Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * drivers/base/core.c - core driver model code (device registration, etc)
   3 *
   4 * Copyright (c) 2002-3 Patrick Mochel
   5 * Copyright (c) 2002-3 Open Source Development Labs
   6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   7 * Copyright (c) 2006 Novell, Inc.
   8 *
   9 * This file is released under the GPLv2
  10 *
  11 */
  12
 
 
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
  25#include <linux/kallsyms.h>
  26#include <linux/mutex.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/netdevice.h>
 
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
  48
  49#ifdef CONFIG_SRCU
  50static DEFINE_MUTEX(device_links_lock);
  51DEFINE_STATIC_SRCU(device_links_srcu);
  52
  53static inline void device_links_write_lock(void)
  54{
  55	mutex_lock(&device_links_lock);
  56}
  57
  58static inline void device_links_write_unlock(void)
  59{
  60	mutex_unlock(&device_links_lock);
  61}
  62
  63int device_links_read_lock(void)
  64{
  65	return srcu_read_lock(&device_links_srcu);
  66}
  67
  68void device_links_read_unlock(int idx)
  69{
  70	srcu_read_unlock(&device_links_srcu, idx);
  71}
 
 
 
 
 
  72#else /* !CONFIG_SRCU */
  73static DECLARE_RWSEM(device_links_lock);
  74
  75static inline void device_links_write_lock(void)
  76{
  77	down_write(&device_links_lock);
  78}
  79
  80static inline void device_links_write_unlock(void)
  81{
  82	up_write(&device_links_lock);
  83}
  84
  85int device_links_read_lock(void)
  86{
  87	down_read(&device_links_lock);
  88	return 0;
  89}
  90
  91void device_links_read_unlock(int not_used)
  92{
  93	up_read(&device_links_lock);
  94}
 
 
 
 
 
 
 
  95#endif /* !CONFIG_SRCU */
  96
  97/**
  98 * device_is_dependent - Check if one device depends on another one
  99 * @dev: Device to check dependencies for.
 100 * @target: Device to check against.
 101 *
 102 * Check if @target depends on @dev or any device dependent on it (its child or
 103 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 104 */
 105static int device_is_dependent(struct device *dev, void *target)
 106{
 107	struct device_link *link;
 108	int ret;
 109
 110	if (WARN_ON(dev == target))
 111		return 1;
 112
 113	ret = device_for_each_child(dev, target, device_is_dependent);
 114	if (ret)
 115		return ret;
 116
 117	list_for_each_entry(link, &dev->links.consumers, s_node) {
 118		if (WARN_ON(link->consumer == target))
 119			return 1;
 120
 121		ret = device_is_dependent(link->consumer, target);
 122		if (ret)
 123			break;
 124	}
 125	return ret;
 126}
 127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128static int device_reorder_to_tail(struct device *dev, void *not_used)
 129{
 130	struct device_link *link;
 131
 132	/*
 133	 * Devices that have not been registered yet will be put to the ends
 134	 * of the lists during the registration, so skip them here.
 135	 */
 136	if (device_is_registered(dev))
 137		devices_kset_move_last(dev);
 138
 139	if (device_pm_initialized(dev))
 140		device_pm_move_last(dev);
 141
 142	device_for_each_child(dev, NULL, device_reorder_to_tail);
 143	list_for_each_entry(link, &dev->links.consumers, s_node)
 144		device_reorder_to_tail(link->consumer, NULL);
 145
 146	return 0;
 147}
 148
 149/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150 * device_link_add - Create a link between two devices.
 151 * @consumer: Consumer end of the link.
 152 * @supplier: Supplier end of the link.
 153 * @flags: Link flags.
 154 *
 155 * The caller is responsible for the proper synchronization of the link creation
 156 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 157 * runtime PM framework to take the link into account.  Second, if the
 158 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 159 * be forced into the active metastate and reference-counted upon the creation
 160 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 161 * ignored.
 162 *
 163 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
 164 * when the consumer device driver unbinds from it.  The combination of both
 165 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
 166 * to be returned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 167 *
 168 * A side effect of the link creation is re-ordering of dpm_list and the
 169 * devices_kset list by moving the consumer device and all devices depending
 170 * on it to the ends of these lists (that does not happen to devices that have
 171 * not been registered when this function is called).
 172 *
 173 * The supplier device is required to be registered when this function is called
 174 * and NULL will be returned if that is not the case.  The consumer device need
 175 * not be registered, however.
 176 */
 177struct device_link *device_link_add(struct device *consumer,
 178				    struct device *supplier, u32 flags)
 179{
 180	struct device_link *link;
 181
 182	if (!consumer || !supplier ||
 183	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
 
 
 
 184		return NULL;
 185
 
 
 
 
 
 
 
 
 
 
 186	device_links_write_lock();
 187	device_pm_lock();
 188
 189	/*
 190	 * If the supplier has not been fully registered yet or there is a
 191	 * reverse dependency between the consumer and the supplier already in
 192	 * the graph, return NULL.
 193	 */
 194	if (!device_pm_initialized(supplier)
 195	    || device_is_dependent(consumer, supplier)) {
 196		link = NULL;
 197		goto out;
 198	}
 199
 200	list_for_each_entry(link, &supplier->links.consumers, s_node)
 201		if (link->consumer == consumer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 202			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204	link = kzalloc(sizeof(*link), GFP_KERNEL);
 205	if (!link)
 206		goto out;
 207
 
 
 208	if (flags & DL_FLAG_PM_RUNTIME) {
 209		if (flags & DL_FLAG_RPM_ACTIVE) {
 210			if (pm_runtime_get_sync(supplier) < 0) {
 211				pm_runtime_put_noidle(supplier);
 212				kfree(link);
 213				link = NULL;
 214				goto out;
 215			}
 216			link->rpm_active = true;
 217		}
 218		pm_runtime_new_link(consumer);
 219	}
 
 220	get_device(supplier);
 221	link->supplier = supplier;
 222	INIT_LIST_HEAD(&link->s_node);
 223	get_device(consumer);
 224	link->consumer = consumer;
 225	INIT_LIST_HEAD(&link->c_node);
 226	link->flags = flags;
 
 227
 228	/* Determine the initial link state. */
 229	if (flags & DL_FLAG_STATELESS) {
 230		link->status = DL_STATE_NONE;
 231	} else {
 232		switch (supplier->links.status) {
 233		case DL_DEV_DRIVER_BOUND:
 234			switch (consumer->links.status) {
 235			case DL_DEV_PROBING:
 236				/*
 237				 * Balance the decrementation of the supplier's
 238				 * runtime PM usage counter after consumer probe
 239				 * in driver_probe_device().
 240				 */
 241				if (flags & DL_FLAG_PM_RUNTIME)
 242					pm_runtime_get_sync(supplier);
 243
 244				link->status = DL_STATE_CONSUMER_PROBE;
 245				break;
 246			case DL_DEV_DRIVER_BOUND:
 247				link->status = DL_STATE_ACTIVE;
 248				break;
 249			default:
 250				link->status = DL_STATE_AVAILABLE;
 251				break;
 252			}
 253			break;
 254		case DL_DEV_UNBINDING:
 255			link->status = DL_STATE_SUPPLIER_UNBIND;
 256			break;
 257		default:
 258			link->status = DL_STATE_DORMANT;
 259			break;
 260		}
 261	}
 262
 263	/*
 264	 * Move the consumer and all of the devices depending on it to the end
 265	 * of dpm_list and the devices_kset list.
 266	 *
 267	 * It is necessary to hold dpm_list locked throughout all that or else
 268	 * we may end up suspending with a wrong ordering of it.
 269	 */
 270	device_reorder_to_tail(consumer, NULL);
 271
 272	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 273	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 274
 275	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 276
 277 out:
 278	device_pm_unlock();
 279	device_links_write_unlock();
 
 
 
 
 280	return link;
 281}
 282EXPORT_SYMBOL_GPL(device_link_add);
 283
 284static void device_link_free(struct device_link *link)
 285{
 
 
 
 286	put_device(link->consumer);
 287	put_device(link->supplier);
 288	kfree(link);
 289}
 290
 291#ifdef CONFIG_SRCU
 292static void __device_link_free_srcu(struct rcu_head *rhead)
 293{
 294	device_link_free(container_of(rhead, struct device_link, rcu_head));
 295}
 296
 297static void __device_link_del(struct device_link *link)
 298{
 299	dev_info(link->consumer, "Dropping the link to %s\n",
 300		 dev_name(link->supplier));
 
 
 301
 302	if (link->flags & DL_FLAG_PM_RUNTIME)
 303		pm_runtime_drop_link(link->consumer);
 304
 305	list_del_rcu(&link->s_node);
 306	list_del_rcu(&link->c_node);
 307	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 308}
 309#else /* !CONFIG_SRCU */
 310static void __device_link_del(struct device_link *link)
 311{
 
 
 312	dev_info(link->consumer, "Dropping the link to %s\n",
 313		 dev_name(link->supplier));
 314
 
 
 
 315	list_del(&link->s_node);
 316	list_del(&link->c_node);
 317	device_link_free(link);
 318}
 319#endif /* !CONFIG_SRCU */
 320
 
 
 
 
 
 
 
 
 321/**
 322 * device_link_del - Delete a link between two devices.
 323 * @link: Device link to delete.
 324 *
 325 * The caller must ensure proper synchronization of this function with runtime
 326 * PM.
 
 
 327 */
 328void device_link_del(struct device_link *link)
 329{
 330	device_links_write_lock();
 331	device_pm_lock();
 332	__device_link_del(link);
 333	device_pm_unlock();
 334	device_links_write_unlock();
 335}
 336EXPORT_SYMBOL_GPL(device_link_del);
 337
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338static void device_links_missing_supplier(struct device *dev)
 339{
 340	struct device_link *link;
 341
 342	list_for_each_entry(link, &dev->links.suppliers, c_node)
 343		if (link->status == DL_STATE_CONSUMER_PROBE)
 344			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 345}
 346
 347/**
 348 * device_links_check_suppliers - Check presence of supplier drivers.
 349 * @dev: Consumer device.
 350 *
 351 * Check links from this device to any suppliers.  Walk the list of the device's
 352 * links to suppliers and see if all of them are available.  If not, simply
 353 * return -EPROBE_DEFER.
 354 *
 355 * We need to guarantee that the supplier will not go away after the check has
 356 * been positive here.  It only can go away in __device_release_driver() and
 357 * that function  checks the device's links to consumers.  This means we need to
 358 * mark the link as "consumer probe in progress" to make the supplier removal
 359 * wait for us to complete (or bad things may happen).
 360 *
 361 * Links with the DL_FLAG_STATELESS flag set are ignored.
 362 */
 363int device_links_check_suppliers(struct device *dev)
 364{
 365	struct device_link *link;
 366	int ret = 0;
 367
 368	device_links_write_lock();
 369
 370	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 371		if (link->flags & DL_FLAG_STATELESS)
 372			continue;
 373
 374		if (link->status != DL_STATE_AVAILABLE) {
 375			device_links_missing_supplier(dev);
 376			ret = -EPROBE_DEFER;
 377			break;
 378		}
 379		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 380	}
 381	dev->links.status = DL_DEV_PROBING;
 382
 383	device_links_write_unlock();
 384	return ret;
 385}
 386
 387/**
 388 * device_links_driver_bound - Update device links after probing its driver.
 389 * @dev: Device to update the links for.
 390 *
 391 * The probe has been successful, so update links from this device to any
 392 * consumers by changing their status to "available".
 393 *
 394 * Also change the status of @dev's links to suppliers to "active".
 395 *
 396 * Links with the DL_FLAG_STATELESS flag set are ignored.
 397 */
 398void device_links_driver_bound(struct device *dev)
 399{
 400	struct device_link *link;
 401
 402	device_links_write_lock();
 403
 404	list_for_each_entry(link, &dev->links.consumers, s_node) {
 405		if (link->flags & DL_FLAG_STATELESS)
 
 
 
 
 
 
 
 
 
 
 406			continue;
 407
 408		WARN_ON(link->status != DL_STATE_DORMANT);
 409		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 410	}
 411
 412	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 413		if (link->flags & DL_FLAG_STATELESS)
 414			continue;
 415
 416		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 417		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 418	}
 419
 420	dev->links.status = DL_DEV_DRIVER_BOUND;
 421
 422	device_links_write_unlock();
 423}
 424
 
 
 
 
 
 
 
 425/**
 426 * __device_links_no_driver - Update links of a device without a driver.
 427 * @dev: Device without a drvier.
 428 *
 429 * Delete all non-persistent links from this device to any suppliers.
 430 *
 431 * Persistent links stay around, but their status is changed to "available",
 432 * unless they already are in the "supplier unbind in progress" state in which
 433 * case they need not be updated.
 434 *
 435 * Links with the DL_FLAG_STATELESS flag set are ignored.
 436 */
 437static void __device_links_no_driver(struct device *dev)
 438{
 439	struct device_link *link, *ln;
 440
 441	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 442		if (link->flags & DL_FLAG_STATELESS)
 443			continue;
 444
 445		if (link->flags & DL_FLAG_AUTOREMOVE)
 446			__device_link_del(link);
 447		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
 
 448			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 449	}
 450
 451	dev->links.status = DL_DEV_NO_DRIVER;
 452}
 453
 
 
 
 
 
 
 
 
 
 
 454void device_links_no_driver(struct device *dev)
 455{
 
 
 456	device_links_write_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457	__device_links_no_driver(dev);
 
 458	device_links_write_unlock();
 459}
 460
 461/**
 462 * device_links_driver_cleanup - Update links after driver removal.
 463 * @dev: Device whose driver has just gone away.
 464 *
 465 * Update links to consumers for @dev by changing their status to "dormant" and
 466 * invoke %__device_links_no_driver() to update links to suppliers for it as
 467 * appropriate.
 468 *
 469 * Links with the DL_FLAG_STATELESS flag set are ignored.
 470 */
 471void device_links_driver_cleanup(struct device *dev)
 472{
 473	struct device_link *link;
 474
 475	device_links_write_lock();
 476
 477	list_for_each_entry(link, &dev->links.consumers, s_node) {
 478		if (link->flags & DL_FLAG_STATELESS)
 479			continue;
 480
 481		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
 482		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 
 
 
 
 
 
 
 
 
 
 483		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 484	}
 485
 486	__device_links_no_driver(dev);
 487
 488	device_links_write_unlock();
 489}
 490
 491/**
 492 * device_links_busy - Check if there are any busy links to consumers.
 493 * @dev: Device to check.
 494 *
 495 * Check each consumer of the device and return 'true' if its link's status
 496 * is one of "consumer probe" or "active" (meaning that the given consumer is
 497 * probing right now or its driver is present).  Otherwise, change the link
 498 * state to "supplier unbind" to prevent the consumer from being probed
 499 * successfully going forward.
 500 *
 501 * Return 'false' if there are no probing or active consumers.
 502 *
 503 * Links with the DL_FLAG_STATELESS flag set are ignored.
 504 */
 505bool device_links_busy(struct device *dev)
 506{
 507	struct device_link *link;
 508	bool ret = false;
 509
 510	device_links_write_lock();
 511
 512	list_for_each_entry(link, &dev->links.consumers, s_node) {
 513		if (link->flags & DL_FLAG_STATELESS)
 514			continue;
 515
 516		if (link->status == DL_STATE_CONSUMER_PROBE
 517		    || link->status == DL_STATE_ACTIVE) {
 518			ret = true;
 519			break;
 520		}
 521		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 522	}
 523
 524	dev->links.status = DL_DEV_UNBINDING;
 525
 526	device_links_write_unlock();
 527	return ret;
 528}
 529
 530/**
 531 * device_links_unbind_consumers - Force unbind consumers of the given device.
 532 * @dev: Device to unbind the consumers of.
 533 *
 534 * Walk the list of links to consumers for @dev and if any of them is in the
 535 * "consumer probe" state, wait for all device probes in progress to complete
 536 * and start over.
 537 *
 538 * If that's not the case, change the status of the link to "supplier unbind"
 539 * and check if the link was in the "active" state.  If so, force the consumer
 540 * driver to unbind and start over (the consumer will not re-probe as we have
 541 * changed the state of the link already).
 542 *
 543 * Links with the DL_FLAG_STATELESS flag set are ignored.
 544 */
 545void device_links_unbind_consumers(struct device *dev)
 546{
 547	struct device_link *link;
 548
 549 start:
 550	device_links_write_lock();
 551
 552	list_for_each_entry(link, &dev->links.consumers, s_node) {
 553		enum device_link_state status;
 554
 555		if (link->flags & DL_FLAG_STATELESS)
 556			continue;
 557
 558		status = link->status;
 559		if (status == DL_STATE_CONSUMER_PROBE) {
 560			device_links_write_unlock();
 561
 562			wait_for_device_probe();
 563			goto start;
 564		}
 565		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 566		if (status == DL_STATE_ACTIVE) {
 567			struct device *consumer = link->consumer;
 568
 569			get_device(consumer);
 570
 571			device_links_write_unlock();
 572
 573			device_release_driver_internal(consumer, NULL,
 574						       consumer->parent);
 575			put_device(consumer);
 576			goto start;
 577		}
 578	}
 579
 580	device_links_write_unlock();
 581}
 582
 583/**
 584 * device_links_purge - Delete existing links to other devices.
 585 * @dev: Target device.
 586 */
 587static void device_links_purge(struct device *dev)
 588{
 589	struct device_link *link, *ln;
 590
 591	/*
 592	 * Delete all of the remaining links from this device to any other
 593	 * devices (either consumers or suppliers).
 594	 */
 595	device_links_write_lock();
 596
 597	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 598		WARN_ON(link->status == DL_STATE_ACTIVE);
 599		__device_link_del(link);
 600	}
 601
 602	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 603		WARN_ON(link->status != DL_STATE_DORMANT &&
 604			link->status != DL_STATE_NONE);
 605		__device_link_del(link);
 606	}
 607
 608	device_links_write_unlock();
 609}
 610
 611/* Device links support end. */
 612
 613int (*platform_notify)(struct device *dev) = NULL;
 614int (*platform_notify_remove)(struct device *dev) = NULL;
 615static struct kobject *dev_kobj;
 616struct kobject *sysfs_dev_char_kobj;
 617struct kobject *sysfs_dev_block_kobj;
 618
 619static DEFINE_MUTEX(device_hotplug_lock);
 620
 621void lock_device_hotplug(void)
 622{
 623	mutex_lock(&device_hotplug_lock);
 624}
 625
 626void unlock_device_hotplug(void)
 627{
 628	mutex_unlock(&device_hotplug_lock);
 629}
 630
 631int lock_device_hotplug_sysfs(void)
 632{
 633	if (mutex_trylock(&device_hotplug_lock))
 634		return 0;
 635
 636	/* Avoid busy looping (5 ms of sleep should do). */
 637	msleep(5);
 638	return restart_syscall();
 639}
 640
 641#ifdef CONFIG_BLOCK
 642static inline int device_is_not_partition(struct device *dev)
 643{
 644	return !(dev->type == &part_type);
 645}
 646#else
 647static inline int device_is_not_partition(struct device *dev)
 648{
 649	return 1;
 650}
 651#endif
 652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 653/**
 654 * dev_driver_string - Return a device's driver name, if at all possible
 655 * @dev: struct device to get the name of
 656 *
 657 * Will return the device's driver's name if it is bound to a device.  If
 658 * the device is not bound to a driver, it will return the name of the bus
 659 * it is attached to.  If it is not attached to a bus either, an empty
 660 * string will be returned.
 661 */
 662const char *dev_driver_string(const struct device *dev)
 663{
 664	struct device_driver *drv;
 665
 666	/* dev->driver can change to NULL underneath us because of unbinding,
 667	 * so be careful about accessing it.  dev->bus and dev->class should
 668	 * never change once they are set, so they don't need special care.
 669	 */
 670	drv = ACCESS_ONCE(dev->driver);
 671	return drv ? drv->name :
 672			(dev->bus ? dev->bus->name :
 673			(dev->class ? dev->class->name : ""));
 674}
 675EXPORT_SYMBOL(dev_driver_string);
 676
 677#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 678
 679static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 680			     char *buf)
 681{
 682	struct device_attribute *dev_attr = to_dev_attr(attr);
 683	struct device *dev = kobj_to_dev(kobj);
 684	ssize_t ret = -EIO;
 685
 686	if (dev_attr->show)
 687		ret = dev_attr->show(dev, dev_attr, buf);
 688	if (ret >= (ssize_t)PAGE_SIZE) {
 689		print_symbol("dev_attr_show: %s returned bad count\n",
 690				(unsigned long)dev_attr->show);
 691	}
 692	return ret;
 693}
 694
 695static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 696			      const char *buf, size_t count)
 697{
 698	struct device_attribute *dev_attr = to_dev_attr(attr);
 699	struct device *dev = kobj_to_dev(kobj);
 700	ssize_t ret = -EIO;
 701
 702	if (dev_attr->store)
 703		ret = dev_attr->store(dev, dev_attr, buf, count);
 704	return ret;
 705}
 706
 707static const struct sysfs_ops dev_sysfs_ops = {
 708	.show	= dev_attr_show,
 709	.store	= dev_attr_store,
 710};
 711
 712#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 713
 714ssize_t device_store_ulong(struct device *dev,
 715			   struct device_attribute *attr,
 716			   const char *buf, size_t size)
 717{
 718	struct dev_ext_attribute *ea = to_ext_attr(attr);
 719	char *end;
 720	unsigned long new = simple_strtoul(buf, &end, 0);
 721	if (end == buf)
 722		return -EINVAL;
 
 
 723	*(unsigned long *)(ea->var) = new;
 724	/* Always return full write size even if we didn't consume all */
 725	return size;
 726}
 727EXPORT_SYMBOL_GPL(device_store_ulong);
 728
 729ssize_t device_show_ulong(struct device *dev,
 730			  struct device_attribute *attr,
 731			  char *buf)
 732{
 733	struct dev_ext_attribute *ea = to_ext_attr(attr);
 734	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
 735}
 736EXPORT_SYMBOL_GPL(device_show_ulong);
 737
 738ssize_t device_store_int(struct device *dev,
 739			 struct device_attribute *attr,
 740			 const char *buf, size_t size)
 741{
 742	struct dev_ext_attribute *ea = to_ext_attr(attr);
 743	char *end;
 744	long new = simple_strtol(buf, &end, 0);
 745	if (end == buf || new > INT_MAX || new < INT_MIN)
 
 
 
 
 
 746		return -EINVAL;
 747	*(int *)(ea->var) = new;
 748	/* Always return full write size even if we didn't consume all */
 749	return size;
 750}
 751EXPORT_SYMBOL_GPL(device_store_int);
 752
 753ssize_t device_show_int(struct device *dev,
 754			struct device_attribute *attr,
 755			char *buf)
 756{
 757	struct dev_ext_attribute *ea = to_ext_attr(attr);
 758
 759	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
 760}
 761EXPORT_SYMBOL_GPL(device_show_int);
 762
 763ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
 764			  const char *buf, size_t size)
 765{
 766	struct dev_ext_attribute *ea = to_ext_attr(attr);
 767
 768	if (strtobool(buf, ea->var) < 0)
 769		return -EINVAL;
 770
 771	return size;
 772}
 773EXPORT_SYMBOL_GPL(device_store_bool);
 774
 775ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
 776			 char *buf)
 777{
 778	struct dev_ext_attribute *ea = to_ext_attr(attr);
 779
 780	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
 781}
 782EXPORT_SYMBOL_GPL(device_show_bool);
 783
 784/**
 785 * device_release - free device structure.
 786 * @kobj: device's kobject.
 787 *
 788 * This is called once the reference count for the object
 789 * reaches 0. We forward the call to the device's release
 790 * method, which should handle actually freeing the structure.
 791 */
 792static void device_release(struct kobject *kobj)
 793{
 794	struct device *dev = kobj_to_dev(kobj);
 795	struct device_private *p = dev->p;
 796
 797	/*
 798	 * Some platform devices are driven without driver attached
 799	 * and managed resources may have been acquired.  Make sure
 800	 * all resources are released.
 801	 *
 802	 * Drivers still can add resources into device after device
 803	 * is deleted but alive, so release devres here to avoid
 804	 * possible memory leak.
 805	 */
 806	devres_release_all(dev);
 807
 808	if (dev->release)
 809		dev->release(dev);
 810	else if (dev->type && dev->type->release)
 811		dev->type->release(dev);
 812	else if (dev->class && dev->class->dev_release)
 813		dev->class->dev_release(dev);
 814	else
 815		WARN(1, KERN_ERR "Device '%s' does not have a release() "
 816			"function, it is broken and must be fixed.\n",
 817			dev_name(dev));
 818	kfree(p);
 819}
 820
 821static const void *device_namespace(struct kobject *kobj)
 822{
 823	struct device *dev = kobj_to_dev(kobj);
 824	const void *ns = NULL;
 825
 826	if (dev->class && dev->class->ns_type)
 827		ns = dev->class->namespace(dev);
 828
 829	return ns;
 830}
 831
 
