Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
 
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20
  21#define DM_MSG_PREFIX "cache"
  22
  23DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  24	"A percentage of time allocated for copying to and/or from cache");
  25
  26/*----------------------------------------------------------------*/
  27
  28#define IOT_RESOLUTION 4
 
 
 
 
 
 
 
 
 
 
 
  29
  30struct io_tracker {
  31	spinlock_t lock;
  32
  33	/*
  34	 * Sectors of in-flight IO.
  35	 */
  36	sector_t in_flight;
  37
  38	/*
  39	 * The time, in jiffies, when this device became idle (if it is
  40	 * indeed idle).
  41	 */
  42	unsigned long idle_time;
  43	unsigned long last_update_time;
  44};
  45
  46static void iot_init(struct io_tracker *iot)
  47{
  48	spin_lock_init(&iot->lock);
  49	iot->in_flight = 0ul;
  50	iot->idle_time = 0ul;
  51	iot->last_update_time = jiffies;
  52}
  53
  54static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  55{
  56	if (iot->in_flight)
  57		return false;
  58
  59	return time_after(jiffies, iot->idle_time + jifs);
  60}
  61
  62static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  63{
  64	bool r;
  65	unsigned long flags;
  66
  67	spin_lock_irqsave(&iot->lock, flags);
  68	r = __iot_idle_for(iot, jifs);
  69	spin_unlock_irqrestore(&iot->lock, flags);
  70
  71	return r;
  72}
  73
  74static void iot_io_begin(struct io_tracker *iot, sector_t len)
  75{
  76	unsigned long flags;
  77
  78	spin_lock_irqsave(&iot->lock, flags);
  79	iot->in_flight += len;
  80	spin_unlock_irqrestore(&iot->lock, flags);
  81}
  82
  83static void __iot_io_end(struct io_tracker *iot, sector_t len)
  84{
 
 
 
  85	iot->in_flight -= len;
  86	if (!iot->in_flight)
  87		iot->idle_time = jiffies;
  88}
  89
  90static void iot_io_end(struct io_tracker *iot, sector_t len)
  91{
  92	unsigned long flags;
  93
  94	spin_lock_irqsave(&iot->lock, flags);
  95	__iot_io_end(iot, len);
  96	spin_unlock_irqrestore(&iot->lock, flags);
  97}
  98
  99/*----------------------------------------------------------------*/
 100
 101/*
 102 * Glossary:
 103 *
 104 * oblock: index of an origin block
 105 * cblock: index of a cache block
 106 * promotion: movement of a block from origin to cache
 107 * demotion: movement of a block from cache to origin
 108 * migration: movement of a block between the origin and cache device,
 109 *	      either direction
 110 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/*----------------------------------------------------------------*/
 113
 114/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115 * There are a couple of places where we let a bio run, but want to do some
 116 * work before calling its endio function.  We do this by temporarily
 117 * changing the endio fn.
 118 */
 119struct dm_hook_info {
 120	bio_end_io_t *bi_end_io;
 121};
 122
 123static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 124			bio_end_io_t *bi_end_io, void *bi_private)
 125{
 126	h->bi_end_io = bio->bi_end_io;
 127
 128	bio->bi_end_io = bi_end_io;
 129	bio->bi_private = bi_private;
 130}
 131
 132static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 133{
 134	bio->bi_end_io = h->bi_end_io;
 135}
 136
 137/*----------------------------------------------------------------*/
 138
 139#define MIGRATION_POOL_SIZE 128
 140#define COMMIT_PERIOD HZ
 141#define MIGRATION_COUNT_WINDOW 10
 142
 143/*
 144 * The block size of the device holding cache data must be
 145 * between 32KB and 1GB.
 146 */
 147#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 148#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 149
 150enum cache_metadata_mode {
 151	CM_WRITE,		/* metadata may be changed */
 152	CM_READ_ONLY,		/* metadata may not be changed */
 153	CM_FAIL
 154};
 155
 156enum cache_io_mode {
 157	/*
 158	 * Data is written to cached blocks only.  These blocks are marked
 159	 * dirty.  If you lose the cache device you will lose data.
 160	 * Potential performance increase for both reads and writes.
 161	 */
 162	CM_IO_WRITEBACK,
 163
 164	/*
 165	 * Data is written to both cache and origin.  Blocks are never
 166	 * dirty.  Potential performance benfit for reads only.
 167	 */
 168	CM_IO_WRITETHROUGH,
 169
 170	/*
 171	 * A degraded mode useful for various cache coherency situations
 172	 * (eg, rolling back snapshots).  Reads and writes always go to the
 173	 * origin.  If a write goes to a cached oblock, then the cache
 174	 * block is invalidated.
 175	 */
 176	CM_IO_PASSTHROUGH
 177};
 178
 179struct cache_features {
 180	enum cache_metadata_mode mode;
 181	enum cache_io_mode io_mode;
 
 
 182};
 183
 184struct cache_stats {
 185	atomic_t read_hit;
 186	atomic_t read_miss;
 187	atomic_t write_hit;
 188	atomic_t write_miss;
 189	atomic_t demotion;
 190	atomic_t promotion;
 
 191	atomic_t copies_avoided;
 192	atomic_t cache_cell_clash;
 193	atomic_t commit_count;
 194	atomic_t discard_count;
 195};
 196
 197/*
 198 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 199 * the one-past-the-end value.
 200 */
 201struct cblock_range {
 202	dm_cblock_t begin;
 203	dm_cblock_t end;
 204};
 205
 206struct invalidation_request {
 207	struct list_head list;
 208	struct cblock_range *cblocks;
 209
 210	atomic_t complete;
 211	int err;
 212
 213	wait_queue_head_t result_wait;
 214};
 215
 216struct cache {
 217	struct dm_target *ti;
 218	struct dm_target_callbacks callbacks;
 
 
 
 
 
 
 219
 220	struct dm_cache_metadata *cmd;
 221
 222	/*
 223	 * Metadata is written to this device.
 224	 */
 225	struct dm_dev *metadata_dev;
 226
 227	/*
 228	 * The slower of the two data devices.  Typically a spindle.
 229	 */
 230	struct dm_dev *origin_dev;
 231
 232	/*
 233	 * The faster of the two data devices.  Typically an SSD.
 234	 */
 235	struct dm_dev *cache_dev;
 236
 237	/*
 238	 * Size of the origin device in _complete_ blocks and native sectors.
 239	 */
 240	dm_oblock_t origin_blocks;
 241	sector_t origin_sectors;
 242
 243	/*
 244	 * Size of the cache device in blocks.
 245	 */
 246	dm_cblock_t cache_size;
 247
 248	/*
 249	 * Fields for converting from sectors to blocks.
 250	 */
 251	sector_t sectors_per_block;
 252	int sectors_per_block_shift;
 253
 254	spinlock_t lock;
 255	struct list_head deferred_cells;
 256	struct bio_list deferred_bios;
 257	struct bio_list deferred_flush_bios;
 258	struct bio_list deferred_writethrough_bios;
 259	struct list_head quiesced_migrations;
 260	struct list_head completed_migrations;
 261	struct list_head need_commit_migrations;
 262	sector_t migration_threshold;
 263	wait_queue_head_t migration_wait;
 264	atomic_t nr_allocated_migrations;
 265
 266	/*
 267	 * The number of in flight migrations that are performing
 268	 * background io. eg, promotion, writeback.
 269	 */
 270	atomic_t nr_io_migrations;
 271
 272	wait_queue_head_t quiescing_wait;
 273	atomic_t quiescing;
 274	atomic_t quiescing_ack;
 275
 276	/*
 277	 * cache_size entries, dirty if set
 278	 */
 279	atomic_t nr_dirty;
 280	unsigned long *dirty_bitset;
 281
 282	/*
 283	 * origin_blocks entries, discarded if set.
 284	 */
 285	dm_dblock_t discard_nr_blocks;
 286	unsigned long *discard_bitset;
 287	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 288
 289	/*
 290	 * Rather than reconstructing the table line for the status we just
 291	 * save it and regurgitate.
 292	 */
 293	unsigned nr_ctr_args;
 294	const char **ctr_args;
 295
 296	struct dm_kcopyd_client *copier;
 
 
 297	struct workqueue_struct *wq;
 298	struct work_struct worker;
 299
 300	struct delayed_work waker;
 301	unsigned long last_commit_jiffies;
 302
 303	struct dm_bio_prison *prison;
 304	struct dm_deferred_set *all_io_ds;
 305
 306	mempool_t *migration_pool;
 
 307
 308	struct dm_cache_policy *policy;
 309	unsigned policy_nr_args;
 
 
 
 
 
 
 
 
 310
 311	bool need_tick_bio:1;
 312	bool sized:1;
 313	bool invalidate:1;
 314	bool commit_requested:1;
 315	bool loaded_mappings:1;
 316	bool loaded_discards:1;
 317
 318	/*
 319	 * Cache features such as write-through.
 320	 */
 321	struct cache_features features;
 322
 323	struct cache_stats stats;
 
 324
 325	/*
 326	 * Invalidation fields.
 327	 */
 328	spinlock_t invalidation_lock;
 329	struct list_head invalidation_requests;
 330
 331	struct io_tracker origin_tracker;
 332};
 333
 334struct per_bio_data {
 335	bool tick:1;
 336	unsigned req_nr:2;
 337	struct dm_deferred_entry *all_io_entry;
 338	struct dm_hook_info hook_info;
 339	sector_t len;
 340
 341	/*
 342	 * writethrough fields.  These MUST remain at the end of this
 343	 * structure and the 'cache' member must be the first as it
 344	 * is used to determine the offset of the writethrough fields.
 345	 */
 346	struct cache *cache;
 347	dm_cblock_t cblock;
 348	struct dm_bio_details bio_details;
 349};
 350
 351struct dm_cache_migration {
 352	struct list_head list;
 353	struct cache *cache;
 354
 355	unsigned long start_jiffies;
 356	dm_oblock_t old_oblock;
 357	dm_oblock_t new_oblock;
 358	dm_cblock_t cblock;
 359
 360	bool err:1;
 361	bool discard:1;
 362	bool writeback:1;
 363	bool demote:1;
 364	bool promote:1;
 365	bool requeue_holder:1;
 366	bool invalidate:1;
 367
 368	struct dm_bio_prison_cell *old_ocell;
 369	struct dm_bio_prison_cell *new_ocell;
 370};
 371
 372/*
 373 * Processing a bio in the worker thread may require these memory
 374 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 375 * frees them back to the mempool).
 376 */
 377struct prealloc {
 378	struct dm_cache_migration *mg;
 379	struct dm_bio_prison_cell *cell1;
 380	struct dm_bio_prison_cell *cell2;
 381};
 382
 383static enum cache_metadata_mode get_cache_mode(struct cache *cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385static void wake_worker(struct cache *cache)
 386{
 387	queue_work(cache->wq, &cache->worker);
 
 
 
 388}
 389
 390/*----------------------------------------------------------------*/
 391
 392static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 393{
 394	/* FIXME: change to use a local slab. */
 395	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 396}
 397
 398static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 399{
 400	dm_bio_prison_free_cell(cache->prison, cell);
 401}
 402
 403static struct dm_cache_migration *alloc_migration(struct cache *cache)
 404{
 405	struct dm_cache_migration *mg;
 406
 407	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 408	if (mg) {
 409		mg->cache = cache;
 410		atomic_inc(&mg->cache->nr_allocated_migrations);
 411	}
 
 412
 413	return mg;
 414}
 415
 416static void free_migration(struct dm_cache_migration *mg)
 417{
 418	struct cache *cache = mg->cache;
 419
 420	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 421		wake_up(&cache->migration_wait);
 422
 423	mempool_free(mg, cache->migration_pool);
 424}
 425
 426static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 427{
 428	if (!p->mg) {
 429		p->mg = alloc_migration(cache);
 430		if (!p->mg)
 431			return -ENOMEM;
 432	}
 433
 434	if (!p->cell1) {
 435		p->cell1 = alloc_prison_cell(cache);
 436		if (!p->cell1)
 437			return -ENOMEM;
 438	}
 439
 440	if (!p->cell2) {
 441		p->cell2 = alloc_prison_cell(cache);
 442		if (!p->cell2)
 443			return -ENOMEM;
 444	}
 445
 446	return 0;
 447}
 448
 449static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 450{
 451	if (p->cell2)
 452		free_prison_cell(cache, p->cell2);
 453
 454	if (p->cell1)
 455		free_prison_cell(cache, p->cell1);
 456
 457	if (p->mg)
 458		free_migration(p->mg);
 459}
 460
 461static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 462{
 463	struct dm_cache_migration *mg = p->mg;
 464
 465	BUG_ON(!mg);
 466	p->mg = NULL;
 467
 468	return mg;
 469}
 470
 471/*
 472 * You must have a cell within the prealloc struct to return.  If not this
 473 * function will BUG() rather than returning NULL.
 474 */
 475static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 476{
 477	struct dm_bio_prison_cell *r = NULL;
 478
 479	if (p->cell1) {
 480		r = p->cell1;
 481		p->cell1 = NULL;
 
 
 
 482
 483	} else if (p->cell2) {
 484		r = p->cell2;
 485		p->cell2 = NULL;
 486	} else
 487		BUG();
 488
 489	return r;
 
 
 
 
 490}
 491
 492/*
 493 * You can't have more than two cells in a prealloc struct.  BUG() will be
 494 * called if you try and overfill.
 495 */
 496static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 497{
 498	if (!p->cell2)
 499		p->cell2 = cell;
 500
 501	else if (!p->cell1)
 502		p->cell1 = cell;
 
 
 503
 504	else
 505		BUG();
 506}
 507
 508/*----------------------------------------------------------------*/
 509
 510static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
 511{
 512	key->virtual = 0;
 513	key->dev = 0;
 514	key->block_begin = from_oblock(begin);
 515	key->block_end = from_oblock(end);
 516}
 517
 518/*
 519 * The caller hands in a preallocated cell, and a free function for it.
 520 * The cell will be freed if there's an error, or if it wasn't used because
 521 * a cell with that key already exists.
 522 */
 523typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 524
 525static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
 526			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 527			    cell_free_fn free_fn, void *free_context,
 528			    struct dm_bio_prison_cell **cell_result)
 529{
 530	int r;
 531	struct dm_cell_key key;
 532
 533	build_key(oblock_begin, oblock_end, &key);
 534	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 535	if (r)
 536		free_fn(free_context, cell_prealloc);
 537
 538	return r;
 539}
 540
 541static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 542		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 543		      cell_free_fn free_fn, void *free_context,
 544		      struct dm_bio_prison_cell **cell_result)
 545{
 
 
 
 546	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 547	return bio_detain_range(cache, oblock, end, bio,
 548				cell_prealloc, free_fn, free_context, cell_result);
 549}
 550
 551static int get_cell(struct cache *cache,
 552		    dm_oblock_t oblock,
 553		    struct prealloc *structs,
 554		    struct dm_bio_prison_cell **cell_result)
 555{
 556	int r;
 557	struct dm_cell_key key;
 558	struct dm_bio_prison_cell *cell_prealloc;
 559
 560	cell_prealloc = prealloc_get_cell(structs);
 
 
 
 
 
 
 
 
 561
 562	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
 563	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 564	if (r)
 565		prealloc_put_cell(structs, cell_prealloc);
 
 566
 567	return r;
 568}
 569
 570/*----------------------------------------------------------------*/
 571
 572static bool is_dirty(struct cache *cache, dm_cblock_t b)
 573{
 574	return test_bit(from_cblock(b), cache->dirty_bitset);
 575}
 576
 577static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 578{
 579	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 580		atomic_inc(&cache->nr_dirty);
 581		policy_set_dirty(cache->policy, oblock);
 582	}
 583}
 584
 585static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 
 
 
 
 
 
 
 
 
 
 
 586{
 587	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 588		policy_clear_dirty(cache->policy, oblock);
 589		if (atomic_dec_return(&cache->nr_dirty) == 0)
 590			dm_table_event(cache->ti->table);
 591	}
 
 
 592}
 593
 594/*----------------------------------------------------------------*/
 595
 596static bool block_size_is_power_of_two(struct cache *cache)
 597{
 598	return cache->sectors_per_block_shift >= 0;
 599}
 600
 601/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 602#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 603__always_inline
 604#endif
 605static dm_block_t block_div(dm_block_t b, uint32_t n)
 606{
 607	do_div(b, n);
 608
 609	return b;
 610}
 611
 612static dm_block_t oblocks_per_dblock(struct cache *cache)
 613{
 614	dm_block_t oblocks = cache->discard_block_size;
 615
 616	if (block_size_is_power_of_two(cache))
 617		oblocks >>= cache->sectors_per_block_shift;
 618	else
 619		oblocks = block_div(oblocks, cache->sectors_per_block);
 620
 621	return oblocks;
 622}
 623
 624static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 625{
 626	return to_dblock(block_div(from_oblock(oblock),
 627				   oblocks_per_dblock(cache)));
 628}
 629
 630static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
 631{
 632	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
 633}
 634
 635static void set_discard(struct cache *cache, dm_dblock_t b)
 636{
 637	unsigned long flags;
 638
 639	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 640	atomic_inc(&cache->stats.discard_count);
 641
 642	spin_lock_irqsave(&cache->lock, flags);
 643	set_bit(from_dblock(b), cache->discard_bitset);
 644	spin_unlock_irqrestore(&cache->lock, flags);
 645}
 646
 647static void clear_discard(struct cache *cache, dm_dblock_t b)
 648{
 649	unsigned long flags;
 650
 651	spin_lock_irqsave(&cache->lock, flags);
 652	clear_bit(from_dblock(b), cache->discard_bitset);
 653	spin_unlock_irqrestore(&cache->lock, flags);
 654}
 655
 656static bool is_discarded(struct cache *cache, dm_dblock_t b)
 657{
 658	int r;
 659	unsigned long flags;
 660
 661	spin_lock_irqsave(&cache->lock, flags);
 662	r = test_bit(from_dblock(b), cache->discard_bitset);
 663	spin_unlock_irqrestore(&cache->lock, flags);
 664
 665	return r;
 666}
 667
 668static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 669{
 670	int r;
 671	unsigned long flags;
 672
 673	spin_lock_irqsave(&cache->lock, flags);
 674	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 675		     cache->discard_bitset);
 676	spin_unlock_irqrestore(&cache->lock, flags);
 677
 678	return r;
 679}
 680
 681/*----------------------------------------------------------------*/
 682
 683static void load_stats(struct cache *cache)
 684{
 685	struct dm_cache_statistics stats;
 686
 687	dm_cache_metadata_get_stats(cache->cmd, &stats);
 688	atomic_set(&cache->stats.read_hit, stats.read_hits);
 689	atomic_set(&cache->stats.read_miss, stats.read_misses);
 690	atomic_set(&cache->stats.write_hit, stats.write_hits);
 691	atomic_set(&cache->stats.write_miss, stats.write_misses);
 692}
 693
 694static void save_stats(struct cache *cache)
 695{
 696	struct dm_cache_statistics stats;
 697
 698	if (get_cache_mode(cache) >= CM_READ_ONLY)
 699		return;
 700
 701	stats.read_hits = atomic_read(&cache->stats.read_hit);
 702	stats.read_misses = atomic_read(&cache->stats.read_miss);
 703	stats.write_hits = atomic_read(&cache->stats.write_hit);
 704	stats.write_misses = atomic_read(&cache->stats.write_miss);
 705
 706	dm_cache_metadata_set_stats(cache->cmd, &stats);
 707}
 708
 709/*----------------------------------------------------------------
 710 * Per bio data
 711 *--------------------------------------------------------------*/
 712
 713/*
 714 * If using writeback, leave out struct per_bio_data's writethrough fields.
 715 */
 716#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 717#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 718
 719static bool writethrough_mode(struct cache_features *f)
 720{
 721	return f->io_mode == CM_IO_WRITETHROUGH;
 722}
 723
 724static bool writeback_mode(struct cache_features *f)
 725{
 726	return f->io_mode == CM_IO_WRITEBACK;
 727}
 728
 729static bool passthrough_mode(struct cache_features *f)
 730{
 731	return f->io_mode == CM_IO_PASSTHROUGH;
 732}
 733
 734static size_t get_per_bio_data_size(struct cache *cache)
 735{
 736	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 737}
 738
 739static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 740{
 741	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 742	BUG_ON(!pb);
 743	return pb;
 744}
 745
 746static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 747{
 748	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 749
 750	pb->tick = false;
 751	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 752	pb->all_io_entry = NULL;
 753	pb->len = 0;
 754
 755	return pb;
 756}
 757
 758/*----------------------------------------------------------------
 759 * Remapping
 760 *--------------------------------------------------------------*/
 761static void remap_to_origin(struct cache *cache, struct bio *bio)
 762{
 763	bio->bi_bdev = cache->origin_dev->bdev;
 764}
 765
 766static void remap_to_cache(struct cache *cache, struct bio *bio,
 767			   dm_cblock_t cblock)
 768{
 769	sector_t bi_sector = bio->bi_iter.bi_sector;
 770	sector_t block = from_cblock(cblock);
 771
 772	bio->bi_bdev = cache->cache_dev->bdev;
 773	if (!block_size_is_power_of_two(cache))
 774		bio->bi_iter.bi_sector =
 775			(block * cache->sectors_per_block) +
 776			sector_div(bi_sector, cache->sectors_per_block);
 777	else
 778		bio->bi_iter.bi_sector =
 779			(block << cache->sectors_per_block_shift) |
 780			(bi_sector & (cache->sectors_per_block - 1));
 781}
 782
 783static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 784{
 785	unsigned long flags;
 786	size_t pb_data_size = get_per_bio_data_size(cache);
 787	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 788
 789	spin_lock_irqsave(&cache->lock, flags);
 790	if (cache->need_tick_bio &&
 791	    !(bio->bi_opf & (REQ_FUA | REQ_PREFLUSH)) &&
 792	    bio_op(bio) != REQ_OP_DISCARD) {
 
 793		pb->tick = true;
 794		cache->need_tick_bio = false;
 795	}
 796	spin_unlock_irqrestore(&cache->lock, flags);
 797}
 798
 799static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 800				  dm_oblock_t oblock)
 801{
 802	check_if_tick_bio_needed(cache, bio);
 
 803	remap_to_origin(cache, bio);
 804	if (bio_data_dir(bio) == WRITE)
 805		clear_discard(cache, oblock_to_dblock(cache, oblock));
 806}
 807
 
 
 
 
 
 
 
 808static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 809				 dm_oblock_t oblock, dm_cblock_t cblock)
 810{
 811	check_if_tick_bio_needed(cache, bio);
 812	remap_to_cache(cache, bio, cblock);
 813	if (bio_data_dir(bio) == WRITE) {
 814		set_dirty(cache, oblock, cblock);
 815		clear_discard(cache, oblock_to_dblock(cache, oblock));
 816	}
 817}
 818
 819static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 820{
 821	sector_t block_nr = bio->bi_iter.bi_sector;
 822
 823	if (!block_size_is_power_of_two(cache))
 824		(void) sector_div(block_nr, cache->sectors_per_block);
 825	else
 826		block_nr >>= cache->sectors_per_block_shift;
 827
 828	return to_oblock(block_nr);
 829}
 830
 831static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 832{
 833	return bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
 834}
 835
 836/*
 837 * You must increment the deferred set whilst the prison cell is held.  To
 838 * encourage this, we ask for 'cell' to be passed in.
 839 */
 840static void inc_ds(struct cache *cache, struct bio *bio,
 841		   struct dm_bio_prison_cell *cell)
 842{
 843	size_t pb_data_size = get_per_bio_data_size(cache);
 844	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 845
 846	BUG_ON(!cell);
 847	BUG_ON(pb->all_io_entry);
 848
 849	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
 850}
 851
 852static bool accountable_bio(struct cache *cache, struct bio *bio)
 853{
 854	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
 855		bio_op(bio) != REQ_OP_DISCARD);
 856}
 857
 858static void accounted_begin(struct cache *cache, struct bio *bio)
 859{
 860	size_t pb_data_size = get_per_bio_data_size(cache);
 861	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 862
 863	if (accountable_bio(cache, bio)) {
 
 864		pb->len = bio_sectors(bio);
 865		iot_io_begin(&cache->origin_tracker, pb->len);
 866	}
 867}
 868
 869static void accounted_complete(struct cache *cache, struct bio *bio)
 870{
 871	size_t pb_data_size = get_per_bio_data_size(cache);
 872	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 873
 874	iot_io_end(&cache->origin_tracker, pb->len);
 875}
 876
 877static void accounted_request(struct cache *cache, struct bio *bio)
 878{
 879	accounted_begin(cache, bio);
 880	generic_make_request(bio);
 881}
 882
 883static void issue(struct cache *cache, struct bio *bio)
 884{
 885	unsigned long flags;
 886
 887	if (!bio_triggers_commit(cache, bio)) {
 888		accounted_request(cache, bio);
 889		return;
 890	}
 891
 892	/*
 893	 * Batch together any bios that trigger commits and then issue a
 894	 * single commit for them in do_worker().
 895	 */
 896	spin_lock_irqsave(&cache->lock, flags);
 897	cache->commit_requested = true;
 898	bio_list_add(&cache->deferred_flush_bios, bio);
 899	spin_unlock_irqrestore(&cache->lock, flags);
 900}
 901
 902static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
 903{
 904	inc_ds(cache, bio, cell);
 905	issue(cache, bio);
 906}
 907
 908static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 909{
 910	unsigned long flags;
 911
 912	spin_lock_irqsave(&cache->lock, flags);
 913	bio_list_add(&cache->deferred_writethrough_bios, bio);
 914	spin_unlock_irqrestore(&cache->lock, flags);
 915
 916	wake_worker(cache);
 917}
 918
 919static void writethrough_endio(struct bio *bio)
 920{
 921	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 922
 923	dm_unhook_bio(&pb->hook_info, bio);
 924
 925	if (bio->bi_error) {
 926		bio_endio(bio);
 927		return;
 928	}
 929
 930	dm_bio_restore(&pb->bio_details, bio);
 931	remap_to_cache(pb->cache, bio, pb->cblock);
 932
 933	/*
 934	 * We can't issue this bio directly, since we're in interrupt
 935	 * context.  So it gets put on a bio list for processing by the
 936	 * worker thread.
 937	 */
 938	defer_writethrough_bio(pb->cache, bio);
 939}
 940
 941/*
 942 * When running in writethrough mode we need to send writes to clean blocks
 943 * to both the cache and origin devices.  In future we'd like to clone the
 944 * bio and send them in parallel, but for now we're doing them in
 945 * series as this is easier.
 946 */
 947static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 948				       dm_oblock_t oblock, dm_cblock_t cblock)
 949{
 950	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 
 
