);
1718		return -1;
1719	}
1720
1721	/* not much to check for devpts */
1722	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1723		return 0;
1724
1725	if (tty != tty->driver->ttys[idx]) {
1726		tty_debug(tty, "bad driver table[%d] = %p\n",
1727			  idx, tty->driver->ttys[idx]);
1728		return -1;
1729	}
1730	if (tty->driver->other) {
1731		struct tty_struct *o_tty = tty->link;
1732
1733		if (o_tty != tty->driver->other->ttys[idx]) {
1734			tty_debug(tty, "bad other table[%d] = %p\n",
1735				  idx, tty->driver->other->ttys[idx]);
1736			return -1;
1737		}
1738		if (o_tty->link != tty) {
1739			tty_debug(tty, "bad link = %p\n", o_tty->link);
1740			return -1;
1741		}
1742	}
1743#endif
1744	return 0;
1745}
1746
1747/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748 *	tty_release		-	vfs callback for close
1749 *	@inode: inode of tty
1750 *	@filp: file pointer for handle to tty
1751 *
1752 *	Called the last time each file handle is closed that references
1753 *	this tty. There may however be several such references.
1754 *
1755 *	Locking:
1756 *		Takes bkl. See tty_release_dev
1757 *
1758 * Even releasing the tty structures is a tricky business.. We have
1759 * to be very careful that the structures are all released at the
1760 * same time, as interrupts might otherwise get the wrong pointers.
1761 *
1762 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1763 * lead to double frees or releasing memory still in use.
1764 */
1765
1766int tty_release(struct inode *inode, struct file *filp)
1767{
1768	struct tty_struct *tty = file_tty(filp);
1769	struct tty_struct *o_tty = NULL;
1770	int	do_sleep, final;
1771	int	idx;
1772	long	timeout = 0;
1773	int	once = 1;
1774
1775	if (tty_paranoia_check(tty, inode, __func__))
1776		return 0;
1777
1778	tty_lock(tty);
1779	check_tty_count(tty, __func__);
1780
1781	__tty_fasync(-1, filp, 0);
1782
1783	idx = tty->index;
1784	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1785	    tty->driver->subtype == PTY_TYPE_MASTER)
1786		o_tty = tty->link;
1787
1788	if (tty_release_checks(tty, idx)) {
1789		tty_unlock(tty);
1790		return 0;
1791	}
1792
1793	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1794
1795	if (tty->ops->close)
1796		tty->ops->close(tty, filp);
1797
1798	/* If tty is pty master, lock the slave pty (stable lock order) */
1799	tty_lock_slave(o_tty);
1800
1801	/*
1802	 * Sanity check: if tty->count is going to zero, there shouldn't be
1803	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1804	 * wait queues and kick everyone out _before_ actually starting to
1805	 * close.  This ensures that we won't block while releasing the tty
1806	 * structure.
1807	 *
1808	 * The test for the o_tty closing is necessary, since the master and
1809	 * slave sides may close in any order.  If the slave side closes out
1810	 * first, its count will be one, since the master side holds an open.
1811	 * Thus this test wouldn't be triggered at the time the slave closed,
1812	 * so we do it now.
1813	 */
1814	while (1) {
1815		do_sleep = 0;
1816
1817		if (tty->count <= 1) {
1818			if (waitqueue_active(&tty->read_wait)) {
1819				wake_up_poll(&tty->read_wait, POLLIN);
1820				do_sleep++;
1821			}
1822			if (waitqueue_active(&tty->write_wait)) {
1823				wake_up_poll(&tty->write_wait, POLLOUT);
1824				do_sleep++;
1825			}
1826		}
1827		if (o_tty && o_tty->count <= 1) {
1828			if (waitqueue_active(&o_tty->read_wait)) {
1829				wake_up_poll(&o_tty->read_wait, POLLIN);
1830				do_sleep++;
1831			}
1832			if (waitqueue_active(&o_tty->write_wait)) {
1833				wake_up_poll(&o_tty->write_wait, POLLOUT);
1834				do_sleep++;
1835			}
1836		}
1837		if (!do_sleep)
1838			break;
1839
1840		if (once) {
1841			once = 0;
1842			tty_warn(tty, "read/write wait queue active!\n");
1843		}
1844		schedule_timeout_killable(timeout);
1845		if (timeout < 120 * HZ)
1846			timeout = 2 * timeout + 1;
1847		else
1848			timeout = MAX_SCHEDULE_TIMEOUT;
1849	}
1850
1851	if (o_tty) {
1852		if (--o_tty->count < 0) {
1853			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1854			o_tty->count = 0;
1855		}
1856	}
1857	if (--tty->count < 0) {
1858		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1859		tty->count = 0;
1860	}
1861
1862	/*
1863	 * We've decremented tty->count, so we need to remove this file
1864	 * descriptor off the tty->tty_files list; this serves two
1865	 * purposes:
1866	 *  - check_tty_count sees the correct number of file descriptors
1867	 *    associated with this tty.
1868	 *  - do_tty_hangup no longer sees this file descriptor as
1869	 *    something that needs to be handled for hangups.
1870	 */
1871	tty_del_file(filp);
1872
1873	/*
1874	 * Perform some housekeeping before deciding whether to return.
1875	 *
1876	 * If _either_ side is closing, make sure there aren't any
1877	 * processes that still think tty or o_tty is their controlling
1878	 * tty.
1879	 */
1880	if (!tty->count) {
1881		read_lock(&tasklist_lock);
1882		session_clear_tty(tty->session);
1883		if (o_tty)
1884			session_clear_tty(o_tty->session);
1885		read_unlock(&tasklist_lock);
1886	}
1887
1888	/* check whether both sides are closing ... */
1889	final = !tty->count && !(o_tty && o_tty->count);
1890
1891	tty_unlock_slave(o_tty);
1892	tty_unlock(tty);
1893
1894	/* At this point, the tty->count == 0 should ensure a dead tty
1895	   cannot be re-opened by a racing opener */
1896
1897	if (!final)
1898		return 0;
1899
1900	tty_debug_hangup(tty, "final close\n");
1901	/*
1902	 * Ask the line discipline code to release its structures
1903	 */
1904	tty_ldisc_release(tty);
1905
1906	/* Wait for pending work before tty destruction commmences */
1907	tty_flush_works(tty);
1908
1909	tty_debug_hangup(tty, "freeing structure\n");
1910	/*
1911	 * The release_tty function takes care of the details of clearing
1912	 * the slots and preserving the termios structure. The tty_unlock_pair
1913	 * should be safe as we keep a kref while the tty is locked (so the
1914	 * unlock never unlocks a freed tty).
1915	 */
1916	mutex_lock(&tty_mutex);
1917	release_tty(tty, idx);
1918	mutex_unlock(&tty_mutex);
1919
 
1920	return 0;
1921}
1922
1923/**
1924 *	tty_open_current_tty - get locked tty of current task
1925 *	@device: device number
1926 *	@filp: file pointer to tty
1927 *	@return: locked tty of the current task iff @device is /dev/tty
1928 *
1929 *	Performs a re-open of the current task's controlling tty.
1930 *
1931 *	We cannot return driver and index like for the other nodes because
1932 *	devpts will not work then. It expects inodes to be from devpts FS.
1933 */
1934static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1935{
1936	struct tty_struct *tty;
1937	int retval;
1938
1939	if (device != MKDEV(TTYAUX_MAJOR, 0))
1940		return NULL;
1941
1942	tty = get_current_tty();
1943	if (!tty)
1944		return ERR_PTR(-ENXIO);
1945
1946	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1947	/* noctty = 1; */
1948	tty_lock(tty);
1949	tty_kref_put(tty);	/* safe to drop the kref now */
1950
1951	retval = tty_reopen(tty);
1952	if (retval < 0) {
1953		tty_unlock(tty);
1954		tty = ERR_PTR(retval);
1955	}
1956	return tty;
1957}
1958
1959/**
1960 *	tty_lookup_driver - lookup a tty driver for a given device file
1961 *	@device: device number
1962 *	@filp: file pointer to tty
1963 *	@index: index for the device in the @return driver
1964 *	@return: driver for this inode (with increased refcount)
1965 *
1966 * 	If @return is not erroneous, the caller is responsible to decrement the
1967 * 	refcount by tty_driver_kref_put.
1968 *
1969 *	Locking: tty_mutex protects get_tty_driver
1970 */
1971static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1972		int *index)
1973{
1974	struct tty_driver *driver;
1975
1976	switch (device) {
1977#ifdef CONFIG_VT
1978	case MKDEV(TTY_MAJOR, 0): {
1979		extern struct tty_driver *console_driver;
1980		driver = tty_driver_kref_get(console_driver);
1981		*index = fg_console;
1982		break;
1983	}
1984#endif
1985	case MKDEV(TTYAUX_MAJOR, 1): {
1986		struct tty_driver *console_driver = console_device(index);
1987		if (console_driver) {
1988			driver = tty_driver_kref_get(console_driver);
1989			if (driver) {
1990				/* Don't let /dev/console block */
1991				filp->f_flags |= O_NONBLOCK;
1992				break;
1993			}
1994		}
 
 
1995		return ERR_PTR(-ENODEV);
1996	}
1997	default:
1998		driver = get_tty_driver(device, index);
1999		if (!driver)
2000			return ERR_PTR(-ENODEV);
2001		break;
2002	}
2003	return driver;
2004}
2005
2006/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2007 *	tty_open_by_driver	-	open a tty device
2008 *	@device: dev_t of device to open
2009 *	@inode: inode of device file
2010 *	@filp: file pointer to tty
2011 *
2012 *	Performs the driver lookup, checks for a reopen, or otherwise
2013 *	performs the first-time tty initialization.
2014 *
2015 *	Returns the locked initialized or re-opened &tty_struct
2016 *
2017 *	Claims the global tty_mutex to serialize:
2018 *	  - concurrent first-time tty initialization
2019 *	  - concurrent tty driver removal w/ lookup
2020 *	  - concurrent tty removal from driver table
2021 */
2022static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2023					     struct file *filp)
2024{
2025	struct tty_struct *tty;
2026	struct tty_driver *driver = NULL;
2027	int index = -1;
2028	int retval;
2029
2030	mutex_lock(&tty_mutex);
2031	driver = tty_lookup_driver(device, filp, &index);
2032	if (IS_ERR(driver)) {
2033		mutex_unlock(&tty_mutex);
2034		return ERR_CAST(driver);
2035	}
2036
2037	/* check whether we're reopening an existing tty */
2038	tty = tty_driver_lookup_tty(driver, filp, index);
2039	if (IS_ERR(tty)) {
2040		mutex_unlock(&tty_mutex);
2041		goto out;
2042	}
2043
2044	if (tty) {
 
 
 
 
 
