Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  arch/arm/include/asm/io.h
  3 *
  4 *  Copyright (C) 1996-2000 Russell King
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * Modifications:
 11 *  16-Sep-1996	RMK	Inlined the inx/outx functions & optimised for both
 12 *			constant addresses and variable addresses.
 13 *  04-Dec-1997	RMK	Moved a lot of this stuff to the new architecture
 14 *			specific IO header files.
 15 *  27-Mar-1999	PJB	Second parameter of memcpy_toio is const..
 16 *  04-Apr-1999	PJB	Added check_signature.
 17 *  12-Dec-1999	RMK	More cleanups
 18 *  18-Jun-2000 RMK	Removed virt_to_* and friends definitions
 19 *  05-Oct-2004 BJD     Moved memory string functions to use void __iomem
 20 */
 21#ifndef __ASM_ARM_IO_H
 22#define __ASM_ARM_IO_H
 23
 24#ifdef __KERNEL__
 25
 26#include <linux/string.h>
 27#include <linux/types.h>
 28#include <asm/byteorder.h>
 29#include <asm/memory.h>
 30#include <asm-generic/pci_iomap.h>
 31#include <xen/xen.h>
 32
 33/*
 34 * ISA I/O bus memory addresses are 1:1 with the physical address.
 35 */
 36#define isa_virt_to_bus virt_to_phys
 37#define isa_page_to_bus page_to_phys
 38#define isa_bus_to_virt phys_to_virt
 39
 40/*
 41 * Atomic MMIO-wide IO modify
 42 */
 43extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
 44extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
 45
 46/*
 47 * Generic IO read/write.  These perform native-endian accesses.  Note
 48 * that some architectures will want to re-define __raw_{read,write}w.
 49 */
 50void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
 51void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
 52void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
 53
 54void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
 55void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
 56void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
 57
 58#if __LINUX_ARM_ARCH__ < 6
 59/*
 60 * Half-word accesses are problematic with RiscPC due to limitations of
 61 * the bus. Rather than special-case the machine, just let the compiler
 62 * generate the access for CPUs prior to ARMv6.
 63 */
 64#define __raw_readw(a)         (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
 65#define __raw_writew(v,a)      ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
 66#else
 67/*
 68 * When running under a hypervisor, we want to avoid I/O accesses with
 69 * writeback addressing modes as these incur a significant performance
 70 * overhead (the address generation must be emulated in software).
 71 */
 72#define __raw_writew __raw_writew
 73static inline void __raw_writew(u16 val, volatile void __iomem *addr)
 74{
 75	asm volatile("strh %1, %0"
 76		     : : "Q" (*(volatile u16 __force *)addr), "r" (val));
 77}
 78
 79#define __raw_readw __raw_readw
 80static inline u16 __raw_readw(const volatile void __iomem *addr)
 81{
 82	u16 val;
 83	asm volatile("ldrh %0, %1"
 84		     : "=r" (val)
 85		     : "Q" (*(volatile u16 __force *)addr));
 86	return val;
 87}
 88#endif
 89
 90#define __raw_writeb __raw_writeb
 91static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
 92{
 93	asm volatile("strb %1, %0"
 94		     : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
 95}
 96
 97#define __raw_writel __raw_writel
 98static inline void __raw_writel(u32 val, volatile void __iomem *addr)
 99{
100	asm volatile("str %1, %0"
101		     : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
102}
103
104#define __raw_readb __raw_readb
105static inline u8 __raw_readb(const volatile void __iomem *addr)
106{
107	u8 val;
108	asm volatile("ldrb %0, %1"
109		     : "=r" (val)
110		     : "Qo" (*(volatile u8 __force *)addr));
111	return val;
112}
113
114#define __raw_readl __raw_readl
115static inline u32 __raw_readl(const volatile void __iomem *addr)
116{
117	u32 val;
118	asm volatile("ldr %0, %1"
119		     : "=r" (val)
120		     : "Qo" (*(volatile u32 __force *)addr));
121	return val;
122}
123
124/*
125 * Architecture ioremap implementation.
126 */
127#define MT_DEVICE		0
128#define MT_DEVICE_NONSHARED	1
129#define MT_DEVICE_CACHED	2
130#define MT_DEVICE_WC		3
131/*
132 * types 4 onwards can be found in asm/mach/map.h and are undefined
133 * for ioremap
134 */
135
136/*
137 * __arm_ioremap takes CPU physical address.
138 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
139 * The _caller variety takes a __builtin_return_address(0) value for
140 * /proc/vmalloc to use - and should only be used in non-inline functions.
141 */
142extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
143	void *);
144extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
145extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
146extern void __iounmap(volatile void __iomem *addr);
147
148extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
149	unsigned int, void *);
150extern void (*arch_iounmap)(volatile void __iomem *);
151
152/*
153 * Bad read/write accesses...
154 */
155extern void __readwrite_bug(const char *fn);
156
157/*
158 * A typesafe __io() helper
159 */
160static inline void __iomem *__typesafe_io(unsigned long addr)
161{
162	return (void __iomem *)addr;
163}
164
165#define IOMEM(x)	((void __force __iomem *)(x))
166
167/* IO barriers */
168#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
169#include <asm/barrier.h>
170#define __iormb()		rmb()
171#define __iowmb()		wmb()
172#else
173#define __iormb()		do { } while (0)
174#define __iowmb()		do { } while (0)
175#endif
176
177/* PCI fixed i/o mapping */
178#define PCI_IO_VIRT_BASE	0xfee00000
179#define PCI_IOBASE		((void __iomem *)PCI_IO_VIRT_BASE)
180
181#if defined(CONFIG_PCI)
182void pci_ioremap_set_mem_type(int mem_type);
183#else
184static inline void pci_ioremap_set_mem_type(int mem_type) {}
185#endif
186
187extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
188
189/*
 