 951
 952	pb->cache = cache;
 953	pb->cblock = cblock;
 954	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 955	dm_bio_record(&pb->bio_details, bio);
 
 
 
 956
 957	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 958}
 959
 960/*----------------------------------------------------------------
 961 * Failure modes
 962 *--------------------------------------------------------------*/
 963static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 964{
 965	return cache->features.mode;
 966}
 967
 968static const char *cache_device_name(struct cache *cache)
 969{
 970	return dm_device_name(dm_table_get_md(cache->ti->table));
 971}
 972
 973static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 974{
 975	const char *descs[] = {
 976		"write",
 977		"read-only",
 978		"fail"
 979	};
 980
 981	dm_table_event(cache->ti->table);
 982	DMINFO("%s: switching cache to %s mode",
 983	       cache_device_name(cache), descs[(int)mode]);
 984}
 985
 986static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 987{
 988	bool needs_check;
 989	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 990
 991	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 992		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 993		      cache_device_name(cache));
 994		new_mode = CM_FAIL;
 995	}
 996
 997	if (new_mode == CM_WRITE && needs_check) {
 998		DMERR("%s: unable to switch cache to write mode until repaired.",
 999		      cache_device_name(cache));
1000		if (old_mode != new_mode)
1001			new_mode = old_mode;
1002		else
1003			new_mode = CM_READ_ONLY;
1004	}
1005
1006	/* Never move out of fail mode */
1007	if (old_mode == CM_FAIL)
1008		new_mode = CM_FAIL;
1009
1010	switch (new_mode) {
1011	case CM_FAIL:
1012	case CM_READ_ONLY:
1013		dm_cache_metadata_set_read_only(cache->cmd);
1014		break;
1015
1016	case CM_WRITE:
1017		dm_cache_metadata_set_read_write(cache->cmd);
1018		break;
1019	}
1020
1021	cache->features.mode = new_mode;
1022
1023	if (new_mode != old_mode)
1024		notify_mode_switch(cache, new_mode);
1025}
1026
1027static void abort_transaction(struct cache *cache)
1028{
1029	const char *dev_name = cache_device_name(cache);
1030
1031	if (get_cache_mode(cache) >= CM_READ_ONLY)
1032		return;
1033
1034	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1035		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1036		set_cache_mode(cache, CM_FAIL);
1037	}
1038
1039	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1040	if (dm_cache_metadata_abort(cache->cmd)) {
1041		DMERR("%s: failed to abort metadata transaction", dev_name);
1042		set_cache_mode(cache, CM_FAIL);
1043	}
1044}
1045
1046static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1047{
1048	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1049		    cache_device_name(cache), op, r);
1050	abort_transaction(cache);
1051	set_cache_mode(cache, CM_READ_ONLY);
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054/*----------------------------------------------------------------
1055 * Migration processing
1056 *
1057 * Migration covers moving data from the origin device to the cache, or
1058 * vice versa.
1059 *--------------------------------------------------------------*/
 
1060static void inc_io_migrations(struct cache *cache)
1061{
1062	atomic_inc(&cache->nr_io_migrations);
1063}
1064
1065static void dec_io_migrations(struct cache *cache)
1066{
1067	atomic_dec(&cache->nr_io_migrations);
1068}
1069
1070static bool discard_or_flush(struct bio *bio)
1071{
1072	return bio_op(bio) == REQ_OP_DISCARD ||
1073	       bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1074}
1075
1076static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1077{
1078	if (discard_or_flush(cell->holder)) {
1079		/*
1080		 * We have to handle these bios individually.
1081		 */
1082		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1083		free_prison_cell(cache, cell);
1084	} else
1085		list_add_tail(&cell->user_list, &cache->deferred_cells);
1086}
1087
1088static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
 
1089{
1090	unsigned long flags;
1091
1092	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1093		/*
1094		 * There was no prisoner to promote to holder, the
1095		 * cell has been released.
1096		 */
1097		free_prison_cell(cache, cell);
1098		return;
1099	}
1100
1101	spin_lock_irqsave(&cache->lock, flags);
1102	__cell_defer(cache, cell);
1103	spin_unlock_irqrestore(&cache->lock, flags);
1104
1105	wake_worker(cache);
 
 
 
1106}
1107
1108static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1109{
1110	dm_cell_error(cache->prison, cell, err);
1111	free_prison_cell(cache, cell);
1112}
1113
1114static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1115{
1116	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
 
 
1117}
1118
1119static void free_io_migration(struct dm_cache_migration *mg)
1120{
1121	struct cache *cache = mg->cache;
1122
1123	dec_io_migrations(cache);
1124	free_migration(mg);
1125	wake_worker(cache);
1126}
1127
1128static void migration_failure(struct dm_cache_migration *mg)
1129{
1130	struct cache *cache = mg->cache;
1131	const char *dev_name = cache_device_name(cache);
1132
1133	if (mg->writeback) {
1134		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1135		set_dirty(cache, mg->old_oblock, mg->cblock);
1136		cell_defer(cache, mg->old_ocell, false);
1137
1138	} else if (mg->demote) {
1139		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1140		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1141
1142		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1143		if (mg->promote)
1144			cell_defer(cache, mg->new_ocell, true);
1145	} else {
1146		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1147		policy_remove_mapping(cache->policy, mg->new_oblock);
1148		cell_defer(cache, mg->new_ocell, true);
1149	}
1150
1151	free_io_migration(mg);
1152}
1153
1154static void migration_success_pre_commit(struct dm_cache_migration *mg)
1155{
1156	int r;
1157	unsigned long flags;
1158	struct cache *cache = mg->cache;
1159
1160	if (mg->writeback) {
1161		clear_dirty(cache, mg->old_oblock, mg->cblock);
1162		cell_defer(cache, mg->old_ocell, false);
1163		free_io_migration(mg);
1164		return;
1165
1166	} else if (mg->demote) {
1167		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1168		if (r) {
1169			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1170				    cache_device_name(cache));
1171			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1172			policy_force_mapping(cache->policy, mg->new_oblock,
1173					     mg->old_oblock);
1174			if (mg->promote)
1175				cell_defer(cache, mg->new_ocell, true);
1176			free_io_migration(mg);
1177			return;
1178		}
1179	} else {
1180		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1181		if (r) {
1182			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1183				    cache_device_name(cache));
1184			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1185			policy_remove_mapping(cache->policy, mg->new_oblock);
1186			free_io_migration(mg);
1187			return;
1188		}
1189	}
1190
1191	spin_lock_irqsave(&cache->lock, flags);
1192	list_add_tail(&mg->list, &cache->need_commit_migrations);
1193	cache->commit_requested = true;
1194	spin_unlock_irqrestore(&cache->lock, flags);
1195}
1196
1197static void migration_success_post_commit(struct dm_cache_migration *mg)
1198{
1199	unsigned long flags;
1200	struct cache *cache = mg->cache;
1201
1202	if (mg->writeback) {
1203		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1204			     cache_device_name(cache));
1205		return;
1206
1207	} else if (mg->demote) {
1208		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1209
1210		if (mg->promote) {
1211			mg->demote = false;
1212
1213			spin_lock_irqsave(&cache->lock, flags);
1214			list_add_tail(&mg->list, &cache->quiesced_migrations);
1215			spin_unlock_irqrestore(&cache->lock, flags);
1216
1217		} else {
1218			if (mg->invalidate)
1219				policy_remove_mapping(cache->policy, mg->old_oblock);
1220			free_io_migration(mg);
1221		}
 
1222
1223	} else {
1224		if (mg->requeue_holder) {
1225			clear_dirty(cache, mg->new_oblock, mg->cblock);
1226			cell_defer(cache, mg->new_ocell, true);
1227		} else {
1228			/*
1229			 * The block was promoted via an overwrite, so it's dirty.
1230			 */
1231			set_dirty(cache, mg->new_oblock, mg->cblock);
1232			bio_endio(mg->new_ocell->holder);
1233			cell_defer(cache, mg->new_ocell, false);
1234		}
1235		free_io_migration(mg);
1236	}
1237}
1238
1239static void copy_complete(int read_err, unsigned long write_err, void *context)
1240{
1241	unsigned long flags;
1242	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1243	struct cache *cache = mg->cache;
1244
1245	if (read_err || write_err)
1246		mg->err = true;
1247
1248	spin_lock_irqsave(&cache->lock, flags);
1249	list_add_tail(&mg->list, &cache->completed_migrations);
1250	spin_unlock_irqrestore(&cache->lock, flags);
1251
1252	wake_worker(cache);
1253}
1254
1255static void issue_copy(struct dm_cache_migration *mg)
1256{
1257	int r;
1258	struct dm_io_region o_region, c_region;
1259	struct cache *cache = mg->cache;
1260	sector_t cblock = from_cblock(mg->cblock);
1261
1262	o_region.bdev = cache->origin_dev->bdev;
 
1263	o_region.count = cache->sectors_per_block;
1264
1265	c_region.bdev = cache->cache_dev->bdev;
1266	c_region.sector = cblock * cache->sectors_per_block;
1267	c_region.count = cache->sectors_per_block;
1268
1269	if (mg->writeback || mg->demote) {
1270		/* demote */
1271		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1272		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1273	} else {
1274		/* promote */
1275		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1276		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1277	}
1278
1279	if (r < 0) {
1280		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1281		migration_failure(mg);
1282	}
 
 
 
1283}
1284
1285static void overwrite_endio(struct bio *bio)
1286{
1287	struct dm_cache_migration *mg = bio->bi_private;
1288	struct cache *cache = mg->cache;
1289	size_t pb_data_size = get_per_bio_data_size(cache);
1290	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1291	unsigned long flags;
1292
1293	dm_unhook_bio(&pb->hook_info, bio);
1294
1295	if (bio->bi_error)
1296		mg->err = true;
1297
1298	mg->requeue_holder = false;
1299
1300	spin_lock_irqsave(&cache->lock, flags);
1301	list_add_tail(&mg->list, &cache->completed_migrations);
1302	spin_unlock_irqrestore(&cache->lock, flags);
1303
1304	wake_worker(cache);
1305}
1306
1307static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
 
1308{
1309	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1310	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1311
1312	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1313	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1314
1315	/*
1316	 * No need to inc_ds() here, since the cell will be held for the
1317	 * duration of the io.
1318	 */
1319	accounted_request(mg->cache, bio);
1320}
 
 
1321
1322static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1323{
1324	return (bio_data_dir(bio) == WRITE) &&
1325		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1326}
1327
1328static void avoid_copy(struct dm_cache_migration *mg)
 
 
 
 
 
 
 
 
 
 
 
1329{
1330	atomic_inc(&mg->cache->stats.copies_avoided);
1331	migration_success_pre_commit(mg);
1332}
 
1333
1334static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1335				     dm_dblock_t *b, dm_dblock_t *e)
1336{
1337	sector_t sb = bio->bi_iter.bi_sector;
1338	sector_t se = bio_end_sector(bio);
1339
1340	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341
1342	if (se - sb < cache->discard_block_size)
1343		*e = *b;
1344	else
1345		*e = to_dblock(block_div(se, cache->discard_block_size));
1346}
 
 
 
 
1347
1348static void issue_discard(struct dm_cache_migration *mg)
1349{
1350	dm_dblock_t b, e;
1351	struct bio *bio = mg->new_ocell->holder;
1352	struct cache *cache = mg->cache;
 
 
1353
1354	calc_discard_block_range(cache, bio, &b, &e);
1355	while (b != e) {
1356		set_discard(cache, b);
1357		b = to_dblock(from_dblock(b) + 1);
1358	}
1359
1360	bio_endio(bio);
1361	cell_defer(cache, mg->new_ocell, false);
1362	free_migration(mg);
1363	wake_worker(cache);
 
 
 
1364}
1365
1366static void issue_copy_or_discard(struct dm_cache_migration *mg)
1367{
1368	bool avoid;
 
 
 
 
 
 
 
1369	struct cache *cache = mg->cache;
 
1370
1371	if (mg->discard) {
1372		issue_discard(mg);
1373		return;
1374	}
 
 
 
1375
1376	if (mg->writeback || mg->demote)
1377		avoid = !is_dirty(cache, mg->cblock) ||
1378			is_discarded_oblock(cache, mg->old_oblock);
1379	else {
1380		struct bio *bio = mg->new_ocell->holder;
1381
1382		avoid = is_discarded_oblock(cache, mg->new_oblock);
 
 
 
 
 
1383
1384		if (writeback_mode(&cache->features) &&
1385		    !avoid && bio_writes_complete_block(cache, bio)) {
1386			issue_overwrite(mg, bio);
1387			return;
1388		}
1389	}
1390
1391	avoid ? avoid_copy(mg) : issue_copy(mg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392}
1393
1394static void complete_migration(struct dm_cache_migration *mg)
1395{
1396	if (mg->err)
1397		migration_failure(mg);
 
 
 
 
 
1398	else
1399		migration_success_pre_commit(mg);
1400}
1401
1402static void process_migrations(struct cache *cache, struct list_head *head,
1403			       void (*fn)(struct dm_cache_migration *))
1404{
1405	unsigned long flags;
1406	struct list_head list;
1407	struct dm_cache_migration *mg, *tmp;
1408
1409	INIT_LIST_HEAD(&list);
1410	spin_lock_irqsave(&cache->lock, flags);
1411	list_splice_init(head, &list);
1412	spin_unlock_irqrestore(&cache->lock, flags);
 
1413
1414	list_for_each_entry_safe(mg, tmp, &list, list)
1415		fn(mg);
1416}
 
 
 
 
 
1417
1418static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1419{
1420	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
 
 
 
1421}
1422
1423static void queue_quiesced_migration(struct dm_cache_migration *mg)
1424{
1425	unsigned long flags;
1426	struct cache *cache = mg->cache;
 
 
1427
1428	spin_lock_irqsave(&cache->lock, flags);
1429	__queue_quiesced_migration(mg);
1430	spin_unlock_irqrestore(&cache->lock, flags);
 
 
1431
1432	wake_worker(cache);
 
1433}
1434
1435static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1436{
1437	unsigned long flags;
1438	struct dm_cache_migration *mg, *tmp;
1439
1440	spin_lock_irqsave(&cache->lock, flags);
1441	list_for_each_entry_safe(mg, tmp, work, list)
1442		__queue_quiesced_migration(mg);
1443	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	wake_worker(cache);
 
 
 
 
 
 
 
 
 
 
1446}
1447
1448static void check_for_quiesced_migrations(struct cache *cache,
1449					  struct per_bio_data *pb)
1450{
1451	struct list_head work;
 
 
 
1452
1453	if (!pb->all_io_entry)
1454		return;
1455
1456	INIT_LIST_HEAD(&work);
1457	dm_deferred_entry_dec(pb->all_io_entry, &work);
 
 
 
 
 
 
 
 
 
 
 
 
1458
1459	if (!list_empty(&work))
1460		queue_quiesced_migrations(cache, &work);
1461}
1462
1463static void quiesce_migration(struct dm_cache_migration *mg)
1464{
1465	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1466		queue_quiesced_migration(mg);
 
 
1467}
1468
1469static void promote(struct cache *cache, struct prealloc *structs,
1470		    dm_oblock_t oblock, dm_cblock_t cblock,
1471		    struct dm_bio_prison_cell *cell)
1472{
1473	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1474
1475	mg->err = false;
1476	mg->discard = false;
1477	mg->writeback = false;
1478	mg->demote = false;
1479	mg->promote = true;
1480	mg->requeue_holder = true;
1481	mg->invalidate = false;
1482	mg->cache = cache;
1483	mg->new_oblock = oblock;
1484	mg->cblock = cblock;
1485	mg->old_ocell = NULL;
1486	mg->new_ocell = cell;
1487	mg->start_jiffies = jiffies;
1488
1489	inc_io_migrations(cache);
1490	quiesce_migration(mg);
1491}
1492
1493static void writeback(struct cache *cache, struct prealloc *structs,
1494		      dm_oblock_t oblock, dm_cblock_t cblock,
1495		      struct dm_bio_prison_cell *cell)
1496{
1497	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1498
1499	mg->err = false;
1500	mg->discard = false;
1501	mg->writeback = true;
1502	mg->demote = false;
1503	mg->promote = false;
1504	mg->requeue_holder = true;
1505	mg->invalidate = false;
1506	mg->cache = cache;
1507	mg->old_oblock = oblock;
1508	mg->cblock = cblock;
1509	mg->old_ocell = cell;
1510	mg->new_ocell = NULL;
1511	mg->start_jiffies = jiffies;
1512
1513	inc_io_migrations(cache);
1514	quiesce_migration(mg);
1515}
1516
1517static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1518				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1519				dm_cblock_t cblock,
1520				struct dm_bio_prison_cell *old_ocell,
1521				struct dm_bio_prison_cell *new_ocell)
1522{
1523	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1524
1525	mg->err = false;
1526	mg->discard = false;
1527	mg->writeback = false;
1528	mg->demote = true;
1529	mg->promote = true;
1530	mg->requeue_holder = true;
1531	mg->invalidate = false;
1532	mg->cache = cache;
1533	mg->old_oblock = old_oblock;
1534	mg->new_oblock = new_oblock;
1535	mg->cblock = cblock;
1536	mg->old_ocell = old_ocell;
1537	mg->new_ocell = new_ocell;
1538	mg->start_jiffies = jiffies;
1539
1540	inc_io_migrations(cache);
1541	quiesce_migration(mg);
1542}
1543
1544/*
1545 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1546 * block are thrown away.
1547 */
1548static void invalidate(struct cache *cache, struct prealloc *structs,
1549		       dm_oblock_t oblock, dm_cblock_t cblock,
1550		       struct dm_bio_prison_cell *cell)
1551{
1552	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1553
1554	mg->err = false;
1555	mg->discard = false;
1556	mg->writeback = false;
1557	mg->demote = true;
1558	mg->promote = false;
1559	mg->requeue_holder = true;
1560	mg->invalidate = true;
1561	mg->cache = cache;
1562	mg->old_oblock = oblock;
1563	mg->cblock = cblock;
1564	mg->old_ocell = cell;
1565	mg->new_ocell = NULL;
1566	mg->start_jiffies = jiffies;
1567
1568	inc_io_migrations(cache);
1569	quiesce_migration(mg);
1570}
1571
1572static void discard(struct cache *cache, struct prealloc *structs,
1573		    struct dm_bio_prison_cell *cell)
1574{
1575	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1576
1577	mg->err = false;
1578	mg->discard = true;
1579	mg->writeback = false;
1580	mg->demote = false;
1581	mg->promote = false;
1582	mg->requeue_holder = false;
1583	mg->invalidate = false;
1584	mg->cache = cache;
1585	mg->old_ocell = NULL;
1586	mg->new_ocell = cell;
1587	mg->start_jiffies = jiffies;
1588
1589	quiesce_migration(mg);
 
 
 
 
 
 
1590}
1591
1592/*----------------------------------------------------------------
1593 * bio processing
1594 *--------------------------------------------------------------*/
1595static void defer_bio(struct cache *cache, struct bio *bio)
1596{
1597	unsigned long flags;
1598
1599	spin_lock_irqsave(&cache->lock, flags);
1600	bio_list_add(&cache->deferred_bios, bio);
1601	spin_unlock_irqrestore(&cache->lock, flags);
1602
1603	wake_worker(cache);
1604}
1605
1606static void process_flush_bio(struct cache *cache, struct bio *bio)
1607{
1608	size_t pb_data_size = get_per_bio_data_size(cache);
1609	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1610
1611	BUG_ON(bio->bi_iter.bi_size);
1612	if (!pb->req_nr)
1613		remap_to_origin(cache, bio);
1614	else
1615		remap_to_cache(cache, bio, 0);
1616
1617	/*
1618	 * REQ_PREFLUSH is not directed at any particular block so we don't
1619	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_PREFLUSH
1620	 * by dm-core.
1621	 */
1622	issue(cache, bio);
1623}
1624
1625static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1626				struct bio *bio)
1627{
1628	int r;
1629	dm_dblock_t b, e;
1630	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1631
1632	calc_discard_block_range(cache, bio, &b, &e);
1633	if (b == e) {
1634		bio_endio(bio);
1635		return;
1636	}
1637
1638	cell_prealloc = prealloc_get_cell(structs);
1639	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1640			     (cell_free_fn) prealloc_put_cell,
1641			     structs, &new_ocell);
1642	if (r > 0)
1643		return;
1644
1645	discard(cache, structs, new_ocell);
1646}
1647
1648static bool spare_migration_bandwidth(struct cache *cache)
1649{
1650	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651		cache->sectors_per_block;
1652	return current_volume < cache->migration_threshold;
1653}
1654
1655static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656{
1657	atomic_inc(bio_data_dir(bio) == READ ?
1658		   &cache->stats.read_hit : &cache->stats.write_hit);
1659}
 
 
 
 
 
1660
1661static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662{
1663	atomic_inc(bio_data_dir(bio) == READ ?
1664		   &cache->stats.read_miss : &cache->stats.write_miss);
1665}
1666
1667/*----------------------------------------------------------------*/
 
1668
1669struct inc_detail {
1670	struct cache *cache;
1671	struct bio_list bios_for_issue;
1672	struct bio_list unhandled_bios;
1673	bool any_writes;
1674};
1675
1676static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1677{
1678	struct bio *bio;
1679	struct inc_detail *detail = context;
1680	struct cache *cache = detail->cache;
1681
1682	inc_ds(cache, cell->holder, cell);
1683	if (bio_data_dir(cell->holder) == WRITE)
1684		detail->any_writes = true;
1685
1686	while ((bio = bio_list_pop(&cell->bios))) {
1687		if (discard_or_flush(bio)) {
1688			bio_list_add(&detail->unhandled_bios, bio);
1689			continue;
1690		}
1691
1692		if (bio_data_dir(bio) == WRITE)
1693			detail->any_writes = true;
1694
1695		bio_list_add(&detail->bios_for_issue, bio);
1696		inc_ds(cache, bio, cell);
 
 
1697	}
 
 
 
 
 
 
1698}
1699
1700// FIXME: refactor these two
1701static void remap_cell_to_origin_clear_discard(struct cache *cache,
1702					       struct dm_bio_prison_cell *cell,
1703					       dm_oblock_t oblock, bool issue_holder)
1704{
1705	struct bio *bio;
1706	unsigned long flags;
1707	struct inc_detail detail;
 
1708
1709	detail.cache = cache;
1710	bio_list_init(&detail.bios_for_issue);
1711	bio_list_init(&detail.unhandled_bios);
1712	detail.any_writes = false;
1713
1714	spin_lock_irqsave(&cache->lock, flags);
1715	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1716	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1717	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
1718
1719	remap_to_origin(cache, cell->holder);
1720	if (issue_holder)
1721		issue(cache, cell->holder);
1722	else
1723		accounted_begin(cache, cell->holder);
1724
1725	if (detail.any_writes)
1726		clear_discard(cache, oblock_to_dblock(cache, oblock));
1727
1728	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1729		remap_to_origin(cache, bio);
1730		issue(cache, bio);
 
 
 
 
1731	}
1732
1733	free_prison_cell(cache, cell);
1734}
1735
1736static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1737				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1738{
1739	struct bio *bio;
1740	unsigned long flags;
1741	struct inc_detail detail;
1742
1743	detail.cache = cache;
1744	bio_list_init(&detail.bios_for_issue);
1745	bio_list_init(&detail.unhandled_bios);
1746	detail.any_writes = false;
1747
1748	spin_lock_irqsave(&cache->lock, flags);
1749	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1750	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1751	spin_unlock_irqrestore(&cache->lock, flags);
1752
1753	remap_to_cache(cache, cell->holder, cblock);
1754	if (issue_holder)
1755		issue(cache, cell->holder);
1756	else
1757		accounted_begin(cache, cell->holder);
1758
1759	if (detail.any_writes) {
1760		set_dirty(cache, oblock, cblock);
1761		clear_discard(cache, oblock_to_dblock(cache, oblock));
1762	}
1763
1764	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1765		remap_to_cache(cache, bio, cblock);
1766		issue(cache, bio);
1767	}
1768
1769	free_prison_cell(cache, cell);
1770}
1771
1772/*----------------------------------------------------------------*/
 
 
1773
1774struct old_oblock_lock {
1775	struct policy_locker locker;
1776	struct cache *cache;
1777	struct prealloc *structs;
1778	struct dm_bio_prison_cell *cell;
1779};
1780
1781static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1782{
1783	/* This should never be called */
1784	BUG();
1785	return 0;
 
 
 
 
 
1786}
1787
1788static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1789{
1790	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1791	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1792
1793	return bio_detain(l->cache, b, NULL, cell_prealloc,
1794			  (cell_free_fn) prealloc_put_cell,
1795			  l->structs, &l->cell);
1796}
1797
1798static void process_cell(struct cache *cache, struct prealloc *structs,
1799			 struct dm_bio_prison_cell *new_ocell)
1800{
1801	int r;
1802	bool release_cell = true;
1803	struct bio *bio = new_ocell->holder;
1804	dm_oblock_t block = get_bio_block(cache, bio);
1805	struct policy_result lookup_result;
1806	bool passthrough = passthrough_mode(&cache->features);
1807	bool fast_promotion, can_migrate;
1808	struct old_oblock_lock ool;
1809
1810	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1811	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1812
1813	ool.locker.fn = cell_locker;
1814	ool.cache = cache;
1815	ool.structs = structs;
1816	ool.cell = NULL;
1817	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1818		       bio, &ool.locker, &lookup_result);
1819
1820	if (r == -EWOULDBLOCK)
1821		/* migration has been denied */
1822		lookup_result.op = POLICY_MISS;
1823
1824	switch (lookup_result.op) {
1825	case POLICY_HIT:
1826		if (passthrough) {
1827			inc_miss_counter(cache, bio);
1828
1829			/*
1830			 * Passthrough always maps to the origin,
1831			 * invalidating any cache blocks that are written
1832			 * to.
1833			 */
1834
1835			if (bio_data_dir(bio) == WRITE) {
1836				atomic_inc(&cache->stats.demotion);
1837				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1838				release_cell = false;
1839
1840			} else {
1841				/* FIXME: factor out issue_origin() */
1842				remap_to_origin_clear_discard(cache, bio, block);
1843				inc_and_issue(cache, bio, new_ocell);
1844			}
1845		} else {
1846			inc_hit_counter(cache, bio);
1847
1848			if (bio_data_dir(bio) == WRITE &&
1849			    writethrough_mode(&cache->features) &&
1850			    !is_dirty(cache, lookup_result.cblock)) {
1851				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1852				inc_and_issue(cache, bio, new_ocell);
1853
1854			} else {
1855				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1856				release_cell = false;
1857			}
1858		}
1859
1860		break;
 