 
2045		mutex_unlock(&tty_mutex);
2046		retval = tty_lock_interruptible(tty);
2047		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2048		if (retval) {
2049			if (retval == -EINTR)
2050				retval = -ERESTARTSYS;
2051			tty = ERR_PTR(retval);
2052			goto out;
2053		}
2054		retval = tty_reopen(tty);
2055		if (retval < 0) {
2056			tty_unlock(tty);
2057			tty = ERR_PTR(retval);
2058		}
2059	} else { /* Returns with the tty_lock held for now */
2060		tty = tty_init_dev(driver, index);
2061		mutex_unlock(&tty_mutex);
2062	}
2063out:
2064	tty_driver_kref_put(driver);
2065	return tty;
2066}
2067
2068/**
2069 *	tty_open		-	open a tty device
2070 *	@inode: inode of device file
2071 *	@filp: file pointer to tty
2072 *
2073 *	tty_open and tty_release keep up the tty count that contains the
2074 *	number of opens done on a tty. We cannot use the inode-count, as
2075 *	different inodes might point to the same tty.
2076 *
2077 *	Open-counting is needed for pty masters, as well as for keeping
2078 *	track of serial lines: DTR is dropped when the last close happens.
2079 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2080 *
2081 *	The termios state of a pty is reset on first open so that
2082 *	settings don't persist across reuse.
2083 *
2084 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2085 *		 tty->count should protect the rest.
2086 *		 ->siglock protects ->signal/->sighand
2087 *
2088 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2089 *	tty_mutex
2090 */
2091
2092static int tty_open(struct inode *inode, struct file *filp)
2093{
2094	struct tty_struct *tty;
2095	int noctty, retval;
2096	dev_t device = inode->i_rdev;
2097	unsigned saved_flags = filp->f_flags;
2098
2099	nonseekable_open(inode, filp);
2100
2101retry_open:
2102	retval = tty_alloc_file(filp);
2103	if (retval)
2104		return -ENOMEM;
2105
2106	tty = tty_open_current_tty(device, filp);
2107	if (!tty)
2108		tty = tty_open_by_driver(device, inode, filp);
2109
2110	if (IS_ERR(tty)) {
2111		tty_free_file(filp);
2112		retval = PTR_ERR(tty);
2113		if (retval != -EAGAIN || signal_pending(current))
2114			return retval;
2115		schedule();
2116		goto retry_open;
2117	}
2118
2119	tty_add_file(tty, filp);
2120
2121	check_tty_count(tty, __func__);
2122	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2123
2124	if (tty->ops->open)
2125		retval = tty->ops->open(tty, filp);
2126	else
2127		retval = -ENODEV;
2128	filp->f_flags = saved_flags;
2129
2130	if (retval) {
2131		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2132
2133		tty_unlock(tty); /* need to call tty_release without BTM */
2134		tty_release(inode, filp);
2135		if (retval != -ERESTARTSYS)
2136			return retval;
2137
2138		if (signal_pending(current))
2139			return retval;
2140
2141		schedule();
2142		/*
2143		 * Need to reset f_op in case a hangup happened.
2144		 */
2145		if (tty_hung_up_p(filp))
2146			filp->f_op = &tty_fops;
2147		goto retry_open;
2148	}
2149	clear_bit(TTY_HUPPED, &tty->flags);
2150
2151
2152	read_lock(&tasklist_lock);
2153	spin_lock_irq(&current->sighand->siglock);
2154	noctty = (filp->f_flags & O_NOCTTY) ||
2155			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2156			device == MKDEV(TTYAUX_MAJOR, 1) ||
2157			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2158			 tty->driver->subtype == PTY_TYPE_MASTER);
2159
2160	if (!noctty &&
2161	    current->signal->leader &&
2162	    !current->signal->tty &&
2163	    tty->session == NULL) {
2164		/*
2165		 * Don't let a process that only has write access to the tty
2166		 * obtain the privileges associated with having a tty as
2167		 * controlling terminal (being able to reopen it with full
2168		 * access through /dev/tty, being able to perform pushback).
2169		 * Many distributions set the group of all ttys to "tty" and
2170		 * grant write-only access to all terminals for setgid tty
2171		 * binaries, which should not imply full privileges on all ttys.
2172		 *
2173		 * This could theoretically break old code that performs open()
2174		 * on a write-only file descriptor. In that case, it might be
2175		 * necessary to also permit this if
2176		 * inode_permission(inode, MAY_READ) == 0.
2177		 */
2178		if (filp->f_mode & FMODE_READ)
2179			__proc_set_tty(tty);
2180	}
2181	spin_unlock_irq(&current->sighand->siglock);
2182	read_unlock(&tasklist_lock);
2183	tty_unlock(tty);
2184	return 0;
2185}
2186
2187
2188
2189/**
2190 *	tty_poll	-	check tty status
2191 *	@filp: file being polled
2192 *	@wait: poll wait structures to update
2193 *
2194 *	Call the line discipline polling method to obtain the poll
2195 *	status of the device.
2196 *
2197 *	Locking: locks called line discipline but ldisc poll method
2198 *	may be re-entered freely by other callers.
2199 */
2200
2201static unsigned int tty_poll(struct file *filp, poll_table *wait)
2202{
2203	struct tty_struct *tty = file_tty(filp);
2204	struct tty_ldisc *ld;
2205	int ret = 0;
2206
2207	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2208		return 0;
2209
2210	ld = tty_ldisc_ref_wait(tty);
2211	if (!ld)
2212		return hung_up_tty_poll(filp, wait);
2213	if (ld->ops->poll)
2214		ret = ld->ops->poll(tty, filp, wait);
2215	tty_ldisc_deref(ld);
2216	return ret;
2217}
2218
2219static int __tty_fasync(int fd, struct file *filp, int on)
2220{
2221	struct tty_struct *tty = file_tty(filp);
2222	unsigned long flags;
2223	int retval = 0;
2224
2225	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2226		goto out;
2227
2228	retval = fasync_helper(fd, filp, on, &tty->fasync);
2229	if (retval <= 0)
2230		goto out;
2231
2232	if (on) {
2233		enum pid_type type;
2234		struct pid *pid;
2235
2236		spin_lock_irqsave(&tty->ctrl_lock, flags);
2237		if (tty->pgrp) {
2238			pid = tty->pgrp;
2239			type = PIDTYPE_PGID;
2240		} else {
2241			pid = task_pid(current);
2242			type = PIDTYPE_PID;
2243		}
2244		get_pid(pid);
2245		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2246		__f_setown(filp, pid, type, 0);
2247		put_pid(pid);
2248		retval = 0;
2249	}
2250out:
2251	return retval;
2252}
2253
2254static int tty_fasync(int fd, struct file *filp, int on)
2255{
2256	struct tty_struct *tty = file_tty(filp);
2257	int retval = -ENOTTY;
2258
2259	tty_lock(tty);
2260	if (!tty_hung_up_p(filp))
2261		retval = __tty_fasync(fd, filp, on);
2262	tty_unlock(tty);
2263
2264	return retval;
2265}
2266
2267/**
2268 *	tiocsti			-	fake input character
2269 *	@tty: tty to fake input into
2270 *	@p: pointer to character
2271 *
2272 *	Fake input to a tty device. Does the necessary locking and
2273 *	input management.
2274 *
2275 *	FIXME: does not honour flow control ??
2276 *
2277 *	Locking:
2278 *		Called functions take tty_ldiscs_lock
2279 *		current->signal->tty check is safe without locks
2280 *
2281 *	FIXME: may race normal receive processing
2282 */
2283
2284static int tiocsti(struct tty_struct *tty, char __user *p)
2285{
2286	char ch, mbz = 0;
2287	struct tty_ldisc *ld;
2288
2289	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2290		return -EPERM;
2291	if (get_user(ch, p))
2292		return -EFAULT;
2293	tty_audit_tiocsti(tty, ch);
2294	ld = tty_ldisc_ref_wait(tty);
2295	if (!ld)
2296		return -EIO;
2297	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
2298	tty_ldisc_deref(ld);
2299	return 0;
2300}
2301
2302/**
2303 *	tiocgwinsz		-	implement window query ioctl
2304 *	@tty; tty
2305 *	@arg: user buffer for result
2306 *
2307 *	Copies the kernel idea of the window size into the user buffer.
2308 *
2309 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2310 *		is consistent.
2311 */
2312
2313static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2314{
2315	int err;
2316
2317	mutex_lock(&tty->winsize_mutex);
2318	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2319	mutex_unlock(&tty->winsize_mutex);
2320
2321	return err ? -EFAULT: 0;
2322}
2323
2324/**
2325 *	tty_do_resize		-	resize event
2326 *	@tty: tty being resized
2327 *	@rows: rows (character)
2328 *	@cols: cols (character)
2329 *
2330 *	Update the termios variables and send the necessary signals to
2331 *	peform a terminal resize correctly
2332 */
2333
2334int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2335{
2336	struct pid *pgrp;
2337
2338	/* Lock the tty */
2339	mutex_lock(&tty->winsize_mutex);
2340	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2341		goto done;
2342
2343	/* Signal the foreground process group */
2344	pgrp = tty_get_pgrp(tty);
2345	if (pgrp)
2346		kill_pgrp(pgrp, SIGWINCH, 1);
2347	put_pid(pgrp);
2348
2349	tty->winsize = *ws;
2350done:
2351	mutex_unlock(&tty->winsize_mutex);
2352	return 0;
2353}
2354EXPORT_SYMBOL(tty_do_resize);
2355
2356/**
2357 *	tiocswinsz		-	implement window size set ioctl
2358 *	@tty; tty side of tty
2359 *	@arg: user buffer for result
2360 *
2361 *	Copies the user idea of the window size to the kernel. Traditionally
2362 *	this is just advisory information but for the Linux console it
2363 *	actually has driver level meaning and triggers a VC resize.
2364 *
2365 *	Locking:
2366 *		Driver dependent. The default do_resize method takes the
2367 *	tty termios mutex and ctrl_lock. The console takes its own lock
2368 *	then calls into the default method.
2369 */
2370
2371static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2372{
2373	struct winsize tmp_ws;
2374	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2375		return -EFAULT;
2376
2377	if (tty->ops->resize)
2378		return tty->ops->resize(tty, &tmp_ws);
2379	else
2380		return tty_do_resize(tty, &tmp_ws);
2381}
2382
2383/**
2384 *	tioccons	-	allow admin to move logical console
2385 *	@file: the file to become console
2386 *
2387 *	Allow the administrator to move the redirected console device
2388 *
2389 *	Locking: uses redirect_lock to guard the redirect information
2390 */
2391
2392static int tioccons(struct file *file)
2393{
2394	if (!capable(CAP_SYS_ADMIN))
2395		return -EPERM;
2396	if (file->f_op->write == redirected_tty_write) {
2397		struct file *f;
2398		spin_lock(&redirect_lock);
2399		f = redirect;
2400		redirect = NULL;
2401		spin_unlock(&redirect_lock);
2402		if (f)
2403			fput(f);
2404		return 0;
2405	}
2406	spin_lock(&redirect_lock);
2407	if (redirect) {
2408		spin_unlock(&redirect_lock);
2409		return -EBUSY;
2410	}
2411	redirect = get_file(file);
2412	spin_unlock(&redirect_lock);
2413	return 0;
2414}
2415
2416/**
2417 *	fionbio		-	non blocking ioctl
2418 *	@file: file to set blocking value
2419 *	@p: user parameter
2420 *
2421 *	Historical tty interfaces had a blocking control ioctl before
2422 *	the generic functionality existed. This piece of history is preserved
2423 *	in the expected tty API of posix OS's.
2424 *
2425 *	Locking: none, the open file handle ensures it won't go away.
2426 */
2427
2428static int fionbio(struct file *file, int __user *p)
2429{
2430	int nonblock;
2431
2432	if (get_user(nonblock, p))
2433		return -EFAULT;
2434
2435	spin_lock(&file->f_lock);
2436	if (nonblock)
2437		file->f_flags |= O_NONBLOCK;
2438	else
2439		file->f_flags &= ~O_NONBLOCK;
2440	spin_unlock(&file->f_lock);
2441	return 0;
2442}
2443
2444/**
2445 *	tiocsctty	-	set controlling tty
2446 *	@tty: tty structure
2447 *	@arg: user argument
2448 *
2449 *	This ioctl is used to manage job control. It permits a session
2450 *	leader to set this tty as the controlling tty for the session.
2451 *
2452 *	Locking:
2453 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2454 *		Takes tasklist_lock internally to walk sessions
2455 *		Takes ->siglock() when updating signal->tty
2456 */
2457
2458static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2459{
2460	int ret = 0;
2461
2462	tty_lock(tty);
2463	read_lock(&tasklist_lock);
2464
2465	if (current->signal->leader && (task_session(current) == tty->session))
2466		goto unlock;
2467
2468	/*
2469	 * The process must be a session leader and
2470	 * not have a controlling tty already.
2471	 */
2472	if (!current->signal->leader || current->signal->tty) {
2473		ret = -EPERM;
2474		goto unlock;
2475	}
2476
2477	if (tty->session) {
2478		/*
2479		 * This tty is already the controlling
2480		 * tty for another session group!
2481		 */
2482		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2483			/*
2484			 * Steal it away
2485			 */
2486			session_clear_tty(tty->session);
2487		} else {
2488			ret = -EPERM;
2489			goto unlock;
2490		}
2491	}
2492
2493	/* See the comment in tty_open(). */
2494	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2495		ret = -EPERM;
2496		goto unlock;
2497	}
2498
2499	proc_set_tty(tty);
2500unlock:
2501	read_unlock(&tasklist_lock);
2502	tty_unlock(tty);
2503	return ret;
2504}
2505
2506/**
2507 *	tty_get_pgrp	-	return a ref counted pgrp pid
2508 *	@tty: tty to read
2509 *
2510 *	Returns a refcounted instance of the pid struct for the process
2511 *	group controlling the tty.
2512 */
2513
2514struct pid *tty_get_pgrp(struct tty_struct *tty)
2515{
2516	unsigned long flags;
2517	struct pid *pgrp;
2518
2519	spin_lock_irqsave(&tty->ctrl_lock, flags);
2520	pgrp = get_pid(tty->pgrp);
2521	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2522
2523	return pgrp;
2524}
2525EXPORT_SYMBOL_GPL(tty_get_pgrp);
2526
2527/*
2528 * This checks not only the pgrp, but falls back on the pid if no
2529 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2530 * without this...
2531 *
2532 * The caller must hold rcu lock or the tasklist lock.
2533 */
2534static struct pid *session_of_pgrp(struct pid *pgrp)
2535{
2536	struct task_struct *p;
2537	struct pid *sid = NULL;
2538
2539	p = pid_task(pgrp, PIDTYPE_PGID);
2540	if (p == NULL)
2541		p = pid_task(pgrp, PIDTYPE_PID);
2542	if (p != NULL)
2543		sid = task_session(p);
2544
2545	return sid;
2546}
2547
2548/**
2549 *	tiocgpgrp		-	get process group
2550 *	@tty: tty passed by user
2551 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2552 *	@p: returned pid
2553 *
2554 *	Obtain the process group of the tty. If there is no process group
2555 *	return an error.
2556 *
2557 *	Locking: none. Reference to current->signal->tty is safe.
2558 */
2559
2560static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2561{
2562	struct pid *pid;
2563	int ret;
2564	/*
2565	 * (tty == real_tty) is a cheap way of
2566	 * testing if the tty is NOT a master pty.
2567	 */
2568	if (tty == real_tty && current->signal->tty != real_tty)
2569		return -ENOTTY;
2570	pid = tty_get_pgrp(real_tty);
2571	ret =  put_user(pid_vnr(pid), p);
2572	put_pid(pid);
2573	return ret;
2574}
2575
2576/**
2577 *	tiocspgrp		-	attempt to set process group
2578 *	@tty: tty passed by user
2579 *	@real_tty: tty side device matching tty passed by user
2580 *	@p: pid pointer
2581 *
2582 *	Set the process group of the tty to the session passed. Only
2583 *	permitted where the tty session is our session.
2584 *
2585 *	Locking: RCU, ctrl lock
2586 */
2587
2588static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2589{
2590	struct pid *pgrp;
2591	pid_t pgrp_nr;
2592	int retval = tty_check_change(real_tty);
2593
2594	if (retval == -EIO)
2595		return -ENOTTY;
2596	if (retval)
2597		return retval;
2598	if (!current->signal->tty ||
2599	    (current->signal->tty != real_tty) ||
2600	    (real_tty->session != task_session(current)))
2601		return -ENOTTY;
2602	if (get_user(pgrp_nr, p))
2603		return -EFAULT;
2604	if (pgrp_nr < 0)
2605		return -EINVAL;
2606	rcu_read_lock();
2607	pgrp = find_vpid(pgrp_nr);
2608	retval = -ESRCH;
2609	if (!pgrp)
2610		goto out_unlock;
2611	retval = -EPERM;
2612	if (session_of_pgrp(pgrp) != task_session(current))
2613		goto out_unlock;
2614	retval = 0;
2615	spin_lock_irq(&tty->ctrl_lock);
2616	put_pid(real_tty->pgrp);
2617	real_tty->pgrp = get_pid(pgrp);
2618	spin_unlock_irq(&tty->ctrl_lock);
2619out_unlock:
2620	rcu_read_unlock();
2621	return retval;
2622}
2623
2624/**
2625 *	tiocgsid		-	get session id
2626 *	@tty: tty passed by user
2627 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2628 *	@p: pointer to returned session id
2629 *
2630 *	Obtain the session id of the tty. If there is no session
2631 *	return an error.
2632 *
2633 *	Locking: none. Reference to current->signal->tty is safe.
2634 */
2635
2636static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2637{
2638	/*
2639	 * (tty == real_tty) is a cheap way of
2640	 * testing if the tty is NOT a master pty.
2641	*/
2642	if (tty == real_tty && current->signal->tty != real_tty)
2643		return -ENOTTY;
2644	if (!real_tty->session)
2645		return -ENOTTY;
2646	return put_user(pid_vnr(real_tty->session), p);
2647}
2648
2649/**
2650 *	tiocsetd	-	set line discipline
2651 *	@tty: tty device
2652 *	@p: pointer to user data
2653 *
2654 *	Set the line discipline according to user request.
2655 *
2656 *	Locking: see tty_set_ldisc, this function is just a helper
2657 */
2658
2659static int tiocsetd(struct tty_struct *tty, int __user *p)
2660{
2661	int disc;
2662	int ret;
2663
2664	if (get_user(disc, p))
2665		return -EFAULT;
2666
2667	ret = tty_set_ldisc(tty, disc);
2668
2669	return ret;
2670}
2671
2672/**
2673 *	tiocgetd	-	get line discipline
2674 *	@tty: tty device
2675 *	@p: pointer to user data
2676 *
2677 *	Retrieves the line discipline id directly from the ldisc.
2678 *
2679 *	Locking: waits for ldisc reference (in case the line discipline
2680 *		is changing or the tty is being hungup)
2681 */
2682
2683static int tiocgetd(struct tty_struct *tty, int __user *p)
2684{
2685	struct tty_ldisc *ld;
2686	int ret;
2687
2688	ld = tty_ldisc_ref_wait(tty);
2689	if (!ld)
2690		return -EIO;
2691	ret = put_user(ld->ops->num, p);
2692	tty_ldisc_deref(ld);
2693	return ret;
2694}
2695
2696/**
2697 *	send_break	-	performed time break
2698 *	@tty: device to break on
2699 *	@duration: timeout in mS
2700 *
2701 *	Perform a timed break on hardware that lacks its own driver level
2702 *	timed break functionality.
2703 *
2704 *	Locking:
2705 *		atomic_write_lock serializes
2706 *
2707 */
2708
2709static int send_break(struct tty_struct *tty, unsigned int duration)
2710{
2711	int retval;
2712
2713	if (tty->ops->break_ctl == NULL)
2714		return 0;
2715
2716	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2717		retval = tty->ops->break_ctl(tty, duration);
2718	else {
2719		/* Do the work ourselves */
2720		if (tty_write_lock(tty, 0) < 0)
2721			return -EINTR;
2722		retval = tty->ops->break_ctl(tty, -1);
2723		if (retval)
2724			goto out;
2725		if (!signal_pending(current))
2726			msleep_interruptible(duration);
2727		retval = tty->ops->break_ctl(tty, 0);
2728out:
2729		tty_write_unlock(tty);
2730		if (signal_pending(current))
2731			retval = -EINTR;
2732	}
2733	return retval;
2734}
2735
2736/**
2737 *	tty_tiocmget		-	get modem status
2738 *	@tty: tty device
2739 *	@file: user file pointer
2740 *	@p: pointer to result
2741 *
2742 *	Obtain the modem status bits from the tty driver if the feature
2743 *	is supported. Return -EINVAL if it is not available.
2744 *
2745 *	Locking: none (up to the driver)
2746 */
2747
2748static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2749{
2750	int retval = -EINVAL;
2751
2752	if (tty->ops->tiocmget) {
2753		retval = tty->ops->tiocmget(tty);
2754
2755		if (retval >= 0)
2756			retval = put_user(retval, p);
2757	}
2758	return retval;
2759}
2760
2761/**
2762 *	tty_tiocmset		-	set modem status
2763 *	@tty: tty device
2764 *	@cmd: command - clear bits, set bits or set all
2765 *	@p: pointer to desired bits
2766 *
2767 *	Set the modem status bits from the tty driver if the feature
2768 *	is supported. Return -EINVAL if it is not available.
2769 *
2770 *	Locking: none (up to the driver)
2771 */
2772
2773static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2774	     unsigned __user *p)
2775{
2776	int retval;
2777	unsigned int set, clear, val;
2778
2779	if (tty->ops->tiocmset == NULL)
2780		return -EINVAL;
2781
2782	retval = get_user(val, p);
2783	if (retval)
2784		return retval;
2785	set = clear = 0;
2786	switch (cmd) {
2787	case TIOCMBIS:
2788		set = val;
2789		break;
2790	case TIOCMBIC:
2791		clear = val;
2792		break;
2793	case TIOCMSET:
2794		set = val;
2795		clear = ~val;
2796		break;
2797	}
2798	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2799	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2800	return tty->ops->tiocmset(tty, set, clear);
2801}
2802
2803static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2804{
2805	int retval = -EINVAL;
2806	struct serial_icounter_struct icount;
2807	memset(&icount, 0, sizeof(icount));
2808	if (tty->ops->get_icount)
2809		retval = tty->ops->get_icount(tty, &icount);
2810	if (retval != 0)
2811		return retval;
2812	if (copy_to_user(arg, &icount, sizeof(icount)))
2813		return -EFAULT;
2814	return 0;
2815}
2816
2817static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2818{
2819	static DEFINE_RATELIMIT_STATE(depr_flags,
2820			DEFAULT_RATELIMIT_INTERVAL,
2821			DEFAULT_RATELIMIT_BURST);
2822	char comm[TASK_COMM_LEN];
 
2823	int flags;
2824
2825	if (get_user(flags, &ss->flags))
2826		return;
2827
2828	flags &= ASYNC_DEPRECATED;
2829
2830	if (flags && __ratelimit(&depr_flags))
2831		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2832				__func__, get_task_comm(comm, current), flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2833}
2834
2835/*
2836 * if pty, return the slave side (real_tty)
2837 * otherwise, return self
2838 */
2839static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2840{
2841	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2842	    tty->driver->subtype == PTY_TYPE_MASTER)
2843		tty = tty->link;
2844	return tty;
2845}
2846
2847/*
2848 * Split this up, as gcc can choke on it otherwise..
2849 */
2850long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2851{
2852	struct tty_struct *tty = file_tty(file);
2853	struct tty_struct *real_tty;
2854	void __user *p = (void __user *)arg;
2855	int retval;
2856	struct tty_ldisc *ld;
2857
2858	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2859		return -EINVAL;
2860
2861	real_tty = tty_pair_get_tty(tty);
2862
2863	/*
2864	 * Factor out some common prep work
2865	 */
2866	switch (cmd) {
2867	case TIOCSETD:
2868	case TIOCSBRK:
2869	case TIOCCBRK:
2870	case TCSBRK:
2871	case TCSBRKP:
2872		retval = tty_check_change(tty);
2873		if (retval)
2874			return retval;
2875		if (cmd != TIOCCBRK) {
2876			tty_wait_until_sent(tty, 0);
2877			if (signal_pending(current))
2878				return -EINTR;
2879		}
2880		break;
2881	}
2882
2883	/*
2884	 *	Now do the stuff.
2885	 */
2886	switch (cmd) {
2887	case TIOCSTI:
2888		return tiocsti(tty, p);
2889	case TIOCGWINSZ:
2890		return tiocgwinsz(real_tty, p);
2891	case TIOCSWINSZ:
2892		return tiocswinsz(real_tty, p);
2893	case TIOCCONS:
2894		return real_tty != tty ? -EINVAL : tioccons(file);
2895	case FIONBIO:
2896		return fionbio(file, p);
2897	case TIOCEXCL:
2898		set_bit(TTY_EXCLUSIVE, &tty->flags);
2899		return 0;
2900	case TIOCNXCL:
2901		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2902		return 0;
2903	case TIOCGEXCL:
2904	{
2905		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2906		return put_user(excl, (int __user *)p);
2907	}
2908	case TIOCNOTTY:
2909		if (current->signal->tty != tty)
2910			return -ENOTTY;
2911		no_tty();
2912		return 0;
2913	case TIOCSCTTY:
2914		return tiocsctty(real_tty, file, arg);
2915	case TIOCGPGRP:
2916		return tiocgpgrp(tty, real_tty, p);
2917	case TIOCSPGRP:
2918		return tiocspgrp(tty, real_tty, p);
2919	case TIOCGSID:
2920		return tiocgsid(tty, real_tty, p);
2921	case TIOCGETD:
2922		return tiocgetd(tty, p);
2923	case TIOCSETD:
2924		return tiocsetd(tty, p);
2925	case TIOCVHANGUP:
2926		if (!capable(CAP_SYS_ADMIN))
2927			return -EPERM;
2928		tty_vhangup(tty);
2929		return 0;
2930	case TIOCGDEV:
2931	{
2932		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2933		return put_user(ret, (unsigned int __user *)p);
2934	}
2935	/*
2936	 * Break handling
2937	 */
2938	case TIOCSBRK:	/* Turn break on, unconditionally */
2939		if (tty->ops->break_ctl)
2940			return tty->ops->break_ctl(tty, -1);
2941		return 0;
2942	case TIOCCBRK:	/* Turn break off, unconditionally */
2943		if (tty->ops->break_ctl)
2944			return tty->ops->break_ctl(tty, 0);
2945		return 0;
2946	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2947		/* non-zero arg means wait for all output data
2948		 * to be sent (performed above) but don't send break.
2949		 * This is used by the tcdrain() termios function.
2950		 */
2951		if (!arg)
2952			return send_break(tty, 250);
2953		return 0;
2954	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2955		return send_break(tty, arg ? arg*100 : 250);
2956
2957	case TIOCMGET:
2958		return tty_tiocmget(tty, p);
2959	case TIOCMSET:
2960	case TIOCMBIC:
2961	case TIOCMBIS:
2962		return tty_tiocmset(tty, cmd, p);
2963	case TIOCGICOUNT:
2964		retval = tty_tiocgicount(tty, p);
2965		/* For the moment allow fall through to the old method */
2966        	if (retval != -EINVAL)
2967			return retval;
2968		break;
2969	case TCFLSH:
2970		switch (arg) {
2971		case TCIFLUSH:
2972		case TCIOFLUSH:
2973		/* flush tty buffer and allow ldisc to process ioctl */
2974			tty_buffer_flush(tty, NULL);
2975			break;
2976		}
2977		break;
2978	case TIOCSSERIAL:
2979		tty_warn_deprecated_flags(p);
2980		break;
 
 
 
 
 
 
 
 
2981	}
2982	if (tty->ops->ioctl) {
2983		retval = tty->ops->ioctl(tty, cmd, arg);
2984		if (retval != -ENOIOCTLCMD)
2985			return retval;
2986	}
2987	ld = tty_ldisc_ref_wait(tty);
2988	if (!ld)
2989		return hung_up_tty_ioctl(file, cmd, arg);
2990	retval = -EINVAL;
2991	if (ld->ops->ioctl) {
2992		retval = ld->ops->ioctl(tty, file, cmd, arg);
2993		if (retval == -ENOIOCTLCMD)
2994			retval = -ENOTTY;
2995	}
2996	tty_ldisc_deref(ld);
2997	return retval;
2998}
2999
3000#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3001static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3002				unsigned long arg)
3003{
3004	struct tty_struct *tty = file_tty(file);
3005	struct tty_ldisc *ld;
3006	int retval = -ENOIOCTLCMD;
3007
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3009		return -EINVAL;
3010
 
 
 
 
 
