Loading...
1/*
2 * drivers/base/core.c - core driver model code (device registration, etc)
3 *
4 * Copyright (c) 2002-3 Patrick Mochel
5 * Copyright (c) 2002-3 Open Source Development Labs
6 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
7 * Copyright (c) 2006 Novell, Inc.
8 *
9 * This file is released under the GPLv2
10 *
11 */
12
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/kallsyms.h>
26#include <linux/mutex.h>
27#include <linux/pm_runtime.h>
28#include <linux/netdevice.h>
29#include <linux/sysfs.h>
30
31#include "base.h"
32#include "power/power.h"
33
34#ifdef CONFIG_SYSFS_DEPRECATED
35#ifdef CONFIG_SYSFS_DEPRECATED_V2
36long sysfs_deprecated = 1;
37#else
38long sysfs_deprecated = 0;
39#endif
40static int __init sysfs_deprecated_setup(char *arg)
41{
42 return kstrtol(arg, 10, &sysfs_deprecated);
43}
44early_param("sysfs.deprecated", sysfs_deprecated_setup);
45#endif
46
47/* Device links support. */
48
49#ifdef CONFIG_SRCU
50static DEFINE_MUTEX(device_links_lock);
51DEFINE_STATIC_SRCU(device_links_srcu);
52
53static inline void device_links_write_lock(void)
54{
55 mutex_lock(&device_links_lock);
56}
57
58static inline void device_links_write_unlock(void)
59{
60 mutex_unlock(&device_links_lock);
61}
62
63int device_links_read_lock(void)
64{
65 return srcu_read_lock(&device_links_srcu);
66}
67
68void device_links_read_unlock(int idx)
69{
70 srcu_read_unlock(&device_links_srcu, idx);
71}
72#else /* !CONFIG_SRCU */
73static DECLARE_RWSEM(device_links_lock);
74
75static inline void device_links_write_lock(void)
76{
77 down_write(&device_links_lock);
78}
79
80static inline void device_links_write_unlock(void)
81{
82 up_write(&device_links_lock);
83}
84
85int device_links_read_lock(void)
86{
87 down_read(&device_links_lock);
88 return 0;
89}
90
91void device_links_read_unlock(int not_used)
92{
93 up_read(&device_links_lock);
94}
95#endif /* !CONFIG_SRCU */
96
97/**
98 * device_is_dependent - Check if one device depends on another one
99 * @dev: Device to check dependencies for.
100 * @target: Device to check against.
101 *
102 * Check if @target depends on @dev or any device dependent on it (its child or
103 * its consumer etc). Return 1 if that is the case or 0 otherwise.
104 */
105static int device_is_dependent(struct device *dev, void *target)
106{
107 struct device_link *link;
108 int ret;
109
110 if (WARN_ON(dev == target))
111 return 1;
112
113 ret = device_for_each_child(dev, target, device_is_dependent);
114 if (ret)
115 return ret;
116
117 list_for_each_entry(link, &dev->links.consumers, s_node) {
118 if (WARN_ON(link->consumer == target))
119 return 1;
120
121 ret = device_is_dependent(link->consumer, target);
122 if (ret)
123 break;
124 }
125 return ret;
126}
127
128static int device_reorder_to_tail(struct device *dev, void *not_used)
129{
130 struct device_link *link;
131
132 /*
133 * Devices that have not been registered yet will be put to the ends
134 * of the lists during the registration, so skip them here.
135 */
136 if (device_is_registered(dev))
137 devices_kset_move_last(dev);
138
139 if (device_pm_initialized(dev))
140 device_pm_move_last(dev);
141
142 device_for_each_child(dev, NULL, device_reorder_to_tail);
143 list_for_each_entry(link, &dev->links.consumers, s_node)
144 device_reorder_to_tail(link->consumer, NULL);
145
146 return 0;
147}
148
149/**
150 * device_link_add - Create a link between two devices.
151 * @consumer: Consumer end of the link.
152 * @supplier: Supplier end of the link.
153 * @flags: Link flags.
154 *
155 * The caller is responsible for the proper synchronization of the link creation
156 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
157 * runtime PM framework to take the link into account. Second, if the
158 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
159 * be forced into the active metastate and reference-counted upon the creation
160 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
161 * ignored.
162 *
163 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
164 * when the consumer device driver unbinds from it. The combination of both
165 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
166 * to be returned.
167 *
168 * A side effect of the link creation is re-ordering of dpm_list and the
169 * devices_kset list by moving the consumer device and all devices depending
170 * on it to the ends of these lists (that does not happen to devices that have
171 * not been registered when this function is called).
172 *
173 * The supplier device is required to be registered when this function is called
174 * and NULL will be returned if that is not the case. The consumer device need
175 * not be registered, however.
176 */
177struct device_link *device_link_add(struct device *consumer,
178 struct device *supplier, u32 flags)
179{
180 struct device_link *link;
181
182 if (!consumer || !supplier ||
183 ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
184 return NULL;
185
186 device_links_write_lock();
187 device_pm_lock();
188
189 /*
190 * If the supplier has not been fully registered yet or there is a
191 * reverse dependency between the consumer and the supplier already in
192 * the graph, return NULL.
193 */
194 if (!device_pm_initialized(supplier)
195 || device_is_dependent(consumer, supplier)) {
196 link = NULL;
197 goto out;
198 }
199
200 list_for_each_entry(link, &supplier->links.consumers, s_node)
201 if (link->consumer == consumer)
202 goto out;
203
204 link = kzalloc(sizeof(*link), GFP_KERNEL);
205 if (!link)
206 goto out;
207
208 if (flags & DL_FLAG_PM_RUNTIME) {
209 if (flags & DL_FLAG_RPM_ACTIVE) {
210 if (pm_runtime_get_sync(supplier) < 0) {
211 pm_runtime_put_noidle(supplier);
212 kfree(link);
213 link = NULL;
214 goto out;
215 }
216 link->rpm_active = true;
217 }
218 pm_runtime_new_link(consumer);
219 }
220 get_device(supplier);
221 link->supplier = supplier;
222 INIT_LIST_HEAD(&link->s_node);
223 get_device(consumer);
224 link->consumer = consumer;
225 INIT_LIST_HEAD(&link->c_node);
226 link->flags = flags;
227
228 /* Determine the initial link state. */
229 if (flags & DL_FLAG_STATELESS) {
230 link->status = DL_STATE_NONE;
231 } else {
232 switch (supplier->links.status) {
233 case DL_DEV_DRIVER_BOUND:
234 switch (consumer->links.status) {
235 case DL_DEV_PROBING:
236 /*
237 * Balance the decrementation of the supplier's
238 * runtime PM usage counter after consumer probe
239 * in driver_probe_device().
240 */
241 if (flags & DL_FLAG_PM_RUNTIME)
242 pm_runtime_get_sync(supplier);
243
244 link->status = DL_STATE_CONSUMER_PROBE;
245 break;
246 case DL_DEV_DRIVER_BOUND:
247 link->status = DL_STATE_ACTIVE;
248 break;
249 default:
250 link->status = DL_STATE_AVAILABLE;
251 break;
252 }
253 break;
254 case DL_DEV_UNBINDING:
255 link->status = DL_STATE_SUPPLIER_UNBIND;
256 break;
257 default:
258 link->status = DL_STATE_DORMANT;
259 break;
260 }
261 }
262
263 /*
264 * Move the consumer and all of the devices depending on it to the end
265 * of dpm_list and the devices_kset list.
266 *
267 * It is necessary to hold dpm_list locked throughout all that or else
268 * we may end up suspending with a wrong ordering of it.
269 */
270 device_reorder_to_tail(consumer, NULL);
271
272 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
273 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
274
275 dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
276
277 out:
278 device_pm_unlock();
279 device_links_write_unlock();
280 return link;
281}
282EXPORT_SYMBOL_GPL(device_link_add);
283
284static void device_link_free(struct device_link *link)
285{
286 put_device(link->consumer);
287 put_device(link->supplier);
288 kfree(link);
289}
290
291#ifdef CONFIG_SRCU
292static void __device_link_free_srcu(struct rcu_head *rhead)
293{
294 device_link_free(container_of(rhead, struct device_link, rcu_head));
295}
296
297static void __device_link_del(struct device_link *link)
298{
299 dev_info(link->consumer, "Dropping the link to %s\n",
300 dev_name(link->supplier));
301
302 if (link->flags & DL_FLAG_PM_RUNTIME)
303 pm_runtime_drop_link(link->consumer);
304
305 list_del_rcu(&link->s_node);
306 list_del_rcu(&link->c_node);
307 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
308}
309#else /* !CONFIG_SRCU */
310static void __device_link_del(struct device_link *link)
311{
312 dev_info(link->consumer, "Dropping the link to %s\n",
313 dev_name(link->supplier));
314
315 list_del(&link->s_node);
316 list_del(&link->c_node);
317 device_link_free(link);
318}
319#endif /* !CONFIG_SRCU */
320
321/**
322 * device_link_del - Delete a link between two devices.
323 * @link: Device link to delete.
324 *
325 * The caller must ensure proper synchronization of this function with runtime
326 * PM.
327 */
328void device_link_del(struct device_link *link)
329{
330 device_links_write_lock();
331 device_pm_lock();
332 __device_link_del(link);
333 device_pm_unlock();
334 device_links_write_unlock();
335}
336EXPORT_SYMBOL_GPL(device_link_del);
337
338static void device_links_missing_supplier(struct device *dev)
339{
340 struct device_link *link;
341
342 list_for_each_entry(link, &dev->links.suppliers, c_node)
343 if (link->status == DL_STATE_CONSUMER_PROBE)
344 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
345}
346
347/**
348 * device_links_check_suppliers - Check presence of supplier drivers.
349 * @dev: Consumer device.
350 *
351 * Check links from this device to any suppliers. Walk the list of the device's
352 * links to suppliers and see if all of them are available. If not, simply
353 * return -EPROBE_DEFER.
354 *
355 * We need to guarantee that the supplier will not go away after the check has
356 * been positive here. It only can go away in __device_release_driver() and
357 * that function checks the device's links to consumers. This means we need to
358 * mark the link as "consumer probe in progress" to make the supplier removal
359 * wait for us to complete (or bad things may happen).
360 *
361 * Links with the DL_FLAG_STATELESS flag set are ignored.
362 */
363int device_links_check_suppliers(struct device *dev)
364{
365 struct device_link *link;
366 int ret = 0;
367
368 device_links_write_lock();
369
370 list_for_each_entry(link, &dev->links.suppliers, c_node) {
371 if (link->flags & DL_FLAG_STATELESS)
372 continue;
373
374 if (link->status != DL_STATE_AVAILABLE) {
375 device_links_missing_supplier(dev);
376 ret = -EPROBE_DEFER;
377 break;
378 }
379 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
380 }
381 dev->links.status = DL_DEV_PROBING;
382
383 device_links_write_unlock();
384 return ret;
385}
386
387/**
388 * device_links_driver_bound - Update device links after probing its driver.
389 * @dev: Device to update the links for.
390 *
391 * The probe has been successful, so update links from this device to any
392 * consumers by changing their status to "available".
393 *
394 * Also change the status of @dev's links to suppliers to "active".
395 *
396 * Links with the DL_FLAG_STATELESS flag set are ignored.
397 */
398void device_links_driver_bound(struct device *dev)
399{
400 struct device_link *link;
401
402 device_links_write_lock();
403
404 list_for_each_entry(link, &dev->links.consumers, s_node) {
405 if (link->flags & DL_FLAG_STATELESS)
406 continue;
407
408 WARN_ON(link->status != DL_STATE_DORMANT);
409 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
410 }
411
412 list_for_each_entry(link, &dev->links.suppliers, c_node) {
413 if (link->flags & DL_FLAG_STATELESS)
414 continue;
415
416 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
417 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
418 }
419
420 dev->links.status = DL_DEV_DRIVER_BOUND;
421
422 device_links_write_unlock();
423}
424
425/**
426 * __device_links_no_driver - Update links of a device without a driver.
427 * @dev: Device without a drvier.
428 *
429 * Delete all non-persistent links from this device to any suppliers.
430 *
431 * Persistent links stay around, but their status is changed to "available",
432 * unless they already are in the "supplier unbind in progress" state in which
433 * case they need not be updated.
434 *
435 * Links with the DL_FLAG_STATELESS flag set are ignored.
436 */
437static void __device_links_no_driver(struct device *dev)
438{
439 struct device_link *link, *ln;
440
441 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
442 if (link->flags & DL_FLAG_STATELESS)
443 continue;
444
445 if (link->flags & DL_FLAG_AUTOREMOVE)
446 __device_link_del(link);
447 else if (link->status != DL_STATE_SUPPLIER_UNBIND)
448 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
449 }
450
451 dev->links.status = DL_DEV_NO_DRIVER;
452}
453
454void device_links_no_driver(struct device *dev)
455{
456 device_links_write_lock();
457 __device_links_no_driver(dev);
458 device_links_write_unlock();
459}
460
461/**
462 * device_links_driver_cleanup - Update links after driver removal.
463 * @dev: Device whose driver has just gone away.
464 *
465 * Update links to consumers for @dev by changing their status to "dormant" and
466 * invoke %__device_links_no_driver() to update links to suppliers for it as
467 * appropriate.
468 *
469 * Links with the DL_FLAG_STATELESS flag set are ignored.
470 */
471void device_links_driver_cleanup(struct device *dev)
472{
473 struct device_link *link;
474
475 device_links_write_lock();
476
477 list_for_each_entry(link, &dev->links.consumers, s_node) {
478 if (link->flags & DL_FLAG_STATELESS)
479 continue;
480
481 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
482 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
483 WRITE_ONCE(link->status, DL_STATE_DORMANT);
484 }
485
486 __device_links_no_driver(dev);
487
488 device_links_write_unlock();
489}
490
491/**
492 * device_links_busy - Check if there are any busy links to consumers.
493 * @dev: Device to check.
494 *
495 * Check each consumer of the device and return 'true' if its link's status
496 * is one of "consumer probe" or "active" (meaning that the given consumer is
497 * probing right now or its driver is present). Otherwise, change the link
498 * state to "supplier unbind" to prevent the consumer from being probed
499 * successfully going forward.
500 *
501 * Return 'false' if there are no probing or active consumers.
502 *
503 * Links with the DL_FLAG_STATELESS flag set are ignored.
504 */
505bool device_links_busy(struct device *dev)
506{
507 struct device_link *link;
508 bool ret = false;
509
510 device_links_write_lock();
511
512 list_for_each_entry(link, &dev->links.consumers, s_node) {
513 if (link->flags & DL_FLAG_STATELESS)
514 continue;
515
516 if (link->status == DL_STATE_CONSUMER_PROBE
517 || link->status == DL_STATE_ACTIVE) {
518 ret = true;
519 break;
520 }
521 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
522 }
523
524 dev->links.status = DL_DEV_UNBINDING;
525
526 device_links_write_unlock();
527 return ret;
528}
529
530/**
531 * device_links_unbind_consumers - Force unbind consumers of the given device.
532 * @dev: Device to unbind the consumers of.
533 *
534 * Walk the list of links to consumers for @dev and if any of them is in the
535 * "consumer probe" state, wait for all device probes in progress to complete
536 * and start over.
537 *
538 * If that's not the case, change the status of the link to "supplier unbind"
539 * and check if the link was in the "active" state. If so, force the consumer
540 * driver to unbind and start over (the consumer will not re-probe as we have
541 * changed the state of the link already).
542 *
543 * Links with the DL_FLAG_STATELESS flag set are ignored.
544 */
545void device_links_unbind_consumers(struct device *dev)
546{
547 struct device_link *link;
548
549 start:
550 device_links_write_lock();
551
552 list_for_each_entry(link, &dev->links.consumers, s_node) {
553 enum device_link_state status;
554
555 if (link->flags & DL_FLAG_STATELESS)
556 continue;
557
558 status = link->status;
559 if (status == DL_STATE_CONSUMER_PROBE) {
560 device_links_write_unlock();
561
562 wait_for_device_probe();
563 goto start;
564 }
565 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
566 if (status == DL_STATE_ACTIVE) {
567 struct device *consumer = link->consumer;
568
569 get_device(consumer);
570
571 device_links_write_unlock();
572
573 device_release_driver_internal(consumer, NULL,
574 consumer->parent);
575 put_device(consumer);
576 goto start;
577 }
578 }
579
580 device_links_write_unlock();
581}
582
583/**
584 * device_links_purge - Delete existing links to other devices.
585 * @dev: Target device.
586 */
587static void device_links_purge(struct device *dev)
588{
589 struct device_link *link, *ln;
590
591 /*
592 * Delete all of the remaining links from this device to any other
593 * devices (either consumers or suppliers).
594 */
595 device_links_write_lock();
596
597 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
598 WARN_ON(link->status == DL_STATE_ACTIVE);
599 __device_link_del(link);
600 }
601
602 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
603 WARN_ON(link->status != DL_STATE_DORMANT &&
604 link->status != DL_STATE_NONE);
605 __device_link_del(link);
606 }
607
608 device_links_write_unlock();
609}
610
611/* Device links support end. */
612
613int (*platform_notify)(struct device *dev) = NULL;
614int (*platform_notify_remove)(struct device *dev) = NULL;
615static struct kobject *dev_kobj;
616struct kobject *sysfs_dev_char_kobj;
617struct kobject *sysfs_dev_block_kobj;
618
619static DEFINE_MUTEX(device_hotplug_lock);
620
621void lock_device_hotplug(void)
622{
623 mutex_lock(&device_hotplug_lock);
624}
625
626void unlock_device_hotplug(void)
627{
628 mutex_unlock(&device_hotplug_lock);
629}
630
631int lock_device_hotplug_sysfs(void)
632{
633 if (mutex_trylock(&device_hotplug_lock))
634 return 0;
635
636 /* Avoid busy looping (5 ms of sleep should do). */
637 msleep(5);
638 return restart_syscall();
639}
640
641#ifdef CONFIG_BLOCK
642static inline int device_is_not_partition(struct device *dev)
643{
644 return !(dev->type == &part_type);
645}
646#else
647static inline int device_is_not_partition(struct device *dev)
648{
649 return 1;
650}
651#endif
652
653/**
654 * dev_driver_string - Return a device's driver name, if at all possible
655 * @dev: struct device to get the name of
656 *
657 * Will return the device's driver's name if it is bound to a device. If
658 * the device is not bound to a driver, it will return the name of the bus
659 * it is attached to. If it is not attached to a bus either, an empty
660 * string will be returned.
661 */
662const char *dev_driver_string(const struct device *dev)
663{
664 struct device_driver *drv;
665
666 /* dev->driver can change to NULL underneath us because of unbinding,
667 * so be careful about accessing it. dev->bus and dev->class should
668 * never change once they are set, so they don't need special care.
669 */
670 drv = ACCESS_ONCE(dev->driver);
671 return drv ? drv->name :
672 (dev->bus ? dev->bus->name :
673 (dev->class ? dev->class->name : ""));
674}
675EXPORT_SYMBOL(dev_driver_string);
676
677#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
678
679static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
680 char *buf)
681{
682 struct device_attribute *dev_attr = to_dev_attr(attr);
683 struct device *dev = kobj_to_dev(kobj);
684 ssize_t ret = -EIO;
685
686 if (dev_attr->show)
687 ret = dev_attr->show(dev, dev_attr, buf);
688 if (ret >= (ssize_t)PAGE_SIZE) {
689 print_symbol("dev_attr_show: %s returned bad count\n",
690 (unsigned long)dev_attr->show);
691 }
692 return ret;
693}
694
695static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
696 const char *buf, size_t count)
697{
698 struct device_attribute *dev_attr = to_dev_attr(attr);
699 struct device *dev = kobj_to_dev(kobj);
700 ssize_t ret = -EIO;
701
702 if (dev_attr->store)
703 ret = dev_attr->store(dev, dev_attr, buf, count);
704 return ret;
705}
706
707static const struct sysfs_ops dev_sysfs_ops = {
708 .show = dev_attr_show,
709 .store = dev_attr_store,
710};
711
712#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
713
714ssize_t device_store_ulong(struct device *dev,
715 struct device_attribute *attr,
716 const char *buf, size_t size)
717{
718 struct dev_ext_attribute *ea = to_ext_attr(attr);
719 char *end;
720 unsigned long new = simple_strtoul(buf, &end, 0);
721 if (end == buf)
722 return -EINVAL;
723 *(unsigned long *)(ea->var) = new;
724 /* Always return full write size even if we didn't consume all */
725 return size;
726}
727EXPORT_SYMBOL_GPL(device_store_ulong);
728
729ssize_t device_show_ulong(struct device *dev,
730 struct device_attribute *attr,
731 char *buf)
732{
733 struct dev_ext_attribute *ea = to_ext_attr(attr);
734 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
735}
736EXPORT_SYMBOL_GPL(device_show_ulong);
737
738ssize_t device_store_int(struct device *dev,
739 struct device_attribute *attr,
740 const char *buf, size_t size)
741{
742 struct dev_ext_attribute *ea = to_ext_attr(attr);
743 char *end;
744 long new = simple_strtol(buf, &end, 0);
745 if (end == buf || new > INT_MAX || new < INT_MIN)
746 return -EINVAL;
747 *(int *)(ea->var) = new;
748 /* Always return full write size even if we didn't consume all */
749 return size;
750}
751EXPORT_SYMBOL_GPL(device_store_int);
752
753ssize_t device_show_int(struct device *dev,
754 struct device_attribute *attr,
755 char *buf)
756{
757 struct dev_ext_attribute *ea = to_ext_attr(attr);
758
759 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
760}
761EXPORT_SYMBOL_GPL(device_show_int);
762
763ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
764 const char *buf, size_t size)
765{
766 struct dev_ext_attribute *ea = to_ext_attr(attr);
767
768 if (strtobool(buf, ea->var) < 0)
769 return -EINVAL;
770
771 return size;
772}
773EXPORT_SYMBOL_GPL(device_store_bool);
774
775ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
776 char *buf)
777{
778 struct dev_ext_attribute *ea = to_ext_attr(attr);
779
780 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
781}
782EXPORT_SYMBOL_GPL(device_show_bool);
783
784/**
785 * device_release - free device structure.
786 * @kobj: device's kobject.
787 *
788 * This is called once the reference count for the object
789 * reaches 0. We forward the call to the device's release
790 * method, which should handle actually freeing the structure.
791 */
792static void device_release(struct kobject *kobj)
793{
794 struct device *dev = kobj_to_dev(kobj);
795 struct device_private *p = dev->p;
796
797 /*
798 * Some platform devices are driven without driver attached
799 * and managed resources may have been acquired. Make sure
800 * all resources are released.
801 *
802 * Drivers still can add resources into device after device
803 * is deleted but alive, so release devres here to avoid
804 * possible memory leak.