 
 
 
 
 
 
 
 
 
1861
1862	case POLICY_MISS:
1863		inc_miss_counter(cache, bio);
1864		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1865		release_cell = false;
1866		break;
1867
1868	case POLICY_NEW:
1869		atomic_inc(&cache->stats.promotion);
1870		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1871		release_cell = false;
1872		break;
1873
1874	case POLICY_REPLACE:
1875		atomic_inc(&cache->stats.demotion);
1876		atomic_inc(&cache->stats.promotion);
1877		demote_then_promote(cache, structs, lookup_result.old_oblock,
1878				    block, lookup_result.cblock,
1879				    ool.cell, new_ocell);
1880		release_cell = false;
1881		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882
1883	default:
1884		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1885			    cache_device_name(cache), __func__,
1886			    (unsigned) lookup_result.op);
1887		bio_io_error(bio);
1888	}
1889
1890	if (release_cell)
1891		cell_defer(cache, new_ocell, false);
1892}
1893
1894static void process_bio(struct cache *cache, struct prealloc *structs,
1895			struct bio *bio)
1896{
1897	int r;
1898	dm_oblock_t block = get_bio_block(cache, bio);
1899	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900
1901	/*
1902	 * Check to see if that block is currently migrating.
1903	 */
1904	cell_prealloc = prealloc_get_cell(structs);
1905	r = bio_detain(cache, block, bio, cell_prealloc,
1906		       (cell_free_fn) prealloc_put_cell,
1907		       structs, &new_ocell);
1908	if (r > 0)
1909		return;
 
 
 
 
1910
1911	process_cell(cache, structs, new_ocell);
1912}
1913
1914static int need_commit_due_to_time(struct cache *cache)
1915{
1916	return jiffies < cache->last_commit_jiffies ||
1917	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
 
 
 
 
1918}
1919
1920/*
1921 * A non-zero return indicates read_only or fail_io mode.
1922 */
1923static int commit(struct cache *cache, bool clean_shutdown)
1924{
1925	int r;
1926
1927	if (get_cache_mode(cache) >= CM_READ_ONLY)
1928		return -EINVAL;
1929
1930	atomic_inc(&cache->stats.commit_count);
1931	r = dm_cache_commit(cache->cmd, clean_shutdown);
1932	if (r)
1933		metadata_operation_failed(cache, "dm_cache_commit", r);
1934
1935	return r;
1936}
1937
1938static int commit_if_needed(struct cache *cache)
 
 
 
1939{
1940	int r = 0;
1941
1942	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1943	    dm_cache_changed_this_transaction(cache->cmd)) {
1944		r = commit(cache, false);
1945		cache->commit_requested = false;
1946		cache->last_commit_jiffies = jiffies;
1947	}
1948
1949	return r;
1950}
1951
1952static void process_deferred_bios(struct cache *cache)
1953{
1954	bool prealloc_used = false;
1955	unsigned long flags;
1956	struct bio_list bios;
1957	struct bio *bio;
1958	struct prealloc structs;
1959
1960	memset(&structs, 0, sizeof(structs));
1961	bio_list_init(&bios);
1962
1963	spin_lock_irqsave(&cache->lock, flags);
1964	bio_list_merge(&bios, &cache->deferred_bios);
1965	bio_list_init(&cache->deferred_bios);
1966	spin_unlock_irqrestore(&cache->lock, flags);
1967
1968	while (!bio_list_empty(&bios)) {
1969		/*
1970		 * If we've got no free migration structs, and processing
1971		 * this bio might require one, we pause until there are some
1972		 * prepared mappings to process.
1973		 */
1974		prealloc_used = true;
1975		if (prealloc_data_structs(cache, &structs)) {
1976			spin_lock_irqsave(&cache->lock, flags);
1977			bio_list_merge(&cache->deferred_bios, &bios);
1978			spin_unlock_irqrestore(&cache->lock, flags);
1979			break;
1980		}
1981
1982		bio = bio_list_pop(&bios);
1983
1984		if (bio->bi_opf & REQ_PREFLUSH)
1985			process_flush_bio(cache, bio);
1986		else if (bio_op(bio) == REQ_OP_DISCARD)
1987			process_discard_bio(cache, &structs, bio);
1988		else
1989			process_bio(cache, &structs, bio);
1990	}
1991
1992	if (prealloc_used)
1993		prealloc_free_structs(cache, &structs);
1994}
1995
1996static void process_deferred_cells(struct cache *cache)
1997{
1998	bool prealloc_used = false;
1999	unsigned long flags;
2000	struct dm_bio_prison_cell *cell, *tmp;
2001	struct list_head cells;
2002	struct prealloc structs;
2003
2004	memset(&structs, 0, sizeof(structs));
2005
2006	INIT_LIST_HEAD(&cells);
2007
2008	spin_lock_irqsave(&cache->lock, flags);
2009	list_splice_init(&cache->deferred_cells, &cells);
2010	spin_unlock_irqrestore(&cache->lock, flags);
2011
2012	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2013		/*
2014		 * If we've got no free migration structs, and processing
2015		 * this bio might require one, we pause until there are some
2016		 * prepared mappings to process.
2017		 */
2018		prealloc_used = true;
2019		if (prealloc_data_structs(cache, &structs)) {
2020			spin_lock_irqsave(&cache->lock, flags);
2021			list_splice(&cells, &cache->deferred_cells);
2022			spin_unlock_irqrestore(&cache->lock, flags);
2023			break;
2024		}
2025
2026		process_cell(cache, &structs, cell);
2027	}
2028
2029	if (prealloc_used)
2030		prealloc_free_structs(cache, &structs);
2031}
2032
2033static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2034{
2035	unsigned long flags;
2036	struct bio_list bios;
2037	struct bio *bio;
2038
2039	bio_list_init(&bios);
 
 
 
 
 
 
 
2040
2041	spin_lock_irqsave(&cache->lock, flags);
2042	bio_list_merge(&bios, &cache->deferred_flush_bios);
2043	bio_list_init(&cache->deferred_flush_bios);
2044	spin_unlock_irqrestore(&cache->lock, flags);
 
2045
2046	/*
2047	 * These bios have already been through inc_ds()
2048	 */
2049	while ((bio = bio_list_pop(&bios)))
2050		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2051}
2052
2053static void process_deferred_writethrough_bios(struct cache *cache)
2054{
 
 
2055	unsigned long flags;
 
2056	struct bio_list bios;
2057	struct bio *bio;
2058
2059	bio_list_init(&bios);
2060
2061	spin_lock_irqsave(&cache->lock, flags);
2062	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2063	bio_list_init(&cache->deferred_writethrough_bios);
2064	spin_unlock_irqrestore(&cache->lock, flags);
2065
2066	/*
2067	 * These bios have already been through inc_ds()
2068	 */
2069	while ((bio = bio_list_pop(&bios)))
2070		accounted_request(cache, bio);
2071}
2072
2073static void writeback_some_dirty_blocks(struct cache *cache)
2074{
2075	bool prealloc_used = false;
2076	dm_oblock_t oblock;
2077	dm_cblock_t cblock;
2078	struct prealloc structs;
2079	struct dm_bio_prison_cell *old_ocell;
2080	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2081
2082	memset(&structs, 0, sizeof(structs));
2083
2084	while (spare_migration_bandwidth(cache)) {
2085		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2086			break; /* no work to do */
2087
2088		prealloc_used = true;
2089		if (prealloc_data_structs(cache, &structs) ||
2090		    get_cell(cache, oblock, &structs, &old_ocell)) {
2091			policy_set_dirty(cache->policy, oblock);
2092			break;
2093		}
2094
2095		writeback(cache, &structs, oblock, cblock, old_ocell);
 
2096	}
2097
2098	if (prealloc_used)
2099		prealloc_free_structs(cache, &structs);
2100}
2101
2102/*----------------------------------------------------------------
2103 * Invalidations.
2104 * Dropping something from the cache *without* writing back.
2105 *--------------------------------------------------------------*/
2106
2107static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2108{
2109	int r = 0;
2110	uint64_t begin = from_cblock(req->cblocks->begin);
2111	uint64_t end = from_cblock(req->cblocks->end);
2112
2113	while (begin != end) {
2114		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2115		if (!r) {
2116			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2117			if (r) {
2118				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2119				break;
2120			}
2121
2122		} else if (r == -ENODATA) {
2123			/* harmless, already unmapped */
2124			r = 0;
2125
2126		} else {
2127			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2128			break;
2129		}
2130
2131		begin++;
2132        }
2133
2134	cache->commit_requested = true;
2135
2136	req->err = r;
2137	atomic_set(&req->complete, 1);
2138
2139	wake_up(&req->result_wait);
2140}
2141
2142static void process_invalidation_requests(struct cache *cache)
2143{
2144	struct list_head list;
2145	struct invalidation_request *req, *tmp;
2146
2147	INIT_LIST_HEAD(&list);
2148	spin_lock(&cache->invalidation_lock);
2149	list_splice_init(&cache->invalidation_requests, &list);
2150	spin_unlock(&cache->invalidation_lock);
2151
2152	list_for_each_entry_safe (req, tmp, &list, list)
2153		process_invalidation_request(cache, req);
2154}
2155
2156/*----------------------------------------------------------------
2157 * Main worker loop
2158 *--------------------------------------------------------------*/
2159static bool is_quiescing(struct cache *cache)
2160{
2161	return atomic_read(&cache->quiescing);
2162}
2163
2164static void ack_quiescing(struct cache *cache)
2165{
2166	if (is_quiescing(cache)) {
2167		atomic_inc(&cache->quiescing_ack);
2168		wake_up(&cache->quiescing_wait);
2169	}
2170}
2171
2172static void wait_for_quiescing_ack(struct cache *cache)
2173{
2174	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2175}
2176
2177static void start_quiescing(struct cache *cache)
2178{
2179	atomic_inc(&cache->quiescing);
2180	wait_for_quiescing_ack(cache);
2181}
2182
2183static void stop_quiescing(struct cache *cache)
2184{
2185	atomic_set(&cache->quiescing, 0);
2186	atomic_set(&cache->quiescing_ack, 0);
2187}
2188
2189static void wait_for_migrations(struct cache *cache)
2190{
2191	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2192}
2193
2194static void stop_worker(struct cache *cache)
2195{
2196	cancel_delayed_work(&cache->waker);
2197	flush_workqueue(cache->wq);
2198}
2199
2200static void requeue_deferred_cells(struct cache *cache)
2201{
2202	unsigned long flags;
2203	struct list_head cells;
2204	struct dm_bio_prison_cell *cell, *tmp;
2205
2206	INIT_LIST_HEAD(&cells);
2207	spin_lock_irqsave(&cache->lock, flags);
2208	list_splice_init(&cache->deferred_cells, &cells);
2209	spin_unlock_irqrestore(&cache->lock, flags);
2210
2211	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2212		cell_requeue(cache, cell);
2213}
2214
2215static void requeue_deferred_bios(struct cache *cache)
2216{
2217	struct bio *bio;
2218	struct bio_list bios;
2219
2220	bio_list_init(&bios);
2221	bio_list_merge(&bios, &cache->deferred_bios);
2222	bio_list_init(&cache->deferred_bios);
2223
2224	while ((bio = bio_list_pop(&bios))) {
2225		bio->bi_error = DM_ENDIO_REQUEUE;
2226		bio_endio(bio);
2227	}
2228}
2229
2230static int more_work(struct cache *cache)
2231{
2232	if (is_quiescing(cache))
2233		return !list_empty(&cache->quiesced_migrations) ||
2234			!list_empty(&cache->completed_migrations) ||
2235			!list_empty(&cache->need_commit_migrations);
2236	else
2237		return !bio_list_empty(&cache->deferred_bios) ||
2238			!list_empty(&cache->deferred_cells) ||
2239			!bio_list_empty(&cache->deferred_flush_bios) ||
2240			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2241			!list_empty(&cache->quiesced_migrations) ||
2242			!list_empty(&cache->completed_migrations) ||
2243			!list_empty(&cache->need_commit_migrations) ||
2244			cache->invalidate;
2245}
2246
2247static void do_worker(struct work_struct *ws)
2248{
2249	struct cache *cache = container_of(ws, struct cache, worker);
2250
2251	do {
2252		if (!is_quiescing(cache)) {
2253			writeback_some_dirty_blocks(cache);
2254			process_deferred_writethrough_bios(cache);
2255			process_deferred_bios(cache);
2256			process_deferred_cells(cache);
2257			process_invalidation_requests(cache);
2258		}
2259
2260		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2261		process_migrations(cache, &cache->completed_migrations, complete_migration);
2262
2263		if (commit_if_needed(cache)) {
2264			process_deferred_flush_bios(cache, false);
2265			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2266		} else {
2267			process_deferred_flush_bios(cache, true);
2268			process_migrations(cache, &cache->need_commit_migrations,
2269					   migration_success_post_commit);
2270		}
2271
2272		ack_quiescing(cache);
2273
2274	} while (more_work(cache));
2275}
2276
2277/*
2278 * We want to commit periodically so that not too much
2279 * unwritten metadata builds up.
2280 */
2281static void do_waker(struct work_struct *ws)
2282{
2283	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
 
2284	policy_tick(cache->policy, true);
2285	wake_worker(cache);
 
2286	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2287}
2288
2289/*----------------------------------------------------------------*/
2290
2291static int is_congested(struct dm_dev *dev, int bdi_bits)
2292{
2293	struct request_queue *q = bdev_get_queue(dev->bdev);
2294	return bdi_congested(&q->backing_dev_info, bdi_bits);
2295}
 
2296
2297static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2298{
2299	struct cache *cache = container_of(cb, struct cache, callbacks);
2300
2301	return is_congested(cache->origin_dev, bdi_bits) ||
2302		is_congested(cache->cache_dev, bdi_bits);
 
 
 
 
 
 
 
 
 
 
 
 
2303}
2304
2305/*----------------------------------------------------------------
2306 * Target methods
2307 *--------------------------------------------------------------*/
2308
2309/*
2310 * This function gets called on the error paths of the constructor, so we
2311 * have to cope with a partially initialised struct.
2312 */
2313static void destroy(struct cache *cache)
2314{
2315	unsigned i;
2316
2317	mempool_destroy(cache->migration_pool);
2318
2319	if (cache->all_io_ds)
2320		dm_deferred_set_destroy(cache->all_io_ds);
2321
2322	if (cache->prison)
2323		dm_bio_prison_destroy(cache->prison);
2324
2325	if (cache->wq)
2326		destroy_workqueue(cache->wq);
2327
2328	if (cache->dirty_bitset)
2329		free_bitset(cache->dirty_bitset);
2330
2331	if (cache->discard_bitset)
2332		free_bitset(cache->discard_bitset);
2333
2334	if (cache->copier)
2335		dm_kcopyd_client_destroy(cache->copier);
2336
2337	if (cache->cmd)
2338		dm_cache_metadata_close(cache->cmd);
2339
2340	if (cache->metadata_dev)
2341		dm_put_device(cache->ti, cache->metadata_dev);
2342
2343	if (cache->origin_dev)
2344		dm_put_device(cache->ti, cache->origin_dev);
2345
2346	if (cache->cache_dev)
2347		dm_put_device(cache->ti, cache->cache_dev);
2348
2349	if (cache->policy)
2350		dm_cache_policy_destroy(cache->policy);
2351
2352	for (i = 0; i < cache->nr_ctr_args ; i++)
2353		kfree(cache->ctr_args[i]);
2354	kfree(cache->ctr_args);
2355
 
 
2356	kfree(cache);
2357}
2358
2359static void cache_dtr(struct dm_target *ti)
2360{
2361	struct cache *cache = ti->private;
2362
2363	destroy(cache);
2364}
2365
2366static sector_t get_dev_size(struct dm_dev *dev)
2367{
2368	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2369}
2370
2371/*----------------------------------------------------------------*/
2372
2373/*
2374 * Construct a cache device mapping.
2375 *
2376 * cache <metadata dev> <cache dev> <origin dev> <block size>
2377 *       <#feature args> [<feature arg>]*
2378 *       <policy> <#policy args> [<policy arg>]*
2379 *
2380 * metadata dev    : fast device holding the persistent metadata
2381 * cache dev	   : fast device holding cached data blocks
2382 * origin dev	   : slow device holding original data blocks
2383 * block size	   : cache unit size in sectors
2384 *
2385 * #feature args   : number of feature arguments passed
2386 * feature args    : writethrough.  (The default is writeback.)
2387 *
2388 * policy	   : the replacement policy to use
2389 * #policy args    : an even number of policy arguments corresponding
2390 *		     to key/value pairs passed to the policy
2391 * policy args	   : key/value pairs passed to the policy
2392 *		     E.g. 'sequential_threshold 1024'
2393 *		     See cache-policies.txt for details.
2394 *
2395 * Optional feature arguments are:
2396 *   writethrough  : write through caching that prohibits cache block
2397 *		     content from being different from origin block content.
2398 *		     Without this argument, the default behaviour is to write
2399 *		     back cache block contents later for performance reasons,
2400 *		     so they may differ from the corresponding origin blocks.
2401 */
2402struct cache_args {
2403	struct dm_target *ti;
2404
2405	struct dm_dev *metadata_dev;
2406
2407	struct dm_dev *cache_dev;
2408	sector_t cache_sectors;
2409
2410	struct dm_dev *origin_dev;
2411	sector_t origin_sectors;
2412
2413	uint32_t block_size;
2414
2415	const char *policy_name;
2416	int policy_argc;
2417	const char **policy_argv;
2418
2419	struct cache_features features;
2420};
2421
2422static void destroy_cache_args(struct cache_args *ca)
2423{
2424	if (ca->metadata_dev)
2425		dm_put_device(ca->ti, ca->metadata_dev);
2426
2427	if (ca->cache_dev)
2428		dm_put_device(ca->ti, ca->cache_dev);
2429
2430	if (ca->origin_dev)
2431		dm_put_device(ca->ti, ca->origin_dev);
2432
2433	kfree(ca);
2434}
2435
2436static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2437{
2438	if (!as->argc) {
2439		*error = "Insufficient args";
2440		return false;
2441	}
2442
2443	return true;
2444}
2445
2446static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2447			      char **error)
2448{
2449	int r;
2450	sector_t metadata_dev_size;
2451	char b[BDEVNAME_SIZE];
2452
2453	if (!at_least_one_arg(as, error))
2454		return -EINVAL;
2455
2456	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2457			  &ca->metadata_dev);
2458	if (r) {
2459		*error = "Error opening metadata device";
2460		return r;
2461	}
2462
2463	metadata_dev_size = get_dev_size(ca->metadata_dev);
2464	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2465		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2466		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2467
2468	return 0;
2469}
2470
2471static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2472			   char **error)
2473{
2474	int r;
2475
2476	if (!at_least_one_arg(as, error))
2477		return -EINVAL;
2478
2479	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2480			  &ca->cache_dev);
2481	if (r) {
2482		*error = "Error opening cache device";
2483		return r;
2484	}
2485	ca->cache_sectors = get_dev_size(ca->cache_dev);
2486
2487	return 0;
2488}
2489
2490static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2491			    char **error)
2492{
2493	int r;
2494
2495	if (!at_least_one_arg(as, error))
2496		return -EINVAL;
2497
2498	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2499			  &ca->origin_dev);
2500	if (r) {
2501		*error = "Error opening origin device";
2502		return r;
2503	}
2504
2505	ca->origin_sectors = get_dev_size(ca->origin_dev);
2506	if (ca->ti->len > ca->origin_sectors) {
2507		*error = "Device size larger than cached device";
2508		return -EINVAL;
2509	}
2510
2511	return 0;
2512}
2513
2514static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2515			    char **error)
2516{
2517	unsigned long block_size;
2518
2519	if (!at_least_one_arg(as, error))
2520		return -EINVAL;
2521
2522	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2523	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2524	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2525	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2526		*error = "Invalid data block size";
2527		return -EINVAL;
2528	}
2529
2530	if (block_size > ca->cache_sectors) {
2531		*error = "Data block size is larger than the cache device";
2532		return -EINVAL;
2533	}
2534
2535	ca->block_size = block_size;
2536
2537	return 0;
2538}
2539
2540static void init_features(struct cache_features *cf)
2541{
2542	cf->mode = CM_WRITE;
2543	cf->io_mode = CM_IO_WRITEBACK;
 
 
2544}
2545
2546static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2547			  char **error)
2548{
2549	static struct dm_arg _args[] = {
2550		{0, 1, "Invalid number of cache feature arguments"},
2551	};
2552
2553	int r;
2554	unsigned argc;
2555	const char *arg;
2556	struct cache_features *cf = &ca->features;
2557
2558	init_features(cf);
2559
2560	r = dm_read_arg_group(_args, as, &argc, error);
2561	if (r)
2562		return -EINVAL;
2563
2564	while (argc--) {
2565		arg = dm_shift_arg(as);
2566
2567		if (!strcasecmp(arg, "writeback"))
2568			cf->io_mode = CM_IO_WRITEBACK;
 
 
2569
2570		else if (!strcasecmp(arg, "writethrough"))
2571			cf->io_mode = CM_IO_WRITETHROUGH;
 
 
2572
2573		else if (!strcasecmp(arg, "passthrough"))
2574			cf->io_mode = CM_IO_PASSTHROUGH;
 
 
 
 
 
 
 
 
2575
2576		else {
2577			*error = "Unrecognised cache feature requested";
2578			return -EINVAL;
2579		}
2580	}
2581
 
 
 
 
 
2582	return 0;
2583}
2584
2585static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2586			char **error)
2587{
2588	static struct dm_arg _args[] = {
2589		{0, 1024, "Invalid number of policy arguments"},
2590	};
2591
2592	int r;
2593
2594	if (!at_least_one_arg(as, error))
2595		return -EINVAL;
2596
2597	ca->policy_name = dm_shift_arg(as);
2598
2599	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2600	if (r)
2601		return -EINVAL;
2602
2603	ca->policy_argv = (const char **)as->argv;
2604	dm_consume_args(as, ca->policy_argc);
2605
2606	return 0;
2607}
2608
2609static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2610			    char **error)
2611{
2612	int r;
2613	struct dm_arg_set as;
2614
2615	as.argc = argc;
2616	as.argv = argv;
2617
2618	r = parse_metadata_dev(ca, &as, error);
2619	if (r)
2620		return r;
2621
2622	r = parse_cache_dev(ca, &as, error);
2623	if (r)
2624		return r;
2625
2626	r = parse_origin_dev(ca, &as, error);
2627	if (r)
2628		return r;
2629
2630	r = parse_block_size(ca, &as, error);
2631	if (r)
2632		return r;
2633
2634	r = parse_features(ca, &as, error);
2635	if (r)
2636		return r;
2637
2638	r = parse_policy(ca, &as, error);
2639	if (r)
2640		return r;
2641
2642	return 0;
2643}
2644
2645/*----------------------------------------------------------------*/
2646
2647static struct kmem_cache *migration_cache;
2648
2649#define NOT_CORE_OPTION 1
2650
2651static int process_config_option(struct cache *cache, const char *key, const char *value)
2652{
2653	unsigned long tmp;
2654
2655	if (!strcasecmp(key, "migration_threshold")) {
2656		if (kstrtoul(value, 10, &tmp))
2657			return -EINVAL;
2658
2659		cache->migration_threshold = tmp;
2660		return 0;
2661	}
2662
2663	return NOT_CORE_OPTION;
2664}
2665
2666static int set_config_value(struct cache *cache, const char *key, const char *value)
2667{
2668	int r = process_config_option(cache, key, value);
2669
2670	if (r == NOT_CORE_OPTION)
2671		r = policy_set_config_value(cache->policy, key, value);
2672
2673	if (r)
2674		DMWARN("bad config value for %s: %s", key, value);
2675
2676	return r;
2677}
2678
2679static int set_config_values(struct cache *cache, int argc, const char **argv)
2680{
2681	int r = 0;
2682
2683	if (argc & 1) {
2684		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2685		return -EINVAL;
2686	}
2687
2688	while (argc) {
2689		r = set_config_value(cache, argv[0], argv[1]);
2690		if (r)
2691			break;
2692
2693		argc -= 2;
2694		argv += 2;
2695	}
2696
2697	return r;
2698}
2699
2700static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2701			       char **error)
2702{
2703	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2704							   cache->cache_size,
2705							   cache->origin_sectors,
2706							   cache->sectors_per_block);
2707	if (IS_ERR(p)) {
2708		*error = "Error creating cache's policy";
2709		return PTR_ERR(p);
2710	}
2711	cache->policy = p;
 