 
 
 
 
 
 
 
 832static struct kobj_type device_ktype = {
 833	.release	= device_release,
 834	.sysfs_ops	= &dev_sysfs_ops,
 835	.namespace	= device_namespace,
 
 836};
 837
 838
 839static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
 840{
 841	struct kobj_type *ktype = get_ktype(kobj);
 842
 843	if (ktype == &device_ktype) {
 844		struct device *dev = kobj_to_dev(kobj);
 845		if (dev->bus)
 846			return 1;
 847		if (dev->class)
 848			return 1;
 849	}
 850	return 0;
 851}
 852
 853static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
 854{
 855	struct device *dev = kobj_to_dev(kobj);
 856
 857	if (dev->bus)
 858		return dev->bus->name;
 859	if (dev->class)
 860		return dev->class->name;
 861	return NULL;
 862}
 863
 864static int dev_uevent(struct kset *kset, struct kobject *kobj,
 865		      struct kobj_uevent_env *env)
 866{
 867	struct device *dev = kobj_to_dev(kobj);
 868	int retval = 0;
 869
 870	/* add device node properties if present */
 871	if (MAJOR(dev->devt)) {
 872		const char *tmp;
 873		const char *name;
 874		umode_t mode = 0;
 875		kuid_t uid = GLOBAL_ROOT_UID;
 876		kgid_t gid = GLOBAL_ROOT_GID;
 877
 878		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
 879		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
 880		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
 881		if (name) {
 882			add_uevent_var(env, "DEVNAME=%s", name);
 883			if (mode)
 884				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
 885			if (!uid_eq(uid, GLOBAL_ROOT_UID))
 886				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
 887			if (!gid_eq(gid, GLOBAL_ROOT_GID))
 888				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
 889			kfree(tmp);
 890		}
 891	}
 892
 893	if (dev->type && dev->type->name)
 894		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
 895
 896	if (dev->driver)
 897		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
 898
 899	/* Add common DT information about the device */
 900	of_device_uevent(dev, env);
 901
 902	/* have the bus specific function add its stuff */
 903	if (dev->bus && dev->bus->uevent) {
 904		retval = dev->bus->uevent(dev, env);
 905		if (retval)
 906			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
 907				 dev_name(dev), __func__, retval);
 908	}
 909
 910	/* have the class specific function add its stuff */
 911	if (dev->class && dev->class->dev_uevent) {
 912		retval = dev->class->dev_uevent(dev, env);
 913		if (retval)
 914			pr_debug("device: '%s': %s: class uevent() "
 915				 "returned %d\n", dev_name(dev),
 916				 __func__, retval);
 917	}
 918
 919	/* have the device type specific function add its stuff */
 920	if (dev->type && dev->type->uevent) {
 921		retval = dev->type->uevent(dev, env);
 922		if (retval)
 923			pr_debug("device: '%s': %s: dev_type uevent() "
 924				 "returned %d\n", dev_name(dev),
 925				 __func__, retval);
 926	}
 927
 928	return retval;
 929}
 930
 931static const struct kset_uevent_ops device_uevent_ops = {
 932	.filter =	dev_uevent_filter,
 933	.name =		dev_uevent_name,
 934	.uevent =	dev_uevent,
 935};
 936
 937static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
 938			   char *buf)
 939{
 940	struct kobject *top_kobj;
 941	struct kset *kset;
 942	struct kobj_uevent_env *env = NULL;
 943	int i;
 944	size_t count = 0;
 945	int retval;
 946
 947	/* search the kset, the device belongs to */
 948	top_kobj = &dev->kobj;
 949	while (!top_kobj->kset && top_kobj->parent)
 950		top_kobj = top_kobj->parent;
 951	if (!top_kobj->kset)
 952		goto out;
 953
 954	kset = top_kobj->kset;
 955	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
 956		goto out;
 957
 958	/* respect filter */
 959	if (kset->uevent_ops && kset->uevent_ops->filter)
 960		if (!kset->uevent_ops->filter(kset, &dev->kobj))
 961			goto out;
 962
 963	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
 964	if (!env)
 965		return -ENOMEM;
 966
 967	/* let the kset specific function add its keys */
 968	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
 969	if (retval)
 970		goto out;
 971
 972	/* copy keys to file */
 973	for (i = 0; i < env->envp_idx; i++)
 974		count += sprintf(&buf[count], "%s\n", env->envp[i]);
 975out:
 976	kfree(env);
 977	return count;
 978}
 979
 980static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
 981			    const char *buf, size_t count)
 982{
 983	enum kobject_action action;
 
 
 
 
 
 
 
 984
 985	if (kobject_action_type(buf, count, &action) == 0)
 986		kobject_uevent(&dev->kobj, action);
 987	else
 988		dev_err(dev, "uevent: unknown action-string\n");
 989	return count;
 990}
 991static DEVICE_ATTR_RW(uevent);
 992
 993static ssize_t online_show(struct device *dev, struct device_attribute *attr,
 994			   char *buf)
 995{
 996	bool val;
 997
 998	device_lock(dev);
 999	val = !dev->offline;
1000	device_unlock(dev);
1001	return sprintf(buf, "%u\n", val);
1002}
1003
1004static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1005			    const char *buf, size_t count)
1006{
1007	bool val;
1008	int ret;
1009
1010	ret = strtobool(buf, &val);
1011	if (ret < 0)
1012		return ret;
1013
1014	ret = lock_device_hotplug_sysfs();
1015	if (ret)
1016		return ret;
1017
1018	ret = val ? device_online(dev) : device_offline(dev);
1019	unlock_device_hotplug();
1020	return ret < 0 ? ret : count;
1021}
1022static DEVICE_ATTR_RW(online);
1023
1024int device_add_groups(struct device *dev, const struct attribute_group **groups)
1025{
1026	return sysfs_create_groups(&dev->kobj, groups);
1027}
 
1028
1029void device_remove_groups(struct device *dev,
1030			  const struct attribute_group **groups)
1031{
1032	sysfs_remove_groups(&dev->kobj, groups);
1033}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034
1035static int device_add_attrs(struct device *dev)
1036{
1037	struct class *class = dev->class;
1038	const struct device_type *type = dev->type;
1039	int error;
1040
1041	if (class) {
1042		error = device_add_groups(dev, class->dev_groups);
1043		if (error)
1044			return error;
1045	}
1046
1047	if (type) {
1048		error = device_add_groups(dev, type->groups);
1049		if (error)
1050			goto err_remove_class_groups;
1051	}
1052
1053	error = device_add_groups(dev, dev->groups);
1054	if (error)
1055		goto err_remove_type_groups;
1056
1057	if (device_supports_offline(dev) && !dev->offline_disabled) {
1058		error = device_create_file(dev, &dev_attr_online);
1059		if (error)
1060			goto err_remove_dev_groups;
1061	}
1062
1063	return 0;
1064
1065 err_remove_dev_groups:
1066	device_remove_groups(dev, dev->groups);
1067 err_remove_type_groups:
1068	if (type)
1069		device_remove_groups(dev, type->groups);
1070 err_remove_class_groups:
1071	if (class)
1072		device_remove_groups(dev, class->dev_groups);
1073
1074	return error;
1075}
1076
1077static void device_remove_attrs(struct device *dev)
1078{
1079	struct class *class = dev->class;
1080	const struct device_type *type = dev->type;
1081
1082	device_remove_file(dev, &dev_attr_online);
1083	device_remove_groups(dev, dev->groups);
1084
1085	if (type)
1086		device_remove_groups(dev, type->groups);
1087
1088	if (class)
1089		device_remove_groups(dev, class->dev_groups);
1090}
1091
1092static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1093			char *buf)
1094{
1095	return print_dev_t(buf, dev->devt);
1096}
1097static DEVICE_ATTR_RO(dev);
1098
1099/* /sys/devices/ */
1100struct kset *devices_kset;
1101
1102/**
1103 * devices_kset_move_before - Move device in the devices_kset's list.
1104 * @deva: Device to move.
1105 * @devb: Device @deva should come before.
1106 */
1107static void devices_kset_move_before(struct device *deva, struct device *devb)
1108{
1109	if (!devices_kset)
1110		return;
1111	pr_debug("devices_kset: Moving %s before %s\n",
1112		 dev_name(deva), dev_name(devb));
1113	spin_lock(&devices_kset->list_lock);
1114	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1115	spin_unlock(&devices_kset->list_lock);
1116}
1117
1118/**
1119 * devices_kset_move_after - Move device in the devices_kset's list.
1120 * @deva: Device to move
1121 * @devb: Device @deva should come after.
1122 */
1123static void devices_kset_move_after(struct device *deva, struct device *devb)
1124{
1125	if (!devices_kset)
1126		return;
1127	pr_debug("devices_kset: Moving %s after %s\n",
1128		 dev_name(deva), dev_name(devb));
1129	spin_lock(&devices_kset->list_lock);
1130	list_move(&deva->kobj.entry, &devb->kobj.entry);
1131	spin_unlock(&devices_kset->list_lock);
1132}
1133
1134/**
1135 * devices_kset_move_last - move the device to the end of devices_kset's list.
1136 * @dev: device to move
1137 */
1138void devices_kset_move_last(struct device *dev)
1139{
1140	if (!devices_kset)
1141		return;
1142	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1143	spin_lock(&devices_kset->list_lock);
1144	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1145	spin_unlock(&devices_kset->list_lock);
1146}
1147
1148/**
1149 * device_create_file - create sysfs attribute file for device.
1150 * @dev: device.
1151 * @attr: device attribute descriptor.
1152 */
1153int device_create_file(struct device *dev,
1154		       const struct device_attribute *attr)
1155{
1156	int error = 0;
1157
1158	if (dev) {
1159		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1160			"Attribute %s: write permission without 'store'\n",
1161			attr->attr.name);
1162		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1163			"Attribute %s: read permission without 'show'\n",
1164			attr->attr.name);
1165		error = sysfs_create_file(&dev->kobj, &attr->attr);
1166	}
1167
1168	return error;
1169}
1170EXPORT_SYMBOL_GPL(device_create_file);
1171
1172/**
1173 * device_remove_file - remove sysfs attribute file.
1174 * @dev: device.
1175 * @attr: device attribute descriptor.
1176 */
1177void device_remove_file(struct device *dev,
1178			const struct device_attribute *attr)
1179{
1180	if (dev)
1181		sysfs_remove_file(&dev->kobj, &attr->attr);
1182}
1183EXPORT_SYMBOL_GPL(device_remove_file);
1184
1185/**
1186 * device_remove_file_self - remove sysfs attribute file from its own method.
1187 * @dev: device.
1188 * @attr: device attribute descriptor.
1189 *
1190 * See kernfs_remove_self() for details.
1191 */
1192bool device_remove_file_self(struct device *dev,
1193			     const struct device_attribute *attr)
1194{
1195	if (dev)
1196		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1197	else
1198		return false;
1199}
1200EXPORT_SYMBOL_GPL(device_remove_file_self);
1201
1202/**
1203 * device_create_bin_file - create sysfs binary attribute file for device.
1204 * @dev: device.
1205 * @attr: device binary attribute descriptor.
1206 */
1207int device_create_bin_file(struct device *dev,
1208			   const struct bin_attribute *attr)
1209{
1210	int error = -EINVAL;
1211	if (dev)
1212		error = sysfs_create_bin_file(&dev->kobj, attr);
1213	return error;
1214}
1215EXPORT_SYMBOL_GPL(device_create_bin_file);
1216
1217/**
1218 * device_remove_bin_file - remove sysfs binary attribute file
1219 * @dev: device.
1220 * @attr: device binary attribute descriptor.
1221 */
1222void device_remove_bin_file(struct device *dev,
1223			    const struct bin_attribute *attr)
1224{
1225	if (dev)
1226		sysfs_remove_bin_file(&dev->kobj, attr);
1227}
1228EXPORT_SYMBOL_GPL(device_remove_bin_file);
1229
1230static void klist_children_get(struct klist_node *n)
1231{
1232	struct device_private *p = to_device_private_parent(n);
1233	struct device *dev = p->device;
1234
1235	get_device(dev);
1236}
1237
1238static void klist_children_put(struct klist_node *n)
1239{
1240	struct device_private *p = to_device_private_parent(n);
1241	struct device *dev = p->device;
1242
1243	put_device(dev);
1244}
1245
1246/**
1247 * device_initialize - init device structure.
1248 * @dev: device.
1249 *
1250 * This prepares the device for use by other layers by initializing
1251 * its fields.
1252 * It is the first half of device_register(), if called by
1253 * that function, though it can also be called separately, so one
1254 * may use @dev's fields. In particular, get_device()/put_device()
1255 * may be used for reference counting of @dev after calling this
1256 * function.
1257 *
1258 * All fields in @dev must be initialized by the caller to 0, except
1259 * for those explicitly set to some other value.  The simplest
1260 * approach is to use kzalloc() to allocate the structure containing
1261 * @dev.
1262 *
1263 * NOTE: Use put_device() to give up your reference instead of freeing
1264 * @dev directly once you have called this function.
1265 */
1266void device_initialize(struct device *dev)
1267{
1268	dev->kobj.kset = devices_kset;
1269	kobject_init(&dev->kobj, &device_ktype);
1270	INIT_LIST_HEAD(&dev->dma_pools);
1271	mutex_init(&dev->mutex);
 
 
 
1272	lockdep_set_novalidate_class(&dev->mutex);
1273	spin_lock_init(&dev->devres_lock);
1274	INIT_LIST_HEAD(&dev->devres_head);
1275	device_pm_init(dev);
1276	set_dev_node(dev, -1);
1277#ifdef CONFIG_GENERIC_MSI_IRQ
1278	INIT_LIST_HEAD(&dev->msi_list);
1279#endif
1280	INIT_LIST_HEAD(&dev->links.consumers);
1281	INIT_LIST_HEAD(&dev->links.suppliers);
1282	dev->links.status = DL_DEV_NO_DRIVER;
1283}
1284EXPORT_SYMBOL_GPL(device_initialize);
1285
1286struct kobject *virtual_device_parent(struct device *dev)
1287{
1288	static struct kobject *virtual_dir = NULL;
1289
1290	if (!virtual_dir)
1291		virtual_dir = kobject_create_and_add("virtual",
1292						     &devices_kset->kobj);
1293
1294	return virtual_dir;
1295}
1296
1297struct class_dir {
1298	struct kobject kobj;
1299	struct class *class;
1300};
1301
1302#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1303
1304static void class_dir_release(struct kobject *kobj)
1305{
1306	struct class_dir *dir = to_class_dir(kobj);
1307	kfree(dir);
1308}
1309
1310static const
1311struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1312{
1313	struct class_dir *dir = to_class_dir(kobj);
1314	return dir->class->ns_type;
1315}
1316
1317static struct kobj_type class_dir_ktype = {
1318	.release	= class_dir_release,
1319	.sysfs_ops	= &kobj_sysfs_ops,
1320	.child_ns_type	= class_dir_child_ns_type
1321};
1322
1323static struct kobject *
1324class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1325{
1326	struct class_dir *dir;
1327	int retval;
1328
1329	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1330	if (!dir)
1331		return NULL;
1332
1333	dir->class = class;
1334	kobject_init(&dir->kobj, &class_dir_ktype);
1335
1336	dir->kobj.kset = &class->p->glue_dirs;
1337
1338	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1339	if (retval < 0) {
1340		kobject_put(&dir->kobj);
1341		return NULL;
1342	}
1343	return &dir->kobj;
1344}
1345
1346static DEFINE_MUTEX(gdp_mutex);
1347
1348static struct kobject *get_device_parent(struct device *dev,
1349					 struct device *parent)
1350{
1351	if (dev->class) {
1352		struct kobject *kobj = NULL;
1353		struct kobject *parent_kobj;
1354		struct kobject *k;
1355
1356#ifdef CONFIG_BLOCK
1357		/* block disks show up in /sys/block */
1358		if (sysfs_deprecated && dev->class == &block_class) {
1359			if (parent && parent->class == &block_class)
1360				return &parent->kobj;
1361			return &block_class.p->subsys.kobj;
1362		}
1363#endif
1364
1365		/*
1366		 * If we have no parent, we live in "virtual".
1367		 * Class-devices with a non class-device as parent, live
1368		 * in a "glue" directory to prevent namespace collisions.
1369		 */
1370		if (parent == NULL)
1371			parent_kobj = virtual_device_parent(dev);
1372		else if (parent->class && !dev->class->ns_type)
1373			return &parent->kobj;
1374		else
1375			parent_kobj = &parent->kobj;
1376
1377		mutex_lock(&gdp_mutex);
1378
1379		/* find our class-directory at the parent and reference it */
1380		spin_lock(&dev->class->p->glue_dirs.list_lock);
1381		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1382			if (k->parent == parent_kobj) {
1383				kobj = kobject_get(k);
1384				break;
1385			}
1386		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1387		if (kobj) {
1388			mutex_unlock(&gdp_mutex);
1389			return kobj;
1390		}
1391
1392		/* or create a new class-directory at the parent device */
1393		k = class_dir_create_and_add(dev->class, parent_kobj);
1394		/* do not emit an uevent for this simple "glue" directory */
1395		mutex_unlock(&gdp_mutex);
1396		return k;
1397	}
1398
1399	/* subsystems can specify a default root directory for their devices */
1400	if (!parent && dev->bus && dev->bus->dev_root)
1401		return &dev->bus->dev_root->kobj;
1402
1403	if (parent)
1404		return &parent->kobj;
1405	return NULL;
1406}
1407
1408static inline bool live_in_glue_dir(struct kobject *kobj,
1409				    struct device *dev)
1410{
1411	if (!kobj || !dev->class ||
1412	    kobj->kset != &dev->class->p->glue_dirs)
1413		return false;
1414	return true;
1415}
1416
1417static inline struct kobject *get_glue_dir(struct device *dev)
1418{
1419	return dev->kobj.parent;
1420}
1421
1422/*
1423 * make sure cleaning up dir as the last step, we need to make
1424 * sure .release handler of kobject is run with holding the
1425 * global lock
1426 */
1427static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1428{
 
 
1429	/* see if we live in a "glue" directory */
1430	if (!live_in_glue_dir(glue_dir, dev))
1431		return;
1432
1433	mutex_lock(&gdp_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434	kobject_put(glue_dir);
1435	mutex_unlock(&gdp_mutex);
1436}
1437
1438static int device_add_class_symlinks(struct device *dev)
1439{
1440	struct device_node *of_node = dev_of_node(dev);
1441	int error;
1442
1443	if (of_node) {
1444		error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1445		if (error)
1446			dev_warn(dev, "Error %d creating of_node link\n",error);
1447		/* An error here doesn't warrant bringing down the device */
1448	}
1449
1450	if (!dev->class)
1451		return 0;
1452
1453	error = sysfs_create_link(&dev->kobj,
1454				  &dev->class->p->subsys.kobj,
1455				  "subsystem");
1456	if (error)
1457		goto out_devnode;
1458
1459	if (dev->parent && device_is_not_partition(dev)) {
1460		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1461					  "device");
1462		if (error)
1463			goto out_subsys;
1464	}
1465
1466#ifdef CONFIG_BLOCK
1467	/* /sys/block has directories and does not need symlinks */
1468	if (sysfs_deprecated && dev->class == &block_class)
1469		return 0;
1470#endif
1471
1472	/* link in the class directory pointing to the device */
1473	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1474				  &dev->kobj, dev_name(dev));
1475	if (error)
1476		goto out_device;
1477
1478	return 0;
1479
1480out_device:
1481	sysfs_remove_link(&dev->kobj, "device");
1482
1483out_subsys:
1484	sysfs_remove_link(&dev->kobj, "subsystem");
1485out_devnode:
1486	sysfs_remove_link(&dev->kobj, "of_node");
1487	return error;
1488}
1489
1490static void device_remove_class_symlinks(struct device *dev)
1491{
1492	if (dev_of_node(dev))
1493		sysfs_remove_link(&dev->kobj, "of_node");
1494
1495	if (!dev->class)
1496		return;
1497
1498	if (dev->parent && device_is_not_partition(dev))
1499		sysfs_remove_link(&dev->kobj, "device");
1500	sysfs_remove_link(&dev->kobj, "subsystem");
1501#ifdef CONFIG_BLOCK
1502	if (sysfs_deprecated && dev->class == &block_class)
1503		return;
1504#endif
1505	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1506}
1507
1508/**
1509 * dev_set_name - set a device name
1510 * @dev: device
1511 * @fmt: format string for the device's name
1512 */
1513int dev_set_name(struct device *dev, const char *fmt, ...)
1514{
1515	va_list vargs;
1516	int err;
1517
1518	va_start(vargs, fmt);
1519	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1520	va_end(vargs);
1521	return err;
1522}
1523EXPORT_SYMBOL_GPL(dev_set_name);
1524
1525/**
1526 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1527 * @dev: device
1528 *
1529 * By default we select char/ for new entries.  Setting class->dev_obj
1530 * to NULL prevents an entry from being created.  class->dev_kobj must
1531 * be set (or cleared) before any devices are registered to the class
1532 * otherwise device_create_sys_dev_entry() and
1533 * device_remove_sys_dev_entry() will disagree about the presence of
1534 * the link.
1535 */
1536static struct kobject *device_to_dev_kobj(struct device *dev)
1537{
1538	struct kobject *kobj;
1539
1540	if (dev->class)
1541		kobj = dev->class->dev_kobj;
1542	else
1543		kobj = sysfs_dev_char_kobj;
1544
1545	return kobj;
1546}
1547
1548static int device_create_sys_dev_entry(struct device *dev)
1549{
1550	struct kobject *kobj = device_to_dev_kobj(dev);
1551	int error = 0;
1552	char devt_str[15];
1553
1554	if (kobj) {
1555		format_dev_t(devt_str, dev->devt);
1556		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1557	}
1558
1559	return error;
1560}
1561
1562static void device_remove_sys_dev_entry(struct device *dev)
1563{
1564	struct kobject *kobj = device_to_dev_kobj(dev);
1565	char devt_str[15];
1566
1567	if (kobj) {
1568		format_dev_t(devt_str, dev->devt);
1569		sysfs_remove_link(kobj, devt_str);
1570	}
1571}
1572
1573int device_private_init(struct device *dev)
1574{
1575	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1576	if (!dev->p)
1577		return -ENOMEM;
1578	dev->p->device = dev;
1579	klist_init(&dev->p->klist_children, klist_children_get,
1580		   klist_children_put);
1581	INIT_LIST_HEAD(&dev->p->deferred_probe);
1582	return 0;
1583}
1584
1585/**
1586 * device_add - add device to device hierarchy.
1587 * @dev: device.
1588 *
1589 * This is part 2 of device_register(), though may be called
1590 * separately _iff_ device_initialize() has been called separately.
1591 *
1592 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1593 * to the global and sibling lists for the device, then
1594 * adds it to the other relevant subsystems of the driver model.
1595 *
1596 * Do not call this routine or device_register() more than once for
1597 * any device structure.  The driver model core is not designed to work
1598 * with devices that get unregistered and then spring back to life.
1599 * (Among other things, it's very hard to guarantee that all references
1600 * to the previous incarnation of @dev have been dropped.)  Allocate
1601 * and register a fresh new struct device instead.
1602 *
1603 * NOTE: _Never_ directly free @dev after calling this function, even
1604 * if it returned an error! Always use put_device() to give up your
1605 * reference instead.
 