805 */
806 devres_release_all(dev);
807
808 if (dev->release)
809 dev->release(dev);
810 else if (dev->type && dev->type->release)
811 dev->type->release(dev);
812 else if (dev->class && dev->class->dev_release)
813 dev->class->dev_release(dev);
814 else
815 WARN(1, KERN_ERR "Device '%s' does not have a release() "
816 "function, it is broken and must be fixed.\n",
817 dev_name(dev));
818 kfree(p);
819}
820
821static const void *device_namespace(struct kobject *kobj)
822{
823 struct device *dev = kobj_to_dev(kobj);
824 const void *ns = NULL;
825
826 if (dev->class && dev->class->ns_type)
827 ns = dev->class->namespace(dev);
828
829 return ns;
830}
831
832static struct kobj_type device_ktype = {
833 .release = device_release,
834 .sysfs_ops = &dev_sysfs_ops,
835 .namespace = device_namespace,
836};
837
838
839static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
840{
841 struct kobj_type *ktype = get_ktype(kobj);
842
843 if (ktype == &device_ktype) {
844 struct device *dev = kobj_to_dev(kobj);
845 if (dev->bus)
846 return 1;
847 if (dev->class)
848 return 1;
849 }
850 return 0;
851}
852
853static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
854{
855 struct device *dev = kobj_to_dev(kobj);
856
857 if (dev->bus)
858 return dev->bus->name;
859 if (dev->class)
860 return dev->class->name;
861 return NULL;
862}
863
864static int dev_uevent(struct kset *kset, struct kobject *kobj,
865 struct kobj_uevent_env *env)
866{
867 struct device *dev = kobj_to_dev(kobj);
868 int retval = 0;
869
870 /* add device node properties if present */
871 if (MAJOR(dev->devt)) {
872 const char *tmp;
873 const char *name;
874 umode_t mode = 0;
875 kuid_t uid = GLOBAL_ROOT_UID;
876 kgid_t gid = GLOBAL_ROOT_GID;
877
878 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
879 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
880 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
881 if (name) {
882 add_uevent_var(env, "DEVNAME=%s", name);
883 if (mode)
884 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
885 if (!uid_eq(uid, GLOBAL_ROOT_UID))
886 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
887 if (!gid_eq(gid, GLOBAL_ROOT_GID))
888 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
889 kfree(tmp);
890 }
891 }
892
893 if (dev->type && dev->type->name)
894 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
895
896 if (dev->driver)
897 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
898
899 /* Add common DT information about the device */
900 of_device_uevent(dev, env);
901
902 /* have the bus specific function add its stuff */
903 if (dev->bus && dev->bus->uevent) {
904 retval = dev->bus->uevent(dev, env);
905 if (retval)
906 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
907 dev_name(dev), __func__, retval);
908 }
909
910 /* have the class specific function add its stuff */
911 if (dev->class && dev->class->dev_uevent) {
912 retval = dev->class->dev_uevent(dev, env);
913 if (retval)
914 pr_debug("device: '%s': %s: class uevent() "
915 "returned %d\n", dev_name(dev),
916 __func__, retval);
917 }
918
919 /* have the device type specific function add its stuff */
920 if (dev->type && dev->type->uevent) {
921 retval = dev->type->uevent(dev, env);
922 if (retval)
923 pr_debug("device: '%s': %s: dev_type uevent() "
924 "returned %d\n", dev_name(dev),
925 __func__, retval);
926 }
927
928 return retval;
929}
930
931static const struct kset_uevent_ops device_uevent_ops = {
932 .filter = dev_uevent_filter,
933 .name = dev_uevent_name,
934 .uevent = dev_uevent,
935};
936
937static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
938 char *buf)
939{
940 struct kobject *top_kobj;
941 struct kset *kset;
942 struct kobj_uevent_env *env = NULL;
943 int i;
944 size_t count = 0;
945 int retval;
946
947 /* search the kset, the device belongs to */
948 top_kobj = &dev->kobj;
949 while (!top_kobj->kset && top_kobj->parent)
950 top_kobj = top_kobj->parent;
951 if (!top_kobj->kset)
952 goto out;
953
954 kset = top_kobj->kset;
955 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
956 goto out;
957
958 /* respect filter */
959 if (kset->uevent_ops && kset->uevent_ops->filter)
960 if (!kset->uevent_ops->filter(kset, &dev->kobj))
961 goto out;
962
963 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
964 if (!env)
965 return -ENOMEM;
966
967 /* let the kset specific function add its keys */
968 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
969 if (retval)
970 goto out;
971
972 /* copy keys to file */
973 for (i = 0; i < env->envp_idx; i++)
974 count += sprintf(&buf[count], "%s\n", env->envp[i]);
975out:
976 kfree(env);
977 return count;
978}
979
980static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
981 const char *buf, size_t count)
982{
983 enum kobject_action action;
984
985 if (kobject_action_type(buf, count, &action) == 0)
986 kobject_uevent(&dev->kobj, action);
987 else
988 dev_err(dev, "uevent: unknown action-string\n");
989 return count;
990}
991static DEVICE_ATTR_RW(uevent);
992
993static ssize_t online_show(struct device *dev, struct device_attribute *attr,
994 char *buf)
995{
996 bool val;
997
998 device_lock(dev);
999 val = !dev->offline;
1000 device_unlock(dev);
1001 return sprintf(buf, "%u\n", val);
1002}
1003
1004static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1005 const char *buf, size_t count)
1006{
1007 bool val;
1008 int ret;
1009
1010 ret = strtobool(buf, &val);
1011 if (ret < 0)
1012 return ret;
1013
1014 ret = lock_device_hotplug_sysfs();
1015 if (ret)
1016 return ret;
1017
1018 ret = val ? device_online(dev) : device_offline(dev);
1019 unlock_device_hotplug();
1020 return ret < 0 ? ret : count;
1021}
1022static DEVICE_ATTR_RW(online);
1023
1024int device_add_groups(struct device *dev, const struct attribute_group **groups)
1025{
1026 return sysfs_create_groups(&dev->kobj, groups);
1027}
1028
1029void device_remove_groups(struct device *dev,
1030 const struct attribute_group **groups)
1031{
1032 sysfs_remove_groups(&dev->kobj, groups);
1033}
1034
1035static int device_add_attrs(struct device *dev)
1036{
1037 struct class *class = dev->class;
1038 const struct device_type *type = dev->type;
1039 int error;
1040
1041 if (class) {
1042 error = device_add_groups(dev, class->dev_groups);
1043 if (error)
1044 return error;
1045 }
1046
1047 if (type) {
1048 error = device_add_groups(dev, type->groups);
1049 if (error)
1050 goto err_remove_class_groups;
1051 }
1052
1053 error = device_add_groups(dev, dev->groups);
1054 if (error)
1055 goto err_remove_type_groups;
1056
1057 if (device_supports_offline(dev) && !dev->offline_disabled) {
1058 error = device_create_file(dev, &dev_attr_online);
1059 if (error)
1060 goto err_remove_dev_groups;
1061 }
1062
1063 return 0;
1064
1065 err_remove_dev_groups:
1066 device_remove_groups(dev, dev->groups);
1067 err_remove_type_groups:
1068 if (type)
1069 device_remove_groups(dev, type->groups);
1070 err_remove_class_groups:
1071 if (class)
1072 device_remove_groups(dev, class->dev_groups);
1073
1074 return error;
1075}
1076
1077static void device_remove_attrs(struct device *dev)
1078{
1079 struct class *class = dev->class;
1080 const struct device_type *type = dev->type;
1081
1082 device_remove_file(dev, &dev_attr_online);
1083 device_remove_groups(dev, dev->groups);
1084
1085 if (type)
1086 device_remove_groups(dev, type->groups);
1087
1088 if (class)
1089 device_remove_groups(dev, class->dev_groups);
1090}
1091
1092static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1093 char *buf)
1094{
1095 return print_dev_t(buf, dev->devt);
1096}
1097static DEVICE_ATTR_RO(dev);
1098
1099/* /sys/devices/ */
1100struct kset *devices_kset;
1101
1102/**
1103 * devices_kset_move_before - Move device in the devices_kset's list.
1104 * @deva: Device to move.
1105 * @devb: Device @deva should come before.
1106 */
1107static void devices_kset_move_before(struct device *deva, struct device *devb)
1108{
1109 if (!devices_kset)
1110 return;
1111 pr_debug("devices_kset: Moving %s before %s\n",
1112 dev_name(deva), dev_name(devb));
1113 spin_lock(&devices_kset->list_lock);
1114 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1115 spin_unlock(&devices_kset->list_lock);
1116}
1117
1118/**
1119 * devices_kset_move_after - Move device in the devices_kset's list.
1120 * @deva: Device to move
1121 * @devb: Device @deva should come after.
1122 */
1123static void devices_kset_move_after(struct device *deva, struct device *devb)
1124{
1125 if (!devices_kset)
1126 return;
1127 pr_debug("devices_kset: Moving %s after %s\n",
1128 dev_name(deva), dev_name(devb));
1129 spin_lock(&devices_kset->list_lock);
1130 list_move(&deva->kobj.entry, &devb->kobj.entry);
1131 spin_unlock(&devices_kset->list_lock);
1132}
1133
1134/**
1135 * devices_kset_move_last - move the device to the end of devices_kset's list.
1136 * @dev: device to move
1137 */
1138void devices_kset_move_last(struct device *dev)
1139{
1140 if (!devices_kset)
1141 return;
1142 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1143 spin_lock(&devices_kset->list_lock);
1144 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1145 spin_unlock(&devices_kset->list_lock);
1146}
1147
1148/**
1149 * device_create_file - create sysfs attribute file for device.
1150 * @dev: device.
1151 * @attr: device attribute descriptor.
1152 */
1153int device_create_file(struct device *dev,
1154 const struct device_attribute *attr)
1155{
1156 int error = 0;
1157
1158 if (dev) {
1159 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1160 "Attribute %s: write permission without 'store'\n",
1161 attr->attr.name);
1162 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1163 "Attribute %s: read permission without 'show'\n",
1164 attr->attr.name);
1165 error = sysfs_create_file(&dev->kobj, &attr->attr);
1166 }
1167
1168 return error;
1169}
1170EXPORT_SYMBOL_GPL(device_create_file);
1171
1172/**
1173 * device_remove_file - remove sysfs attribute file.
1174 * @dev: device.
1175 * @attr: device attribute descriptor.
1176 */
1177void device_remove_file(struct device *dev,
1178 const struct device_attribute *attr)
1179{
1180 if (dev)
1181 sysfs_remove_file(&dev->kobj, &attr->attr);
1182}
1183EXPORT_SYMBOL_GPL(device_remove_file);
1184
1185/**
1186 * device_remove_file_self - remove sysfs attribute file from its own method.
1187 * @dev: device.
1188 * @attr: device attribute descriptor.
1189 *
1190 * See kernfs_remove_self() for details.
1191 */
1192bool device_remove_file_self(struct device *dev,
1193 const struct device_attribute *attr)
1194{
1195 if (dev)
1196 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1197 else
1198 return false;
1199}
1200EXPORT_SYMBOL_GPL(device_remove_file_self);
1201
1202/**
1203 * device_create_bin_file - create sysfs binary attribute file for device.
1204 * @dev: device.
1205 * @attr: device binary attribute descriptor.
1206 */
1207int device_create_bin_file(struct device *dev,
1208 const struct bin_attribute *attr)
1209{
1210 int error = -EINVAL;
1211 if (dev)
1212 error = sysfs_create_bin_file(&dev->kobj, attr);
1213 return error;
1214}
1215EXPORT_SYMBOL_GPL(device_create_bin_file);
1216
1217/**
1218 * device_remove_bin_file - remove sysfs binary attribute file
1219 * @dev: device.
1220 * @attr: device binary attribute descriptor.
1221 */
1222void device_remove_bin_file(struct device *dev,
1223 const struct bin_attribute *attr)
1224{
1225 if (dev)
1226 sysfs_remove_bin_file(&dev->kobj, attr);
1227}
1228EXPORT_SYMBOL_GPL(device_remove_bin_file);
1229
1230static void klist_children_get(struct klist_node *n)
1231{
1232 struct device_private *p = to_device_private_parent(n);
1233 struct device *dev = p->device;
1234
1235 get_device(dev);
1236}
1237
1238static void klist_children_put(struct klist_node *n)
1239{
1240 struct device_private *p = to_device_private_parent(n);
1241 struct device *dev = p->device;
1242
1243 put_device(dev);
1244}
1245
1246/**
1247 * device_initialize - init device structure.
1248 * @dev: device.
1249 *
1250 * This prepares the device for use by other layers by initializing
1251 * its fields.
1252 * It is the first half of device_register(), if called by
1253 * that function, though it can also be called separately, so one
1254 * may use @dev's fields. In particular, get_device()/put_device()
1255 * may be used for reference counting of @dev after calling this
1256 * function.
1257 *
1258 * All fields in @dev must be initialized by the caller to 0, except
1259 * for those explicitly set to some other value. The simplest
1260 * approach is to use kzalloc() to allocate the structure containing
1261 * @dev.
1262 *
1263 * NOTE: Use put_device() to give up your reference instead of freeing
1264 * @dev directly once you have called this function.
1265 */
1266void device_initialize(struct device *dev)
1267{
1268 dev->kobj.kset = devices_kset;
1269 kobject_init(&dev->kobj, &device_ktype);
1270 INIT_LIST_HEAD(&dev->dma_pools);
1271 mutex_init(&dev->mutex);
1272 lockdep_set_novalidate_class(&dev->mutex);
1273 spin_lock_init(&dev->devres_lock);
1274 INIT_LIST_HEAD(&dev->devres_head);
1275 device_pm_init(dev);
1276 set_dev_node(dev, -1);
1277#ifdef CONFIG_GENERIC_MSI_IRQ
1278 INIT_LIST_HEAD(&dev->msi_list);
1279#endif
1280 INIT_LIST_HEAD(&dev->links.consumers);
1281 INIT_LIST_HEAD(&dev->links.suppliers);
1282 dev->links.status = DL_DEV_NO_DRIVER;
1283}
1284EXPORT_SYMBOL_GPL(device_initialize);
1285
1286struct kobject *virtual_device_parent(struct device *dev)
1287{
1288 static struct kobject *virtual_dir = NULL;
1289
1290 if (!virtual_dir)
1291 virtual_dir = kobject_create_and_add("virtual",
1292 &devices_kset->kobj);
1293
1294 return virtual_dir;
1295}
1296
1297struct class_dir {
1298 struct kobject kobj;
1299 struct class *class;
1300};
1301
1302#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1303
1304static void class_dir_release(struct kobject *kobj)
1305{
1306 struct class_dir *dir = to_class_dir(kobj);
1307 kfree(dir);
1308}
1309
1310static const
1311struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1312{
1313 struct class_dir *dir = to_class_dir(kobj);
1314 return dir->class->ns_type;
1315}
1316
1317static struct kobj_type class_dir_ktype = {
1318 .release = class_dir_release,
1319 .sysfs_ops = &kobj_sysfs_ops,
1320 .child_ns_type = class_dir_child_ns_type
1321};
1322
1323static struct kobject *
1324class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1325{
1326 struct class_dir *dir;
1327 int retval;
1328
1329 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1330 if (!dir)
1331 return NULL;
1332
1333 dir->class = class;
1334 kobject_init(&dir->kobj, &class_dir_ktype);
1335
1336 dir->kobj.kset = &class->p->glue_dirs;
1337
1338 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1339 if (retval < 0) {
1340 kobject_put(&dir->kobj);
1341 return NULL;
1342 }
1343 return &dir->kobj;
1344}
1345
1346static DEFINE_MUTEX(gdp_mutex);
1347
1348static struct kobject *get_device_parent(struct device *dev,
1349 struct device *parent)
1350{
1351 if (dev->class) {
1352 struct kobject *kobj = NULL;
1353 struct kobject *parent_kobj;
1354 struct kobject *k;
1355
1356#ifdef CONFIG_BLOCK
1357 /* block disks show up in /sys/block */
1358 if (sysfs_deprecated && dev->class == &block_class) {
1359 if (parent && parent->class == &block_class)
1360 return &parent->kobj;
1361 return &block_class.p->subsys.kobj;
1362 }
1363#endif
1364
1365 /*
1366 * If we have no parent, we live in "virtual".
1367 * Class-devices with a non class-device as parent, live
1368 * in a "glue" directory to prevent namespace collisions.
1369 */
1370 if (parent == NULL)
1371 parent_kobj = virtual_device_parent(dev);
1372 else if (parent->class && !dev->class->ns_type)
1373 return &parent->kobj;
1374 else
1375 parent_kobj = &parent->kobj;
1376
1377 mutex_lock(&gdp_mutex);
1378
1379 /* find our class-directory at the parent and reference it */
1380 spin_lock(&dev->class->p->glue_dirs.list_lock);
1381 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1382 if (k->parent == parent_kobj) {
1383 kobj = kobject_get(k);
1384 break;
1385 }
1386 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1387 if (kobj) {
1388 mutex_unlock(&gdp_mutex);
1389 return kobj;
1390 }
1391
1392 /* or create a new class-directory at the parent device */
1393 k = class_dir_create_and_add(dev->class, parent_kobj);
1394 /* do not emit an uevent for this simple "glue" directory */
1395 mutex_unlock(&gdp_mutex);
1396 return k;
1397 }
1398
1399 /* subsystems can specify a default root directory for their devices */
1400 if (!parent && dev->bus && dev->bus->dev_root)
1401 return &dev->bus->dev_root->kobj;
1402
1403 if (parent)
1404 return &parent->kobj;
1405 return NULL;
1406}
1407
1408static inline bool live_in_glue_dir(struct kobject *kobj,
1409 struct device *dev)
1410{
1411 if (!kobj || !dev->class ||
1412 kobj->kset != &dev->class->p->glue_dirs)
1413 return false;
1414 return true;
1415}
1416
1417static inline struct kobject *get_glue_dir(struct device *dev)
1418{
1419 return dev->kobj.parent;
1420}
1421
1422/*
1423 * make sure cleaning up dir as the last step, we need to make
1424 * sure .release handler of kobject is run with holding the
1425 * global lock
1426 */
1427static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1428{
1429 /* see if we live in a "glue" directory */
1430 if (!live_in_glue_dir(glue_dir, dev))
1431 return;
1432
1433 mutex_lock(&gdp_mutex);
1434 kobject_put(glue_dir);
1435 mutex_unlock(&gdp_mutex);
1436}
1437
1438static int device_add_class_symlinks(struct device *dev)
1439{
1440 struct device_node *of_node = dev_of_node(dev);
1441 int error;
1442
1443 if (of_node) {
1444 error = sysfs_create_link(&dev->kobj, &of_node->kobj,"of_node");
1445 if (error)
1446 dev_warn(dev, "Error %d creating of_node link\n",error);
1447 /* An error here doesn't warrant bringing down the device */
1448 }
1449
1450 if (!dev->class)
1451 return 0;
1452
1453 error = sysfs_create_link(&dev->kobj,
1454 &dev->class->p->subsys.kobj,
1455 "subsystem");
1456 if (error)
1457 goto out_devnode;
1458
1459 if (dev->parent && device_is_not_partition(dev)) {
1460 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1461 "device");
1462 if (error)
1463 goto out_subsys;
1464 }
1465
1466#ifdef CONFIG_BLOCK
1467 /* /sys/block has directories and does not need symlinks */
1468 if (sysfs_deprecated && dev->class == &block_class)
1469 return 0;
1470#endif
1471
1472 /* link in the class directory pointing to the device */
1473 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1474 &dev->kobj, dev_name(dev));
1475 if (error)
1476 goto out_device;
1477
1478 return 0;
1479
1480out_device:
1481 sysfs_remove_link(&dev->kobj, "device");
1482
1483out_subsys:
1484 sysfs_remove_link(&dev->kobj, "subsystem");
1485out_devnode:
1486 sysfs_remove_link(&dev->kobj, "of_node");
1487 return error;
1488}
1489
1490static void device_remove_class_symlinks(struct device *dev)
1491{
1492 if (dev_of_node(dev))
1493 sysfs_remove_link(&dev->kobj, "of_node");
1494
1495 if (!dev->class)
1496 return;
1497
1498 if (dev->parent && device_is_not_partition(dev))
1499 sysfs_remove_link(&dev->kobj, "device");
1500 sysfs_remove_link(&dev->kobj, "subsystem");
1501#ifdef CONFIG_BLOCK
1502 if (sysfs_deprecated && dev->class == &block_class)
1503 return;
1504#endif
1505 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1506}
1507
1508/**
1509 * dev_set_name - set a device name
1510 * @dev: device
1511 * @fmt: format string for the device's name
1512 */
1513int dev_set_name(struct device *dev, const char *fmt, ...)
1514{
1515 va_list vargs;
1516 int err;
1517
1518 va_start(vargs, fmt);
1519 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1520 va_end(vargs);
1521 return err;
1522}
1523EXPORT_SYMBOL_GPL(dev_set_name);
1524
1525/**
1526 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1527 * @dev: device
1528 *
1529 * By default we select char/ for new entries. Setting class->dev_obj
1530 * to NULL prevents an entry from being created. class->dev_kobj must
1531 * be set (or cleared) before any devices are registered to the class
1532 * otherwise device_create_sys_dev_entry() and
1533 * device_remove_sys_dev_entry() will disagree about the presence of
1534 * the link.
1535 */
1536static struct kobject *device_to_dev_kobj(struct device *dev)
1537{
1538 struct kobject *kobj;
1539
1540 if (dev->class)
1541 kobj = dev->class->dev_kobj;
1542 else
1543 kobj = sysfs_dev_char_kobj;
1544
1545 return kobj;
1546}
1547
1548static int device_create_sys_dev_entry(struct device *dev)
1549{
1550 struct kobject *kobj = device_to_dev_kobj(dev);
1551 int error = 0;
1552 char devt_str[15];
1553
1554 if (kobj) {
1555 format_dev_t(devt_str, dev->devt);
1556 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1557 }
1558
1559 return error;
1560}
1561
1562static void device_remove_sys_dev_entry(struct device *dev)
1563{
1564 struct kobject *kobj = device_to_dev_kobj(dev);
1565 char devt_str[15];
1566
1567 if (kobj) {
1568 format_dev_t(devt_str, dev->devt);
1569 sysfs_remove_link(kobj, devt_str);
1570 }
1571}
1572
1573int device_private_init(struct device *dev)
1574{
1575 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1576 if (!dev->p)
1577 return -ENOMEM;
1578 dev->p->device = dev;
1579 klist_init(&dev->p->klist_children, klist_children_get,
1580 klist_children_put);
1581 INIT_LIST_HEAD(&dev->p->deferred_probe);
1582 return 0;
1583}
1584
1585/**
1586 * device_add - add device to device hierarchy.
1587 * @dev: device.
1588 *
1589 * This is part 2 of device_register(), though may be called
1590 * separately _iff_ device_initialize() has been called separately.
1591 *
1592 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1593 * to the global and sibling lists for the device, then
1594 * adds it to the other relevant subsystems of the driver model.
1595 *
1596 * Do not call this routine or device_register() more than once for
1597 * any device structure. The driver model core is not designed to work
1598 * with devices that get unregistered and then spring back to life.
1599 * (Among other things, it's very hard to guarantee that all references
1600 * to the previous incarnation of @dev have been dropped.) Allocate
1601 * and register a fresh new struct device instead.
1602 *
1603 * NOTE: _Never_ directly free @dev after calling this function, even
1604 * if it returned an error! Always use put_device() to give up your
1605 * reference instead.
1606 */
1607int device_add(struct device *dev)
1608{
1609 struct device *parent = NULL;
1610 struct kobject *kobj;
1611 struct class_interface *class_intf;
1612 int error = -EINVAL;
1613 struct kobject *glue_dir = NULL;
1614
1615 dev = get_device(dev);
1616 if (!dev)
1617 goto done;
1618
1619 if (!dev->p) {
1620 error = device_private_init(dev);
1621 if (error)
1622 goto done;
1623 }
1624
1625 /*
1626 * for statically allocated devices, which should all be converted
1627 * some day, we need to initialize the name. We prevent reading back
1628 * the name, and force the use of dev_name()
1629 */
1630 if (dev->init_name) {
1631 dev_set_name(dev, "%s", dev->init_name);
1632 dev->init_name = NULL;
1633 }
1634
1635 /* subsystems can specify simple device enumeration */
1636 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1637 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1638
1639 if (!dev_name(dev)) {
1640 error = -EINVAL;
1641 goto name_error;
1642 }
1643
1644 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1645
1646 parent = get_device(dev->parent);
1647 kobj = get_device_parent(dev, parent);
1648 if (kobj)
1649 dev->kobj.parent = kobj;
1650
1651 /* use parent numa_node */
1652 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1653 set_dev_node(dev, dev_to_node(parent));
1654
1655 /* first, register with generic layer. */
1656 /* we require the name to be set before, and pass NULL */
1657 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1658 if (error) {
1659 glue_dir = get_glue_dir(dev);
1660 goto Error;
1661 }
1662
1663 /* notify platform of device entry */
1664 if (platform_notify)
1665 platform_notify(dev);
1666
1667 error = device_create_file(dev, &dev_attr_uevent);
1668 if (error)
1669 goto attrError;
1670
1671 error = device_add_class_symlinks(dev);
1672 if (error)
1673 goto SymlinkError;
1674 error = device_add_attrs(dev);
1675 if (error)
1676 goto AttrsError;
1677 error = bus_add_device(dev);
1678 if (error)
1679 goto BusError;
1680 error = dpm_sysfs_add(dev);
1681 if (error)
1682 goto DPMError;
1683 device_pm_add(dev);
1684
1685 if (MAJOR(dev->devt)) {
1686 error = device_create_file(dev, &dev_attr_dev);
1687 if (error)
1688 goto DevAttrError;
1689
1690 error = device_create_sys_dev_entry(dev);
1691 if (error)
1692 goto SysEntryError;
1693
1694 devtmpfs_create_node(dev);
1695 }
1696
1697 /* Notify clients of device addition. This call must come
1698 * after dpm_sysfs_add() and before kobject_uevent().