2712
2713	return 0;
2714}
2715
2716/*
2717 * We want the discard block size to be at least the size of the cache
2718 * block size and have no more than 2^14 discard blocks across the origin.
2719 */
2720#define MAX_DISCARD_BLOCKS (1 << 14)
2721
2722static bool too_many_discard_blocks(sector_t discard_block_size,
2723				    sector_t origin_size)
2724{
2725	(void) sector_div(origin_size, discard_block_size);
2726
2727	return origin_size > MAX_DISCARD_BLOCKS;
2728}
2729
2730static sector_t calculate_discard_block_size(sector_t cache_block_size,
2731					     sector_t origin_size)
2732{
2733	sector_t discard_block_size = cache_block_size;
2734
2735	if (origin_size)
2736		while (too_many_discard_blocks(discard_block_size, origin_size))
2737			discard_block_size *= 2;
2738
2739	return discard_block_size;
2740}
2741
2742static void set_cache_size(struct cache *cache, dm_cblock_t size)
2743{
2744	dm_block_t nr_blocks = from_cblock(size);
2745
2746	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2747		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2748			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2749			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2750			     (unsigned long long) nr_blocks);
2751
2752	cache->cache_size = size;
2753}
2754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2755#define DEFAULT_MIGRATION_THRESHOLD 2048
2756
2757static int cache_create(struct cache_args *ca, struct cache **result)
2758{
2759	int r = 0;
2760	char **error = &ca->ti->error;
2761	struct cache *cache;
2762	struct dm_target *ti = ca->ti;
2763	dm_block_t origin_blocks;
2764	struct dm_cache_metadata *cmd;
2765	bool may_format = ca->features.mode == CM_WRITE;
2766
2767	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2768	if (!cache)
2769		return -ENOMEM;
2770
2771	cache->ti = ca->ti;
2772	ti->private = cache;
2773	ti->num_flush_bios = 2;
2774	ti->flush_supported = true;
2775
2776	ti->num_discard_bios = 1;
2777	ti->discards_supported = true;
2778	ti->discard_zeroes_data_unsupported = true;
2779	ti->split_discard_bios = false;
2780
2781	cache->features = ca->features;
2782	ti->per_io_data_size = get_per_bio_data_size(cache);
 
 
 
 
 
2783
2784	cache->callbacks.congested_fn = cache_is_congested;
2785	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2786
2787	cache->metadata_dev = ca->metadata_dev;
2788	cache->origin_dev = ca->origin_dev;
2789	cache->cache_dev = ca->cache_dev;
2790
2791	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2792
2793	/* FIXME: factor out this whole section */
2794	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2795	origin_blocks = block_div(origin_blocks, ca->block_size);
2796	cache->origin_blocks = to_oblock(origin_blocks);
2797
2798	cache->sectors_per_block = ca->block_size;
2799	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2800		r = -EINVAL;
2801		goto bad;
2802	}
2803
2804	if (ca->block_size & (ca->block_size - 1)) {
2805		dm_block_t cache_size = ca->cache_sectors;
2806
2807		cache->sectors_per_block_shift = -1;
2808		cache_size = block_div(cache_size, ca->block_size);
2809		set_cache_size(cache, to_cblock(cache_size));
2810	} else {
2811		cache->sectors_per_block_shift = __ffs(ca->block_size);
2812		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2813	}
2814
2815	r = create_cache_policy(cache, ca, error);
2816	if (r)
2817		goto bad;
2818
2819	cache->policy_nr_args = ca->policy_argc;
2820	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2821
2822	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2823	if (r) {
2824		*error = "Error setting cache policy's config values";
2825		goto bad;
2826	}
2827
2828	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2829				     ca->block_size, may_format,
2830				     dm_cache_policy_get_hint_size(cache->policy));
 
2831	if (IS_ERR(cmd)) {
2832		*error = "Error creating metadata object";
2833		r = PTR_ERR(cmd);
2834		goto bad;
2835	}
2836	cache->cmd = cmd;
2837	set_cache_mode(cache, CM_WRITE);
2838	if (get_cache_mode(cache) != CM_WRITE) {
2839		*error = "Unable to get write access to metadata, please check/repair metadata.";
2840		r = -EINVAL;
2841		goto bad;
2842	}
2843
2844	if (passthrough_mode(&cache->features)) {
2845		bool all_clean;
2846
2847		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2848		if (r) {
2849			*error = "dm_cache_metadata_all_clean() failed";
2850			goto bad;
2851		}
2852
2853		if (!all_clean) {
2854			*error = "Cannot enter passthrough mode unless all blocks are clean";
2855			r = -EINVAL;
2856			goto bad;
2857		}
 
 
2858	}
2859
2860	spin_lock_init(&cache->lock);
2861	INIT_LIST_HEAD(&cache->deferred_cells);
2862	bio_list_init(&cache->deferred_bios);
2863	bio_list_init(&cache->deferred_flush_bios);
2864	bio_list_init(&cache->deferred_writethrough_bios);
2865	INIT_LIST_HEAD(&cache->quiesced_migrations);
2866	INIT_LIST_HEAD(&cache->completed_migrations);
2867	INIT_LIST_HEAD(&cache->need_commit_migrations);
2868	atomic_set(&cache->nr_allocated_migrations, 0);
2869	atomic_set(&cache->nr_io_migrations, 0);
2870	init_waitqueue_head(&cache->migration_wait);
2871
2872	init_waitqueue_head(&cache->quiescing_wait);
2873	atomic_set(&cache->quiescing, 0);
2874	atomic_set(&cache->quiescing_ack, 0);
2875
2876	r = -ENOMEM;
2877	atomic_set(&cache->nr_dirty, 0);
2878	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2879	if (!cache->dirty_bitset) {
2880		*error = "could not allocate dirty bitset";
2881		goto bad;
2882	}
2883	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2884
2885	cache->discard_block_size =
2886		calculate_discard_block_size(cache->sectors_per_block,
2887					     cache->origin_sectors);
2888	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2889							      cache->discard_block_size));
2890	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2891	if (!cache->discard_bitset) {
2892		*error = "could not allocate discard bitset";
2893		goto bad;
2894	}
2895	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2896
2897	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2898	if (IS_ERR(cache->copier)) {
2899		*error = "could not create kcopyd client";
2900		r = PTR_ERR(cache->copier);
2901		goto bad;
2902	}
2903
2904	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2905	if (!cache->wq) {
2906		*error = "could not create workqueue for metadata object";
2907		goto bad;
2908	}
2909	INIT_WORK(&cache->worker, do_worker);
 
2910	INIT_DELAYED_WORK(&cache->waker, do_waker);
2911	cache->last_commit_jiffies = jiffies;
2912
2913	cache->prison = dm_bio_prison_create();
2914	if (!cache->prison) {
2915		*error = "could not create bio prison";
2916		goto bad;
2917	}
2918
2919	cache->all_io_ds = dm_deferred_set_create();
2920	if (!cache->all_io_ds) {
2921		*error = "could not create all_io deferred set";
2922		goto bad;
2923	}
2924
2925	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2926							 migration_cache);
2927	if (!cache->migration_pool) {
2928		*error = "Error creating cache's migration mempool";
2929		goto bad;
2930	}
2931
2932	cache->need_tick_bio = true;
2933	cache->sized = false;
2934	cache->invalidate = false;
2935	cache->commit_requested = false;
2936	cache->loaded_mappings = false;
2937	cache->loaded_discards = false;
2938
2939	load_stats(cache);
2940
2941	atomic_set(&cache->stats.demotion, 0);
2942	atomic_set(&cache->stats.promotion, 0);
2943	atomic_set(&cache->stats.copies_avoided, 0);
2944	atomic_set(&cache->stats.cache_cell_clash, 0);
2945	atomic_set(&cache->stats.commit_count, 0);
2946	atomic_set(&cache->stats.discard_count, 0);
2947
2948	spin_lock_init(&cache->invalidation_lock);
2949	INIT_LIST_HEAD(&cache->invalidation_requests);
2950
2951	iot_init(&cache->origin_tracker);
 
 
 
 
 
2952
2953	*result = cache;
2954	return 0;
2955
2956bad:
2957	destroy(cache);
2958	return r;
2959}
2960
2961static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2962{
2963	unsigned i;
2964	const char **copy;
2965
2966	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2967	if (!copy)
2968		return -ENOMEM;
2969	for (i = 0; i < argc; i++) {
2970		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2971		if (!copy[i]) {
2972			while (i--)
2973				kfree(copy[i]);
2974			kfree(copy);
2975			return -ENOMEM;
2976		}
2977	}
2978
2979	cache->nr_ctr_args = argc;
2980	cache->ctr_args = copy;
2981
2982	return 0;
2983}
2984
2985static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2986{
2987	int r = -EINVAL;
2988	struct cache_args *ca;
2989	struct cache *cache = NULL;
2990
2991	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2992	if (!ca) {
2993		ti->error = "Error allocating memory for cache";
2994		return -ENOMEM;
2995	}
2996	ca->ti = ti;
2997
2998	r = parse_cache_args(ca, argc, argv, &ti->error);
2999	if (r)
3000		goto out;
3001
3002	r = cache_create(ca, &cache);
3003	if (r)
3004		goto out;
3005
3006	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3007	if (r) {
3008		destroy(cache);
3009		goto out;
3010	}
3011
3012	ti->private = cache;
3013
3014out:
3015	destroy_cache_args(ca);
3016	return r;
3017}
3018
3019/*----------------------------------------------------------------*/
3020
3021static int cache_map(struct dm_target *ti, struct bio *bio)
3022{
3023	struct cache *cache = ti->private;
3024
3025	int r;
3026	struct dm_bio_prison_cell *cell = NULL;
3027	dm_oblock_t block = get_bio_block(cache, bio);
3028	size_t pb_data_size = get_per_bio_data_size(cache);
3029	bool can_migrate = false;
3030	bool fast_promotion;
3031	struct policy_result lookup_result;
3032	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3033	struct old_oblock_lock ool;
3034
3035	ool.locker.fn = null_locker;
3036
 
3037	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3038		/*
3039		 * This can only occur if the io goes to a partial block at
3040		 * the end of the origin device.  We don't cache these.
3041		 * Just remap to the origin and carry on.
3042		 */
3043		remap_to_origin(cache, bio);
3044		accounted_begin(cache, bio);
3045		return DM_MAPIO_REMAPPED;
3046	}
3047
3048	if (discard_or_flush(bio)) {
3049		defer_bio(cache, bio);
3050		return DM_MAPIO_SUBMITTED;
3051	}
3052
3053	/*
3054	 * Check to see if that block is currently migrating.
3055	 */
3056	cell = alloc_prison_cell(cache);
3057	if (!cell) {
3058		defer_bio(cache, bio);
3059		return DM_MAPIO_SUBMITTED;
3060	}
3061
3062	r = bio_detain(cache, block, bio, cell,
3063		       (cell_free_fn) free_prison_cell,
3064		       cache, &cell);
3065	if (r) {
3066		if (r < 0)
3067			defer_bio(cache, bio);
3068
3069		return DM_MAPIO_SUBMITTED;
3070	}
3071
3072	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3073
3074	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3075		       bio, &ool.locker, &lookup_result);
3076	if (r == -EWOULDBLOCK) {
3077		cell_defer(cache, cell, true);
3078		return DM_MAPIO_SUBMITTED;
3079
3080	} else if (r) {
3081		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3082			    cache_device_name(cache), r);
3083		cell_defer(cache, cell, false);
3084		bio_io_error(bio);
3085		return DM_MAPIO_SUBMITTED;
3086	}
3087
3088	r = DM_MAPIO_REMAPPED;
3089	switch (lookup_result.op) {
3090	case POLICY_HIT:
3091		if (passthrough_mode(&cache->features)) {
3092			if (bio_data_dir(bio) == WRITE) {
3093				/*
3094				 * We need to invalidate this block, so
3095				 * defer for the worker thread.
3096				 */
3097				cell_defer(cache, cell, true);
3098				r = DM_MAPIO_SUBMITTED;
3099
3100			} else {
3101				inc_miss_counter(cache, bio);
3102				remap_to_origin_clear_discard(cache, bio, block);
3103				accounted_begin(cache, bio);
3104				inc_ds(cache, bio, cell);
3105				// FIXME: we want to remap hits or misses straight
3106				// away rather than passing over to the worker.
3107				cell_defer(cache, cell, false);
3108			}
3109
3110		} else {
3111			inc_hit_counter(cache, bio);
3112			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3113			    !is_dirty(cache, lookup_result.cblock)) {
3114				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3115				accounted_begin(cache, bio);
3116				inc_ds(cache, bio, cell);
3117				cell_defer(cache, cell, false);
3118
3119			} else
3120				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3121		}
3122		break;
3123
3124	case POLICY_MISS:
3125		inc_miss_counter(cache, bio);
3126		if (pb->req_nr != 0) {
3127			/*
3128			 * This is a duplicate writethrough io that is no
3129			 * longer needed because the block has been demoted.
3130			 */
3131			bio_endio(bio);
3132			// FIXME: remap everything as a miss
3133			cell_defer(cache, cell, false);
3134			r = DM_MAPIO_SUBMITTED;
3135
3136		} else
3137			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3138		break;
3139
3140	default:
3141		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3142			    cache_device_name(cache), __func__,
3143			    (unsigned) lookup_result.op);
3144		cell_defer(cache, cell, false);
3145		bio_io_error(bio);
3146		r = DM_MAPIO_SUBMITTED;
3147	}
3148
3149	return r;
3150}
3151
3152static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3153{
3154	struct cache *cache = ti->private;
3155	unsigned long flags;
3156	size_t pb_data_size = get_per_bio_data_size(cache);
3157	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3158
3159	if (pb->tick) {
3160		policy_tick(cache->policy, false);
3161
3162		spin_lock_irqsave(&cache->lock, flags);
3163		cache->need_tick_bio = true;
3164		spin_unlock_irqrestore(&cache->lock, flags);
3165	}
3166
3167	check_for_quiesced_migrations(cache, pb);
3168	accounted_complete(cache, bio);
3169
3170	return 0;
3171}
3172
3173static int write_dirty_bitset(struct cache *cache)
3174{
3175	unsigned i, r;
3176
3177	if (get_cache_mode(cache) >= CM_READ_ONLY)
3178		return -EINVAL;
3179
3180	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3181		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3182				       is_dirty(cache, to_cblock(i)));
3183		if (r) {
3184			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3185			return r;
3186		}
3187	}
3188
3189	return 0;
3190}
3191
3192static int write_discard_bitset(struct cache *cache)
3193{
3194	unsigned i, r;
3195
3196	if (get_cache_mode(cache) >= CM_READ_ONLY)
3197		return -EINVAL;
3198
3199	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3200					   cache->discard_nr_blocks);
3201	if (r) {
3202		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3203		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3204		return r;
3205	}
3206
3207	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3208		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3209					 is_discarded(cache, to_dblock(i)));
3210		if (r) {
3211			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3212			return r;
3213		}
3214	}
3215
3216	return 0;
3217}
3218
3219static int write_hints(struct cache *cache)
3220{
3221	int r;
3222
3223	if (get_cache_mode(cache) >= CM_READ_ONLY)
3224		return -EINVAL;
3225
3226	r = dm_cache_write_hints(cache->cmd, cache->policy);
3227	if (r) {
3228		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3229		return r;
3230	}
3231
3232	return 0;
3233}
3234
3235/*
3236 * returns true on success
3237 */
3238static bool sync_metadata(struct cache *cache)
3239{
3240	int r1, r2, r3, r4;
3241
3242	r1 = write_dirty_bitset(cache);
3243	if (r1)
3244		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3245
3246	r2 = write_discard_bitset(cache);
3247	if (r2)
3248		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3249
3250	save_stats(cache);
3251
3252	r3 = write_hints(cache);
3253	if (r3)
3254		DMERR("%s: could not write hints", cache_device_name(cache));
3255
3256	/*
3257	 * If writing the above metadata failed, we still commit, but don't
3258	 * set the clean shutdown flag.  This will effectively force every
3259	 * dirty bit to be set on reload.
3260	 */
3261	r4 = commit(cache, !r1 && !r2 && !r3);
3262	if (r4)
3263		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3264
3265	return !r1 && !r2 && !r3 && !r4;
3266}
3267
3268static void cache_postsuspend(struct dm_target *ti)
3269{
3270	struct cache *cache = ti->private;
3271
3272	start_quiescing(cache);
3273	wait_for_migrations(cache);
3274	stop_worker(cache);
 
 
 
 
 
 
 
 
3275	requeue_deferred_bios(cache);
3276	requeue_deferred_cells(cache);
3277	stop_quiescing(cache);
3278
3279	if (get_cache_mode(cache) == CM_WRITE)
3280		(void) sync_metadata(cache);
3281}
3282
3283static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3284			bool dirty, uint32_t hint, bool hint_valid)
3285{
3286	int r;
3287	struct cache *cache = context;
3288
3289	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
 
 
 
 
 
 
3290	if (r)
3291		return r;
3292
3293	if (dirty)
3294		set_dirty(cache, oblock, cblock);
3295	else
3296		clear_dirty(cache, oblock, cblock);
3297
3298	return 0;
3299}
3300
3301/*
3302 * The discard block size in the on disk metadata is not
3303 * neccessarily the same as we're currently using.  So we have to
3304 * be careful to only set the discarded attribute if we know it
3305 * covers a complete block of the new size.
3306 */
3307struct discard_load_info {
3308	struct cache *cache;
3309
3310	/*
3311	 * These blocks are sized using the on disk dblock size, rather
3312	 * than the current one.
3313	 */
3314	dm_block_t block_size;
3315	dm_block_t discard_begin, discard_end;
3316};
3317
3318static void discard_load_info_init(struct cache *cache,
3319				   struct discard_load_info *li)
3320{
3321	li->cache = cache;
3322	li->discard_begin = li->discard_end = 0;
3323}
3324
3325static void set_discard_range(struct discard_load_info *li)
3326{
3327	sector_t b, e;
3328
3329	if (li->discard_begin == li->discard_end)
3330		return;
3331
3332	/*
3333	 * Convert to sectors.
3334	 */
3335	b = li->discard_begin * li->block_size;
3336	e = li->discard_end * li->block_size;
3337
3338	/*
3339	 * Then convert back to the current dblock size.
3340	 */
3341	b = dm_sector_div_up(b, li->cache->discard_block_size);
3342	sector_div(e, li->cache->discard_block_size);
3343
3344	/*
3345	 * The origin may have shrunk, so we need to check we're still in
3346	 * bounds.
3347	 */
3348	if (e > from_dblock(li->cache->discard_nr_blocks))
3349		e = from_dblock(li->cache->discard_nr_blocks);
3350
3351	for (; b < e; b++)
3352		set_discard(li->cache, to_dblock(b));
3353}
3354
3355static int load_discard(void *context, sector_t discard_block_size,
3356			dm_dblock_t dblock, bool discard)
3357{
3358	struct discard_load_info *li = context;
3359
3360	li->block_size = discard_block_size;
3361
3362	if (discard) {
3363		if (from_dblock(dblock) == li->discard_end)
3364			/*
3365			 * We're already in a discard range, just extend it.
3366			 */
3367			li->discard_end = li->discard_end + 1ULL;
3368
3369		else {
3370			/*
3371			 * Emit the old range and start a new one.
3372			 */
3373			set_discard_range(li);
3374			li->discard_begin = from_dblock(dblock);
3375			li->discard_end = li->discard_begin + 1ULL;
3376		}
3377	} else {
3378		set_discard_range(li);
3379		li->discard_begin = li->discard_end = 0;
3380	}
3381
3382	return 0;
3383}
3384
3385static dm_cblock_t get_cache_dev_size(struct cache *cache)
3386{
3387	sector_t size = get_dev_size(cache->cache_dev);
3388	(void) sector_div(size, cache->sectors_per_block);
3389	return to_cblock(size);
3390}
3391
3392static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3393{
3394	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3395		return true;
 
 
 
 
 
3396
3397	/*
3398	 * We can't drop a dirty block when shrinking the cache.
3399	 */
3400	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3401		new_size = to_cblock(from_cblock(new_size) + 1);
3402		if (is_dirty(cache, new_size)) {
3403			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3404			      cache_device_name(cache),
3405			      (unsigned long long) from_cblock(new_size));
3406			return false;
3407		}
3408	}
3409
3410	return true;
3411}
3412
3413static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3414{
3415	int r;
3416
3417	r = dm_cache_resize(cache->cmd, new_size);
3418	if (r) {
3419		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3420		metadata_operation_failed(cache, "dm_cache_resize", r);
3421		return r;
3422	}
3423
3424	set_cache_size(cache, new_size);
3425
3426	return 0;
3427}
3428
3429static int cache_preresume(struct dm_target *ti)
3430{
3431	int r = 0;
3432	struct cache *cache = ti->private;
3433	dm_cblock_t csize = get_cache_dev_size(cache);
3434
3435	/*
3436	 * Check to see if the cache has resized.
3437	 */
3438	if (!cache->sized) {
3439		r = resize_cache_dev(cache, csize);
3440		if (r)
3441			return r;
3442
3443		cache->sized = true;
3444
3445	} else if (csize != cache->cache_size) {
3446		if (!can_resize(cache, csize))
3447			return -EINVAL;
3448
3449		r = resize_cache_dev(cache, csize);
3450		if (r)
3451			return r;
3452	}
3453
3454	if (!cache->loaded_mappings) {
3455		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3456					   load_mapping, cache);
3457		if (r) {
3458			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3459			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3460			return r;
3461		}
3462
3463		cache->loaded_mappings = true;
3464	}
3465
3466	if (!cache->loaded_discards) {
3467		struct discard_load_info li;
3468
3469		/*
3470		 * The discard bitset could have been resized, or the
3471		 * discard block size changed.  To be safe we start by
3472		 * setting every dblock to not discarded.
3473		 */
3474		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3475
3476		discard_load_info_init(cache, &li);
3477		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3478		if (r) {
3479			DMERR("%s: could not load origin discards", cache_device_name(cache));
3480			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3481			return r;
3482		}
3483		set_discard_range(&li);
3484
3485		cache->loaded_discards = true;
3486	}
3487
3488	return r;
3489}
3490
3491static void cache_resume(struct dm_target *ti)
3492{
3493	struct cache *cache = ti->private;
3494
3495	cache->need_tick_bio = true;
 
3496	do_waker(&cache->waker.work);
3497}
3498
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3499/*
3500 * Status format:
3501 *
3502 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3503 * <cache block size> <#used cache blocks>/<#total cache blocks>
3504 * <#read hits> <#read misses> <#write hits> <#write misses>
3505 * <#demotions> <#promotions> <#dirty>
3506 * <#features> <features>*
3507 * <#core args> <core args>
3508 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3509 */
3510static void cache_status(struct dm_target *ti, status_type_t type,
3511			 unsigned status_flags, char *result, unsigned maxlen)
3512{
3513	int r = 0;
3514	unsigned i;
3515	ssize_t sz = 0;
3516	dm_block_t nr_free_blocks_metadata = 0;
3517	dm_block_t nr_blocks_metadata = 0;
3518	char buf[BDEVNAME_SIZE];
3519	struct cache *cache = ti->private;
3520	dm_cblock_t residency;
3521	bool needs_check;
3522
3523	switch (type) {
3524	case STATUSTYPE_INFO:
3525		if (get_cache_mode(cache) == CM_FAIL) {
3526			DMEMIT("Fail");
3527			break;
3528		}
3529
3530		/* Commit to ensure statistics aren't out-of-date */
3531		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3532			(void) commit(cache, false);
3533
3534		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3535		if (r) {
3536			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3537			      cache_device_name(cache), r);
3538			goto err;
3539		}
3540
3541		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3542		if (r) {
3543			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3544			      cache_device_name(cache), r);
3545			goto err;
3546		}
3547
3548		residency = policy_residency(cache->policy);
3549
3550		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3551		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3552		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3553		       (unsigned long long)nr_blocks_metadata,
3554		       (unsigned long long)cache->sectors_per_block,
3555		       (unsigned long long) from_cblock(residency),
3556		       (unsigned long long) from_cblock(cache->cache_size),
3557		       (unsigned) atomic_read(&cache->stats.read_hit),
3558		       (unsigned) atomic_read(&cache->stats.read_miss),
3559		       (unsigned) atomic_read(&cache->stats.write_hit),
3560		       (unsigned) atomic_read(&cache->stats.write_miss),
3561		       (unsigned) atomic_read(&cache->stats.demotion),
3562		       (unsigned) atomic_read(&cache->stats.promotion),
3563		       (unsigned long) atomic_read(&cache->nr_dirty));
3564
3565		if (writethrough_mode(&cache->features))
3566			DMEMIT("1 writethrough ");
3567
3568		else if (passthrough_mode(&cache->features))
3569			DMEMIT("1 passthrough ");
3570
3571		else if (writeback_mode(&cache->features))
3572			DMEMIT("1 writeback ");
3573
3574		else {
3575			DMERR("%s: internal error: unknown io mode: %d",
3576			      cache_device_name(cache), (int) cache->features.io_mode);
3577			goto err;
3578		}
3579
3580		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3581
3582		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3583		if (sz < maxlen) {
3584			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3585			if (r)
3586				DMERR("%s: policy_emit_config_values returned %d",
3587				      cache_device_name(cache), r);
3588		}
3589
3590		if (get_cache_mode(cache) == CM_READ_ONLY)
3591			DMEMIT("ro ");
3592		else
3593			DMEMIT("rw ");
3594
3595		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3596
3597		if (r || needs_check)
3598			DMEMIT("needs_check ");
3599		else
3600			DMEMIT("- ");
3601
3602		break;
3603
3604	case STATUSTYPE_TABLE:
3605		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3606		DMEMIT("%s ", buf);
3607		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3608		DMEMIT("%s ", buf);
3609		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3610		DMEMIT("%s", buf);
3611
3612		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3613			DMEMIT(" %s", cache->ctr_args[i]);
3614		if (cache->nr_ctr_args)
3615			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3616	}
3617
3618	return;
3619
3620err:
3621	DMEMIT("Error");
3622}
3623
3624/*
 
 
 
 
 
 
 
 
 