 
 
 
 
1606 */
1607int device_add(struct device *dev)
1608{
1609	struct device *parent = NULL;
1610	struct kobject *kobj;
1611	struct class_interface *class_intf;
1612	int error = -EINVAL;
1613	struct kobject *glue_dir = NULL;
1614
1615	dev = get_device(dev);
1616	if (!dev)
1617		goto done;
1618
1619	if (!dev->p) {
1620		error = device_private_init(dev);
1621		if (error)
1622			goto done;
1623	}
1624
1625	/*
1626	 * for statically allocated devices, which should all be converted
1627	 * some day, we need to initialize the name. We prevent reading back
1628	 * the name, and force the use of dev_name()
1629	 */
1630	if (dev->init_name) {
1631		dev_set_name(dev, "%s", dev->init_name);
1632		dev->init_name = NULL;
1633	}
1634
1635	/* subsystems can specify simple device enumeration */
1636	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1637		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1638
1639	if (!dev_name(dev)) {
1640		error = -EINVAL;
1641		goto name_error;
1642	}
1643
1644	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1645
1646	parent = get_device(dev->parent);
1647	kobj = get_device_parent(dev, parent);
 
 
 
 
1648	if (kobj)
1649		dev->kobj.parent = kobj;
1650
1651	/* use parent numa_node */
1652	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1653		set_dev_node(dev, dev_to_node(parent));
1654
1655	/* first, register with generic layer. */
1656	/* we require the name to be set before, and pass NULL */
1657	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1658	if (error) {
1659		glue_dir = get_glue_dir(dev);
1660		goto Error;
1661	}
1662
1663	/* notify platform of device entry */
1664	if (platform_notify)
1665		platform_notify(dev);
 
1666
1667	error = device_create_file(dev, &dev_attr_uevent);
1668	if (error)
1669		goto attrError;
1670
1671	error = device_add_class_symlinks(dev);
1672	if (error)
1673		goto SymlinkError;
1674	error = device_add_attrs(dev);
1675	if (error)
1676		goto AttrsError;
1677	error = bus_add_device(dev);
1678	if (error)
1679		goto BusError;
1680	error = dpm_sysfs_add(dev);
1681	if (error)
1682		goto DPMError;
1683	device_pm_add(dev);
1684
1685	if (MAJOR(dev->devt)) {
1686		error = device_create_file(dev, &dev_attr_dev);
1687		if (error)
1688			goto DevAttrError;
1689
1690		error = device_create_sys_dev_entry(dev);
1691		if (error)
1692			goto SysEntryError;
1693
1694		devtmpfs_create_node(dev);
1695	}
1696
1697	/* Notify clients of device addition.  This call must come
1698	 * after dpm_sysfs_add() and before kobject_uevent().
1699	 */
1700	if (dev->bus)
1701		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1702					     BUS_NOTIFY_ADD_DEVICE, dev);
1703
1704	kobject_uevent(&dev->kobj, KOBJ_ADD);
1705	bus_probe_device(dev);
1706	if (parent)
1707		klist_add_tail(&dev->p->knode_parent,
1708			       &parent->p->klist_children);
1709
1710	if (dev->class) {
1711		mutex_lock(&dev->class->p->mutex);
1712		/* tie the class to the device */
1713		klist_add_tail(&dev->knode_class,
1714			       &dev->class->p->klist_devices);
1715
1716		/* notify any interfaces that the device is here */
1717		list_for_each_entry(class_intf,
1718				    &dev->class->p->interfaces, node)
1719			if (class_intf->add_dev)
1720				class_intf->add_dev(dev, class_intf);
1721		mutex_unlock(&dev->class->p->mutex);
1722	}
1723done:
1724	put_device(dev);
1725	return error;
1726 SysEntryError:
1727	if (MAJOR(dev->devt))
1728		device_remove_file(dev, &dev_attr_dev);
1729 DevAttrError:
1730	device_pm_remove(dev);
1731	dpm_sysfs_remove(dev);
1732 DPMError:
1733	bus_remove_device(dev);
1734 BusError:
1735	device_remove_attrs(dev);
1736 AttrsError:
1737	device_remove_class_symlinks(dev);
1738 SymlinkError:
1739	device_remove_file(dev, &dev_attr_uevent);
1740 attrError:
 
 
1741	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1742	glue_dir = get_glue_dir(dev);
1743	kobject_del(&dev->kobj);
1744 Error:
1745	cleanup_glue_dir(dev, glue_dir);
 
1746	put_device(parent);
1747name_error:
1748	kfree(dev->p);
1749	dev->p = NULL;
1750	goto done;
1751}
1752EXPORT_SYMBOL_GPL(device_add);
1753
1754/**
1755 * device_register - register a device with the system.
1756 * @dev: pointer to the device structure
1757 *
1758 * This happens in two clean steps - initialize the device
1759 * and add it to the system. The two steps can be called
1760 * separately, but this is the easiest and most common.
1761 * I.e. you should only call the two helpers separately if
1762 * have a clearly defined need to use and refcount the device
1763 * before it is added to the hierarchy.
1764 *
1765 * For more information, see the kerneldoc for device_initialize()
1766 * and device_add().
1767 *
1768 * NOTE: _Never_ directly free @dev after calling this function, even
1769 * if it returned an error! Always use put_device() to give up the
1770 * reference initialized in this function instead.
1771 */
1772int device_register(struct device *dev)
1773{
1774	device_initialize(dev);
1775	return device_add(dev);
1776}
1777EXPORT_SYMBOL_GPL(device_register);
1778
1779/**
1780 * get_device - increment reference count for device.
1781 * @dev: device.
1782 *
1783 * This simply forwards the call to kobject_get(), though
1784 * we do take care to provide for the case that we get a NULL
1785 * pointer passed in.
1786 */
1787struct device *get_device(struct device *dev)
1788{
1789	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1790}
1791EXPORT_SYMBOL_GPL(get_device);
1792
1793/**
1794 * put_device - decrement reference count.
1795 * @dev: device in question.
1796 */
1797void put_device(struct device *dev)
1798{
1799	/* might_sleep(); */
1800	if (dev)
1801		kobject_put(&dev->kobj);
1802}
1803EXPORT_SYMBOL_GPL(put_device);
1804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1805/**
1806 * device_del - delete device from system.
1807 * @dev: device.
1808 *
1809 * This is the first part of the device unregistration
1810 * sequence. This removes the device from the lists we control
1811 * from here, has it removed from the other driver model
1812 * subsystems it was added to in device_add(), and removes it
1813 * from the kobject hierarchy.
1814 *
1815 * NOTE: this should be called manually _iff_ device_add() was
1816 * also called manually.
1817 */
1818void device_del(struct device *dev)
1819{
1820	struct device *parent = dev->parent;
1821	struct kobject *glue_dir = NULL;
1822	struct class_interface *class_intf;
1823
 
 
 
 
1824	/* Notify clients of device removal.  This call must come
1825	 * before dpm_sysfs_remove().
1826	 */
1827	if (dev->bus)
1828		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1829					     BUS_NOTIFY_DEL_DEVICE, dev);
1830
1831	device_links_purge(dev);
1832	dpm_sysfs_remove(dev);
1833	if (parent)
1834		klist_del(&dev->p->knode_parent);
1835	if (MAJOR(dev->devt)) {
1836		devtmpfs_delete_node(dev);
1837		device_remove_sys_dev_entry(dev);
1838		device_remove_file(dev, &dev_attr_dev);
1839	}
1840	if (dev->class) {
1841		device_remove_class_symlinks(dev);
1842
1843		mutex_lock(&dev->class->p->mutex);
1844		/* notify any interfaces that the device is now gone */
1845		list_for_each_entry(class_intf,
1846				    &dev->class->p->interfaces, node)
1847			if (class_intf->remove_dev)
1848				class_intf->remove_dev(dev, class_intf);
1849		/* remove the device from the class list */
1850		klist_del(&dev->knode_class);
1851		mutex_unlock(&dev->class->p->mutex);
1852	}
1853	device_remove_file(dev, &dev_attr_uevent);
1854	device_remove_attrs(dev);
1855	bus_remove_device(dev);
1856	device_pm_remove(dev);
1857	driver_deferred_probe_del(dev);
 
1858	device_remove_properties(dev);
 
1859
1860	/* Notify the platform of the removal, in case they
1861	 * need to do anything...
1862	 */
1863	if (platform_notify_remove)
1864		platform_notify_remove(dev);
1865	if (dev->bus)
1866		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1867					     BUS_NOTIFY_REMOVED_DEVICE, dev);
1868	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1869	glue_dir = get_glue_dir(dev);
1870	kobject_del(&dev->kobj);
1871	cleanup_glue_dir(dev, glue_dir);
1872	put_device(parent);
1873}
1874EXPORT_SYMBOL_GPL(device_del);
1875
1876/**
1877 * device_unregister - unregister device from system.
1878 * @dev: device going away.
1879 *
1880 * We do this in two parts, like we do device_register(). First,
1881 * we remove it from all the subsystems with device_del(), then
1882 * we decrement the reference count via put_device(). If that
1883 * is the final reference count, the device will be cleaned up
1884 * via device_release() above. Otherwise, the structure will
1885 * stick around until the final reference to the device is dropped.
1886 */
1887void device_unregister(struct device *dev)
1888{
1889	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1890	device_del(dev);
1891	put_device(dev);
1892}
1893EXPORT_SYMBOL_GPL(device_unregister);
1894
1895static struct device *prev_device(struct klist_iter *i)
1896{
1897	struct klist_node *n = klist_prev(i);
1898	struct device *dev = NULL;
1899	struct device_private *p;
1900
1901	if (n) {
1902		p = to_device_private_parent(n);
1903		dev = p->device;
1904	}
1905	return dev;
1906}
1907
1908static struct device *next_device(struct klist_iter *i)
1909{
1910	struct klist_node *n = klist_next(i);
1911	struct device *dev = NULL;
1912	struct device_private *p;
1913
1914	if (n) {
1915		p = to_device_private_parent(n);
1916		dev = p->device;
1917	}
1918	return dev;
1919}
1920
1921/**
1922 * device_get_devnode - path of device node file
1923 * @dev: device
1924 * @mode: returned file access mode
1925 * @uid: returned file owner
1926 * @gid: returned file group
1927 * @tmp: possibly allocated string
1928 *
1929 * Return the relative path of a possible device node.
1930 * Non-default names may need to allocate a memory to compose
1931 * a name. This memory is returned in tmp and needs to be
1932 * freed by the caller.
1933 */
1934const char *device_get_devnode(struct device *dev,
1935			       umode_t *mode, kuid_t *uid, kgid_t *gid,
1936			       const char **tmp)
1937{
1938	char *s;
1939
1940	*tmp = NULL;
1941
1942	/* the device type may provide a specific name */
1943	if (dev->type && dev->type->devnode)
1944		*tmp = dev->type->devnode(dev, mode, uid, gid);
1945	if (*tmp)
1946		return *tmp;
1947
1948	/* the class may provide a specific name */
1949	if (dev->class && dev->class->devnode)
1950		*tmp = dev->class->devnode(dev, mode);
1951	if (*tmp)
1952		return *tmp;
1953
1954	/* return name without allocation, tmp == NULL */
1955	if (strchr(dev_name(dev), '!') == NULL)
1956		return dev_name(dev);
1957
1958	/* replace '!' in the name with '/' */
1959	s = kstrdup(dev_name(dev), GFP_KERNEL);
1960	if (!s)
1961		return NULL;
1962	strreplace(s, '!', '/');
1963	return *tmp = s;
1964}
1965
1966/**
1967 * device_for_each_child - device child iterator.
1968 * @parent: parent struct device.
1969 * @fn: function to be called for each device.
1970 * @data: data for the callback.
1971 *
1972 * Iterate over @parent's child devices, and call @fn for each,
1973 * passing it @data.
1974 *
1975 * We check the return of @fn each time. If it returns anything
1976 * other than 0, we break out and return that value.
1977 */
1978int device_for_each_child(struct device *parent, void *data,
1979			  int (*fn)(struct device *dev, void *data))
1980{
1981	struct klist_iter i;
1982	struct device *child;
1983	int error = 0;
1984
1985	if (!parent->p)
1986		return 0;
1987
1988	klist_iter_init(&parent->p->klist_children, &i);
1989	while ((child = next_device(&i)) && !error)
1990		error = fn(child, data);
1991	klist_iter_exit(&i);
1992	return error;
1993}
1994EXPORT_SYMBOL_GPL(device_for_each_child);
1995
1996/**
1997 * device_for_each_child_reverse - device child iterator in reversed order.
1998 * @parent: parent struct device.
1999 * @fn: function to be called for each device.
2000 * @data: data for the callback.
2001 *
2002 * Iterate over @parent's child devices, and call @fn for each,
2003 * passing it @data.
2004 *
2005 * We check the return of @fn each time. If it returns anything
2006 * other than 0, we break out and return that value.
2007 */
2008int device_for_each_child_reverse(struct device *parent, void *data,
2009				  int (*fn)(struct device *dev, void *data))
2010{
2011	struct klist_iter i;
2012	struct device *child;
2013	int error = 0;
2014
2015	if (!parent->p)
2016		return 0;
2017
2018	klist_iter_init(&parent->p->klist_children, &i);
2019	while ((child = prev_device(&i)) && !error)
2020		error = fn(child, data);
2021	klist_iter_exit(&i);
2022	return error;
2023}
2024EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2025
2026/**
2027 * device_find_child - device iterator for locating a particular device.
2028 * @parent: parent struct device
2029 * @match: Callback function to check device
2030 * @data: Data to pass to match function
2031 *
2032 * This is similar to the device_for_each_child() function above, but it
2033 * returns a reference to a device that is 'found' for later use, as
2034 * determined by the @match callback.
2035 *
2036 * The callback should return 0 if the device doesn't match and non-zero
2037 * if it does.  If the callback returns non-zero and a reference to the
2038 * current device can be obtained, this function will return to the caller
2039 * and not iterate over any more devices.
2040 *
2041 * NOTE: you will need to drop the reference with put_device() after use.
2042 */
2043struct device *device_find_child(struct device *parent, void *data,
2044				 int (*match)(struct device *dev, void *data))
2045{
2046	struct klist_iter i;
2047	struct device *child;
2048
2049	if (!parent)
2050		return NULL;
2051
2052	klist_iter_init(&parent->p->klist_children, &i);
2053	while ((child = next_device(&i)))
2054		if (match(child, data) && get_device(child))
2055			break;
2056	klist_iter_exit(&i);
2057	return child;
2058}
2059EXPORT_SYMBOL_GPL(device_find_child);
2060
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2061int __init devices_init(void)
2062{
2063	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2064	if (!devices_kset)
2065		return -ENOMEM;
2066	dev_kobj = kobject_create_and_add("dev", NULL);
2067	if (!dev_kobj)
2068		goto dev_kobj_err;
2069	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2070	if (!sysfs_dev_block_kobj)
2071		goto block_kobj_err;
2072	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2073	if (!sysfs_dev_char_kobj)
2074		goto char_kobj_err;
2075
2076	return 0;
2077
2078 char_kobj_err:
2079	kobject_put(sysfs_dev_block_kobj);
2080 block_kobj_err:
2081	kobject_put(dev_kobj);
2082 dev_kobj_err:
2083	kset_unregister(devices_kset);
2084	return -ENOMEM;
2085}
2086
2087static int device_check_offline(struct device *dev, void *not_used)
2088{
2089	int ret;
2090
2091	ret = device_for_each_child(dev, NULL, device_check_offline);
2092	if (ret)
2093		return ret;
2094
2095	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2096}
2097
2098/**
2099 * device_offline - Prepare the device for hot-removal.
2100 * @dev: Device to be put offline.
2101 *
2102 * Execute the device bus type's .offline() callback, if present, to prepare
2103 * the device for a subsequent hot-removal.  If that succeeds, the device must
2104 * not be used until either it is removed or its bus type's .online() callback
2105 * is executed.
2106 *
2107 * Call under device_hotplug_lock.
2108 */
2109int device_offline(struct device *dev)
2110{
2111	int ret;
2112
2113	if (dev->offline_disabled)
2114		return -EPERM;
2115
2116	ret = device_for_each_child(dev, NULL, device_check_offline);
2117	if (ret)
2118		return ret;
2119
2120	device_lock(dev);
2121	if (device_supports_offline(dev)) {
2122		if (dev->offline) {
2123			ret = 1;
2124		} else {
2125			ret = dev->bus->offline(dev);
2126			if (!ret) {
2127				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2128				dev->offline = true;
2129			}
2130		}
2131	}
2132	device_unlock(dev);
2133
2134	return ret;
2135}
2136
2137/**
2138 * device_online - Put the device back online after successful device_offline().
2139 * @dev: Device to be put back online.
2140 *
2141 * If device_offline() has been successfully executed for @dev, but the device
2142 * has not been removed subsequently, execute its bus type's .online() callback
2143 * to indicate that the device can be used again.
2144 *
2145 * Call under device_hotplug_lock.
2146 */
2147int device_online(struct device *dev)
2148{
2149	int ret = 0;
2150
2151	device_lock(dev);
2152	if (device_supports_offline(dev)) {
2153		if (dev->offline) {
2154			ret = dev->bus->online(dev);
2155			if (!ret) {
2156				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2157				dev->offline = false;
2158			}
2159		} else {
2160			ret = 1;
2161		}
2162	}
2163	device_unlock(dev);
2164
2165	return ret;
2166}
2167
2168struct root_device {
2169	struct device dev;
2170	struct module *owner;
2171};
2172
2173static inline struct root_device *to_root_device(struct device *d)
2174{
2175	return container_of(d, struct root_device, dev);
2176}
2177
2178static void root_device_release(struct device *dev)
2179{
2180	kfree(to_root_device(dev));
2181}
2182
2183/**
2184 * __root_device_register - allocate and register a root device
2185 * @name: root device name
2186 * @owner: owner module of the root device, usually THIS_MODULE
2187 *
2188 * This function allocates a root device and registers it
2189 * using device_register(). In order to free the returned
2190 * device, use root_device_unregister().
2191 *
2192 * Root devices are dummy devices which allow other devices
2193 * to be grouped under /sys/devices. Use this function to
2194 * allocate a root device and then use it as the parent of
2195 * any device which should appear under /sys/devices/{name}
2196 *
2197 * The /sys/devices/{name} directory will also contain a
2198 * 'module' symlink which points to the @owner directory
2199 * in sysfs.
2200 *
2201 * Returns &struct device pointer on success, or ERR_PTR() on error.
2202 *
2203 * Note: You probably want to use root_device_register().
2204 */
2205struct device *__root_device_register(const char *name, struct module *owner)
2206{
2207	struct root_device *root;
2208	int err = -ENOMEM;
2209
2210	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2211	if (!root)
2212		return ERR_PTR(err);
2213
2214	err = dev_set_name(&root->dev, "%s", name);
2215	if (err) {
2216		kfree(root);
2217		return ERR_PTR(err);
2218	}
2219
2220	root->dev.release = root_device_release;
2221
2222	err = device_register(&root->dev);
2223	if (err) {
2224		put_device(&root->dev);
2225		return ERR_PTR(err);
2226	}
2227
2228#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2229	if (owner) {
2230		struct module_kobject *mk = &owner->mkobj;
2231
2232		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2233		if (err) {
2234			device_unregister(&root->dev);
2235			return ERR_PTR(err);
2236		}
2237		root->owner = owner;
2238	}
2239#endif
2240
2241	return &root->dev;
2242}
2243EXPORT_SYMBOL_GPL(__root_device_register);
2244
2245/**
2246 * root_device_unregister - unregister and free a root device
2247 * @dev: device going away
2248 *
2249 * This function unregisters and cleans up a device that was created by
2250 * root_device_register().
2251 */
2252void root_device_unregister(struct device *dev)
2253{
2254	struct root_device *root = to_root_device(dev);
2255
2256	if (root->owner)
2257		sysfs_remove_link(&root->dev.kobj, "module");
2258
2259	device_unregister(dev);
2260}
2261EXPORT_SYMBOL_GPL(root_device_unregister);
2262
2263
2264static void device_create_release(struct device *dev)
2265{
2266	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2267	kfree(dev);
2268}
2269
2270static struct device *
2271device_create_groups_vargs(struct class *class, struct device *parent,
2272			   dev_t devt, void *drvdata,
2273			   const struct attribute_group **groups,
2274			   const char *fmt, va_list args)
2275{
2276	struct device *dev = NULL;
2277	int retval = -ENODEV;
2278
2279	if (class == NULL || IS_ERR(class))
2280		goto error;
2281
2282	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2283	if (!dev) {
2284		retval = -ENOMEM;
2285		goto error;
2286	}
2287
2288	device_initialize(dev);
2289	dev->devt = devt;
2290	dev->class = class;
2291	dev->parent = parent;
2292	dev->groups = groups;
2293	dev->release = device_create_release;
2294	dev_set_drvdata(dev, drvdata);
2295
2296	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2297	if (retval)
2298		goto error;
2299
2300	retval = device_add(dev);
2301	if (retval)
2302		goto error;
2303
2304	return dev;
2305
2306error:
2307	put_device(dev);
2308	return ERR_PTR(retval);
2309}
2310
2311/**
2312 * device_create_vargs - creates a device and registers it with sysfs
2313 * @class: pointer to the struct class that this device should be registered to
2314 * @parent: pointer to the parent struct device of this new device, if any
2315 * @devt: the dev_t for the char device to be added
2316 * @drvdata: the data to be added to the device for callbacks
2317 * @fmt: string for the device's name
2318 * @args: va_list for the device's name
2319 *
2320 * This function can be used by char device classes.  A struct device
2321 * will be created in sysfs, registered to the specified class.
2322 *
2323 * A "dev" file will be created, showing the dev_t for the device, if
2324 * the dev_t is not 0,0.
2325 * If a pointer to a parent struct device is passed in, the newly created
2326 * struct device will be a child of that device in sysfs.
2327 * The pointer to the struct device will be returned from the call.
2328 * Any further sysfs files that might be required can be created using this
2329 * pointer.
2330 *
2331 * Returns &struct device pointer on success, or ERR_PTR() on error.
2332 *
2333 * Note: the struct class passed to this function must have previously
2334 * been created with a call to class_create().
2335 */
2336struct device *device_create_vargs(struct class *class, struct device *parent,
2337				   dev_t devt, void *drvdata, const char *fmt,
2338				   va_list args)
2339{
2340	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2341					  fmt, args);
2342}
2343EXPORT_SYMBOL_GPL(device_create_vargs);
2344
2345/**
2346 * device_create - creates a device and registers it with sysfs
2347 * @class: pointer to the struct class that this device should be registered to
2348 * @parent: pointer to the parent struct device of this new device, if any
2349 * @devt: the dev_t for the char device to be added
2350 * @drvdata: the data to be added to the device for callbacks
2351 * @fmt: string for the device's name
2352 *
2353 * This function can be used by char device classes.  A struct device
2354 * will be created in sysfs, registered to the specified class.
2355 *
2356 * A "dev" file will be created, showing the dev_t for the device, if
2357 * the dev_t is not 0,0.
2358 * If a pointer to a parent struct device is passed in, the newly created
2359 * struct device will be a child of that device in sysfs.
2360 * The pointer to the struct device will be returned from the call.
2361 * Any further sysfs files that might be required can be created using this
2362 * pointer.
2363 *
2364 * Returns &struct device pointer on success, or ERR_PTR() on error.
2365 *
2366 * Note: the struct class passed to this function must have previously
2367 * been created with a call to class_create().
2368 */
2369struct device *device_create(struct class *class, struct device *parent,
2370			     dev_t devt, void *drvdata, const char *fmt, ...)
2371{
2372	va_list vargs;
2373	struct device *dev;
2374
2375	va_start(vargs, fmt);
2376	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2377	va_end(vargs);
2378	return dev;
2379}
2380EXPORT_SYMBOL_GPL(device_create);
2381
2382/**
2383 * device_create_with_groups - creates a device and registers it with sysfs
2384 * @class: pointer to the struct class that this device should be registered to
2385 * @parent: pointer to the parent struct device of this new device, if any
2386 * @devt: the dev_t for the char device to be added
2387 * @drvdata: the data to be added to the device for callbacks
2388 * @groups: NULL-terminated list of attribute groups to be created
2389 * @fmt: string for the device's name
2390 *
2391 * This function can be used by char device classes.  A struct device
2392 * will be created in sysfs, registered to the specified class.
2393 * Additional attributes specified in the groups parameter will also
2394 * be created automatically.
2395 *
2396 * A "dev" file will be created, showing the dev_t for the device, if
2397 * the dev_t is not 0,0.
2398 * If a pointer to a parent struct device is passed in, the newly created
2399 * struct device will be a child of that device in sysfs.
2400 * The pointer to the struct device will be returned from the call.
2401 * Any further sysfs files that might be required can be created using this
2402 * pointer.
2403 *
2404 * Returns &struct device pointer on success, or ERR_PTR() on error.
2405 *
2406 * Note: the struct class passed to this function must have previously
2407 * been created with a call to class_create().
2408 */
2409struct device *device_create_with_groups(struct class *class,
2410					 struct device *parent, dev_t devt,
2411					 void *drvdata,
2412					 const struct attribute_group **groups,
2413					 const char *fmt, ...)
2414{
2415	va_list vargs;
2416	struct device *dev;
2417
2418	va_start(vargs, fmt);
2419	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2420					 fmt, vargs);
2421	va_end(vargs);
2422	return dev;
2423}
2424EXPORT_SYMBOL_GPL(device_create_with_groups);
2425
2426static int __match_devt(struct device *dev, const void *data)
2427{
2428	const dev_t *devt = data;
2429
2430	return dev->devt == *devt;
2431}
2432
2433/**
2434 * device_destroy - removes a device that was created with device_create()
2435 * @class: pointer to the struct class that this device was registered with
2436 * @devt: the dev_t of the device that was previously registered
2437 *
2438 * This call unregisters and cleans up a device that was created with a
2439 * call to device_create().
2440 */
2441void device_destroy(struct class *class, dev_t devt)
2442{
2443	struct device *dev;
2444
2445	dev = class_find_device(class, NULL, &devt, __match_devt);
2446	if (dev) {
2447		put_device(dev);
2448		device_unregister(dev);
2449	}
2450}
2451EXPORT_SYMBOL_GPL(device_destroy);
2452
2453/**
2454 * device_rename - renames a device
2455 * @dev: the pointer to the struct device to be renamed
2456 * @new_name: the new name of the device
2457 *
2458 * It is the responsibility of the caller to provide mutual
2459 * exclusion between two different calls of device_rename
2460 * on the same device to ensure that new_name is valid and
2461 * won't conflict with other devices.
2462 *
2463 * Note: Don't call this function.  Currently, the networking layer calls this
2464 * function, but that will change.  The following text from Kay Sievers offers
2465 * some insight:
2466 *
2467 * Renaming devices is racy at many levels, symlinks and other stuff are not
2468 * replaced atomically, and you get a "move" uevent, but it's not easy to
2469 * connect the event to the old and new device. Device nodes are not renamed at
2470 * all, there isn't even support for that in the kernel now.
2471 *
2472 * In the meantime, during renaming, your target name might be taken by another
2473 * driver, creating conflicts. Or the old name is taken directly after you
2474 * renamed it -- then you get events for the same DEVPATH, before you even see
2475 * the "move" event. It's just a mess, and nothing new should ever rely on
2476 * kernel device renaming. Besides that, it's not even implemented now for
2477 * other things than (driver-core wise very simple) network devices.
2478 *
2479 * We are currently about to change network renaming in udev to completely
2480 * disallow renaming of devices in the same namespace as the kernel uses,
2481 * because we can't solve the problems properly, that arise with swapping names
2482 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2483 * be allowed to some other name than eth[0-9]*, for the aforementioned
2484 * reasons.
2485 *
2486 * Make up a "real" name in the driver before you register anything, or add
2487 * some other attributes for userspace to find the device, or use udev to add
2488 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2489 * don't even want to get into that and try to implement the missing pieces in
2490 * the core. We really have other pieces to fix in the driver core mess. :)
2491 */
2492int device_rename(struct device *dev, const char *new_name)
2493{
2494	struct kobject *kobj = &dev->kobj;
2495	char *old_device_name = NULL;
2496	int error;
2497
2498	dev = get_device(dev);
2499	if (!dev)
2500		return -EINVAL;
2501
2502	dev_dbg(dev, "renaming to %s\n", new_name);
2503
2504	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2505	if (!old_device_name) {
2506		error = -ENOMEM;
2507		goto out;
2508	}
2509
2510	if (dev->class) {
2511		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2512					     kobj, old_device_name,
2513					     new_name, kobject_namespace(kobj));
2514		if (error)
2515			goto out;
2516	}
2517
2518	error = kobject_rename(kobj, new_name);
2519	if (error)
2520		goto out;
2521
2522out:
2523	put_device(dev);
2524
2525	kfree(old_device_name);
2526
2527	return error;
2528}
2529EXPORT_SYMBOL_GPL(device_rename);
2530
2531static int device_move_class_links(struct device *dev,
2532				   struct device *old_parent,
2533				   struct device *new_parent)
2534{
2535	int error = 0;
2536
2537	if (old_parent)
2538		sysfs_remove_link(&dev->kobj, "device");
2539	if (new_parent)
2540		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2541					  "device");
2542	return error;
2543}
2544
2545/**
2546 * device_move - moves a device to a new parent
2547 * @dev: the pointer to the struct device to be moved
2548 * @new_parent: the new parent of the device (can by NULL)
2549 * @dpm_order: how to reorder the dpm_list
2550 */
2551int device_move(struct device *dev, struct device *new_parent,
2552		enum dpm_order dpm_order)
2553{
2554	int error;
2555	struct device *old_parent;
2556	struct kobject *new_parent_kobj;
2557
2558	dev = get_device(dev);
2559	if (!dev)
2560		return -EINVAL;
2561
2562	device_pm_lock();
2563	new_parent = get_device(new_parent);
2564	new_parent_kobj = get_device_parent(dev, new_parent);
 