 
3011	if (tty->ops->compat_ioctl) {
3012		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3013		if (retval != -ENOIOCTLCMD)
3014			return retval;
3015	}
3016
3017	ld = tty_ldisc_ref_wait(tty);
3018	if (!ld)
3019		return hung_up_tty_compat_ioctl(file, cmd, arg);
3020	if (ld->ops->compat_ioctl)
3021		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3022	else
3023		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
3024	tty_ldisc_deref(ld);
3025
3026	return retval;
3027}
3028#endif
3029
3030static int this_tty(const void *t, struct file *file, unsigned fd)
3031{
3032	if (likely(file->f_op->read != tty_read))
3033		return 0;
3034	return file_tty(file) != t ? 0 : fd + 1;
3035}
3036	
3037/*
3038 * This implements the "Secure Attention Key" ---  the idea is to
3039 * prevent trojan horses by killing all processes associated with this
3040 * tty when the user hits the "Secure Attention Key".  Required for
3041 * super-paranoid applications --- see the Orange Book for more details.
3042 *
3043 * This code could be nicer; ideally it should send a HUP, wait a few
3044 * seconds, then send a INT, and then a KILL signal.  But you then
3045 * have to coordinate with the init process, since all processes associated
3046 * with the current tty must be dead before the new getty is allowed
3047 * to spawn.
3048 *
3049 * Now, if it would be correct ;-/ The current code has a nasty hole -
3050 * it doesn't catch files in flight. We may send the descriptor to ourselves
3051 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3052 *
3053 * Nasty bug: do_SAK is being called in interrupt context.  This can
3054 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3055 */
3056void __do_SAK(struct tty_struct *tty)
3057{
3058#ifdef TTY_SOFT_SAK
3059	tty_hangup(tty);
3060#else
3061	struct task_struct *g, *p;
3062	struct pid *session;
3063	int		i;
3064
3065	if (!tty)
3066		return;
3067	session = tty->session;
3068
3069	tty_ldisc_flush(tty);
3070
3071	tty_driver_flush_buffer(tty);
3072
3073	read_lock(&tasklist_lock);
3074	/* Kill the entire session */
3075	do_each_pid_task(session, PIDTYPE_SID, p) {
3076		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3077			   task_pid_nr(p), p->comm);
3078		send_sig(SIGKILL, p, 1);
3079	} while_each_pid_task(session, PIDTYPE_SID, p);
3080
3081	/* Now kill any processes that happen to have the tty open */
3082	do_each_thread(g, p) {
3083		if (p->signal->tty == tty) {
3084			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3085				   task_pid_nr(p), p->comm);
3086			send_sig(SIGKILL, p, 1);
3087			continue;
3088		}
3089		task_lock(p);
3090		i = iterate_fd(p->files, 0, this_tty, tty);
3091		if (i != 0) {
3092			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3093				   task_pid_nr(p), p->comm, i - 1);
3094			force_sig(SIGKILL, p);
3095		}
3096		task_unlock(p);
3097	} while_each_thread(g, p);
3098	read_unlock(&tasklist_lock);
3099#endif
3100}
3101
3102static void do_SAK_work(struct work_struct *work)
3103{
3104	struct tty_struct *tty =
3105		container_of(work, struct tty_struct, SAK_work);
3106	__do_SAK(tty);
3107}
3108
3109/*
3110 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3111 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3112 * the values which we write to it will be identical to the values which it
3113 * already has. --akpm
3114 */
3115void do_SAK(struct tty_struct *tty)
3116{
3117	if (!tty)
3118		return;
3119	schedule_work(&tty->SAK_work);
3120}
3121
3122EXPORT_SYMBOL(do_SAK);
3123
3124static int dev_match_devt(struct device *dev, const void *data)
3125{
3126	const dev_t *devt = data;
3127	return dev->devt == *devt;
3128}
3129
3130/* Must put_device() after it's unused! */
3131static struct device *tty_get_device(struct tty_struct *tty)
3132{
3133	dev_t devt = tty_devnum(tty);
3134	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3135}
3136
3137
3138/**
3139 *	alloc_tty_struct
3140 *
3141 *	This subroutine allocates and initializes a tty structure.
3142 *
3143 *	Locking: none - tty in question is not exposed at this point
3144 */
3145
3146struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3147{
3148	struct tty_struct *tty;
3149
3150	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3151	if (!tty)
3152		return NULL;
3153
3154	kref_init(&tty->kref);
3155	tty->magic = TTY_MAGIC;
3156	tty_ldisc_init(tty);
 
 
 
3157	tty->session = NULL;
3158	tty->pgrp = NULL;
3159	mutex_init(&tty->legacy_mutex);
3160	mutex_init(&tty->throttle_mutex);
3161	init_rwsem(&tty->termios_rwsem);
3162	mutex_init(&tty->winsize_mutex);
3163	init_ldsem(&tty->ldisc_sem);
3164	init_waitqueue_head(&tty->write_wait);
3165	init_waitqueue_head(&tty->read_wait);
3166	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3167	mutex_init(&tty->atomic_write_lock);
3168	spin_lock_init(&tty->ctrl_lock);
3169	spin_lock_init(&tty->flow_lock);
3170	spin_lock_init(&tty->files_lock);
3171	INIT_LIST_HEAD(&tty->tty_files);
3172	INIT_WORK(&tty->SAK_work, do_SAK_work);
3173
3174	tty->driver = driver;
3175	tty->ops = driver->ops;
3176	tty->index = idx;
3177	tty_line_name(driver, idx, tty->name);
3178	tty->dev = tty_get_device(tty);
3179
3180	return tty;
3181}
3182
3183/**
3184 *	tty_put_char	-	write one character to a tty
3185 *	@tty: tty
3186 *	@ch: character
3187 *
3188 *	Write one byte to the tty using the provided put_char method
3189 *	if present. Returns the number of characters successfully output.
3190 *
3191 *	Note: the specific put_char operation in the driver layer may go
3192 *	away soon. Don't call it directly, use this method
3193 */
3194
3195int tty_put_char(struct tty_struct *tty, unsigned char ch)
3196{
3197	if (tty->ops->put_char)
3198		return tty->ops->put_char(tty, ch);
3199	return tty->ops->write(tty, &ch, 1);
3200}
3201EXPORT_SYMBOL_GPL(tty_put_char);
3202
3203struct class *tty_class;
3204
3205static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3206		unsigned int index, unsigned int count)
3207{
3208	int err;
3209
3210	/* init here, since reused cdevs cause crashes */
3211	driver->cdevs[index] = cdev_alloc();
3212	if (!driver->cdevs[index])
3213		return -ENOMEM;
3214	driver->cdevs[index]->ops = &tty_fops;
3215	driver->cdevs[index]->owner = driver->owner;
3216	err = cdev_add(driver->cdevs[index], dev, count);
3217	if (err)
3218		kobject_put(&driver->cdevs[index]->kobj);
3219	return err;
3220}
3221
3222/**
3223 *	tty_register_device - register a tty device
3224 *	@driver: the tty driver that describes the tty device
3225 *	@index: the index in the tty driver for this tty device
3226 *	@device: a struct device that is associated with this tty device.
3227 *		This field is optional, if there is no known struct device
3228 *		for this tty device it can be set to NULL safely.
3229 *
3230 *	Returns a pointer to the struct device for this tty device
3231 *	(or ERR_PTR(-EFOO) on error).
3232 *
3233 *	This call is required to be made to register an individual tty device
3234 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3235 *	that bit is not set, this function should not be called by a tty
3236 *	driver.
3237 *
3238 *	Locking: ??
3239 */
3240
3241struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3242				   struct device *device)
3243{
3244	return tty_register_device_attr(driver, index, device, NULL, NULL);
3245}
3246EXPORT_SYMBOL(tty_register_device);
3247
3248static void tty_device_create_release(struct device *dev)
3249{
3250	dev_dbg(dev, "releasing...\n");
3251	kfree(dev);
3252}
3253
3254/**
3255 *	tty_register_device_attr - register a tty device
3256 *	@driver: the tty driver that describes the tty device
3257 *	@index: the index in the tty driver for this tty device
3258 *	@device: a struct device that is associated with this tty device.
3259 *		This field is optional, if there is no known struct device
3260 *		for this tty device it can be set to NULL safely.
3261 *	@drvdata: Driver data to be set to device.
3262 *	@attr_grp: Attribute group to be set on device.
3263 *
3264 *	Returns a pointer to the struct device for this tty device
3265 *	(or ERR_PTR(-EFOO) on error).
3266 *
3267 *	This call is required to be made to register an individual tty device
3268 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3269 *	that bit is not set, this function should not be called by a tty
3270 *	driver.
3271 *
3272 *	Locking: ??
3273 */
3274struct device *tty_register_device_attr(struct tty_driver *driver,
3275				   unsigned index, struct device *device,
3276				   void *drvdata,
3277				   const struct attribute_group **attr_grp)
3278{
3279	char name[64];
3280	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3281	struct device *dev = NULL;
3282	int retval = -ENODEV;
3283	bool cdev = false;
3284
3285	if (index >= driver->num) {
3286		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3287		       driver->name, index);
3288		return ERR_PTR(-EINVAL);
3289	}
3290
3291	if (driver->type == TTY_DRIVER_TYPE_PTY)
3292		pty_line_name(driver, index, name);
3293	else
3294		tty_line_name(driver, index, name);
3295
3296	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3297		retval = tty_cdev_add(driver, devt, index, 1);
3298		if (retval)
3299			goto error;
3300		cdev = true;
3301	}
3302
3303	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3304	if (!dev) {
3305		retval = -ENOMEM;
3306		goto error;
3307	}
3308
3309	dev->devt = devt;
3310	dev->class = tty_class;
3311	dev->parent = device;
3312	dev->release = tty_device_create_release;
3313	dev_set_name(dev, "%s", name);
3314	dev->groups = attr_grp;
3315	dev_set_drvdata(dev, drvdata);
3316
 
 
3317	retval = device_register(dev);
3318	if (retval)
3319		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320
3321	return dev;
3322
3323error:
 
 
3324	put_device(dev);
3325	if (cdev) {
3326		cdev_del(driver->cdevs[index]);
3327		driver->cdevs[index] = NULL;
3328	}
3329	return ERR_PTR(retval);
3330}
3331EXPORT_SYMBOL_GPL(tty_register_device_attr);
3332
3333/**
3334 * 	tty_unregister_device - unregister a tty device
3335 * 	@driver: the tty driver that describes the tty device
3336 * 	@index: the index in the tty driver for this tty device
3337 *
3338 * 	If a tty device is registered with a call to tty_register_device() then
3339 *	this function must be called when the tty device is gone.
3340 *
3341 *	Locking: ??
3342 */
3343
3344void tty_unregister_device(struct tty_driver *driver, unsigned index)
3345{
3346	device_destroy(tty_class,
3347		MKDEV(driver->major, driver->minor_start) + index);
3348	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3349		cdev_del(driver->cdevs[index]);
3350		driver->cdevs[index] = NULL;
3351	}
3352}
3353EXPORT_SYMBOL(tty_unregister_device);
3354
3355/**
3356 * __tty_alloc_driver -- allocate tty driver
3357 * @lines: count of lines this driver can handle at most
3358 * @owner: module which is repsonsible for this driver
3359 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3360 *
3361 * This should not be called directly, some of the provided macros should be
3362 * used instead. Use IS_ERR and friends on @retval.
3363 */
3364struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3365		unsigned long flags)
3366{
3367	struct tty_driver *driver;
3368	unsigned int cdevs = 1;
3369	int err;
3370
3371	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3372		return ERR_PTR(-EINVAL);
3373
3374	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3375	if (!driver)
3376		return ERR_PTR(-ENOMEM);
3377
3378	kref_init(&driver->kref);
3379	driver->magic = TTY_DRIVER_MAGIC;
3380	driver->num = lines;
3381	driver->owner = owner;
3382	driver->flags = flags;
3383
3384	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3385		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3386				GFP_KERNEL);
3387		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3388				GFP_KERNEL);
3389		if (!driver->ttys || !driver->termios) {
3390			err = -ENOMEM;
3391			goto err_free_all;
3392		}
3393	}
3394
3395	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3396		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3397				GFP_KERNEL);
3398		if (!driver->ports) {
3399			err = -ENOMEM;
3400			goto err_free_all;
3401		}
3402		cdevs = lines;
3403	}
3404
3405	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3406	if (!driver->cdevs) {
3407		err = -ENOMEM;
3408		goto err_free_all;
3409	}
3410
3411	return driver;
3412err_free_all:
3413	kfree(driver->ports);
3414	kfree(driver->ttys);
3415	kfree(driver->termios);
3416	kfree(driver->cdevs);
3417	kfree(driver);
3418	return ERR_PTR(err);
3419}
3420EXPORT_SYMBOL(__tty_alloc_driver);
3421
3422static void destruct_tty_driver(struct kref *kref)
3423{
3424	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3425	int i;
3426	struct ktermios *tp;
3427
3428	if (driver->flags & TTY_DRIVER_INSTALLED) {
3429		/*
3430		 * Free the termios and termios_locked structures because
3431		 * we don't want to get memory leaks when modular tty
3432		 * drivers are removed from the kernel.
3433		 */
3434		for (i = 0; i < driver->num; i++) {
3435			tp = driver->termios[i];
3436			if (tp) {
3437				driver->termios[i] = NULL;
3438				kfree(tp);
3439			}
3440			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3441				tty_unregister_device(driver, i);
3442		}
3443		proc_tty_unregister_driver(driver);
3444		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3445			cdev_del(driver->cdevs[0]);
3446	}
3447	kfree(driver->cdevs);
3448	kfree(driver->ports);
3449	kfree(driver->termios);
3450	kfree(driver->ttys);
3451	kfree(driver);
3452}
3453
3454void tty_driver_kref_put(struct tty_driver *driver)
3455{
3456	kref_put(&driver->kref, destruct_tty_driver);
3457}
3458EXPORT_SYMBOL(tty_driver_kref_put);
3459
3460void tty_set_operations(struct tty_driver *driver,
3461			const struct tty_operations *op)
3462{
3463	driver->ops = op;
3464};
3465EXPORT_SYMBOL(tty_set_operations);
3466
3467void put_tty_driver(struct tty_driver *d)
3468{
3469	tty_driver_kref_put(d);
3470}
3471EXPORT_SYMBOL(put_tty_driver);
3472
3473/*
3474 * Called by a tty driver to register itself.
3475 */
3476int tty_register_driver(struct tty_driver *driver)
3477{
3478	int error;
3479	int i;
3480	dev_t dev;
3481	struct device *d;
3482
3483	if (!driver->major) {
3484		error = alloc_chrdev_region(&dev, driver->minor_start,
3485						driver->num, driver->name);
3486		if (!error) {
3487			driver->major = MAJOR(dev);
3488			driver->minor_start = MINOR(dev);
3489		}
3490	} else {
3491		dev = MKDEV(driver->major, driver->minor_start);
3492		error = register_chrdev_region(dev, driver->num, driver->name);
3493	}
3494	if (error < 0)
3495		goto err;
3496
3497	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3498		error = tty_cdev_add(driver, dev, 0, driver->num);
3499		if (error)
3500			goto err_unreg_char;
3501	}
3502
3503	mutex_lock(&tty_mutex);
3504	list_add(&driver->tty_drivers, &tty_drivers);
3505	mutex_unlock(&tty_mutex);
3506
3507	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3508		for (i = 0; i < driver->num; i++) {
3509			d = tty_register_device(driver, i, NULL);
3510			if (IS_ERR(d)) {
3511				error = PTR_ERR(d);
3512				goto err_unreg_devs;
3513			}
3514		}
3515	}
3516	proc_tty_register_driver(driver);
3517	driver->flags |= TTY_DRIVER_INSTALLED;
3518	return 0;
3519
3520err_unreg_devs:
3521	for (i--; i >= 0; i--)
3522		tty_unregister_device(driver, i);
3523
3524	mutex_lock(&tty_mutex);
3525	list_del(&driver->tty_drivers);
3526	mutex_unlock(&tty_mutex);
3527
3528err_unreg_char:
3529	unregister_chrdev_region(dev, driver->num);
3530err:
3531	return error;
3532}
3533EXPORT_SYMBOL(tty_register_driver);
3534
3535/*
3536 * Called by a tty driver to unregister itself.
3537 */
3538int tty_unregister_driver(struct tty_driver *driver)
3539{
3540#if 0
3541	/* FIXME */
3542	if (driver->refcount)
3543		return -EBUSY;
3544#endif
3545	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3546				driver->num);
3547	mutex_lock(&tty_mutex);
3548	list_del(&driver->tty_drivers);
3549	mutex_unlock(&tty_mutex);
3550	return 0;
3551}
3552
3553EXPORT_SYMBOL(tty_unregister_driver);
3554
3555dev_t tty_devnum(struct tty_struct *tty)
3556{
3557	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3558}
3559EXPORT_SYMBOL(tty_devnum);
3560
3561void tty_default_fops(struct file_operations *fops)
3562{
3563	*fops = tty_fops;
3564}
3565
3566/*
3567 * Initialize the console device. This is called *early*, so
3568 * we can't necessarily depend on lots of kernel help here.
3569 * Just do some early initializations, and do the complex setup
3570 * later.
3571 */
3572void __init console_init(void)
3573{
3574	initcall_t *call;
3575
3576	/* Setup the default TTY line discipline. */
3577	n_tty_init();
3578
3579	/*
3580	 * set up the console device so that later boot sequences can
3581	 * inform about problems etc..
3582	 */
3583	call = __con_initcall_start;
3584	while (call < __con_initcall_end) {
3585		(*call)();
3586		call++;
3587	}
3588}
3589
3590static char *tty_devnode(struct device *dev, umode_t *mode)
3591{
3592	if (!mode)
3593		return NULL;
3594	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3595	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3596		*mode = 0666;
3597	return NULL;
3598}
3599
3600static int __init tty_class_init(void)
3601{
3602	tty_class = class_create(THIS_MODULE, "tty");
3603	if (IS_ERR(tty_class))
3604		return PTR_ERR(tty_class);
3605	tty_class->devnode = tty_devnode;
3606	return 0;
3607}
3608
3609postcore_initcall(tty_class_init);
3610
3611/* 3/2004 jmc: why do these devices exist? */
3612static struct cdev tty_cdev, console_cdev;
3613
3614static ssize_t show_cons_active(struct device *dev,
3615				struct device_attribute *attr, char *buf)
3616{
3617	struct console *cs[16];
3618	int i = 0;
3619	struct console *c;
3620	ssize_t count = 0;
3621
3622	console_lock();
3623	for_each_console(c) {
3624		if (!c->device)
3625			continue;
3626		if (!c->write)
3627			continue;
3628		if ((c->flags & CON_ENABLED) == 0)
3629			continue;
3630		cs[i++] = c;
3631		if (i >= ARRAY_SIZE(cs))
3632			break;
3633	}
3634	while (i--) {
3635		int index = cs[i]->index;
3636		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3637
3638		/* don't resolve tty0 as some programs depend on it */
3639		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3640			count += tty_line_name(drv, index, buf + count);
3641		else
3642			count += sprintf(buf + count, "%s%d",
3643					 cs[i]->name, cs[i]->index);
3644
3645		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3646	}
3647	console_unlock();
3648
3649	return count;
3650}
3651static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3652
3653static struct attribute *cons_dev_attrs[] = {
3654	&dev_attr_active.attr,
3655	NULL
3656};
3657
3658ATTRIBUTE_GROUPS(cons_dev);
3659
3660static struct device *consdev;
3661
3662void console_sysfs_notify(void)
3663{
3664	if (consdev)
3665		sysfs_notify(&consdev->kobj, NULL, "active");
3666}
3667
3668/*
3669 * Ok, now we can initialize the rest of the tty devices and can count
3670 * on memory allocations, interrupts etc..
3671 */
3672int __init tty_init(void)
3673{
 