 
 
 
 
 
 
 
 
 
190 * Now, pick up the machine-defined IO definitions
191 */
192#ifdef CONFIG_NEED_MACH_IO_H
193#include <mach/io.h>
194#elif defined(CONFIG_PCI)
195#define IO_SPACE_LIMIT	((resource_size_t)0xfffff)
196#define __io(a)		__typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
197#else
198#define __io(a)		__typesafe_io((a) & IO_SPACE_LIMIT)
199#endif
200
201/*
202 * This is the limit of PC card/PCI/ISA IO space, which is by default
203 * 64K if we have PC card, PCI or ISA support.  Otherwise, default to
204 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
205 * oopsing.)
206 *
207 * Only set this larger if you really need inb() et.al. to operate over
208 * a larger address space.  Note that SOC_COMMON ioremaps each sockets
209 * IO space area, and so inb() et.al. must be defined to operate as per
210 * readb() et.al. on such platforms.
211 */
212#ifndef IO_SPACE_LIMIT
213#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
214#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
215#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
216#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
217#else
218#define IO_SPACE_LIMIT ((resource_size_t)0)
219#endif
220#endif
221
222/*
223 *  IO port access primitives
224 *  -------------------------
225 *
226 * The ARM doesn't have special IO access instructions; all IO is memory
227 * mapped.  Note that these are defined to perform little endian accesses
228 * only.  Their primary purpose is to access PCI and ISA peripherals.
229 *
230 * Note that for a big endian machine, this implies that the following
231 * big endian mode connectivity is in place, as described by numerous
232 * ARM documents:
233 *
234 *    PCI:  D0-D7   D8-D15 D16-D23 D24-D31
235 *    ARM: D24-D31 D16-D23  D8-D15  D0-D7
236 *
237 * The machine specific io.h include defines __io to translate an "IO"
238 * address to a memory address.
239 *
240 * Note that we prevent GCC re-ordering or caching values in expressions
241 * by introducing sequence points into the in*() definitions.  Note that
242 * __raw_* do not guarantee this behaviour.
243 *
244 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
245 */
246#ifdef __io
247#define outb(v,p)	({ __iowmb(); __raw_writeb(v,__io(p)); })
248#define outw(v,p)	({ __iowmb(); __raw_writew((__force __u16) \
249					cpu_to_le16(v),__io(p)); })
250#define outl(v,p)	({ __iowmb(); __raw_writel((__force __u32) \
251					cpu_to_le32(v),__io(p)); })
252
253#define inb(p)	({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
254#define inw(p)	({ __u16 __v = le16_to_cpu((__force __le16) \
255			__raw_readw(__io(p))); __iormb(); __v; })
256#define inl(p)	({ __u32 __v = le32_to_cpu((__force __le32) \
257			__raw_readl(__io(p))); __iormb(); __v; })
258
259#define outsb(p,d,l)		__raw_writesb(__io(p),d,l)
260#define outsw(p,d,l)		__raw_writesw(__io(p),d,l)
261#define outsl(p,d,l)		__raw_writesl(__io(p),d,l)
262
263#define insb(p,d,l)		__raw_readsb(__io(p),d,l)
264#define insw(p,d,l)		__raw_readsw(__io(p),d,l)
265#define insl(p,d,l)		__raw_readsl(__io(p),d,l)
266#endif
267
268/*
269 * String version of IO memory access ops:
270 */
271extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
272extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
273extern void _memset_io(volatile void __iomem *, int, size_t);
274
275#define mmiowb()
276
277/*
278 *  Memory access primitives
279 *  ------------------------
280 *
281 * These perform PCI memory accesses via an ioremap region.  They don't
282 * take an address as such, but a cookie.
283 *
284 * Again, these are defined to perform little endian accesses.  See the
285 * IO port primitives for more information.
286 */
287#ifndef readl
288#define readb_relaxed(c) ({ u8  __r = __raw_readb(c); __r; })
289#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