1699 */
1700 if (dev->bus)
1701 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1702 BUS_NOTIFY_ADD_DEVICE, dev);
1703
1704 kobject_uevent(&dev->kobj, KOBJ_ADD);
1705 bus_probe_device(dev);
1706 if (parent)
1707 klist_add_tail(&dev->p->knode_parent,
1708 &parent->p->klist_children);
1709
1710 if (dev->class) {
1711 mutex_lock(&dev->class->p->mutex);
1712 /* tie the class to the device */
1713 klist_add_tail(&dev->knode_class,
1714 &dev->class->p->klist_devices);
1715
1716 /* notify any interfaces that the device is here */
1717 list_for_each_entry(class_intf,
1718 &dev->class->p->interfaces, node)
1719 if (class_intf->add_dev)
1720 class_intf->add_dev(dev, class_intf);
1721 mutex_unlock(&dev->class->p->mutex);
1722 }
1723done:
1724 put_device(dev);
1725 return error;
1726 SysEntryError:
1727 if (MAJOR(dev->devt))
1728 device_remove_file(dev, &dev_attr_dev);
1729 DevAttrError:
1730 device_pm_remove(dev);
1731 dpm_sysfs_remove(dev);
1732 DPMError:
1733 bus_remove_device(dev);
1734 BusError:
1735 device_remove_attrs(dev);
1736 AttrsError:
1737 device_remove_class_symlinks(dev);
1738 SymlinkError:
1739 device_remove_file(dev, &dev_attr_uevent);
1740 attrError:
1741 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1742 glue_dir = get_glue_dir(dev);
1743 kobject_del(&dev->kobj);
1744 Error:
1745 cleanup_glue_dir(dev, glue_dir);
1746 put_device(parent);
1747name_error:
1748 kfree(dev->p);
1749 dev->p = NULL;
1750 goto done;
1751}
1752EXPORT_SYMBOL_GPL(device_add);
1753
1754/**
1755 * device_register - register a device with the system.
1756 * @dev: pointer to the device structure
1757 *
1758 * This happens in two clean steps - initialize the device
1759 * and add it to the system. The two steps can be called
1760 * separately, but this is the easiest and most common.
1761 * I.e. you should only call the two helpers separately if
1762 * have a clearly defined need to use and refcount the device
1763 * before it is added to the hierarchy.
1764 *
1765 * For more information, see the kerneldoc for device_initialize()
1766 * and device_add().
1767 *
1768 * NOTE: _Never_ directly free @dev after calling this function, even
1769 * if it returned an error! Always use put_device() to give up the
1770 * reference initialized in this function instead.
1771 */
1772int device_register(struct device *dev)
1773{
1774 device_initialize(dev);
1775 return device_add(dev);
1776}
1777EXPORT_SYMBOL_GPL(device_register);
1778
1779/**
1780 * get_device - increment reference count for device.
1781 * @dev: device.
1782 *
1783 * This simply forwards the call to kobject_get(), though
1784 * we do take care to provide for the case that we get a NULL
1785 * pointer passed in.
1786 */
1787struct device *get_device(struct device *dev)
1788{
1789 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1790}
1791EXPORT_SYMBOL_GPL(get_device);
1792
1793/**
1794 * put_device - decrement reference count.
1795 * @dev: device in question.
1796 */
1797void put_device(struct device *dev)
1798{
1799 /* might_sleep(); */
1800 if (dev)
1801 kobject_put(&dev->kobj);
1802}
1803EXPORT_SYMBOL_GPL(put_device);
1804
1805/**
1806 * device_del - delete device from system.
1807 * @dev: device.
1808 *
1809 * This is the first part of the device unregistration
1810 * sequence. This removes the device from the lists we control
1811 * from here, has it removed from the other driver model
1812 * subsystems it was added to in device_add(), and removes it
1813 * from the kobject hierarchy.
1814 *
1815 * NOTE: this should be called manually _iff_ device_add() was
1816 * also called manually.
1817 */
1818void device_del(struct device *dev)
1819{
1820 struct device *parent = dev->parent;
1821 struct kobject *glue_dir = NULL;
1822 struct class_interface *class_intf;
1823
1824 /* Notify clients of device removal. This call must come
1825 * before dpm_sysfs_remove().
1826 */
1827 if (dev->bus)
1828 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1829 BUS_NOTIFY_DEL_DEVICE, dev);
1830
1831 device_links_purge(dev);
1832 dpm_sysfs_remove(dev);
1833 if (parent)
1834 klist_del(&dev->p->knode_parent);
1835 if (MAJOR(dev->devt)) {
1836 devtmpfs_delete_node(dev);
1837 device_remove_sys_dev_entry(dev);
1838 device_remove_file(dev, &dev_attr_dev);
1839 }
1840 if (dev->class) {
1841 device_remove_class_symlinks(dev);
1842
1843 mutex_lock(&dev->class->p->mutex);
1844 /* notify any interfaces that the device is now gone */
1845 list_for_each_entry(class_intf,
1846 &dev->class->p->interfaces, node)
1847 if (class_intf->remove_dev)
1848 class_intf->remove_dev(dev, class_intf);
1849 /* remove the device from the class list */
1850 klist_del(&dev->knode_class);
1851 mutex_unlock(&dev->class->p->mutex);
1852 }
1853 device_remove_file(dev, &dev_attr_uevent);
1854 device_remove_attrs(dev);
1855 bus_remove_device(dev);
1856 device_pm_remove(dev);
1857 driver_deferred_probe_del(dev);
1858 device_remove_properties(dev);
1859
1860 /* Notify the platform of the removal, in case they
1861 * need to do anything...
1862 */
1863 if (platform_notify_remove)
1864 platform_notify_remove(dev);
1865 if (dev->bus)
1866 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1867 BUS_NOTIFY_REMOVED_DEVICE, dev);
1868 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1869 glue_dir = get_glue_dir(dev);
1870 kobject_del(&dev->kobj);
1871 cleanup_glue_dir(dev, glue_dir);
1872 put_device(parent);
1873}
1874EXPORT_SYMBOL_GPL(device_del);
1875
1876/**
1877 * device_unregister - unregister device from system.
1878 * @dev: device going away.
1879 *
1880 * We do this in two parts, like we do device_register(). First,
1881 * we remove it from all the subsystems with device_del(), then
1882 * we decrement the reference count via put_device(). If that
1883 * is the final reference count, the device will be cleaned up
1884 * via device_release() above. Otherwise, the structure will
1885 * stick around until the final reference to the device is dropped.
1886 */
1887void device_unregister(struct device *dev)
1888{
1889 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1890 device_del(dev);
1891 put_device(dev);
1892}
1893EXPORT_SYMBOL_GPL(device_unregister);
1894
1895static struct device *prev_device(struct klist_iter *i)
1896{
1897 struct klist_node *n = klist_prev(i);
1898 struct device *dev = NULL;
1899 struct device_private *p;
1900
1901 if (n) {
1902 p = to_device_private_parent(n);
1903 dev = p->device;
1904 }
1905 return dev;
1906}
1907
1908static struct device *next_device(struct klist_iter *i)
1909{
1910 struct klist_node *n = klist_next(i);
1911 struct device *dev = NULL;
1912 struct device_private *p;
1913
1914 if (n) {
1915 p = to_device_private_parent(n);
1916 dev = p->device;
1917 }
1918 return dev;
1919}
1920
1921/**
1922 * device_get_devnode - path of device node file
1923 * @dev: device
1924 * @mode: returned file access mode
1925 * @uid: returned file owner
1926 * @gid: returned file group
1927 * @tmp: possibly allocated string
1928 *
1929 * Return the relative path of a possible device node.
1930 * Non-default names may need to allocate a memory to compose
1931 * a name. This memory is returned in tmp and needs to be
1932 * freed by the caller.
1933 */
1934const char *device_get_devnode(struct device *dev,
1935 umode_t *mode, kuid_t *uid, kgid_t *gid,
1936 const char **tmp)
1937{
1938 char *s;
1939
1940 *tmp = NULL;
1941
1942 /* the device type may provide a specific name */
1943 if (dev->type && dev->type->devnode)
1944 *tmp = dev->type->devnode(dev, mode, uid, gid);
1945 if (*tmp)
1946 return *tmp;
1947
1948 /* the class may provide a specific name */
1949 if (dev->class && dev->class->devnode)
1950 *tmp = dev->class->devnode(dev, mode);
1951 if (*tmp)
1952 return *tmp;
1953
1954 /* return name without allocation, tmp == NULL */
1955 if (strchr(dev_name(dev), '!') == NULL)
1956 return dev_name(dev);
1957
1958 /* replace '!' in the name with '/' */
1959 s = kstrdup(dev_name(dev), GFP_KERNEL);
1960 if (!s)
1961 return NULL;
1962 strreplace(s, '!', '/');
1963 return *tmp = s;
1964}
1965
1966/**
1967 * device_for_each_child - device child iterator.
1968 * @parent: parent struct device.
1969 * @fn: function to be called for each device.
1970 * @data: data for the callback.
1971 *
1972 * Iterate over @parent's child devices, and call @fn for each,
1973 * passing it @data.
1974 *
1975 * We check the return of @fn each time. If it returns anything
1976 * other than 0, we break out and return that value.
1977 */
1978int device_for_each_child(struct device *parent, void *data,
1979 int (*fn)(struct device *dev, void *data))
1980{
1981 struct klist_iter i;
1982 struct device *child;
1983 int error = 0;
1984
1985 if (!parent->p)
1986 return 0;
1987
1988 klist_iter_init(&parent->p->klist_children, &i);
1989 while ((child = next_device(&i)) && !error)
1990 error = fn(child, data);
1991 klist_iter_exit(&i);
1992 return error;
1993}
1994EXPORT_SYMBOL_GPL(device_for_each_child);
1995
1996/**
1997 * device_for_each_child_reverse - device child iterator in reversed order.
1998 * @parent: parent struct device.
1999 * @fn: function to be called for each device.
2000 * @data: data for the callback.
2001 *
2002 * Iterate over @parent's child devices, and call @fn for each,
2003 * passing it @data.
2004 *
2005 * We check the return of @fn each time. If it returns anything
2006 * other than 0, we break out and return that value.
2007 */
2008int device_for_each_child_reverse(struct device *parent, void *data,
2009 int (*fn)(struct device *dev, void *data))
2010{
2011 struct klist_iter i;
2012 struct device *child;
2013 int error = 0;
2014
2015 if (!parent->p)
2016 return 0;
2017
2018 klist_iter_init(&parent->p->klist_children, &i);
2019 while ((child = prev_device(&i)) && !error)
2020 error = fn(child, data);
2021 klist_iter_exit(&i);
2022 return error;
2023}
2024EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2025
2026/**
2027 * device_find_child - device iterator for locating a particular device.
2028 * @parent: parent struct device
2029 * @match: Callback function to check device
2030 * @data: Data to pass to match function
2031 *
2032 * This is similar to the device_for_each_child() function above, but it
2033 * returns a reference to a device that is 'found' for later use, as
2034 * determined by the @match callback.
2035 *
2036 * The callback should return 0 if the device doesn't match and non-zero
2037 * if it does. If the callback returns non-zero and a reference to the
2038 * current device can be obtained, this function will return to the caller
2039 * and not iterate over any more devices.
2040 *
2041 * NOTE: you will need to drop the reference with put_device() after use.
2042 */
2043struct device *device_find_child(struct device *parent, void *data,
2044 int (*match)(struct device *dev, void *data))
2045{
2046 struct klist_iter i;
2047 struct device *child;
2048
2049 if (!parent)
2050 return NULL;
2051
2052 klist_iter_init(&parent->p->klist_children, &i);
2053 while ((child = next_device(&i)))
2054 if (match(child, data) && get_device(child))
2055 break;
2056 klist_iter_exit(&i);
2057 return child;
2058}
2059EXPORT_SYMBOL_GPL(device_find_child);
2060
2061int __init devices_init(void)
2062{
2063 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2064 if (!devices_kset)
2065 return -ENOMEM;
2066 dev_kobj = kobject_create_and_add("dev", NULL);
2067 if (!dev_kobj)
2068 goto dev_kobj_err;
2069 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2070 if (!sysfs_dev_block_kobj)
2071 goto block_kobj_err;
2072 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2073 if (!sysfs_dev_char_kobj)
2074 goto char_kobj_err;
2075
2076 return 0;
2077
2078 char_kobj_err:
2079 kobject_put(sysfs_dev_block_kobj);
2080 block_kobj_err:
2081 kobject_put(dev_kobj);
2082 dev_kobj_err:
2083 kset_unregister(devices_kset);
2084 return -ENOMEM;
2085}
2086
2087static int device_check_offline(struct device *dev, void *not_used)
2088{
2089 int ret;
2090
2091 ret = device_for_each_child(dev, NULL, device_check_offline);
2092 if (ret)
2093 return ret;
2094
2095 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2096}
2097
2098/**
2099 * device_offline - Prepare the device for hot-removal.
2100 * @dev: Device to be put offline.
2101 *
2102 * Execute the device bus type's .offline() callback, if present, to prepare
2103 * the device for a subsequent hot-removal. If that succeeds, the device must
2104 * not be used until either it is removed or its bus type's .online() callback
2105 * is executed.
2106 *
2107 * Call under device_hotplug_lock.
2108 */
2109int device_offline(struct device *dev)
2110{
2111 int ret;
2112
2113 if (dev->offline_disabled)
2114 return -EPERM;
2115
2116 ret = device_for_each_child(dev, NULL, device_check_offline);
2117 if (ret)
2118 return ret;
2119
2120 device_lock(dev);
2121 if (device_supports_offline(dev)) {
2122 if (dev->offline) {
2123 ret = 1;
2124 } else {
2125 ret = dev->bus->offline(dev);
2126 if (!ret) {
2127 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2128 dev->offline = true;
2129 }
2130 }
2131 }
2132 device_unlock(dev);
2133
2134 return ret;
2135}
2136
2137/**
2138 * device_online - Put the device back online after successful device_offline().
2139 * @dev: Device to be put back online.
2140 *
2141 * If device_offline() has been successfully executed for @dev, but the device
2142 * has not been removed subsequently, execute its bus type's .online() callback
2143 * to indicate that the device can be used again.
2144 *
2145 * Call under device_hotplug_lock.
2146 */
2147int device_online(struct device *dev)
2148{
2149 int ret = 0;
2150
2151 device_lock(dev);
2152 if (device_supports_offline(dev)) {
2153 if (dev->offline) {
2154 ret = dev->bus->online(dev);
2155 if (!ret) {
2156 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2157 dev->offline = false;
2158 }
2159 } else {
2160 ret = 1;
2161 }
2162 }
2163 device_unlock(dev);
2164
2165 return ret;
2166}
2167
2168struct root_device {
2169 struct device dev;
2170 struct module *owner;
2171};
2172
2173static inline struct root_device *to_root_device(struct device *d)
2174{
2175 return container_of(d, struct root_device, dev);
2176}
2177
2178static void root_device_release(struct device *dev)
2179{
2180 kfree(to_root_device(dev));
2181}
2182
2183/**
2184 * __root_device_register - allocate and register a root device
2185 * @name: root device name
2186 * @owner: owner module of the root device, usually THIS_MODULE
2187 *
2188 * This function allocates a root device and registers it
2189 * using device_register(). In order to free the returned
2190 * device, use root_device_unregister().
2191 *
2192 * Root devices are dummy devices which allow other devices
2193 * to be grouped under /sys/devices. Use this function to
2194 * allocate a root device and then use it as the parent of
2195 * any device which should appear under /sys/devices/{name}
2196 *
2197 * The /sys/devices/{name} directory will also contain a
2198 * 'module' symlink which points to the @owner directory
2199 * in sysfs.
2200 *
2201 * Returns &struct device pointer on success, or ERR_PTR() on error.
2202 *
2203 * Note: You probably want to use root_device_register().
2204 */
2205struct device *__root_device_register(const char *name, struct module *owner)
2206{
2207 struct root_device *root;
2208 int err = -ENOMEM;
2209
2210 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2211 if (!root)
2212 return ERR_PTR(err);
2213
2214 err = dev_set_name(&root->dev, "%s", name);
2215 if (err) {
2216 kfree(root);
2217 return ERR_PTR(err);
2218 }
2219
2220 root->dev.release = root_device_release;
2221
2222 err = device_register(&root->dev);
2223 if (err) {
2224 put_device(&root->dev);
2225 return ERR_PTR(err);
2226 }
2227
2228#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2229 if (owner) {
2230 struct module_kobject *mk = &owner->mkobj;
2231
2232 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2233 if (err) {
2234 device_unregister(&root->dev);
2235 return ERR_PTR(err);
2236 }
2237 root->owner = owner;
2238 }
2239#endif
2240
2241 return &root->dev;
2242}
2243EXPORT_SYMBOL_GPL(__root_device_register);
2244
2245/**
2246 * root_device_unregister - unregister and free a root device
2247 * @dev: device going away
2248 *
2249 * This function unregisters and cleans up a device that was created by
2250 * root_device_register().
2251 */
2252void root_device_unregister(struct device *dev)
2253{
2254 struct root_device *root = to_root_device(dev);
2255
2256 if (root->owner)
2257 sysfs_remove_link(&root->dev.kobj, "module");
2258
2259 device_unregister(dev);
2260}
2261EXPORT_SYMBOL_GPL(root_device_unregister);
2262
2263
2264static void device_create_release(struct device *dev)
2265{
2266 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2267 kfree(dev);
2268}
2269
2270static struct device *
2271device_create_groups_vargs(struct class *class, struct device *parent,
2272 dev_t devt, void *drvdata,
2273 const struct attribute_group **groups,
2274 const char *fmt, va_list args)
2275{
2276 struct device *dev = NULL;
2277 int retval = -ENODEV;
2278
2279 if (class == NULL || IS_ERR(class))
2280 goto error;
2281
2282 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2283 if (!dev) {
2284 retval = -ENOMEM;
2285 goto error;
2286 }
2287
2288 device_initialize(dev);
2289 dev->devt = devt;
2290 dev->class = class;
2291 dev->parent = parent;
2292 dev->groups = groups;
2293 dev->release = device_create_release;
2294 dev_set_drvdata(dev, drvdata);
2295
2296 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2297 if (retval)
2298 goto error;
2299
2300 retval = device_add(dev);
2301 if (retval)
2302 goto error;
2303
2304 return dev;
2305
2306error:
2307 put_device(dev);
2308 return ERR_PTR(retval);
2309}
2310
2311/**
2312 * device_create_vargs - creates a device and registers it with sysfs
2313 * @class: pointer to the struct class that this device should be registered to
2314 * @parent: pointer to the parent struct device of this new device, if any
2315 * @devt: the dev_t for the char device to be added
2316 * @drvdata: the data to be added to the device for callbacks
2317 * @fmt: string for the device's name
2318 * @args: va_list for the device's name
2319 *
2320 * This function can be used by char device classes. A struct device
2321 * will be created in sysfs, registered to the specified class.
2322 *
2323 * A "dev" file will be created, showing the dev_t for the device, if
2324 * the dev_t is not 0,0.
2325 * If a pointer to a parent struct device is passed in, the newly created
2326 * struct device will be a child of that device in sysfs.
2327 * The pointer to the struct device will be returned from the call.
2328 * Any further sysfs files that might be required can be created using this
2329 * pointer.
2330 *
2331 * Returns &struct device pointer on success, or ERR_PTR() on error.
2332 *
2333 * Note: the struct class passed to this function must have previously
2334 * been created with a call to class_create().
2335 */
2336struct device *device_create_vargs(struct class *class, struct device *parent,
2337 dev_t devt, void *drvdata, const char *fmt,
2338 va_list args)
2339{
2340 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2341 fmt, args);
2342}
2343EXPORT_SYMBOL_GPL(device_create_vargs);
2344
2345/**
2346 * device_create - creates a device and registers it with sysfs
2347 * @class: pointer to the struct class that this device should be registered to
2348 * @parent: pointer to the parent struct device of this new device, if any
2349 * @devt: the dev_t for the char device to be added
2350 * @drvdata: the data to be added to the device for callbacks
2351 * @fmt: string for the device's name
2352 *
2353 * This function can be used by char device classes. A struct device
2354 * will be created in sysfs, registered to the specified class.
2355 *
2356 * A "dev" file will be created, showing the dev_t for the device, if
2357 * the dev_t is not 0,0.
2358 * If a pointer to a parent struct device is passed in, the newly created
2359 * struct device will be a child of that device in sysfs.
2360 * The pointer to the struct device will be returned from the call.
2361 * Any further sysfs files that might be required can be created using this
2362 * pointer.
2363 *
2364 * Returns &struct device pointer on success, or ERR_PTR() on error.
2365 *
2366 * Note: the struct class passed to this function must have previously
2367 * been created with a call to class_create().
2368 */
2369struct device *device_create(struct class *class, struct device *parent,
2370 dev_t devt, void *drvdata, const char *fmt, ...)
2371{
2372 va_list vargs;
2373 struct device *dev;
2374
2375 va_start(vargs, fmt);
2376 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2377 va_end(vargs);
2378 return dev;
2379}
2380EXPORT_SYMBOL_GPL(device_create);
2381
2382/**
2383 * device_create_with_groups - creates a device and registers it with sysfs
2384 * @class: pointer to the struct class that this device should be registered to
2385 * @parent: pointer to the parent struct device of this new device, if any
2386 * @devt: the dev_t for the char device to be added
2387 * @drvdata: the data to be added to the device for callbacks
2388 * @groups: NULL-terminated list of attribute groups to be created
2389 * @fmt: string for the device's name
2390 *
2391 * This function can be used by char device classes. A struct device
2392 * will be created in sysfs, registered to the specified class.
2393 * Additional attributes specified in the groups parameter will also
2394 * be created automatically.
2395 *
2396 * A "dev" file will be created, showing the dev_t for the device, if
2397 * the dev_t is not 0,0.
2398 * If a pointer to a parent struct device is passed in, the newly created
2399 * struct device will be a child of that device in sysfs.
2400 * The pointer to the struct device will be returned from the call.
2401 * Any further sysfs files that might be required can be created using this
2402 * pointer.
2403 *
2404 * Returns &struct device pointer on success, or ERR_PTR() on error.
2405 *
2406 * Note: the struct class passed to this function must have previously
2407 * been created with a call to class_create().
2408 */
2409struct device *device_create_with_groups(struct class *class,
2410 struct device *parent, dev_t devt,
2411 void *drvdata,
2412 const struct attribute_group **groups,
2413 const char *fmt, ...)