3674	cdev_init(&tty_cdev, &tty_fops);
3675	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3676	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3677		panic("Couldn't register /dev/tty driver\n");
3678	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3679
3680	cdev_init(&console_cdev, &console_fops);
3681	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3682	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3683		panic("Couldn't register /dev/console driver\n");
3684	consdev = device_create_with_groups(tty_class, NULL,
3685					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3686					    cons_dev_groups, "console");
3687	if (IS_ERR(consdev))
3688		consdev = NULL;
3689
3690#ifdef CONFIG_VT
3691	vty_init(&console_fops);
3692#endif
3693	return 0;
3694}
3695
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/device.h>
  94#include <linux/wait.h>
  95#include <linux/bitops.h>
  96#include <linux/delay.h>
  97#include <linux/seq_file.h>
  98#include <linux/serial.h>
  99#include <linux/ratelimit.h>
 100#include <linux/compat.h>
 101
 102#include <linux/uaccess.h>
 103
 104#include <linux/kbd_kern.h>
 105#include <linux/vt_kern.h>
 106#include <linux/selection.h>
 107
 108#include <linux/kmod.h>
 109#include <linux/nsproxy.h>
 110
 111#undef TTY_DEBUG_HANGUP
 112#ifdef TTY_DEBUG_HANGUP
 113# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 114#else
 115# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 116#endif
 117
 118#define TTY_PARANOIA_CHECK 1
 119#define CHECK_TTY_COUNT 1
 120
 121struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 122	.c_iflag = ICRNL | IXON,
 123	.c_oflag = OPOST | ONLCR,
 124	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 125	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 126		   ECHOCTL | ECHOKE | IEXTEN,
 127	.c_cc = INIT_C_CC,
 128	.c_ispeed = 38400,
 129	.c_ospeed = 38400,
 130	/* .c_line = N_TTY, */
 131};
 132
 133EXPORT_SYMBOL(tty_std_termios);
 134
 135/* This list gets poked at by procfs and various bits of boot up code. This
 136   could do with some rationalisation such as pulling the tty proc function
 137   into this file */
 138
 139LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 140
 141/* Mutex to protect creating and releasing a tty */
 142DEFINE_MUTEX(tty_mutex);
 143
 144static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 145static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 146ssize_t redirected_tty_write(struct file *, const char __user *,
 147							size_t, loff_t *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 149static int tty_open(struct inode *, struct file *);
 150long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 160
 161/**
 162 *	free_tty_struct		-	free a disused tty
 163 *	@tty: tty struct to free
 164 *
 165 *	Free the write buffers, tty queue and tty memory itself.
 166 *
 167 *	Locking: none. Must be called after tty is definitely unused
 168 */
 169
 170static void free_tty_struct(struct tty_struct *tty)
 171{
 172	tty_ldisc_deinit(tty);
 173	put_device(tty->dev);
 174	kfree(tty->write_buf);
 175	tty->magic = 0xDEADDEAD;
 176	kfree(tty);
 177}
 178
 179static inline struct tty_struct *file_tty(struct file *file)
 180{
 181	return ((struct tty_file_private *)file->private_data)->tty;
 182}
 183
 184int tty_alloc_file(struct file *file)
 185{
 186	struct tty_file_private *priv;
 187
 188	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 189	if (!priv)
 190		return -ENOMEM;
 191
 192	file->private_data = priv;
 193
 194	return 0;
 195}
 196
 197/* Associate a new file with the tty structure */
 198void tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv = file->private_data;
 201
 202	priv->tty = tty;
 203	priv->file = file;
 204
 205	spin_lock(&tty->files_lock);
 206	list_add(&priv->list, &tty->tty_files);
 207	spin_unlock(&tty->files_lock);
 208}
 209
 210/**
 211 * tty_free_file - free file->private_data
 212 *
 213 * This shall be used only for fail path handling when tty_add_file was not
 214 * called yet.
 215 */
 216void tty_free_file(struct file *file)
 217{
 218	struct tty_file_private *priv = file->private_data;
 219
 220	file->private_data = NULL;
 221	kfree(priv);
 222}
 223
 224/* Delete file from its tty */
 225static void tty_del_file(struct file *file)
 226{
 227	struct tty_file_private *priv = file->private_data;
 228	struct tty_struct *tty = priv->tty;
 229
 230	spin_lock(&tty->files_lock);
 231	list_del(&priv->list);
 232	spin_unlock(&tty->files_lock);
 233	tty_free_file(file);
 234}
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0, kopen_count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty_port_kopened(tty->port))
 297		kopen_count++;
 298	if (tty->count != (count + kopen_count)) {
 299		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 300			 routine, tty->count, count, kopen_count);
 301		return (count + kopen_count);
 302	}
 303#endif
 304	return 0;
 305}
 306
 307/**
 308 *	get_tty_driver		-	find device of a tty
 309 *	@dev_t: device identifier
 310 *	@index: returns the index of the tty
 311 *
 312 *	This routine returns a tty driver structure, given a device number
 313 *	and also passes back the index number.
 314 *
 315 *	Locking: caller must hold tty_mutex
 316 */
 317
 318static struct tty_driver *get_tty_driver(dev_t device, int *index)
 319{
 320	struct tty_driver *p;
 321
 322	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 323		dev_t base = MKDEV(p->major, p->minor_start);
 324		if (device < base || device >= base + p->num)
 325			continue;
 326		*index = device - base;
 327		return tty_driver_kref_get(p);
 328	}
 329	return NULL;
 330}
 331
 332/**
 333 *	tty_dev_name_to_number	-	return dev_t for device name
 334 *	@name: user space name of device under /dev
 335 *	@number: pointer to dev_t that this function will populate
 336 *
 337 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 338 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 339 *	the function returns -ENODEV.
 340 *
 341 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 342 *		being modified while we are traversing it, and makes sure to
 343 *		release it before exiting.
 344 */
 345int tty_dev_name_to_number(const char *name, dev_t *number)
 346{
 347	struct tty_driver *p;
 348	int ret;
 349	int index, prefix_length = 0;
 350	const char *str;
 351
 352	for (str = name; *str && !isdigit(*str); str++)
 353		;
 354
 355	if (!*str)
 356		return -EINVAL;
 357
 358	ret = kstrtoint(str, 10, &index);
 359	if (ret)
 360		return ret;
 361
 362	prefix_length = str - name;
 363	mutex_lock(&tty_mutex);
 364
 365	list_for_each_entry(p, &tty_drivers, tty_drivers)
 366		if (prefix_length == strlen(p->name) && strncmp(name,
 367					p->name, prefix_length) == 0) {
 368			if (index < p->num) {
 369				*number = MKDEV(p->major, p->minor_start + index);
 370				goto out;
 371			}
 372		}
 373
 374	/* if here then driver wasn't found */
 375	ret = -ENODEV;
 376out:
 377	mutex_unlock(&tty_mutex);
 378	return ret;
 379}
 380EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 381
 382#ifdef CONFIG_CONSOLE_POLL
 383
 384/**
 385 *	tty_find_polling_driver	-	find device of a polled tty
 386 *	@name: name string to match
 387 *	@line: pointer to resulting tty line nr
 388 *
 389 *	This routine returns a tty driver structure, given a name
 390 *	and the condition that the tty driver is capable of polled
 391 *	operation.
 392 */
 393struct tty_driver *tty_find_polling_driver(char *name, int *line)
 394{
 395	struct tty_driver *p, *res = NULL;
 396	int tty_line = 0;
 397	int len;
 398	char *str, *stp;
 399
 400	for (str = name; *str; str++)
 401		if ((*str >= '0' && *str <= '9') || *str == ',')
 402			break;
 403	if (!*str)
 404		return NULL;
 405
 406	len = str - name;
 407	tty_line = simple_strtoul(str, &str, 10);
 408
 409	mutex_lock(&tty_mutex);
 410	/* Search through the tty devices to look for a match */
 411	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 412		if (!len || strncmp(name, p->name, len) != 0)
 413			continue;
 414		stp = str;
 415		if (*stp == ',')
 416			stp++;
 417		if (*stp == '\0')
 418			stp = NULL;
 419
 420		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 421		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 422			res = tty_driver_kref_get(p);
 423			*line = tty_line;
 424			break;
 425		}
 426	}
 427	mutex_unlock(&tty_mutex);
 428
 429	return res;
 430}
 431EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 432#endif
 433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 435				size_t count, loff_t *ppos)
 436{
 437	return 0;
 438}
 439
 440static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 441				 size_t count, loff_t *ppos)
 442{
 443	return -EIO;
 444}
 445
 446/* No kernel lock held - none needed ;) */
 447static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 448{
 449	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 450}
 451
 452static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 453		unsigned long arg)
 454{
 455	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 456}
 457
 458static long hung_up_tty_compat_ioctl(struct file *file,
 459				     unsigned int cmd, unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static int hung_up_tty_fasync(int fd, struct file *file, int on)
 465{
 466	return -ENOTTY;
 467}
 468
 469static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 470{
 471	struct tty_struct *tty = file_tty(file);
 472
 473	if (tty && tty->ops && tty->ops->show_fdinfo)
 474		tty->ops->show_fdinfo(tty, m);
 475}
 476
 477static const struct file_operations tty_fops = {
 478	.llseek		= no_llseek,
 479	.read		= tty_read,
 480	.write		= tty_write,
 481	.poll		= tty_poll,
 482	.unlocked_ioctl	= tty_ioctl,
 483	.compat_ioctl	= tty_compat_ioctl,
 484	.open		= tty_open,
 485	.release	= tty_release,
 486	.fasync		= tty_fasync,
 487	.show_fdinfo	= tty_show_fdinfo,
 488};
 489
 490static const struct file_operations console_fops = {
 491	.llseek		= no_llseek,
 492	.read		= tty_read,
 493	.write		= redirected_tty_write,
 494	.poll		= tty_poll,
 495	.unlocked_ioctl	= tty_ioctl,
 496	.compat_ioctl	= tty_compat_ioctl,
 497	.open		= tty_open,
 498	.release	= tty_release,
 499	.fasync		= tty_fasync,
 500};
 501
 502static const struct file_operations hung_up_tty_fops = {
 503	.llseek		= no_llseek,
 504	.read		= hung_up_tty_read,
 505	.write		= hung_up_tty_write,
 506	.poll		= hung_up_tty_poll,
 507	.unlocked_ioctl	= hung_up_tty_ioctl,
 508	.compat_ioctl	= hung_up_tty_compat_ioctl,
 509	.release	= tty_release,
 510	.fasync		= hung_up_tty_fasync,
 511};
 512
 513static DEFINE_SPINLOCK(redirect_lock);
 514static struct file *redirect;
 515
 516extern void tty_sysctl_init(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517
 518/**
 519 *	tty_wakeup	-	request more data
 520 *	@tty: terminal
 521 *
 522 *	Internal and external helper for wakeups of tty. This function
 523 *	informs the line discipline if present that the driver is ready
 524 *	to receive more output data.
 525 */
 526
 527void tty_wakeup(struct tty_struct *tty)
 528{
 529	struct tty_ldisc *ld;
 530
 531	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 532		ld = tty_ldisc_ref(tty);
 533		if (ld) {
 534			if (ld->ops->write_wakeup)
 535				ld->ops->write_wakeup(tty);
 536			tty_ldisc_deref(ld);
 537		}
 538	}
 539	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 540}
 541
 542EXPORT_SYMBOL_GPL(tty_wakeup);
 543
 544/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545 *	__tty_hangup		-	actual handler for hangup events
 546 *	@work: tty device
 547 *
 548 *	This can be called by a "kworker" kernel thread.  That is process
 549 *	synchronous but doesn't hold any locks, so we need to make sure we
 550 *	have the appropriate locks for what we're doing.
 551 *
 552 *	The hangup event clears any pending redirections onto the hung up
 553 *	device. It ensures future writes will error and it does the needed
 554 *	line discipline hangup and signal delivery. The tty object itself
 555 *	remains intact.
 556 *
 557 *	Locking:
 558 *		BTM
 559 *		  redirect lock for undoing redirection
 560 *		  file list lock for manipulating list of ttys
 561 *		  tty_ldiscs_lock from called functions
 562 *		  termios_rwsem resetting termios data
 563 *		  tasklist_lock to walk task list for hangup event
 564 *		    ->siglock to protect ->signal/->sighand
 565 */
 566static void __tty_hangup(struct tty_struct *tty, int exit_session)
 567{
 568	struct file *cons_filp = NULL;
 569	struct file *filp, *f = NULL;
 570	struct tty_file_private *priv;
 571	int    closecount = 0, n;
 572	int refs;
 573
 574	if (!tty)
 575		return;
 576
 577
 578	spin_lock(&redirect_lock);
 579	if (redirect && file_tty(redirect) == tty) {
 580		f = redirect;
 581		redirect = NULL;
 582	}
 583	spin_unlock(&redirect_lock);
 584
 585	tty_lock(tty);
 586
 587	if (test_bit(TTY_HUPPED, &tty->flags)) {
 588		tty_unlock(tty);
 589		return;
 590	}
 591
 592	/*
 593	 * Some console devices aren't actually hung up for technical and
 594	 * historical reasons, which can lead to indefinite interruptible
 595	 * sleep in n_tty_read().  The following explicitly tells
 596	 * n_tty_read() to abort readers.
 597	 */
 598	set_bit(TTY_HUPPING, &tty->flags);
 599
 600	/* inuse_filps is protected by the single tty lock,
 601	   this really needs to change if we want to flush the
 602	   workqueue with the lock held */
 603	check_tty_count(tty, "tty_hangup");
 604
 605	spin_lock(&tty->files_lock);
 606	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 607	list_for_each_entry(priv, &tty->tty_files, list) {
 608		filp = priv->file;
 609		if (filp->f_op->write == redirected_tty_write)
 610			cons_filp = filp;
 611		if (filp->f_op->write != tty_write)
 612			continue;
 613		closecount++;
 614		__tty_fasync(-1, filp, 0);	/* can't block */
 615		filp->f_op = &hung_up_tty_fops;
 616	}
 617	spin_unlock(&tty->files_lock);
 618
 619	refs = tty_signal_session_leader(tty, exit_session);
 620	/* Account for the p->signal references we killed */
 621	while (refs--)
 622		tty_kref_put(tty);
 623
 624	tty_ldisc_hangup(tty, cons_filp != NULL);
 625
 626	spin_lock_irq(&tty->ctrl_lock);
 627	clear_bit(TTY_THROTTLED, &tty->flags);
 628	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 629	put_pid(tty->session);
 630	put_pid(tty->pgrp);
 631	tty->session = NULL;
 632	tty->pgrp = NULL;
 633	tty->ctrl_status = 0;
 634	spin_unlock_irq(&tty->ctrl_lock);
 635
 636	/*
 637	 * If one of the devices matches a console pointer, we
 638	 * cannot just call hangup() because that will cause
 639	 * tty->count and state->count to go out of sync.
 640	 * So we just call close() the right number of times.
 641	 */
 642	if (cons_filp) {
 643		if (tty->ops->close)
 644			for (n = 0; n < closecount; n++)
 645				tty->ops->close(tty, cons_filp);
 646	} else if (tty->ops->hangup)
 647		tty->ops->hangup(tty);
 648	/*
 649	 * We don't want to have driver/ldisc interactions beyond the ones
 650	 * we did here. The driver layer expects no calls after ->hangup()
 651	 * from the ldisc side, which is now guaranteed.
 652	 */
 653	set_bit(TTY_HUPPED, &tty->flags);
 654	clear_bit(TTY_HUPPING, &tty->flags);
 655	tty_unlock(tty);
 656
 657	if (f)
 658		fput(f);
 659}
 660
 661static void do_tty_hangup(struct work_struct *work)
 662{
 663	struct tty_struct *tty =
 664		container_of(work, struct tty_struct, hangup_work);
 665
 666	__tty_hangup(tty, 0);
 667}
 668
 669/**
 670 *	tty_hangup		-	trigger a hangup event
 671 *	@tty: tty to hangup
 672 *
 673 *	A carrier loss (virtual or otherwise) has occurred on this like
 674 *	schedule a hangup sequence to run after this event.
 675 */
 676
 677void tty_hangup(struct tty_struct *tty)
 678{
 679	tty_debug_hangup(tty, "hangup\n");
 680	schedule_work(&tty->hangup_work);
 681}
 682
 683EXPORT_SYMBOL(tty_hangup);
 684
 685/**
 686 *	tty_vhangup		-	process vhangup
 687 *	@tty: tty to hangup
 688 *
 689 *	The user has asked via system call for the terminal to be hung up.
 690 *	We do this synchronously so that when the syscall returns the process
 691 *	is complete. That guarantee is necessary for security reasons.
 692 */
 693
 694void tty_vhangup(struct tty_struct *tty)
 695{
 696	tty_debug_hangup(tty, "vhangup\n");
 697	__tty_hangup(tty, 0);
 698}
 699
 700EXPORT_SYMBOL(tty_vhangup);
 701
 702
 703/**
 704 *	tty_vhangup_self	-	process vhangup for own ctty
 705 *
 706 *	Perform a vhangup on the current controlling tty
 707 */
 708
 709void tty_vhangup_self(void)
 710{
 711	struct tty_struct *tty;
 712
 713	tty = get_current_tty();
 714	if (tty) {
 715		tty_vhangup(tty);
 716		tty_kref_put(tty);
 717	}
 718}
 719
 720/**
 721 *	tty_vhangup_session		-	hangup session leader exit
 722 *	@tty: tty to hangup
 723 *
 724 *	The session leader is exiting and hanging up its controlling terminal.
 725 *	Every process in the foreground process group is signalled SIGHUP.
 726 *
 727 *	We do this synchronously so that when the syscall returns the process
 728 *	is complete. That guarantee is necessary for security reasons.
 729 */
 730
 731void tty_vhangup_session(struct tty_struct *tty)
 732{
 733	tty_debug_hangup(tty, "session hangup\n");
 734	__tty_hangup(tty, 1);
 735}
 736
 737/**
 738 *	tty_hung_up_p		-	was tty hung up
 739 *	@filp: file pointer of tty
 740 *
 741 *	Return true if the tty has been subject to a vhangup or a carrier
 742 *	loss
 743 */
 744
 745int tty_hung_up_p(struct file *filp)
 746{
 747	return (filp && filp->f_op == &hung_up_tty_fops);
 748}
 749
 750EXPORT_SYMBOL(tty_hung_up_p);
 751
 752/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753 *	stop_tty	-	propagate flow control
 754 *	@tty: tty to stop
 755 *
 756 *	Perform flow control to the driver. May be called
 757 *	on an already stopped device and will not re-call the driver
 758 *	method.
 759 *
 760 *	This functionality is used by both the line disciplines for
 761 *	halting incoming flow and by the driver. It may therefore be
 762 *	called from any context, may be under the tty atomic_write_lock
 763 *	but not always.
 764 *
 765 *	Locking:
 766 *		flow_lock
 767 */
 768
 769void __stop_tty(struct tty_struct *tty)
 770{
 771	if (tty->stopped)
 772		return;
 773	tty->stopped = 1;
 774	if (tty->ops->stop)
 775		tty->ops->stop(tty);
 776}
 777
 778void stop_tty(struct tty_struct *tty)
 779{
 780	unsigned long flags;
 781
 782	spin_lock_irqsave(&tty->flow_lock, flags);
 783	__stop_tty(tty);
 784	spin_unlock_irqrestore(&tty->flow_lock, flags);
 785}
 786EXPORT_SYMBOL(stop_tty);
 787
 788/**
 789 *	start_tty	-	propagate flow control
 790 *	@tty: tty to start
 791 *
 792 *	Start a tty that has been stopped if at all possible. If this
 793 *	tty was previous stopped and is now being started, the driver
 794 *	start method is invoked and the line discipline woken.
 795 *
 796 *	Locking:
 797 *		flow_lock
 798 */
 799
 800void __start_tty(struct tty_struct *tty)
 801{
 802	if (!tty->stopped || tty->flow_stopped)
 803		return;
 804	tty->stopped = 0;
 805	if (tty->ops->start)
 806		tty->ops->start(tty);
 807	tty_wakeup(tty);
 808}
 809
 810void start_tty(struct tty_struct *tty)
 811{
 812	unsigned long flags;
 813
 814	spin_lock_irqsave(&tty->flow_lock, flags);
 815	__start_tty(tty);
 816	spin_unlock_irqrestore(&tty->flow_lock, flags);
 817}
 818EXPORT_SYMBOL(start_tty);
 819
 820static void tty_update_time(struct timespec64 *time)
 821{
 822	time64_t sec = ktime_get_real_seconds();
 823
 824	/*
 825	 * We only care if the two values differ in anything other than the
 826	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 827	 * the time of the tty device, otherwise it could be construded as a
 828	 * security leak to let userspace know the exact timing of the tty.
 829	 */
 830	if ((sec ^ time->tv_sec) & ~7)
 831		time->tv_sec = sec;
 832}
 833
 834/**
 835 *	tty_read	-	read method for tty device files
 836 *	@file: pointer to tty file
 837 *	@buf: user buffer
 838 *	@count: size of user buffer
 839 *	@ppos: unused
 840 *
 841 *	Perform the read system call function on this terminal device. Checks
 842 *	for hung up devices before calling the line discipline method.
 843 *
 844 *	Locking:
 845 *		Locks the line discipline internally while needed. Multiple
 846 *	read calls may be outstanding in parallel.
 847 */
 848
 849static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 850			loff_t *ppos)
 851{
 852	int i;
 853	struct inode *inode = file_inode(file);
 854	struct tty_struct *tty = file_tty(file);
 855	struct tty_ldisc *ld;
 856
 857	if (tty_paranoia_check(tty, inode, "tty_read"))
 858		return -EIO;
 859	if (!tty || tty_io_error(tty))
 860		return -EIO;
 861
 862	/* We want to wait for the line discipline to sort out in this
 863	   situation */
 864	ld = tty_ldisc_ref_wait(tty);
 865	if (!ld)
 866		return hung_up_tty_read(file, buf, count, ppos);
 867	if (ld->ops->read)
 868		i = ld->ops->read(tty, file, buf, count);
 869	else
 870		i = -EIO;
 871	tty_ldisc_deref(ld);
 872
 873	if (i > 0)
 874		tty_update_time(&inode->i_atime);
 875
 876	return i;
 877}
 878
 879static void tty_write_unlock(struct tty_struct *tty)
 880{
 881	mutex_unlock(&tty->atomic_write_lock);
 882	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 883}
 884
 885static int tty_write_lock(struct tty_struct *tty, int ndelay)
 886{
 887	if (!mutex_trylock(&tty->atomic_write_lock)) {
 888		if (ndelay)
 889			return -EAGAIN;
 890		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 891			return -ERESTARTSYS;
 892	}
 893	return 0;
 894}
 895
 896/*
 897 * Split writes up in sane blocksizes to avoid
 898 * denial-of-service type attacks
 899 */
 900static inline ssize_t do_tty_write(
 901	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 902	struct tty_struct *tty,
 903	struct file *file,
 904	const char __user *buf,
 905	size_t count)
 906{
 907	ssize_t ret, written = 0;
 908	unsigned int chunk;
 909
 910	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 911	if (ret < 0)
 912		return ret;
 913
 914	/*
 915	 * We chunk up writes into a temporary buffer. This
 916	 * simplifies low-level drivers immensely, since they
 917	 * don't have locking issues and user mode accesses.
 918	 *
 919	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 920	 * big chunk-size..
 921	 *
 922	 * The default chunk-size is 2kB, because the NTTY
 923	 * layer has problems with bigger chunks. It will
 924	 * claim to be able to handle more characters than
 925	 * it actually does.
 926	 *
 927	 * FIXME: This can probably go away now except that 64K chunks
 928	 * are too likely to fail unless switched to vmalloc...
 929	 */
 930	chunk = 2048;
 931	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 932		chunk = 65536;
 933	if (count < chunk)
 934		chunk = count;
 935
 936	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 937	if (tty->write_cnt < chunk) {
 938		unsigned char *buf_chunk;
 939
 940		if (chunk < 1024)
 941			chunk = 1024;
 942
 943		buf_chunk = kmalloc(chunk, GFP_KERNEL);
 944		if (!buf_chunk) {
 945			ret = -ENOMEM;
 946			goto out;
 947		}
 948		kfree(tty->write_buf);
 949		tty->write_cnt = chunk;
 950		tty->write_buf = buf_chunk;
 951	}
 952
 953	/* Do the write .. */
 954	for (;;) {
 955		size_t size = count;
 956		if (size > chunk)
 957			size = chunk;
 958		ret = -EFAULT;
 959		if (copy_from_user(tty->write_buf, buf, size))
 960			break;
 961		ret = write(tty, file, tty->write_buf, size);
 962		if (ret <= 0)
 963			break;
 964		written += ret;
 965		buf += ret;
 966		count -= ret;
 967		if (!count)
 968			break;
 969		ret = -ERESTARTSYS;
 970		if (signal_pending(current))
 971			break;
 972		cond_resched();
 973	}
 974	if (written) {
 975		tty_update_time(&file_inode(file)->i_mtime);
 976		ret = written;
 977	}
 978out:
 979	tty_write_unlock(tty);
 980	return ret;
 981}
 982
 983/**
 984 * tty_write_message - write a message to a certain tty, not just the console.
 985 * @tty: the destination tty_struct
 986 * @msg: the message to write
 987 *
 988 * This is used for messages that need to be redirected to a specific tty.
 989 * We don't put it into the syslog queue right now maybe in the future if
 990 * really needed.
 991 *
 992 * We must still hold the BTM and test the CLOSING flag for the moment.
 993 */
 994
 995void tty_write_message(struct tty_struct *tty, char *msg)
 996{
 997	if (tty) {
 998		mutex_lock(&tty->atomic_write_lock);
 999		tty_lock(tty);
1000		if (tty->ops->write && tty->count > 0)
1001			tty->ops->write(tty, msg, strlen(msg));
1002		tty_unlock(tty);
1003		tty_write_unlock(tty);
1004	}
1005	return;
1006}
1007
1008
1009/**
1010 *	tty_write		-	write method for tty device file
1011 *	@file: tty file pointer
1012 *	@buf: user data to write
1013 *	@count: bytes to write
1014 *	@ppos: unused
1015 *
1016 *	Write data to a tty device via the line discipline.
1017 *
1018 *	Locking:
1019 *		Locks the line discipline as required
1020 *		Writes to the tty driver are serialized by the atomic_write_lock
1021 *	and are then processed in chunks to the device. The line discipline
1022 *	write method will not be invoked in parallel for each device.
1023 */
1024
1025static ssize_t tty_write(struct file *file, const char __user *buf,
1026						size_t count, loff_t *ppos)
1027{
1028	struct tty_struct *tty = file_tty(file);
1029 	struct tty_ldisc *ld;
1030	ssize_t ret;
1031
1032	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1033		return -EIO;
1034	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1035			return -EIO;
1036	/* Short term debug to catch buggy drivers */
1037	if (tty->ops->write_room == NULL)
1038		tty_err(tty, "missing write_room method\n");
1039	ld = tty_ldisc_ref_wait(tty);
1040	if (!ld)
1041		return hung_up_tty_write(file, buf, count, ppos);
1042	if (!ld->ops->write)
1043		ret = -EIO;
1044	else
1045		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1046	tty_ldisc_deref(ld);
1047	return ret;
1048}
1049
1050ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1051						size_t count, loff_t *ppos)
1052{
1053	struct file *p = NULL;
1054
1055	spin_lock(&redirect_lock);
1056	if (redirect)
1057		p = get_file(redirect);
1058	spin_unlock(&redirect_lock);
1059
1060	if (p) {
1061		ssize_t res;
1062		res = vfs_write(p, buf, count, &p->f_pos);
1063		fput(p);
1064		return res;
1065	}
1066	return tty_write(file, buf, count, ppos);
1067}
1068
1069/**
1070 *	tty_send_xchar	-	send priority character
1071 *
1072 *	Send a high priority character to the tty even if stopped
1073 *
1074 *	Locking: none for xchar method, write ordering for write method.
1075 */
1076
1077int tty_send_xchar(struct tty_struct *tty, char ch)
1078{
1079	int	was_stopped = tty->stopped;
1080
1081	if (tty->ops->send_xchar) {
1082		down_read(&tty->termios_rwsem);
1083		tty->ops->send_xchar(tty, ch);
1084		up_read(&tty->termios_rwsem);
1085		return 0;
1086	}
1087
1088	if (tty_write_lock(tty, 0) < 0)
1089		return -ERESTARTSYS;
1090
1091	down_read(&tty->termios_rwsem);
1092	if (was_stopped)
1093		start_tty(tty);
1094	tty->ops->write(tty, &ch, 1);
1095	if (was_stopped)
1096		stop_tty(tty);
1097	up_read(&tty->termios_rwsem);
1098	tty_write_unlock(tty);
1099	return 0;
1100}
1101
1102static char ptychar[] = "pqrstuvwxyzabcde";
1103
1104/**
1105 *	pty_line_name	-	generate name for a pty
1106 *	@driver: the tty driver in use
1107 *	@index: the minor number
1108 *	@p: output buffer of at least 6 bytes
1109 *
1110 *	Generate a name from a driver reference and write it to the output
1111 *	buffer.
1112 *
1113 *	Locking: None
1114 */
1115static void pty_line_name(struct tty_driver *driver, int index, char *p)
1116{
1117	int i = index + driver->name_base;
1118	/* ->name is initialized to "ttyp", but "tty" is expected */
1119	sprintf(p, "%s%c%x",
1120		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1121		ptychar[i >> 4 & 0xf], i & 0xf);
1122}
1123
1124/**
1125 *	tty_line_name	-	generate name for a tty
1126 *	@driver: the tty driver in use
1127 *	@index: the minor number