3625 * A cache block range can take two forms:
3626 *
3627 * i) A single cblock, eg. '3456'
3628 * ii) A begin and end cblock with dots between, eg. 123-234
3629 */
3630static int parse_cblock_range(struct cache *cache, const char *str,
3631			      struct cblock_range *result)
3632{
3633	char dummy;
3634	uint64_t b, e;
3635	int r;
3636
3637	/*
3638	 * Try and parse form (ii) first.
3639	 */
3640	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3641	if (r < 0)
3642		return r;
3643
3644	if (r == 2) {
3645		result->begin = to_cblock(b);
3646		result->end = to_cblock(e);
3647		return 0;
3648	}
3649
3650	/*
3651	 * That didn't work, try form (i).
3652	 */
3653	r = sscanf(str, "%llu%c", &b, &dummy);
3654	if (r < 0)
3655		return r;
3656
3657	if (r == 1) {
3658		result->begin = to_cblock(b);
3659		result->end = to_cblock(from_cblock(result->begin) + 1u);
3660		return 0;
3661	}
3662
3663	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3664	return -EINVAL;
3665}
3666
3667static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3668{
3669	uint64_t b = from_cblock(range->begin);
3670	uint64_t e = from_cblock(range->end);
3671	uint64_t n = from_cblock(cache->cache_size);
3672
3673	if (b >= n) {
3674		DMERR("%s: begin cblock out of range: %llu >= %llu",
3675		      cache_device_name(cache), b, n);
3676		return -EINVAL;
3677	}
3678
3679	if (e > n) {
3680		DMERR("%s: end cblock out of range: %llu > %llu",
3681		      cache_device_name(cache), e, n);
3682		return -EINVAL;
3683	}
3684
3685	if (b >= e) {
3686		DMERR("%s: invalid cblock range: %llu >= %llu",
3687		      cache_device_name(cache), b, e);
3688		return -EINVAL;
3689	}
3690
3691	return 0;
3692}
3693
 
 
 
 
 
3694static int request_invalidation(struct cache *cache, struct cblock_range *range)
3695{
3696	struct invalidation_request req;
3697
3698	INIT_LIST_HEAD(&req.list);
3699	req.cblocks = range;
3700	atomic_set(&req.complete, 0);
3701	req.err = 0;
3702	init_waitqueue_head(&req.result_wait);
3703
3704	spin_lock(&cache->invalidation_lock);
3705	list_add(&req.list, &cache->invalidation_requests);
3706	spin_unlock(&cache->invalidation_lock);
3707	wake_worker(cache);
3708
3709	wait_event(req.result_wait, atomic_read(&req.complete));
3710	return req.err;
 
 
 
3711}
3712
3713static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3714					      const char **cblock_ranges)
3715{
3716	int r = 0;
3717	unsigned i;
3718	struct cblock_range range;
3719
3720	if (!passthrough_mode(&cache->features)) {
3721		DMERR("%s: cache has to be in passthrough mode for invalidation",
3722		      cache_device_name(cache));
3723		return -EPERM;
3724	}
3725
3726	for (i = 0; i < count; i++) {
3727		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3728		if (r)
3729			break;
3730
3731		r = validate_cblock_range(cache, &range);
3732		if (r)
3733			break;
3734
3735		/*
3736		 * Pass begin and end origin blocks to the worker and wake it.
3737		 */
3738		r = request_invalidation(cache, &range);
3739		if (r)
3740			break;
3741	}
3742
3743	return r;
3744}
3745
3746/*
3747 * Supports
3748 *	"<key> <value>"
3749 * and
3750 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3751 *
3752 * The key migration_threshold is supported by the cache target core.
3753 */
3754static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
 
3755{
3756	struct cache *cache = ti->private;
3757
3758	if (!argc)
3759		return -EINVAL;
3760
3761	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3762		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3763		      cache_device_name(cache));
3764		return -EOPNOTSUPP;
3765	}
3766
3767	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3768		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3769
3770	if (argc != 2)
3771		return -EINVAL;
3772
3773	return set_config_value(cache, argv[0], argv[1]);
3774}
3775
3776static int cache_iterate_devices(struct dm_target *ti,
3777				 iterate_devices_callout_fn fn, void *data)
3778{
3779	int r = 0;
3780	struct cache *cache = ti->private;
3781
3782	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3783	if (!r)
3784		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3785
3786	return r;
3787}
3788
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3789static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3790{
 
 
 
 
 
 
 
 
 
 
 
3791	/*
3792	 * FIXME: these limits may be incompatible with the cache device
 
3793	 */
3794	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3795					    cache->origin_sectors);
3796	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
 
 
3797}
3798
3799static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3800{
3801	struct cache *cache = ti->private;
3802	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3803
3804	/*
3805	 * If the system-determined stacked limits are compatible with the
3806	 * cache's blocksize (io_opt is a factor) do not override them.
3807	 */
3808	if (io_opt_sectors < cache->sectors_per_block ||
3809	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3810		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3811		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3812	}
 
 
3813	set_discard_limits(cache, limits);
3814}
3815
3816/*----------------------------------------------------------------*/
3817
3818static struct target_type cache_target = {
3819	.name = "cache",
3820	.version = {1, 9, 0},
3821	.module = THIS_MODULE,
3822	.ctr = cache_ctr,
3823	.dtr = cache_dtr,
3824	.map = cache_map,
3825	.end_io = cache_end_io,
3826	.postsuspend = cache_postsuspend,
3827	.preresume = cache_preresume,
3828	.resume = cache_resume,
3829	.status = cache_status,
3830	.message = cache_message,
3831	.iterate_devices = cache_iterate_devices,
3832	.io_hints = cache_io_hints,
3833};
3834
3835static int __init dm_cache_init(void)
3836{
3837	int r;
3838
 
 
 
 
3839	r = dm_register_target(&cache_target);
3840	if (r) {
3841		DMERR("cache target registration failed: %d", r);
 
3842		return r;
3843	}
3844
3845	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3846	if (!migration_cache) {
3847		dm_unregister_target(&cache_target);
3848		return -ENOMEM;
3849	}
3850
3851	return 0;
3852}
3853
3854static void __exit dm_cache_exit(void)
3855{
3856	dm_unregister_target(&cache_target);
3857	kmem_cache_destroy(migration_cache);
3858}
3859
3860module_init(dm_cache_init);
3861module_exit(dm_cache_exit);
3862
3863MODULE_DESCRIPTION(DM_NAME " cache target");
3864MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3865MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25	"A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *	      either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43	spinlock_t lock;
  44
  45	/*
  46	 * Sectors of in-flight IO.
  47	 */
  48	sector_t in_flight;
  49
  50	/*
  51	 * The time, in jiffies, when this device became idle (if it is
  52	 * indeed idle).
  53	 */
  54	unsigned long idle_time;
  55	unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60	spin_lock_init(&iot->lock);
  61	iot->in_flight = 0ul;
  62	iot->idle_time = 0ul;
  63	iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68	if (iot->in_flight)
  69		return false;
  70
  71	return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76	bool r;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&iot->lock, flags);
  80	r = __iot_idle_for(iot, jifs);
  81	spin_unlock_irqrestore(&iot->lock, flags);
  82
  83	return r;
  84}
  85
  86static void iot_io_begin(struct io_tracker *iot, sector_t len)
  87{
  88	unsigned long flags;
  89
  90	spin_lock_irqsave(&iot->lock, flags);
  91	iot->in_flight += len;
  92	spin_unlock_irqrestore(&iot->lock, flags);
  93}
  94
  95static void __iot_io_end(struct io_tracker *iot, sector_t len)
  96{
  97	if (!len)
  98		return;
  99
 100	iot->in_flight -= len;
 101	if (!iot->in_flight)
 102		iot->idle_time = jiffies;
 103}
 104
 105static void iot_io_end(struct io_tracker *iot, sector_t len)
 106{
 107	unsigned long flags;
 108
 109	spin_lock_irqsave(&iot->lock, flags);
 110	__iot_io_end(iot, len);
 111	spin_unlock_irqrestore(&iot->lock, flags);
 112}
 113
 114/*----------------------------------------------------------------*/
 115
 116/*
 117 * Represents a chunk of future work.  'input' allows continuations to pass
 118 * values between themselves, typically error values.
 
 
 
 
 
 
 119 */
 120struct continuation {
 121	struct work_struct ws;
 122	blk_status_t input;
 123};
 124
 125static inline void init_continuation(struct continuation *k,
 126				     void (*fn)(struct work_struct *))
 127{
 128	INIT_WORK(&k->ws, fn);
 129	k->input = 0;
 130}
 131
 132static inline void queue_continuation(struct workqueue_struct *wq,
 133				      struct continuation *k)
 134{
 135	queue_work(wq, &k->ws);
 136}
 137
 138/*----------------------------------------------------------------*/
 139
 140/*
 141 * The batcher collects together pieces of work that need a particular
 142 * operation to occur before they can proceed (typically a commit).
 143 */
 144struct batcher {
 145	/*
 146	 * The operation that everyone is waiting for.
 147	 */
 148	blk_status_t (*commit_op)(void *context);
 149	void *commit_context;
 150
 151	/*
 152	 * This is how bios should be issued once the commit op is complete
 153	 * (accounted_request).
 154	 */
 155	void (*issue_op)(struct bio *bio, void *context);
 156	void *issue_context;
 157
 158	/*
 159	 * Queued work gets put on here after commit.
 160	 */
 161	struct workqueue_struct *wq;
 162
 163	spinlock_t lock;
 164	struct list_head work_items;
 165	struct bio_list bios;
 166	struct work_struct commit_work;
 167
 168	bool commit_scheduled;
 169};
 170
 171static void __commit(struct work_struct *_ws)
 172{
 173	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 174	blk_status_t r;
 175	unsigned long flags;
 176	struct list_head work_items;
 177	struct work_struct *ws, *tmp;
 178	struct continuation *k;
 179	struct bio *bio;
 180	struct bio_list bios;
 181
 182	INIT_LIST_HEAD(&work_items);
 183	bio_list_init(&bios);
 184
 185	/*
 186	 * We have to grab these before the commit_op to avoid a race
 187	 * condition.
 188	 */
 189	spin_lock_irqsave(&b->lock, flags);
 190	list_splice_init(&b->work_items, &work_items);
 191	bio_list_merge(&bios, &b->bios);
 192	bio_list_init(&b->bios);
 193	b->commit_scheduled = false;
 194	spin_unlock_irqrestore(&b->lock, flags);
 195
 196	r = b->commit_op(b->commit_context);
 197
 198	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 199		k = container_of(ws, struct continuation, ws);
 200		k->input = r;
 201		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 202		queue_work(b->wq, ws);
 203	}
 204
 205	while ((bio = bio_list_pop(&bios))) {
 206		if (r) {
 207			bio->bi_status = r;
 208			bio_endio(bio);
 209		} else
 210			b->issue_op(bio, b->issue_context);
 211	}
 212}
 213
 214static void batcher_init(struct batcher *b,
 215			 blk_status_t (*commit_op)(void *),
 216			 void *commit_context,
 217			 void (*issue_op)(struct bio *bio, void *),
 218			 void *issue_context,
 219			 struct workqueue_struct *wq)
 220{
 221	b->commit_op = commit_op;
 222	b->commit_context = commit_context;
 223	b->issue_op = issue_op;
 224	b->issue_context = issue_context;
 225	b->wq = wq;
 226
 227	spin_lock_init(&b->lock);
 228	INIT_LIST_HEAD(&b->work_items);
 229	bio_list_init(&b->bios);
 230	INIT_WORK(&b->commit_work, __commit);
 231	b->commit_scheduled = false;
 232}
 233
 234static void async_commit(struct batcher *b)
 235{
 236	queue_work(b->wq, &b->commit_work);
 237}
 238
 239static void continue_after_commit(struct batcher *b, struct continuation *k)
 240{
 241	unsigned long flags;
 242	bool commit_scheduled;
 243
 244	spin_lock_irqsave(&b->lock, flags);
 245	commit_scheduled = b->commit_scheduled;
 246	list_add_tail(&k->ws.entry, &b->work_items);
 247	spin_unlock_irqrestore(&b->lock, flags);
 248
 249	if (commit_scheduled)
 250		async_commit(b);
 251}
 252
 253/*
 254 * Bios are errored if commit failed.
 255 */
 256static void issue_after_commit(struct batcher *b, struct bio *bio)
 257{
 258       unsigned long flags;
 259       bool commit_scheduled;
 260
 261       spin_lock_irqsave(&b->lock, flags);
 262       commit_scheduled = b->commit_scheduled;
 263       bio_list_add(&b->bios, bio);
 264       spin_unlock_irqrestore(&b->lock, flags);
 265
 266       if (commit_scheduled)
 267	       async_commit(b);
 268}
 269
 270/*
 271 * Call this if some urgent work is waiting for the commit to complete.
 272 */
 273static void schedule_commit(struct batcher *b)
 274{
 275	bool immediate;
 276	unsigned long flags;
 277
 278	spin_lock_irqsave(&b->lock, flags);
 279	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 280	b->commit_scheduled = true;
 281	spin_unlock_irqrestore(&b->lock, flags);
 282
 283	if (immediate)
 284		async_commit(b);
 285}
 286
 287/*
 288 * There are a couple of places where we let a bio run, but want to do some
 289 * work before calling its endio function.  We do this by temporarily
 290 * changing the endio fn.
 291 */
 292struct dm_hook_info {
 293	bio_end_io_t *bi_end_io;
 294};
 295
 296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 297			bio_end_io_t *bi_end_io, void *bi_private)
 298{
 299	h->bi_end_io = bio->bi_end_io;
 300
 301	bio->bi_end_io = bi_end_io;
 302	bio->bi_private = bi_private;
 303}
 304
 305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 306{
 307	bio->bi_end_io = h->bi_end_io;
 308}
 309
 310/*----------------------------------------------------------------*/
 311
 312#define MIGRATION_POOL_SIZE 128
 313#define COMMIT_PERIOD HZ
 314#define MIGRATION_COUNT_WINDOW 10
 315
 316/*
 317 * The block size of the device holding cache data must be
 318 * between 32KB and 1GB.
 319 */
 320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 322
 323enum cache_metadata_mode {
 324	CM_WRITE,		/* metadata may be changed */
 325	CM_READ_ONLY,		/* metadata may not be changed */
 326	CM_FAIL
 327};
 328
 329enum cache_io_mode {
 330	/*
 331	 * Data is written to cached blocks only.  These blocks are marked
 332	 * dirty.  If you lose the cache device you will lose data.
 333	 * Potential performance increase for both reads and writes.
 334	 */
 335	CM_IO_WRITEBACK,
 336
 337	/*
 338	 * Data is written to both cache and origin.  Blocks are never
 339	 * dirty.  Potential performance benfit for reads only.
 340	 */
 341	CM_IO_WRITETHROUGH,
 342
 343	/*
 344	 * A degraded mode useful for various cache coherency situations
 345	 * (eg, rolling back snapshots).  Reads and writes always go to the
 346	 * origin.  If a write goes to a cached oblock, then the cache
 347	 * block is invalidated.
 348	 */
 349	CM_IO_PASSTHROUGH
 350};
 351
 352struct cache_features {
 353	enum cache_metadata_mode mode;
 354	enum cache_io_mode io_mode;
 355	unsigned metadata_version;
 356	bool discard_passdown:1;
 357};
 358
 359struct cache_stats {
 360	atomic_t read_hit;
 361	atomic_t read_miss;
 362	atomic_t write_hit;
 363	atomic_t write_miss;
 364	atomic_t demotion;
 365	atomic_t promotion;
 366	atomic_t writeback;
 367	atomic_t copies_avoided;
 368	atomic_t cache_cell_clash;
 369	atomic_t commit_count;
 370	atomic_t discard_count;
 371};
 372
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373struct cache {
 374	struct dm_target *ti;
 375	spinlock_t lock;
 376
 377	/*
 378	 * Fields for converting from sectors to blocks.
 379	 */
 380	int sectors_per_block_shift;
 381	sector_t sectors_per_block;
 382
 383	struct dm_cache_metadata *cmd;
 384
 385	/*
 386	 * Metadata is written to this device.
 387	 */
 388	struct dm_dev *metadata_dev;
 389
 390	/*
 391	 * The slower of the two data devices.  Typically a spindle.
 392	 */
 393	struct dm_dev *origin_dev;
 394
 395	/*
 396	 * The faster of the two data devices.  Typically an SSD.
 397	 */
 398	struct dm_dev *cache_dev;
 399
 400	/*
 401	 * Size of the origin device in _complete_ blocks and native sectors.
 402	 */
 403	dm_oblock_t origin_blocks;
 404	sector_t origin_sectors;
 405
 406	/*
 407	 * Size of the cache device in blocks.
 408	 */
 409	dm_cblock_t cache_size;
 410
 411	/*
 412	 * Invalidation fields.
 413	 */
 414	spinlock_t invalidation_lock;
 415	struct list_head invalidation_requests;
 416
 
 
 
 
 
 
 
 
 417	sector_t migration_threshold;
 418	wait_queue_head_t migration_wait;
 419	atomic_t nr_allocated_migrations;
 420
 421	/*
 422	 * The number of in flight migrations that are performing
 423	 * background io. eg, promotion, writeback.
 424	 */
 425	atomic_t nr_io_migrations;
 426
 427	struct bio_list deferred_bios;
 
 
 428
 429	struct rw_semaphore quiesce_lock;
 430
 431	struct dm_target_callbacks callbacks;
 
 
 432
 433	/*
 434	 * origin_blocks entries, discarded if set.
 435	 */
 436	dm_dblock_t discard_nr_blocks;
 437	unsigned long *discard_bitset;
 438	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 439
 440	/*
 441	 * Rather than reconstructing the table line for the status we just
 442	 * save it and regurgitate.
 443	 */
 444	unsigned nr_ctr_args;
 445	const char **ctr_args;
 446
 447	struct dm_kcopyd_client *copier;
 448	struct work_struct deferred_bio_worker;
 449	struct work_struct migration_worker;
 450	struct workqueue_struct *wq;
 
 
 451	struct delayed_work waker;
 452	struct dm_bio_prison_v2 *prison;
 453
 454	/*
 455	 * cache_size entries, dirty if set
 456	 */
 457	unsigned long *dirty_bitset;
 458	atomic_t nr_dirty;
 459
 
 460	unsigned policy_nr_args;
 461	struct dm_cache_policy *policy;
 462
 463	/*
 464	 * Cache features such as write-through.
 465	 */
 466	struct cache_features features;
 467
 468	struct cache_stats stats;
 469
 470	bool need_tick_bio:1;
 471	bool sized:1;
 472	bool invalidate:1;
 473	bool commit_requested:1;
 474	bool loaded_mappings:1;
 475	bool loaded_discards:1;
 476
 477	struct rw_semaphore background_work_lock;
 
 
 
 478
 479	struct batcher committer;
 480	struct work_struct commit_ws;
 481
 482	struct io_tracker tracker;
 483
 484	mempool_t migration_pool;
 
 
 485
 486	struct bio_set bs;
 487};
 488
 489struct per_bio_data {
 490	bool tick:1;
 491	unsigned req_nr:2;
 492	struct dm_bio_prison_cell_v2 *cell;
 493	struct dm_hook_info hook_info;
 494	sector_t len;
 
 
 
 
 
 
 
 
 
 495};
 496
 497struct dm_cache_migration {
 498	struct continuation k;
 499	struct cache *cache;
 500
 501	struct policy_work *op;
 502	struct bio *overwrite_bio;
 503	struct dm_bio_prison_cell_v2 *cell;
 
 
 
 
 
 
 
 
 
 504
 505	dm_cblock_t invalidate_cblock;
 506	dm_oblock_t invalidate_oblock;
 507};
 508
 509/*----------------------------------------------------------------*/
 510
 511static bool writethrough_mode(struct cache *cache)
 512{
 513	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 514}
 
 
 
 
 515
 516static bool writeback_mode(struct cache *cache)
 517{
 518	return cache->features.io_mode == CM_IO_WRITEBACK;
 519}
 520
 521static inline bool passthrough_mode(struct cache *cache)
 522{
 523	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 524}
 525
 526/*----------------------------------------------------------------*/
 527
 528static void wake_deferred_bio_worker(struct cache *cache)
 529{
 530	queue_work(cache->wq, &cache->deferred_bio_worker);
 531}
 532
 533static void wake_migration_worker(struct cache *cache)
 534{
 535	if (passthrough_mode(cache))
 536		return;
 537
 538	queue_work(cache->wq, &cache->migration_worker);
 539}
 540
 541/*----------------------------------------------------------------*/
 542
 543static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 544{
 545	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 
 546}
 547
 548static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 549{
 550	dm_bio_prison_free_cell_v2(cache->prison, cell);
 551}
 552
 553static struct dm_cache_migration *alloc_migration(struct cache *cache)
 554{
 555	struct dm_cache_migration *mg;
 556
 557	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 558
 559	memset(mg, 0, sizeof(*mg));
 560
 561	mg->cache = cache;
 562	atomic_inc(&cache->nr_allocated_migrations);
 563
 564	return mg;
 565}
 566
 567static void free_migration(struct dm_cache_migration *mg)
 568{
 569	struct cache *cache = mg->cache;
 570
 571	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 572		wake_up(&cache->migration_wait);
 573
 574	mempool_free(mg, &cache->migration_pool);
 575}
 576
 577/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578
 579static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 580{
 581	return to_oblock(from_oblock(b) + 1ull);
 
 
 
 
 
 
 
 582}
 583
 584static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 585{
 586	key->virtual = 0;
 587	key->dev = 0;
 588	key->block_begin = from_oblock(begin);
 589	key->block_end = from_oblock(end);
 
 
 590}
 591
 592/*
 593 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 594 * level 1 which prevents *both* READs and WRITEs.
 595 */
 596#define WRITE_LOCK_LEVEL 0
 597#define READ_WRITE_LOCK_LEVEL 1
 
 598
 599static unsigned lock_level(struct bio *bio)
 600{
 601	return bio_data_dir(bio) == WRITE ?
 602		WRITE_LOCK_LEVEL :
 603		READ_WRITE_LOCK_LEVEL;
 604}
 605
 606/*----------------------------------------------------------------
 607 * Per bio data
 608 *--------------------------------------------------------------*/
 
 
 609
 610static struct per_bio_data *get_per_bio_data(struct bio *bio)
 611{
 612	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 613	BUG_ON(!pb);
 614	return pb;
 615}
 616
 617static struct per_bio_data *init_per_bio_data(struct bio *bio)
 
 
 
 
 618{
 619	struct per_bio_data *pb = get_per_bio_data(bio);
 
 620
 621	pb->tick = false;
 622	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 623	pb->cell = NULL;
 624	pb->len = 0;
 625
 626	return pb;
 
 627}
 628
 629/*----------------------------------------------------------------*/
 630
 631static void defer_bio(struct cache *cache, struct bio *bio)
 632{
 633	unsigned long flags;
 
 
 
 
 634
 635	spin_lock_irqsave(&cache->lock, flags);
 636	bio_list_add(&cache->deferred_bios, bio);
 637	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 638
 639	wake_deferred_bio_worker(cache);
 640}
 641
 642static void defer_bios(struct cache *cache, struct bio_list *bios)
 643{
 644	unsigned long flags;
 
 645
 646	spin_lock_irqsave(&cache->lock, flags);
 647	bio_list_merge(&cache->deferred_bios, bios);
 648	bio_list_init(bios);
 649	spin_unlock_irqrestore(&cache->lock, flags);
 650
 651	wake_deferred_bio_worker(cache);
 652}
 653
 654/*----------------------------------------------------------------*/
 655
 656static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 
 657{
 658	bool r;
 659	struct per_bio_data *pb;
 660	struct dm_cell_key_v2 key;
 661	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 662	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 
 
 663
 664	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 
 
 
 
 
 
 
 665
 666	build_key(oblock, end, &key);
 667	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 668	if (!r) {
 669		/*
 670		 * Failed to get the lock.
 671		 */
 672		free_prison_cell(cache, cell_prealloc);
 673		return r;
 674	}
 675
 676	if (cell != cell_prealloc)
 677		free_prison_cell(cache, cell_prealloc);
 678
 679	pb = get_per_bio_data(bio);
 680	pb->cell = cell;
 681
 682	return r;
 683}
 684
 685/*----------------------------------------------------------------*/
 686
 687static bool is_dirty(struct cache *cache, dm_cblock_t b)
 688{
 689	return test_bit(from_cblock(b), cache->dirty_bitset);
 690}
 691
 692static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 693{
 694	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 695		atomic_inc(&cache->nr_dirty);
 696		policy_set_dirty(cache->policy, cblock);
 697	}
 698}
 699
 700/*
 701 * These two are called when setting after migrations to force the policy
 702 * and dirty bitset to be in sync.
 703 */
 704static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 705{
 706	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 707		atomic_inc(&cache->nr_dirty);
 708	policy_set_dirty(cache->policy, cblock);
 709}
 710
 711static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 712{
 713	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 
 714		if (atomic_dec_return(&cache->nr_dirty) == 0)
 715			dm_table_event(cache->ti->table);
 716	}
 717
 718	policy_clear_dirty(cache->policy, cblock);
 719}
 720
 721/*----------------------------------------------------------------*/
 722
 723static bool block_size_is_power_of_two(struct cache *cache)
 724{
 725	return cache->sectors_per_block_shift >= 0;
 726}
 727
 728/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 729#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 730__always_inline
 731#endif
 732static dm_block_t block_div(dm_block_t b, uint32_t n)
 733{
 734	do_div(b, n);
 735
 736	return b;
 737}
 738
 739static dm_block_t oblocks_per_dblock(struct cache *cache)
 740{
 741	dm_block_t oblocks = cache->discard_block_size;
 742
 743	if (block_size_is_power_of_two(cache))
 744		oblocks >>= cache->sectors_per_block_shift;
 745	else
 746		oblocks = block_div(oblocks, cache->sectors_per_block);
 747
 748	return oblocks;
 749}
 750
 751static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 752{
 753	return to_dblock(block_div(from_oblock(oblock),
 754				   oblocks_per_dblock(cache)));
 755}
 756
 
 
 
 
 