290					__raw_readw(c)); __r; })
291#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
292					__raw_readl(c)); __r; })
293
294#define writeb_relaxed(v,c)	__raw_writeb(v,c)
295#define writew_relaxed(v,c)	__raw_writew((__force u16) cpu_to_le16(v),c)
296#define writel_relaxed(v,c)	__raw_writel((__force u32) cpu_to_le32(v),c)
297
298#define readb(c)		({ u8  __v = readb_relaxed(c); __iormb(); __v; })
299#define readw(c)		({ u16 __v = readw_relaxed(c); __iormb(); __v; })
300#define readl(c)		({ u32 __v = readl_relaxed(c); __iormb(); __v; })
301
302#define writeb(v,c)		({ __iowmb(); writeb_relaxed(v,c); })
303#define writew(v,c)		({ __iowmb(); writew_relaxed(v,c); })
304#define writel(v,c)		({ __iowmb(); writel_relaxed(v,c); })
305
306#define readsb(p,d,l)		__raw_readsb(p,d,l)
307#define readsw(p,d,l)		__raw_readsw(p,d,l)
308#define readsl(p,d,l)		__raw_readsl(p,d,l)
309
310#define writesb(p,d,l)		__raw_writesb(p,d,l)
311#define writesw(p,d,l)		__raw_writesw(p,d,l)
312#define writesl(p,d,l)		__raw_writesl(p,d,l)
313
314#ifndef __ARMBE__
315static inline void memset_io(volatile void __iomem *dst, unsigned c,
316	size_t count)
317{
318	extern void mmioset(void *, unsigned int, size_t);
319	mmioset((void __force *)dst, c, count);
320}
321#define memset_io(dst,c,count) memset_io(dst,c,count)
322
323static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
324	size_t count)
325{
326	extern void mmiocpy(void *, const void *, size_t);
327	mmiocpy(to, (const void __force *)from, count);
328}
329#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
330
331static inline void memcpy_toio(volatile void __iomem *to, const void *from,
332	size_t count)
333{
334	extern void mmiocpy(void *, const void *, size_t);
335	mmiocpy((void __force *)to, from, count);
336}
337#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
338
339#else
340#define memset_io(c,v,l)	_memset_io(c,(v),(l))
341#define memcpy_fromio(a,c,l)	_memcpy_fromio((a),c,(l))
342#define memcpy_toio(c,a,l)	_memcpy_toio(c,(a),(l))
343#endif
344
345#endif	/* readl */
346
347/*
348 * ioremap() and friends.
349 *
350 * ioremap() takes a resource address, and size.  Due to the ARM memory
351 * types, it is important to use the correct ioremap() function as each
352 * mapping has specific properties.
353 *
354 * Function		Memory type	Cacheability	Cache hint
355 * ioremap()		Device		n/a		n/a
356 * ioremap_nocache()	Device		n/a		n/a
357 * ioremap_cache()	Normal		Writeback	Read allocate
358 * ioremap_wc()		Normal		Non-cacheable	n/a
359 * ioremap_wt()		Normal		Non-cacheable	n/a
360 *
361 * All device mappings have the following properties:
362 * - no access speculation
363 * - no repetition (eg, on return from an exception)
364 * - number, order and size of accesses are maintained
365 * - unaligned accesses are "unpredictable"
366 * - writes may be delayed before they hit the endpoint device
367 *
368 * ioremap_nocache() is the same as ioremap() as there are too many device
369 * drivers using this for device registers, and documentation which tells
370 * people to use it for such for this to be any different.  This is not a
371 * safe fallback for memory-like mappings, or memory regions where the
372 * compiler may generate unaligned accesses - eg, via inlining its own
373 * memcpy.
374 *
375 * All normal memory mappings have the following properties:
376 * - reads can be repeated with no side effects
377 * - repeated reads return the last value written
378 * - reads can fetch additional locations without side effects
379 * - writes can be repeated (in certain cases) with no side effects
380 * - writes can be merged before accessing the target
381 * - unaligned accesses can be supported
382 * - ordering is not guaranteed without explicit dependencies or barrier
383 *   instructions