2414{
2415 va_list vargs;
2416 struct device *dev;
2417
2418 va_start(vargs, fmt);
2419 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2420 fmt, vargs);
2421 va_end(vargs);
2422 return dev;
2423}
2424EXPORT_SYMBOL_GPL(device_create_with_groups);
2425
2426static int __match_devt(struct device *dev, const void *data)
2427{
2428 const dev_t *devt = data;
2429
2430 return dev->devt == *devt;
2431}
2432
2433/**
2434 * device_destroy - removes a device that was created with device_create()
2435 * @class: pointer to the struct class that this device was registered with
2436 * @devt: the dev_t of the device that was previously registered
2437 *
2438 * This call unregisters and cleans up a device that was created with a
2439 * call to device_create().
2440 */
2441void device_destroy(struct class *class, dev_t devt)
2442{
2443 struct device *dev;
2444
2445 dev = class_find_device(class, NULL, &devt, __match_devt);
2446 if (dev) {
2447 put_device(dev);
2448 device_unregister(dev);
2449 }
2450}
2451EXPORT_SYMBOL_GPL(device_destroy);
2452
2453/**
2454 * device_rename - renames a device
2455 * @dev: the pointer to the struct device to be renamed
2456 * @new_name: the new name of the device
2457 *
2458 * It is the responsibility of the caller to provide mutual
2459 * exclusion between two different calls of device_rename
2460 * on the same device to ensure that new_name is valid and
2461 * won't conflict with other devices.
2462 *
2463 * Note: Don't call this function. Currently, the networking layer calls this
2464 * function, but that will change. The following text from Kay Sievers offers
2465 * some insight:
2466 *
2467 * Renaming devices is racy at many levels, symlinks and other stuff are not
2468 * replaced atomically, and you get a "move" uevent, but it's not easy to
2469 * connect the event to the old and new device. Device nodes are not renamed at
2470 * all, there isn't even support for that in the kernel now.
2471 *
2472 * In the meantime, during renaming, your target name might be taken by another
2473 * driver, creating conflicts. Or the old name is taken directly after you
2474 * renamed it -- then you get events for the same DEVPATH, before you even see
2475 * the "move" event. It's just a mess, and nothing new should ever rely on
2476 * kernel device renaming. Besides that, it's not even implemented now for
2477 * other things than (driver-core wise very simple) network devices.
2478 *
2479 * We are currently about to change network renaming in udev to completely
2480 * disallow renaming of devices in the same namespace as the kernel uses,
2481 * because we can't solve the problems properly, that arise with swapping names
2482 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2483 * be allowed to some other name than eth[0-9]*, for the aforementioned
2484 * reasons.
2485 *
2486 * Make up a "real" name in the driver before you register anything, or add
2487 * some other attributes for userspace to find the device, or use udev to add
2488 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2489 * don't even want to get into that and try to implement the missing pieces in
2490 * the core. We really have other pieces to fix in the driver core mess. :)
2491 */
2492int device_rename(struct device *dev, const char *new_name)
2493{
2494 struct kobject *kobj = &dev->kobj;
2495 char *old_device_name = NULL;
2496 int error;
2497
2498 dev = get_device(dev);
2499 if (!dev)
2500 return -EINVAL;
2501
2502 dev_dbg(dev, "renaming to %s\n", new_name);
2503
2504 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2505 if (!old_device_name) {
2506 error = -ENOMEM;
2507 goto out;
2508 }
2509
2510 if (dev->class) {
2511 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2512 kobj, old_device_name,
2513 new_name, kobject_namespace(kobj));
2514 if (error)
2515 goto out;
2516 }
2517
2518 error = kobject_rename(kobj, new_name);
2519 if (error)
2520 goto out;
2521
2522out:
2523 put_device(dev);
2524
2525 kfree(old_device_name);
2526
2527 return error;
2528}
2529EXPORT_SYMBOL_GPL(device_rename);
2530
2531static int device_move_class_links(struct device *dev,
2532 struct device *old_parent,
2533 struct device *new_parent)
2534{
2535 int error = 0;
2536
2537 if (old_parent)
2538 sysfs_remove_link(&dev->kobj, "device");
2539 if (new_parent)
2540 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2541 "device");
2542 return error;
2543}
2544
2545/**
2546 * device_move - moves a device to a new parent
2547 * @dev: the pointer to the struct device to be moved
2548 * @new_parent: the new parent of the device (can by NULL)
2549 * @dpm_order: how to reorder the dpm_list
2550 */
2551int device_move(struct device *dev, struct device *new_parent,
2552 enum dpm_order dpm_order)
2553{
2554 int error;
2555 struct device *old_parent;
2556 struct kobject *new_parent_kobj;
2557
2558 dev = get_device(dev);
2559 if (!dev)
2560 return -EINVAL;
2561
2562 device_pm_lock();
2563 new_parent = get_device(new_parent);
2564 new_parent_kobj = get_device_parent(dev, new_parent);
2565
2566 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2567 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2568 error = kobject_move(&dev->kobj, new_parent_kobj);
2569 if (error) {
2570 cleanup_glue_dir(dev, new_parent_kobj);
2571 put_device(new_parent);
2572 goto out;
2573 }
2574 old_parent = dev->parent;
2575 dev->parent = new_parent;
2576 if (old_parent)
2577 klist_remove(&dev->p->knode_parent);
2578 if (new_parent) {
2579 klist_add_tail(&dev->p->knode_parent,
2580 &new_parent->p->klist_children);
2581 set_dev_node(dev, dev_to_node(new_parent));
2582 }
2583
2584 if (dev->class) {
2585 error = device_move_class_links(dev, old_parent, new_parent);
2586 if (error) {
2587 /* We ignore errors on cleanup since we're hosed anyway... */
2588 device_move_class_links(dev, new_parent, old_parent);
2589 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2590 if (new_parent)
2591 klist_remove(&dev->p->knode_parent);
2592 dev->parent = old_parent;
2593 if (old_parent) {
2594 klist_add_tail(&dev->p->knode_parent,
2595 &old_parent->p->klist_children);
2596 set_dev_node(dev, dev_to_node(old_parent));
2597 }
2598 }
2599 cleanup_glue_dir(dev, new_parent_kobj);
2600 put_device(new_parent);
2601 goto out;
2602 }
2603 }
2604 switch (dpm_order) {
2605 case DPM_ORDER_NONE:
2606 break;
2607 case DPM_ORDER_DEV_AFTER_PARENT:
2608 device_pm_move_after(dev, new_parent);
2609 devices_kset_move_after(dev, new_parent);
2610 break;
2611 case DPM_ORDER_PARENT_BEFORE_DEV:
2612 device_pm_move_before(new_parent, dev);
2613 devices_kset_move_before(new_parent, dev);
2614 break;
2615 case DPM_ORDER_DEV_LAST:
2616 device_pm_move_last(dev);
2617 devices_kset_move_last(dev);
2618 break;
2619 }
2620
2621 put_device(old_parent);
2622out:
2623 device_pm_unlock();
2624 put_device(dev);
2625 return error;
2626}
2627EXPORT_SYMBOL_GPL(device_move);
2628
2629/**
2630 * device_shutdown - call ->shutdown() on each device to shutdown.
2631 */
2632void device_shutdown(void)
2633{
2634 struct device *dev, *parent;
2635
2636 spin_lock(&devices_kset->list_lock);
2637 /*
2638 * Walk the devices list backward, shutting down each in turn.
2639 * Beware that device unplug events may also start pulling
2640 * devices offline, even as the system is shutting down.
2641 */
2642 while (!list_empty(&devices_kset->list)) {
2643 dev = list_entry(devices_kset->list.prev, struct device,
2644 kobj.entry);
2645
2646 /*
2647 * hold reference count of device's parent to
2648 * prevent it from being freed because parent's
2649 * lock is to be held
2650 */
2651 parent = get_device(dev->parent);
2652 get_device(dev);
2653 /*
2654 * Make sure the device is off the kset list, in the
2655 * event that dev->*->shutdown() doesn't remove it.
2656 */
2657 list_del_init(&dev->kobj.entry);
2658 spin_unlock(&devices_kset->list_lock);
2659
2660 /* hold lock to avoid race with probe/release */
2661 if (parent)
2662 device_lock(parent);
2663 device_lock(dev);
2664
2665 /* Don't allow any more runtime suspends */
2666 pm_runtime_get_noresume(dev);
2667 pm_runtime_barrier(dev);
2668
2669 if (dev->bus && dev->bus->shutdown) {
2670 if (initcall_debug)
2671 dev_info(dev, "shutdown\n");
2672 dev->bus->shutdown(dev);
2673 } else if (dev->driver && dev->driver->shutdown) {
2674 if (initcall_debug)
2675 dev_info(dev, "shutdown\n");
2676 dev->driver->shutdown(dev);
2677 }
2678
2679 device_unlock(dev);
2680 if (parent)
2681 device_unlock(parent);
2682
2683 put_device(dev);
2684 put_device(parent);
2685
2686 spin_lock(&devices_kset->list_lock);
2687 }
2688 spin_unlock(&devices_kset->list_lock);
2689}
2690
2691/*
2692 * Device logging functions
2693 */
2694
2695#ifdef CONFIG_PRINTK
2696static int
2697create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2698{
2699 const char *subsys;
2700 size_t pos = 0;
2701
2702 if (dev->class)
2703 subsys = dev->class->name;
2704 else if (dev->bus)
2705 subsys = dev->bus->name;
2706 else
2707 return 0;
2708
2709 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2710 if (pos >= hdrlen)
2711 goto overflow;
2712
2713 /*
2714 * Add device identifier DEVICE=:
2715 * b12:8 block dev_t
2716 * c127:3 char dev_t
2717 * n8 netdev ifindex
2718 * +sound:card0 subsystem:devname
2719 */
2720 if (MAJOR(dev->devt)) {
2721 char c;
2722
2723 if (strcmp(subsys, "block") == 0)
2724 c = 'b';
2725 else
2726 c = 'c';
2727 pos++;
2728 pos += snprintf(hdr + pos, hdrlen - pos,
2729 "DEVICE=%c%u:%u",
2730 c, MAJOR(dev->devt), MINOR(dev->devt));
2731 } else if (strcmp(subsys, "net") == 0) {
2732 struct net_device *net = to_net_dev(dev);
2733
2734 pos++;
2735 pos += snprintf(hdr + pos, hdrlen - pos,
2736 "DEVICE=n%u", net->ifindex);
2737 } else {
2738 pos++;
2739 pos += snprintf(hdr + pos, hdrlen - pos,
2740 "DEVICE=+%s:%s", subsys, dev_name(dev));
2741 }
2742
2743 if (pos >= hdrlen)
2744 goto overflow;
2745
2746 return pos;
2747
2748overflow:
2749 dev_WARN(dev, "device/subsystem name too long");
2750 return 0;
2751}
2752
2753int dev_vprintk_emit(int level, const struct device *dev,
2754 const char *fmt, va_list args)
2755{
2756 char hdr[128];
2757 size_t hdrlen;
2758
2759 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2760
2761 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2762}
2763EXPORT_SYMBOL(dev_vprintk_emit);
2764
2765int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2766{
2767 va_list args;
2768 int r;
2769
2770 va_start(args, fmt);
2771
2772 r = dev_vprintk_emit(level, dev, fmt, args);
2773
2774 va_end(args);
2775
2776 return r;
2777}
2778EXPORT_SYMBOL(dev_printk_emit);
2779
2780static void __dev_printk(const char *level, const struct device *dev,
2781 struct va_format *vaf)
2782{
2783 if (dev)
2784 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2785 dev_driver_string(dev), dev_name(dev), vaf);
2786 else
2787 printk("%s(NULL device *): %pV", level, vaf);
2788}
2789
2790void dev_printk(const char *level, const struct device *dev,
2791 const char *fmt, ...)
2792{
2793 struct va_format vaf;
2794 va_list args;
2795
2796 va_start(args, fmt);
2797
2798 vaf.fmt = fmt;
2799 vaf.va = &args;
2800
2801 __dev_printk(level, dev, &vaf);
2802
2803 va_end(args);
2804}
2805EXPORT_SYMBOL(dev_printk);
2806
2807#define define_dev_printk_level(func, kern_level) \
2808void func(const struct device *dev, const char *fmt, ...) \
2809{ \
2810 struct va_format vaf; \
2811 va_list args; \
2812 \
2813 va_start(args, fmt); \
2814 \
2815 vaf.fmt = fmt; \
2816 vaf.va = &args; \
2817 \
2818 __dev_printk(kern_level, dev, &vaf); \
2819 \
2820 va_end(args); \
2821} \
2822EXPORT_SYMBOL(func);
2823
2824define_dev_printk_level(dev_emerg, KERN_EMERG);
2825define_dev_printk_level(dev_alert, KERN_ALERT);
2826define_dev_printk_level(dev_crit, KERN_CRIT);
2827define_dev_printk_level(dev_err, KERN_ERR);
2828define_dev_printk_level(dev_warn, KERN_WARNING);
2829define_dev_printk_level(dev_notice, KERN_NOTICE);
2830define_dev_printk_level(_dev_info, KERN_INFO);
2831
2832#endif
2833
2834static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2835{
2836 return fwnode && !IS_ERR(fwnode->secondary);
2837}
2838
2839/**
2840 * set_primary_fwnode - Change the primary firmware node of a given device.
2841 * @dev: Device to handle.
2842 * @fwnode: New primary firmware node of the device.
2843 *
2844 * Set the device's firmware node pointer to @fwnode, but if a secondary
2845 * firmware node of the device is present, preserve it.
2846 */
2847void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2848{
2849 if (fwnode) {
2850 struct fwnode_handle *fn = dev->fwnode;
2851
2852 if (fwnode_is_primary(fn))
2853 fn = fn->secondary;
2854
2855 if (fn) {
2856 WARN_ON(fwnode->secondary);
2857 fwnode->secondary = fn;
2858 }
2859 dev->fwnode = fwnode;
2860 } else {
2861 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
2862 dev->fwnode->secondary : NULL;
2863 }
2864}
2865EXPORT_SYMBOL_GPL(set_primary_fwnode);
2866
2867/**
2868 * set_secondary_fwnode - Change the secondary firmware node of a given device.
2869 * @dev: Device to handle.
2870 * @fwnode: New secondary firmware node of the device.
2871 *
2872 * If a primary firmware node of the device is present, set its secondary
2873 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
2874 * @fwnode.
2875 */
2876void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2877{
2878 if (fwnode)
2879 fwnode->secondary = ERR_PTR(-ENODEV);
2880
2881 if (fwnode_is_primary(dev->fwnode))
2882 dev->fwnode->secondary = fwnode;
2883 else
2884 dev->fwnode = fwnode;
2885}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * drivers/base/core.c - core driver model code (device registration, etc)
4 *
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
10
11#include <linux/acpi.h>
12#include <linux/cpufreq.h>
13#include <linux/device.h>
14#include <linux/err.h>
15#include <linux/fwnode.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/slab.h>
19#include <linux/string.h>
20#include <linux/kdev_t.h>
21#include <linux/notifier.h>
22#include <linux/of.h>
23#include <linux/of_device.h>
24#include <linux/genhd.h>
25#include <linux/mutex.h>
26#include <linux/pm_runtime.h>
27#include <linux/netdevice.h>
28#include <linux/sched/signal.h>
29#include <linux/sysfs.h>
30
31#include "base.h"
32#include "power/power.h"
33
34#ifdef CONFIG_SYSFS_DEPRECATED
35#ifdef CONFIG_SYSFS_DEPRECATED_V2
36long sysfs_deprecated = 1;
37#else
38long sysfs_deprecated = 0;
39#endif
40static int __init sysfs_deprecated_setup(char *arg)
41{
42 return kstrtol(arg, 10, &sysfs_deprecated);
43}
44early_param("sysfs.deprecated", sysfs_deprecated_setup);
45#endif
46
47/* Device links support. */
48
49#ifdef CONFIG_SRCU
50static DEFINE_MUTEX(device_links_lock);
51DEFINE_STATIC_SRCU(device_links_srcu);
52
53static inline void device_links_write_lock(void)
54{
55 mutex_lock(&device_links_lock);
56}
57
58static inline void device_links_write_unlock(void)
59{
60 mutex_unlock(&device_links_lock);
61}
62
63int device_links_read_lock(void)
64{
65 return srcu_read_lock(&device_links_srcu);
66}
67
68void device_links_read_unlock(int idx)
69{
70 srcu_read_unlock(&device_links_srcu, idx);
71}
72
73int device_links_read_lock_held(void)
74{
75 return srcu_read_lock_held(&device_links_srcu);
76}
77#else /* !CONFIG_SRCU */
78static DECLARE_RWSEM(device_links_lock);
79
80static inline void device_links_write_lock(void)
81{
82 down_write(&device_links_lock);
83}
84
85static inline void device_links_write_unlock(void)
86{
87 up_write(&device_links_lock);
88}
89
90int device_links_read_lock(void)
91{
92 down_read(&device_links_lock);
93 return 0;
94}
95
96void device_links_read_unlock(int not_used)
97{
98 up_read(&device_links_lock);
99}
100
101#ifdef CONFIG_DEBUG_LOCK_ALLOC
102int device_links_read_lock_held(void)
103{
104 return lockdep_is_held(&device_links_lock);
105}
106#endif
107#endif /* !CONFIG_SRCU */
108
109/**
110 * device_is_dependent - Check if one device depends on another one
111 * @dev: Device to check dependencies for.
112 * @target: Device to check against.
113 *
114 * Check if @target depends on @dev or any device dependent on it (its child or
115 * its consumer etc). Return 1 if that is the case or 0 otherwise.
116 */
117static int device_is_dependent(struct device *dev, void *target)
118{
119 struct device_link *link;
120 int ret;
121
122 if (dev == target)
123 return 1;
124
125 ret = device_for_each_child(dev, target, device_is_dependent);
126 if (ret)
127 return ret;
128
129 list_for_each_entry(link, &dev->links.consumers, s_node) {
130 if (link->consumer == target)
131 return 1;
132
133 ret = device_is_dependent(link->consumer, target);
134 if (ret)
135 break;
136 }
137 return ret;
138}
139
140static void device_link_init_status(struct device_link *link,
141 struct device *consumer,
142 struct device *supplier)
143{
144 switch (supplier->links.status) {
145 case DL_DEV_PROBING:
146 switch (consumer->links.status) {
147 case DL_DEV_PROBING:
148 /*
149 * A consumer driver can create a link to a supplier
150 * that has not completed its probing yet as long as it
151 * knows that the supplier is already functional (for
152 * example, it has just acquired some resources from the
153 * supplier).
154 */
155 link->status = DL_STATE_CONSUMER_PROBE;
156 break;
157 default:
158 link->status = DL_STATE_DORMANT;
159 break;
160 }
161 break;
162 case DL_DEV_DRIVER_BOUND:
163 switch (consumer->links.status) {
164 case DL_DEV_PROBING:
165 link->status = DL_STATE_CONSUMER_PROBE;
166 break;
167 case DL_DEV_DRIVER_BOUND:
168 link->status = DL_STATE_ACTIVE;
169 break;
170 default:
171 link->status = DL_STATE_AVAILABLE;
172 break;
173 }
174 break;
175 case DL_DEV_UNBINDING:
176 link->status = DL_STATE_SUPPLIER_UNBIND;
177 break;
178 default:
179 link->status = DL_STATE_DORMANT;
180 break;
181 }
182}
183
184static int device_reorder_to_tail(struct device *dev, void *not_used)
185{
186 struct device_link *link;
187
188 /*
189 * Devices that have not been registered yet will be put to the ends
190 * of the lists during the registration, so skip them here.
191 */
192 if (device_is_registered(dev))
193 devices_kset_move_last(dev);
194
195 if (device_pm_initialized(dev))
196 device_pm_move_last(dev);
197
198 device_for_each_child(dev, NULL, device_reorder_to_tail);
199 list_for_each_entry(link, &dev->links.consumers, s_node)
200 device_reorder_to_tail(link->consumer, NULL);
201
202 return 0;
203}
204
205/**
206 * device_pm_move_to_tail - Move set of devices to the end of device lists
207 * @dev: Device to move
208 *
209 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
210 *
211 * It moves the @dev along with all of its children and all of its consumers
212 * to the ends of the device_kset and dpm_list, recursively.
213 */
214void device_pm_move_to_tail(struct device *dev)
215{
216 int idx;
217
218 idx = device_links_read_lock();
219 device_pm_lock();
220 device_reorder_to_tail(dev, NULL);
221 device_pm_unlock();
222 device_links_read_unlock(idx);
223}
224
225#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
226 DL_FLAG_AUTOREMOVE_SUPPLIER | \
227 DL_FLAG_AUTOPROBE_CONSUMER)
228
229#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
230 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
231
232/**
233 * device_link_add - Create a link between two devices.
234 * @consumer: Consumer end of the link.
235 * @supplier: Supplier end of the link.
236 * @flags: Link flags.
237 *
238 * The caller is responsible for the proper synchronization of the link creation
239 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
240 * runtime PM framework to take the link into account. Second, if the
241 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
242 * be forced into the active metastate and reference-counted upon the creation
243 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
244 * ignored.
245 *
246 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
247 * expected to release the link returned by it directly with the help of either
248 * device_link_del() or device_link_remove().
249 *
250 * If that flag is not set, however, the caller of this function is handing the
251 * management of the link over to the driver core entirely and its return value
252 * can only be used to check whether or not the link is present. In that case,
253 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
254 * flags can be used to indicate to the driver core when the link can be safely
255 * deleted. Namely, setting one of them in @flags indicates to the driver core
256 * that the link is not going to be used (by the given caller of this function)
257 * after unbinding the consumer or supplier driver, respectively, from its
258 * device, so the link can be deleted at that point. If none of them is set,
259 * the link will be maintained until one of the devices pointed to by it (either
260 * the consumer or the supplier) is unregistered.
261 *
262 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
263 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
264 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
265 * be used to request the driver core to automaticall probe for a consmer
266 * driver after successfully binding a driver to the supplier device.
267 *
268 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
269 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
270 * the same time is invalid and will cause NULL to be returned upfront.
271 * However, if a device link between the given @consumer and @supplier pair
272 * exists already when this function is called for them, the existing link will
273 * be returned regardless of its current type and status (the link's flags may
274 * be modified then). The caller of this function is then expected to treat
275 * the link as though it has just been created, so (in particular) if
276 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
277 * explicitly when not needed any more (as stated above).
278 *
279 * A side effect of the link creation is re-ordering of dpm_list and the
280 * devices_kset list by moving the consumer device and all devices depending
281 * on it to the ends of these lists (that does not happen to devices that have
282 * not been registered when this function is called).
283 *
284 * The supplier device is required to be registered when this function is called
285 * and NULL will be returned if that is not the case. The consumer device need
286 * not be registered, however.
287 */
288struct device_link *device_link_add(struct device *consumer,
289 struct device *supplier, u32 flags)
290{
291 struct device_link *link;
292
293 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
294 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
295 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
296 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
297 DL_FLAG_AUTOREMOVE_SUPPLIER)))
298 return NULL;
299
300 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
301 if (pm_runtime_get_sync(supplier) < 0) {
302 pm_runtime_put_noidle(supplier);
303 return NULL;
304 }
305 }
306
307 if (!(flags & DL_FLAG_STATELESS))
308 flags |= DL_FLAG_MANAGED;
309
310 device_links_write_lock();
311 device_pm_lock();
312
313 /*
314 * If the supplier has not been fully registered yet or there is a
315 * reverse dependency between the consumer and the supplier already in
316 * the graph, return NULL.
317 */
318 if (!device_pm_initialized(supplier)
319 || device_is_dependent(consumer, supplier)) {
320 link = NULL;
321 goto out;
322 }
323
324 /*
325 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
326 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
327 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
328 */
329 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
330 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
331
332 list_for_each_entry(link, &supplier->links.consumers, s_node) {
333 if (link->consumer != consumer)
334 continue;
335
336 if (flags & DL_FLAG_PM_RUNTIME) {
337 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
338 pm_runtime_new_link(consumer);
339 link->flags |= DL_FLAG_PM_RUNTIME;
340 }
341 if (flags & DL_FLAG_RPM_ACTIVE)
342 refcount_inc(&link->rpm_active);
343 }
344
345 if (flags & DL_FLAG_STATELESS) {
346 link->flags |= DL_FLAG_STATELESS;
347 kref_get(&link->kref);
348 goto out;
349 }
350
351 /*
352 * If the life time of the link following from the new flags is
353 * longer than indicated by the flags of the existing link,
354 * update the existing link to stay around longer.