 757static void set_discard(struct cache *cache, dm_dblock_t b)
 758{
 759	unsigned long flags;
 760
 761	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 762	atomic_inc(&cache->stats.discard_count);
 763
 764	spin_lock_irqsave(&cache->lock, flags);
 765	set_bit(from_dblock(b), cache->discard_bitset);
 766	spin_unlock_irqrestore(&cache->lock, flags);
 767}
 768
 769static void clear_discard(struct cache *cache, dm_dblock_t b)
 770{
 771	unsigned long flags;
 772
 773	spin_lock_irqsave(&cache->lock, flags);
 774	clear_bit(from_dblock(b), cache->discard_bitset);
 775	spin_unlock_irqrestore(&cache->lock, flags);
 776}
 777
 778static bool is_discarded(struct cache *cache, dm_dblock_t b)
 779{
 780	int r;
 781	unsigned long flags;
 782
 783	spin_lock_irqsave(&cache->lock, flags);
 784	r = test_bit(from_dblock(b), cache->discard_bitset);
 785	spin_unlock_irqrestore(&cache->lock, flags);
 786
 787	return r;
 788}
 789
 790static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 791{
 792	int r;
 793	unsigned long flags;
 794
 795	spin_lock_irqsave(&cache->lock, flags);
 796	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 797		     cache->discard_bitset);
 798	spin_unlock_irqrestore(&cache->lock, flags);
 799
 800	return r;
 801}
 802
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 803/*----------------------------------------------------------------
 804 * Remapping
 805 *--------------------------------------------------------------*/
 806static void remap_to_origin(struct cache *cache, struct bio *bio)
 807{
 808	bio_set_dev(bio, cache->origin_dev->bdev);
 809}
 810
 811static void remap_to_cache(struct cache *cache, struct bio *bio,
 812			   dm_cblock_t cblock)
 813{
 814	sector_t bi_sector = bio->bi_iter.bi_sector;
 815	sector_t block = from_cblock(cblock);
 816
 817	bio_set_dev(bio, cache->cache_dev->bdev);
 818	if (!block_size_is_power_of_two(cache))
 819		bio->bi_iter.bi_sector =
 820			(block * cache->sectors_per_block) +
 821			sector_div(bi_sector, cache->sectors_per_block);
 822	else
 823		bio->bi_iter.bi_sector =
 824			(block << cache->sectors_per_block_shift) |
 825			(bi_sector & (cache->sectors_per_block - 1));
 826}
 827
 828static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 829{
 830	unsigned long flags;
 831	struct per_bio_data *pb;
 
 832
 833	spin_lock_irqsave(&cache->lock, flags);
 834	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 
 835	    bio_op(bio) != REQ_OP_DISCARD) {
 836		pb = get_per_bio_data(bio);
 837		pb->tick = true;
 838		cache->need_tick_bio = false;
 839	}
 840	spin_unlock_irqrestore(&cache->lock, flags);
 841}
 842
 843static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 844					    dm_oblock_t oblock, bool bio_has_pbd)
 845{
 846	if (bio_has_pbd)
 847		check_if_tick_bio_needed(cache, bio);
 848	remap_to_origin(cache, bio);
 849	if (bio_data_dir(bio) == WRITE)
 850		clear_discard(cache, oblock_to_dblock(cache, oblock));
 851}
 852
 853static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 854					  dm_oblock_t oblock)
 855{
 856	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 857	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 858}
 859
 860static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 861				 dm_oblock_t oblock, dm_cblock_t cblock)
 862{
 863	check_if_tick_bio_needed(cache, bio);
 864	remap_to_cache(cache, bio, cblock);
 865	if (bio_data_dir(bio) == WRITE) {
 866		set_dirty(cache, cblock);
 867		clear_discard(cache, oblock_to_dblock(cache, oblock));
 868	}
 869}
 870
 871static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 872{
 873	sector_t block_nr = bio->bi_iter.bi_sector;
 874
 875	if (!block_size_is_power_of_two(cache))
 876		(void) sector_div(block_nr, cache->sectors_per_block);
 877	else
 878		block_nr >>= cache->sectors_per_block_shift;
 879
 880	return to_oblock(block_nr);
 881}
 882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883static bool accountable_bio(struct cache *cache, struct bio *bio)
 884{
 885	return bio_op(bio) != REQ_OP_DISCARD;
 
 886}
 887
 888static void accounted_begin(struct cache *cache, struct bio *bio)
 889{
 890	struct per_bio_data *pb;
 
 891
 892	if (accountable_bio(cache, bio)) {
 893		pb = get_per_bio_data(bio);
 894		pb->len = bio_sectors(bio);
 895		iot_io_begin(&cache->tracker, pb->len);
 896	}
 897}
 898
 899static void accounted_complete(struct cache *cache, struct bio *bio)
 900{
 901	struct per_bio_data *pb = get_per_bio_data(bio);
 
 902
 903	iot_io_end(&cache->tracker, pb->len);
 904}
 905
 906static void accounted_request(struct cache *cache, struct bio *bio)
 907{
 908	accounted_begin(cache, bio);
 909	generic_make_request(bio);
 910}
 911
 912static void issue_op(struct bio *bio, void *context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913{
 914	struct cache *cache = context;
 915	accounted_request(cache, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916}
 917
 918/*
 919 * When running in writethrough mode we need to send writes to clean blocks
 920 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 
 
 921 */
 922static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 923				      dm_oblock_t oblock, dm_cblock_t cblock)
 924{
 925	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
 926
 927	BUG_ON(!origin_bio);
 928
 929	bio_chain(origin_bio, bio);
 930	/*
 931	 * Passing false to __remap_to_origin_clear_discard() skips
 932	 * all code that might use per_bio_data (since clone doesn't have it)
 933	 */
 934	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 935	submit_bio(origin_bio);
 936
 937	remap_to_cache(cache, bio, cblock);
 938}
 939
 940/*----------------------------------------------------------------
 941 * Failure modes
 942 *--------------------------------------------------------------*/
 943static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 944{
 945	return cache->features.mode;
 946}
 947
 948static const char *cache_device_name(struct cache *cache)
 949{
 950	return dm_device_name(dm_table_get_md(cache->ti->table));
 951}
 952
 953static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 954{
 955	const char *descs[] = {
 956		"write",
 957		"read-only",
 958		"fail"
 959	};
 960
 961	dm_table_event(cache->ti->table);
 962	DMINFO("%s: switching cache to %s mode",
 963	       cache_device_name(cache), descs[(int)mode]);
 964}
 965
 966static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 967{
 968	bool needs_check;
 969	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 970
 971	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 972		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 973		      cache_device_name(cache));
 974		new_mode = CM_FAIL;
 975	}
 976
 977	if (new_mode == CM_WRITE && needs_check) {
 978		DMERR("%s: unable to switch cache to write mode until repaired.",
 979		      cache_device_name(cache));
 980		if (old_mode != new_mode)
 981			new_mode = old_mode;
 982		else
 983			new_mode = CM_READ_ONLY;
 984	}
 985
 986	/* Never move out of fail mode */
 987	if (old_mode == CM_FAIL)
 988		new_mode = CM_FAIL;
 989
 990	switch (new_mode) {
 991	case CM_FAIL:
 992	case CM_READ_ONLY:
 993		dm_cache_metadata_set_read_only(cache->cmd);
 994		break;
 995
 996	case CM_WRITE:
 997		dm_cache_metadata_set_read_write(cache->cmd);
 998		break;
 999	}
1000
1001	cache->features.mode = new_mode;
1002
1003	if (new_mode != old_mode)
1004		notify_mode_switch(cache, new_mode);
1005}
1006
1007static void abort_transaction(struct cache *cache)
1008{
1009	const char *dev_name = cache_device_name(cache);
1010
1011	if (get_cache_mode(cache) >= CM_READ_ONLY)
1012		return;
1013
1014	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1015		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1016		set_cache_mode(cache, CM_FAIL);
1017	}
1018
1019	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1020	if (dm_cache_metadata_abort(cache->cmd)) {
1021		DMERR("%s: failed to abort metadata transaction", dev_name);
1022		set_cache_mode(cache, CM_FAIL);
1023	}
1024}
1025
1026static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1027{
1028	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1029		    cache_device_name(cache), op, r);
1030	abort_transaction(cache);
1031	set_cache_mode(cache, CM_READ_ONLY);
1032}
1033
1034/*----------------------------------------------------------------*/
1035
1036static void load_stats(struct cache *cache)
1037{
1038	struct dm_cache_statistics stats;
1039
1040	dm_cache_metadata_get_stats(cache->cmd, &stats);
1041	atomic_set(&cache->stats.read_hit, stats.read_hits);
1042	atomic_set(&cache->stats.read_miss, stats.read_misses);
1043	atomic_set(&cache->stats.write_hit, stats.write_hits);
1044	atomic_set(&cache->stats.write_miss, stats.write_misses);
1045}
1046
1047static void save_stats(struct cache *cache)
1048{
1049	struct dm_cache_statistics stats;
1050
1051	if (get_cache_mode(cache) >= CM_READ_ONLY)
1052		return;
1053
1054	stats.read_hits = atomic_read(&cache->stats.read_hit);
1055	stats.read_misses = atomic_read(&cache->stats.read_miss);
1056	stats.write_hits = atomic_read(&cache->stats.write_hit);
1057	stats.write_misses = atomic_read(&cache->stats.write_miss);
1058
1059	dm_cache_metadata_set_stats(cache->cmd, &stats);
1060}
1061
1062static void update_stats(struct cache_stats *stats, enum policy_operation op)
1063{
1064	switch (op) {
1065	case POLICY_PROMOTE:
1066		atomic_inc(&stats->promotion);
1067		break;
1068
1069	case POLICY_DEMOTE:
1070		atomic_inc(&stats->demotion);
1071		break;
1072
1073	case POLICY_WRITEBACK:
1074		atomic_inc(&stats->writeback);
1075		break;
1076	}
1077}
1078
1079/*----------------------------------------------------------------
1080 * Migration processing
1081 *
1082 * Migration covers moving data from the origin device to the cache, or
1083 * vice versa.
1084 *--------------------------------------------------------------*/
1085
1086static void inc_io_migrations(struct cache *cache)
1087{
1088	atomic_inc(&cache->nr_io_migrations);
1089}
1090
1091static void dec_io_migrations(struct cache *cache)
1092{
1093	atomic_dec(&cache->nr_io_migrations);
1094}
1095
1096static bool discard_or_flush(struct bio *bio)
1097{
1098	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
 
 
 
 
 
 
 
 
 
 
 
 
 
1099}
1100
1101static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1102				     dm_dblock_t *b, dm_dblock_t *e)
1103{
1104	sector_t sb = bio->bi_iter.bi_sector;
1105	sector_t se = bio_end_sector(bio);
 
 
 
 
 
 
 
 
1106
1107	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
1108
1109	if (se - sb < cache->discard_block_size)
1110		*e = *b;
1111	else
1112		*e = to_dblock(block_div(se, cache->discard_block_size));
1113}
1114
1115/*----------------------------------------------------------------*/
 
 
 
 
1116
1117static void prevent_background_work(struct cache *cache)
1118{
1119	lockdep_off();
1120	down_write(&cache->background_work_lock);
1121	lockdep_on();
1122}
1123
1124static void allow_background_work(struct cache *cache)
1125{
1126	lockdep_off();
1127	up_write(&cache->background_work_lock);
1128	lockdep_on();
 
 
1129}
1130
1131static bool background_work_begin(struct cache *cache)
1132{
1133	bool r;
 
1134
1135	lockdep_off();
1136	r = down_read_trylock(&cache->background_work_lock);
1137	lockdep_on();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1138
1139	return r;
1140}
1141
1142static void background_work_end(struct cache *cache)
1143{
1144	lockdep_off();
1145	up_read(&cache->background_work_lock);
1146	lockdep_on();
1147}
 
 
 
 
 
1148
1149/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1152{
1153	return (bio_data_dir(bio) == WRITE) &&
1154		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1155}
1156
1157static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1158{
1159	return writeback_mode(cache) &&
1160		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1161}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162
1163static void quiesce(struct dm_cache_migration *mg,
1164		    void (*continuation)(struct work_struct *))
1165{
1166	init_continuation(&mg->k, continuation);
1167	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1168}
1169
1170static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1171{
1172	struct continuation *k = container_of(ws, struct continuation, ws);
1173	return container_of(k, struct dm_cache_migration, k);
 
 
 
 
 
 
 
 
 
 
1174}
1175
1176static void copy_complete(int read_err, unsigned long write_err, void *context)
1177{
1178	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
 
 
1179
1180	if (read_err || write_err)
1181		mg->k.input = BLK_STS_IOERR;
1182
1183	queue_continuation(mg->cache->wq, &mg->k);
 
 
 
 
1184}
1185
1186static void copy(struct dm_cache_migration *mg, bool promote)
1187{
 
1188	struct dm_io_region o_region, c_region;
1189	struct cache *cache = mg->cache;
 
1190
1191	o_region.bdev = cache->origin_dev->bdev;
1192	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1193	o_region.count = cache->sectors_per_block;
1194
1195	c_region.bdev = cache->cache_dev->bdev;
1196	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1197	c_region.count = cache->sectors_per_block;
1198
1199	if (promote)
1200		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1201	else
1202		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1203}
 
 
 
 
1204
1205static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1206{
1207	struct per_bio_data *pb = get_per_bio_data(bio);
1208
1209	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1210		free_prison_cell(cache, pb->cell);
1211	pb->cell = NULL;
1212}
1213
1214static void overwrite_endio(struct bio *bio)
1215{
1216	struct dm_cache_migration *mg = bio->bi_private;
1217	struct cache *cache = mg->cache;
1218	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
1219
1220	dm_unhook_bio(&pb->hook_info, bio);
1221
1222	if (bio->bi_status)
1223		mg->k.input = bio->bi_status;
 
 
1224
1225	queue_continuation(cache->wq, &mg->k);
 
 
 
 
1226}
1227
1228static void overwrite(struct dm_cache_migration *mg,
1229		      void (*continuation)(struct work_struct *))
1230{
1231	struct bio *bio = mg->overwrite_bio;
1232	struct per_bio_data *pb = get_per_bio_data(bio);
1233
1234	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
 
1235
1236	/*
1237	 * The overwrite bio is part of the copy operation, as such it does
1238	 * not set/clear discard or dirty flags.
1239	 */
1240	if (mg->op->op == POLICY_PROMOTE)
1241		remap_to_cache(mg->cache, bio, mg->op->cblock);
1242	else
1243		remap_to_origin(mg->cache, bio);
1244
1245	init_continuation(&mg->k, continuation);
1246	accounted_request(mg->cache, bio);
 
 
1247}
1248
1249/*
1250 * Migration steps:
1251 *
1252 * 1) exclusive lock preventing WRITEs
1253 * 2) quiesce
1254 * 3) copy or issue overwrite bio
1255 * 4) upgrade to exclusive lock preventing READs and WRITEs
1256 * 5) quiesce
1257 * 6) update metadata and commit
1258 * 7) unlock
1259 */
1260static void mg_complete(struct dm_cache_migration *mg, bool success)
1261{
1262	struct bio_list bios;
1263	struct cache *cache = mg->cache;
1264	struct policy_work *op = mg->op;
1265	dm_cblock_t cblock = op->cblock;
1266
1267	if (success)
1268		update_stats(&cache->stats, op->op);
 
 
 
1269
1270	switch (op->op) {
1271	case POLICY_PROMOTE:
1272		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1273		policy_complete_background_work(cache->policy, op, success);
1274
1275		if (mg->overwrite_bio) {
1276			if (success)
1277				force_set_dirty(cache, cblock);
1278			else if (mg->k.input)
1279				mg->overwrite_bio->bi_status = mg->k.input;
1280			else
1281				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1282			bio_endio(mg->overwrite_bio);
1283		} else {
1284			if (success)
1285				force_clear_dirty(cache, cblock);
1286			dec_io_migrations(cache);
1287		}
1288		break;
1289
1290	case POLICY_DEMOTE:
1291		/*
1292		 * We clear dirty here to update the nr_dirty counter.
1293		 */
1294		if (success)
1295			force_clear_dirty(cache, cblock);
1296		policy_complete_background_work(cache->policy, op, success);
1297		dec_io_migrations(cache);
1298		break;
1299
1300	case POLICY_WRITEBACK:
1301		if (success)
1302			force_clear_dirty(cache, cblock);
1303		policy_complete_background_work(cache->policy, op, success);
1304		dec_io_migrations(cache);
1305		break;
1306	}
1307
1308	bio_list_init(&bios);
1309	if (mg->cell) {
1310		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1311			free_prison_cell(cache, mg->cell);
1312	}
1313
 
 
1314	free_migration(mg);
1315	defer_bios(cache, &bios);
1316	wake_migration_worker(cache);
1317
1318	background_work_end(cache);
1319}
1320
1321static void mg_success(struct work_struct *ws)
1322{
1323	struct dm_cache_migration *mg = ws_to_mg(ws);
1324	mg_complete(mg, mg->k.input == 0);
1325}
1326
1327static void mg_update_metadata(struct work_struct *ws)
1328{
1329	int r;
1330	struct dm_cache_migration *mg = ws_to_mg(ws);
1331	struct cache *cache = mg->cache;
1332	struct policy_work *op = mg->op;
1333
1334	switch (op->op) {
1335	case POLICY_PROMOTE:
1336		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1337		if (r) {
1338			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1339				    cache_device_name(cache));
1340			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1341
1342			mg_complete(mg, false);
1343			return;
1344		}
1345		mg_complete(mg, true);
1346		break;
1347
1348	case POLICY_DEMOTE:
1349		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1350		if (r) {
1351			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1352				    cache_device_name(cache));
1353			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1354
1355			mg_complete(mg, false);
 
 
1356			return;
1357		}
 
1358
1359		/*
1360		 * It would be nice if we only had to commit when a REQ_FLUSH
1361		 * comes through.  But there's one scenario that we have to
1362		 * look out for:
1363		 *
1364		 * - vblock x in a cache block
1365		 * - domotion occurs
1366		 * - cache block gets reallocated and over written
1367		 * - crash
1368		 *
1369		 * When we recover, because there was no commit the cache will
1370		 * rollback to having the data for vblock x in the cache block.
1371		 * But the cache block has since been overwritten, so it'll end
1372		 * up pointing to data that was never in 'x' during the history
1373		 * of the device.
1374		 *
1375		 * To avoid this issue we require a commit as part of the
1376		 * demotion operation.
1377		 */
1378		init_continuation(&mg->k, mg_success);
1379		continue_after_commit(&cache->committer, &mg->k);
1380		schedule_commit(&cache->committer);
1381		break;
1382
1383	case POLICY_WRITEBACK:
1384		mg_complete(mg, true);
1385		break;
1386	}
1387}
1388
1389static void mg_update_metadata_after_copy(struct work_struct *ws)
1390{
1391	struct dm_cache_migration *mg = ws_to_mg(ws);
1392
1393	/*
1394	 * Did the copy succeed?
1395	 */
1396	if (mg->k.input)
1397		mg_complete(mg, false);
1398	else
1399		mg_update_metadata(ws);
1400}
1401
1402static void mg_upgrade_lock(struct work_struct *ws)
 
1403{
1404	int r;
1405	struct dm_cache_migration *mg = ws_to_mg(ws);
 
1406
1407	/*
1408	 * Did the copy succeed?
1409	 */
1410	if (mg->k.input)
1411		mg_complete(mg, false);
1412
1413	else {
1414		/*
1415		 * Now we want the lock to prevent both reads and writes.
1416		 */
1417		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1418					    READ_WRITE_LOCK_LEVEL);
1419		if (r < 0)
1420			mg_complete(mg, false);
1421
1422		else if (r)
1423			quiesce(mg, mg_update_metadata);
1424
1425		else
1426			mg_update_metadata(ws);
1427	}
1428}
1429
1430static void mg_full_copy(struct work_struct *ws)
1431{
1432	struct dm_cache_migration *mg = ws_to_mg(ws);
1433	struct cache *cache = mg->cache;
1434	struct policy_work *op = mg->op;
1435	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1436
1437	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1438	    is_discarded_oblock(cache, op->oblock)) {
1439		mg_upgrade_lock(ws);
1440		return;
1441	}
1442
1443	init_continuation(&mg->k, mg_upgrade_lock);
1444	copy(mg, is_policy_promote);
1445}
1446
1447static void mg_copy(struct work_struct *ws)
1448{
1449	struct dm_cache_migration *mg = ws_to_mg(ws);
 
1450
1451	if (mg->overwrite_bio) {
1452		/*
1453		 * No exclusive lock was held when we last checked if the bio
1454		 * was optimisable.  So we have to check again in case things
1455		 * have changed (eg, the block may no longer be discarded).
1456		 */
1457		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1458			/*
1459			 * Fallback to a real full copy after doing some tidying up.
1460			 */
1461			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1462			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1463			mg->overwrite_bio = NULL;
1464			inc_io_migrations(mg->cache);
1465			mg_full_copy(ws);
1466			return;
1467		}
1468
1469		/*
1470		 * It's safe to do this here, even though it's new data
1471		 * because all IO has been locked out of the block.
1472		 *
1473		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1474		 * so _not_ using mg_upgrade_lock() as continutation.
1475		 */
1476		overwrite(mg, mg_update_metadata_after_copy);
1477
1478	} else
1479		mg_full_copy(ws);
1480}
1481
1482static int mg_lock_writes(struct dm_cache_migration *mg)
 
1483{
1484	int r;
1485	struct dm_cell_key_v2 key;
1486	struct cache *cache = mg->cache;
1487	struct dm_bio_prison_cell_v2 *prealloc;
1488
1489	prealloc = alloc_prison_cell(cache);
 
1490
1491	/*
1492	 * Prevent writes to the block, but allow reads to continue.
1493	 * Unless we're using an overwrite bio, in which case we lock
1494	 * everything.
1495	 */
1496	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1497	r = dm_cell_lock_v2(cache->prison, &key,
1498			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1499			    prealloc, &mg->cell);
1500	if (r < 0) {
1501		free_prison_cell(cache, prealloc);
1502		mg_complete(mg, false);
1503		return r;
1504	}
1505
1506	if (mg->cell != prealloc)
1507		free_prison_cell(cache, prealloc);
 
1508
1509	if (r == 0)
1510		mg_copy(&mg->k.ws);
1511	else
1512		quiesce(mg, mg_copy);
1513
1514	return 0;
1515}
1516
1517static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
 
 
1518{
1519	struct dm_cache_migration *mg;
1520
1521	if (!background_work_begin(cache)) {
1522		policy_complete_background_work(cache->policy, op, false);
1523		return -EPERM;
1524	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525
1526	mg = alloc_migration(cache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527
1528	mg->op = op;
1529	mg->overwrite_bio = bio;
1530
1531	if (!bio)
1532		inc_io_migrations(cache);
1533
1534	return mg_lock_writes(mg);
1535}
1536
1537/*----------------------------------------------------------------
1538 * invalidation processing
1539 *--------------------------------------------------------------*/
 
 
 
1540
1541static void invalidate_complete(struct dm_cache_migration *mg, bool success)
 
 
 
 
 
 
 
1542{
1543	struct bio_list bios;
1544	struct cache *cache = mg->cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1545
1546	bio_list_init(&bios);
1547	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1548		free_prison_cell(cache, mg->cell);
 
 
 
1549
1550	if (!success && mg->overwrite_bio)
1551		bio_io_error(mg->overwrite_bio);
 
 
 
1552
1553	free_migration(mg);
1554	defer_bios(cache, &bios);
 
 
 
 
1555
1556	background_work_end(cache);
1557}
1558
1559static void invalidate_completed(struct work_struct *ws)
1560{
1561	struct dm_cache_migration *mg = ws_to_mg(ws);
1562	invalidate_complete(mg, !mg->k.input);
 
1563}
1564
1565static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1566{
1567	int r = policy_invalidate_mapping(cache->policy, cblock);
1568	if (!r) {
1569		r = dm_cache_remove_mapping(cache->cmd, cblock);
1570		if (r) {
1571			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1572				    cache_device_name(cache));
1573			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1574		}
1575
1576	} else if (r == -ENODATA) {
1577		/*
1578		 * Harmless, already unmapped.
1579		 */
1580		r = 0;
1581
1582	} else
1583		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1584
1585	return r;
1586}
 
 
 
 
1587
1588static void invalidate_remove(struct work_struct *ws)
1589{
1590	int r;
1591	struct dm_cache_migration *mg = ws_to_mg(ws);
1592	struct cache *cache = mg->cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
1593
1594	r = invalidate_cblock(cache, mg->invalidate_cblock);
1595	if (r) {
1596		invalidate_complete(mg, false);
1597		return;
1598	}
1599
1600	init_continuation(&mg->k, invalidate_completed);
1601	continue_after_commit(&cache->committer, &mg->k);
1602	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1603	mg->overwrite_bio = NULL;
1604	schedule_commit(&cache->committer);
1605}
1606
1607static int invalidate_lock(struct dm_cache_migration *mg)
 
 
 
1608{
1609	int r;
1610	struct dm_cell_key_v2 key;
1611	struct cache *cache = mg->cache;
1612	struct dm_bio_prison_cell_v2 *prealloc;
1613
1614	prealloc = alloc_prison_cell(cache);
 
 
 
1615
1616	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1617	r = dm_cell_lock_v2(cache->prison, &key,
1618			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1619	if (r < 0) {
1620		free_prison_cell(cache, prealloc);
1621		invalidate_complete(mg, false);
1622		return r;
1623	}
1624
1625	if (mg->cell != prealloc)
1626		free_prison_cell(cache, prealloc);
 
 
 
1627
1628	if (r)
1629		quiesce(mg, invalidate_remove);
1630
1631	else {
1632		/*
1633		 * We can't call invalidate_remove() directly here because we
1634		 * might still be in request context.
1635		 */
1636		init_continuation(&mg->k, invalidate_remove);
1637		queue_work(cache->wq, &mg->k.ws);
1638	}
1639
1640	return 0;
1641}
1642
1643static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1644			    dm_oblock_t oblock, struct bio *bio)
1645{
1646	struct dm_cache_migration *mg;
 
 
 
 
 
 
 
 
 
 
 
 
1647
1648	if (!background_work_begin(cache))
1649		return -EPERM;
 
 
 
1650
1651	mg = alloc_migration(cache);
 
 
 
1652
1653	mg->overwrite_bio = bio;
1654	mg->invalidate_cblock = cblock;
1655	mg->invalidate_oblock = oblock;
 
1656
1657	return invalidate_lock(mg);
1658}
1659
1660/*----------------------------------------------------------------
1661 * bio processing
1662 *--------------------------------------------------------------*/
1663
1664enum busy {
1665	IDLE,
1666	BUSY
 
 
1667};
1668
1669static enum busy spare_migration_bandwidth(struct cache *cache)
1670{
1671	bool idle = iot_idle_for(&cache->tracker, HZ);
1672	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1673		cache->sectors_per_block;
1674
1675	if (idle && current_volume <= cache->migration_threshold)
1676		return IDLE;
1677	else
1678		return BUSY;
1679}
1680
1681static void inc_hit_counter(struct cache *cache, struct bio *bio)
1682{
1683	atomic_inc(bio_data_dir(bio) == READ ?
1684		   &cache->stats.read_hit : &cache->stats.write_hit);
 