 
 
 
 
2565
2566	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2567		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2568	error = kobject_move(&dev->kobj, new_parent_kobj);
2569	if (error) {
2570		cleanup_glue_dir(dev, new_parent_kobj);
2571		put_device(new_parent);
2572		goto out;
2573	}
2574	old_parent = dev->parent;
2575	dev->parent = new_parent;
2576	if (old_parent)
2577		klist_remove(&dev->p->knode_parent);
2578	if (new_parent) {
2579		klist_add_tail(&dev->p->knode_parent,
2580			       &new_parent->p->klist_children);
2581		set_dev_node(dev, dev_to_node(new_parent));
2582	}
2583
2584	if (dev->class) {
2585		error = device_move_class_links(dev, old_parent, new_parent);
2586		if (error) {
2587			/* We ignore errors on cleanup since we're hosed anyway... */
2588			device_move_class_links(dev, new_parent, old_parent);
2589			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2590				if (new_parent)
2591					klist_remove(&dev->p->knode_parent);
2592				dev->parent = old_parent;
2593				if (old_parent) {
2594					klist_add_tail(&dev->p->knode_parent,
2595						       &old_parent->p->klist_children);
2596					set_dev_node(dev, dev_to_node(old_parent));
2597				}
2598			}
2599			cleanup_glue_dir(dev, new_parent_kobj);
2600			put_device(new_parent);
2601			goto out;
2602		}
2603	}
2604	switch (dpm_order) {
2605	case DPM_ORDER_NONE:
2606		break;
2607	case DPM_ORDER_DEV_AFTER_PARENT:
2608		device_pm_move_after(dev, new_parent);
2609		devices_kset_move_after(dev, new_parent);
2610		break;
2611	case DPM_ORDER_PARENT_BEFORE_DEV:
2612		device_pm_move_before(new_parent, dev);
2613		devices_kset_move_before(new_parent, dev);
2614		break;
2615	case DPM_ORDER_DEV_LAST:
2616		device_pm_move_last(dev);
2617		devices_kset_move_last(dev);
2618		break;
2619	}
2620
2621	put_device(old_parent);
2622out:
2623	device_pm_unlock();
2624	put_device(dev);
2625	return error;
2626}
2627EXPORT_SYMBOL_GPL(device_move);
2628
2629/**
2630 * device_shutdown - call ->shutdown() on each device to shutdown.
2631 */
2632void device_shutdown(void)
2633{
2634	struct device *dev, *parent;
2635
 
 
 
 
 
2636	spin_lock(&devices_kset->list_lock);
2637	/*
2638	 * Walk the devices list backward, shutting down each in turn.
2639	 * Beware that device unplug events may also start pulling
2640	 * devices offline, even as the system is shutting down.
2641	 */
2642	while (!list_empty(&devices_kset->list)) {
2643		dev = list_entry(devices_kset->list.prev, struct device,
2644				kobj.entry);
2645
2646		/*
2647		 * hold reference count of device's parent to
2648		 * prevent it from being freed because parent's
2649		 * lock is to be held
2650		 */
2651		parent = get_device(dev->parent);
2652		get_device(dev);
2653		/*
2654		 * Make sure the device is off the kset list, in the
2655		 * event that dev->*->shutdown() doesn't remove it.
2656		 */
2657		list_del_init(&dev->kobj.entry);
2658		spin_unlock(&devices_kset->list_lock);
2659
2660		/* hold lock to avoid race with probe/release */
2661		if (parent)
2662			device_lock(parent);
2663		device_lock(dev);
2664
2665		/* Don't allow any more runtime suspends */
2666		pm_runtime_get_noresume(dev);
2667		pm_runtime_barrier(dev);
2668
 
 
 
 
 
2669		if (dev->bus && dev->bus->shutdown) {
2670			if (initcall_debug)
2671				dev_info(dev, "shutdown\n");
2672			dev->bus->shutdown(dev);
2673		} else if (dev->driver && dev->driver->shutdown) {
2674			if (initcall_debug)
2675				dev_info(dev, "shutdown\n");
2676			dev->driver->shutdown(dev);
2677		}
2678
2679		device_unlock(dev);
2680		if (parent)
2681			device_unlock(parent);
2682
2683		put_device(dev);
2684		put_device(parent);
2685
2686		spin_lock(&devices_kset->list_lock);
2687	}
2688	spin_unlock(&devices_kset->list_lock);
2689}
2690
2691/*
2692 * Device logging functions
2693 */
2694
2695#ifdef CONFIG_PRINTK
2696static int
2697create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2698{
2699	const char *subsys;
2700	size_t pos = 0;
2701
2702	if (dev->class)
2703		subsys = dev->class->name;
2704	else if (dev->bus)
2705		subsys = dev->bus->name;
2706	else
2707		return 0;
2708
2709	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2710	if (pos >= hdrlen)
2711		goto overflow;
2712
2713	/*
2714	 * Add device identifier DEVICE=:
2715	 *   b12:8         block dev_t
2716	 *   c127:3        char dev_t
2717	 *   n8            netdev ifindex
2718	 *   +sound:card0  subsystem:devname
2719	 */
2720	if (MAJOR(dev->devt)) {
2721		char c;
2722
2723		if (strcmp(subsys, "block") == 0)
2724			c = 'b';
2725		else
2726			c = 'c';
2727		pos++;
2728		pos += snprintf(hdr + pos, hdrlen - pos,
2729				"DEVICE=%c%u:%u",
2730				c, MAJOR(dev->devt), MINOR(dev->devt));
2731	} else if (strcmp(subsys, "net") == 0) {
2732		struct net_device *net = to_net_dev(dev);
2733
2734		pos++;
2735		pos += snprintf(hdr + pos, hdrlen - pos,
2736				"DEVICE=n%u", net->ifindex);
2737	} else {
2738		pos++;
2739		pos += snprintf(hdr + pos, hdrlen - pos,
2740				"DEVICE=+%s:%s", subsys, dev_name(dev));
2741	}
2742
2743	if (pos >= hdrlen)
2744		goto overflow;
2745
2746	return pos;
2747
2748overflow:
2749	dev_WARN(dev, "device/subsystem name too long");
2750	return 0;
2751}
2752
2753int dev_vprintk_emit(int level, const struct device *dev,
2754		     const char *fmt, va_list args)
2755{
2756	char hdr[128];
2757	size_t hdrlen;
2758
2759	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2760
2761	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2762}
2763EXPORT_SYMBOL(dev_vprintk_emit);
2764
2765int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2766{
2767	va_list args;
2768	int r;
2769
2770	va_start(args, fmt);
2771
2772	r = dev_vprintk_emit(level, dev, fmt, args);
2773
2774	va_end(args);
2775
2776	return r;
2777}
2778EXPORT_SYMBOL(dev_printk_emit);
2779
2780static void __dev_printk(const char *level, const struct device *dev,
2781			struct va_format *vaf)
2782{
2783	if (dev)
2784		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2785				dev_driver_string(dev), dev_name(dev), vaf);
2786	else
2787		printk("%s(NULL device *): %pV", level, vaf);
2788}
2789
2790void dev_printk(const char *level, const struct device *dev,
2791		const char *fmt, ...)
2792{
2793	struct va_format vaf;
2794	va_list args;
2795
2796	va_start(args, fmt);
2797
2798	vaf.fmt = fmt;
2799	vaf.va = &args;
2800
2801	__dev_printk(level, dev, &vaf);
2802
2803	va_end(args);
2804}
2805EXPORT_SYMBOL(dev_printk);
2806
2807#define define_dev_printk_level(func, kern_level)		\
2808void func(const struct device *dev, const char *fmt, ...)	\
2809{								\
2810	struct va_format vaf;					\
2811	va_list args;						\
2812								\
2813	va_start(args, fmt);					\
2814								\
2815	vaf.fmt = fmt;						\
2816	vaf.va = &args;						\
2817								\
2818	__dev_printk(kern_level, dev, &vaf);			\
2819								\
2820	va_end(args);						\
2821}								\
2822EXPORT_SYMBOL(func);
2823
2824define_dev_printk_level(dev_emerg, KERN_EMERG);
2825define_dev_printk_level(dev_alert, KERN_ALERT);
2826define_dev_printk_level(dev_crit, KERN_CRIT);
2827define_dev_printk_level(dev_err, KERN_ERR);
2828define_dev_printk_level(dev_warn, KERN_WARNING);
2829define_dev_printk_level(dev_notice, KERN_NOTICE);
2830define_dev_printk_level(_dev_info, KERN_INFO);
2831
2832#endif
2833
2834static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2835{
2836	return fwnode && !IS_ERR(fwnode->secondary);
2837}
2838
2839/**
2840 * set_primary_fwnode - Change the primary firmware node of a given device.
2841 * @dev: Device to handle.
2842 * @fwnode: New primary firmware node of the device.
2843 *
2844 * Set the device's firmware node pointer to @fwnode, but if a secondary
2845 * firmware node of the device is present, preserve it.
2846 */
2847void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2848{
2849	if (fwnode) {
2850		struct fwnode_handle *fn = dev->fwnode;
2851
2852		if (fwnode_is_primary(fn))
2853			fn = fn->secondary;
2854
2855		if (fn) {
2856			WARN_ON(fwnode->secondary);
2857			fwnode->secondary = fn;
2858		}
2859		dev->fwnode = fwnode;
2860	} else {
2861		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2862			dev->fwnode->secondary : NULL;
2863	}
2864}
2865EXPORT_SYMBOL_GPL(set_primary_fwnode);
2866
2867/**
2868 * set_secondary_fwnode - Change the secondary firmware node of a given device.
2869 * @dev: Device to handle.
2870 * @fwnode: New secondary firmware node of the device.
2871 *
2872 * If a primary firmware node of the device is present, set its secondary
2873 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
2874 * @fwnode.
2875 */
2876void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2877{
2878	if (fwnode)
2879		fwnode->secondary = ERR_PTR(-ENODEV);
2880
2881	if (fwnode_is_primary(dev->fwnode))
2882		dev->fwnode->secondary = fwnode;
2883	else
2884		dev->fwnode = fwnode;
2885}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
 
 
 
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/string.h>
  20#include <linux/kdev_t.h>
  21#include <linux/notifier.h>
  22#include <linux/of.h>
  23#include <linux/of_device.h>
  24#include <linux/genhd.h>
 
  25#include <linux/mutex.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/netdevice.h>
  28#include <linux/sched/signal.h>
  29#include <linux/sysfs.h>
  30
  31#include "base.h"
  32#include "power/power.h"
  33
  34#ifdef CONFIG_SYSFS_DEPRECATED
  35#ifdef CONFIG_SYSFS_DEPRECATED_V2
  36long sysfs_deprecated = 1;
  37#else
  38long sysfs_deprecated = 0;
  39#endif
  40static int __init sysfs_deprecated_setup(char *arg)
  41{
  42	return kstrtol(arg, 10, &sysfs_deprecated);
  43}
  44early_param("sysfs.deprecated", sysfs_deprecated_setup);
  45#endif
  46
  47/* Device links support. */
  48
  49#ifdef CONFIG_SRCU
  50static DEFINE_MUTEX(device_links_lock);
  51DEFINE_STATIC_SRCU(device_links_srcu);
  52
  53static inline void device_links_write_lock(void)
  54{
  55	mutex_lock(&device_links_lock);
  56}
  57
  58static inline void device_links_write_unlock(void)
  59{
  60	mutex_unlock(&device_links_lock);
  61}
  62
  63int device_links_read_lock(void)
  64{
  65	return srcu_read_lock(&device_links_srcu);
  66}
  67
  68void device_links_read_unlock(int idx)
  69{
  70	srcu_read_unlock(&device_links_srcu, idx);
  71}
  72
  73int device_links_read_lock_held(void)
  74{
  75	return srcu_read_lock_held(&device_links_srcu);
  76}
  77#else /* !CONFIG_SRCU */
  78static DECLARE_RWSEM(device_links_lock);
  79
  80static inline void device_links_write_lock(void)
  81{
  82	down_write(&device_links_lock);
  83}
  84
  85static inline void device_links_write_unlock(void)
  86{
  87	up_write(&device_links_lock);
  88}
  89
  90int device_links_read_lock(void)
  91{
  92	down_read(&device_links_lock);
  93	return 0;
  94}
  95
  96void device_links_read_unlock(int not_used)
  97{
  98	up_read(&device_links_lock);
  99}
 100
 101#ifdef CONFIG_DEBUG_LOCK_ALLOC
 102int device_links_read_lock_held(void)
 103{
 104	return lockdep_is_held(&device_links_lock);
 105}
 106#endif
 107#endif /* !CONFIG_SRCU */
 108
 109/**
 110 * device_is_dependent - Check if one device depends on another one
 111 * @dev: Device to check dependencies for.
 112 * @target: Device to check against.
 113 *
 114 * Check if @target depends on @dev or any device dependent on it (its child or
 115 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 116 */
 117static int device_is_dependent(struct device *dev, void *target)
 118{
 119	struct device_link *link;
 120	int ret;
 121
 122	if (dev == target)
 123		return 1;
 124
 125	ret = device_for_each_child(dev, target, device_is_dependent);
 126	if (ret)
 127		return ret;
 128
 129	list_for_each_entry(link, &dev->links.consumers, s_node) {
 130		if (link->consumer == target)
 131			return 1;
 132
 133		ret = device_is_dependent(link->consumer, target);
 134		if (ret)
 135			break;
 136	}
 137	return ret;
 138}
 139
 140static void device_link_init_status(struct device_link *link,
 141				    struct device *consumer,
 142				    struct device *supplier)
 143{
 144	switch (supplier->links.status) {
 145	case DL_DEV_PROBING:
 146		switch (consumer->links.status) {
 147		case DL_DEV_PROBING:
 148			/*
 149			 * A consumer driver can create a link to a supplier
 150			 * that has not completed its probing yet as long as it
 151			 * knows that the supplier is already functional (for
 152			 * example, it has just acquired some resources from the
 153			 * supplier).
 154			 */
 155			link->status = DL_STATE_CONSUMER_PROBE;
 156			break;
 157		default:
 158			link->status = DL_STATE_DORMANT;
 159			break;
 160		}
 161		break;
 162	case DL_DEV_DRIVER_BOUND:
 163		switch (consumer->links.status) {
 164		case DL_DEV_PROBING:
 165			link->status = DL_STATE_CONSUMER_PROBE;
 166			break;
 167		case DL_DEV_DRIVER_BOUND:
 168			link->status = DL_STATE_ACTIVE;
 169			break;
 170		default:
 171			link->status = DL_STATE_AVAILABLE;
 172			break;
 173		}
 174		break;
 175	case DL_DEV_UNBINDING:
 176		link->status = DL_STATE_SUPPLIER_UNBIND;
 177		break;
 178	default:
 179		link->status = DL_STATE_DORMANT;
 180		break;
 181	}
 182}
 183
 184static int device_reorder_to_tail(struct device *dev, void *not_used)
 185{
 186	struct device_link *link;
 187
 188	/*
 189	 * Devices that have not been registered yet will be put to the ends
 190	 * of the lists during the registration, so skip them here.
 191	 */
 192	if (device_is_registered(dev))
 193		devices_kset_move_last(dev);
 194
 195	if (device_pm_initialized(dev))
 196		device_pm_move_last(dev);
 197
 198	device_for_each_child(dev, NULL, device_reorder_to_tail);
 199	list_for_each_entry(link, &dev->links.consumers, s_node)
 200		device_reorder_to_tail(link->consumer, NULL);
 201
 202	return 0;
 203}
 204
 205/**
 206 * device_pm_move_to_tail - Move set of devices to the end of device lists
 207 * @dev: Device to move
 208 *
 209 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 210 *
 211 * It moves the @dev along with all of its children and all of its consumers
 212 * to the ends of the device_kset and dpm_list, recursively.
 213 */
 214void device_pm_move_to_tail(struct device *dev)
 215{
 216	int idx;
 217
 218	idx = device_links_read_lock();
 219	device_pm_lock();
 220	device_reorder_to_tail(dev, NULL);
 221	device_pm_unlock();
 222	device_links_read_unlock(idx);
 223}
 224
 225#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 226			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 227			       DL_FLAG_AUTOPROBE_CONSUMER)
 228
 229#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 230			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 231
 232/**
 233 * device_link_add - Create a link between two devices.
 234 * @consumer: Consumer end of the link.
 235 * @supplier: Supplier end of the link.
 236 * @flags: Link flags.
 237 *
 238 * The caller is responsible for the proper synchronization of the link creation
 239 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 240 * runtime PM framework to take the link into account.  Second, if the
 241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 242 * be forced into the active metastate and reference-counted upon the creation
 243 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 244 * ignored.
 245 *
 246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 247 * expected to release the link returned by it directly with the help of either
 248 * device_link_del() or device_link_remove().
 249 *
 250 * If that flag is not set, however, the caller of this function is handing the
 251 * management of the link over to the driver core entirely and its return value
 252 * can only be used to check whether or not the link is present.  In that case,
 253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 254 * flags can be used to indicate to the driver core when the link can be safely
 255 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 256 * that the link is not going to be used (by the given caller of this function)
 257 * after unbinding the consumer or supplier driver, respectively, from its
 258 * device, so the link can be deleted at that point.  If none of them is set,
 259 * the link will be maintained until one of the devices pointed to by it (either
 260 * the consumer or the supplier) is unregistered.
 261 *
 262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 265 * be used to request the driver core to automaticall probe for a consmer
 266 * driver after successfully binding a driver to the supplier device.
 267 *
 268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 270 * the same time is invalid and will cause NULL to be returned upfront.
 271 * However, if a device link between the given @consumer and @supplier pair
 272 * exists already when this function is called for them, the existing link will
 273 * be returned regardless of its current type and status (the link's flags may
 274 * be modified then).  The caller of this function is then expected to treat
 275 * the link as though it has just been created, so (in particular) if
 276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 277 * explicitly when not needed any more (as stated above).
 278 *
 279 * A side effect of the link creation is re-ordering of dpm_list and the
 280 * devices_kset list by moving the consumer device and all devices depending
 281 * on it to the ends of these lists (that does not happen to devices that have
 282 * not been registered when this function is called).
 283 *
 284 * The supplier device is required to be registered when this function is called
 285 * and NULL will be returned if that is not the case.  The consumer device need
 286 * not be registered, however.
 287 */
 288struct device_link *device_link_add(struct device *consumer,
 289				    struct device *supplier, u32 flags)
 290{
 291	struct device_link *link;
 292
 293	if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
 294	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 295	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 296	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 297		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 298		return NULL;
 299
 300	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 301		if (pm_runtime_get_sync(supplier) < 0) {
 302			pm_runtime_put_noidle(supplier);
 303			return NULL;
 304		}
 305	}
 306
 307	if (!(flags & DL_FLAG_STATELESS))
 308		flags |= DL_FLAG_MANAGED;
 309
 310	device_links_write_lock();
 311	device_pm_lock();
 312
 313	/*
 314	 * If the supplier has not been fully registered yet or there is a
 315	 * reverse dependency between the consumer and the supplier already in
 316	 * the graph, return NULL.
 317	 */
 318	if (!device_pm_initialized(supplier)
 319	    || device_is_dependent(consumer, supplier)) {
 320		link = NULL;
 321		goto out;
 322	}
 323
 324	/*
 325	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 326	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 327	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 328	 */
 329	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 330		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 331
 332	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 333		if (link->consumer != consumer)
 334			continue;
 335
 336		if (flags & DL_FLAG_PM_RUNTIME) {
 337			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 338				pm_runtime_new_link(consumer);
 339				link->flags |= DL_FLAG_PM_RUNTIME;
 340			}
 341			if (flags & DL_FLAG_RPM_ACTIVE)
 342				refcount_inc(&link->rpm_active);
 343		}
 344
 345		if (flags & DL_FLAG_STATELESS) {
 346			link->flags |= DL_FLAG_STATELESS;
 347			kref_get(&link->kref);
 348			goto out;
 349		}
 350
 351		/*
 352		 * If the life time of the link following from the new flags is
 353		 * longer than indicated by the flags of the existing link,
 354		 * update the existing link to stay around longer.
 355		 */
 356		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 357			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 358				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 359				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 360			}
 361		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 362			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 363					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 364		}
 365		if (!(link->flags & DL_FLAG_MANAGED)) {
 366			kref_get(&link->kref);
 367			link->flags |= DL_FLAG_MANAGED;
 368			device_link_init_status(link, consumer, supplier);
 369		}
 370		goto out;
 371	}
 372
 373	link = kzalloc(sizeof(*link), GFP_KERNEL);
 374	if (!link)
 375		goto out;
 376
 377	refcount_set(&link->rpm_active, 1);
 378
 379	if (flags & DL_FLAG_PM_RUNTIME) {
 380		if (flags & DL_FLAG_RPM_ACTIVE)
 381			refcount_inc(&link->rpm_active);
 382
 