355 */
356 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
357 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
358 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
359 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
360 }
361 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
362 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
363 DL_FLAG_AUTOREMOVE_SUPPLIER);
364 }
365 if (!(link->flags & DL_FLAG_MANAGED)) {
366 kref_get(&link->kref);
367 link->flags |= DL_FLAG_MANAGED;
368 device_link_init_status(link, consumer, supplier);
369 }
370 goto out;
371 }
372
373 link = kzalloc(sizeof(*link), GFP_KERNEL);
374 if (!link)
375 goto out;
376
377 refcount_set(&link->rpm_active, 1);
378
379 if (flags & DL_FLAG_PM_RUNTIME) {
380 if (flags & DL_FLAG_RPM_ACTIVE)
381 refcount_inc(&link->rpm_active);
382
383 pm_runtime_new_link(consumer);
384 }
385
386 get_device(supplier);
387 link->supplier = supplier;
388 INIT_LIST_HEAD(&link->s_node);
389 get_device(consumer);
390 link->consumer = consumer;
391 INIT_LIST_HEAD(&link->c_node);
392 link->flags = flags;
393 kref_init(&link->kref);
394
395 /* Determine the initial link state. */
396 if (flags & DL_FLAG_STATELESS)
397 link->status = DL_STATE_NONE;
398 else
399 device_link_init_status(link, consumer, supplier);
400
401 /*
402 * Some callers expect the link creation during consumer driver probe to
403 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
404 */
405 if (link->status == DL_STATE_CONSUMER_PROBE &&
406 flags & DL_FLAG_PM_RUNTIME)
407 pm_runtime_resume(supplier);
408
409 /*
410 * Move the consumer and all of the devices depending on it to the end
411 * of dpm_list and the devices_kset list.
412 *
413 * It is necessary to hold dpm_list locked throughout all that or else
414 * we may end up suspending with a wrong ordering of it.
415 */
416 device_reorder_to_tail(consumer, NULL);
417
418 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
419 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
420
421 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
422
423 out:
424 device_pm_unlock();
425 device_links_write_unlock();
426
427 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
428 pm_runtime_put(supplier);
429
430 return link;
431}
432EXPORT_SYMBOL_GPL(device_link_add);
433
434static void device_link_free(struct device_link *link)
435{
436 while (refcount_dec_not_one(&link->rpm_active))
437 pm_runtime_put(link->supplier);
438
439 put_device(link->consumer);
440 put_device(link->supplier);
441 kfree(link);
442}
443
444#ifdef CONFIG_SRCU
445static void __device_link_free_srcu(struct rcu_head *rhead)
446{
447 device_link_free(container_of(rhead, struct device_link, rcu_head));
448}
449
450static void __device_link_del(struct kref *kref)
451{
452 struct device_link *link = container_of(kref, struct device_link, kref);
453
454 dev_dbg(link->consumer, "Dropping the link to %s\n",
455 dev_name(link->supplier));
456
457 if (link->flags & DL_FLAG_PM_RUNTIME)
458 pm_runtime_drop_link(link->consumer);
459
460 list_del_rcu(&link->s_node);
461 list_del_rcu(&link->c_node);
462 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
463}
464#else /* !CONFIG_SRCU */
465static void __device_link_del(struct kref *kref)
466{
467 struct device_link *link = container_of(kref, struct device_link, kref);
468
469 dev_info(link->consumer, "Dropping the link to %s\n",
470 dev_name(link->supplier));
471
472 if (link->flags & DL_FLAG_PM_RUNTIME)
473 pm_runtime_drop_link(link->consumer);
474
475 list_del(&link->s_node);
476 list_del(&link->c_node);
477 device_link_free(link);
478}
479#endif /* !CONFIG_SRCU */
480
481static void device_link_put_kref(struct device_link *link)
482{
483 if (link->flags & DL_FLAG_STATELESS)
484 kref_put(&link->kref, __device_link_del);
485 else
486 WARN(1, "Unable to drop a managed device link reference\n");
487}
488
489/**
490 * device_link_del - Delete a stateless link between two devices.
491 * @link: Device link to delete.
492 *
493 * The caller must ensure proper synchronization of this function with runtime
494 * PM. If the link was added multiple times, it needs to be deleted as often.
495 * Care is required for hotplugged devices: Their links are purged on removal
496 * and calling device_link_del() is then no longer allowed.
497 */
498void device_link_del(struct device_link *link)
499{
500 device_links_write_lock();
501 device_pm_lock();
502 device_link_put_kref(link);
503 device_pm_unlock();
504 device_links_write_unlock();
505}
506EXPORT_SYMBOL_GPL(device_link_del);
507
508/**
509 * device_link_remove - Delete a stateless link between two devices.
510 * @consumer: Consumer end of the link.
511 * @supplier: Supplier end of the link.
512 *
513 * The caller must ensure proper synchronization of this function with runtime
514 * PM.
515 */
516void device_link_remove(void *consumer, struct device *supplier)
517{
518 struct device_link *link;
519
520 if (WARN_ON(consumer == supplier))
521 return;
522
523 device_links_write_lock();
524 device_pm_lock();
525
526 list_for_each_entry(link, &supplier->links.consumers, s_node) {
527 if (link->consumer == consumer) {
528 device_link_put_kref(link);
529 break;
530 }
531 }
532
533 device_pm_unlock();
534 device_links_write_unlock();
535}
536EXPORT_SYMBOL_GPL(device_link_remove);
537
538static void device_links_missing_supplier(struct device *dev)
539{
540 struct device_link *link;
541
542 list_for_each_entry(link, &dev->links.suppliers, c_node)
543 if (link->status == DL_STATE_CONSUMER_PROBE)
544 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
545}
546
547/**
548 * device_links_check_suppliers - Check presence of supplier drivers.
549 * @dev: Consumer device.
550 *
551 * Check links from this device to any suppliers. Walk the list of the device's
552 * links to suppliers and see if all of them are available. If not, simply
553 * return -EPROBE_DEFER.
554 *
555 * We need to guarantee that the supplier will not go away after the check has
556 * been positive here. It only can go away in __device_release_driver() and
557 * that function checks the device's links to consumers. This means we need to
558 * mark the link as "consumer probe in progress" to make the supplier removal
559 * wait for us to complete (or bad things may happen).
560 *
561 * Links without the DL_FLAG_MANAGED flag set are ignored.
562 */
563int device_links_check_suppliers(struct device *dev)
564{
565 struct device_link *link;
566 int ret = 0;
567
568 device_links_write_lock();
569
570 list_for_each_entry(link, &dev->links.suppliers, c_node) {
571 if (!(link->flags & DL_FLAG_MANAGED))
572 continue;
573
574 if (link->status != DL_STATE_AVAILABLE) {
575 device_links_missing_supplier(dev);
576 ret = -EPROBE_DEFER;
577 break;
578 }
579 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
580 }
581 dev->links.status = DL_DEV_PROBING;
582
583 device_links_write_unlock();
584 return ret;
585}
586
587/**
588 * device_links_driver_bound - Update device links after probing its driver.
589 * @dev: Device to update the links for.
590 *
591 * The probe has been successful, so update links from this device to any
592 * consumers by changing their status to "available".
593 *
594 * Also change the status of @dev's links to suppliers to "active".
595 *
596 * Links without the DL_FLAG_MANAGED flag set are ignored.
597 */
598void device_links_driver_bound(struct device *dev)
599{
600 struct device_link *link;
601
602 device_links_write_lock();
603
604 list_for_each_entry(link, &dev->links.consumers, s_node) {
605 if (!(link->flags & DL_FLAG_MANAGED))
606 continue;
607
608 /*
609 * Links created during consumer probe may be in the "consumer
610 * probe" state to start with if the supplier is still probing
611 * when they are created and they may become "active" if the
612 * consumer probe returns first. Skip them here.
613 */
614 if (link->status == DL_STATE_CONSUMER_PROBE ||
615 link->status == DL_STATE_ACTIVE)
616 continue;
617
618 WARN_ON(link->status != DL_STATE_DORMANT);
619 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
620
621 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
622 driver_deferred_probe_add(link->consumer);
623 }
624
625 list_for_each_entry(link, &dev->links.suppliers, c_node) {
626 if (!(link->flags & DL_FLAG_MANAGED))
627 continue;
628
629 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
630 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
631 }
632
633 dev->links.status = DL_DEV_DRIVER_BOUND;
634
635 device_links_write_unlock();
636}
637
638static void device_link_drop_managed(struct device_link *link)
639{
640 link->flags &= ~DL_FLAG_MANAGED;
641 WRITE_ONCE(link->status, DL_STATE_NONE);
642 kref_put(&link->kref, __device_link_del);
643}
644
645/**
646 * __device_links_no_driver - Update links of a device without a driver.
647 * @dev: Device without a drvier.
648 *
649 * Delete all non-persistent links from this device to any suppliers.
650 *
651 * Persistent links stay around, but their status is changed to "available",
652 * unless they already are in the "supplier unbind in progress" state in which
653 * case they need not be updated.
654 *
655 * Links without the DL_FLAG_MANAGED flag set are ignored.
656 */
657static void __device_links_no_driver(struct device *dev)
658{
659 struct device_link *link, *ln;
660
661 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
662 if (!(link->flags & DL_FLAG_MANAGED))
663 continue;
664
665 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
666 device_link_drop_managed(link);
667 else if (link->status == DL_STATE_CONSUMER_PROBE ||
668 link->status == DL_STATE_ACTIVE)
669 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
670 }
671
672 dev->links.status = DL_DEV_NO_DRIVER;
673}
674
675/**
676 * device_links_no_driver - Update links after failing driver probe.
677 * @dev: Device whose driver has just failed to probe.
678 *
679 * Clean up leftover links to consumers for @dev and invoke
680 * %__device_links_no_driver() to update links to suppliers for it as
681 * appropriate.
682 *
683 * Links without the DL_FLAG_MANAGED flag set are ignored.
684 */
685void device_links_no_driver(struct device *dev)
686{
687 struct device_link *link;
688
689 device_links_write_lock();
690
691 list_for_each_entry(link, &dev->links.consumers, s_node) {
692 if (!(link->flags & DL_FLAG_MANAGED))
693 continue;
694
695 /*
696 * The probe has failed, so if the status of the link is
697 * "consumer probe" or "active", it must have been added by
698 * a probing consumer while this device was still probing.
699 * Change its state to "dormant", as it represents a valid
700 * relationship, but it is not functionally meaningful.
701 */
702 if (link->status == DL_STATE_CONSUMER_PROBE ||
703 link->status == DL_STATE_ACTIVE)
704 WRITE_ONCE(link->status, DL_STATE_DORMANT);
705 }
706
707 __device_links_no_driver(dev);
708
709 device_links_write_unlock();
710}
711
712/**
713 * device_links_driver_cleanup - Update links after driver removal.
714 * @dev: Device whose driver has just gone away.
715 *
716 * Update links to consumers for @dev by changing their status to "dormant" and
717 * invoke %__device_links_no_driver() to update links to suppliers for it as
718 * appropriate.
719 *
720 * Links without the DL_FLAG_MANAGED flag set are ignored.
721 */
722void device_links_driver_cleanup(struct device *dev)
723{
724 struct device_link *link, *ln;
725
726 device_links_write_lock();
727
728 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
729 if (!(link->flags & DL_FLAG_MANAGED))
730 continue;
731
732 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
733 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
734
735 /*
736 * autoremove the links between this @dev and its consumer
737 * devices that are not active, i.e. where the link state
738 * has moved to DL_STATE_SUPPLIER_UNBIND.
739 */
740 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
741 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
742 device_link_drop_managed(link);
743
744 WRITE_ONCE(link->status, DL_STATE_DORMANT);
745 }
746
747 __device_links_no_driver(dev);
748
749 device_links_write_unlock();
750}
751
752/**
753 * device_links_busy - Check if there are any busy links to consumers.
754 * @dev: Device to check.
755 *
756 * Check each consumer of the device and return 'true' if its link's status
757 * is one of "consumer probe" or "active" (meaning that the given consumer is
758 * probing right now or its driver is present). Otherwise, change the link
759 * state to "supplier unbind" to prevent the consumer from being probed
760 * successfully going forward.
761 *
762 * Return 'false' if there are no probing or active consumers.
763 *
764 * Links without the DL_FLAG_MANAGED flag set are ignored.
765 */
766bool device_links_busy(struct device *dev)
767{
768 struct device_link *link;
769 bool ret = false;
770
771 device_links_write_lock();
772
773 list_for_each_entry(link, &dev->links.consumers, s_node) {
774 if (!(link->flags & DL_FLAG_MANAGED))
775 continue;
776
777 if (link->status == DL_STATE_CONSUMER_PROBE
778 || link->status == DL_STATE_ACTIVE) {
779 ret = true;
780 break;
781 }
782 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
783 }
784
785 dev->links.status = DL_DEV_UNBINDING;
786
787 device_links_write_unlock();
788 return ret;
789}
790
791/**
792 * device_links_unbind_consumers - Force unbind consumers of the given device.
793 * @dev: Device to unbind the consumers of.
794 *
795 * Walk the list of links to consumers for @dev and if any of them is in the
796 * "consumer probe" state, wait for all device probes in progress to complete
797 * and start over.
798 *
799 * If that's not the case, change the status of the link to "supplier unbind"
800 * and check if the link was in the "active" state. If so, force the consumer
801 * driver to unbind and start over (the consumer will not re-probe as we have
802 * changed the state of the link already).
803 *
804 * Links without the DL_FLAG_MANAGED flag set are ignored.
805 */
806void device_links_unbind_consumers(struct device *dev)
807{
808 struct device_link *link;
809
810 start:
811 device_links_write_lock();
812
813 list_for_each_entry(link, &dev->links.consumers, s_node) {
814 enum device_link_state status;
815
816 if (!(link->flags & DL_FLAG_MANAGED))
817 continue;
818
819 status = link->status;
820 if (status == DL_STATE_CONSUMER_PROBE) {
821 device_links_write_unlock();
822
823 wait_for_device_probe();
824 goto start;
825 }
826 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
827 if (status == DL_STATE_ACTIVE) {
828 struct device *consumer = link->consumer;
829
830 get_device(consumer);
831
832 device_links_write_unlock();
833
834 device_release_driver_internal(consumer, NULL,
835 consumer->parent);
836 put_device(consumer);
837 goto start;
838 }
839 }
840
841 device_links_write_unlock();
842}
843
844/**
845 * device_links_purge - Delete existing links to other devices.
846 * @dev: Target device.
847 */
848static void device_links_purge(struct device *dev)
849{
850 struct device_link *link, *ln;
851
852 /*
853 * Delete all of the remaining links from this device to any other
854 * devices (either consumers or suppliers).
855 */
856 device_links_write_lock();
857
858 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
859 WARN_ON(link->status == DL_STATE_ACTIVE);
860 __device_link_del(&link->kref);
861 }
862
863 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
864 WARN_ON(link->status != DL_STATE_DORMANT &&
865 link->status != DL_STATE_NONE);
866 __device_link_del(&link->kref);
867 }
868
869 device_links_write_unlock();
870}
871
872/* Device links support end. */
873
874int (*platform_notify)(struct device *dev) = NULL;
875int (*platform_notify_remove)(struct device *dev) = NULL;
876static struct kobject *dev_kobj;
877struct kobject *sysfs_dev_char_kobj;
878struct kobject *sysfs_dev_block_kobj;
879
880static DEFINE_MUTEX(device_hotplug_lock);
881
882void lock_device_hotplug(void)
883{
884 mutex_lock(&device_hotplug_lock);
885}
886
887void unlock_device_hotplug(void)
888{
889 mutex_unlock(&device_hotplug_lock);
890}
891
892int lock_device_hotplug_sysfs(void)
893{
894 if (mutex_trylock(&device_hotplug_lock))
895 return 0;
896
897 /* Avoid busy looping (5 ms of sleep should do). */
898 msleep(5);
899 return restart_syscall();
900}
901
902#ifdef CONFIG_BLOCK
903static inline int device_is_not_partition(struct device *dev)
904{
905 return !(dev->type == &part_type);
906}
907#else
908static inline int device_is_not_partition(struct device *dev)
909{
910 return 1;
911}
912#endif
913
914static int
915device_platform_notify(struct device *dev, enum kobject_action action)
916{
917 int ret;
918
919 ret = acpi_platform_notify(dev, action);
920 if (ret)
921 return ret;
922
923 ret = software_node_notify(dev, action);
924 if (ret)
925 return ret;
926
927 if (platform_notify && action == KOBJ_ADD)
928 platform_notify(dev);
929 else if (platform_notify_remove && action == KOBJ_REMOVE)
930 platform_notify_remove(dev);
931 return 0;
932}
933
934/**
935 * dev_driver_string - Return a device's driver name, if at all possible
936 * @dev: struct device to get the name of
937 *
938 * Will return the device's driver's name if it is bound to a device. If
939 * the device is not bound to a driver, it will return the name of the bus
940 * it is attached to. If it is not attached to a bus either, an empty
941 * string will be returned.
942 */
943const char *dev_driver_string(const struct device *dev)
944{
945 struct device_driver *drv;
946
947 /* dev->driver can change to NULL underneath us because of unbinding,
948 * so be careful about accessing it. dev->bus and dev->class should
949 * never change once they are set, so they don't need special care.
950 */
951 drv = READ_ONCE(dev->driver);
952 return drv ? drv->name :
953 (dev->bus ? dev->bus->name :
954 (dev->class ? dev->class->name : ""));
955}
956EXPORT_SYMBOL(dev_driver_string);
957
958#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
959
960static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
961 char *buf)
962{
963 struct device_attribute *dev_attr = to_dev_attr(attr);
964 struct device *dev = kobj_to_dev(kobj);
965 ssize_t ret = -EIO;
966
967 if (dev_attr->show)
968 ret = dev_attr->show(dev, dev_attr, buf);
969 if (ret >= (ssize_t)PAGE_SIZE) {
970 printk("dev_attr_show: %pS returned bad count\n",
971 dev_attr->show);
972 }
973 return ret;
974}
975
976static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
977 const char *buf, size_t count)
978{
979 struct device_attribute *dev_attr = to_dev_attr(attr);
980 struct device *dev = kobj_to_dev(kobj);
981 ssize_t ret = -EIO;
982
983 if (dev_attr->store)
984 ret = dev_attr->store(dev, dev_attr, buf, count);
985 return ret;
986}
987
988static const struct sysfs_ops dev_sysfs_ops = {
989 .show = dev_attr_show,
990 .store = dev_attr_store,
991};
992
993#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
994
995ssize_t device_store_ulong(struct device *dev,
996 struct device_attribute *attr,
997 const char *buf, size_t size)
998{
999 struct dev_ext_attribute *ea = to_ext_attr(attr);
1000 int ret;
1001 unsigned long new;
1002
1003 ret = kstrtoul(buf, 0, &new);
1004 if (ret)
1005 return ret;
1006 *(unsigned long *)(ea->var) = new;
1007 /* Always return full write size even if we didn't consume all */
1008 return size;
1009}
1010EXPORT_SYMBOL_GPL(device_store_ulong);
1011
1012ssize_t device_show_ulong(struct device *dev,
1013 struct device_attribute *attr,
1014 char *buf)
1015{
1016 struct dev_ext_attribute *ea = to_ext_attr(attr);
1017 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1018}
1019EXPORT_SYMBOL_GPL(device_show_ulong);
1020
1021ssize_t device_store_int(struct device *dev,
1022 struct device_attribute *attr,
1023 const char *buf, size_t size)
1024{
1025 struct dev_ext_attribute *ea = to_ext_attr(attr);
1026 int ret;
1027 long new;
1028
1029 ret = kstrtol(buf, 0, &new);
1030 if (ret)
1031 return ret;
1032
1033 if (new > INT_MAX || new < INT_MIN)
1034 return -EINVAL;
1035 *(int *)(ea->var) = new;
1036 /* Always return full write size even if we didn't consume all */
1037 return size;
1038}
1039EXPORT_SYMBOL_GPL(device_store_int);
1040
1041ssize_t device_show_int(struct device *dev,
1042 struct device_attribute *attr,
1043 char *buf)
1044{
1045 struct dev_ext_attribute *ea = to_ext_attr(attr);
1046
1047 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1048}
1049EXPORT_SYMBOL_GPL(device_show_int);
1050
1051ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1052 const char *buf, size_t size)
1053{
1054 struct dev_ext_attribute *ea = to_ext_attr(attr);
1055
1056 if (strtobool(buf, ea->var) < 0)
1057 return -EINVAL;
1058
1059 return size;
1060}
1061EXPORT_SYMBOL_GPL(device_store_bool);
1062
1063ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1064 char *buf)
1065{
1066 struct dev_ext_attribute *ea = to_ext_attr(attr);
1067
1068 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1069}
1070EXPORT_SYMBOL_GPL(device_show_bool);
1071
1072/**
1073 * device_release - free device structure.
1074 * @kobj: device's kobject.
1075 *
1076 * This is called once the reference count for the object
1077 * reaches 0. We forward the call to the device's release
1078 * method, which should handle actually freeing the structure.
1079 */
1080static void device_release(struct kobject *kobj)
1081{
1082 struct device *dev = kobj_to_dev(kobj);
1083 struct device_private *p = dev->p;
1084
1085 /*
1086 * Some platform devices are driven without driver attached
1087 * and managed resources may have been acquired. Make sure
1088 * all resources are released.
1089 *
1090 * Drivers still can add resources into device after device
1091 * is deleted but alive, so release devres here to avoid
1092 * possible memory leak.