1128 *	@p: output buffer of at least 7 bytes
1129 *
1130 *	Generate a name from a driver reference and write it to the output
1131 *	buffer.
1132 *
1133 *	Locking: None
1134 */
1135static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1136{
1137	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1138		return sprintf(p, "%s", driver->name);
1139	else
1140		return sprintf(p, "%s%d", driver->name,
1141			       index + driver->name_base);
1142}
1143
1144/**
1145 *	tty_driver_lookup_tty() - find an existing tty, if any
1146 *	@driver: the driver for the tty
1147 *	@idx:	 the minor number
1148 *
1149 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1150 *	driver lookup() method returns an error.
1151 *
1152 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1153 */
1154static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1155		struct file *file, int idx)
1156{
1157	struct tty_struct *tty;
1158
1159	if (driver->ops->lookup)
1160		if (!file)
1161			tty = ERR_PTR(-EIO);
1162		else
1163			tty = driver->ops->lookup(driver, file, idx);
1164	else
1165		tty = driver->ttys[idx];
1166
1167	if (!IS_ERR(tty))
1168		tty_kref_get(tty);
1169	return tty;
1170}
1171
1172/**
1173 *	tty_init_termios	-  helper for termios setup
1174 *	@tty: the tty to set up
1175 *
1176 *	Initialise the termios structure for this tty. This runs under
1177 *	the tty_mutex currently so we can be relaxed about ordering.
1178 */
1179
1180void tty_init_termios(struct tty_struct *tty)
1181{
1182	struct ktermios *tp;
1183	int idx = tty->index;
1184
1185	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1186		tty->termios = tty->driver->init_termios;
1187	else {
1188		/* Check for lazy saved data */
1189		tp = tty->driver->termios[idx];
1190		if (tp != NULL) {
1191			tty->termios = *tp;
1192			tty->termios.c_line  = tty->driver->init_termios.c_line;
1193		} else
1194			tty->termios = tty->driver->init_termios;
1195	}
1196	/* Compatibility until drivers always set this */
1197	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1198	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1199}
1200EXPORT_SYMBOL_GPL(tty_init_termios);
1201
1202int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1203{
1204	tty_init_termios(tty);
1205	tty_driver_kref_get(driver);
1206	tty->count++;
1207	driver->ttys[tty->index] = tty;
1208	return 0;
1209}
1210EXPORT_SYMBOL_GPL(tty_standard_install);
1211
1212/**
1213 *	tty_driver_install_tty() - install a tty entry in the driver
1214 *	@driver: the driver for the tty
1215 *	@tty: the tty
1216 *
1217 *	Install a tty object into the driver tables. The tty->index field
1218 *	will be set by the time this is called. This method is responsible
1219 *	for ensuring any need additional structures are allocated and
1220 *	configured.
1221 *
1222 *	Locking: tty_mutex for now
1223 */
1224static int tty_driver_install_tty(struct tty_driver *driver,
1225						struct tty_struct *tty)
1226{
1227	return driver->ops->install ? driver->ops->install(driver, tty) :
1228		tty_standard_install(driver, tty);
1229}
1230
1231/**
1232 *	tty_driver_remove_tty() - remove a tty from the driver tables
1233 *	@driver: the driver for the tty
1234 *	@idx:	 the minor number
1235 *
1236 *	Remvoe a tty object from the driver tables. The tty->index field
1237 *	will be set by the time this is called.
1238 *
1239 *	Locking: tty_mutex for now
1240 */
1241static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1242{
1243	if (driver->ops->remove)
1244		driver->ops->remove(driver, tty);
1245	else
1246		driver->ttys[tty->index] = NULL;
1247}
1248
1249/*
1250 * 	tty_reopen()	- fast re-open of an open tty
1251 * 	@tty	- the tty to open
1252 *
1253 *	Return 0 on success, -errno on error.
1254 *	Re-opens on master ptys are not allowed and return -EIO.
1255 *
1256 *	Locking: Caller must hold tty_lock
1257 */
1258static int tty_reopen(struct tty_struct *tty)
1259{
1260	struct tty_driver *driver = tty->driver;
1261	struct tty_ldisc *ld;
1262	int retval = 0;
1263
1264	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1265	    driver->subtype == PTY_TYPE_MASTER)
1266		return -EIO;
1267
1268	if (!tty->count)
1269		return -EAGAIN;
1270
1271	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1272		return -EBUSY;
1273
1274	ld = tty_ldisc_ref_wait(tty);
1275	if (ld) {
1276		tty_ldisc_deref(ld);
1277	} else {
1278		retval = tty_ldisc_lock(tty, 5 * HZ);
1279		if (retval)
1280			return retval;
1281
1282		if (!tty->ldisc)
1283			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1284		tty_ldisc_unlock(tty);
1285	}
1286
1287	if (retval == 0)
1288		tty->count++;
1289
1290	return retval;
1291}
1292
1293/**
1294 *	tty_init_dev		-	initialise a tty device
1295 *	@driver: tty driver we are opening a device on
1296 *	@idx: device index
1297 *	@ret_tty: returned tty structure
1298 *
1299 *	Prepare a tty device. This may not be a "new" clean device but
1300 *	could also be an active device. The pty drivers require special
1301 *	handling because of this.
1302 *
1303 *	Locking:
1304 *		The function is called under the tty_mutex, which
1305 *	protects us from the tty struct or driver itself going away.
1306 *
1307 *	On exit the tty device has the line discipline attached and
1308 *	a reference count of 1. If a pair was created for pty/tty use
1309 *	and the other was a pty master then it too has a reference count of 1.
1310 *
1311 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1312 * failed open.  The new code protects the open with a mutex, so it's
1313 * really quite straightforward.  The mutex locking can probably be
1314 * relaxed for the (most common) case of reopening a tty.
1315 */
1316
1317struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1318{
1319	struct tty_struct *tty;
1320	int retval;
1321
1322	/*
1323	 * First time open is complex, especially for PTY devices.
1324	 * This code guarantees that either everything succeeds and the
1325	 * TTY is ready for operation, or else the table slots are vacated
1326	 * and the allocated memory released.  (Except that the termios
1327	 * may be retained.)
1328	 */
1329
1330	if (!try_module_get(driver->owner))
1331		return ERR_PTR(-ENODEV);
1332
1333	tty = alloc_tty_struct(driver, idx);
1334	if (!tty) {
1335		retval = -ENOMEM;
1336		goto err_module_put;
1337	}
1338
1339	tty_lock(tty);
1340	retval = tty_driver_install_tty(driver, tty);
1341	if (retval < 0)
1342		goto err_free_tty;
1343
1344	if (!tty->port)
1345		tty->port = driver->ports[idx];
1346
1347	WARN_RATELIMIT(!tty->port,
1348			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1349			__func__, tty->driver->name);
1350
1351	retval = tty_ldisc_lock(tty, 5 * HZ);
1352	if (retval)
1353		goto err_release_lock;
1354	tty->port->itty = tty;
1355
1356	/*
1357	 * Structures all installed ... call the ldisc open routines.
1358	 * If we fail here just call release_tty to clean up.  No need
1359	 * to decrement the use counts, as release_tty doesn't care.
1360	 */
1361	retval = tty_ldisc_setup(tty, tty->link);
1362	if (retval)
1363		goto err_release_tty;
1364	tty_ldisc_unlock(tty);
1365	/* Return the tty locked so that it cannot vanish under the caller */
1366	return tty;
1367
1368err_free_tty:
1369	tty_unlock(tty);
1370	free_tty_struct(tty);
1371err_module_put:
1372	module_put(driver->owner);
1373	return ERR_PTR(retval);
1374
1375	/* call the tty release_tty routine to clean out this slot */
1376err_release_tty:
1377	tty_ldisc_unlock(tty);
1378	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1379			     retval, idx);
1380err_release_lock:
1381	tty_unlock(tty);
1382	release_tty(tty, idx);
1383	return ERR_PTR(retval);
1384}
1385
1386/**
1387 * tty_save_termios() - save tty termios data in driver table
1388 * @tty: tty whose termios data to save
1389 *
1390 * Locking: Caller guarantees serialisation with tty_init_termios().
1391 */
1392void tty_save_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	/* If the port is going to reset then it has no termios to save */
1398	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1399		return;
1400
1401	/* Stash the termios data */
1402	tp = tty->driver->termios[idx];
1403	if (tp == NULL) {
1404		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1405		if (tp == NULL)
1406			return;
1407		tty->driver->termios[idx] = tp;
1408	}
1409	*tp = tty->termios;
1410}
1411EXPORT_SYMBOL_GPL(tty_save_termios);
1412
1413/**
1414 *	tty_flush_works		-	flush all works of a tty/pty pair
1415 *	@tty: tty device to flush works for (or either end of a pty pair)
1416 *
1417 *	Sync flush all works belonging to @tty (and the 'other' tty).
1418 */
1419static void tty_flush_works(struct tty_struct *tty)
1420{
1421	flush_work(&tty->SAK_work);
1422	flush_work(&tty->hangup_work);
1423	if (tty->link) {
1424		flush_work(&tty->link->SAK_work);
1425		flush_work(&tty->link->hangup_work);
1426	}
1427}
1428
1429/**
1430 *	release_one_tty		-	release tty structure memory
1431 *	@kref: kref of tty we are obliterating
1432 *
1433 *	Releases memory associated with a tty structure, and clears out the
1434 *	driver table slots. This function is called when a device is no longer
1435 *	in use. It also gets called when setup of a device fails.
1436 *
1437 *	Locking:
1438 *		takes the file list lock internally when working on the list
1439 *	of ttys that the driver keeps.
1440 *
1441 *	This method gets called from a work queue so that the driver private
1442 *	cleanup ops can sleep (needed for USB at least)
1443 */
1444static void release_one_tty(struct work_struct *work)
1445{
1446	struct tty_struct *tty =
1447		container_of(work, struct tty_struct, hangup_work);
1448	struct tty_driver *driver = tty->driver;
1449	struct module *owner = driver->owner;
1450
1451	if (tty->ops->cleanup)
1452		tty->ops->cleanup(tty);
1453
1454	tty->magic = 0;
1455	tty_driver_kref_put(driver);
1456	module_put(owner);
1457
1458	spin_lock(&tty->files_lock);
1459	list_del_init(&tty->tty_files);
1460	spin_unlock(&tty->files_lock);
1461
1462	put_pid(tty->pgrp);
1463	put_pid(tty->session);
1464	free_tty_struct(tty);
1465}
1466
1467static void queue_release_one_tty(struct kref *kref)
1468{
1469	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1470
1471	/* The hangup queue is now free so we can reuse it rather than
1472	   waste a chunk of memory for each port */
1473	INIT_WORK(&tty->hangup_work, release_one_tty);
1474	schedule_work(&tty->hangup_work);
1475}
1476
1477/**
1478 *	tty_kref_put		-	release a tty kref
1479 *	@tty: tty device
1480 *
1481 *	Release a reference to a tty device and if need be let the kref
1482 *	layer destruct the object for us
1483 */
1484
1485void tty_kref_put(struct tty_struct *tty)
1486{
1487	if (tty)
1488		kref_put(&tty->kref, queue_release_one_tty);
1489}
1490EXPORT_SYMBOL(tty_kref_put);
1491
1492/**
1493 *	release_tty		-	release tty structure memory
1494 *
1495 *	Release both @tty and a possible linked partner (think pty pair),
1496 *	and decrement the refcount of the backing module.
1497 *
1498 *	Locking:
1499 *		tty_mutex
1500 *		takes the file list lock internally when working on the list
1501 *	of ttys that the driver keeps.
1502 *
1503 */
1504static void release_tty(struct tty_struct *tty, int idx)
1505{
1506	/* This should always be true but check for the moment */
1507	WARN_ON(tty->index != idx);
1508	WARN_ON(!mutex_is_locked(&tty_mutex));
1509	if (tty->ops->shutdown)
1510		tty->ops->shutdown(tty);
1511	tty_save_termios(tty);
1512	tty_driver_remove_tty(tty->driver, tty);
1513	tty->port->itty = NULL;
1514	if (tty->link)
1515		tty->link->port->itty = NULL;
1516	tty_buffer_cancel_work(tty->port);
1517	if (tty->link)
1518		tty_buffer_cancel_work(tty->link->port);
1519
1520	tty_kref_put(tty->link);
1521	tty_kref_put(tty);
1522}
1523
1524/**
1525 *	tty_release_checks - check a tty before real release
1526 *	@tty: tty to check
1527 *	@o_tty: link of @tty (if any)
1528 *	@idx: index of the tty
1529 *
1530 *	Performs some paranoid checking before true release of the @tty.
1531 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1532 */
1533static int tty_release_checks(struct tty_struct *tty, int idx)
1534{
1535#ifdef TTY_PARANOIA_CHECK
1536	if (idx < 0 || idx >= tty->driver->num) {
1537		tty_debug(tty, "bad idx %d\n", idx);
1538		return -1;
1539	}
1540
1541	/* not much to check for devpts */
1542	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1543		return 0;
1544
1545	if (tty != tty->driver->ttys[idx]) {
1546		tty_debug(tty, "bad driver table[%d] = %p\n",
1547			  idx, tty->driver->ttys[idx]);
1548		return -1;
1549	}
1550	if (tty->driver->other) {
1551		struct tty_struct *o_tty = tty->link;
1552
1553		if (o_tty != tty->driver->other->ttys[idx]) {
1554			tty_debug(tty, "bad other table[%d] = %p\n",
1555				  idx, tty->driver->other->ttys[idx]);
1556			return -1;
1557		}
1558		if (o_tty->link != tty) {
1559			tty_debug(tty, "bad link = %p\n", o_tty->link);
1560			return -1;
1561		}
1562	}
1563#endif
1564	return 0;
1565}
1566
1567/**
1568 *      tty_kclose      -       closes tty opened by tty_kopen
1569 *      @tty: tty device
1570 *
1571 *      Performs the final steps to release and free a tty device. It is the
1572 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1573 *      flag on tty->port.
1574 */
1575void tty_kclose(struct tty_struct *tty)
1576{
1577	/*
1578	 * Ask the line discipline code to release its structures
1579	 */
1580	tty_ldisc_release(tty);
1581
1582	/* Wait for pending work before tty destruction commmences */
1583	tty_flush_works(tty);
1584
1585	tty_debug_hangup(tty, "freeing structure\n");
1586	/*
1587	 * The release_tty function takes care of the details of clearing
1588	 * the slots and preserving the termios structure. The tty_unlock_pair
1589	 * should be safe as we keep a kref while the tty is locked (so the
1590	 * unlock never unlocks a freed tty).
1591	 */
1592	mutex_lock(&tty_mutex);
1593	tty_port_set_kopened(tty->port, 0);
1594	release_tty(tty, tty->index);
1595	mutex_unlock(&tty_mutex);
1596}
1597EXPORT_SYMBOL_GPL(tty_kclose);
1598
1599/**
1600 *	tty_release_struct	-	release a tty struct
1601 *	@tty: tty device
1602 *	@idx: index of the tty
1603 *
1604 *	Performs the final steps to release and free a tty device. It is
1605 *	roughly the reverse of tty_init_dev.
1606 */
1607void tty_release_struct(struct tty_struct *tty, int idx)
1608{
1609	/*
1610	 * Ask the line discipline code to release its structures
1611	 */
1612	tty_ldisc_release(tty);
1613
1614	/* Wait for pending work before tty destruction commmences */
1615	tty_flush_works(tty);
1616
1617	tty_debug_hangup(tty, "freeing structure\n");
1618	/*
1619	 * The release_tty function takes care of the details of clearing
1620	 * the slots and preserving the termios structure. The tty_unlock_pair
1621	 * should be safe as we keep a kref while the tty is locked (so the
1622	 * unlock never unlocks a freed tty).
1623	 */
1624	mutex_lock(&tty_mutex);
1625	release_tty(tty, idx);
1626	mutex_unlock(&tty_mutex);
1627}
1628EXPORT_SYMBOL_GPL(tty_release_struct);
1629
1630/**
1631 *	tty_release		-	vfs callback for close
1632 *	@inode: inode of tty
1633 *	@filp: file pointer for handle to tty
1634 *
1635 *	Called the last time each file handle is closed that references
1636 *	this tty. There may however be several such references.
1637 *
1638 *	Locking:
1639 *		Takes bkl. See tty_release_dev
1640 *
1641 * Even releasing the tty structures is a tricky business.. We have
1642 * to be very careful that the structures are all released at the
1643 * same time, as interrupts might otherwise get the wrong pointers.
1644 *
1645 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1646 * lead to double frees or releasing memory still in use.
1647 */
1648
1649int tty_release(struct inode *inode, struct file *filp)
1650{
1651	struct tty_struct *tty = file_tty(filp);
1652	struct tty_struct *o_tty = NULL;
1653	int	do_sleep, final;
1654	int	idx;
1655	long	timeout = 0;
1656	int	once = 1;
1657
1658	if (tty_paranoia_check(tty, inode, __func__))
1659		return 0;
1660
1661	tty_lock(tty);
1662	check_tty_count(tty, __func__);
1663
1664	__tty_fasync(-1, filp, 0);
1665
1666	idx = tty->index;
1667	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1668	    tty->driver->subtype == PTY_TYPE_MASTER)
1669		o_tty = tty->link;
1670
1671	if (tty_release_checks(tty, idx)) {
1672		tty_unlock(tty);
1673		return 0;
1674	}
1675
1676	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1677
1678	if (tty->ops->close)
1679		tty->ops->close(tty, filp);
1680
1681	/* If tty is pty master, lock the slave pty (stable lock order) */
1682	tty_lock_slave(o_tty);
1683
1684	/*
1685	 * Sanity check: if tty->count is going to zero, there shouldn't be
1686	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1687	 * wait queues and kick everyone out _before_ actually starting to
1688	 * close.  This ensures that we won't block while releasing the tty
1689	 * structure.
1690	 *
1691	 * The test for the o_tty closing is necessary, since the master and
1692	 * slave sides may close in any order.  If the slave side closes out
1693	 * first, its count will be one, since the master side holds an open.
1694	 * Thus this test wouldn't be triggered at the time the slave closed,
1695	 * so we do it now.
1696	 */
1697	while (1) {
1698		do_sleep = 0;
1699
1700		if (tty->count <= 1) {
1701			if (waitqueue_active(&tty->read_wait)) {
1702				wake_up_poll(&tty->read_wait, EPOLLIN);
1703				do_sleep++;
1704			}
1705			if (waitqueue_active(&tty->write_wait)) {
1706				wake_up_poll(&tty->write_wait, EPOLLOUT);
1707				do_sleep++;
1708			}
1709		}
1710		if (o_tty && o_tty->count <= 1) {
1711			if (waitqueue_active(&o_tty->read_wait)) {
1712				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1713				do_sleep++;
1714			}
1715			if (waitqueue_active(&o_tty->write_wait)) {
1716				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1717				do_sleep++;
1718			}
1719		}
1720		if (!do_sleep)
1721			break;
1722
1723		if (once) {
1724			once = 0;
1725			tty_warn(tty, "read/write wait queue active!\n");
1726		}
1727		schedule_timeout_killable(timeout);
1728		if (timeout < 120 * HZ)
1729			timeout = 2 * timeout + 1;
1730		else
1731			timeout = MAX_SCHEDULE_TIMEOUT;
1732	}
1733
1734	if (o_tty) {
1735		if (--o_tty->count < 0) {
1736			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1737			o_tty->count = 0;
1738		}
1739	}
1740	if (--tty->count < 0) {
1741		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1742		tty->count = 0;
1743	}
1744
1745	/*
1746	 * We've decremented tty->count, so we need to remove this file
1747	 * descriptor off the tty->tty_files list; this serves two
1748	 * purposes:
1749	 *  - check_tty_count sees the correct number of file descriptors
1750	 *    associated with this tty.
1751	 *  - do_tty_hangup no longer sees this file descriptor as
1752	 *    something that needs to be handled for hangups.
1753	 */
1754	tty_del_file(filp);
1755
1756	/*
1757	 * Perform some housekeeping before deciding whether to return.
1758	 *
1759	 * If _either_ side is closing, make sure there aren't any
1760	 * processes that still think tty or o_tty is their controlling
1761	 * tty.
1762	 */
1763	if (!tty->count) {
1764		read_lock(&tasklist_lock);
1765		session_clear_tty(tty->session);
1766		if (o_tty)
1767			session_clear_tty(o_tty->session);
1768		read_unlock(&tasklist_lock);
1769	}
1770
1771	/* check whether both sides are closing ... */
1772	final = !tty->count && !(o_tty && o_tty->count);
1773
1774	tty_unlock_slave(o_tty);
1775	tty_unlock(tty);
1776
1777	/* At this point, the tty->count == 0 should ensure a dead tty
1778	   cannot be re-opened by a racing opener */
1779
1780	if (!final)
1781		return 0;
1782
1783	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784
1785	tty_release_struct(tty, idx);
1786	return 0;
1787}
1788
1789/**
1790 *	tty_open_current_tty - get locked tty of current task
1791 *	@device: device number
1792 *	@filp: file pointer to tty
1793 *	@return: locked tty of the current task iff @device is /dev/tty
1794 *
1795 *	Performs a re-open of the current task's controlling tty.
1796 *
1797 *	We cannot return driver and index like for the other nodes because
1798 *	devpts will not work then. It expects inodes to be from devpts FS.
1799 */
1800static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1801{
1802	struct tty_struct *tty;
1803	int retval;
1804
1805	if (device != MKDEV(TTYAUX_MAJOR, 0))
1806		return NULL;
1807
1808	tty = get_current_tty();
1809	if (!tty)
1810		return ERR_PTR(-ENXIO);
1811
1812	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1813	/* noctty = 1; */
1814	tty_lock(tty);
1815	tty_kref_put(tty);	/* safe to drop the kref now */
1816
1817	retval = tty_reopen(tty);
1818	if (retval < 0) {
1819		tty_unlock(tty);
1820		tty = ERR_PTR(retval);
1821	}
1822	return tty;
1823}
1824
1825/**
1826 *	tty_lookup_driver - lookup a tty driver for a given device file
1827 *	@device: device number
1828 *	@filp: file pointer to tty
1829 *	@index: index for the device in the @return driver
1830 *	@return: driver for this inode (with increased refcount)
1831 *
1832 * 	If @return is not erroneous, the caller is responsible to decrement the
1833 * 	refcount by tty_driver_kref_put.
1834 *
1835 *	Locking: tty_mutex protects get_tty_driver
1836 */
1837static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1838		int *index)
1839{
1840	struct tty_driver *driver = NULL;
1841
1842	switch (device) {
1843#ifdef CONFIG_VT
1844	case MKDEV(TTY_MAJOR, 0): {
1845		extern struct tty_driver *console_driver;
1846		driver = tty_driver_kref_get(console_driver);
1847		*index = fg_console;
1848		break;
1849	}
1850#endif
1851	case MKDEV(TTYAUX_MAJOR, 1): {
1852		struct tty_driver *console_driver = console_device(index);
1853		if (console_driver) {
1854			driver = tty_driver_kref_get(console_driver);
1855			if (driver && filp) {
1856				/* Don't let /dev/console block */
1857				filp->f_flags |= O_NONBLOCK;
1858				break;
1859			}
1860		}
1861		if (driver)
1862			tty_driver_kref_put(driver);
1863		return ERR_PTR(-ENODEV);
1864	}
1865	default:
1866		driver = get_tty_driver(device, index);
1867		if (!driver)
1868			return ERR_PTR(-ENODEV);
1869		break;
1870	}
1871	return driver;
1872}
1873
1874/**
1875 *	tty_kopen	-	open a tty device for kernel
1876 *	@device: dev_t of device to open
1877 *
1878 *	Opens tty exclusively for kernel. Performs the driver lookup,
1879 *	makes sure it's not already opened and performs the first-time
1880 *	tty initialization.
1881 *
1882 *	Returns the locked initialized &tty_struct
1883 *
1884 *	Claims the global tty_mutex to serialize:
1885 *	  - concurrent first-time tty initialization
1886 *	  - concurrent tty driver removal w/ lookup
1887 *	  - concurrent tty removal from driver table
1888 */
1889struct tty_struct *tty_kopen(dev_t device)
1890{
1891	struct tty_struct *tty;
1892	struct tty_driver *driver = NULL;
1893	int index = -1;
1894
1895	mutex_lock(&tty_mutex);
1896	driver = tty_lookup_driver(device, NULL, &index);
1897	if (IS_ERR(driver)) {
1898		mutex_unlock(&tty_mutex);
1899		return ERR_CAST(driver);
1900	}
1901
1902	/* check whether we're reopening an existing tty */
1903	tty = tty_driver_lookup_tty(driver, NULL, index);
1904	if (IS_ERR(tty))
1905		goto out;
1906
1907	if (tty) {
1908		/* drop kref from tty_driver_lookup_tty() */
1909		tty_kref_put(tty);
1910		tty = ERR_PTR(-EBUSY);
1911	} else { /* tty_init_dev returns tty with the tty_lock held */
1912		tty = tty_init_dev(driver, index);
1913		if (IS_ERR(tty))
1914			goto out;
1915		tty_port_set_kopened(tty->port, 1);
1916	}
1917out:
1918	mutex_unlock(&tty_mutex);
1919	tty_driver_kref_put(driver);
1920	return tty;
1921}
1922EXPORT_SYMBOL_GPL(tty_kopen);
1923
1924/**
1925 *	tty_open_by_driver	-	open a tty device
1926 *	@device: dev_t of device to open
1927 *	@inode: inode of device file
1928 *	@filp: file pointer to tty
1929 *
1930 *	Performs the driver lookup, checks for a reopen, or otherwise
1931 *	performs the first-time tty initialization.
1932 *
1933 *	Returns the locked initialized or re-opened &tty_struct
1934 *
1935 *	Claims the global tty_mutex to serialize:
1936 *	  - concurrent first-time tty initialization
1937 *	  - concurrent tty driver removal w/ lookup
1938 *	  - concurrent tty removal from driver table
1939 */
1940static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1941					     struct file *filp)
1942{
1943	struct tty_struct *tty;
1944	struct tty_driver *driver = NULL;
1945	int index = -1;
1946	int retval;
1947
1948	mutex_lock(&tty_mutex);
1949	driver = tty_lookup_driver(device, filp, &index);
1950	if (IS_ERR(driver)) {
1951		mutex_unlock(&tty_mutex);
1952		return ERR_CAST(driver);
1953	}
1954
1955	/* check whether we're reopening an existing tty */
1956	tty = tty_driver_lookup_tty(driver, filp, index);
1957	if (IS_ERR(tty)) {
1958		mutex_unlock(&tty_mutex);
1959		goto out;
1960	}
1961
1962	if (tty) {
1963		if (tty_port_kopened(tty->port)) {
1964			tty_kref_put(tty);
1965			mutex_unlock(&tty_mutex);
1966			tty = ERR_PTR(-EBUSY);
1967			goto out;
1968		}
1969		mutex_unlock(&tty_mutex);
1970		retval = tty_lock_interruptible(tty);
1971		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1972		if (retval) {
1973			if (retval == -EINTR)
1974				retval = -ERESTARTSYS;
1975			tty = ERR_PTR(retval);
1976			goto out;
1977		}
1978		retval = tty_reopen(tty);
1979		if (retval < 0) {
1980			tty_unlock(tty);
1981			tty = ERR_PTR(retval);
1982		}
1983	} else { /* Returns with the tty_lock held for now */
1984		tty = tty_init_dev(driver, index);
1985		mutex_unlock(&tty_mutex);
1986	}
1987out:
1988	tty_driver_kref_put(driver);
1989	return tty;
1990}
1991
1992/**
1993 *	tty_open		-	open a tty device
1994 *	@inode: inode of device file
1995 *	@filp: file pointer to tty
1996 *
1997 *	tty_open and tty_release keep up the tty count that contains the
1998 *	number of opens done on a tty. We cannot use the inode-count, as
1999 *	different inodes might point to the same tty.
2000 *
2001 *	Open-counting is needed for pty masters, as well as for keeping
2002 *	track of serial lines: DTR is dropped when the last close happens.
2003 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2004 *
2005 *	The termios state of a pty is reset on first open so that
2006 *	settings don't persist across reuse.
2007 *
2008 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2009 *		 tty->count should protect the rest.
2010 *		 ->siglock protects ->signal/->sighand
2011 *
2012 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2013 *	tty_mutex
2014 */
2015
2016static int tty_open(struct inode *inode, struct file *filp)
2017{
2018	struct tty_struct *tty;
2019	int noctty, retval;
2020	dev_t device = inode->i_rdev;
2021	unsigned saved_flags = filp->f_flags;
2022
2023	nonseekable_open(inode, filp);
2024
2025retry_open:
2026	retval = tty_alloc_file(filp);
2027	if (retval)
2028		return -ENOMEM;
2029
2030	tty = tty_open_current_tty(device, filp);
2031	if (!tty)
2032		tty = tty_open_by_driver(device, inode, filp);
2033
2034	if (IS_ERR(tty)) {
2035		tty_free_file(filp);
2036		retval = PTR_ERR(tty);
2037		if (retval != -EAGAIN || signal_pending(current))
2038			return retval;
2039		schedule();
2040		goto retry_open;
2041	}
2042
2043	tty_add_file(tty, filp);
2044
2045	check_tty_count(tty, __func__);
2046	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2047
2048	if (tty->ops->open)
2049		retval = tty->ops->open(tty, filp);
2050	else
2051		retval = -ENODEV;
2052	filp->f_flags = saved_flags;
2053
2054	if (retval) {
2055		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2056
2057		tty_unlock(tty); /* need to call tty_release without BTM */
2058		tty_release(inode, filp);
2059		if (retval != -ERESTARTSYS)
2060			return retval;
2061
2062		if (signal_pending(current))
2063			return retval;
2064
2065		schedule();
2066		/*
2067		 * Need to reset f_op in case a hangup happened.
2068		 */
2069		if (tty_hung_up_p(filp))
2070			filp->f_op = &tty_fops;
2071		goto retry_open;
2072	}
2073	clear_bit(TTY_HUPPED, &tty->flags);
2074
 