 
 
 
 
 
 383		pm_runtime_new_link(consumer);
 384	}
 385
 386	get_device(supplier);
 387	link->supplier = supplier;
 388	INIT_LIST_HEAD(&link->s_node);
 389	get_device(consumer);
 390	link->consumer = consumer;
 391	INIT_LIST_HEAD(&link->c_node);
 392	link->flags = flags;
 393	kref_init(&link->kref);
 394
 395	/* Determine the initial link state. */
 396	if (flags & DL_FLAG_STATELESS)
 397		link->status = DL_STATE_NONE;
 398	else
 399		device_link_init_status(link, consumer, supplier);
 
 
 
 
 
 
 
 
 
 
 400
 401	/*
 402	 * Some callers expect the link creation during consumer driver probe to
 403	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 404	 */
 405	if (link->status == DL_STATE_CONSUMER_PROBE &&
 406	    flags & DL_FLAG_PM_RUNTIME)
 407		pm_runtime_resume(supplier);
 
 
 
 
 
 
 
 
 
 
 
 408
 409	/*
 410	 * Move the consumer and all of the devices depending on it to the end
 411	 * of dpm_list and the devices_kset list.
 412	 *
 413	 * It is necessary to hold dpm_list locked throughout all that or else
 414	 * we may end up suspending with a wrong ordering of it.
 415	 */
 416	device_reorder_to_tail(consumer, NULL);
 417
 418	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 419	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 420
 421	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 422
 423 out:
 424	device_pm_unlock();
 425	device_links_write_unlock();
 426
 427	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 428		pm_runtime_put(supplier);
 429
 430	return link;
 431}
 432EXPORT_SYMBOL_GPL(device_link_add);
 433
 434static void device_link_free(struct device_link *link)
 435{
 436	while (refcount_dec_not_one(&link->rpm_active))
 437		pm_runtime_put(link->supplier);
 438
 439	put_device(link->consumer);
 440	put_device(link->supplier);
 441	kfree(link);
 442}
 443
 444#ifdef CONFIG_SRCU
 445static void __device_link_free_srcu(struct rcu_head *rhead)
 446{
 447	device_link_free(container_of(rhead, struct device_link, rcu_head));
 448}
 449
 450static void __device_link_del(struct kref *kref)
 451{
 452	struct device_link *link = container_of(kref, struct device_link, kref);
 453
 454	dev_dbg(link->consumer, "Dropping the link to %s\n",
 455		dev_name(link->supplier));
 456
 457	if (link->flags & DL_FLAG_PM_RUNTIME)
 458		pm_runtime_drop_link(link->consumer);
 459
 460	list_del_rcu(&link->s_node);
 461	list_del_rcu(&link->c_node);
 462	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 463}
 464#else /* !CONFIG_SRCU */
 465static void __device_link_del(struct kref *kref)
 466{
 467	struct device_link *link = container_of(kref, struct device_link, kref);
 468
 469	dev_info(link->consumer, "Dropping the link to %s\n",
 470		 dev_name(link->supplier));
 471
 472	if (link->flags & DL_FLAG_PM_RUNTIME)
 473		pm_runtime_drop_link(link->consumer);
 474
 475	list_del(&link->s_node);
 476	list_del(&link->c_node);
 477	device_link_free(link);
 478}
 479#endif /* !CONFIG_SRCU */
 480
 481static void device_link_put_kref(struct device_link *link)
 482{
 483	if (link->flags & DL_FLAG_STATELESS)
 484		kref_put(&link->kref, __device_link_del);
 485	else
 486		WARN(1, "Unable to drop a managed device link reference\n");
 487}
 488
 489/**
 490 * device_link_del - Delete a stateless link between two devices.
 491 * @link: Device link to delete.
 492 *
 493 * The caller must ensure proper synchronization of this function with runtime
 494 * PM.  If the link was added multiple times, it needs to be deleted as often.
 495 * Care is required for hotplugged devices:  Their links are purged on removal
 496 * and calling device_link_del() is then no longer allowed.
 497 */
 498void device_link_del(struct device_link *link)
 499{
 500	device_links_write_lock();
 501	device_pm_lock();
 502	device_link_put_kref(link);
 503	device_pm_unlock();
 504	device_links_write_unlock();
 505}
 506EXPORT_SYMBOL_GPL(device_link_del);
 507
 508/**
 509 * device_link_remove - Delete a stateless link between two devices.
 510 * @consumer: Consumer end of the link.
 511 * @supplier: Supplier end of the link.
 512 *
 513 * The caller must ensure proper synchronization of this function with runtime
 514 * PM.
 515 */
 516void device_link_remove(void *consumer, struct device *supplier)
 517{
 518	struct device_link *link;
 519
 520	if (WARN_ON(consumer == supplier))
 521		return;
 522
 523	device_links_write_lock();
 524	device_pm_lock();
 525
 526	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 527		if (link->consumer == consumer) {
 528			device_link_put_kref(link);
 529			break;
 530		}
 531	}
 532
 533	device_pm_unlock();
 534	device_links_write_unlock();
 535}
 536EXPORT_SYMBOL_GPL(device_link_remove);
 537
 538static void device_links_missing_supplier(struct device *dev)
 539{
 540	struct device_link *link;
 541
 542	list_for_each_entry(link, &dev->links.suppliers, c_node)
 543		if (link->status == DL_STATE_CONSUMER_PROBE)
 544			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 545}
 546
 547/**
 548 * device_links_check_suppliers - Check presence of supplier drivers.
 549 * @dev: Consumer device.
 550 *
 551 * Check links from this device to any suppliers.  Walk the list of the device's
 552 * links to suppliers and see if all of them are available.  If not, simply
 553 * return -EPROBE_DEFER.
 554 *
 555 * We need to guarantee that the supplier will not go away after the check has
 556 * been positive here.  It only can go away in __device_release_driver() and
 557 * that function  checks the device's links to consumers.  This means we need to
 558 * mark the link as "consumer probe in progress" to make the supplier removal
 559 * wait for us to complete (or bad things may happen).
 560 *
 561 * Links without the DL_FLAG_MANAGED flag set are ignored.
 562 */
 563int device_links_check_suppliers(struct device *dev)
 564{
 565	struct device_link *link;
 566	int ret = 0;
 567
 568	device_links_write_lock();
 569
 570	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 571		if (!(link->flags & DL_FLAG_MANAGED))
 572			continue;
 573
 574		if (link->status != DL_STATE_AVAILABLE) {
 575			device_links_missing_supplier(dev);
 576			ret = -EPROBE_DEFER;
 577			break;
 578		}
 579		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 580	}
 581	dev->links.status = DL_DEV_PROBING;
 582
 583	device_links_write_unlock();
 584	return ret;
 585}
 586
 587/**
 588 * device_links_driver_bound - Update device links after probing its driver.
 589 * @dev: Device to update the links for.
 590 *
 591 * The probe has been successful, so update links from this device to any
 592 * consumers by changing their status to "available".
 593 *
 594 * Also change the status of @dev's links to suppliers to "active".
 595 *
 596 * Links without the DL_FLAG_MANAGED flag set are ignored.
 597 */
 598void device_links_driver_bound(struct device *dev)
 599{
 600	struct device_link *link;
 601
 602	device_links_write_lock();
 603
 604	list_for_each_entry(link, &dev->links.consumers, s_node) {
 605		if (!(link->flags & DL_FLAG_MANAGED))
 606			continue;
 607
 608		/*
 609		 * Links created during consumer probe may be in the "consumer
 610		 * probe" state to start with if the supplier is still probing
 611		 * when they are created and they may become "active" if the
 612		 * consumer probe returns first.  Skip them here.
 613		 */
 614		if (link->status == DL_STATE_CONSUMER_PROBE ||
 615		    link->status == DL_STATE_ACTIVE)
 616			continue;
 617
 618		WARN_ON(link->status != DL_STATE_DORMANT);
 619		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 620
 621		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
 622			driver_deferred_probe_add(link->consumer);
 623	}
 624
 625	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 626		if (!(link->flags & DL_FLAG_MANAGED))
 627			continue;
 628
 629		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 630		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 631	}
 632
 633	dev->links.status = DL_DEV_DRIVER_BOUND;
 634
 635	device_links_write_unlock();
 636}
 637
 638static void device_link_drop_managed(struct device_link *link)
 639{
 640	link->flags &= ~DL_FLAG_MANAGED;
 641	WRITE_ONCE(link->status, DL_STATE_NONE);
 642	kref_put(&link->kref, __device_link_del);
 643}
 644
 645/**
 646 * __device_links_no_driver - Update links of a device without a driver.
 647 * @dev: Device without a drvier.
 648 *
 649 * Delete all non-persistent links from this device to any suppliers.
 650 *
 651 * Persistent links stay around, but their status is changed to "available",
 652 * unless they already are in the "supplier unbind in progress" state in which
 653 * case they need not be updated.
 654 *
 655 * Links without the DL_FLAG_MANAGED flag set are ignored.
 656 */
 657static void __device_links_no_driver(struct device *dev)
 658{
 659	struct device_link *link, *ln;
 660
 661	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 662		if (!(link->flags & DL_FLAG_MANAGED))
 663			continue;
 664
 665		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 666			device_link_drop_managed(link);
 667		else if (link->status == DL_STATE_CONSUMER_PROBE ||
 668			 link->status == DL_STATE_ACTIVE)
 669			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 670	}
 671
 672	dev->links.status = DL_DEV_NO_DRIVER;
 673}
 674
 675/**
 676 * device_links_no_driver - Update links after failing driver probe.
 677 * @dev: Device whose driver has just failed to probe.
 678 *
 679 * Clean up leftover links to consumers for @dev and invoke
 680 * %__device_links_no_driver() to update links to suppliers for it as
 681 * appropriate.
 682 *
 683 * Links without the DL_FLAG_MANAGED flag set are ignored.
 684 */
 685void device_links_no_driver(struct device *dev)
 686{
 687	struct device_link *link;
 688
 689	device_links_write_lock();
 690
 691	list_for_each_entry(link, &dev->links.consumers, s_node) {
 692		if (!(link->flags & DL_FLAG_MANAGED))
 693			continue;
 694
 695		/*
 696		 * The probe has failed, so if the status of the link is
 697		 * "consumer probe" or "active", it must have been added by
 698		 * a probing consumer while this device was still probing.
 699		 * Change its state to "dormant", as it represents a valid
 700		 * relationship, but it is not functionally meaningful.
 701		 */
 702		if (link->status == DL_STATE_CONSUMER_PROBE ||
 703		    link->status == DL_STATE_ACTIVE)
 704			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 705	}
 706
 707	__device_links_no_driver(dev);
 708
 709	device_links_write_unlock();
 710}
 711
 712/**
 713 * device_links_driver_cleanup - Update links after driver removal.
 714 * @dev: Device whose driver has just gone away.
 715 *
 716 * Update links to consumers for @dev by changing their status to "dormant" and
 717 * invoke %__device_links_no_driver() to update links to suppliers for it as
 718 * appropriate.
 719 *
 720 * Links without the DL_FLAG_MANAGED flag set are ignored.
 721 */
 722void device_links_driver_cleanup(struct device *dev)
 723{
 724	struct device_link *link, *ln;
 725
 726	device_links_write_lock();
 727
 728	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
 729		if (!(link->flags & DL_FLAG_MANAGED))
 730			continue;
 731
 732		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
 733		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 734
 735		/*
 736		 * autoremove the links between this @dev and its consumer
 737		 * devices that are not active, i.e. where the link state
 738		 * has moved to DL_STATE_SUPPLIER_UNBIND.
 739		 */
 740		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
 741		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 742			device_link_drop_managed(link);
 743
 744		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 745	}
 746
 747	__device_links_no_driver(dev);
 748
 749	device_links_write_unlock();
 750}
 751
 752/**
 753 * device_links_busy - Check if there are any busy links to consumers.
 754 * @dev: Device to check.
 755 *
 756 * Check each consumer of the device and return 'true' if its link's status
 757 * is one of "consumer probe" or "active" (meaning that the given consumer is
 758 * probing right now or its driver is present).  Otherwise, change the link
 759 * state to "supplier unbind" to prevent the consumer from being probed
 760 * successfully going forward.
 761 *
 762 * Return 'false' if there are no probing or active consumers.
 763 *
 764 * Links without the DL_FLAG_MANAGED flag set are ignored.
 765 */
 766bool device_links_busy(struct device *dev)
 767{
 768	struct device_link *link;
 769	bool ret = false;
 770
 771	device_links_write_lock();
 772
 773	list_for_each_entry(link, &dev->links.consumers, s_node) {
 774		if (!(link->flags & DL_FLAG_MANAGED))
 775			continue;
 776
 777		if (link->status == DL_STATE_CONSUMER_PROBE
 778		    || link->status == DL_STATE_ACTIVE) {
 779			ret = true;
 780			break;
 781		}
 782		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 783	}
 784
 785	dev->links.status = DL_DEV_UNBINDING;
 786
 787	device_links_write_unlock();
 788	return ret;
 789}
 790
 791/**
 792 * device_links_unbind_consumers - Force unbind consumers of the given device.
 793 * @dev: Device to unbind the consumers of.
 794 *
 795 * Walk the list of links to consumers for @dev and if any of them is in the
 796 * "consumer probe" state, wait for all device probes in progress to complete
 797 * and start over.
 798 *
 799 * If that's not the case, change the status of the link to "supplier unbind"
 800 * and check if the link was in the "active" state.  If so, force the consumer
 801 * driver to unbind and start over (the consumer will not re-probe as we have
 802 * changed the state of the link already).
 803 *
 804 * Links without the DL_FLAG_MANAGED flag set are ignored.
 805 */
 806void device_links_unbind_consumers(struct device *dev)
 807{
 808	struct device_link *link;
 809
 810 start:
 811	device_links_write_lock();
 812
 813	list_for_each_entry(link, &dev->links.consumers, s_node) {
 814		enum device_link_state status;
 815
 816		if (!(link->flags & DL_FLAG_MANAGED))
 817			continue;
 818
 819		status = link->status;
 820		if (status == DL_STATE_CONSUMER_PROBE) {
 821			device_links_write_unlock();
 822
 823			wait_for_device_probe();
 824			goto start;
 825		}
 826		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 827		if (status == DL_STATE_ACTIVE) {
 828			struct device *consumer = link->consumer;
 829
 830			get_device(consumer);
 831
 832			device_links_write_unlock();
 833
 834			device_release_driver_internal(consumer, NULL,
 835						       consumer->parent);
 836			put_device(consumer);
 837			goto start;
 838		}
 839	}
 840
 841	device_links_write_unlock();
 842}
 843
 844/**
 845 * device_links_purge - Delete existing links to other devices.
 846 * @dev: Target device.
 847 */
 848static void device_links_purge(struct device *dev)
 849{
 850	struct device_link *link, *ln;
 851
 852	/*
 853	 * Delete all of the remaining links from this device to any other
 854	 * devices (either consumers or suppliers).
 855	 */
 856	device_links_write_lock();
 857
 858	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 859		WARN_ON(link->status == DL_STATE_ACTIVE);
 860		__device_link_del(&link->kref);
 861	}
 862
 863	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 864		WARN_ON(link->status != DL_STATE_DORMANT &&
 865			link->status != DL_STATE_NONE);
 866		__device_link_del(&link->kref);
 867	}
 868
 869	device_links_write_unlock();
 870}
 871
 872/* Device links support end. */
 873
 874int (*platform_notify)(struct device *dev) = NULL;
 875int (*platform_notify_remove)(struct device *dev) = NULL;
 876static struct kobject *dev_kobj;
 877struct kobject *sysfs_dev_char_kobj;
 878struct kobject *sysfs_dev_block_kobj;
 879
 880static DEFINE_MUTEX(device_hotplug_lock);
 881
 882void lock_device_hotplug(void)
 883{
 884	mutex_lock(&device_hotplug_lock);
 885}
 886
 887void unlock_device_hotplug(void)
 888{
 889	mutex_unlock(&device_hotplug_lock);
 890}
 891
 892int lock_device_hotplug_sysfs(void)
 893{
 894	if (mutex_trylock(&device_hotplug_lock))
 895		return 0;
 896
 897	/* Avoid busy looping (5 ms of sleep should do). */
 898	msleep(5);
 899	return restart_syscall();
 900}
 901
 902#ifdef CONFIG_BLOCK
 903static inline int device_is_not_partition(struct device *dev)
 904{
 905	return !(dev->type == &part_type);
 906}
 907#else
 908static inline int device_is_not_partition(struct device *dev)
 909{
 910	return 1;
 911}
 912#endif
 913
 914static int
 915device_platform_notify(struct device *dev, enum kobject_action action)
 916{
 917	int ret;
 918
 919	ret = acpi_platform_notify(dev, action);
 920	if (ret)
 921		return ret;
 922
 923	ret = software_node_notify(dev, action);
 924	if (ret)
 925		return ret;
 926
 927	if (platform_notify && action == KOBJ_ADD)
 928		platform_notify(dev);
 929	else if (platform_notify_remove && action == KOBJ_REMOVE)
 930		platform_notify_remove(dev);
 931	return 0;
 932}
 933
 934/**
 935 * dev_driver_string - Return a device's driver name, if at all possible
 936 * @dev: struct device to get the name of
 937 *
 938 * Will return the device's driver's name if it is bound to a device.  If
 939 * the device is not bound to a driver, it will return the name of the bus
 940 * it is attached to.  If it is not attached to a bus either, an empty
 941 * string will be returned.
 942 */
 943const char *dev_driver_string(const struct device *dev)
 944{
 945	struct device_driver *drv;
 946
 947	/* dev->driver can change to NULL underneath us because of unbinding,
 948	 * so be careful about accessing it.  dev->bus and dev->class should
 949	 * never change once they are set, so they don't need special care.
 950	 */
 951	drv = READ_ONCE(dev->driver);
 952	return drv ? drv->name :
 953			(dev->bus ? dev->bus->name :
 954			(dev->class ? dev->class->name : ""));
 955}
 956EXPORT_SYMBOL(dev_driver_string);
 957
 958#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 959
 960static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 961			     char *buf)
 962{
 963	struct device_attribute *dev_attr = to_dev_attr(attr);
 964	struct device *dev = kobj_to_dev(kobj);
 965	ssize_t ret = -EIO;
 966
 967	if (dev_attr->show)
 968		ret = dev_attr->show(dev, dev_attr, buf);
 969	if (ret >= (ssize_t)PAGE_SIZE) {
 970		printk("dev_attr_show: %pS returned bad count\n",
 971				dev_attr->show);
 972	}
 973	return ret;
 974}
 975
 976static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 977			      const char *buf, size_t count)
 978{
 979	struct device_attribute *dev_attr = to_dev_attr(attr);
 980	struct device *dev = kobj_to_dev(kobj);
 981	ssize_t ret = -EIO;
 982
 983	if (dev_attr->store)
 984		ret = dev_attr->store(dev, dev_attr, buf, count);
 985	return ret;
 986}
 987
 988static const struct sysfs_ops dev_sysfs_ops = {
 989	.show	= dev_attr_show,
 990	.store	= dev_attr_store,
 991};
 992
 993#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 994
 995ssize_t device_store_ulong(struct device *dev,
 996			   struct device_attribute *attr,
 997			   const char *buf, size_t size)
 998{
 999	struct dev_ext_attribute *ea = to_ext_attr(attr);
1000	int ret;
1001	unsigned long new;
1002
1003	ret = kstrtoul(buf, 0, &new);
1004	if (ret)
1005		return ret;
1006	*(unsigned long *)(ea->var) = new;
1007	/* Always return full write size even if we didn't consume all */
1008	return size;
1009}
1010EXPORT_SYMBOL_GPL(device_store_ulong);
1011
1012ssize_t device_show_ulong(struct device *dev,
1013			  struct device_attribute *attr,
1014			  char *buf)
1015{
1016	struct dev_ext_attribute *ea = to_ext_attr(attr);
1017	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018}
1019EXPORT_SYMBOL_GPL(device_show_ulong);
1020
1021ssize_t device_store_int(struct device *dev,
1022			 struct device_attribute *attr,
1023			 const char *buf, size_t size)
1024{
1025	struct dev_ext_attribute *ea = to_ext_attr(attr);
1026	int ret;
1027	long new;
1028
1029	ret = kstrtol(buf, 0, &new);
1030	if (ret)
1031		return ret;
1032
1033	if (new > INT_MAX || new < INT_MIN)
1034		return -EINVAL;
1035	*(int *)(ea->var) = new;
1036	/* Always return full write size even if we didn't consume all */
1037	return size;
1038}
1039EXPORT_SYMBOL_GPL(device_store_int);
1040
1041ssize_t device_show_int(struct device *dev,
1042			struct device_attribute *attr,
1043			char *buf)
1044{
1045	struct dev_ext_attribute *ea = to_ext_attr(attr);
1046
1047	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048}
1049EXPORT_SYMBOL_GPL(device_show_int);
1050
1051ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052			  const char *buf, size_t size)
1053{
1054	struct dev_ext_attribute *ea = to_ext_attr(attr);
1055
1056	if (strtobool(buf, ea->var) < 0)
1057		return -EINVAL;
1058
1059	return size;
1060}
1061EXPORT_SYMBOL_GPL(device_store_bool);
1062
1063ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064			 char *buf)
1065{
1066	struct dev_ext_attribute *ea = to_ext_attr(attr);
1067
1068	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069}
1070EXPORT_SYMBOL_GPL(device_show_bool);
1071
1072/**
1073 * device_release - free device structure.
1074 * @kobj: device's kobject.
1075 *
1076 * This is called once the reference count for the object
1077 * reaches 0. We forward the call to the device's release
1078 * method, which should handle actually freeing the structure.
1079 */
1080static void device_release(struct kobject *kobj)
1081{
1082	struct device *dev = kobj_to_dev(kobj);
1083	struct device_private *p = dev->p;
1084
1085	/*
1086	 * Some platform devices are driven without driver attached
1087	 * and managed resources may have been acquired.  Make sure
1088	 * all resources are released.
1089	 *
1090	 * Drivers still can add resources into device after device
1091	 * is deleted but alive, so release devres here to avoid
1092	 * possible memory leak.
1093	 */
1094	devres_release_all(dev);
1095
1096	if (dev->release)
1097		dev->release(dev);
1098	else if (dev->type && dev->type->release)
1099		dev->type->release(dev);
1100	else if (dev->class && dev->class->dev_release)
1101		dev->class->dev_release(dev);
1102	else
1103		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
 