1093 */
1094 devres_release_all(dev);
1095
1096 if (dev->release)
1097 dev->release(dev);
1098 else if (dev->type && dev->type->release)
1099 dev->type->release(dev);
1100 else if (dev->class && dev->class->dev_release)
1101 dev->class->dev_release(dev);
1102 else
1103 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1104 dev_name(dev));
1105 kfree(p);
1106}
1107
1108static const void *device_namespace(struct kobject *kobj)
1109{
1110 struct device *dev = kobj_to_dev(kobj);
1111 const void *ns = NULL;
1112
1113 if (dev->class && dev->class->ns_type)
1114 ns = dev->class->namespace(dev);
1115
1116 return ns;
1117}
1118
1119static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1120{
1121 struct device *dev = kobj_to_dev(kobj);
1122
1123 if (dev->class && dev->class->get_ownership)
1124 dev->class->get_ownership(dev, uid, gid);
1125}
1126
1127static struct kobj_type device_ktype = {
1128 .release = device_release,
1129 .sysfs_ops = &dev_sysfs_ops,
1130 .namespace = device_namespace,
1131 .get_ownership = device_get_ownership,
1132};
1133
1134
1135static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1136{
1137 struct kobj_type *ktype = get_ktype(kobj);
1138
1139 if (ktype == &device_ktype) {
1140 struct device *dev = kobj_to_dev(kobj);
1141 if (dev->bus)
1142 return 1;
1143 if (dev->class)
1144 return 1;
1145 }
1146 return 0;
1147}
1148
1149static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1150{
1151 struct device *dev = kobj_to_dev(kobj);
1152
1153 if (dev->bus)
1154 return dev->bus->name;
1155 if (dev->class)
1156 return dev->class->name;
1157 return NULL;
1158}
1159
1160static int dev_uevent(struct kset *kset, struct kobject *kobj,
1161 struct kobj_uevent_env *env)
1162{
1163 struct device *dev = kobj_to_dev(kobj);
1164 int retval = 0;
1165
1166 /* add device node properties if present */
1167 if (MAJOR(dev->devt)) {
1168 const char *tmp;
1169 const char *name;
1170 umode_t mode = 0;
1171 kuid_t uid = GLOBAL_ROOT_UID;
1172 kgid_t gid = GLOBAL_ROOT_GID;
1173
1174 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1175 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1176 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1177 if (name) {
1178 add_uevent_var(env, "DEVNAME=%s", name);
1179 if (mode)
1180 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1181 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1182 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1183 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1184 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1185 kfree(tmp);
1186 }
1187 }
1188
1189 if (dev->type && dev->type->name)
1190 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1191
1192 if (dev->driver)
1193 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1194
1195 /* Add common DT information about the device */
1196 of_device_uevent(dev, env);
1197
1198 /* have the bus specific function add its stuff */
1199 if (dev->bus && dev->bus->uevent) {
1200 retval = dev->bus->uevent(dev, env);
1201 if (retval)
1202 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1203 dev_name(dev), __func__, retval);
1204 }
1205
1206 /* have the class specific function add its stuff */
1207 if (dev->class && dev->class->dev_uevent) {
1208 retval = dev->class->dev_uevent(dev, env);
1209 if (retval)
1210 pr_debug("device: '%s': %s: class uevent() "
1211 "returned %d\n", dev_name(dev),
1212 __func__, retval);
1213 }
1214
1215 /* have the device type specific function add its stuff */
1216 if (dev->type && dev->type->uevent) {
1217 retval = dev->type->uevent(dev, env);
1218 if (retval)
1219 pr_debug("device: '%s': %s: dev_type uevent() "
1220 "returned %d\n", dev_name(dev),
1221 __func__, retval);
1222 }
1223
1224 return retval;
1225}
1226
1227static const struct kset_uevent_ops device_uevent_ops = {
1228 .filter = dev_uevent_filter,
1229 .name = dev_uevent_name,
1230 .uevent = dev_uevent,
1231};
1232
1233static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1234 char *buf)
1235{
1236 struct kobject *top_kobj;
1237 struct kset *kset;
1238 struct kobj_uevent_env *env = NULL;
1239 int i;
1240 size_t count = 0;
1241 int retval;
1242
1243 /* search the kset, the device belongs to */
1244 top_kobj = &dev->kobj;
1245 while (!top_kobj->kset && top_kobj->parent)
1246 top_kobj = top_kobj->parent;
1247 if (!top_kobj->kset)
1248 goto out;
1249
1250 kset = top_kobj->kset;
1251 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1252 goto out;
1253
1254 /* respect filter */
1255 if (kset->uevent_ops && kset->uevent_ops->filter)
1256 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1257 goto out;
1258
1259 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1260 if (!env)
1261 return -ENOMEM;
1262
1263 /* let the kset specific function add its keys */
1264 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1265 if (retval)
1266 goto out;
1267
1268 /* copy keys to file */
1269 for (i = 0; i < env->envp_idx; i++)
1270 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1271out:
1272 kfree(env);
1273 return count;
1274}
1275
1276static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1277 const char *buf, size_t count)
1278{
1279 int rc;
1280
1281 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1282
1283 if (rc) {
1284 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1285 return rc;
1286 }
1287
1288 return count;
1289}
1290static DEVICE_ATTR_RW(uevent);
1291
1292static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1293 char *buf)
1294{
1295 bool val;
1296
1297 device_lock(dev);
1298 val = !dev->offline;
1299 device_unlock(dev);
1300 return sprintf(buf, "%u\n", val);
1301}
1302
1303static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1304 const char *buf, size_t count)
1305{
1306 bool val;
1307 int ret;
1308
1309 ret = strtobool(buf, &val);
1310 if (ret < 0)
1311 return ret;
1312
1313 ret = lock_device_hotplug_sysfs();
1314 if (ret)
1315 return ret;
1316
1317 ret = val ? device_online(dev) : device_offline(dev);
1318 unlock_device_hotplug();
1319 return ret < 0 ? ret : count;
1320}
1321static DEVICE_ATTR_RW(online);
1322
1323int device_add_groups(struct device *dev, const struct attribute_group **groups)
1324{
1325 return sysfs_create_groups(&dev->kobj, groups);
1326}
1327EXPORT_SYMBOL_GPL(device_add_groups);
1328
1329void device_remove_groups(struct device *dev,
1330 const struct attribute_group **groups)
1331{
1332 sysfs_remove_groups(&dev->kobj, groups);
1333}
1334EXPORT_SYMBOL_GPL(device_remove_groups);
1335
1336union device_attr_group_devres {
1337 const struct attribute_group *group;
1338 const struct attribute_group **groups;
1339};
1340
1341static int devm_attr_group_match(struct device *dev, void *res, void *data)
1342{
1343 return ((union device_attr_group_devres *)res)->group == data;
1344}
1345
1346static void devm_attr_group_remove(struct device *dev, void *res)
1347{
1348 union device_attr_group_devres *devres = res;
1349 const struct attribute_group *group = devres->group;
1350
1351 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1352 sysfs_remove_group(&dev->kobj, group);
1353}
1354
1355static void devm_attr_groups_remove(struct device *dev, void *res)
1356{
1357 union device_attr_group_devres *devres = res;
1358 const struct attribute_group **groups = devres->groups;
1359
1360 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1361 sysfs_remove_groups(&dev->kobj, groups);
1362}
1363
1364/**
1365 * devm_device_add_group - given a device, create a managed attribute group
1366 * @dev: The device to create the group for
1367 * @grp: The attribute group to create
1368 *
1369 * This function creates a group for the first time. It will explicitly
1370 * warn and error if any of the attribute files being created already exist.
1371 *
1372 * Returns 0 on success or error code on failure.
1373 */
1374int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1375{
1376 union device_attr_group_devres *devres;
1377 int error;
1378
1379 devres = devres_alloc(devm_attr_group_remove,
1380 sizeof(*devres), GFP_KERNEL);
1381 if (!devres)
1382 return -ENOMEM;
1383
1384 error = sysfs_create_group(&dev->kobj, grp);
1385 if (error) {
1386 devres_free(devres);
1387 return error;
1388 }
1389
1390 devres->group = grp;
1391 devres_add(dev, devres);
1392 return 0;
1393}
1394EXPORT_SYMBOL_GPL(devm_device_add_group);
1395
1396/**
1397 * devm_device_remove_group: remove a managed group from a device
1398 * @dev: device to remove the group from
1399 * @grp: group to remove
1400 *
1401 * This function removes a group of attributes from a device. The attributes
1402 * previously have to have been created for this group, otherwise it will fail.
1403 */
1404void devm_device_remove_group(struct device *dev,
1405 const struct attribute_group *grp)
1406{
1407 WARN_ON(devres_release(dev, devm_attr_group_remove,
1408 devm_attr_group_match,
1409 /* cast away const */ (void *)grp));
1410}
1411EXPORT_SYMBOL_GPL(devm_device_remove_group);
1412
1413/**
1414 * devm_device_add_groups - create a bunch of managed attribute groups
1415 * @dev: The device to create the group for
1416 * @groups: The attribute groups to create, NULL terminated
1417 *
1418 * This function creates a bunch of managed attribute groups. If an error
1419 * occurs when creating a group, all previously created groups will be
1420 * removed, unwinding everything back to the original state when this
1421 * function was called. It will explicitly warn and error if any of the
1422 * attribute files being created already exist.
1423 *
1424 * Returns 0 on success or error code from sysfs_create_group on failure.
1425 */
1426int devm_device_add_groups(struct device *dev,
1427 const struct attribute_group **groups)
1428{
1429 union device_attr_group_devres *devres;
1430 int error;
1431
1432 devres = devres_alloc(devm_attr_groups_remove,
1433 sizeof(*devres), GFP_KERNEL);
1434 if (!devres)
1435 return -ENOMEM;
1436
1437 error = sysfs_create_groups(&dev->kobj, groups);
1438 if (error) {
1439 devres_free(devres);
1440 return error;
1441 }
1442
1443 devres->groups = groups;
1444 devres_add(dev, devres);
1445 return 0;
1446}
1447EXPORT_SYMBOL_GPL(devm_device_add_groups);
1448
1449/**
1450 * devm_device_remove_groups - remove a list of managed groups
1451 *
1452 * @dev: The device for the groups to be removed from
1453 * @groups: NULL terminated list of groups to be removed
1454 *
1455 * If groups is not NULL, remove the specified groups from the device.
1456 */
1457void devm_device_remove_groups(struct device *dev,
1458 const struct attribute_group **groups)
1459{
1460 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1461 devm_attr_group_match,
1462 /* cast away const */ (void *)groups));
1463}
1464EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1465
1466static int device_add_attrs(struct device *dev)
1467{
1468 struct class *class = dev->class;
1469 const struct device_type *type = dev->type;
1470 int error;
1471
1472 if (class) {
1473 error = device_add_groups(dev, class->dev_groups);
1474 if (error)
1475 return error;
1476 }
1477
1478 if (type) {
1479 error = device_add_groups(dev, type->groups);
1480 if (error)
1481 goto err_remove_class_groups;
1482 }
1483
1484 error = device_add_groups(dev, dev->groups);
1485 if (error)
1486 goto err_remove_type_groups;
1487
1488 if (device_supports_offline(dev) && !dev->offline_disabled) {
1489 error = device_create_file(dev, &dev_attr_online);
1490 if (error)
1491 goto err_remove_dev_groups;
1492 }
1493
1494 return 0;
1495
1496 err_remove_dev_groups:
1497 device_remove_groups(dev, dev->groups);
1498 err_remove_type_groups:
1499 if (type)
1500 device_remove_groups(dev, type->groups);
1501 err_remove_class_groups:
1502 if (class)
1503 device_remove_groups(dev, class->dev_groups);
1504
1505 return error;
1506}
1507
1508static void device_remove_attrs(struct device *dev)
1509{
1510 struct class *class = dev->class;
1511 const struct device_type *type = dev->type;
1512
1513 device_remove_file(dev, &dev_attr_online);
1514 device_remove_groups(dev, dev->groups);
1515
1516 if (type)
1517 device_remove_groups(dev, type->groups);
1518
1519 if (class)
1520 device_remove_groups(dev, class->dev_groups);
1521}
1522
1523static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1524 char *buf)
1525{
1526 return print_dev_t(buf, dev->devt);
1527}
1528static DEVICE_ATTR_RO(dev);
1529
1530/* /sys/devices/ */
1531struct kset *devices_kset;
1532
1533/**
1534 * devices_kset_move_before - Move device in the devices_kset's list.
1535 * @deva: Device to move.
1536 * @devb: Device @deva should come before.
1537 */
1538static void devices_kset_move_before(struct device *deva, struct device *devb)
1539{
1540 if (!devices_kset)
1541 return;
1542 pr_debug("devices_kset: Moving %s before %s\n",
1543 dev_name(deva), dev_name(devb));
1544 spin_lock(&devices_kset->list_lock);
1545 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1546 spin_unlock(&devices_kset->list_lock);
1547}
1548
1549/**
1550 * devices_kset_move_after - Move device in the devices_kset's list.
1551 * @deva: Device to move
1552 * @devb: Device @deva should come after.
1553 */
1554static void devices_kset_move_after(struct device *deva, struct device *devb)
1555{
1556 if (!devices_kset)
1557 return;
1558 pr_debug("devices_kset: Moving %s after %s\n",
1559 dev_name(deva), dev_name(devb));
1560 spin_lock(&devices_kset->list_lock);
1561 list_move(&deva->kobj.entry, &devb->kobj.entry);
1562 spin_unlock(&devices_kset->list_lock);
1563}
1564
1565/**
1566 * devices_kset_move_last - move the device to the end of devices_kset's list.
1567 * @dev: device to move
1568 */
1569void devices_kset_move_last(struct device *dev)
1570{
1571 if (!devices_kset)
1572 return;
1573 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1574 spin_lock(&devices_kset->list_lock);
1575 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1576 spin_unlock(&devices_kset->list_lock);
1577}
1578
1579/**
1580 * device_create_file - create sysfs attribute file for device.
1581 * @dev: device.
1582 * @attr: device attribute descriptor.
1583 */
1584int device_create_file(struct device *dev,
1585 const struct device_attribute *attr)
1586{
1587 int error = 0;
1588
1589 if (dev) {
1590 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1591 "Attribute %s: write permission without 'store'\n",
1592 attr->attr.name);
1593 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1594 "Attribute %s: read permission without 'show'\n",
1595 attr->attr.name);
1596 error = sysfs_create_file(&dev->kobj, &attr->attr);
1597 }
1598
1599 return error;
1600}
1601EXPORT_SYMBOL_GPL(device_create_file);
1602
1603/**
1604 * device_remove_file - remove sysfs attribute file.
1605 * @dev: device.
1606 * @attr: device attribute descriptor.
1607 */
1608void device_remove_file(struct device *dev,
1609 const struct device_attribute *attr)
1610{
1611 if (dev)
1612 sysfs_remove_file(&dev->kobj, &attr->attr);
1613}
1614EXPORT_SYMBOL_GPL(device_remove_file);
1615
1616/**
1617 * device_remove_file_self - remove sysfs attribute file from its own method.
1618 * @dev: device.
1619 * @attr: device attribute descriptor.
1620 *
1621 * See kernfs_remove_self() for details.
1622 */
1623bool device_remove_file_self(struct device *dev,
1624 const struct device_attribute *attr)
1625{
1626 if (dev)
1627 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1628 else
1629 return false;
1630}
1631EXPORT_SYMBOL_GPL(device_remove_file_self);
1632
1633/**
1634 * device_create_bin_file - create sysfs binary attribute file for device.
1635 * @dev: device.
1636 * @attr: device binary attribute descriptor.
1637 */
1638int device_create_bin_file(struct device *dev,
1639 const struct bin_attribute *attr)
1640{
1641 int error = -EINVAL;
1642 if (dev)
1643 error = sysfs_create_bin_file(&dev->kobj, attr);
1644 return error;
1645}
1646EXPORT_SYMBOL_GPL(device_create_bin_file);
1647
1648/**
1649 * device_remove_bin_file - remove sysfs binary attribute file
1650 * @dev: device.
1651 * @attr: device binary attribute descriptor.
1652 */
1653void device_remove_bin_file(struct device *dev,
1654 const struct bin_attribute *attr)
1655{
1656 if (dev)
1657 sysfs_remove_bin_file(&dev->kobj, attr);
1658}
1659EXPORT_SYMBOL_GPL(device_remove_bin_file);
1660
1661static void klist_children_get(struct klist_node *n)
1662{
1663 struct device_private *p = to_device_private_parent(n);
1664 struct device *dev = p->device;
1665
1666 get_device(dev);
1667}
1668
1669static void klist_children_put(struct klist_node *n)
1670{
1671 struct device_private *p = to_device_private_parent(n);
1672 struct device *dev = p->device;
1673
1674 put_device(dev);
1675}
1676
1677/**
1678 * device_initialize - init device structure.
1679 * @dev: device.
1680 *
1681 * This prepares the device for use by other layers by initializing
1682 * its fields.
1683 * It is the first half of device_register(), if called by
1684 * that function, though it can also be called separately, so one
1685 * may use @dev's fields. In particular, get_device()/put_device()
1686 * may be used for reference counting of @dev after calling this
1687 * function.
1688 *
1689 * All fields in @dev must be initialized by the caller to 0, except
1690 * for those explicitly set to some other value. The simplest
1691 * approach is to use kzalloc() to allocate the structure containing
1692 * @dev.
1693 *
1694 * NOTE: Use put_device() to give up your reference instead of freeing
1695 * @dev directly once you have called this function.
1696 */
1697void device_initialize(struct device *dev)
1698{
1699 dev->kobj.kset = devices_kset;
1700 kobject_init(&dev->kobj, &device_ktype);
1701 INIT_LIST_HEAD(&dev->dma_pools);
1702 mutex_init(&dev->mutex);
1703#ifdef CONFIG_PROVE_LOCKING
1704 mutex_init(&dev->lockdep_mutex);
1705#endif
1706 lockdep_set_novalidate_class(&dev->mutex);
1707 spin_lock_init(&dev->devres_lock);
1708 INIT_LIST_HEAD(&dev->devres_head);
1709 device_pm_init(dev);
1710 set_dev_node(dev, -1);
1711#ifdef CONFIG_GENERIC_MSI_IRQ
1712 INIT_LIST_HEAD(&dev->msi_list);
1713#endif
1714 INIT_LIST_HEAD(&dev->links.consumers);
1715 INIT_LIST_HEAD(&dev->links.suppliers);
1716 dev->links.status = DL_DEV_NO_DRIVER;
1717}
1718EXPORT_SYMBOL_GPL(device_initialize);
1719
1720struct kobject *virtual_device_parent(struct device *dev)
1721{
1722 static struct kobject *virtual_dir = NULL;
1723
1724 if (!virtual_dir)
1725 virtual_dir = kobject_create_and_add("virtual",
1726 &devices_kset->kobj);
1727
1728 return virtual_dir;
1729}
1730
1731struct class_dir {
1732 struct kobject kobj;
1733 struct class *class;
1734};
1735
1736#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1737
1738static void class_dir_release(struct kobject *kobj)
1739{
1740 struct class_dir *dir = to_class_dir(kobj);
1741 kfree(dir);
1742}
1743
1744static const
1745struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1746{
1747 struct class_dir *dir = to_class_dir(kobj);
1748 return dir->class->ns_type;
1749}
1750
1751static struct kobj_type class_dir_ktype = {
1752 .release = class_dir_release,
1753 .sysfs_ops = &kobj_sysfs_ops,
1754 .child_ns_type = class_dir_child_ns_type
1755};
1756
1757static struct kobject *
1758class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1759{
1760 struct class_dir *dir;
1761 int retval;
1762
1763 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1764 if (!dir)
1765 return ERR_PTR(-ENOMEM);
1766
1767 dir->class = class;
1768 kobject_init(&dir->kobj, &class_dir_ktype);
1769
1770 dir->kobj.kset = &class->p->glue_dirs;
1771
1772 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1773 if (retval < 0) {
1774 kobject_put(&dir->kobj);
1775 return ERR_PTR(retval);
1776 }
1777 return &dir->kobj;
1778}
1779
1780static DEFINE_MUTEX(gdp_mutex);
1781
1782static struct kobject *get_device_parent(struct device *dev,
1783 struct device *parent)
1784{
1785 if (dev->class) {
1786 struct kobject *kobj = NULL;
1787 struct kobject *parent_kobj;
1788 struct kobject *k;
1789
1790#ifdef CONFIG_BLOCK
1791 /* block disks show up in /sys/block */
1792 if (sysfs_deprecated && dev->class == &block_class) {
1793 if (parent && parent->class == &block_class)
1794 return &parent->kobj;
1795 return &block_class.p->subsys.kobj;
1796 }
1797#endif
1798
1799 /*
1800 * If we have no parent, we live in "virtual".
1801 * Class-devices with a non class-device as parent, live
1802 * in a "glue" directory to prevent namespace collisions.
1803 */
1804 if (parent == NULL)
1805 parent_kobj = virtual_device_parent(dev);
1806 else if (parent->class && !dev->class->ns_type)
1807 return &parent->kobj;
1808 else
1809 parent_kobj = &parent->kobj;
1810
1811 mutex_lock(&gdp_mutex);
1812
1813 /* find our class-directory at the parent and reference it */
1814 spin_lock(&dev->class->p->glue_dirs.list_lock);
1815 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1816 if (k->parent == parent_kobj) {
1817 kobj = kobject_get(k);
1818 break;
1819 }
1820 spin_unlock(&dev->class->p->glue_dirs.list_lock);
1821 if (kobj) {
1822 mutex_unlock(&gdp_mutex);
1823 return kobj;
1824 }
1825
1826 /* or create a new class-directory at the parent device */
1827 k = class_dir_create_and_add(dev->class, parent_kobj);
1828 /* do not emit an uevent for this simple "glue" directory */
1829 mutex_unlock(&gdp_mutex);
1830 return k;
1831 }
1832
1833 /* subsystems can specify a default root directory for their devices */
1834 if (!parent && dev->bus && dev->bus->dev_root)
1835 return &dev->bus->dev_root->kobj;
1836
1837 if (parent)
1838 return &parent->kobj;
1839 return NULL;
1840}
1841
1842static inline bool live_in_glue_dir(struct kobject *kobj,
1843 struct device *dev)
1844{
1845 if (!kobj || !dev->class ||
1846 kobj->kset != &dev->class->p->glue_dirs)
1847 return false;
1848 return true;
1849}
1850
1851static inline struct kobject *get_glue_dir(struct device *dev)
1852{
1853 return dev->kobj.parent;
1854}
1855
1856/*
1857 * make sure cleaning up dir as the last step, we need to make
1858 * sure .release handler of kobject is run with holding the
1859 * global lock
1860 */
1861static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1862{
1863 unsigned int ref;
1864
1865 /* see if we live in a "glue" directory */
1866 if (!live_in_glue_dir(glue_dir, dev))
1867 return;
1868
1869 mutex_lock(&gdp_mutex);
1870 /**
1871 * There is a race condition between removing glue directory
1872 * and adding a new device under the glue directory.
1873 *
1874 * CPU1: CPU2:
1875 *
1876 * device_add()
1877 * get_device_parent()
1878 * class_dir_create_and_add()
1879 * kobject_add_internal()
1880 * create_dir() // create glue_dir
1881 *
1882 * device_add()
1883 * get_device_parent()
1884 * kobject_get() // get glue_dir
1885 *
1886 * device_del()
1887 * cleanup_glue_dir()
1888 * kobject_del(glue_dir)
1889 *
1890 * kobject_add()
1891 * kobject_add_internal()
1892 * create_dir() // in glue_dir
1893 * sysfs_create_dir_ns()
1894 * kernfs_create_dir_ns(sd)
1895 *
1896 * sysfs_remove_dir() // glue_dir->sd=NULL
1897 * sysfs_put() // free glue_dir->sd
1898 *
1899 * // sd is freed
1900 * kernfs_new_node(sd)
1901 * kernfs_get(glue_dir)
1902 * kernfs_add_one()
1903 * kernfs_put()
1904 *
1905 * Before CPU1 remove last child device under glue dir, if CPU2 add
1906 * a new device under glue dir, the glue_dir kobject reference count
1907 * will be increase to 2 in kobject_get(k). And CPU2 has been called
1908 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
1909 * and sysfs_put(). This result in glue_dir->sd is freed.
1910 *
1911 * Then the CPU2 will see a stale "empty" but still potentially used
1912 * glue dir around in kernfs_new_node().
1913 *
1914 * In order to avoid this happening, we also should make sure that
1915 * kernfs_node for glue_dir is released in CPU1 only when refcount
1916 * for glue_dir kobj is 1.