 
 
 
1685}
1686
1687static void inc_miss_counter(struct cache *cache, struct bio *bio)
 
1688{
1689	atomic_inc(bio_data_dir(bio) == READ ?
1690		   &cache->stats.read_miss : &cache->stats.write_miss);
1691}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693/*----------------------------------------------------------------*/
 
 
 
1694
1695static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1696		   bool *commit_needed)
1697{
1698	int r, data_dir;
1699	bool rb, background_queued;
1700	dm_cblock_t cblock;
 
1701
1702	*commit_needed = false;
 
 
 
 
 
 
 
 
 
 
1703
1704	rb = bio_detain_shared(cache, block, bio);
1705	if (!rb) {
1706		/*
1707		 * An exclusive lock is held for this block, so we have to
1708		 * wait.  We set the commit_needed flag so the current
1709		 * transaction will be committed asap, allowing this lock
1710		 * to be dropped.
1711		 */
1712		*commit_needed = true;
1713		return DM_MAPIO_SUBMITTED;
1714	}
1715
1716	data_dir = bio_data_dir(bio);
 
 
 
 
1717
1718	if (optimisable_bio(cache, bio, block)) {
1719		struct policy_work *op = NULL;
 
 
 
1720
1721		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1722		if (unlikely(r && r != -ENOENT)) {
1723			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1724				    cache_device_name(cache), r);
1725			bio_io_error(bio);
1726			return DM_MAPIO_SUBMITTED;
1727		}
1728
1729		if (r == -ENOENT && op) {
1730			bio_drop_shared_lock(cache, bio);
1731			BUG_ON(op->op != POLICY_PROMOTE);
1732			mg_start(cache, op, bio);
1733			return DM_MAPIO_SUBMITTED;
1734		}
1735	} else {
1736		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1737		if (unlikely(r && r != -ENOENT)) {
1738			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1739				    cache_device_name(cache), r);
1740			bio_io_error(bio);
1741			return DM_MAPIO_SUBMITTED;
1742		}
1743
1744		if (background_queued)
1745			wake_migration_worker(cache);
 
 
 
1746	}
1747
1748	if (r == -ENOENT) {
1749		struct per_bio_data *pb = get_per_bio_data(bio);
 
1750
1751		/*
1752		 * Miss.
1753		 */
1754		inc_miss_counter(cache, bio);
1755		if (pb->req_nr == 0) {
1756			accounted_begin(cache, bio);
1757			remap_to_origin_clear_discard(cache, bio, block);
1758		} else {
1759			/*
1760			 * This is a duplicate writethrough io that is no
1761			 * longer needed because the block has been demoted.
1762			 */
1763			bio_endio(bio);
1764			return DM_MAPIO_SUBMITTED;
1765		}
1766	} else {
1767		/*
1768		 * Hit.
1769		 */
1770		inc_hit_counter(cache, bio);
1771
1772		/*
1773		 * Passthrough always maps to the origin, invalidating any
1774		 * cache blocks that are written to.
1775		 */
1776		if (passthrough_mode(cache)) {
1777			if (bio_data_dir(bio) == WRITE) {
1778				bio_drop_shared_lock(cache, bio);
1779				atomic_inc(&cache->stats.demotion);
1780				invalidate_start(cache, cblock, block, bio);
1781			} else
1782				remap_to_origin_clear_discard(cache, bio, block);
1783		} else {
1784			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1785			    !is_dirty(cache, cblock)) {
1786				remap_to_origin_and_cache(cache, bio, block, cblock);
1787				accounted_begin(cache, bio);
1788			} else
1789				remap_to_cache_dirty(cache, bio, block, cblock);
1790		}
1791	}
1792
1793	/*
1794	 * dm core turns FUA requests into a separate payload and FLUSH req.
1795	 */
1796	if (bio->bi_opf & REQ_FUA) {
1797		/*
1798		 * issue_after_commit will call accounted_begin a second time.  So
1799		 * we call accounted_complete() to avoid double accounting.
1800		 */
1801		accounted_complete(cache, bio);
1802		issue_after_commit(&cache->committer, bio);
1803		*commit_needed = true;
1804		return DM_MAPIO_SUBMITTED;
1805	}
1806
1807	return DM_MAPIO_REMAPPED;
1808}
1809
1810static bool process_bio(struct cache *cache, struct bio *bio)
1811{
1812	bool commit_needed;
1813
1814	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1815		generic_make_request(bio);
1816
1817	return commit_needed;
1818}
1819
1820/*
1821 * A non-zero return indicates read_only or fail_io mode.
1822 */
1823static int commit(struct cache *cache, bool clean_shutdown)
1824{
1825	int r;
1826
1827	if (get_cache_mode(cache) >= CM_READ_ONLY)
1828		return -EINVAL;
1829
1830	atomic_inc(&cache->stats.commit_count);
1831	r = dm_cache_commit(cache->cmd, clean_shutdown);
1832	if (r)
1833		metadata_operation_failed(cache, "dm_cache_commit", r);
1834
1835	return r;
1836}
1837
1838/*
1839 * Used by the batcher.
1840 */
1841static blk_status_t commit_op(void *context)
1842{
1843	struct cache *cache = context;
1844
1845	if (dm_cache_changed_this_transaction(cache->cmd))
1846		return errno_to_blk_status(commit(cache, false));
 
 
 
 
1847
1848	return 0;
1849}
1850
1851/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852
1853static bool process_flush_bio(struct cache *cache, struct bio *bio)
1854{
1855	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
 
 
 
 
 
 
 
 
 
 
1856
1857	if (!pb->req_nr)
1858		remap_to_origin(cache, bio);
1859	else
1860		remap_to_cache(cache, bio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
1861
1862	issue_after_commit(&cache->committer, bio);
1863	return true;
1864}
1865
1866static bool process_discard_bio(struct cache *cache, struct bio *bio)
1867{
1868	dm_dblock_t b, e;
 
 
1869
1870	// FIXME: do we need to lock the region?  Or can we just assume the
1871	// user wont be so foolish as to issue discard concurrently with
1872	// other IO?
1873	calc_discard_block_range(cache, bio, &b, &e);
1874	while (b != e) {
1875		set_discard(cache, b);
1876		b = to_dblock(from_dblock(b) + 1);
1877	}
1878
1879	if (cache->features.discard_passdown) {
1880		remap_to_origin(cache, bio);
1881		generic_make_request(bio);
1882	} else
1883		bio_endio(bio);
1884
1885	return false;
 
 
 
 
1886}
1887
1888static void process_deferred_bios(struct work_struct *ws)
1889{
1890	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1891
1892	unsigned long flags;
1893	bool commit_needed = false;
1894	struct bio_list bios;
1895	struct bio *bio;
1896
1897	bio_list_init(&bios);
1898
1899	spin_lock_irqsave(&cache->lock, flags);
1900	bio_list_merge(&bios, &cache->deferred_bios);
1901	bio_list_init(&cache->deferred_bios);
1902	spin_unlock_irqrestore(&cache->lock, flags);
1903
1904	while ((bio = bio_list_pop(&bios))) {
1905		if (bio->bi_opf & REQ_PREFLUSH)
1906			commit_needed = process_flush_bio(cache, bio) || commit_needed;
 
 
 
1907
1908		else if (bio_op(bio) == REQ_OP_DISCARD)
1909			commit_needed = process_discard_bio(cache, bio) || commit_needed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910
1911		else
1912			commit_needed = process_bio(cache, bio) || commit_needed;
1913	}
1914
1915	if (commit_needed)
1916		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917}
1918
1919/*----------------------------------------------------------------
1920 * Main worker loop
1921 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922
1923static void requeue_deferred_bios(struct cache *cache)
1924{
1925	struct bio *bio;
1926	struct bio_list bios;
1927
1928	bio_list_init(&bios);
1929	bio_list_merge(&bios, &cache->deferred_bios);
1930	bio_list_init(&cache->deferred_bios);
1931
1932	while ((bio = bio_list_pop(&bios))) {
1933		bio->bi_status = BLK_STS_DM_REQUEUE;
1934		bio_endio(bio);
1935	}
1936}
1937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1938/*
1939 * We want to commit periodically so that not too much
1940 * unwritten metadata builds up.
1941 */
1942static void do_waker(struct work_struct *ws)
1943{
1944	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1945
1946	policy_tick(cache->policy, true);
1947	wake_migration_worker(cache);
1948	schedule_commit(&cache->committer);
1949	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1950}
1951
1952static void check_migrations(struct work_struct *ws)
 
 
1953{
1954	int r;
1955	struct policy_work *op;
1956	struct cache *cache = container_of(ws, struct cache, migration_worker);
1957	enum busy b;
1958
1959	for (;;) {
1960		b = spare_migration_bandwidth(cache);
 
1961
1962		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1963		if (r == -ENODATA)
1964			break;
1965
1966		if (r) {
1967			DMERR_LIMIT("%s: policy_background_work failed",
1968				    cache_device_name(cache));
1969			break;
1970		}
1971
1972		r = mg_start(cache, op, NULL);
1973		if (r)
1974			break;
1975	}
1976}
1977
1978/*----------------------------------------------------------------
1979 * Target methods
1980 *--------------------------------------------------------------*/
1981
1982/*
1983 * This function gets called on the error paths of the constructor, so we
1984 * have to cope with a partially initialised struct.
1985 */
1986static void destroy(struct cache *cache)
1987{
1988	unsigned i;
1989
1990	mempool_exit(&cache->migration_pool);
 
 
 
1991
1992	if (cache->prison)
1993		dm_bio_prison_destroy_v2(cache->prison);
1994
1995	if (cache->wq)
1996		destroy_workqueue(cache->wq);
1997
1998	if (cache->dirty_bitset)
1999		free_bitset(cache->dirty_bitset);
2000
2001	if (cache->discard_bitset)
2002		free_bitset(cache->discard_bitset);
2003
2004	if (cache->copier)
2005		dm_kcopyd_client_destroy(cache->copier);
2006
2007	if (cache->cmd)
2008		dm_cache_metadata_close(cache->cmd);
2009
2010	if (cache->metadata_dev)
2011		dm_put_device(cache->ti, cache->metadata_dev);
2012
2013	if (cache->origin_dev)
2014		dm_put_device(cache->ti, cache->origin_dev);
2015
2016	if (cache->cache_dev)
2017		dm_put_device(cache->ti, cache->cache_dev);
2018
2019	if (cache->policy)
2020		dm_cache_policy_destroy(cache->policy);
2021
2022	for (i = 0; i < cache->nr_ctr_args ; i++)
2023		kfree(cache->ctr_args[i]);
2024	kfree(cache->ctr_args);
2025
2026	bioset_exit(&cache->bs);
2027
2028	kfree(cache);
2029}
2030
2031static void cache_dtr(struct dm_target *ti)
2032{
2033	struct cache *cache = ti->private;
2034
2035	destroy(cache);
2036}
2037
2038static sector_t get_dev_size(struct dm_dev *dev)
2039{
2040	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2041}
2042
2043/*----------------------------------------------------------------*/
2044
2045/*
2046 * Construct a cache device mapping.
2047 *
2048 * cache <metadata dev> <cache dev> <origin dev> <block size>
2049 *       <#feature args> [<feature arg>]*
2050 *       <policy> <#policy args> [<policy arg>]*
2051 *
2052 * metadata dev    : fast device holding the persistent metadata
2053 * cache dev	   : fast device holding cached data blocks
2054 * origin dev	   : slow device holding original data blocks
2055 * block size	   : cache unit size in sectors
2056 *
2057 * #feature args   : number of feature arguments passed
2058 * feature args    : writethrough.  (The default is writeback.)
2059 *
2060 * policy	   : the replacement policy to use
2061 * #policy args    : an even number of policy arguments corresponding
2062 *		     to key/value pairs passed to the policy
2063 * policy args	   : key/value pairs passed to the policy
2064 *		     E.g. 'sequential_threshold 1024'
2065 *		     See cache-policies.txt for details.
2066 *
2067 * Optional feature arguments are:
2068 *   writethrough  : write through caching that prohibits cache block
2069 *		     content from being different from origin block content.
2070 *		     Without this argument, the default behaviour is to write
2071 *		     back cache block contents later for performance reasons,
2072 *		     so they may differ from the corresponding origin blocks.
2073 */
2074struct cache_args {
2075	struct dm_target *ti;
2076
2077	struct dm_dev *metadata_dev;
2078
2079	struct dm_dev *cache_dev;
2080	sector_t cache_sectors;
2081
2082	struct dm_dev *origin_dev;
2083	sector_t origin_sectors;
2084
2085	uint32_t block_size;
2086
2087	const char *policy_name;
2088	int policy_argc;
2089	const char **policy_argv;
2090
2091	struct cache_features features;
2092};
2093
2094static void destroy_cache_args(struct cache_args *ca)
2095{
2096	if (ca->metadata_dev)
2097		dm_put_device(ca->ti, ca->metadata_dev);
2098
2099	if (ca->cache_dev)
2100		dm_put_device(ca->ti, ca->cache_dev);
2101
2102	if (ca->origin_dev)
2103		dm_put_device(ca->ti, ca->origin_dev);
2104
2105	kfree(ca);
2106}
2107
2108static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2109{
2110	if (!as->argc) {
2111		*error = "Insufficient args";
2112		return false;
2113	}
2114
2115	return true;
2116}
2117
2118static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2119			      char **error)
2120{
2121	int r;
2122	sector_t metadata_dev_size;
2123	char b[BDEVNAME_SIZE];
2124
2125	if (!at_least_one_arg(as, error))
2126		return -EINVAL;
2127
2128	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2129			  &ca->metadata_dev);
2130	if (r) {
2131		*error = "Error opening metadata device";
2132		return r;
2133	}
2134
2135	metadata_dev_size = get_dev_size(ca->metadata_dev);
2136	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2137		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2138		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2139
2140	return 0;
2141}
2142
2143static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2144			   char **error)
2145{
2146	int r;
2147
2148	if (!at_least_one_arg(as, error))
2149		return -EINVAL;
2150
2151	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2152			  &ca->cache_dev);
2153	if (r) {
2154		*error = "Error opening cache device";
2155		return r;
2156	}
2157	ca->cache_sectors = get_dev_size(ca->cache_dev);
2158
2159	return 0;
2160}
2161
2162static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2163			    char **error)
2164{
2165	int r;
2166
2167	if (!at_least_one_arg(as, error))
2168		return -EINVAL;
2169
2170	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2171			  &ca->origin_dev);
2172	if (r) {
2173		*error = "Error opening origin device";
2174		return r;
2175	}
2176
2177	ca->origin_sectors = get_dev_size(ca->origin_dev);
2178	if (ca->ti->len > ca->origin_sectors) {
2179		*error = "Device size larger than cached device";
2180		return -EINVAL;
2181	}
2182
2183	return 0;
2184}
2185
2186static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2187			    char **error)
2188{
2189	unsigned long block_size;
2190
2191	if (!at_least_one_arg(as, error))
2192		return -EINVAL;
2193
2194	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2195	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2196	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2197	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2198		*error = "Invalid data block size";
2199		return -EINVAL;
2200	}
2201
2202	if (block_size > ca->cache_sectors) {
2203		*error = "Data block size is larger than the cache device";
2204		return -EINVAL;
2205	}
2206
2207	ca->block_size = block_size;
2208
2209	return 0;
2210}
2211
2212static void init_features(struct cache_features *cf)
2213{
2214	cf->mode = CM_WRITE;
2215	cf->io_mode = CM_IO_WRITEBACK;
2216	cf->metadata_version = 1;
2217	cf->discard_passdown = true;
2218}
2219
2220static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2221			  char **error)
2222{
2223	static const struct dm_arg _args[] = {
2224		{0, 3, "Invalid number of cache feature arguments"},
2225	};
2226
2227	int r, mode_ctr = 0;
2228	unsigned argc;
2229	const char *arg;
2230	struct cache_features *cf = &ca->features;
2231
2232	init_features(cf);
2233
2234	r = dm_read_arg_group(_args, as, &argc, error);
2235	if (r)
2236		return -EINVAL;
2237
2238	while (argc--) {
2239		arg = dm_shift_arg(as);
2240
2241		if (!strcasecmp(arg, "writeback")) {
2242			cf->io_mode = CM_IO_WRITEBACK;
2243			mode_ctr++;
2244		}
2245
2246		else if (!strcasecmp(arg, "writethrough")) {
2247			cf->io_mode = CM_IO_WRITETHROUGH;
2248			mode_ctr++;
2249		}
2250
2251		else if (!strcasecmp(arg, "passthrough")) {
2252			cf->io_mode = CM_IO_PASSTHROUGH;
2253			mode_ctr++;
2254		}
2255
2256		else if (!strcasecmp(arg, "metadata2"))
2257			cf->metadata_version = 2;
2258
2259		else if (!strcasecmp(arg, "no_discard_passdown"))
2260			cf->discard_passdown = false;
2261
2262		else {
2263			*error = "Unrecognised cache feature requested";
2264			return -EINVAL;
2265		}
2266	}
2267
2268	if (mode_ctr > 1) {
2269		*error = "Duplicate cache io_mode features requested";
2270		return -EINVAL;
2271	}
2272
2273	return 0;
2274}
2275
2276static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2277			char **error)
2278{
2279	static const struct dm_arg _args[] = {
2280		{0, 1024, "Invalid number of policy arguments"},
2281	};
2282
2283	int r;
2284
2285	if (!at_least_one_arg(as, error))
2286		return -EINVAL;
2287
2288	ca->policy_name = dm_shift_arg(as);
2289
2290	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2291	if (r)
2292		return -EINVAL;
2293
2294	ca->policy_argv = (const char **)as->argv;
2295	dm_consume_args(as, ca->policy_argc);
2296
2297	return 0;
2298}
2299
2300static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2301			    char **error)
2302{
2303	int r;
2304	struct dm_arg_set as;
2305
2306	as.argc = argc;
2307	as.argv = argv;
2308
2309	r = parse_metadata_dev(ca, &as, error);
2310	if (r)
2311		return r;
2312
2313	r = parse_cache_dev(ca, &as, error);
2314	if (r)
2315		return r;
2316
2317	r = parse_origin_dev(ca, &as, error);
2318	if (r)
2319		return r;
2320
2321	r = parse_block_size(ca, &as, error);
2322	if (r)
2323		return r;
2324
2325	r = parse_features(ca, &as, error);
2326	if (r)
2327		return r;
2328
2329	r = parse_policy(ca, &as, error);
2330	if (r)
2331		return r;
2332
2333	return 0;
2334}
2335
2336/*----------------------------------------------------------------*/
2337
2338static struct kmem_cache *migration_cache;
2339
2340#define NOT_CORE_OPTION 1
2341
2342static int process_config_option(struct cache *cache, const char *key, const char *value)
2343{
2344	unsigned long tmp;
2345
2346	if (!strcasecmp(key, "migration_threshold")) {
2347		if (kstrtoul(value, 10, &tmp))
2348			return -EINVAL;
2349
2350		cache->migration_threshold = tmp;
2351		return 0;
2352	}
2353
2354	return NOT_CORE_OPTION;
2355}
2356
2357static int set_config_value(struct cache *cache, const char *key, const char *value)
2358{
2359	int r = process_config_option(cache, key, value);
2360
2361	if (r == NOT_CORE_OPTION)
2362		r = policy_set_config_value(cache->policy, key, value);
2363
2364	if (r)
2365		DMWARN("bad config value for %s: %s", key, value);
2366
2367	return r;
2368}
2369
2370static int set_config_values(struct cache *cache, int argc, const char **argv)
2371{
2372	int r = 0;
2373
2374	if (argc & 1) {
2375		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2376		return -EINVAL;
2377	}
2378
2379	while (argc) {
2380		r = set_config_value(cache, argv[0], argv[1]);
2381		if (r)
2382			break;
2383
2384		argc -= 2;
2385		argv += 2;
2386	}
2387
2388	return r;
2389}
2390
2391static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2392			       char **error)
2393{
2394	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2395							   cache->cache_size,
2396							   cache->origin_sectors,
2397							   cache->sectors_per_block);
2398	if (IS_ERR(p)) {
2399		*error = "Error creating cache's policy";
2400		return PTR_ERR(p);
2401	}
2402	cache->policy = p;
2403	BUG_ON(!cache->policy);
2404
2405	return 0;
2406}
2407
2408/*
2409 * We want the discard block size to be at least the size of the cache
2410 * block size and have no more than 2^14 discard blocks across the origin.
2411 */
2412#define MAX_DISCARD_BLOCKS (1 << 14)
2413
2414static bool too_many_discard_blocks(sector_t discard_block_size,
2415				    sector_t origin_size)
2416{
2417	(void) sector_div(origin_size, discard_block_size);
2418
2419	return origin_size > MAX_DISCARD_BLOCKS;
2420}
2421
2422static sector_t calculate_discard_block_size(sector_t cache_block_size,
2423					     sector_t origin_size)
2424{
2425	sector_t discard_block_size = cache_block_size;
2426
2427	if (origin_size)
2428		while (too_many_discard_blocks(discard_block_size, origin_size))
2429			discard_block_size *= 2;
2430
2431	return discard_block_size;
2432}
2433
2434static void set_cache_size(struct cache *cache, dm_cblock_t size)
2435{
2436	dm_block_t nr_blocks = from_cblock(size);
2437
2438	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2439		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2440			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2441			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2442			     (unsigned long long) nr_blocks);
2443
2444	cache->cache_size = size;
2445}
2446
2447static int is_congested(struct dm_dev *dev, int bdi_bits)
2448{
2449	struct request_queue *q = bdev_get_queue(dev->bdev);
2450	return bdi_congested(q->backing_dev_info, bdi_bits);
2451}
2452
2453static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2454{
2455	struct cache *cache = container_of(cb, struct cache, callbacks);
2456
2457	return is_congested(cache->origin_dev, bdi_bits) ||
2458		is_congested(cache->cache_dev, bdi_bits);
2459}
2460
2461#define DEFAULT_MIGRATION_THRESHOLD 2048
2462
2463static int cache_create(struct cache_args *ca, struct cache **result)
2464{
2465	int r = 0;
2466	char **error = &ca->ti->error;
2467	struct cache *cache;
2468	struct dm_target *ti = ca->ti;
2469	dm_block_t origin_blocks;
2470	struct dm_cache_metadata *cmd;
2471	bool may_format = ca->features.mode == CM_WRITE;
2472
2473	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2474	if (!cache)
2475		return -ENOMEM;
2476
2477	cache->ti = ca->ti;
2478	ti->private = cache;
2479	ti->num_flush_bios = 2;
2480	ti->flush_supported = true;
2481
2482	ti->num_discard_bios = 1;
2483	ti->discards_supported = true;
2484
2485	ti->per_io_data_size = sizeof(struct per_bio_data);
2486
2487	cache->features = ca->features;
2488	if (writethrough_mode(cache)) {
2489		/* Create bioset for writethrough bios issued to origin */
2490		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2491		if (r)
2492			goto bad;
2493	}
2494
2495	cache->callbacks.congested_fn = cache_is_congested;
2496	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2497
2498	cache->metadata_dev = ca->metadata_dev;
2499	cache->origin_dev = ca->origin_dev;
2500	cache->cache_dev = ca->cache_dev;
2501
2502	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2503
 
2504	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2505	origin_blocks = block_div(origin_blocks, ca->block_size);
2506	cache->origin_blocks = to_oblock(origin_blocks);
2507
2508	cache->sectors_per_block = ca->block_size;
2509	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2510		r = -EINVAL;
2511		goto bad;
2512	}
2513
2514	if (ca->block_size & (ca->block_size - 1)) {
2515		dm_block_t cache_size = ca->cache_sectors;
2516
2517		cache->sectors_per_block_shift = -1;
2518		cache_size = block_div(cache_size, ca->block_size);
2519		set_cache_size(cache, to_cblock(cache_size));
2520	} else {
2521		cache->sectors_per_block_shift = __ffs(ca->block_size);
2522		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2523	}
2524
2525	r = create_cache_policy(cache, ca, error);
2526	if (r)
2527		goto bad;
2528
2529	cache->policy_nr_args = ca->policy_argc;
2530	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2531
2532	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2533	if (r) {
2534		*error = "Error setting cache policy's config values";
2535		goto bad;
2536	}
2537
2538	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2539				     ca->block_size, may_format,
2540				     dm_cache_policy_get_hint_size(cache->policy),
2541				     ca->features.metadata_version);
2542	if (IS_ERR(cmd)) {
2543		*error = "Error creating metadata object";
2544		r = PTR_ERR(cmd);
2545		goto bad;
2546	}
2547	cache->cmd = cmd;
2548	set_cache_mode(cache, CM_WRITE);
2549	if (get_cache_mode(cache) != CM_WRITE) {
2550		*error = "Unable to get write access to metadata, please check/repair metadata.";
2551		r = -EINVAL;
2552		goto bad;
2553	}
2554
2555	if (passthrough_mode(cache)) {
2556		bool all_clean;
2557
2558		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2559		if (r) {
2560			*error = "dm_cache_metadata_all_clean() failed";
2561			goto bad;
2562		}
2563
2564		if (!all_clean) {
2565			*error = "Cannot enter passthrough mode unless all blocks are clean";
2566			r = -EINVAL;
2567			goto bad;
2568		}
2569
2570		policy_allow_migrations(cache->policy, false);
2571	}
2572
2573	spin_lock_init(&cache->lock);
 
2574	bio_list_init(&cache->deferred_bios);
 
 
 
 
 
2575	atomic_set(&cache->nr_allocated_migrations, 0);
2576	atomic_set(&cache->nr_io_migrations, 0);
2577	init_waitqueue_head(&cache->migration_wait);
2578
 
 
 