1104			dev_name(dev));
1105	kfree(p);
1106}
1107
1108static const void *device_namespace(struct kobject *kobj)
1109{
1110	struct device *dev = kobj_to_dev(kobj);
1111	const void *ns = NULL;
1112
1113	if (dev->class && dev->class->ns_type)
1114		ns = dev->class->namespace(dev);
1115
1116	return ns;
1117}
1118
1119static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120{
1121	struct device *dev = kobj_to_dev(kobj);
1122
1123	if (dev->class && dev->class->get_ownership)
1124		dev->class->get_ownership(dev, uid, gid);
1125}
1126
1127static struct kobj_type device_ktype = {
1128	.release	= device_release,
1129	.sysfs_ops	= &dev_sysfs_ops,
1130	.namespace	= device_namespace,
1131	.get_ownership	= device_get_ownership,
1132};
1133
1134
1135static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136{
1137	struct kobj_type *ktype = get_ktype(kobj);
1138
1139	if (ktype == &device_ktype) {
1140		struct device *dev = kobj_to_dev(kobj);
1141		if (dev->bus)
1142			return 1;
1143		if (dev->class)
1144			return 1;
1145	}
1146	return 0;
1147}
1148
1149static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150{
1151	struct device *dev = kobj_to_dev(kobj);
1152
1153	if (dev->bus)
1154		return dev->bus->name;
1155	if (dev->class)
1156		return dev->class->name;
1157	return NULL;
1158}
1159
1160static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161		      struct kobj_uevent_env *env)
1162{
1163	struct device *dev = kobj_to_dev(kobj);
1164	int retval = 0;
1165
1166	/* add device node properties if present */
1167	if (MAJOR(dev->devt)) {
1168		const char *tmp;
1169		const char *name;
1170		umode_t mode = 0;
1171		kuid_t uid = GLOBAL_ROOT_UID;
1172		kgid_t gid = GLOBAL_ROOT_GID;
1173
1174		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177		if (name) {
1178			add_uevent_var(env, "DEVNAME=%s", name);
1179			if (mode)
1180				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181			if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183			if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185			kfree(tmp);
1186		}
1187	}
1188
1189	if (dev->type && dev->type->name)
1190		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191
1192	if (dev->driver)
1193		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194
1195	/* Add common DT information about the device */
1196	of_device_uevent(dev, env);
1197
1198	/* have the bus specific function add its stuff */
1199	if (dev->bus && dev->bus->uevent) {
1200		retval = dev->bus->uevent(dev, env);
1201		if (retval)
1202			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203				 dev_name(dev), __func__, retval);
1204	}
1205
1206	/* have the class specific function add its stuff */
1207	if (dev->class && dev->class->dev_uevent) {
1208		retval = dev->class->dev_uevent(dev, env);
1209		if (retval)
1210			pr_debug("device: '%s': %s: class uevent() "
1211				 "returned %d\n", dev_name(dev),
1212				 __func__, retval);
1213	}
1214
1215	/* have the device type specific function add its stuff */
1216	if (dev->type && dev->type->uevent) {
1217		retval = dev->type->uevent(dev, env);
1218		if (retval)
1219			pr_debug("device: '%s': %s: dev_type uevent() "
1220				 "returned %d\n", dev_name(dev),
1221				 __func__, retval);
1222	}
1223
1224	return retval;
1225}
1226
1227static const struct kset_uevent_ops device_uevent_ops = {
1228	.filter =	dev_uevent_filter,
1229	.name =		dev_uevent_name,
1230	.uevent =	dev_uevent,
1231};
1232
1233static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234			   char *buf)
1235{
1236	struct kobject *top_kobj;
1237	struct kset *kset;
1238	struct kobj_uevent_env *env = NULL;
1239	int i;
1240	size_t count = 0;
1241	int retval;
1242
1243	/* search the kset, the device belongs to */
1244	top_kobj = &dev->kobj;
1245	while (!top_kobj->kset && top_kobj->parent)
1246		top_kobj = top_kobj->parent;
1247	if (!top_kobj->kset)
1248		goto out;
1249
1250	kset = top_kobj->kset;
1251	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252		goto out;
1253
1254	/* respect filter */
1255	if (kset->uevent_ops && kset->uevent_ops->filter)
1256		if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257			goto out;
1258
1259	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260	if (!env)
1261		return -ENOMEM;
1262
1263	/* let the kset specific function add its keys */
1264	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265	if (retval)
1266		goto out;
1267
1268	/* copy keys to file */
1269	for (i = 0; i < env->envp_idx; i++)
1270		count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271out:
1272	kfree(env);
1273	return count;
1274}
1275
1276static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277			    const char *buf, size_t count)
1278{
1279	int rc;
1280
1281	rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282
1283	if (rc) {
1284		dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285		return rc;
1286	}
1287
 
 
 
 
1288	return count;
1289}
1290static DEVICE_ATTR_RW(uevent);
1291
1292static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293			   char *buf)
1294{
1295	bool val;
1296
1297	device_lock(dev);
1298	val = !dev->offline;
1299	device_unlock(dev);
1300	return sprintf(buf, "%u\n", val);
1301}
1302
1303static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304			    const char *buf, size_t count)
1305{
1306	bool val;
1307	int ret;
1308
1309	ret = strtobool(buf, &val);
1310	if (ret < 0)
1311		return ret;
1312
1313	ret = lock_device_hotplug_sysfs();
1314	if (ret)
1315		return ret;
1316
1317	ret = val ? device_online(dev) : device_offline(dev);
1318	unlock_device_hotplug();
1319	return ret < 0 ? ret : count;
1320}
1321static DEVICE_ATTR_RW(online);
1322
1323int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324{
1325	return sysfs_create_groups(&dev->kobj, groups);
1326}
1327EXPORT_SYMBOL_GPL(device_add_groups);
1328
1329void device_remove_groups(struct device *dev,
1330			  const struct attribute_group **groups)
1331{
1332	sysfs_remove_groups(&dev->kobj, groups);
1333}
1334EXPORT_SYMBOL_GPL(device_remove_groups);
1335
1336union device_attr_group_devres {
1337	const struct attribute_group *group;
1338	const struct attribute_group **groups;
1339};
1340
1341static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342{
1343	return ((union device_attr_group_devres *)res)->group == data;
1344}
1345
1346static void devm_attr_group_remove(struct device *dev, void *res)
1347{
1348	union device_attr_group_devres *devres = res;
1349	const struct attribute_group *group = devres->group;
1350
1351	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352	sysfs_remove_group(&dev->kobj, group);
1353}
1354
1355static void devm_attr_groups_remove(struct device *dev, void *res)
1356{
1357	union device_attr_group_devres *devres = res;
1358	const struct attribute_group **groups = devres->groups;
1359
1360	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361	sysfs_remove_groups(&dev->kobj, groups);
1362}
1363
1364/**
1365 * devm_device_add_group - given a device, create a managed attribute group
1366 * @dev:	The device to create the group for
1367 * @grp:	The attribute group to create
1368 *
1369 * This function creates a group for the first time.  It will explicitly
1370 * warn and error if any of the attribute files being created already exist.
1371 *
1372 * Returns 0 on success or error code on failure.
1373 */
1374int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375{
1376	union device_attr_group_devres *devres;
1377	int error;
1378
1379	devres = devres_alloc(devm_attr_group_remove,
1380			      sizeof(*devres), GFP_KERNEL);
1381	if (!devres)
1382		return -ENOMEM;
1383
1384	error = sysfs_create_group(&dev->kobj, grp);
1385	if (error) {
1386		devres_free(devres);
1387		return error;
1388	}
1389
1390	devres->group = grp;
1391	devres_add(dev, devres);
1392	return 0;
1393}
1394EXPORT_SYMBOL_GPL(devm_device_add_group);
1395
1396/**
1397 * devm_device_remove_group: remove a managed group from a device
1398 * @dev:	device to remove the group from
1399 * @grp:	group to remove
1400 *
1401 * This function removes a group of attributes from a device. The attributes
1402 * previously have to have been created for this group, otherwise it will fail.
1403 */
1404void devm_device_remove_group(struct device *dev,
1405			      const struct attribute_group *grp)
1406{
1407	WARN_ON(devres_release(dev, devm_attr_group_remove,
1408			       devm_attr_group_match,
1409			       /* cast away const */ (void *)grp));
1410}
1411EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412
1413/**
1414 * devm_device_add_groups - create a bunch of managed attribute groups
1415 * @dev:	The device to create the group for
1416 * @groups:	The attribute groups to create, NULL terminated
1417 *
1418 * This function creates a bunch of managed attribute groups.  If an error
1419 * occurs when creating a group, all previously created groups will be
1420 * removed, unwinding everything back to the original state when this
1421 * function was called.  It will explicitly warn and error if any of the
1422 * attribute files being created already exist.
1423 *
1424 * Returns 0 on success or error code from sysfs_create_group on failure.
1425 */
1426int devm_device_add_groups(struct device *dev,
1427			   const struct attribute_group **groups)
1428{
1429	union device_attr_group_devres *devres;
1430	int error;
1431
1432	devres = devres_alloc(devm_attr_groups_remove,
1433			      sizeof(*devres), GFP_KERNEL);
1434	if (!devres)
1435		return -ENOMEM;
1436
1437	error = sysfs_create_groups(&dev->kobj, groups);
1438	if (error) {
1439		devres_free(devres);
1440		return error;
1441	}
1442
1443	devres->groups = groups;
1444	devres_add(dev, devres);
1445	return 0;
1446}
1447EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448
1449/**
1450 * devm_device_remove_groups - remove a list of managed groups
1451 *
1452 * @dev:	The device for the groups to be removed from
1453 * @groups:	NULL terminated list of groups to be removed
1454 *
1455 * If groups is not NULL, remove the specified groups from the device.
1456 */
1457void devm_device_remove_groups(struct device *dev,
1458			       const struct attribute_group **groups)
1459{
1460	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461			       devm_attr_group_match,
1462			       /* cast away const */ (void *)groups));
1463}
1464EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465
1466static int device_add_attrs(struct device *dev)
1467{
1468	struct class *class = dev->class;
1469	const struct device_type *type = dev->type;
1470	int error;
1471
1472	if (class) {
1473		error = device_add_groups(dev, class->dev_groups);
1474		if (error)
1475			return error;
1476	}
1477
1478	if (type) {
1479		error = device_add_groups(dev, type->groups);
1480		if (error)
1481			goto err_remove_class_groups;
1482	}
1483
1484	error = device_add_groups(dev, dev->groups);
1485	if (error)
1486		goto err_remove_type_groups;
1487
1488	if (device_supports_offline(dev) && !dev->offline_disabled) {
1489		error = device_create_file(dev, &dev_attr_online);
1490		if (error)
1491			goto err_remove_dev_groups;
1492	}
1493
1494	return 0;
1495
1496 err_remove_dev_groups:
1497	device_remove_groups(dev, dev->groups);
1498 err_remove_type_groups:
1499	if (type)
1500		device_remove_groups(dev, type->groups);
1501 err_remove_class_groups:
1502	if (class)
1503		device_remove_groups(dev, class->dev_groups);
1504
1505	return error;
1506}
1507
1508static void device_remove_attrs(struct device *dev)
1509{
1510	struct class *class = dev->class;
1511	const struct device_type *type = dev->type;
1512
1513	device_remove_file(dev, &dev_attr_online);
1514	device_remove_groups(dev, dev->groups);
1515
1516	if (type)
1517		device_remove_groups(dev, type->groups);
1518
1519	if (class)
1520		device_remove_groups(dev, class->dev_groups);
1521}
1522
1523static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524			char *buf)
1525{
1526	return print_dev_t(buf, dev->devt);
1527}
1528static DEVICE_ATTR_RO(dev);
1529
1530/* /sys/devices/ */
1531struct kset *devices_kset;
1532
1533/**
1534 * devices_kset_move_before - Move device in the devices_kset's list.
1535 * @deva: Device to move.
1536 * @devb: Device @deva should come before.
1537 */
1538static void devices_kset_move_before(struct device *deva, struct device *devb)
1539{
1540	if (!devices_kset)
1541		return;
1542	pr_debug("devices_kset: Moving %s before %s\n",
1543		 dev_name(deva), dev_name(devb));
1544	spin_lock(&devices_kset->list_lock);
1545	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546	spin_unlock(&devices_kset->list_lock);
1547}
1548
1549/**
1550 * devices_kset_move_after - Move device in the devices_kset's list.
1551 * @deva: Device to move
1552 * @devb: Device @deva should come after.
1553 */
1554static void devices_kset_move_after(struct device *deva, struct device *devb)
1555{
1556	if (!devices_kset)
1557		return;
1558	pr_debug("devices_kset: Moving %s after %s\n",
1559		 dev_name(deva), dev_name(devb));
1560	spin_lock(&devices_kset->list_lock);
1561	list_move(&deva->kobj.entry, &devb->kobj.entry);
1562	spin_unlock(&devices_kset->list_lock);
1563}
1564
1565/**
1566 * devices_kset_move_last - move the device to the end of devices_kset's list.
1567 * @dev: device to move
1568 */
1569void devices_kset_move_last(struct device *dev)
1570{
1571	if (!devices_kset)
1572		return;
1573	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574	spin_lock(&devices_kset->list_lock);
1575	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576	spin_unlock(&devices_kset->list_lock);
1577}
1578
1579/**
1580 * device_create_file - create sysfs attribute file for device.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 */
1584int device_create_file(struct device *dev,
1585		       const struct device_attribute *attr)
1586{
1587	int error = 0;
1588
1589	if (dev) {
1590		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591			"Attribute %s: write permission without 'store'\n",
1592			attr->attr.name);
1593		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594			"Attribute %s: read permission without 'show'\n",
1595			attr->attr.name);
1596		error = sysfs_create_file(&dev->kobj, &attr->attr);
1597	}
1598
1599	return error;
1600}
1601EXPORT_SYMBOL_GPL(device_create_file);
1602
1603/**
1604 * device_remove_file - remove sysfs attribute file.
1605 * @dev: device.
1606 * @attr: device attribute descriptor.
1607 */
1608void device_remove_file(struct device *dev,
1609			const struct device_attribute *attr)
1610{
1611	if (dev)
1612		sysfs_remove_file(&dev->kobj, &attr->attr);
1613}
1614EXPORT_SYMBOL_GPL(device_remove_file);
1615
1616/**
1617 * device_remove_file_self - remove sysfs attribute file from its own method.
1618 * @dev: device.
1619 * @attr: device attribute descriptor.
1620 *
1621 * See kernfs_remove_self() for details.
1622 */
1623bool device_remove_file_self(struct device *dev,
1624			     const struct device_attribute *attr)
1625{
1626	if (dev)
1627		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628	else
1629		return false;
1630}
1631EXPORT_SYMBOL_GPL(device_remove_file_self);
1632
1633/**
1634 * device_create_bin_file - create sysfs binary attribute file for device.
1635 * @dev: device.
1636 * @attr: device binary attribute descriptor.
1637 */
1638int device_create_bin_file(struct device *dev,
1639			   const struct bin_attribute *attr)
1640{
1641	int error = -EINVAL;
1642	if (dev)
1643		error = sysfs_create_bin_file(&dev->kobj, attr);
1644	return error;
1645}
1646EXPORT_SYMBOL_GPL(device_create_bin_file);
1647
1648/**
1649 * device_remove_bin_file - remove sysfs binary attribute file
1650 * @dev: device.
1651 * @attr: device binary attribute descriptor.
1652 */
1653void device_remove_bin_file(struct device *dev,
1654			    const struct bin_attribute *attr)
1655{
1656	if (dev)
1657		sysfs_remove_bin_file(&dev->kobj, attr);
1658}
1659EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660
1661static void klist_children_get(struct klist_node *n)
1662{
1663	struct device_private *p = to_device_private_parent(n);
1664	struct device *dev = p->device;
1665
1666	get_device(dev);
1667}
1668
1669static void klist_children_put(struct klist_node *n)
1670{
1671	struct device_private *p = to_device_private_parent(n);
1672	struct device *dev = p->device;
1673
1674	put_device(dev);
1675}
1676
1677/**
1678 * device_initialize - init device structure.
1679 * @dev: device.
1680 *
1681 * This prepares the device for use by other layers by initializing
1682 * its fields.
1683 * It is the first half of device_register(), if called by
1684 * that function, though it can also be called separately, so one
1685 * may use @dev's fields. In particular, get_device()/put_device()
1686 * may be used for reference counting of @dev after calling this
1687 * function.
1688 *
1689 * All fields in @dev must be initialized by the caller to 0, except
1690 * for those explicitly set to some other value.  The simplest
1691 * approach is to use kzalloc() to allocate the structure containing
1692 * @dev.
1693 *
1694 * NOTE: Use put_device() to give up your reference instead of freeing
1695 * @dev directly once you have called this function.
1696 */
1697void device_initialize(struct device *dev)
1698{
1699	dev->kobj.kset = devices_kset;
1700	kobject_init(&dev->kobj, &device_ktype);
1701	INIT_LIST_HEAD(&dev->dma_pools);
1702	mutex_init(&dev->mutex);
1703#ifdef CONFIG_PROVE_LOCKING
1704	mutex_init(&dev->lockdep_mutex);
1705#endif
1706	lockdep_set_novalidate_class(&dev->mutex);
1707	spin_lock_init(&dev->devres_lock);
1708	INIT_LIST_HEAD(&dev->devres_head);
1709	device_pm_init(dev);
1710	set_dev_node(dev, -1);
1711#ifdef CONFIG_GENERIC_MSI_IRQ
1712	INIT_LIST_HEAD(&dev->msi_list);
1713#endif
1714	INIT_LIST_HEAD(&dev->links.consumers);
1715	INIT_LIST_HEAD(&dev->links.suppliers);
1716	dev->links.status = DL_DEV_NO_DRIVER;
1717}
1718EXPORT_SYMBOL_GPL(device_initialize);
1719
1720struct kobject *virtual_device_parent(struct device *dev)
1721{
1722	static struct kobject *virtual_dir = NULL;
1723
1724	if (!virtual_dir)
1725		virtual_dir = kobject_create_and_add("virtual",
1726						     &devices_kset->kobj);
1727
1728	return virtual_dir;
1729}
1730
1731struct class_dir {
1732	struct kobject kobj;
1733	struct class *class;
1734};
1735
1736#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737
1738static void class_dir_release(struct kobject *kobj)
1739{
1740	struct class_dir *dir = to_class_dir(kobj);
1741	kfree(dir);
1742}
1743
1744static const
1745struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746{
1747	struct class_dir *dir = to_class_dir(kobj);
1748	return dir->class->ns_type;
1749}
1750
1751static struct kobj_type class_dir_ktype = {
1752	.release	= class_dir_release,
1753	.sysfs_ops	= &kobj_sysfs_ops,
1754	.child_ns_type	= class_dir_child_ns_type
1755};
1756
1757static struct kobject *
1758class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759{
1760	struct class_dir *dir;
1761	int retval;
1762
1763	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764	if (!dir)
1765		return ERR_PTR(-ENOMEM);
1766
1767	dir->class = class;
1768	kobject_init(&dir->kobj, &class_dir_ktype);
1769
1770	dir->kobj.kset = &class->p->glue_dirs;
1771
1772	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773	if (retval < 0) {
1774		kobject_put(&dir->kobj);
1775		return ERR_PTR(retval);
1776	}
1777	return &dir->kobj;
1778}
1779
1780static DEFINE_MUTEX(gdp_mutex);
1781
1782static struct kobject *get_device_parent(struct device *dev,
1783					 struct device *parent)
1784{
1785	if (dev->class) {
1786		struct kobject *kobj = NULL;
1787		struct kobject *parent_kobj;
1788		struct kobject *k;
1789
1790#ifdef CONFIG_BLOCK
1791		/* block disks show up in /sys/block */
1792		if (sysfs_deprecated && dev->class == &block_class) {
1793			if (parent && parent->class == &block_class)
1794				return &parent->kobj;
1795			return &block_class.p->subsys.kobj;
1796		}
1797#endif
1798
1799		/*
1800		 * If we have no parent, we live in "virtual".
1801		 * Class-devices with a non class-device as parent, live
1802		 * in a "glue" directory to prevent namespace collisions.
1803		 */
1804		if (parent == NULL)
1805			parent_kobj = virtual_device_parent(dev);
1806		else if (parent->class && !dev->class->ns_type)
1807			return &parent->kobj;
1808		else
1809			parent_kobj = &parent->kobj;
1810
1811		mutex_lock(&gdp_mutex);
1812
1813		/* find our class-directory at the parent and reference it */
1814		spin_lock(&dev->class->p->glue_dirs.list_lock);
1815		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816			if (k->parent == parent_kobj) {
1817				kobj = kobject_get(k);
1818				break;
1819			}
1820		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821		if (kobj) {
1822			mutex_unlock(&gdp_mutex);
1823			return kobj;
1824		}
1825
1826		/* or create a new class-directory at the parent device */
1827		k = class_dir_create_and_add(dev->class, parent_kobj);
1828		/* do not emit an uevent for this simple "glue" directory */
1829		mutex_unlock(&gdp_mutex);
1830		return k;
1831	}
1832
1833	/* subsystems can specify a default root directory for their devices */
1834	if (!parent && dev->bus && dev->bus->dev_root)
1835		return &dev->bus->dev_root->kobj;
1836
1837	if (parent)
1838		return &parent->kobj;
1839	return NULL;
1840}
1841
1842static inline bool live_in_glue_dir(struct kobject *kobj,
1843				    struct device *dev)
1844{
1845	if (!kobj || !dev->class ||
1846	    kobj->kset != &dev->class->p->glue_dirs)
1847		return false;
1848	return true;
1849}
1850
1851static inline struct kobject *get_glue_dir(struct device *dev)
1852{
1853	return dev->kobj.parent;
1854}
1855
1856/*
1857 * make sure cleaning up dir as the last step, we need to make
1858 * sure .release handler of kobject is run with holding the
1859 * global lock
1860 */
1861static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862{
1863	unsigned int ref;
1864
1865	/* see if we live in a "glue" directory */
1866	if (!live_in_glue_dir(glue_dir, dev))
1867		return;
1868
1869	mutex_lock(&gdp_mutex);
1870	/**
1871	 * There is a race condition between removing glue directory
1872	 * and adding a new device under the glue directory.
1873	 *
1874	 * CPU1:                                         CPU2:
1875	 *
1876	 * device_add()
1877	 *   get_device_parent()
1878	 *     class_dir_create_and_add()
1879	 *       kobject_add_internal()
1880	 *         create_dir()    // create glue_dir
1881	 *
1882	 *                                               device_add()
1883	 *                                                 get_device_parent()
1884	 *                                                   kobject_get() // get glue_dir
1885	 *
1886	 * device_del()
1887	 *   cleanup_glue_dir()
1888	 *     kobject_del(glue_dir)
1889	 *
1890	 *                                               kobject_add()
1891	 *                                                 kobject_add_internal()
1892	 *                                                   create_dir() // in glue_dir
1893	 *                                                     sysfs_create_dir_ns()
1894	 *                                                       kernfs_create_dir_ns(sd)
1895	 *
1896	 *       sysfs_remove_dir() // glue_dir->sd=NULL
1897	 *       sysfs_put()        // free glue_dir->sd
1898	 *
1899	 *                                                         // sd is freed
1900	 *                                                         kernfs_new_node(sd)
1901	 *                                                           kernfs_get(glue_dir)
1902	 *                                                           kernfs_add_one()
1903	 *                                                           kernfs_put()
1904	 *
1905	 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906	 * a new device under glue dir, the glue_dir kobject reference count
1907	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909	 * and sysfs_put(). This result in glue_dir->sd is freed.
1910	 *
1911	 * Then the CPU2 will see a stale "empty" but still potentially used
1912	 * glue dir around in kernfs_new_node().
1913	 *
1914	 * In order to avoid this happening, we also should make sure that
1915	 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916	 * for glue_dir kobj is 1.
1917	 */
1918	ref = kref_read(&glue_dir->kref);
1919	if (!kobject_has_children(glue_dir) && !--ref)
1920		kobject_del(glue_dir);
1921	kobject_put(glue_dir);
1922	mutex_unlock(&gdp_mutex);
1923}
1924
1925static int device_add_class_symlinks(struct device *dev)
1926{
1927	struct device_node *of_node = dev_of_node(dev);
1928	int error;
1929
1930	if (of_node) {
1931		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932		if (error)
1933			dev_warn(dev, "Error %d creating of_node link\n",error);
1934		/* An error here doesn't warrant bringing down the device */
1935	}
1936
1937	if (!dev->class)
1938		return 0;
1939
1940	error = sysfs_create_link(&dev->kobj,
1941				  &dev->class->p->subsys.kobj,
1942				  "subsystem");
1943	if (error)
1944		goto out_devnode;
1945
1946	if (dev->parent && device_is_not_partition(dev)) {
1947		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948					  "device");
1949		if (error)
1950			goto out_subsys;
1951	}
1952
1953#ifdef CONFIG_BLOCK
1954	/* /sys/block has directories and does not need symlinks */
1955	if (sysfs_deprecated && dev->class == &block_class)
1956		return 0;
1957#endif
1958
1959	/* link in the class directory pointing to the device */
1960	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961				  &dev->kobj, dev_name(dev));
1962	if (error)
1963		goto out_device;
1964
1965	return 0;
1966
1967out_device:
1968	sysfs_remove_link(&dev->kobj, "device");
1969
1970out_subsys:
1971	sysfs_remove_link(&dev->kobj, "subsystem");
1972out_devnode:
1973	sysfs_remove_link(&dev->kobj, "of_node");
1974	return error;
1975}
1976
1977static void device_remove_class_symlinks(struct device *dev)
1978{
1979	if (dev_of_node(dev))
1980		sysfs_remove_link(&dev->kobj, "of_node");
1981
1982	if (!dev->class)
1983		return;
1984
1985	if (dev->parent && device_is_not_partition(dev))
1986		sysfs_remove_link(&dev->kobj, "device");
1987	sysfs_remove_link(&dev->kobj, "subsystem");
1988#ifdef CONFIG_BLOCK
1989	if (sysfs_deprecated && dev->class == &block_class)
1990		return;
1991#endif
1992	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993}
1994
1995/**
1996 * dev_set_name - set a device name
1997 * @dev: device
1998 * @fmt: format string for the device's name
1999 */
2000int dev_set_name(struct device *dev, const char *fmt, ...)
2001{
2002	va_list vargs;
2003	int err;
2004
2005	va_start(vargs, fmt);
2006	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007	va_end(vargs);
2008	return err;
2009}
2010EXPORT_SYMBOL_GPL(dev_set_name);
2011
2012/**
2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014 * @dev: device
2015 *
2016 * By default we select char/ for new entries.  Setting class->dev_obj
2017 * to NULL prevents an entry from being created.  class->dev_kobj must
2018 * be set (or cleared) before any devices are registered to the class
2019 * otherwise device_create_sys_dev_entry() and
2020 * device_remove_sys_dev_entry() will disagree about the presence of
2021 * the link.
2022 */
2023static struct kobject *device_to_dev_kobj(struct device *dev)
2024{
2025	struct kobject *kobj;
2026
2027	if (dev->class)
2028		kobj = dev->class->dev_kobj;
2029	else
2030		kobj = sysfs_dev_char_kobj;
2031
2032	return kobj;
2033}
2034
2035static int device_create_sys_dev_entry(struct device *dev)
2036{
2037	struct kobject *kobj = device_to_dev_kobj(dev);
2038	int error = 0;
2039	char devt_str[15];
2040
2041	if (kobj) {
2042		format_dev_t(devt_str, dev->devt);
2043		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044	}
2045
2046	return error;
2047}
2048
2049static void device_remove_sys_dev_entry(struct device *dev)
2050{
2051	struct kobject *kobj = device_to_dev_kobj(dev);
2052	char devt_str[15];
2053
2054	if (kobj) {
2055		format_dev_t(devt_str, dev->devt);
2056		sysfs_remove_link(kobj, devt_str);
2057	}
2058}
2059
2060static int device_private_init(struct device *dev)
2061{
2062	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063	if (!dev->p)
2064		return -ENOMEM;
2065	dev->p->device = dev;
2066	klist_init(&dev->p->klist_children, klist_children_get,
2067		   klist_children_put);
2068	INIT_LIST_HEAD(&dev->p->deferred_probe);
2069	return 0;
2070}
2071
2072/**
2073 * device_add - add device to device hierarchy.
2074 * @dev: device.
2075 *
2076 * This is part 2 of device_register(), though may be called
2077 * separately _iff_ device_initialize() has been called separately.
2078 *
2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080 * to the global and sibling lists for the device, then
2081 * adds it to the other relevant subsystems of the driver model.
2082 *
2083 * Do not call this routine or device_register() more than once for
2084 * any device structure.  The driver model core is not designed to work
2085 * with devices that get unregistered and then spring back to life.
2086 * (Among other things, it's very hard to guarantee that all references
2087 * to the previous incarnation of @dev have been dropped.)  Allocate
2088 * and register a fresh new struct device instead.
2089 *
2090 * NOTE: _Never_ directly free @dev after calling this function, even
2091 * if it returned an error! Always use put_device() to give up your
2092 * reference instead.
2093 *
2094 * Rule of thumb is: if device_add() succeeds, you should call
2095 * device_del() when you want to get rid of it. If device_add() has
2096 * *not* succeeded, use *only* put_device() to drop the reference
2097 * count.
2098 */
2099int device_add(struct device *dev)
2100{
2101	struct device *parent;
2102	struct kobject *kobj;
2103	struct class_interface *class_intf;
2104	int error = -EINVAL;
2105	struct kobject *glue_dir = NULL;
2106
2107	dev = get_device(dev);
2108	if (!dev)
2109		goto done;
2110
2111	if (!dev->p) {
2112		error = device_private_init(dev);
2113		if (error)
2114			goto done;
2115	}
2116
2117	/*
2118	 * for statically allocated devices, which should all be converted
2119	 * some day, we need to initialize the name. We prevent reading back
2120	 * the name, and force the use of dev_name()
2121	 */
2122	if (dev->init_name) {
2123		dev_set_name(dev, "%s", dev->init_name);
2124		dev->init_name = NULL;
2125	}
2126
2127	/* subsystems can specify simple device enumeration */
2128	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130
2131	if (!dev_name(dev)) {
2132		error = -EINVAL;
2133		goto name_error;
2134	}
2135
2136	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137
2138	parent = get_device(dev->parent);
2139	kobj = get_device_parent(dev, parent);
2140	if (IS_ERR(kobj)) {
2141		error = PTR_ERR(kobj);
2142		goto parent_error;
2143	}
2144	if (kobj)
2145		dev->kobj.parent = kobj;
2146
2147	/* use parent numa_node */
2148	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149		set_dev_node(dev, dev_to_node(parent));
2150
2151	/* first, register with generic layer. */
2152	/* we require the name to be set before, and pass NULL */
2153	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154	if (error) {
2155		glue_dir = get_glue_dir(dev);
2156		goto Error;
2157	}
2158
2159	/* notify platform of device entry */
2160	error = device_platform_notify(dev, KOBJ_ADD);
2161	if (error)
2162		goto platform_error;
2163
2164	error = device_create_file(dev, &dev_attr_uevent);
2165	if (error)
2166		goto attrError;
2167
2168	error = device_add_class_symlinks(dev);
2169	if (error)
2170		goto SymlinkError;
2171	error = device_add_attrs(dev);
2172	if (error)
2173		goto AttrsError;
2174	error = bus_add_device(dev);
2175	if (error)
2176		goto BusError;
2177	error = dpm_sysfs_add(dev);
2178	if (error)
2179		goto DPMError;
2180	device_pm_add(dev);
2181
2182	if (MAJOR(dev->devt)) {
2183		error = device_create_file(dev, &dev_attr_dev);
2184		if (error)
2185			goto DevAttrError;
2186
2187		error = device_create_sys_dev_entry(dev);
2188		if (error)
2189			goto SysEntryError;
2190
2191		devtmpfs_create_node(dev);
2192	}
2193
2194	/* Notify clients of device addition.  This call must come
2195	 * after dpm_sysfs_add() and before kobject_uevent().
2196	 */
2197	if (dev->bus)
2198		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199					     BUS_NOTIFY_ADD_DEVICE, dev);
2200
2201	kobject_uevent(&dev->kobj, KOBJ_ADD);
2202	bus_probe_device(dev);
2203	if (parent)
2204		klist_add_tail(&dev->p->knode_parent,
2205			       &parent->p->klist_children);
2206
2207	if (dev->class) {
2208		mutex_lock(&dev->class->p->mutex);
2209		/* tie the class to the device */
2210		klist_add_tail(&dev->p->knode_class,
2211			       &dev->class->p->klist_devices);
2212
2213		/* notify any interfaces that the device is here */
2214		list_for_each_entry(class_intf,
2215				    &dev->class->p->interfaces, node)
2216			if (class_intf->add_dev)
2217				class_intf->add_dev(dev, class_intf);
2218		mutex_unlock(&dev->class->p->mutex);
2219	}
2220done:
2221	put_device(dev);
2222	return error;
2223 SysEntryError:
2224	if (MAJOR(dev->devt))
2225		device_remove_file(dev, &dev_attr_dev);
2226 DevAttrError:
2227	device_pm_remove(dev);
2228	dpm_sysfs_remove(dev);
2229 DPMError:
2230	bus_remove_device(dev);
2231 BusError:
2232	device_remove_attrs(dev);
2233 AttrsError:
2234	device_remove_class_symlinks(dev);
2235 SymlinkError:
2236	device_remove_file(dev, &dev_attr_uevent);
2237 attrError:
2238	device_platform_notify(dev, KOBJ_REMOVE);
2239platform_error:
2240	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241	glue_dir = get_glue_dir(dev);
2242	kobject_del(&dev->kobj);
2243 Error:
2244	cleanup_glue_dir(dev, glue_dir);
2245parent_error:
2246	put_device(parent);
2247name_error:
2248	kfree(dev->p);
2249	dev->p = NULL;
2250	goto done;
2251}
2252EXPORT_SYMBOL_GPL(device_add);
2253
2254/**
2255 * device_register - register a device with the system.
2256 * @dev: pointer to the device structure
2257 *
2258 * This happens in two clean steps - initialize the device
2259 * and add it to the system. The two steps can be called
2260 * separately, but this is the easiest and most common.
2261 * I.e. you should only call the two helpers separately if
2262 * have a clearly defined need to use and refcount the device
2263 * before it is added to the hierarchy.
2264 *
2265 * For more information, see the kerneldoc for device_initialize()
2266 * and device_add().
2267 *
2268 * NOTE: _Never_ directly free @dev after calling this function, even
2269 * if it returned an error! Always use put_device() to give up the
2270 * reference initialized in this function instead.
2271 */
2272int device_register(struct device *dev)
2273{
2274	device_initialize(dev);
2275	return device_add(dev);
2276}
2277EXPORT_SYMBOL_GPL(device_register);
2278
2279/**
2280 * get_device - increment reference count for device.
2281 * @dev: device.
2282 *
2283 * This simply forwards the call to kobject_get(), though
2284 * we do take care to provide for the case that we get a NULL
2285 * pointer passed in.
2286 */
2287struct device *get_device(struct device *dev)
2288{
2289	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290}
2291EXPORT_SYMBOL_GPL(get_device);
2292
2293/**
2294 * put_device - decrement reference count.
2295 * @dev: device in question.
2296 */
2297void put_device(struct device *dev)
2298{
2299	/* might_sleep(); */
2300	if (dev)
2301		kobject_put(&dev->kobj);
2302}
2303EXPORT_SYMBOL_GPL(put_device);
2304
2305bool kill_device(struct device *dev)
2306{
2307	/*
2308	 * Require the device lock and set the "dead" flag to guarantee that
2309	 * the update behavior is consistent with the other bitfields near
2310	 * it and that we cannot have an asynchronous probe routine trying
2311	 * to run while we are tearing out the bus/class/sysfs from
2312	 * underneath the device.
2313	 */
2314	lockdep_assert_held(&dev->mutex);
2315
2316	if (dev->p->dead)
2317		return false;
2318	dev->p->dead = true;
2319	return true;
2320}
2321EXPORT_SYMBOL_GPL(kill_device);
2322
2323/**
2324 * device_del - delete device from system.
2325 * @dev: device.
2326 *
2327 * This is the first part of the device unregistration
2328 * sequence. This removes the device from the lists we control
2329 * from here, has it removed from the other driver model
2330 * subsystems it was added to in device_add(), and removes it
2331 * from the kobject hierarchy.
2332 *
2333 * NOTE: this should be called manually _iff_ device_add() was
2334 * also called manually.
2335 */
2336void device_del(struct device *dev)
2337{
2338	struct device *parent = dev->parent;
2339	struct kobject *glue_dir = NULL;
2340	struct class_interface *class_intf;
2341
2342	device_lock(dev);
2343	kill_device(dev);
2344	device_unlock(dev);
2345
2346	/* Notify clients of device removal.  This call must come
2347	 * before dpm_sysfs_remove().
2348	 */
2349	if (dev->bus)
2350		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351					     BUS_NOTIFY_DEL_DEVICE, dev);
2352
 