1917 */
1918 ref = kref_read(&glue_dir->kref);
1919 if (!kobject_has_children(glue_dir) && !--ref)
1920 kobject_del(glue_dir);
1921 kobject_put(glue_dir);
1922 mutex_unlock(&gdp_mutex);
1923}
1924
1925static int device_add_class_symlinks(struct device *dev)
1926{
1927 struct device_node *of_node = dev_of_node(dev);
1928 int error;
1929
1930 if (of_node) {
1931 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1932 if (error)
1933 dev_warn(dev, "Error %d creating of_node link\n",error);
1934 /* An error here doesn't warrant bringing down the device */
1935 }
1936
1937 if (!dev->class)
1938 return 0;
1939
1940 error = sysfs_create_link(&dev->kobj,
1941 &dev->class->p->subsys.kobj,
1942 "subsystem");
1943 if (error)
1944 goto out_devnode;
1945
1946 if (dev->parent && device_is_not_partition(dev)) {
1947 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1948 "device");
1949 if (error)
1950 goto out_subsys;
1951 }
1952
1953#ifdef CONFIG_BLOCK
1954 /* /sys/block has directories and does not need symlinks */
1955 if (sysfs_deprecated && dev->class == &block_class)
1956 return 0;
1957#endif
1958
1959 /* link in the class directory pointing to the device */
1960 error = sysfs_create_link(&dev->class->p->subsys.kobj,
1961 &dev->kobj, dev_name(dev));
1962 if (error)
1963 goto out_device;
1964
1965 return 0;
1966
1967out_device:
1968 sysfs_remove_link(&dev->kobj, "device");
1969
1970out_subsys:
1971 sysfs_remove_link(&dev->kobj, "subsystem");
1972out_devnode:
1973 sysfs_remove_link(&dev->kobj, "of_node");
1974 return error;
1975}
1976
1977static void device_remove_class_symlinks(struct device *dev)
1978{
1979 if (dev_of_node(dev))
1980 sysfs_remove_link(&dev->kobj, "of_node");
1981
1982 if (!dev->class)
1983 return;
1984
1985 if (dev->parent && device_is_not_partition(dev))
1986 sysfs_remove_link(&dev->kobj, "device");
1987 sysfs_remove_link(&dev->kobj, "subsystem");
1988#ifdef CONFIG_BLOCK
1989 if (sysfs_deprecated && dev->class == &block_class)
1990 return;
1991#endif
1992 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1993}
1994
1995/**
1996 * dev_set_name - set a device name
1997 * @dev: device
1998 * @fmt: format string for the device's name
1999 */
2000int dev_set_name(struct device *dev, const char *fmt, ...)
2001{
2002 va_list vargs;
2003 int err;
2004
2005 va_start(vargs, fmt);
2006 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2007 va_end(vargs);
2008 return err;
2009}
2010EXPORT_SYMBOL_GPL(dev_set_name);
2011
2012/**
2013 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2014 * @dev: device
2015 *
2016 * By default we select char/ for new entries. Setting class->dev_obj
2017 * to NULL prevents an entry from being created. class->dev_kobj must
2018 * be set (or cleared) before any devices are registered to the class
2019 * otherwise device_create_sys_dev_entry() and
2020 * device_remove_sys_dev_entry() will disagree about the presence of
2021 * the link.
2022 */
2023static struct kobject *device_to_dev_kobj(struct device *dev)
2024{
2025 struct kobject *kobj;
2026
2027 if (dev->class)
2028 kobj = dev->class->dev_kobj;
2029 else
2030 kobj = sysfs_dev_char_kobj;
2031
2032 return kobj;
2033}
2034
2035static int device_create_sys_dev_entry(struct device *dev)
2036{
2037 struct kobject *kobj = device_to_dev_kobj(dev);
2038 int error = 0;
2039 char devt_str[15];
2040
2041 if (kobj) {
2042 format_dev_t(devt_str, dev->devt);
2043 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2044 }
2045
2046 return error;
2047}
2048
2049static void device_remove_sys_dev_entry(struct device *dev)
2050{
2051 struct kobject *kobj = device_to_dev_kobj(dev);
2052 char devt_str[15];
2053
2054 if (kobj) {
2055 format_dev_t(devt_str, dev->devt);
2056 sysfs_remove_link(kobj, devt_str);
2057 }
2058}
2059
2060static int device_private_init(struct device *dev)
2061{
2062 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2063 if (!dev->p)
2064 return -ENOMEM;
2065 dev->p->device = dev;
2066 klist_init(&dev->p->klist_children, klist_children_get,
2067 klist_children_put);
2068 INIT_LIST_HEAD(&dev->p->deferred_probe);
2069 return 0;
2070}
2071
2072/**
2073 * device_add - add device to device hierarchy.
2074 * @dev: device.
2075 *
2076 * This is part 2 of device_register(), though may be called
2077 * separately _iff_ device_initialize() has been called separately.
2078 *
2079 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2080 * to the global and sibling lists for the device, then
2081 * adds it to the other relevant subsystems of the driver model.
2082 *
2083 * Do not call this routine or device_register() more than once for
2084 * any device structure. The driver model core is not designed to work
2085 * with devices that get unregistered and then spring back to life.
2086 * (Among other things, it's very hard to guarantee that all references
2087 * to the previous incarnation of @dev have been dropped.) Allocate
2088 * and register a fresh new struct device instead.
2089 *
2090 * NOTE: _Never_ directly free @dev after calling this function, even
2091 * if it returned an error! Always use put_device() to give up your
2092 * reference instead.
2093 *
2094 * Rule of thumb is: if device_add() succeeds, you should call
2095 * device_del() when you want to get rid of it. If device_add() has
2096 * *not* succeeded, use *only* put_device() to drop the reference
2097 * count.
2098 */
2099int device_add(struct device *dev)
2100{
2101 struct device *parent;
2102 struct kobject *kobj;
2103 struct class_interface *class_intf;
2104 int error = -EINVAL;
2105 struct kobject *glue_dir = NULL;
2106
2107 dev = get_device(dev);
2108 if (!dev)
2109 goto done;
2110
2111 if (!dev->p) {
2112 error = device_private_init(dev);
2113 if (error)
2114 goto done;
2115 }
2116
2117 /*
2118 * for statically allocated devices, which should all be converted
2119 * some day, we need to initialize the name. We prevent reading back
2120 * the name, and force the use of dev_name()
2121 */
2122 if (dev->init_name) {
2123 dev_set_name(dev, "%s", dev->init_name);
2124 dev->init_name = NULL;
2125 }
2126
2127 /* subsystems can specify simple device enumeration */
2128 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2129 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2130
2131 if (!dev_name(dev)) {
2132 error = -EINVAL;
2133 goto name_error;
2134 }
2135
2136 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2137
2138 parent = get_device(dev->parent);
2139 kobj = get_device_parent(dev, parent);
2140 if (IS_ERR(kobj)) {
2141 error = PTR_ERR(kobj);
2142 goto parent_error;
2143 }
2144 if (kobj)
2145 dev->kobj.parent = kobj;
2146
2147 /* use parent numa_node */
2148 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2149 set_dev_node(dev, dev_to_node(parent));
2150
2151 /* first, register with generic layer. */
2152 /* we require the name to be set before, and pass NULL */
2153 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2154 if (error) {
2155 glue_dir = get_glue_dir(dev);
2156 goto Error;
2157 }
2158
2159 /* notify platform of device entry */
2160 error = device_platform_notify(dev, KOBJ_ADD);
2161 if (error)
2162 goto platform_error;
2163
2164 error = device_create_file(dev, &dev_attr_uevent);
2165 if (error)
2166 goto attrError;
2167
2168 error = device_add_class_symlinks(dev);
2169 if (error)
2170 goto SymlinkError;
2171 error = device_add_attrs(dev);
2172 if (error)
2173 goto AttrsError;
2174 error = bus_add_device(dev);
2175 if (error)
2176 goto BusError;
2177 error = dpm_sysfs_add(dev);
2178 if (error)
2179 goto DPMError;
2180 device_pm_add(dev);
2181
2182 if (MAJOR(dev->devt)) {
2183 error = device_create_file(dev, &dev_attr_dev);
2184 if (error)
2185 goto DevAttrError;
2186
2187 error = device_create_sys_dev_entry(dev);
2188 if (error)
2189 goto SysEntryError;
2190
2191 devtmpfs_create_node(dev);
2192 }
2193
2194 /* Notify clients of device addition. This call must come
2195 * after dpm_sysfs_add() and before kobject_uevent().
2196 */
2197 if (dev->bus)
2198 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2199 BUS_NOTIFY_ADD_DEVICE, dev);
2200
2201 kobject_uevent(&dev->kobj, KOBJ_ADD);
2202 bus_probe_device(dev);
2203 if (parent)
2204 klist_add_tail(&dev->p->knode_parent,
2205 &parent->p->klist_children);
2206
2207 if (dev->class) {
2208 mutex_lock(&dev->class->p->mutex);
2209 /* tie the class to the device */
2210 klist_add_tail(&dev->p->knode_class,
2211 &dev->class->p->klist_devices);
2212
2213 /* notify any interfaces that the device is here */
2214 list_for_each_entry(class_intf,
2215 &dev->class->p->interfaces, node)
2216 if (class_intf->add_dev)
2217 class_intf->add_dev(dev, class_intf);
2218 mutex_unlock(&dev->class->p->mutex);
2219 }
2220done:
2221 put_device(dev);
2222 return error;
2223 SysEntryError:
2224 if (MAJOR(dev->devt))
2225 device_remove_file(dev, &dev_attr_dev);
2226 DevAttrError:
2227 device_pm_remove(dev);
2228 dpm_sysfs_remove(dev);
2229 DPMError:
2230 bus_remove_device(dev);
2231 BusError:
2232 device_remove_attrs(dev);
2233 AttrsError:
2234 device_remove_class_symlinks(dev);
2235 SymlinkError:
2236 device_remove_file(dev, &dev_attr_uevent);
2237 attrError:
2238 device_platform_notify(dev, KOBJ_REMOVE);
2239platform_error:
2240 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2241 glue_dir = get_glue_dir(dev);
2242 kobject_del(&dev->kobj);
2243 Error:
2244 cleanup_glue_dir(dev, glue_dir);
2245parent_error:
2246 put_device(parent);
2247name_error:
2248 kfree(dev->p);
2249 dev->p = NULL;
2250 goto done;
2251}
2252EXPORT_SYMBOL_GPL(device_add);
2253
2254/**
2255 * device_register - register a device with the system.
2256 * @dev: pointer to the device structure
2257 *
2258 * This happens in two clean steps - initialize the device
2259 * and add it to the system. The two steps can be called
2260 * separately, but this is the easiest and most common.
2261 * I.e. you should only call the two helpers separately if
2262 * have a clearly defined need to use and refcount the device
2263 * before it is added to the hierarchy.
2264 *
2265 * For more information, see the kerneldoc for device_initialize()
2266 * and device_add().
2267 *
2268 * NOTE: _Never_ directly free @dev after calling this function, even
2269 * if it returned an error! Always use put_device() to give up the
2270 * reference initialized in this function instead.
2271 */
2272int device_register(struct device *dev)
2273{
2274 device_initialize(dev);
2275 return device_add(dev);
2276}
2277EXPORT_SYMBOL_GPL(device_register);
2278
2279/**
2280 * get_device - increment reference count for device.
2281 * @dev: device.
2282 *
2283 * This simply forwards the call to kobject_get(), though
2284 * we do take care to provide for the case that we get a NULL
2285 * pointer passed in.
2286 */
2287struct device *get_device(struct device *dev)
2288{
2289 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2290}
2291EXPORT_SYMBOL_GPL(get_device);
2292
2293/**
2294 * put_device - decrement reference count.
2295 * @dev: device in question.
2296 */
2297void put_device(struct device *dev)
2298{
2299 /* might_sleep(); */
2300 if (dev)
2301 kobject_put(&dev->kobj);
2302}
2303EXPORT_SYMBOL_GPL(put_device);
2304
2305bool kill_device(struct device *dev)
2306{
2307 /*
2308 * Require the device lock and set the "dead" flag to guarantee that
2309 * the update behavior is consistent with the other bitfields near
2310 * it and that we cannot have an asynchronous probe routine trying
2311 * to run while we are tearing out the bus/class/sysfs from
2312 * underneath the device.
2313 */
2314 lockdep_assert_held(&dev->mutex);
2315
2316 if (dev->p->dead)
2317 return false;
2318 dev->p->dead = true;
2319 return true;
2320}
2321EXPORT_SYMBOL_GPL(kill_device);
2322
2323/**
2324 * device_del - delete device from system.
2325 * @dev: device.
2326 *
2327 * This is the first part of the device unregistration
2328 * sequence. This removes the device from the lists we control
2329 * from here, has it removed from the other driver model
2330 * subsystems it was added to in device_add(), and removes it
2331 * from the kobject hierarchy.
2332 *
2333 * NOTE: this should be called manually _iff_ device_add() was
2334 * also called manually.
2335 */
2336void device_del(struct device *dev)
2337{
2338 struct device *parent = dev->parent;
2339 struct kobject *glue_dir = NULL;
2340 struct class_interface *class_intf;
2341
2342 device_lock(dev);
2343 kill_device(dev);
2344 device_unlock(dev);
2345
2346 /* Notify clients of device removal. This call must come
2347 * before dpm_sysfs_remove().
2348 */
2349 if (dev->bus)
2350 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2351 BUS_NOTIFY_DEL_DEVICE, dev);
2352
2353 dpm_sysfs_remove(dev);
2354 if (parent)
2355 klist_del(&dev->p->knode_parent);
2356 if (MAJOR(dev->devt)) {
2357 devtmpfs_delete_node(dev);
2358 device_remove_sys_dev_entry(dev);
2359 device_remove_file(dev, &dev_attr_dev);
2360 }
2361 if (dev->class) {
2362 device_remove_class_symlinks(dev);
2363
2364 mutex_lock(&dev->class->p->mutex);
2365 /* notify any interfaces that the device is now gone */
2366 list_for_each_entry(class_intf,
2367 &dev->class->p->interfaces, node)
2368 if (class_intf->remove_dev)
2369 class_intf->remove_dev(dev, class_intf);
2370 /* remove the device from the class list */
2371 klist_del(&dev->p->knode_class);
2372 mutex_unlock(&dev->class->p->mutex);
2373 }
2374 device_remove_file(dev, &dev_attr_uevent);
2375 device_remove_attrs(dev);
2376 bus_remove_device(dev);
2377 device_pm_remove(dev);
2378 driver_deferred_probe_del(dev);
2379 device_platform_notify(dev, KOBJ_REMOVE);
2380 device_remove_properties(dev);
2381 device_links_purge(dev);
2382
2383 if (dev->bus)
2384 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2385 BUS_NOTIFY_REMOVED_DEVICE, dev);
2386 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2387 glue_dir = get_glue_dir(dev);
2388 kobject_del(&dev->kobj);
2389 cleanup_glue_dir(dev, glue_dir);
2390 put_device(parent);
2391}
2392EXPORT_SYMBOL_GPL(device_del);
2393
2394/**
2395 * device_unregister - unregister device from system.
2396 * @dev: device going away.
2397 *
2398 * We do this in two parts, like we do device_register(). First,
2399 * we remove it from all the subsystems with device_del(), then
2400 * we decrement the reference count via put_device(). If that
2401 * is the final reference count, the device will be cleaned up
2402 * via device_release() above. Otherwise, the structure will
2403 * stick around until the final reference to the device is dropped.
2404 */
2405void device_unregister(struct device *dev)
2406{
2407 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2408 device_del(dev);
2409 put_device(dev);
2410}
2411EXPORT_SYMBOL_GPL(device_unregister);
2412
2413static struct device *prev_device(struct klist_iter *i)
2414{
2415 struct klist_node *n = klist_prev(i);
2416 struct device *dev = NULL;
2417 struct device_private *p;
2418
2419 if (n) {
2420 p = to_device_private_parent(n);
2421 dev = p->device;
2422 }
2423 return dev;
2424}
2425
2426static struct device *next_device(struct klist_iter *i)
2427{
2428 struct klist_node *n = klist_next(i);
2429 struct device *dev = NULL;
2430 struct device_private *p;
2431
2432 if (n) {
2433 p = to_device_private_parent(n);
2434 dev = p->device;
2435 }
2436 return dev;
2437}
2438
2439/**
2440 * device_get_devnode - path of device node file
2441 * @dev: device
2442 * @mode: returned file access mode
2443 * @uid: returned file owner
2444 * @gid: returned file group
2445 * @tmp: possibly allocated string
2446 *
2447 * Return the relative path of a possible device node.
2448 * Non-default names may need to allocate a memory to compose
2449 * a name. This memory is returned in tmp and needs to be
2450 * freed by the caller.
2451 */
2452const char *device_get_devnode(struct device *dev,
2453 umode_t *mode, kuid_t *uid, kgid_t *gid,
2454 const char **tmp)
2455{
2456 char *s;
2457
2458 *tmp = NULL;
2459
2460 /* the device type may provide a specific name */
2461 if (dev->type && dev->type->devnode)
2462 *tmp = dev->type->devnode(dev, mode, uid, gid);
2463 if (*tmp)
2464 return *tmp;
2465
2466 /* the class may provide a specific name */
2467 if (dev->class && dev->class->devnode)
2468 *tmp = dev->class->devnode(dev, mode);
2469 if (*tmp)
2470 return *tmp;
2471
2472 /* return name without allocation, tmp == NULL */
2473 if (strchr(dev_name(dev), '!') == NULL)
2474 return dev_name(dev);
2475
2476 /* replace '!' in the name with '/' */
2477 s = kstrdup(dev_name(dev), GFP_KERNEL);
2478 if (!s)
2479 return NULL;
2480 strreplace(s, '!', '/');
2481 return *tmp = s;
2482}
2483
2484/**
2485 * device_for_each_child - device child iterator.
2486 * @parent: parent struct device.
2487 * @fn: function to be called for each device.
2488 * @data: data for the callback.
2489 *
2490 * Iterate over @parent's child devices, and call @fn for each,
2491 * passing it @data.
2492 *
2493 * We check the return of @fn each time. If it returns anything
2494 * other than 0, we break out and return that value.
2495 */
2496int device_for_each_child(struct device *parent, void *data,
2497 int (*fn)(struct device *dev, void *data))
2498{
2499 struct klist_iter i;
2500 struct device *child;
2501 int error = 0;
2502
2503 if (!parent->p)
2504 return 0;
2505
2506 klist_iter_init(&parent->p->klist_children, &i);
2507 while (!error && (child = next_device(&i)))
2508 error = fn(child, data);
2509 klist_iter_exit(&i);
2510 return error;
2511}
2512EXPORT_SYMBOL_GPL(device_for_each_child);
2513
2514/**
2515 * device_for_each_child_reverse - device child iterator in reversed order.
2516 * @parent: parent struct device.
2517 * @fn: function to be called for each device.
2518 * @data: data for the callback.
2519 *
2520 * Iterate over @parent's child devices, and call @fn for each,
2521 * passing it @data.
2522 *
2523 * We check the return of @fn each time. If it returns anything
2524 * other than 0, we break out and return that value.
2525 */
2526int device_for_each_child_reverse(struct device *parent, void *data,
2527 int (*fn)(struct device *dev, void *data))
2528{
2529 struct klist_iter i;
2530 struct device *child;
2531 int error = 0;
2532
2533 if (!parent->p)
2534 return 0;
2535
2536 klist_iter_init(&parent->p->klist_children, &i);
2537 while ((child = prev_device(&i)) && !error)
2538 error = fn(child, data);
2539 klist_iter_exit(&i);
2540 return error;
2541}
2542EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2543
2544/**
2545 * device_find_child - device iterator for locating a particular device.
2546 * @parent: parent struct device
2547 * @match: Callback function to check device
2548 * @data: Data to pass to match function
2549 *
2550 * This is similar to the device_for_each_child() function above, but it
2551 * returns a reference to a device that is 'found' for later use, as
2552 * determined by the @match callback.
2553 *
2554 * The callback should return 0 if the device doesn't match and non-zero
2555 * if it does. If the callback returns non-zero and a reference to the
2556 * current device can be obtained, this function will return to the caller
2557 * and not iterate over any more devices.
2558 *
2559 * NOTE: you will need to drop the reference with put_device() after use.
2560 */
2561struct device *device_find_child(struct device *parent, void *data,
2562 int (*match)(struct device *dev, void *data))
2563{
2564 struct klist_iter i;
2565 struct device *child;
2566
2567 if (!parent)
2568 return NULL;
2569
2570 klist_iter_init(&parent->p->klist_children, &i);
2571 while ((child = next_device(&i)))
2572 if (match(child, data) && get_device(child))
2573 break;
2574 klist_iter_exit(&i);
2575 return child;
2576}
2577EXPORT_SYMBOL_GPL(device_find_child);
2578
2579/**
2580 * device_find_child_by_name - device iterator for locating a child device.
2581 * @parent: parent struct device
2582 * @name: name of the child device
2583 *
2584 * This is similar to the device_find_child() function above, but it
2585 * returns a reference to a device that has the name @name.
2586 *
2587 * NOTE: you will need to drop the reference with put_device() after use.
2588 */
2589struct device *device_find_child_by_name(struct device *parent,
2590 const char *name)
2591{
2592 struct klist_iter i;
2593 struct device *child;
2594
2595 if (!parent)
2596 return NULL;
2597
2598 klist_iter_init(&parent->p->klist_children, &i);
2599 while ((child = next_device(&i)))
2600 if (!strcmp(dev_name(child), name) && get_device(child))
2601 break;
2602 klist_iter_exit(&i);
2603 return child;
2604}
2605EXPORT_SYMBOL_GPL(device_find_child_by_name);
2606
2607int __init devices_init(void)
2608{
2609 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2610 if (!devices_kset)
2611 return -ENOMEM;
2612 dev_kobj = kobject_create_and_add("dev", NULL);
2613 if (!dev_kobj)
2614 goto dev_kobj_err;
2615 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2616 if (!sysfs_dev_block_kobj)
2617 goto block_kobj_err;
2618 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2619 if (!sysfs_dev_char_kobj)
2620 goto char_kobj_err;
2621
2622 return 0;
2623
2624 char_kobj_err:
2625 kobject_put(sysfs_dev_block_kobj);
2626 block_kobj_err:
2627 kobject_put(dev_kobj);
2628 dev_kobj_err:
2629 kset_unregister(devices_kset);
2630 return -ENOMEM;
2631}
2632
2633static int device_check_offline(struct device *dev, void *not_used)
2634{
2635 int ret;
2636
2637 ret = device_for_each_child(dev, NULL, device_check_offline);
2638 if (ret)
2639 return ret;
2640
2641 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2642}
2643
2644/**
2645 * device_offline - Prepare the device for hot-removal.
2646 * @dev: Device to be put offline.
2647 *
2648 * Execute the device bus type's .offline() callback, if present, to prepare
2649 * the device for a subsequent hot-removal. If that succeeds, the device must
2650 * not be used until either it is removed or its bus type's .online() callback
2651 * is executed.
2652 *
2653 * Call under device_hotplug_lock.
2654 */
2655int device_offline(struct device *dev)
2656{
2657 int ret;
2658
2659 if (dev->offline_disabled)
2660 return -EPERM;
2661
2662 ret = device_for_each_child(dev, NULL, device_check_offline);
2663 if (ret)
2664 return ret;
2665
2666 device_lock(dev);
2667 if (device_supports_offline(dev)) {
2668 if (dev->offline) {
2669 ret = 1;
2670 } else {
2671 ret = dev->bus->offline(dev);
2672 if (!ret) {
2673 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2674 dev->offline = true;
2675 }
2676 }
2677 }
2678 device_unlock(dev);
2679
2680 return ret;
2681}
2682
2683/**
2684 * device_online - Put the device back online after successful device_offline().
2685 * @dev: Device to be put back online.
2686 *
2687 * If device_offline() has been successfully executed for @dev, but the device
2688 * has not been removed subsequently, execute its bus type's .online() callback
2689 * to indicate that the device can be used again.
2690 *
2691 * Call under device_hotplug_lock.
2692 */
2693int device_online(struct device *dev)
2694{
2695 int ret = 0;
2696
2697 device_lock(dev);
2698 if (device_supports_offline(dev)) {
2699 if (dev->offline) {
2700 ret = dev->bus->online(dev);
2701 if (!ret) {
2702 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2703 dev->offline = false;
2704 }
2705 } else {
2706 ret = 1;
2707 }
2708 }
2709 device_unlock(dev);
2710
2711 return ret;
2712}
2713
2714struct root_device {
2715 struct device dev;
2716 struct module *owner;
2717};
2718
2719static inline struct root_device *to_root_device(struct device *d)
2720{
2721 return container_of(d, struct root_device, dev);
2722}
2723
2724static void root_device_release(struct device *dev)
2725{
2726 kfree(to_root_device(dev));
2727}
2728
2729/**
2730 * __root_device_register - allocate and register a root device
2731 * @name: root device name
2732 * @owner: owner module of the root device, usually THIS_MODULE
2733 *
2734 * This function allocates a root device and registers it
2735 * using device_register(). In order to free the returned
2736 * device, use root_device_unregister().