 
 
2075	noctty = (filp->f_flags & O_NOCTTY) ||
2076		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2077		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2078		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2079		  tty->driver->subtype == PTY_TYPE_MASTER);
2080	if (!noctty)
2081		tty_open_proc_set_tty(filp, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082	tty_unlock(tty);
2083	return 0;
2084}
2085
2086
2087
2088/**
2089 *	tty_poll	-	check tty status
2090 *	@filp: file being polled
2091 *	@wait: poll wait structures to update
2092 *
2093 *	Call the line discipline polling method to obtain the poll
2094 *	status of the device.
2095 *
2096 *	Locking: locks called line discipline but ldisc poll method
2097 *	may be re-entered freely by other callers.
2098 */
2099
2100static __poll_t tty_poll(struct file *filp, poll_table *wait)
2101{
2102	struct tty_struct *tty = file_tty(filp);
2103	struct tty_ldisc *ld;
2104	__poll_t ret = 0;
2105
2106	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2107		return 0;
2108
2109	ld = tty_ldisc_ref_wait(tty);
2110	if (!ld)
2111		return hung_up_tty_poll(filp, wait);
2112	if (ld->ops->poll)
2113		ret = ld->ops->poll(tty, filp, wait);
2114	tty_ldisc_deref(ld);
2115	return ret;
2116}
2117
2118static int __tty_fasync(int fd, struct file *filp, int on)
2119{
2120	struct tty_struct *tty = file_tty(filp);
2121	unsigned long flags;
2122	int retval = 0;
2123
2124	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2125		goto out;
2126
2127	retval = fasync_helper(fd, filp, on, &tty->fasync);
2128	if (retval <= 0)
2129		goto out;
2130
2131	if (on) {
2132		enum pid_type type;
2133		struct pid *pid;
2134
2135		spin_lock_irqsave(&tty->ctrl_lock, flags);
2136		if (tty->pgrp) {
2137			pid = tty->pgrp;
2138			type = PIDTYPE_PGID;
2139		} else {
2140			pid = task_pid(current);
2141			type = PIDTYPE_TGID;
2142		}
2143		get_pid(pid);
2144		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2145		__f_setown(filp, pid, type, 0);
2146		put_pid(pid);
2147		retval = 0;
2148	}
2149out:
2150	return retval;
2151}
2152
2153static int tty_fasync(int fd, struct file *filp, int on)
2154{
2155	struct tty_struct *tty = file_tty(filp);
2156	int retval = -ENOTTY;
2157
2158	tty_lock(tty);
2159	if (!tty_hung_up_p(filp))
2160		retval = __tty_fasync(fd, filp, on);
2161	tty_unlock(tty);
2162
2163	return retval;
2164}
2165
2166/**
2167 *	tiocsti			-	fake input character
2168 *	@tty: tty to fake input into
2169 *	@p: pointer to character
2170 *
2171 *	Fake input to a tty device. Does the necessary locking and
2172 *	input management.
2173 *
2174 *	FIXME: does not honour flow control ??
2175 *
2176 *	Locking:
2177 *		Called functions take tty_ldiscs_lock
2178 *		current->signal->tty check is safe without locks
2179 *
2180 *	FIXME: may race normal receive processing
2181 */
2182
2183static int tiocsti(struct tty_struct *tty, char __user *p)
2184{
2185	char ch, mbz = 0;
2186	struct tty_ldisc *ld;
2187
2188	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2189		return -EPERM;
2190	if (get_user(ch, p))
2191		return -EFAULT;
2192	tty_audit_tiocsti(tty, ch);
2193	ld = tty_ldisc_ref_wait(tty);
2194	if (!ld)
2195		return -EIO;
2196	if (ld->ops->receive_buf)
2197		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2198	tty_ldisc_deref(ld);
2199	return 0;
2200}
2201
2202/**
2203 *	tiocgwinsz		-	implement window query ioctl
2204 *	@tty; tty
2205 *	@arg: user buffer for result
2206 *
2207 *	Copies the kernel idea of the window size into the user buffer.
2208 *
2209 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2210 *		is consistent.
2211 */
2212
2213static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2214{
2215	int err;
2216
2217	mutex_lock(&tty->winsize_mutex);
2218	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2219	mutex_unlock(&tty->winsize_mutex);
2220
2221	return err ? -EFAULT: 0;
2222}
2223
2224/**
2225 *	tty_do_resize		-	resize event
2226 *	@tty: tty being resized
2227 *	@rows: rows (character)
2228 *	@cols: cols (character)
2229 *
2230 *	Update the termios variables and send the necessary signals to
2231 *	peform a terminal resize correctly
2232 */
2233
2234int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2235{
2236	struct pid *pgrp;
2237
2238	/* Lock the tty */
2239	mutex_lock(&tty->winsize_mutex);
2240	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2241		goto done;
2242
2243	/* Signal the foreground process group */
2244	pgrp = tty_get_pgrp(tty);
2245	if (pgrp)
2246		kill_pgrp(pgrp, SIGWINCH, 1);
2247	put_pid(pgrp);
2248
2249	tty->winsize = *ws;
2250done:
2251	mutex_unlock(&tty->winsize_mutex);
2252	return 0;
2253}
2254EXPORT_SYMBOL(tty_do_resize);
2255
2256/**
2257 *	tiocswinsz		-	implement window size set ioctl
2258 *	@tty; tty side of tty
2259 *	@arg: user buffer for result
2260 *
2261 *	Copies the user idea of the window size to the kernel. Traditionally
2262 *	this is just advisory information but for the Linux console it
2263 *	actually has driver level meaning and triggers a VC resize.
2264 *
2265 *	Locking:
2266 *		Driver dependent. The default do_resize method takes the
2267 *	tty termios mutex and ctrl_lock. The console takes its own lock
2268 *	then calls into the default method.
2269 */
2270
2271static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2272{
2273	struct winsize tmp_ws;
2274	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2275		return -EFAULT;
2276
2277	if (tty->ops->resize)
2278		return tty->ops->resize(tty, &tmp_ws);
2279	else
2280		return tty_do_resize(tty, &tmp_ws);
2281}
2282
2283/**
2284 *	tioccons	-	allow admin to move logical console
2285 *	@file: the file to become console
2286 *
2287 *	Allow the administrator to move the redirected console device
2288 *
2289 *	Locking: uses redirect_lock to guard the redirect information
2290 */
2291
2292static int tioccons(struct file *file)
2293{
2294	if (!capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (file->f_op->write == redirected_tty_write) {
2297		struct file *f;
2298		spin_lock(&redirect_lock);
2299		f = redirect;
2300		redirect = NULL;
2301		spin_unlock(&redirect_lock);
2302		if (f)
2303			fput(f);
2304		return 0;
2305	}
2306	spin_lock(&redirect_lock);
2307	if (redirect) {
2308		spin_unlock(&redirect_lock);
2309		return -EBUSY;
2310	}
2311	redirect = get_file(file);
2312	spin_unlock(&redirect_lock);
2313	return 0;
2314}
2315
2316/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317 *	tiocsetd	-	set line discipline
2318 *	@tty: tty device
2319 *	@p: pointer to user data
2320 *
2321 *	Set the line discipline according to user request.
2322 *
2323 *	Locking: see tty_set_ldisc, this function is just a helper
2324 */
2325
2326static int tiocsetd(struct tty_struct *tty, int __user *p)
2327{
2328	int disc;
2329	int ret;
2330
2331	if (get_user(disc, p))
2332		return -EFAULT;
2333
2334	ret = tty_set_ldisc(tty, disc);
2335
2336	return ret;
2337}
2338
2339/**
2340 *	tiocgetd	-	get line discipline
2341 *	@tty: tty device
2342 *	@p: pointer to user data
2343 *
2344 *	Retrieves the line discipline id directly from the ldisc.
2345 *
2346 *	Locking: waits for ldisc reference (in case the line discipline
2347 *		is changing or the tty is being hungup)
2348 */
2349
2350static int tiocgetd(struct tty_struct *tty, int __user *p)
2351{
2352	struct tty_ldisc *ld;
2353	int ret;
2354
2355	ld = tty_ldisc_ref_wait(tty);
2356	if (!ld)
2357		return -EIO;
2358	ret = put_user(ld->ops->num, p);
2359	tty_ldisc_deref(ld);
2360	return ret;
2361}
2362
2363/**
2364 *	send_break	-	performed time break
2365 *	@tty: device to break on
2366 *	@duration: timeout in mS
2367 *
2368 *	Perform a timed break on hardware that lacks its own driver level
2369 *	timed break functionality.
2370 *
2371 *	Locking:
2372 *		atomic_write_lock serializes
2373 *
2374 */
2375
2376static int send_break(struct tty_struct *tty, unsigned int duration)
2377{
2378	int retval;
2379
2380	if (tty->ops->break_ctl == NULL)
2381		return 0;
2382
2383	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2384		retval = tty->ops->break_ctl(tty, duration);
2385	else {
2386		/* Do the work ourselves */
2387		if (tty_write_lock(tty, 0) < 0)
2388			return -EINTR;
2389		retval = tty->ops->break_ctl(tty, -1);
2390		if (retval)
2391			goto out;
2392		if (!signal_pending(current))
2393			msleep_interruptible(duration);
2394		retval = tty->ops->break_ctl(tty, 0);
2395out:
2396		tty_write_unlock(tty);
2397		if (signal_pending(current))
2398			retval = -EINTR;
2399	}
2400	return retval;
2401}
2402
2403/**
2404 *	tty_tiocmget		-	get modem status
2405 *	@tty: tty device
2406 *	@file: user file pointer
2407 *	@p: pointer to result
2408 *
2409 *	Obtain the modem status bits from the tty driver if the feature
2410 *	is supported. Return -EINVAL if it is not available.
2411 *
2412 *	Locking: none (up to the driver)
2413 */
2414
2415static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2416{
2417	int retval = -EINVAL;
2418
2419	if (tty->ops->tiocmget) {
2420		retval = tty->ops->tiocmget(tty);
2421
2422		if (retval >= 0)
2423			retval = put_user(retval, p);
2424	}
2425	return retval;
2426}
2427
2428/**
2429 *	tty_tiocmset		-	set modem status
2430 *	@tty: tty device
2431 *	@cmd: command - clear bits, set bits or set all
2432 *	@p: pointer to desired bits
2433 *
2434 *	Set the modem status bits from the tty driver if the feature
2435 *	is supported. Return -EINVAL if it is not available.
2436 *
2437 *	Locking: none (up to the driver)
2438 */
2439
2440static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2441	     unsigned __user *p)
2442{
2443	int retval;
2444	unsigned int set, clear, val;
2445
2446	if (tty->ops->tiocmset == NULL)
2447		return -EINVAL;
2448
2449	retval = get_user(val, p);
2450	if (retval)
2451		return retval;
2452	set = clear = 0;
2453	switch (cmd) {
2454	case TIOCMBIS:
2455		set = val;
2456		break;
2457	case TIOCMBIC:
2458		clear = val;
2459		break;
2460	case TIOCMSET:
2461		set = val;
2462		clear = ~val;
2463		break;
2464	}
2465	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2466	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2467	return tty->ops->tiocmset(tty, set, clear);
2468}
2469
2470static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2471{
2472	int retval = -EINVAL;
2473	struct serial_icounter_struct icount;
2474	memset(&icount, 0, sizeof(icount));
2475	if (tty->ops->get_icount)
2476		retval = tty->ops->get_icount(tty, &icount);
2477	if (retval != 0)
2478		return retval;
2479	if (copy_to_user(arg, &icount, sizeof(icount)))
2480		return -EFAULT;
2481	return 0;
2482}
2483
2484static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2485{
2486	static DEFINE_RATELIMIT_STATE(depr_flags,
2487			DEFAULT_RATELIMIT_INTERVAL,
2488			DEFAULT_RATELIMIT_BURST);
2489	char comm[TASK_COMM_LEN];
2490	struct serial_struct v;
2491	int flags;
2492
2493	if (copy_from_user(&v, ss, sizeof(struct serial_struct)))
2494		return -EFAULT;
2495
2496	flags = v.flags & ASYNC_DEPRECATED;
2497
2498	if (flags && __ratelimit(&depr_flags))
2499		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2500			__func__, get_task_comm(comm, current), flags);
2501	if (!tty->ops->set_serial)
2502		return -ENOTTY;
2503	return tty->ops->set_serial(tty, &v);
2504}
2505
2506static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2507{
2508	struct serial_struct v;
2509	int err;
2510
2511	memset(&v, 0, sizeof(struct serial_struct));
2512	if (!tty->ops->get_serial)
2513		return -ENOTTY;
2514	err = tty->ops->get_serial(tty, &v);
2515	if (!err && copy_to_user(ss, &v, sizeof(struct serial_struct)))
2516		err = -EFAULT;
2517	return err;
2518}
2519
2520/*
2521 * if pty, return the slave side (real_tty)
2522 * otherwise, return self
2523 */
2524static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2525{
2526	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2527	    tty->driver->subtype == PTY_TYPE_MASTER)
2528		tty = tty->link;
2529	return tty;
2530}
2531
2532/*
2533 * Split this up, as gcc can choke on it otherwise..
2534 */
2535long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2536{
2537	struct tty_struct *tty = file_tty(file);
2538	struct tty_struct *real_tty;
2539	void __user *p = (void __user *)arg;
2540	int retval;
2541	struct tty_ldisc *ld;
2542
2543	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2544		return -EINVAL;
2545
2546	real_tty = tty_pair_get_tty(tty);
2547
2548	/*
2549	 * Factor out some common prep work
2550	 */
2551	switch (cmd) {
2552	case TIOCSETD:
2553	case TIOCSBRK:
2554	case TIOCCBRK:
2555	case TCSBRK:
2556	case TCSBRKP:
2557		retval = tty_check_change(tty);
2558		if (retval)
2559			return retval;
2560		if (cmd != TIOCCBRK) {
2561			tty_wait_until_sent(tty, 0);
2562			if (signal_pending(current))
2563				return -EINTR;
2564		}
2565		break;
2566	}
2567
2568	/*
2569	 *	Now do the stuff.
2570	 */
2571	switch (cmd) {
2572	case TIOCSTI:
2573		return tiocsti(tty, p);
2574	case TIOCGWINSZ:
2575		return tiocgwinsz(real_tty, p);
2576	case TIOCSWINSZ:
2577		return tiocswinsz(real_tty, p);
2578	case TIOCCONS:
2579		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2580	case TIOCEXCL:
2581		set_bit(TTY_EXCLUSIVE, &tty->flags);
2582		return 0;
2583	case TIOCNXCL:
2584		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2585		return 0;
2586	case TIOCGEXCL:
2587	{
2588		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2589		return put_user(excl, (int __user *)p);
2590	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2591	case TIOCGETD:
2592		return tiocgetd(tty, p);
2593	case TIOCSETD:
2594		return tiocsetd(tty, p);
2595	case TIOCVHANGUP:
2596		if (!capable(CAP_SYS_ADMIN))
2597			return -EPERM;
2598		tty_vhangup(tty);
2599		return 0;
2600	case TIOCGDEV:
2601	{
2602		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2603		return put_user(ret, (unsigned int __user *)p);
2604	}
2605	/*
2606	 * Break handling
2607	 */
2608	case TIOCSBRK:	/* Turn break on, unconditionally */
2609		if (tty->ops->break_ctl)
2610			return tty->ops->break_ctl(tty, -1);
2611		return 0;
2612	case TIOCCBRK:	/* Turn break off, unconditionally */
2613		if (tty->ops->break_ctl)
2614			return tty->ops->break_ctl(tty, 0);
2615		return 0;
2616	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2617		/* non-zero arg means wait for all output data
2618		 * to be sent (performed above) but don't send break.
2619		 * This is used by the tcdrain() termios function.
2620		 */
2621		if (!arg)
2622			return send_break(tty, 250);
2623		return 0;
2624	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2625		return send_break(tty, arg ? arg*100 : 250);
2626
2627	case TIOCMGET:
2628		return tty_tiocmget(tty, p);
2629	case TIOCMSET:
2630	case TIOCMBIC:
2631	case TIOCMBIS:
2632		return tty_tiocmset(tty, cmd, p);
2633	case TIOCGICOUNT:
2634		return tty_tiocgicount(tty, p);
 