2353	dpm_sysfs_remove(dev);
2354	if (parent)
2355		klist_del(&dev->p->knode_parent);
2356	if (MAJOR(dev->devt)) {
2357		devtmpfs_delete_node(dev);
2358		device_remove_sys_dev_entry(dev);
2359		device_remove_file(dev, &dev_attr_dev);
2360	}
2361	if (dev->class) {
2362		device_remove_class_symlinks(dev);
2363
2364		mutex_lock(&dev->class->p->mutex);
2365		/* notify any interfaces that the device is now gone */
2366		list_for_each_entry(class_intf,
2367				    &dev->class->p->interfaces, node)
2368			if (class_intf->remove_dev)
2369				class_intf->remove_dev(dev, class_intf);
2370		/* remove the device from the class list */
2371		klist_del(&dev->p->knode_class);
2372		mutex_unlock(&dev->class->p->mutex);
2373	}
2374	device_remove_file(dev, &dev_attr_uevent);
2375	device_remove_attrs(dev);
2376	bus_remove_device(dev);
2377	device_pm_remove(dev);
2378	driver_deferred_probe_del(dev);
2379	device_platform_notify(dev, KOBJ_REMOVE);
2380	device_remove_properties(dev);
2381	device_links_purge(dev);
2382
 
 
 
 
 
2383	if (dev->bus)
2384		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2386	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387	glue_dir = get_glue_dir(dev);
2388	kobject_del(&dev->kobj);
2389	cleanup_glue_dir(dev, glue_dir);
2390	put_device(parent);
2391}
2392EXPORT_SYMBOL_GPL(device_del);
2393
2394/**
2395 * device_unregister - unregister device from system.
2396 * @dev: device going away.
2397 *
2398 * We do this in two parts, like we do device_register(). First,
2399 * we remove it from all the subsystems with device_del(), then
2400 * we decrement the reference count via put_device(). If that
2401 * is the final reference count, the device will be cleaned up
2402 * via device_release() above. Otherwise, the structure will
2403 * stick around until the final reference to the device is dropped.
2404 */
2405void device_unregister(struct device *dev)
2406{
2407	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408	device_del(dev);
2409	put_device(dev);
2410}
2411EXPORT_SYMBOL_GPL(device_unregister);
2412
2413static struct device *prev_device(struct klist_iter *i)
2414{
2415	struct klist_node *n = klist_prev(i);
2416	struct device *dev = NULL;
2417	struct device_private *p;
2418
2419	if (n) {
2420		p = to_device_private_parent(n);
2421		dev = p->device;
2422	}
2423	return dev;
2424}
2425
2426static struct device *next_device(struct klist_iter *i)
2427{
2428	struct klist_node *n = klist_next(i);
2429	struct device *dev = NULL;
2430	struct device_private *p;
2431
2432	if (n) {
2433		p = to_device_private_parent(n);
2434		dev = p->device;
2435	}
2436	return dev;
2437}
2438
2439/**
2440 * device_get_devnode - path of device node file
2441 * @dev: device
2442 * @mode: returned file access mode
2443 * @uid: returned file owner
2444 * @gid: returned file group
2445 * @tmp: possibly allocated string
2446 *
2447 * Return the relative path of a possible device node.
2448 * Non-default names may need to allocate a memory to compose
2449 * a name. This memory is returned in tmp and needs to be
2450 * freed by the caller.
2451 */
2452const char *device_get_devnode(struct device *dev,
2453			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2454			       const char **tmp)
2455{
2456	char *s;
2457
2458	*tmp = NULL;
2459
2460	/* the device type may provide a specific name */
2461	if (dev->type && dev->type->devnode)
2462		*tmp = dev->type->devnode(dev, mode, uid, gid);
2463	if (*tmp)
2464		return *tmp;
2465
2466	/* the class may provide a specific name */
2467	if (dev->class && dev->class->devnode)
2468		*tmp = dev->class->devnode(dev, mode);
2469	if (*tmp)
2470		return *tmp;
2471
2472	/* return name without allocation, tmp == NULL */
2473	if (strchr(dev_name(dev), '!') == NULL)
2474		return dev_name(dev);
2475
2476	/* replace '!' in the name with '/' */
2477	s = kstrdup(dev_name(dev), GFP_KERNEL);
2478	if (!s)
2479		return NULL;
2480	strreplace(s, '!', '/');
2481	return *tmp = s;
2482}
2483
2484/**
2485 * device_for_each_child - device child iterator.
2486 * @parent: parent struct device.
2487 * @fn: function to be called for each device.
2488 * @data: data for the callback.
2489 *
2490 * Iterate over @parent's child devices, and call @fn for each,
2491 * passing it @data.
2492 *
2493 * We check the return of @fn each time. If it returns anything
2494 * other than 0, we break out and return that value.
2495 */
2496int device_for_each_child(struct device *parent, void *data,
2497			  int (*fn)(struct device *dev, void *data))
2498{
2499	struct klist_iter i;
2500	struct device *child;
2501	int error = 0;
2502
2503	if (!parent->p)
2504		return 0;
2505
2506	klist_iter_init(&parent->p->klist_children, &i);
2507	while (!error && (child = next_device(&i)))
2508		error = fn(child, data);
2509	klist_iter_exit(&i);
2510	return error;
2511}
2512EXPORT_SYMBOL_GPL(device_for_each_child);
2513
2514/**
2515 * device_for_each_child_reverse - device child iterator in reversed order.
2516 * @parent: parent struct device.
2517 * @fn: function to be called for each device.
2518 * @data: data for the callback.
2519 *
2520 * Iterate over @parent's child devices, and call @fn for each,
2521 * passing it @data.
2522 *
2523 * We check the return of @fn each time. If it returns anything
2524 * other than 0, we break out and return that value.
2525 */
2526int device_for_each_child_reverse(struct device *parent, void *data,
2527				  int (*fn)(struct device *dev, void *data))
2528{
2529	struct klist_iter i;
2530	struct device *child;
2531	int error = 0;
2532
2533	if (!parent->p)
2534		return 0;
2535
2536	klist_iter_init(&parent->p->klist_children, &i);
2537	while ((child = prev_device(&i)) && !error)
2538		error = fn(child, data);
2539	klist_iter_exit(&i);
2540	return error;
2541}
2542EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543
2544/**
2545 * device_find_child - device iterator for locating a particular device.
2546 * @parent: parent struct device
2547 * @match: Callback function to check device
2548 * @data: Data to pass to match function
2549 *
2550 * This is similar to the device_for_each_child() function above, but it
2551 * returns a reference to a device that is 'found' for later use, as
2552 * determined by the @match callback.
2553 *
2554 * The callback should return 0 if the device doesn't match and non-zero
2555 * if it does.  If the callback returns non-zero and a reference to the
2556 * current device can be obtained, this function will return to the caller
2557 * and not iterate over any more devices.
2558 *
2559 * NOTE: you will need to drop the reference with put_device() after use.
2560 */
2561struct device *device_find_child(struct device *parent, void *data,
2562				 int (*match)(struct device *dev, void *data))
2563{
2564	struct klist_iter i;
2565	struct device *child;
2566
2567	if (!parent)
2568		return NULL;
2569
2570	klist_iter_init(&parent->p->klist_children, &i);
2571	while ((child = next_device(&i)))
2572		if (match(child, data) && get_device(child))
2573			break;
2574	klist_iter_exit(&i);
2575	return child;
2576}
2577EXPORT_SYMBOL_GPL(device_find_child);
2578
2579/**
2580 * device_find_child_by_name - device iterator for locating a child device.
2581 * @parent: parent struct device
2582 * @name: name of the child device
2583 *
2584 * This is similar to the device_find_child() function above, but it
2585 * returns a reference to a device that has the name @name.
2586 *
2587 * NOTE: you will need to drop the reference with put_device() after use.
2588 */
2589struct device *device_find_child_by_name(struct device *parent,
2590					 const char *name)
2591{
2592	struct klist_iter i;
2593	struct device *child;
2594
2595	if (!parent)
2596		return NULL;
2597
2598	klist_iter_init(&parent->p->klist_children, &i);
2599	while ((child = next_device(&i)))
2600		if (!strcmp(dev_name(child), name) && get_device(child))
2601			break;
2602	klist_iter_exit(&i);
2603	return child;
2604}
2605EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606
2607int __init devices_init(void)
2608{
2609	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610	if (!devices_kset)
2611		return -ENOMEM;
2612	dev_kobj = kobject_create_and_add("dev", NULL);
2613	if (!dev_kobj)
2614		goto dev_kobj_err;
2615	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616	if (!sysfs_dev_block_kobj)
2617		goto block_kobj_err;
2618	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619	if (!sysfs_dev_char_kobj)
2620		goto char_kobj_err;
2621
2622	return 0;
2623
2624 char_kobj_err:
2625	kobject_put(sysfs_dev_block_kobj);
2626 block_kobj_err:
2627	kobject_put(dev_kobj);
2628 dev_kobj_err:
2629	kset_unregister(devices_kset);
2630	return -ENOMEM;
2631}
2632
2633static int device_check_offline(struct device *dev, void *not_used)
2634{
2635	int ret;
2636
2637	ret = device_for_each_child(dev, NULL, device_check_offline);
2638	if (ret)
2639		return ret;
2640
2641	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642}
2643
2644/**
2645 * device_offline - Prepare the device for hot-removal.
2646 * @dev: Device to be put offline.
2647 *
2648 * Execute the device bus type's .offline() callback, if present, to prepare
2649 * the device for a subsequent hot-removal.  If that succeeds, the device must
2650 * not be used until either it is removed or its bus type's .online() callback
2651 * is executed.
2652 *
2653 * Call under device_hotplug_lock.
2654 */
2655int device_offline(struct device *dev)
2656{
2657	int ret;
2658
2659	if (dev->offline_disabled)
2660		return -EPERM;
2661
2662	ret = device_for_each_child(dev, NULL, device_check_offline);
2663	if (ret)
2664		return ret;
2665
2666	device_lock(dev);
2667	if (device_supports_offline(dev)) {
2668		if (dev->offline) {
2669			ret = 1;
2670		} else {
2671			ret = dev->bus->offline(dev);
2672			if (!ret) {
2673				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674				dev->offline = true;
2675			}
2676		}
2677	}
2678	device_unlock(dev);
2679
2680	return ret;
2681}
2682
2683/**
2684 * device_online - Put the device back online after successful device_offline().
2685 * @dev: Device to be put back online.
2686 *
2687 * If device_offline() has been successfully executed for @dev, but the device
2688 * has not been removed subsequently, execute its bus type's .online() callback
2689 * to indicate that the device can be used again.
2690 *
2691 * Call under device_hotplug_lock.
2692 */
2693int device_online(struct device *dev)
2694{
2695	int ret = 0;
2696
2697	device_lock(dev);
2698	if (device_supports_offline(dev)) {
2699		if (dev->offline) {
2700			ret = dev->bus->online(dev);
2701			if (!ret) {
2702				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703				dev->offline = false;
2704			}
2705		} else {
2706			ret = 1;
2707		}
2708	}
2709	device_unlock(dev);
2710
2711	return ret;
2712}
2713
2714struct root_device {
2715	struct device dev;
2716	struct module *owner;
2717};
2718
2719static inline struct root_device *to_root_device(struct device *d)
2720{
2721	return container_of(d, struct root_device, dev);
2722}
2723
2724static void root_device_release(struct device *dev)
2725{
2726	kfree(to_root_device(dev));
2727}
2728
2729/**
2730 * __root_device_register - allocate and register a root device
2731 * @name: root device name
2732 * @owner: owner module of the root device, usually THIS_MODULE
2733 *
2734 * This function allocates a root device and registers it
2735 * using device_register(). In order to free the returned
2736 * device, use root_device_unregister().
2737 *
2738 * Root devices are dummy devices which allow other devices
2739 * to be grouped under /sys/devices. Use this function to
2740 * allocate a root device and then use it as the parent of
2741 * any device which should appear under /sys/devices/{name}
2742 *
2743 * The /sys/devices/{name} directory will also contain a
2744 * 'module' symlink which points to the @owner directory
2745 * in sysfs.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: You probably want to use root_device_register().
2750 */
2751struct device *__root_device_register(const char *name, struct module *owner)
2752{
2753	struct root_device *root;
2754	int err = -ENOMEM;
2755
2756	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757	if (!root)
2758		return ERR_PTR(err);
2759
2760	err = dev_set_name(&root->dev, "%s", name);
2761	if (err) {
2762		kfree(root);
2763		return ERR_PTR(err);
2764	}
2765
2766	root->dev.release = root_device_release;
2767
2768	err = device_register(&root->dev);
2769	if (err) {
2770		put_device(&root->dev);
2771		return ERR_PTR(err);
2772	}
2773
2774#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2775	if (owner) {
2776		struct module_kobject *mk = &owner->mkobj;
2777
2778		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779		if (err) {
2780			device_unregister(&root->dev);
2781			return ERR_PTR(err);
2782		}
2783		root->owner = owner;
2784	}
2785#endif
2786
2787	return &root->dev;
2788}
2789EXPORT_SYMBOL_GPL(__root_device_register);
2790
2791/**
2792 * root_device_unregister - unregister and free a root device
2793 * @dev: device going away
2794 *
2795 * This function unregisters and cleans up a device that was created by
2796 * root_device_register().
2797 */
2798void root_device_unregister(struct device *dev)
2799{
2800	struct root_device *root = to_root_device(dev);
2801
2802	if (root->owner)
2803		sysfs_remove_link(&root->dev.kobj, "module");
2804
2805	device_unregister(dev);
2806}
2807EXPORT_SYMBOL_GPL(root_device_unregister);
2808
2809
2810static void device_create_release(struct device *dev)
2811{
2812	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813	kfree(dev);
2814}
2815
2816static __printf(6, 0) struct device *
2817device_create_groups_vargs(struct class *class, struct device *parent,
2818			   dev_t devt, void *drvdata,
2819			   const struct attribute_group **groups,
2820			   const char *fmt, va_list args)
2821{
2822	struct device *dev = NULL;
2823	int retval = -ENODEV;
2824
2825	if (class == NULL || IS_ERR(class))
2826		goto error;
2827
2828	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829	if (!dev) {
2830		retval = -ENOMEM;
2831		goto error;
2832	}
2833
2834	device_initialize(dev);
2835	dev->devt = devt;
2836	dev->class = class;
2837	dev->parent = parent;
2838	dev->groups = groups;
2839	dev->release = device_create_release;
2840	dev_set_drvdata(dev, drvdata);
2841
2842	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843	if (retval)
2844		goto error;
2845
2846	retval = device_add(dev);
2847	if (retval)
2848		goto error;
2849
2850	return dev;
2851
2852error:
2853	put_device(dev);
2854	return ERR_PTR(retval);
2855}
2856
2857/**
2858 * device_create_vargs - creates a device and registers it with sysfs
2859 * @class: pointer to the struct class that this device should be registered to
2860 * @parent: pointer to the parent struct device of this new device, if any
2861 * @devt: the dev_t for the char device to be added
2862 * @drvdata: the data to be added to the device for callbacks
2863 * @fmt: string for the device's name
2864 * @args: va_list for the device's name
2865 *
2866 * This function can be used by char device classes.  A struct device
2867 * will be created in sysfs, registered to the specified class.
2868 *
2869 * A "dev" file will be created, showing the dev_t for the device, if
2870 * the dev_t is not 0,0.
2871 * If a pointer to a parent struct device is passed in, the newly created
2872 * struct device will be a child of that device in sysfs.
2873 * The pointer to the struct device will be returned from the call.
2874 * Any further sysfs files that might be required can be created using this
2875 * pointer.
2876 *
2877 * Returns &struct device pointer on success, or ERR_PTR() on error.
2878 *
2879 * Note: the struct class passed to this function must have previously
2880 * been created with a call to class_create().
2881 */
2882struct device *device_create_vargs(struct class *class, struct device *parent,
2883				   dev_t devt, void *drvdata, const char *fmt,
2884				   va_list args)
2885{
2886	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887					  fmt, args);
2888}
2889EXPORT_SYMBOL_GPL(device_create_vargs);
2890
2891/**
2892 * device_create - creates a device and registers it with sysfs
2893 * @class: pointer to the struct class that this device should be registered to
2894 * @parent: pointer to the parent struct device of this new device, if any
2895 * @devt: the dev_t for the char device to be added
2896 * @drvdata: the data to be added to the device for callbacks
2897 * @fmt: string for the device's name
2898 *
2899 * This function can be used by char device classes.  A struct device
2900 * will be created in sysfs, registered to the specified class.
2901 *
2902 * A "dev" file will be created, showing the dev_t for the device, if
2903 * the dev_t is not 0,0.
2904 * If a pointer to a parent struct device is passed in, the newly created
2905 * struct device will be a child of that device in sysfs.
2906 * The pointer to the struct device will be returned from the call.
2907 * Any further sysfs files that might be required can be created using this
2908 * pointer.
2909 *
2910 * Returns &struct device pointer on success, or ERR_PTR() on error.
2911 *
2912 * Note: the struct class passed to this function must have previously
2913 * been created with a call to class_create().
2914 */
2915struct device *device_create(struct class *class, struct device *parent,
2916			     dev_t devt, void *drvdata, const char *fmt, ...)
2917{
2918	va_list vargs;
2919	struct device *dev;
2920
2921	va_start(vargs, fmt);
2922	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2923	va_end(vargs);
2924	return dev;
2925}
2926EXPORT_SYMBOL_GPL(device_create);
2927
2928/**
2929 * device_create_with_groups - creates a device and registers it with sysfs
2930 * @class: pointer to the struct class that this device should be registered to
2931 * @parent: pointer to the parent struct device of this new device, if any
2932 * @devt: the dev_t for the char device to be added
2933 * @drvdata: the data to be added to the device for callbacks
2934 * @groups: NULL-terminated list of attribute groups to be created
2935 * @fmt: string for the device's name
2936 *
2937 * This function can be used by char device classes.  A struct device
2938 * will be created in sysfs, registered to the specified class.
2939 * Additional attributes specified in the groups parameter will also
2940 * be created automatically.
2941 *
2942 * A "dev" file will be created, showing the dev_t for the device, if
2943 * the dev_t is not 0,0.
2944 * If a pointer to a parent struct device is passed in, the newly created
2945 * struct device will be a child of that device in sysfs.
2946 * The pointer to the struct device will be returned from the call.
2947 * Any further sysfs files that might be required can be created using this
2948 * pointer.
2949 *
2950 * Returns &struct device pointer on success, or ERR_PTR() on error.
2951 *
2952 * Note: the struct class passed to this function must have previously
2953 * been created with a call to class_create().
2954 */
2955struct device *device_create_with_groups(struct class *class,
2956					 struct device *parent, dev_t devt,
2957					 void *drvdata,
2958					 const struct attribute_group **groups,
2959					 const char *fmt, ...)
2960{
2961	va_list vargs;
2962	struct device *dev;
2963
2964	va_start(vargs, fmt);
2965	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966					 fmt, vargs);
2967	va_end(vargs);
2968	return dev;
2969}
2970EXPORT_SYMBOL_GPL(device_create_with_groups);
2971
 