2737 *
2738 * Root devices are dummy devices which allow other devices
2739 * to be grouped under /sys/devices. Use this function to
2740 * allocate a root device and then use it as the parent of
2741 * any device which should appear under /sys/devices/{name}
2742 *
2743 * The /sys/devices/{name} directory will also contain a
2744 * 'module' symlink which points to the @owner directory
2745 * in sysfs.
2746 *
2747 * Returns &struct device pointer on success, or ERR_PTR() on error.
2748 *
2749 * Note: You probably want to use root_device_register().
2750 */
2751struct device *__root_device_register(const char *name, struct module *owner)
2752{
2753 struct root_device *root;
2754 int err = -ENOMEM;
2755
2756 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2757 if (!root)
2758 return ERR_PTR(err);
2759
2760 err = dev_set_name(&root->dev, "%s", name);
2761 if (err) {
2762 kfree(root);
2763 return ERR_PTR(err);
2764 }
2765
2766 root->dev.release = root_device_release;
2767
2768 err = device_register(&root->dev);
2769 if (err) {
2770 put_device(&root->dev);
2771 return ERR_PTR(err);
2772 }
2773
2774#ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
2775 if (owner) {
2776 struct module_kobject *mk = &owner->mkobj;
2777
2778 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2779 if (err) {
2780 device_unregister(&root->dev);
2781 return ERR_PTR(err);
2782 }
2783 root->owner = owner;
2784 }
2785#endif
2786
2787 return &root->dev;
2788}
2789EXPORT_SYMBOL_GPL(__root_device_register);
2790
2791/**
2792 * root_device_unregister - unregister and free a root device
2793 * @dev: device going away
2794 *
2795 * This function unregisters and cleans up a device that was created by
2796 * root_device_register().
2797 */
2798void root_device_unregister(struct device *dev)
2799{
2800 struct root_device *root = to_root_device(dev);
2801
2802 if (root->owner)
2803 sysfs_remove_link(&root->dev.kobj, "module");
2804
2805 device_unregister(dev);
2806}
2807EXPORT_SYMBOL_GPL(root_device_unregister);
2808
2809
2810static void device_create_release(struct device *dev)
2811{
2812 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2813 kfree(dev);
2814}
2815
2816static __printf(6, 0) struct device *
2817device_create_groups_vargs(struct class *class, struct device *parent,
2818 dev_t devt, void *drvdata,
2819 const struct attribute_group **groups,
2820 const char *fmt, va_list args)
2821{
2822 struct device *dev = NULL;
2823 int retval = -ENODEV;
2824
2825 if (class == NULL || IS_ERR(class))
2826 goto error;
2827
2828 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2829 if (!dev) {
2830 retval = -ENOMEM;
2831 goto error;
2832 }
2833
2834 device_initialize(dev);
2835 dev->devt = devt;
2836 dev->class = class;
2837 dev->parent = parent;
2838 dev->groups = groups;
2839 dev->release = device_create_release;
2840 dev_set_drvdata(dev, drvdata);
2841
2842 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2843 if (retval)
2844 goto error;
2845
2846 retval = device_add(dev);
2847 if (retval)
2848 goto error;
2849
2850 return dev;
2851
2852error:
2853 put_device(dev);
2854 return ERR_PTR(retval);
2855}
2856
2857/**
2858 * device_create_vargs - creates a device and registers it with sysfs
2859 * @class: pointer to the struct class that this device should be registered to
2860 * @parent: pointer to the parent struct device of this new device, if any
2861 * @devt: the dev_t for the char device to be added
2862 * @drvdata: the data to be added to the device for callbacks
2863 * @fmt: string for the device's name
2864 * @args: va_list for the device's name
2865 *
2866 * This function can be used by char device classes. A struct device
2867 * will be created in sysfs, registered to the specified class.
2868 *
2869 * A "dev" file will be created, showing the dev_t for the device, if
2870 * the dev_t is not 0,0.
2871 * If a pointer to a parent struct device is passed in, the newly created
2872 * struct device will be a child of that device in sysfs.
2873 * The pointer to the struct device will be returned from the call.
2874 * Any further sysfs files that might be required can be created using this
2875 * pointer.
2876 *
2877 * Returns &struct device pointer on success, or ERR_PTR() on error.
2878 *
2879 * Note: the struct class passed to this function must have previously
2880 * been created with a call to class_create().
2881 */
2882struct device *device_create_vargs(struct class *class, struct device *parent,
2883 dev_t devt, void *drvdata, const char *fmt,
2884 va_list args)
2885{
2886 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2887 fmt, args);
2888}
2889EXPORT_SYMBOL_GPL(device_create_vargs);
2890
2891/**
2892 * device_create - creates a device and registers it with sysfs
2893 * @class: pointer to the struct class that this device should be registered to
2894 * @parent: pointer to the parent struct device of this new device, if any
2895 * @devt: the dev_t for the char device to be added
2896 * @drvdata: the data to be added to the device for callbacks
2897 * @fmt: string for the device's name
2898 *
2899 * This function can be used by char device classes. A struct device
2900 * will be created in sysfs, registered to the specified class.
2901 *
2902 * A "dev" file will be created, showing the dev_t for the device, if
2903 * the dev_t is not 0,0.
2904 * If a pointer to a parent struct device is passed in, the newly created
2905 * struct device will be a child of that device in sysfs.
2906 * The pointer to the struct device will be returned from the call.
2907 * Any further sysfs files that might be required can be created using this
2908 * pointer.
2909 *
2910 * Returns &struct device pointer on success, or ERR_PTR() on error.
2911 *
2912 * Note: the struct class passed to this function must have previously
2913 * been created with a call to class_create().
2914 */
2915struct device *device_create(struct class *class, struct device *parent,
2916 dev_t devt, void *drvdata, const char *fmt, ...)
2917{
2918 va_list vargs;
2919 struct device *dev;
2920
2921 va_start(vargs, fmt);
2922 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
2923 va_end(vargs);
2924 return dev;
2925}
2926EXPORT_SYMBOL_GPL(device_create);
2927
2928/**
2929 * device_create_with_groups - creates a device and registers it with sysfs
2930 * @class: pointer to the struct class that this device should be registered to
2931 * @parent: pointer to the parent struct device of this new device, if any
2932 * @devt: the dev_t for the char device to be added
2933 * @drvdata: the data to be added to the device for callbacks
2934 * @groups: NULL-terminated list of attribute groups to be created
2935 * @fmt: string for the device's name
2936 *
2937 * This function can be used by char device classes. A struct device
2938 * will be created in sysfs, registered to the specified class.
2939 * Additional attributes specified in the groups parameter will also
2940 * be created automatically.
2941 *
2942 * A "dev" file will be created, showing the dev_t for the device, if
2943 * the dev_t is not 0,0.
2944 * If a pointer to a parent struct device is passed in, the newly created
2945 * struct device will be a child of that device in sysfs.
2946 * The pointer to the struct device will be returned from the call.
2947 * Any further sysfs files that might be required can be created using this
2948 * pointer.
2949 *
2950 * Returns &struct device pointer on success, or ERR_PTR() on error.
2951 *
2952 * Note: the struct class passed to this function must have previously
2953 * been created with a call to class_create().
2954 */
2955struct device *device_create_with_groups(struct class *class,
2956 struct device *parent, dev_t devt,
2957 void *drvdata,
2958 const struct attribute_group **groups,
2959 const char *fmt, ...)
2960{
2961 va_list vargs;
2962 struct device *dev;
2963
2964 va_start(vargs, fmt);
2965 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2966 fmt, vargs);
2967 va_end(vargs);
2968 return dev;
2969}
2970EXPORT_SYMBOL_GPL(device_create_with_groups);
2971
2972/**
2973 * device_destroy - removes a device that was created with device_create()
2974 * @class: pointer to the struct class that this device was registered with
2975 * @devt: the dev_t of the device that was previously registered
2976 *
2977 * This call unregisters and cleans up a device that was created with a
2978 * call to device_create().
2979 */
2980void device_destroy(struct class *class, dev_t devt)
2981{
2982 struct device *dev;
2983
2984 dev = class_find_device_by_devt(class, devt);
2985 if (dev) {
2986 put_device(dev);
2987 device_unregister(dev);
2988 }
2989}
2990EXPORT_SYMBOL_GPL(device_destroy);
2991
2992/**
2993 * device_rename - renames a device
2994 * @dev: the pointer to the struct device to be renamed
2995 * @new_name: the new name of the device
2996 *
2997 * It is the responsibility of the caller to provide mutual
2998 * exclusion between two different calls of device_rename
2999 * on the same device to ensure that new_name is valid and
3000 * won't conflict with other devices.
3001 *
3002 * Note: Don't call this function. Currently, the networking layer calls this
3003 * function, but that will change. The following text from Kay Sievers offers
3004 * some insight:
3005 *
3006 * Renaming devices is racy at many levels, symlinks and other stuff are not
3007 * replaced atomically, and you get a "move" uevent, but it's not easy to
3008 * connect the event to the old and new device. Device nodes are not renamed at
3009 * all, there isn't even support for that in the kernel now.
3010 *
3011 * In the meantime, during renaming, your target name might be taken by another
3012 * driver, creating conflicts. Or the old name is taken directly after you
3013 * renamed it -- then you get events for the same DEVPATH, before you even see
3014 * the "move" event. It's just a mess, and nothing new should ever rely on
3015 * kernel device renaming. Besides that, it's not even implemented now for
3016 * other things than (driver-core wise very simple) network devices.
3017 *
3018 * We are currently about to change network renaming in udev to completely
3019 * disallow renaming of devices in the same namespace as the kernel uses,
3020 * because we can't solve the problems properly, that arise with swapping names
3021 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3022 * be allowed to some other name than eth[0-9]*, for the aforementioned
3023 * reasons.
3024 *
3025 * Make up a "real" name in the driver before you register anything, or add
3026 * some other attributes for userspace to find the device, or use udev to add
3027 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3028 * don't even want to get into that and try to implement the missing pieces in
3029 * the core. We really have other pieces to fix in the driver core mess. :)
3030 */
3031int device_rename(struct device *dev, const char *new_name)
3032{
3033 struct kobject *kobj = &dev->kobj;
3034 char *old_device_name = NULL;
3035 int error;
3036
3037 dev = get_device(dev);
3038 if (!dev)
3039 return -EINVAL;
3040
3041 dev_dbg(dev, "renaming to %s\n", new_name);
3042
3043 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3044 if (!old_device_name) {
3045 error = -ENOMEM;
3046 goto out;
3047 }
3048
3049 if (dev->class) {
3050 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3051 kobj, old_device_name,
3052 new_name, kobject_namespace(kobj));
3053 if (error)
3054 goto out;
3055 }
3056
3057 error = kobject_rename(kobj, new_name);
3058 if (error)
3059 goto out;
3060
3061out:
3062 put_device(dev);
3063
3064 kfree(old_device_name);
3065
3066 return error;
3067}
3068EXPORT_SYMBOL_GPL(device_rename);
3069
3070static int device_move_class_links(struct device *dev,
3071 struct device *old_parent,
3072 struct device *new_parent)
3073{
3074 int error = 0;
3075
3076 if (old_parent)
3077 sysfs_remove_link(&dev->kobj, "device");
3078 if (new_parent)
3079 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3080 "device");
3081 return error;
3082}
3083
3084/**
3085 * device_move - moves a device to a new parent
3086 * @dev: the pointer to the struct device to be moved
3087 * @new_parent: the new parent of the device (can be NULL)
3088 * @dpm_order: how to reorder the dpm_list
3089 */
3090int device_move(struct device *dev, struct device *new_parent,
3091 enum dpm_order dpm_order)
3092{
3093 int error;
3094 struct device *old_parent;
3095 struct kobject *new_parent_kobj;
3096
3097 dev = get_device(dev);
3098 if (!dev)
3099 return -EINVAL;
3100
3101 device_pm_lock();
3102 new_parent = get_device(new_parent);
3103 new_parent_kobj = get_device_parent(dev, new_parent);
3104 if (IS_ERR(new_parent_kobj)) {
3105 error = PTR_ERR(new_parent_kobj);
3106 put_device(new_parent);
3107 goto out;
3108 }
3109
3110 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3111 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3112 error = kobject_move(&dev->kobj, new_parent_kobj);
3113 if (error) {
3114 cleanup_glue_dir(dev, new_parent_kobj);
3115 put_device(new_parent);
3116 goto out;
3117 }
3118 old_parent = dev->parent;
3119 dev->parent = new_parent;
3120 if (old_parent)
3121 klist_remove(&dev->p->knode_parent);
3122 if (new_parent) {
3123 klist_add_tail(&dev->p->knode_parent,
3124 &new_parent->p->klist_children);
3125 set_dev_node(dev, dev_to_node(new_parent));
3126 }
3127
3128 if (dev->class) {
3129 error = device_move_class_links(dev, old_parent, new_parent);
3130 if (error) {
3131 /* We ignore errors on cleanup since we're hosed anyway... */
3132 device_move_class_links(dev, new_parent, old_parent);
3133 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3134 if (new_parent)
3135 klist_remove(&dev->p->knode_parent);
3136 dev->parent = old_parent;
3137 if (old_parent) {
3138 klist_add_tail(&dev->p->knode_parent,
3139 &old_parent->p->klist_children);
3140 set_dev_node(dev, dev_to_node(old_parent));
3141 }
3142 }
3143 cleanup_glue_dir(dev, new_parent_kobj);
3144 put_device(new_parent);
3145 goto out;
3146 }
3147 }
3148 switch (dpm_order) {
3149 case DPM_ORDER_NONE:
3150 break;
3151 case DPM_ORDER_DEV_AFTER_PARENT:
3152 device_pm_move_after(dev, new_parent);
3153 devices_kset_move_after(dev, new_parent);
3154 break;
3155 case DPM_ORDER_PARENT_BEFORE_DEV:
3156 device_pm_move_before(new_parent, dev);
3157 devices_kset_move_before(new_parent, dev);
3158 break;
3159 case DPM_ORDER_DEV_LAST:
3160 device_pm_move_last(dev);
3161 devices_kset_move_last(dev);
3162 break;
3163 }
3164
3165 put_device(old_parent);
3166out:
3167 device_pm_unlock();
3168 put_device(dev);
3169 return error;
3170}
3171EXPORT_SYMBOL_GPL(device_move);
3172
3173/**
3174 * device_shutdown - call ->shutdown() on each device to shutdown.
3175 */
3176void device_shutdown(void)
3177{
3178 struct device *dev, *parent;
3179
3180 wait_for_device_probe();
3181 device_block_probing();
3182
3183 cpufreq_suspend();
3184
3185 spin_lock(&devices_kset->list_lock);
3186 /*
3187 * Walk the devices list backward, shutting down each in turn.
3188 * Beware that device unplug events may also start pulling
3189 * devices offline, even as the system is shutting down.
3190 */
3191 while (!list_empty(&devices_kset->list)) {
3192 dev = list_entry(devices_kset->list.prev, struct device,
3193 kobj.entry);
3194
3195 /*
3196 * hold reference count of device's parent to
3197 * prevent it from being freed because parent's
3198 * lock is to be held
3199 */
3200 parent = get_device(dev->parent);
3201 get_device(dev);
3202 /*
3203 * Make sure the device is off the kset list, in the
3204 * event that dev->*->shutdown() doesn't remove it.
3205 */
3206 list_del_init(&dev->kobj.entry);
3207 spin_unlock(&devices_kset->list_lock);
3208
3209 /* hold lock to avoid race with probe/release */
3210 if (parent)
3211 device_lock(parent);
3212 device_lock(dev);
3213
3214 /* Don't allow any more runtime suspends */
3215 pm_runtime_get_noresume(dev);
3216 pm_runtime_barrier(dev);
3217
3218 if (dev->class && dev->class->shutdown_pre) {
3219 if (initcall_debug)
3220 dev_info(dev, "shutdown_pre\n");
3221 dev->class->shutdown_pre(dev);
3222 }
3223 if (dev->bus && dev->bus->shutdown) {
3224 if (initcall_debug)
3225 dev_info(dev, "shutdown\n");
3226 dev->bus->shutdown(dev);
3227 } else if (dev->driver && dev->driver->shutdown) {
3228 if (initcall_debug)
3229 dev_info(dev, "shutdown\n");
3230 dev->driver->shutdown(dev);
3231 }
3232
3233 device_unlock(dev);
3234 if (parent)
3235 device_unlock(parent);
3236
3237 put_device(dev);
3238 put_device(parent);
3239
3240 spin_lock(&devices_kset->list_lock);
3241 }
3242 spin_unlock(&devices_kset->list_lock);
3243}
3244
3245/*
3246 * Device logging functions
3247 */
3248
3249#ifdef CONFIG_PRINTK
3250static int
3251create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3252{
3253 const char *subsys;
3254 size_t pos = 0;
3255
3256 if (dev->class)
3257 subsys = dev->class->name;
3258 else if (dev->bus)
3259 subsys = dev->bus->name;
3260 else
3261 return 0;
3262
3263 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3264 if (pos >= hdrlen)
3265 goto overflow;
3266
3267 /*
3268 * Add device identifier DEVICE=:
3269 * b12:8 block dev_t
3270 * c127:3 char dev_t
3271 * n8 netdev ifindex
3272 * +sound:card0 subsystem:devname
3273 */
3274 if (MAJOR(dev->devt)) {
3275 char c;
3276
3277 if (strcmp(subsys, "block") == 0)
3278 c = 'b';
3279 else
3280 c = 'c';
3281 pos++;
3282 pos += snprintf(hdr + pos, hdrlen - pos,
3283 "DEVICE=%c%u:%u",
3284 c, MAJOR(dev->devt), MINOR(dev->devt));
3285 } else if (strcmp(subsys, "net") == 0) {
3286 struct net_device *net = to_net_dev(dev);
3287
3288 pos++;
3289 pos += snprintf(hdr + pos, hdrlen - pos,
3290 "DEVICE=n%u", net->ifindex);
3291 } else {
3292 pos++;
3293 pos += snprintf(hdr + pos, hdrlen - pos,
3294 "DEVICE=+%s:%s", subsys, dev_name(dev));
3295 }
3296
3297 if (pos >= hdrlen)
3298 goto overflow;
3299
3300 return pos;
3301
3302overflow:
3303 dev_WARN(dev, "device/subsystem name too long");
3304 return 0;
3305}
3306
3307int dev_vprintk_emit(int level, const struct device *dev,
3308 const char *fmt, va_list args)
3309{
3310 char hdr[128];
3311 size_t hdrlen;
3312
3313 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3314
3315 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3316}
3317EXPORT_SYMBOL(dev_vprintk_emit);
3318
3319int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3320{
3321 va_list args;
3322 int r;
3323
3324 va_start(args, fmt);
3325
3326 r = dev_vprintk_emit(level, dev, fmt, args);
3327
3328 va_end(args);
3329
3330 return r;
3331}
3332EXPORT_SYMBOL(dev_printk_emit);
3333
3334static void __dev_printk(const char *level, const struct device *dev,
3335 struct va_format *vaf)
3336{
3337 if (dev)
3338 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3339 dev_driver_string(dev), dev_name(dev), vaf);
3340 else
3341 printk("%s(NULL device *): %pV", level, vaf);
3342}
3343
3344void dev_printk(const char *level, const struct device *dev,
3345 const char *fmt, ...)
3346{
3347 struct va_format vaf;
3348 va_list args;
3349
3350 va_start(args, fmt);
3351
3352 vaf.fmt = fmt;
3353 vaf.va = &args;
3354
3355 __dev_printk(level, dev, &vaf);
3356
3357 va_end(args);
3358}
3359EXPORT_SYMBOL(dev_printk);
3360
3361#define define_dev_printk_level(func, kern_level) \
3362void func(const struct device *dev, const char *fmt, ...) \
3363{ \
3364 struct va_format vaf; \
3365 va_list args; \
3366 \
3367 va_start(args, fmt); \
3368 \
3369 vaf.fmt = fmt; \
3370 vaf.va = &args; \
3371 \
3372 __dev_printk(kern_level, dev, &vaf); \
3373 \
3374 va_end(args); \
3375} \
3376EXPORT_SYMBOL(func);
3377
3378define_dev_printk_level(_dev_emerg, KERN_EMERG);
3379define_dev_printk_level(_dev_alert, KERN_ALERT);
3380define_dev_printk_level(_dev_crit, KERN_CRIT);
3381define_dev_printk_level(_dev_err, KERN_ERR);
3382define_dev_printk_level(_dev_warn, KERN_WARNING);
3383define_dev_printk_level(_dev_notice, KERN_NOTICE);
3384define_dev_printk_level(_dev_info, KERN_INFO);
3385
3386#endif
3387
3388static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3389{
3390 return fwnode && !IS_ERR(fwnode->secondary);
3391}
3392
3393/**
3394 * set_primary_fwnode - Change the primary firmware node of a given device.
3395 * @dev: Device to handle.
3396 * @fwnode: New primary firmware node of the device.
3397 *
3398 * Set the device's firmware node pointer to @fwnode, but if a secondary
3399 * firmware node of the device is present, preserve it.
3400 */
3401void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3402{
3403 if (fwnode) {
3404 struct fwnode_handle *fn = dev->fwnode;
3405
3406 if (fwnode_is_primary(fn))
3407 fn = fn->secondary;
3408
3409 if (fn) {
3410 WARN_ON(fwnode->secondary);
3411 fwnode->secondary = fn;
3412 }
3413 dev->fwnode = fwnode;
3414 } else {
3415 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3416 dev->fwnode->secondary : NULL;
3417 }
3418}
3419EXPORT_SYMBOL_GPL(set_primary_fwnode);
3420
3421/**
3422 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3423 * @dev: Device to handle.
3424 * @fwnode: New secondary firmware node of the device.
3425 *
3426 * If a primary firmware node of the device is present, set its secondary
3427 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3428 * @fwnode.
3429 */
3430void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3431{
3432 if (fwnode)
3433 fwnode->secondary = ERR_PTR(-ENODEV);
3434
3435 if (fwnode_is_primary(dev->fwnode))
3436 dev->fwnode->secondary = fwnode;
3437 else
3438 dev->fwnode = fwnode;
3439}
3440
3441/**
3442 * device_set_of_node_from_dev - reuse device-tree node of another device
3443 * @dev: device whose device-tree node is being set
3444 * @dev2: device whose device-tree node is being reused
3445 *
3446 * Takes another reference to the new device-tree node after first dropping
3447 * any reference held to the old node.
3448 */
3449void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3450{
3451 of_node_put(dev->of_node);
3452 dev->of_node = of_node_get(dev2->of_node);
3453 dev->of_node_reused = true;
3454}
3455EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3456
3457int device_match_name(struct device *dev, const void *name)
3458{
3459 return sysfs_streq(dev_name(dev), name);
3460}
3461EXPORT_SYMBOL_GPL(device_match_name);
3462
3463int device_match_of_node(struct device *dev, const void *np)
3464{
3465 return dev->of_node == np;
3466}
3467EXPORT_SYMBOL_GPL(device_match_of_node);
3468
3469int device_match_fwnode(struct device *dev, const void *fwnode)
3470{
3471 return dev_fwnode(dev) == fwnode;
3472}
3473EXPORT_SYMBOL_GPL(device_match_fwnode);
3474
3475int device_match_devt(struct device *dev, const void *pdevt)
3476{
3477 return dev->devt == *(dev_t *)pdevt;
3478}
3479EXPORT_SYMBOL_GPL(device_match_devt);
3480
3481int device_match_acpi_dev(struct device *dev, const void *adev)
3482{
3483 return ACPI_COMPANION(dev) == adev;
3484}
3485EXPORT_SYMBOL(device_match_acpi_dev);
3486
3487int device_match_any(struct device *dev, const void *unused)
3488{
3489 return 1;
3490}
3491EXPORT_SYMBOL_GPL(device_match_any);