 
2579	r = -ENOMEM;
2580	atomic_set(&cache->nr_dirty, 0);
2581	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2582	if (!cache->dirty_bitset) {
2583		*error = "could not allocate dirty bitset";
2584		goto bad;
2585	}
2586	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2587
2588	cache->discard_block_size =
2589		calculate_discard_block_size(cache->sectors_per_block,
2590					     cache->origin_sectors);
2591	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2592							      cache->discard_block_size));
2593	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2594	if (!cache->discard_bitset) {
2595		*error = "could not allocate discard bitset";
2596		goto bad;
2597	}
2598	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2599
2600	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2601	if (IS_ERR(cache->copier)) {
2602		*error = "could not create kcopyd client";
2603		r = PTR_ERR(cache->copier);
2604		goto bad;
2605	}
2606
2607	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2608	if (!cache->wq) {
2609		*error = "could not create workqueue for metadata object";
2610		goto bad;
2611	}
2612	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2613	INIT_WORK(&cache->migration_worker, check_migrations);
2614	INIT_DELAYED_WORK(&cache->waker, do_waker);
 
2615
2616	cache->prison = dm_bio_prison_create_v2(cache->wq);
2617	if (!cache->prison) {
2618		*error = "could not create bio prison";
2619		goto bad;
2620	}
2621
2622	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2623				   migration_cache);
2624	if (r) {
 
 
 
 
 
 
2625		*error = "Error creating cache's migration mempool";
2626		goto bad;
2627	}
2628
2629	cache->need_tick_bio = true;
2630	cache->sized = false;
2631	cache->invalidate = false;
2632	cache->commit_requested = false;
2633	cache->loaded_mappings = false;
2634	cache->loaded_discards = false;
2635
2636	load_stats(cache);
2637
2638	atomic_set(&cache->stats.demotion, 0);
2639	atomic_set(&cache->stats.promotion, 0);
2640	atomic_set(&cache->stats.copies_avoided, 0);
2641	atomic_set(&cache->stats.cache_cell_clash, 0);
2642	atomic_set(&cache->stats.commit_count, 0);
2643	atomic_set(&cache->stats.discard_count, 0);
2644
2645	spin_lock_init(&cache->invalidation_lock);
2646	INIT_LIST_HEAD(&cache->invalidation_requests);
2647
2648	batcher_init(&cache->committer, commit_op, cache,
2649		     issue_op, cache, cache->wq);
2650	iot_init(&cache->tracker);
2651
2652	init_rwsem(&cache->background_work_lock);
2653	prevent_background_work(cache);
2654
2655	*result = cache;
2656	return 0;
 
2657bad:
2658	destroy(cache);
2659	return r;
2660}
2661
2662static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2663{
2664	unsigned i;
2665	const char **copy;
2666
2667	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2668	if (!copy)
2669		return -ENOMEM;
2670	for (i = 0; i < argc; i++) {
2671		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2672		if (!copy[i]) {
2673			while (i--)
2674				kfree(copy[i]);
2675			kfree(copy);
2676			return -ENOMEM;
2677		}
2678	}
2679
2680	cache->nr_ctr_args = argc;
2681	cache->ctr_args = copy;
2682
2683	return 0;
2684}
2685
2686static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2687{
2688	int r = -EINVAL;
2689	struct cache_args *ca;
2690	struct cache *cache = NULL;
2691
2692	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2693	if (!ca) {
2694		ti->error = "Error allocating memory for cache";
2695		return -ENOMEM;
2696	}
2697	ca->ti = ti;
2698
2699	r = parse_cache_args(ca, argc, argv, &ti->error);
2700	if (r)
2701		goto out;
2702
2703	r = cache_create(ca, &cache);
2704	if (r)
2705		goto out;
2706
2707	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2708	if (r) {
2709		destroy(cache);
2710		goto out;
2711	}
2712
2713	ti->private = cache;
 
2714out:
2715	destroy_cache_args(ca);
2716	return r;
2717}
2718
2719/*----------------------------------------------------------------*/
2720
2721static int cache_map(struct dm_target *ti, struct bio *bio)
2722{
2723	struct cache *cache = ti->private;
2724
2725	int r;
2726	bool commit_needed;
2727	dm_oblock_t block = get_bio_block(cache, bio);
 
 
 
 
 
 
 
 
2728
2729	init_per_bio_data(bio);
2730	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2731		/*
2732		 * This can only occur if the io goes to a partial block at
2733		 * the end of the origin device.  We don't cache these.
2734		 * Just remap to the origin and carry on.
2735		 */
2736		remap_to_origin(cache, bio);
2737		accounted_begin(cache, bio);
2738		return DM_MAPIO_REMAPPED;
2739	}
2740
2741	if (discard_or_flush(bio)) {
2742		defer_bio(cache, bio);
2743		return DM_MAPIO_SUBMITTED;
2744	}
2745
2746	r = map_bio(cache, bio, block, &commit_needed);
2747	if (commit_needed)
2748		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2749
2750	return r;
2751}
2752
2753static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2754{
2755	struct cache *cache = ti->private;
2756	unsigned long flags;
2757	struct per_bio_data *pb = get_per_bio_data(bio);
 
2758
2759	if (pb->tick) {
2760		policy_tick(cache->policy, false);
2761
2762		spin_lock_irqsave(&cache->lock, flags);
2763		cache->need_tick_bio = true;
2764		spin_unlock_irqrestore(&cache->lock, flags);
2765	}
2766
2767	bio_drop_shared_lock(cache, bio);
2768	accounted_complete(cache, bio);
2769
2770	return DM_ENDIO_DONE;
2771}
2772
2773static int write_dirty_bitset(struct cache *cache)
2774{
2775	int r;
2776
2777	if (get_cache_mode(cache) >= CM_READ_ONLY)
2778		return -EINVAL;
2779
2780	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2781	if (r)
2782		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
 
 
 
 
 
2783
2784	return r;
2785}
2786
2787static int write_discard_bitset(struct cache *cache)
2788{
2789	unsigned i, r;
2790
2791	if (get_cache_mode(cache) >= CM_READ_ONLY)
2792		return -EINVAL;
2793
2794	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2795					   cache->discard_nr_blocks);
2796	if (r) {
2797		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2798		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2799		return r;
2800	}
2801
2802	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2803		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2804					 is_discarded(cache, to_dblock(i)));
2805		if (r) {
2806			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2807			return r;
2808		}
2809	}
2810
2811	return 0;
2812}
2813
2814static int write_hints(struct cache *cache)
2815{
2816	int r;
2817
2818	if (get_cache_mode(cache) >= CM_READ_ONLY)
2819		return -EINVAL;
2820
2821	r = dm_cache_write_hints(cache->cmd, cache->policy);
2822	if (r) {
2823		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2824		return r;
2825	}
2826
2827	return 0;
2828}
2829
2830/*
2831 * returns true on success
2832 */
2833static bool sync_metadata(struct cache *cache)
2834{
2835	int r1, r2, r3, r4;
2836
2837	r1 = write_dirty_bitset(cache);
2838	if (r1)
2839		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2840
2841	r2 = write_discard_bitset(cache);
2842	if (r2)
2843		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2844
2845	save_stats(cache);
2846
2847	r3 = write_hints(cache);
2848	if (r3)
2849		DMERR("%s: could not write hints", cache_device_name(cache));
2850
2851	/*
2852	 * If writing the above metadata failed, we still commit, but don't
2853	 * set the clean shutdown flag.  This will effectively force every
2854	 * dirty bit to be set on reload.
2855	 */
2856	r4 = commit(cache, !r1 && !r2 && !r3);
2857	if (r4)
2858		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2859
2860	return !r1 && !r2 && !r3 && !r4;
2861}
2862
2863static void cache_postsuspend(struct dm_target *ti)
2864{
2865	struct cache *cache = ti->private;
2866
2867	prevent_background_work(cache);
2868	BUG_ON(atomic_read(&cache->nr_io_migrations));
2869
2870	cancel_delayed_work(&cache->waker);
2871	flush_workqueue(cache->wq);
2872	WARN_ON(cache->tracker.in_flight);
2873
2874	/*
2875	 * If it's a flush suspend there won't be any deferred bios, so this
2876	 * call is harmless.
2877	 */
2878	requeue_deferred_bios(cache);
 
 
2879
2880	if (get_cache_mode(cache) == CM_WRITE)
2881		(void) sync_metadata(cache);
2882}
2883
2884static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2885			bool dirty, uint32_t hint, bool hint_valid)
2886{
2887	int r;
2888	struct cache *cache = context;
2889
2890	if (dirty) {
2891		set_bit(from_cblock(cblock), cache->dirty_bitset);
2892		atomic_inc(&cache->nr_dirty);
2893	} else
2894		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2895
2896	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2897	if (r)
2898		return r;
2899
 
 
 
 
 
2900	return 0;
2901}
2902
2903/*
2904 * The discard block size in the on disk metadata is not
2905 * neccessarily the same as we're currently using.  So we have to
2906 * be careful to only set the discarded attribute if we know it
2907 * covers a complete block of the new size.
2908 */
2909struct discard_load_info {
2910	struct cache *cache;
2911
2912	/*
2913	 * These blocks are sized using the on disk dblock size, rather
2914	 * than the current one.
2915	 */
2916	dm_block_t block_size;
2917	dm_block_t discard_begin, discard_end;
2918};
2919
2920static void discard_load_info_init(struct cache *cache,
2921				   struct discard_load_info *li)
2922{
2923	li->cache = cache;
2924	li->discard_begin = li->discard_end = 0;
2925}
2926
2927static void set_discard_range(struct discard_load_info *li)
2928{
2929	sector_t b, e;
2930
2931	if (li->discard_begin == li->discard_end)
2932		return;
2933
2934	/*
2935	 * Convert to sectors.
2936	 */
2937	b = li->discard_begin * li->block_size;
2938	e = li->discard_end * li->block_size;
2939
2940	/*
2941	 * Then convert back to the current dblock size.
2942	 */
2943	b = dm_sector_div_up(b, li->cache->discard_block_size);
2944	sector_div(e, li->cache->discard_block_size);
2945
2946	/*
2947	 * The origin may have shrunk, so we need to check we're still in
2948	 * bounds.
2949	 */
2950	if (e > from_dblock(li->cache->discard_nr_blocks))
2951		e = from_dblock(li->cache->discard_nr_blocks);
2952
2953	for (; b < e; b++)
2954		set_discard(li->cache, to_dblock(b));
2955}
2956
2957static int load_discard(void *context, sector_t discard_block_size,
2958			dm_dblock_t dblock, bool discard)
2959{
2960	struct discard_load_info *li = context;
2961
2962	li->block_size = discard_block_size;
2963
2964	if (discard) {
2965		if (from_dblock(dblock) == li->discard_end)
2966			/*
2967			 * We're already in a discard range, just extend it.
2968			 */
2969			li->discard_end = li->discard_end + 1ULL;
2970
2971		else {
2972			/*
2973			 * Emit the old range and start a new one.
2974			 */
2975			set_discard_range(li);
2976			li->discard_begin = from_dblock(dblock);
2977			li->discard_end = li->discard_begin + 1ULL;
2978		}
2979	} else {
2980		set_discard_range(li);
2981		li->discard_begin = li->discard_end = 0;
2982	}
2983
2984	return 0;
2985}
2986
2987static dm_cblock_t get_cache_dev_size(struct cache *cache)
2988{
2989	sector_t size = get_dev_size(cache->cache_dev);
2990	(void) sector_div(size, cache->sectors_per_block);
2991	return to_cblock(size);
2992}
2993
2994static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2995{
2996	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2997		if (cache->sized) {
2998			DMERR("%s: unable to extend cache due to missing cache table reload",
2999			      cache_device_name(cache));
3000			return false;
3001		}
3002	}
3003
3004	/*
3005	 * We can't drop a dirty block when shrinking the cache.
3006	 */
3007	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3008		new_size = to_cblock(from_cblock(new_size) + 1);
3009		if (is_dirty(cache, new_size)) {
3010			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3011			      cache_device_name(cache),
3012			      (unsigned long long) from_cblock(new_size));
3013			return false;
3014		}
3015	}
3016
3017	return true;
3018}
3019
3020static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3021{
3022	int r;
3023
3024	r = dm_cache_resize(cache->cmd, new_size);
3025	if (r) {
3026		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3027		metadata_operation_failed(cache, "dm_cache_resize", r);
3028		return r;
3029	}
3030
3031	set_cache_size(cache, new_size);
3032
3033	return 0;
3034}
3035
3036static int cache_preresume(struct dm_target *ti)
3037{
3038	int r = 0;
3039	struct cache *cache = ti->private;
3040	dm_cblock_t csize = get_cache_dev_size(cache);
3041
3042	/*
3043	 * Check to see if the cache has resized.
3044	 */
3045	if (!cache->sized) {
3046		r = resize_cache_dev(cache, csize);
3047		if (r)
3048			return r;
3049
3050		cache->sized = true;
3051
3052	} else if (csize != cache->cache_size) {
3053		if (!can_resize(cache, csize))
3054			return -EINVAL;
3055
3056		r = resize_cache_dev(cache, csize);
3057		if (r)
3058			return r;
3059	}
3060
3061	if (!cache->loaded_mappings) {
3062		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3063					   load_mapping, cache);
3064		if (r) {
3065			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3066			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3067			return r;
3068		}
3069
3070		cache->loaded_mappings = true;
3071	}
3072
3073	if (!cache->loaded_discards) {
3074		struct discard_load_info li;
3075
3076		/*
3077		 * The discard bitset could have been resized, or the
3078		 * discard block size changed.  To be safe we start by
3079		 * setting every dblock to not discarded.
3080		 */
3081		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3082
3083		discard_load_info_init(cache, &li);
3084		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3085		if (r) {
3086			DMERR("%s: could not load origin discards", cache_device_name(cache));
3087			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3088			return r;
3089		}
3090		set_discard_range(&li);
3091
3092		cache->loaded_discards = true;
3093	}
3094
3095	return r;
3096}
3097
3098static void cache_resume(struct dm_target *ti)
3099{
3100	struct cache *cache = ti->private;
3101
3102	cache->need_tick_bio = true;
3103	allow_background_work(cache);
3104	do_waker(&cache->waker.work);
3105}
3106
3107static void emit_flags(struct cache *cache, char *result,
3108		       unsigned maxlen, ssize_t *sz_ptr)
3109{
3110	ssize_t sz = *sz_ptr;
3111	struct cache_features *cf = &cache->features;
3112	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
3113
3114	DMEMIT("%u ", count);
3115
3116	if (cf->metadata_version == 2)
3117		DMEMIT("metadata2 ");
3118
3119	if (writethrough_mode(cache))
3120		DMEMIT("writethrough ");
3121
3122	else if (passthrough_mode(cache))
3123		DMEMIT("passthrough ");
3124
3125	else if (writeback_mode(cache))
3126		DMEMIT("writeback ");
3127
3128	else {
3129		DMEMIT("unknown ");
3130		DMERR("%s: internal error: unknown io mode: %d",
3131		      cache_device_name(cache), (int) cf->io_mode);
3132	}
3133
3134	if (!cf->discard_passdown)
3135		DMEMIT("no_discard_passdown ");
3136
3137	*sz_ptr = sz;
3138}
3139
3140/*
3141 * Status format:
3142 *
3143 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3144 * <cache block size> <#used cache blocks>/<#total cache blocks>
3145 * <#read hits> <#read misses> <#write hits> <#write misses>
3146 * <#demotions> <#promotions> <#dirty>
3147 * <#features> <features>*
3148 * <#core args> <core args>
3149 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3150 */
3151static void cache_status(struct dm_target *ti, status_type_t type,
3152			 unsigned status_flags, char *result, unsigned maxlen)
3153{
3154	int r = 0;
3155	unsigned i;
3156	ssize_t sz = 0;
3157	dm_block_t nr_free_blocks_metadata = 0;
3158	dm_block_t nr_blocks_metadata = 0;
3159	char buf[BDEVNAME_SIZE];
3160	struct cache *cache = ti->private;
3161	dm_cblock_t residency;
3162	bool needs_check;
3163
3164	switch (type) {
3165	case STATUSTYPE_INFO:
3166		if (get_cache_mode(cache) == CM_FAIL) {
3167			DMEMIT("Fail");
3168			break;
3169		}
3170
3171		/* Commit to ensure statistics aren't out-of-date */
3172		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3173			(void) commit(cache, false);
3174
3175		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3176		if (r) {
3177			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3178			      cache_device_name(cache), r);
3179			goto err;
3180		}
3181
3182		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3183		if (r) {
3184			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3185			      cache_device_name(cache), r);
3186			goto err;
3187		}
3188
3189		residency = policy_residency(cache->policy);
3190
3191		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3192		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3193		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3194		       (unsigned long long)nr_blocks_metadata,
3195		       (unsigned long long)cache->sectors_per_block,
3196		       (unsigned long long) from_cblock(residency),
3197		       (unsigned long long) from_cblock(cache->cache_size),
3198		       (unsigned) atomic_read(&cache->stats.read_hit),
3199		       (unsigned) atomic_read(&cache->stats.read_miss),
3200		       (unsigned) atomic_read(&cache->stats.write_hit),
3201		       (unsigned) atomic_read(&cache->stats.write_miss),
3202		       (unsigned) atomic_read(&cache->stats.demotion),
3203		       (unsigned) atomic_read(&cache->stats.promotion),
3204		       (unsigned long) atomic_read(&cache->nr_dirty));
3205
3206		emit_flags(cache, result, maxlen, &sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
3207
3208		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3209
3210		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3211		if (sz < maxlen) {
3212			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3213			if (r)
3214				DMERR("%s: policy_emit_config_values returned %d",
3215				      cache_device_name(cache), r);
3216		}
3217
3218		if (get_cache_mode(cache) == CM_READ_ONLY)
3219			DMEMIT("ro ");
3220		else
3221			DMEMIT("rw ");
3222
3223		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3224
3225		if (r || needs_check)
3226			DMEMIT("needs_check ");
3227		else
3228			DMEMIT("- ");
3229
3230		break;
3231
3232	case STATUSTYPE_TABLE:
3233		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3234		DMEMIT("%s ", buf);
3235		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3236		DMEMIT("%s ", buf);
3237		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3238		DMEMIT("%s", buf);
3239
3240		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3241			DMEMIT(" %s", cache->ctr_args[i]);
3242		if (cache->nr_ctr_args)
3243			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3244	}
3245
3246	return;
3247
3248err:
3249	DMEMIT("Error");
3250}
3251
3252/*
3253 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3254 * the one-past-the-end value.
3255 */
3256struct cblock_range {
3257	dm_cblock_t begin;
3258	dm_cblock_t end;
3259};
3260
3261/*
3262 * A cache block range can take two forms:
3263 *
3264 * i) A single cblock, eg. '3456'
3265 * ii) A begin and end cblock with a dash between, eg. 123-234
3266 */
3267static int parse_cblock_range(struct cache *cache, const char *str,
3268			      struct cblock_range *result)
3269{
3270	char dummy;
3271	uint64_t b, e;
3272	int r;
3273
3274	/*
3275	 * Try and parse form (ii) first.
3276	 */
3277	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3278	if (r < 0)
3279		return r;
3280
3281	if (r == 2) {
3282		result->begin = to_cblock(b);
3283		result->end = to_cblock(e);
3284		return 0;
3285	}
3286
3287	/*
3288	 * That didn't work, try form (i).
3289	 */
3290	r = sscanf(str, "%llu%c", &b, &dummy);
3291	if (r < 0)
3292		return r;
3293
3294	if (r == 1) {
3295		result->begin = to_cblock(b);
3296		result->end = to_cblock(from_cblock(result->begin) + 1u);
3297		return 0;
3298	}
3299
3300	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3301	return -EINVAL;
3302}
3303
3304static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3305{
3306	uint64_t b = from_cblock(range->begin);
3307	uint64_t e = from_cblock(range->end);
3308	uint64_t n = from_cblock(cache->cache_size);
3309
3310	if (b >= n) {
3311		DMERR("%s: begin cblock out of range: %llu >= %llu",
3312		      cache_device_name(cache), b, n);
3313		return -EINVAL;
3314	}
3315
3316	if (e > n) {
3317		DMERR("%s: end cblock out of range: %llu > %llu",
3318		      cache_device_name(cache), e, n);
3319		return -EINVAL;
3320	}
3321
3322	if (b >= e) {
3323		DMERR("%s: invalid cblock range: %llu >= %llu",
3324		      cache_device_name(cache), b, e);
3325		return -EINVAL;
3326	}
3327
3328	return 0;
3329}
3330
3331static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3332{
3333	return to_cblock(from_cblock(b) + 1);
3334}
3335
3336static int request_invalidation(struct cache *cache, struct cblock_range *range)
3337{
3338	int r = 0;
3339
3340	/*
3341	 * We don't need to do any locking here because we know we're in
3342	 * passthrough mode.  There's is potential for a race between an
3343	 * invalidation triggered by an io and an invalidation message.  This
3344	 * is harmless, we must not worry if the policy call fails.
3345	 */
3346	while (range->begin != range->end) {
3347		r = invalidate_cblock(cache, range->begin);
3348		if (r)
3349			return r;
3350
3351		range->begin = cblock_succ(range->begin);
3352	}
3353
3354	cache->commit_requested = true;
3355	return r;
3356}
3357
3358static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3359					      const char **cblock_ranges)
3360{
3361	int r = 0;
3362	unsigned i;
3363	struct cblock_range range;
3364
3365	if (!passthrough_mode(cache)) {
3366		DMERR("%s: cache has to be in passthrough mode for invalidation",
3367		      cache_device_name(cache));
3368		return -EPERM;
3369	}
3370
3371	for (i = 0; i < count; i++) {
3372		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3373		if (r)
3374			break;
3375
3376		r = validate_cblock_range(cache, &range);
3377		if (r)
3378			break;
3379
3380		/*
3381		 * Pass begin and end origin blocks to the worker and wake it.
3382		 */
3383		r = request_invalidation(cache, &range);
3384		if (r)
3385			break;
3386	}
3387
3388	return r;
3389}
3390
3391/*
3392 * Supports
3393 *	"<key> <value>"
3394 * and
3395 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3396 *
3397 * The key migration_threshold is supported by the cache target core.
3398 */
3399static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3400			 char *result, unsigned maxlen)
3401{
3402	struct cache *cache = ti->private;
3403
3404	if (!argc)
3405		return -EINVAL;
3406
3407	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3408		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3409		      cache_device_name(cache));
3410		return -EOPNOTSUPP;
3411	}
3412
3413	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3414		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3415
3416	if (argc != 2)
3417		return -EINVAL;
3418
3419	return set_config_value(cache, argv[0], argv[1]);
3420}
3421
3422static int cache_iterate_devices(struct dm_target *ti,
3423				 iterate_devices_callout_fn fn, void *data)
3424{
3425	int r = 0;
3426	struct cache *cache = ti->private;
3427
3428	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3429	if (!r)
3430		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3431
3432	return r;
3433}
3434
3435static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3436{
3437	struct request_queue *q = bdev_get_queue(origin_bdev);
3438
3439	return q && blk_queue_discard(q);
3440}
3441
3442/*
3443 * If discard_passdown was enabled verify that the origin device
3444 * supports discards.  Disable discard_passdown if not.
3445 */
3446static void disable_passdown_if_not_supported(struct cache *cache)
3447{
3448	struct block_device *origin_bdev = cache->origin_dev->bdev;
3449	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3450	const char *reason = NULL;
3451	char buf[BDEVNAME_SIZE];
3452
3453	if (!cache->features.discard_passdown)
3454		return;
3455
3456	if (!origin_dev_supports_discard(origin_bdev))
3457		reason = "discard unsupported";
3458
3459	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3460		reason = "max discard sectors smaller than a block";
3461
3462	if (reason) {
3463		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3464		       bdevname(origin_bdev, buf), reason);
3465		cache->features.discard_passdown = false;
3466	}
3467}
3468
3469static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3470{
3471	struct block_device *origin_bdev = cache->origin_dev->bdev;
3472	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3473
3474	if (!cache->features.discard_passdown) {
3475		/* No passdown is done so setting own virtual limits */
3476		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3477						    cache->origin_sectors);
3478		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3479		return;
3480	}
3481
3482	/*
3483	 * cache_iterate_devices() is stacking both origin and fast device limits
3484	 * but discards aren't passed to fast device, so inherit origin's limits.
3485	 */
3486	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3487	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3488	limits->discard_granularity = origin_limits->discard_granularity;
3489	limits->discard_alignment = origin_limits->discard_alignment;
3490	limits->discard_misaligned = origin_limits->discard_misaligned;
3491}
3492
3493static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3494{
3495	struct cache *cache = ti->private;
3496	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3497
3498	/*
3499	 * If the system-determined stacked limits are compatible with the
3500	 * cache's blocksize (io_opt is a factor) do not override them.
3501	 */
3502	if (io_opt_sectors < cache->sectors_per_block ||
3503	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3504		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3505		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3506	}
3507
3508	disable_passdown_if_not_supported(cache);
3509	set_discard_limits(cache, limits);
3510}
3511
3512/*----------------------------------------------------------------*/
3513
3514static struct target_type cache_target = {
3515	.name = "cache",
3516	.version = {2, 1, 0},
3517	.module = THIS_MODULE,
3518	.ctr = cache_ctr,
3519	.dtr = cache_dtr,
3520	.map = cache_map,
3521	.end_io = cache_end_io,
3522	.postsuspend = cache_postsuspend,
3523	.preresume = cache_preresume,
3524	.resume = cache_resume,
3525	.status = cache_status,
3526	.message = cache_message,
3527	.iterate_devices = cache_iterate_devices,
3528	.io_hints = cache_io_hints,
3529};
3530
3531static int __init dm_cache_init(void)
3532{
3533	int r;
3534
3535	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3536	if (!migration_cache)
3537		return -ENOMEM;
3538
3539	r = dm_register_target(&cache_target);
3540	if (r) {
3541		DMERR("cache target registration failed: %d", r);
3542		kmem_cache_destroy(migration_cache);
3543		return r;
 
 
 
 
 
 
3544	}
3545
3546	return 0;
3547}
3548
3549static void __exit dm_cache_exit(void)
3550{
3551	dm_unregister_target(&cache_target);
3552	kmem_cache_destroy(migration_cache);
3553}
3554
3555module_init(dm_cache_init);
3556module_exit(dm_cache_exit);
3557
3558MODULE_DESCRIPTION(DM_NAME " cache target");
3559MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3560MODULE_LICENSE("GPL");