 
 
 
2635	case TCFLSH:
2636		switch (arg) {
2637		case TCIFLUSH:
2638		case TCIOFLUSH:
2639		/* flush tty buffer and allow ldisc to process ioctl */
2640			tty_buffer_flush(tty, NULL);
2641			break;
2642		}
2643		break;
2644	case TIOCSSERIAL:
2645		return tty_tiocsserial(tty, p);
2646	case TIOCGSERIAL:
2647		return tty_tiocgserial(tty, p);
2648	case TIOCGPTPEER:
2649		/* Special because the struct file is needed */
2650		return ptm_open_peer(file, tty, (int)arg);
2651	default:
2652		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2653		if (retval != -ENOIOCTLCMD)
2654			return retval;
2655	}
2656	if (tty->ops->ioctl) {
2657		retval = tty->ops->ioctl(tty, cmd, arg);
2658		if (retval != -ENOIOCTLCMD)
2659			return retval;
2660	}
2661	ld = tty_ldisc_ref_wait(tty);
2662	if (!ld)
2663		return hung_up_tty_ioctl(file, cmd, arg);
2664	retval = -EINVAL;
2665	if (ld->ops->ioctl) {
2666		retval = ld->ops->ioctl(tty, file, cmd, arg);
2667		if (retval == -ENOIOCTLCMD)
2668			retval = -ENOTTY;
2669	}
2670	tty_ldisc_deref(ld);
2671	return retval;
2672}
2673
2674#ifdef CONFIG_COMPAT
2675
2676struct serial_struct32 {
2677        compat_int_t    type;
2678        compat_int_t    line;
2679        compat_uint_t   port;
2680        compat_int_t    irq;
2681        compat_int_t    flags;
2682        compat_int_t    xmit_fifo_size;
2683        compat_int_t    custom_divisor;
2684        compat_int_t    baud_base;
2685        unsigned short  close_delay;
2686        char    io_type;
2687        char    reserved_char[1];
2688        compat_int_t    hub6;
2689        unsigned short  closing_wait; /* time to wait before closing */
2690        unsigned short  closing_wait2; /* no longer used... */
2691        compat_uint_t   iomem_base;
2692        unsigned short  iomem_reg_shift;
2693        unsigned int    port_high;
2694     /* compat_ulong_t  iomap_base FIXME */
2695        compat_int_t    reserved[1];
2696};
2697
2698static int compat_tty_tiocsserial(struct tty_struct *tty,
2699		struct serial_struct32 __user *ss)
2700{
2701	static DEFINE_RATELIMIT_STATE(depr_flags,
2702			DEFAULT_RATELIMIT_INTERVAL,
2703			DEFAULT_RATELIMIT_BURST);
2704	char comm[TASK_COMM_LEN];
2705	struct serial_struct32 v32;
2706	struct serial_struct v;
2707	int flags;
2708
2709	if (copy_from_user(&v32, ss, sizeof(struct serial_struct32)))
2710		return -EFAULT;
2711
2712	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2713	v.iomem_base = compat_ptr(v32.iomem_base);
2714	v.iomem_reg_shift = v32.iomem_reg_shift;
2715	v.port_high = v32.port_high;
2716	v.iomap_base = 0;
2717
2718	flags = v.flags & ASYNC_DEPRECATED;
2719
2720	if (flags && __ratelimit(&depr_flags))
2721		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2722			__func__, get_task_comm(comm, current), flags);
2723	if (!tty->ops->set_serial)
2724		return -ENOTTY;
2725	return tty->ops->set_serial(tty, &v);
2726}
2727
2728static int compat_tty_tiocgserial(struct tty_struct *tty,
2729			struct serial_struct32 __user *ss)
2730{
2731	struct serial_struct32 v32;
2732	struct serial_struct v;
2733	int err;
2734	memset(&v, 0, sizeof(struct serial_struct));
2735
2736	if (!tty->ops->set_serial)
2737		return -ENOTTY;
2738	err = tty->ops->get_serial(tty, &v);
2739	if (!err) {
2740		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2741		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2742			0xfffffff : ptr_to_compat(v.iomem_base);
2743		v32.iomem_reg_shift = v.iomem_reg_shift;
2744		v32.port_high = v.port_high;
2745		if (copy_to_user(ss, &v32, sizeof(struct serial_struct32)))
2746			err = -EFAULT;
2747	}
2748	return err;
2749}
2750static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2751				unsigned long arg)
2752{
2753	struct tty_struct *tty = file_tty(file);
2754	struct tty_ldisc *ld;
2755	int retval = -ENOIOCTLCMD;
2756
2757	switch (cmd) {
2758	case TIOCSTI:
2759	case TIOCGWINSZ:
2760	case TIOCSWINSZ:
2761	case TIOCGEXCL:
2762	case TIOCGETD:
2763	case TIOCSETD:
2764	case TIOCGDEV:
2765	case TIOCMGET:
2766	case TIOCMSET:
2767	case TIOCMBIC:
2768	case TIOCMBIS:
2769	case TIOCGICOUNT:
2770	case TIOCGPGRP:
2771	case TIOCSPGRP:
2772	case TIOCGSID:
2773	case TIOCSERGETLSR:
2774	case TIOCGRS485:
2775	case TIOCSRS485:
2776#ifdef TIOCGETP
2777	case TIOCGETP:
2778	case TIOCSETP:
2779	case TIOCSETN:
2780#endif
2781#ifdef TIOCGETC
2782	case TIOCGETC:
2783	case TIOCSETC:
2784#endif
2785#ifdef TIOCGLTC
2786	case TIOCGLTC:
2787	case TIOCSLTC:
2788#endif
2789	case TCSETSF:
2790	case TCSETSW:
2791	case TCSETS:
2792	case TCGETS:
2793#ifdef TCGETS2
2794	case TCGETS2:
2795	case TCSETSF2:
2796	case TCSETSW2:
2797	case TCSETS2:
2798#endif
2799	case TCGETA:
2800	case TCSETAF:
2801	case TCSETAW:
2802	case TCSETA:
2803	case TIOCGLCKTRMIOS:
2804	case TIOCSLCKTRMIOS:
2805#ifdef TCGETX
2806	case TCGETX:
2807	case TCSETX:
2808	case TCSETXW:
2809	case TCSETXF:
2810#endif
2811	case TIOCGSOFTCAR:
2812	case TIOCSSOFTCAR:
2813		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2814	case TIOCCONS:
2815	case TIOCEXCL:
2816	case TIOCNXCL:
2817	case TIOCVHANGUP:
2818	case TIOCSBRK:
2819	case TIOCCBRK:
2820	case TCSBRK:
2821	case TCSBRKP:
2822	case TCFLSH:
2823	case TIOCGPTPEER:
2824	case TIOCNOTTY:
2825	case TIOCSCTTY:
2826	case TCXONC:
2827	case TIOCMIWAIT:
2828	case TIOCSERCONFIG:
2829		return tty_ioctl(file, cmd, arg);
2830	}
2831
2832	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2833		return -EINVAL;
2834
2835	switch (cmd) {
2836	case TIOCSSERIAL:
2837		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2838	case TIOCGSERIAL:
2839		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2840	}
2841	if (tty->ops->compat_ioctl) {
2842		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2843		if (retval != -ENOIOCTLCMD)
2844			return retval;
2845	}
2846
2847	ld = tty_ldisc_ref_wait(tty);
2848	if (!ld)
2849		return hung_up_tty_compat_ioctl(file, cmd, arg);
2850	if (ld->ops->compat_ioctl)
2851		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2852	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2853		retval = ld->ops->ioctl(tty, file,
2854				(unsigned long)compat_ptr(cmd), arg);
2855	tty_ldisc_deref(ld);
2856
2857	return retval;
2858}
2859#endif
2860
2861static int this_tty(const void *t, struct file *file, unsigned fd)
2862{
2863	if (likely(file->f_op->read != tty_read))
2864		return 0;
2865	return file_tty(file) != t ? 0 : fd + 1;
2866}
2867	
2868/*
2869 * This implements the "Secure Attention Key" ---  the idea is to
2870 * prevent trojan horses by killing all processes associated with this
2871 * tty when the user hits the "Secure Attention Key".  Required for
2872 * super-paranoid applications --- see the Orange Book for more details.
2873 *
2874 * This code could be nicer; ideally it should send a HUP, wait a few
2875 * seconds, then send a INT, and then a KILL signal.  But you then
2876 * have to coordinate with the init process, since all processes associated
2877 * with the current tty must be dead before the new getty is allowed
2878 * to spawn.
2879 *
2880 * Now, if it would be correct ;-/ The current code has a nasty hole -
2881 * it doesn't catch files in flight. We may send the descriptor to ourselves
2882 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2883 *
2884 * Nasty bug: do_SAK is being called in interrupt context.  This can
2885 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2886 */
2887void __do_SAK(struct tty_struct *tty)
2888{
2889#ifdef TTY_SOFT_SAK
2890	tty_hangup(tty);
2891#else
2892	struct task_struct *g, *p;
2893	struct pid *session;
2894	int		i;
2895
2896	if (!tty)
2897		return;
2898	session = tty->session;
2899
2900	tty_ldisc_flush(tty);
2901
2902	tty_driver_flush_buffer(tty);
2903
2904	read_lock(&tasklist_lock);
2905	/* Kill the entire session */
2906	do_each_pid_task(session, PIDTYPE_SID, p) {
2907		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2908			   task_pid_nr(p), p->comm);
2909		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2910	} while_each_pid_task(session, PIDTYPE_SID, p);
2911
2912	/* Now kill any processes that happen to have the tty open */
2913	do_each_thread(g, p) {
2914		if (p->signal->tty == tty) {
2915			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2916				   task_pid_nr(p), p->comm);
2917			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2918			continue;
2919		}
2920		task_lock(p);
2921		i = iterate_fd(p->files, 0, this_tty, tty);
2922		if (i != 0) {
2923			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2924				   task_pid_nr(p), p->comm, i - 1);
2925			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2926		}
2927		task_unlock(p);
2928	} while_each_thread(g, p);
2929	read_unlock(&tasklist_lock);
2930#endif
2931}
2932
2933static void do_SAK_work(struct work_struct *work)
2934{
2935	struct tty_struct *tty =
2936		container_of(work, struct tty_struct, SAK_work);
2937	__do_SAK(tty);
2938}
2939
2940/*
2941 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2942 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2943 * the values which we write to it will be identical to the values which it
2944 * already has. --akpm
2945 */
2946void do_SAK(struct tty_struct *tty)
2947{
2948	if (!tty)
2949		return;
2950	schedule_work(&tty->SAK_work);
2951}
2952
2953EXPORT_SYMBOL(do_SAK);
2954
 