 
 
 
 
 
 
2972/**
2973 * device_destroy - removes a device that was created with device_create()
2974 * @class: pointer to the struct class that this device was registered with
2975 * @devt: the dev_t of the device that was previously registered
2976 *
2977 * This call unregisters and cleans up a device that was created with a
2978 * call to device_create().
2979 */
2980void device_destroy(struct class *class, dev_t devt)
2981{
2982	struct device *dev;
2983
2984	dev = class_find_device_by_devt(class, devt);
2985	if (dev) {
2986		put_device(dev);
2987		device_unregister(dev);
2988	}
2989}
2990EXPORT_SYMBOL_GPL(device_destroy);
2991
2992/**
2993 * device_rename - renames a device
2994 * @dev: the pointer to the struct device to be renamed
2995 * @new_name: the new name of the device
2996 *
2997 * It is the responsibility of the caller to provide mutual
2998 * exclusion between two different calls of device_rename
2999 * on the same device to ensure that new_name is valid and
3000 * won't conflict with other devices.
3001 *
3002 * Note: Don't call this function.  Currently, the networking layer calls this
3003 * function, but that will change.  The following text from Kay Sievers offers
3004 * some insight:
3005 *
3006 * Renaming devices is racy at many levels, symlinks and other stuff are not
3007 * replaced atomically, and you get a "move" uevent, but it's not easy to
3008 * connect the event to the old and new device. Device nodes are not renamed at
3009 * all, there isn't even support for that in the kernel now.
3010 *
3011 * In the meantime, during renaming, your target name might be taken by another
3012 * driver, creating conflicts. Or the old name is taken directly after you
3013 * renamed it -- then you get events for the same DEVPATH, before you even see
3014 * the "move" event. It's just a mess, and nothing new should ever rely on
3015 * kernel device renaming. Besides that, it's not even implemented now for
3016 * other things than (driver-core wise very simple) network devices.
3017 *
3018 * We are currently about to change network renaming in udev to completely
3019 * disallow renaming of devices in the same namespace as the kernel uses,
3020 * because we can't solve the problems properly, that arise with swapping names
3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022 * be allowed to some other name than eth[0-9]*, for the aforementioned
3023 * reasons.
3024 *
3025 * Make up a "real" name in the driver before you register anything, or add
3026 * some other attributes for userspace to find the device, or use udev to add
3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028 * don't even want to get into that and try to implement the missing pieces in
3029 * the core. We really have other pieces to fix in the driver core mess. :)
3030 */
3031int device_rename(struct device *dev, const char *new_name)
3032{
3033	struct kobject *kobj = &dev->kobj;
3034	char *old_device_name = NULL;
3035	int error;
3036
3037	dev = get_device(dev);
3038	if (!dev)
3039		return -EINVAL;
3040
3041	dev_dbg(dev, "renaming to %s\n", new_name);
3042
3043	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044	if (!old_device_name) {
3045		error = -ENOMEM;
3046		goto out;
3047	}
3048
3049	if (dev->class) {
3050		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051					     kobj, old_device_name,
3052					     new_name, kobject_namespace(kobj));
3053		if (error)
3054			goto out;
3055	}
3056
3057	error = kobject_rename(kobj, new_name);
3058	if (error)
3059		goto out;
3060
3061out:
3062	put_device(dev);
3063
3064	kfree(old_device_name);
3065
3066	return error;
3067}
3068EXPORT_SYMBOL_GPL(device_rename);
3069
3070static int device_move_class_links(struct device *dev,
3071				   struct device *old_parent,
3072				   struct device *new_parent)
3073{
3074	int error = 0;
3075
3076	if (old_parent)
3077		sysfs_remove_link(&dev->kobj, "device");
3078	if (new_parent)
3079		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080					  "device");
3081	return error;
3082}
3083
3084/**
3085 * device_move - moves a device to a new parent
3086 * @dev: the pointer to the struct device to be moved
3087 * @new_parent: the new parent of the device (can be NULL)
3088 * @dpm_order: how to reorder the dpm_list
3089 */
3090int device_move(struct device *dev, struct device *new_parent,
3091		enum dpm_order dpm_order)
3092{
3093	int error;
3094	struct device *old_parent;
3095	struct kobject *new_parent_kobj;
3096
3097	dev = get_device(dev);
3098	if (!dev)
3099		return -EINVAL;
3100
3101	device_pm_lock();
3102	new_parent = get_device(new_parent);
3103	new_parent_kobj = get_device_parent(dev, new_parent);
3104	if (IS_ERR(new_parent_kobj)) {
3105		error = PTR_ERR(new_parent_kobj);
3106		put_device(new_parent);
3107		goto out;
3108	}
3109
3110	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112	error = kobject_move(&dev->kobj, new_parent_kobj);
3113	if (error) {
3114		cleanup_glue_dir(dev, new_parent_kobj);
3115		put_device(new_parent);
3116		goto out;
3117	}
3118	old_parent = dev->parent;
3119	dev->parent = new_parent;
3120	if (old_parent)
3121		klist_remove(&dev->p->knode_parent);
3122	if (new_parent) {
3123		klist_add_tail(&dev->p->knode_parent,
3124			       &new_parent->p->klist_children);
3125		set_dev_node(dev, dev_to_node(new_parent));
3126	}
3127
3128	if (dev->class) {
3129		error = device_move_class_links(dev, old_parent, new_parent);
3130		if (error) {
3131			/* We ignore errors on cleanup since we're hosed anyway... */
3132			device_move_class_links(dev, new_parent, old_parent);
3133			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134				if (new_parent)
3135					klist_remove(&dev->p->knode_parent);
3136				dev->parent = old_parent;
3137				if (old_parent) {
3138					klist_add_tail(&dev->p->knode_parent,
3139						       &old_parent->p->klist_children);
3140					set_dev_node(dev, dev_to_node(old_parent));
3141				}
3142			}
3143			cleanup_glue_dir(dev, new_parent_kobj);
3144			put_device(new_parent);
3145			goto out;
3146		}
3147	}
3148	switch (dpm_order) {
3149	case DPM_ORDER_NONE:
3150		break;
3151	case DPM_ORDER_DEV_AFTER_PARENT:
3152		device_pm_move_after(dev, new_parent);
3153		devices_kset_move_after(dev, new_parent);
3154		break;
3155	case DPM_ORDER_PARENT_BEFORE_DEV:
3156		device_pm_move_before(new_parent, dev);
3157		devices_kset_move_before(new_parent, dev);
3158		break;
3159	case DPM_ORDER_DEV_LAST:
3160		device_pm_move_last(dev);
3161		devices_kset_move_last(dev);
3162		break;
3163	}
3164
3165	put_device(old_parent);
3166out:
3167	device_pm_unlock();
3168	put_device(dev);
3169	return error;
3170}
3171EXPORT_SYMBOL_GPL(device_move);
3172
3173/**
3174 * device_shutdown - call ->shutdown() on each device to shutdown.
3175 */
3176void device_shutdown(void)
3177{
3178	struct device *dev, *parent;
3179
3180	wait_for_device_probe();
3181	device_block_probing();
3182
3183	cpufreq_suspend();
3184
3185	spin_lock(&devices_kset->list_lock);
3186	/*
3187	 * Walk the devices list backward, shutting down each in turn.
3188	 * Beware that device unplug events may also start pulling
3189	 * devices offline, even as the system is shutting down.
3190	 */
3191	while (!list_empty(&devices_kset->list)) {
3192		dev = list_entry(devices_kset->list.prev, struct device,
3193				kobj.entry);
3194
3195		/*
3196		 * hold reference count of device's parent to
3197		 * prevent it from being freed because parent's
3198		 * lock is to be held
3199		 */
3200		parent = get_device(dev->parent);
3201		get_device(dev);
3202		/*
3203		 * Make sure the device is off the kset list, in the
3204		 * event that dev->*->shutdown() doesn't remove it.
3205		 */
3206		list_del_init(&dev->kobj.entry);
3207		spin_unlock(&devices_kset->list_lock);
3208
3209		/* hold lock to avoid race with probe/release */
3210		if (parent)
3211			device_lock(parent);
3212		device_lock(dev);
3213
3214		/* Don't allow any more runtime suspends */
3215		pm_runtime_get_noresume(dev);
3216		pm_runtime_barrier(dev);
3217
3218		if (dev->class && dev->class->shutdown_pre) {
3219			if (initcall_debug)
3220				dev_info(dev, "shutdown_pre\n");
3221			dev->class->shutdown_pre(dev);
3222		}
3223		if (dev->bus && dev->bus->shutdown) {
3224			if (initcall_debug)
3225				dev_info(dev, "shutdown\n");
3226			dev->bus->shutdown(dev);
3227		} else if (dev->driver && dev->driver->shutdown) {
3228			if (initcall_debug)
3229				dev_info(dev, "shutdown\n");
3230			dev->driver->shutdown(dev);
3231		}
3232
3233		device_unlock(dev);
3234		if (parent)
3235			device_unlock(parent);
3236
3237		put_device(dev);
3238		put_device(parent);
3239
3240		spin_lock(&devices_kset->list_lock);
3241	}
3242	spin_unlock(&devices_kset->list_lock);
3243}
3244
3245/*
3246 * Device logging functions
3247 */
3248
3249#ifdef CONFIG_PRINTK
3250static int
3251create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252{
3253	const char *subsys;
3254	size_t pos = 0;
3255
3256	if (dev->class)
3257		subsys = dev->class->name;
3258	else if (dev->bus)
3259		subsys = dev->bus->name;
3260	else
3261		return 0;
3262
3263	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264	if (pos >= hdrlen)
3265		goto overflow;
3266
3267	/*
3268	 * Add device identifier DEVICE=:
3269	 *   b12:8         block dev_t
3270	 *   c127:3        char dev_t
3271	 *   n8            netdev ifindex
3272	 *   +sound:card0  subsystem:devname
3273	 */
3274	if (MAJOR(dev->devt)) {
3275		char c;
3276
3277		if (strcmp(subsys, "block") == 0)
3278			c = 'b';
3279		else
3280			c = 'c';
3281		pos++;
3282		pos += snprintf(hdr + pos, hdrlen - pos,
3283				"DEVICE=%c%u:%u",
3284				c, MAJOR(dev->devt), MINOR(dev->devt));
3285	} else if (strcmp(subsys, "net") == 0) {
3286		struct net_device *net = to_net_dev(dev);
3287
3288		pos++;
3289		pos += snprintf(hdr + pos, hdrlen - pos,
3290				"DEVICE=n%u", net->ifindex);
3291	} else {
3292		pos++;
3293		pos += snprintf(hdr + pos, hdrlen - pos,
3294				"DEVICE=+%s:%s", subsys, dev_name(dev));
3295	}
3296
3297	if (pos >= hdrlen)
3298		goto overflow;
3299
3300	return pos;
3301
3302overflow:
3303	dev_WARN(dev, "device/subsystem name too long");
3304	return 0;
3305}
3306
3307int dev_vprintk_emit(int level, const struct device *dev,
3308		     const char *fmt, va_list args)
3309{
3310	char hdr[128];
3311	size_t hdrlen;
3312
3313	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314
3315	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316}
3317EXPORT_SYMBOL(dev_vprintk_emit);
3318
3319int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320{
3321	va_list args;
3322	int r;
3323
3324	va_start(args, fmt);
3325
3326	r = dev_vprintk_emit(level, dev, fmt, args);
3327
3328	va_end(args);
3329
3330	return r;
3331}
3332EXPORT_SYMBOL(dev_printk_emit);
3333
3334static void __dev_printk(const char *level, const struct device *dev,
3335			struct va_format *vaf)
3336{
3337	if (dev)
3338		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339				dev_driver_string(dev), dev_name(dev), vaf);
3340	else
3341		printk("%s(NULL device *): %pV", level, vaf);
3342}
3343
3344void dev_printk(const char *level, const struct device *dev,
3345		const char *fmt, ...)
3346{
3347	struct va_format vaf;
3348	va_list args;
3349
3350	va_start(args, fmt);
3351
3352	vaf.fmt = fmt;
3353	vaf.va = &args;
3354
3355	__dev_printk(level, dev, &vaf);
3356
3357	va_end(args);
3358}
3359EXPORT_SYMBOL(dev_printk);
3360
3361#define define_dev_printk_level(func, kern_level)		\
3362void func(const struct device *dev, const char *fmt, ...)	\
3363{								\
3364	struct va_format vaf;					\
3365	va_list args;						\
3366								\
3367	va_start(args, fmt);					\
3368								\
3369	vaf.fmt = fmt;						\
3370	vaf.va = &args;						\
3371								\
3372	__dev_printk(kern_level, dev, &vaf);			\
3373								\
3374	va_end(args);						\
3375}								\
3376EXPORT_SYMBOL(func);
3377
3378define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379define_dev_printk_level(_dev_alert, KERN_ALERT);
3380define_dev_printk_level(_dev_crit, KERN_CRIT);
3381define_dev_printk_level(_dev_err, KERN_ERR);
3382define_dev_printk_level(_dev_warn, KERN_WARNING);
3383define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384define_dev_printk_level(_dev_info, KERN_INFO);
3385
3386#endif
3387
3388static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389{
3390	return fwnode && !IS_ERR(fwnode->secondary);
3391}
3392
3393/**
3394 * set_primary_fwnode - Change the primary firmware node of a given device.
3395 * @dev: Device to handle.
3396 * @fwnode: New primary firmware node of the device.
3397 *
3398 * Set the device's firmware node pointer to @fwnode, but if a secondary
3399 * firmware node of the device is present, preserve it.
3400 */
3401void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402{
3403	if (fwnode) {
3404		struct fwnode_handle *fn = dev->fwnode;
3405
3406		if (fwnode_is_primary(fn))
3407			fn = fn->secondary;
3408
3409		if (fn) {
3410			WARN_ON(fwnode->secondary);
3411			fwnode->secondary = fn;
3412		}
3413		dev->fwnode = fwnode;
3414	} else {
3415		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416			dev->fwnode->secondary : NULL;
3417	}
3418}
3419EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420
3421/**
3422 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423 * @dev: Device to handle.
3424 * @fwnode: New secondary firmware node of the device.
3425 *
3426 * If a primary firmware node of the device is present, set its secondary
3427 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3428 * @fwnode.
3429 */
3430void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431{
3432	if (fwnode)
3433		fwnode->secondary = ERR_PTR(-ENODEV);
3434
3435	if (fwnode_is_primary(dev->fwnode))
3436		dev->fwnode->secondary = fwnode;
3437	else
3438		dev->fwnode = fwnode;
3439}
3440
3441/**
3442 * device_set_of_node_from_dev - reuse device-tree node of another device
3443 * @dev: device whose device-tree node is being set
3444 * @dev2: device whose device-tree node is being reused
3445 *
3446 * Takes another reference to the new device-tree node after first dropping
3447 * any reference held to the old node.
3448 */
3449void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450{
3451	of_node_put(dev->of_node);
3452	dev->of_node = of_node_get(dev2->of_node);
3453	dev->of_node_reused = true;
3454}
3455EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456
3457int device_match_name(struct device *dev, const void *name)
3458{
3459	return sysfs_streq(dev_name(dev), name);
3460}
3461EXPORT_SYMBOL_GPL(device_match_name);
3462
3463int device_match_of_node(struct device *dev, const void *np)
3464{
3465	return dev->of_node == np;
3466}
3467EXPORT_SYMBOL_GPL(device_match_of_node);
3468
3469int device_match_fwnode(struct device *dev, const void *fwnode)
3470{
3471	return dev_fwnode(dev) == fwnode;
3472}
3473EXPORT_SYMBOL_GPL(device_match_fwnode);
3474
3475int device_match_devt(struct device *dev, const void *pdevt)
3476{
3477	return dev->devt == *(dev_t *)pdevt;
3478}
3479EXPORT_SYMBOL_GPL(device_match_devt);
3480
3481int device_match_acpi_dev(struct device *dev, const void *adev)
3482{
3483	return ACPI_COMPANION(dev) == adev;
3484}
3485EXPORT_SYMBOL(device_match_acpi_dev);
3486
3487int device_match_any(struct device *dev, const void *unused)
3488{
3489	return 1;
3490}
3491EXPORT_SYMBOL_GPL(device_match_any);