 
 
 
 
 
2955/* Must put_device() after it's unused! */
2956static struct device *tty_get_device(struct tty_struct *tty)
2957{
2958	dev_t devt = tty_devnum(tty);
2959	return class_find_device_by_devt(tty_class, devt);
2960}
2961
2962
2963/**
2964 *	alloc_tty_struct
2965 *
2966 *	This subroutine allocates and initializes a tty structure.
2967 *
2968 *	Locking: none - tty in question is not exposed at this point
2969 */
2970
2971struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2972{
2973	struct tty_struct *tty;
2974
2975	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2976	if (!tty)
2977		return NULL;
2978
2979	kref_init(&tty->kref);
2980	tty->magic = TTY_MAGIC;
2981	if (tty_ldisc_init(tty)) {
2982		kfree(tty);
2983		return NULL;
2984	}
2985	tty->session = NULL;
2986	tty->pgrp = NULL;
2987	mutex_init(&tty->legacy_mutex);
2988	mutex_init(&tty->throttle_mutex);
2989	init_rwsem(&tty->termios_rwsem);
2990	mutex_init(&tty->winsize_mutex);
2991	init_ldsem(&tty->ldisc_sem);
2992	init_waitqueue_head(&tty->write_wait);
2993	init_waitqueue_head(&tty->read_wait);
2994	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2995	mutex_init(&tty->atomic_write_lock);
2996	spin_lock_init(&tty->ctrl_lock);
2997	spin_lock_init(&tty->flow_lock);
2998	spin_lock_init(&tty->files_lock);
2999	INIT_LIST_HEAD(&tty->tty_files);
3000	INIT_WORK(&tty->SAK_work, do_SAK_work);
3001
3002	tty->driver = driver;
3003	tty->ops = driver->ops;
3004	tty->index = idx;
3005	tty_line_name(driver, idx, tty->name);
3006	tty->dev = tty_get_device(tty);
3007
3008	return tty;
3009}
3010
3011/**
3012 *	tty_put_char	-	write one character to a tty
3013 *	@tty: tty
3014 *	@ch: character
3015 *
3016 *	Write one byte to the tty using the provided put_char method
3017 *	if present. Returns the number of characters successfully output.
3018 *
3019 *	Note: the specific put_char operation in the driver layer may go
3020 *	away soon. Don't call it directly, use this method
3021 */
3022
3023int tty_put_char(struct tty_struct *tty, unsigned char ch)
3024{
3025	if (tty->ops->put_char)
3026		return tty->ops->put_char(tty, ch);
3027	return tty->ops->write(tty, &ch, 1);
3028}
3029EXPORT_SYMBOL_GPL(tty_put_char);
3030
3031struct class *tty_class;
3032
3033static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3034		unsigned int index, unsigned int count)
3035{
3036	int err;
3037
3038	/* init here, since reused cdevs cause crashes */
3039	driver->cdevs[index] = cdev_alloc();
3040	if (!driver->cdevs[index])
3041		return -ENOMEM;
3042	driver->cdevs[index]->ops = &tty_fops;
3043	driver->cdevs[index]->owner = driver->owner;
3044	err = cdev_add(driver->cdevs[index], dev, count);
3045	if (err)
3046		kobject_put(&driver->cdevs[index]->kobj);
3047	return err;
3048}
3049
3050/**
3051 *	tty_register_device - register a tty device
3052 *	@driver: the tty driver that describes the tty device
3053 *	@index: the index in the tty driver for this tty device
3054 *	@device: a struct device that is associated with this tty device.
3055 *		This field is optional, if there is no known struct device
3056 *		for this tty device it can be set to NULL safely.
3057 *
3058 *	Returns a pointer to the struct device for this tty device
3059 *	(or ERR_PTR(-EFOO) on error).
3060 *
3061 *	This call is required to be made to register an individual tty device
3062 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3063 *	that bit is not set, this function should not be called by a tty
3064 *	driver.
3065 *
3066 *	Locking: ??
3067 */
3068
3069struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3070				   struct device *device)
3071{
3072	return tty_register_device_attr(driver, index, device, NULL, NULL);
3073}
3074EXPORT_SYMBOL(tty_register_device);
3075
3076static void tty_device_create_release(struct device *dev)
3077{
3078	dev_dbg(dev, "releasing...\n");
3079	kfree(dev);
3080}
3081
3082/**
3083 *	tty_register_device_attr - register a tty device
3084 *	@driver: the tty driver that describes the tty device
3085 *	@index: the index in the tty driver for this tty device
3086 *	@device: a struct device that is associated with this tty device.
3087 *		This field is optional, if there is no known struct device
3088 *		for this tty device it can be set to NULL safely.
3089 *	@drvdata: Driver data to be set to device.
3090 *	@attr_grp: Attribute group to be set on device.
3091 *
3092 *	Returns a pointer to the struct device for this tty device
3093 *	(or ERR_PTR(-EFOO) on error).
3094 *
3095 *	This call is required to be made to register an individual tty device
3096 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3097 *	that bit is not set, this function should not be called by a tty
3098 *	driver.
3099 *
3100 *	Locking: ??
3101 */
3102struct device *tty_register_device_attr(struct tty_driver *driver,
3103				   unsigned index, struct device *device,
3104				   void *drvdata,
3105				   const struct attribute_group **attr_grp)
3106{
3107	char name[64];
3108	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3109	struct ktermios *tp;
3110	struct device *dev;
3111	int retval;
3112
3113	if (index >= driver->num) {
3114		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3115		       driver->name, index);
3116		return ERR_PTR(-EINVAL);
3117	}
3118
3119	if (driver->type == TTY_DRIVER_TYPE_PTY)
3120		pty_line_name(driver, index, name);
3121	else
3122		tty_line_name(driver, index, name);
3123
 
 
 
 
 
 
 
3124	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3125	if (!dev)
3126		return ERR_PTR(-ENOMEM);
 
 
3127
3128	dev->devt = devt;
3129	dev->class = tty_class;
3130	dev->parent = device;
3131	dev->release = tty_device_create_release;
3132	dev_set_name(dev, "%s", name);
3133	dev->groups = attr_grp;
3134	dev_set_drvdata(dev, drvdata);
3135
3136	dev_set_uevent_suppress(dev, 1);
3137
3138	retval = device_register(dev);
3139	if (retval)
3140		goto err_put;
3141
3142	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3143		/*
3144		 * Free any saved termios data so that the termios state is
3145		 * reset when reusing a minor number.
3146		 */
3147		tp = driver->termios[index];
3148		if (tp) {
3149			driver->termios[index] = NULL;
3150			kfree(tp);
3151		}
3152
3153		retval = tty_cdev_add(driver, devt, index, 1);
3154		if (retval)
3155			goto err_del;
3156	}
3157
3158	dev_set_uevent_suppress(dev, 0);
3159	kobject_uevent(&dev->kobj, KOBJ_ADD);
3160
3161	return dev;
3162
3163err_del:
3164	device_del(dev);
3165err_put:
3166	put_device(dev);
3167
 
 
 
3168	return ERR_PTR(retval);
3169}
3170EXPORT_SYMBOL_GPL(tty_register_device_attr);
3171
3172/**
3173 * 	tty_unregister_device - unregister a tty device
3174 * 	@driver: the tty driver that describes the tty device
3175 * 	@index: the index in the tty driver for this tty device
3176 *
3177 * 	If a tty device is registered with a call to tty_register_device() then
3178 *	this function must be called when the tty device is gone.
3179 *
3180 *	Locking: ??
3181 */
3182
3183void tty_unregister_device(struct tty_driver *driver, unsigned index)
3184{
3185	device_destroy(tty_class,
3186		MKDEV(driver->major, driver->minor_start) + index);
3187	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3188		cdev_del(driver->cdevs[index]);
3189		driver->cdevs[index] = NULL;
3190	}
3191}
3192EXPORT_SYMBOL(tty_unregister_device);
3193
3194/**
3195 * __tty_alloc_driver -- allocate tty driver
3196 * @lines: count of lines this driver can handle at most
3197 * @owner: module which is responsible for this driver
3198 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3199 *
3200 * This should not be called directly, some of the provided macros should be
3201 * used instead. Use IS_ERR and friends on @retval.
3202 */
3203struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3204		unsigned long flags)
3205{
3206	struct tty_driver *driver;
3207	unsigned int cdevs = 1;
3208	int err;
3209
3210	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3211		return ERR_PTR(-EINVAL);
3212
3213	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3214	if (!driver)
3215		return ERR_PTR(-ENOMEM);
3216
3217	kref_init(&driver->kref);
3218	driver->magic = TTY_DRIVER_MAGIC;
3219	driver->num = lines;
3220	driver->owner = owner;
3221	driver->flags = flags;
3222
3223	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3224		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3225				GFP_KERNEL);
3226		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3227				GFP_KERNEL);
3228		if (!driver->ttys || !driver->termios) {
3229			err = -ENOMEM;
3230			goto err_free_all;
3231		}
3232	}
3233
3234	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3235		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3236				GFP_KERNEL);
3237		if (!driver->ports) {
3238			err = -ENOMEM;
3239			goto err_free_all;
3240		}
3241		cdevs = lines;
3242	}
3243
3244	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3245	if (!driver->cdevs) {
3246		err = -ENOMEM;
3247		goto err_free_all;
3248	}
3249
3250	return driver;
3251err_free_all:
3252	kfree(driver->ports);
3253	kfree(driver->ttys);
3254	kfree(driver->termios);
3255	kfree(driver->cdevs);
3256	kfree(driver);
3257	return ERR_PTR(err);
3258}
3259EXPORT_SYMBOL(__tty_alloc_driver);
3260
3261static void destruct_tty_driver(struct kref *kref)
3262{
3263	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3264	int i;
3265	struct ktermios *tp;
3266
3267	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3268		for (i = 0; i < driver->num; i++) {
3269			tp = driver->termios[i];
3270			if (tp) {
3271				driver->termios[i] = NULL;
3272				kfree(tp);
3273			}
3274			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3275				tty_unregister_device(driver, i);
3276		}
3277		proc_tty_unregister_driver(driver);
3278		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3279			cdev_del(driver->cdevs[0]);
3280	}
3281	kfree(driver->cdevs);
3282	kfree(driver->ports);
3283	kfree(driver->termios);
3284	kfree(driver->ttys);
3285	kfree(driver);
3286}
3287
3288void tty_driver_kref_put(struct tty_driver *driver)
3289{
3290	kref_put(&driver->kref, destruct_tty_driver);
3291}
3292EXPORT_SYMBOL(tty_driver_kref_put);
3293
3294void tty_set_operations(struct tty_driver *driver,
3295			const struct tty_operations *op)
3296{
3297	driver->ops = op;
3298};
3299EXPORT_SYMBOL(tty_set_operations);
3300
3301void put_tty_driver(struct tty_driver *d)
3302{
3303	tty_driver_kref_put(d);
3304}
3305EXPORT_SYMBOL(put_tty_driver);
3306
3307/*
3308 * Called by a tty driver to register itself.
3309 */
3310int tty_register_driver(struct tty_driver *driver)
3311{
3312	int error;
3313	int i;
3314	dev_t dev;
3315	struct device *d;
3316
3317	if (!driver->major) {
3318		error = alloc_chrdev_region(&dev, driver->minor_start,
3319						driver->num, driver->name);
3320		if (!error) {
3321			driver->major = MAJOR(dev);
3322			driver->minor_start = MINOR(dev);
3323		}
3324	} else {
3325		dev = MKDEV(driver->major, driver->minor_start);
3326		error = register_chrdev_region(dev, driver->num, driver->name);
3327	}
3328	if (error < 0)
3329		goto err;
3330
3331	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3332		error = tty_cdev_add(driver, dev, 0, driver->num);
3333		if (error)
3334			goto err_unreg_char;
3335	}
3336
3337	mutex_lock(&tty_mutex);
3338	list_add(&driver->tty_drivers, &tty_drivers);
3339	mutex_unlock(&tty_mutex);
3340
3341	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3342		for (i = 0; i < driver->num; i++) {
3343			d = tty_register_device(driver, i, NULL);
3344			if (IS_ERR(d)) {
3345				error = PTR_ERR(d);
3346				goto err_unreg_devs;
3347			}
3348		}
3349	}
3350	proc_tty_register_driver(driver);
3351	driver->flags |= TTY_DRIVER_INSTALLED;
3352	return 0;
3353
3354err_unreg_devs:
3355	for (i--; i >= 0; i--)
3356		tty_unregister_device(driver, i);
3357
3358	mutex_lock(&tty_mutex);
3359	list_del(&driver->tty_drivers);
3360	mutex_unlock(&tty_mutex);
3361
3362err_unreg_char:
3363	unregister_chrdev_region(dev, driver->num);
3364err:
3365	return error;
3366}
3367EXPORT_SYMBOL(tty_register_driver);
3368
3369/*
3370 * Called by a tty driver to unregister itself.
3371 */
3372int tty_unregister_driver(struct tty_driver *driver)
3373{
3374#if 0
3375	/* FIXME */
3376	if (driver->refcount)
3377		return -EBUSY;
3378#endif
3379	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3380				driver->num);
3381	mutex_lock(&tty_mutex);
3382	list_del(&driver->tty_drivers);
3383	mutex_unlock(&tty_mutex);
3384	return 0;
3385}
3386
3387EXPORT_SYMBOL(tty_unregister_driver);
3388
3389dev_t tty_devnum(struct tty_struct *tty)
3390{
3391	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3392}
3393EXPORT_SYMBOL(tty_devnum);
3394
3395void tty_default_fops(struct file_operations *fops)
3396{
3397	*fops = tty_fops;
3398}
3399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3400static char *tty_devnode(struct device *dev, umode_t *mode)
3401{
3402	if (!mode)
3403		return NULL;
3404	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3405	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3406		*mode = 0666;
3407	return NULL;
3408}
3409
3410static int __init tty_class_init(void)
3411{
3412	tty_class = class_create(THIS_MODULE, "tty");
3413	if (IS_ERR(tty_class))
3414		return PTR_ERR(tty_class);
3415	tty_class->devnode = tty_devnode;
3416	return 0;
3417}
3418
3419postcore_initcall(tty_class_init);
3420
3421/* 3/2004 jmc: why do these devices exist? */
3422static struct cdev tty_cdev, console_cdev;
3423
3424static ssize_t show_cons_active(struct device *dev,
3425				struct device_attribute *attr, char *buf)
3426{
3427	struct console *cs[16];
3428	int i = 0;
3429	struct console *c;
3430	ssize_t count = 0;
3431
3432	console_lock();
3433	for_each_console(c) {
3434		if (!c->device)
3435			continue;
3436		if (!c->write)
3437			continue;
3438		if ((c->flags & CON_ENABLED) == 0)
3439			continue;
3440		cs[i++] = c;
3441		if (i >= ARRAY_SIZE(cs))
3442			break;
3443	}
3444	while (i--) {
3445		int index = cs[i]->index;
3446		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3447
3448		/* don't resolve tty0 as some programs depend on it */
3449		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3450			count += tty_line_name(drv, index, buf + count);
3451		else
3452			count += sprintf(buf + count, "%s%d",
3453					 cs[i]->name, cs[i]->index);
3454
3455		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3456	}
3457	console_unlock();
3458
3459	return count;
3460}
3461static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3462
3463static struct attribute *cons_dev_attrs[] = {
3464	&dev_attr_active.attr,
3465	NULL
3466};
3467
3468ATTRIBUTE_GROUPS(cons_dev);
3469
3470static struct device *consdev;
3471
3472void console_sysfs_notify(void)
3473{
3474	if (consdev)
3475		sysfs_notify(&consdev->kobj, NULL, "active");
3476}
3477
3478/*
3479 * Ok, now we can initialize the rest of the tty devices and can count
3480 * on memory allocations, interrupts etc..
3481 */
3482int __init tty_init(void)
3483{
3484	tty_sysctl_init();
3485	cdev_init(&tty_cdev, &tty_fops);
3486	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3487	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3488		panic("Couldn't register /dev/tty driver\n");
3489	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3490
3491	cdev_init(&console_cdev, &console_fops);
3492	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3493	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3494		panic("Couldn't register /dev/console driver\n");
3495	consdev = device_create_with_groups(tty_class, NULL,
3496					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3497					    cons_dev_groups, "console");
3498	if (IS_ERR(consdev))
3499		consdev = NULL;
3500
3501#ifdef CONFIG_VT
3502	vty_init(&console_fops);
3503#endif
3504	return 0;
3505}
3506