384 * - writes may be delayed before they hit the endpoint memory
385 *
386 * The cache hint is only a performance hint: CPUs may alias these hints.
387 * Eg, a CPU not implementing read allocate but implementing write allocate
388 * will provide a write allocate mapping instead.
389 */
390void __iomem *ioremap(resource_size_t res_cookie, size_t size);
391#define ioremap ioremap
392#define ioremap_nocache ioremap
393
394/*
395 * Do not use ioremap_cache for mapping memory. Use memremap instead.
396 */
397void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
398#define ioremap_cache ioremap_cache
399
400/*
401 * Do not use ioremap_cached in new code. Provided for the benefit of
402 * the pxa2xx-flash MTD driver only.
403 */
404void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);
405
406void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
407#define ioremap_wc ioremap_wc
408#define ioremap_wt ioremap_wc
409
410void iounmap(volatile void __iomem *iomem_cookie);
411#define iounmap iounmap
412
413void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
414#define arch_memremap_wb arch_memremap_wb
415
416/*
417 * io{read,write}{16,32}be() macros
418 */
419#define ioread16be(p)		({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
420#define ioread32be(p)		({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
421
422#define iowrite16be(v,p)	({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
423#define iowrite32be(v,p)	({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
424
425#ifndef ioport_map
426#define ioport_map ioport_map
427extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
428#endif
429#ifndef ioport_unmap
430#define ioport_unmap ioport_unmap
431extern void ioport_unmap(void __iomem *addr);
432#endif
433
434struct pci_dev;
435
436#define pci_iounmap pci_iounmap
437extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
438
439/*
440 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
441 * access
442 */
443#define xlate_dev_mem_ptr(p)	__va(p)
444
445/*
446 * Convert a virtual cached pointer to an uncached pointer
447 */
448#define xlate_dev_kmem_ptr(p)	p
449
450#include <asm-generic/io.h>
451
452/*
453 * can the hardware map this into one segment or not, given no other
454 * constraints.
455 */
456#define BIOVEC_MERGEABLE(vec1, vec2)	\
457	((bvec_to_phys((vec1)) + (vec1)->bv_len) == bvec_to_phys((vec2)))
458
459struct bio_vec;
460extern bool xen_biovec_phys_mergeable(const struct bio_vec *vec1,
461				      const struct bio_vec *vec2);
462#define BIOVEC_PHYS_MERGEABLE(vec1, vec2)				\
463	(__BIOVEC_PHYS_MERGEABLE(vec1, vec2) &&				\
464	 (!xen_domain() || xen_biovec_phys_mergeable(vec1, vec2)))
465
466#ifdef CONFIG_MMU
467#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
468extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
469extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
470extern int devmem_is_allowed(unsigned long pfn);
471#endif
472
473/*
474 * Register ISA memory and port locations for glibc iopl/inb/outb
475 * emulation.
476 */
477extern void register_isa_ports(unsigned int mmio, unsigned int io,
478			       unsigned int io_shift);
479
480#endif	/* __KERNEL__ */
481#endif	/* __ASM_ARM_IO_H */
v5.4
  1/* SPDX-License-Identifier: GPL-2.0-only */
  2/*
  3 *  arch/arm/include/asm/io.h
  4 *
  5 *  Copyright (C) 1996-2000 Russell King
  6 *
 
 
 
 
  7 * Modifications:
  8 *  16-Sep-1996	RMK	Inlined the inx/outx functions & optimised for both
  9 *			constant addresses and variable addresses.
 10 *  04-Dec-1997	RMK	Moved a lot of this stuff to the new architecture
 11 *			specific IO header files.
 12 *  27-Mar-1999	PJB	Second parameter of memcpy_toio is const..
 13 *  04-Apr-1999	PJB	Added check_signature.
 14 *  12-Dec-1999	RMK	More cleanups
 15 *  18-Jun-2000 RMK	Removed virt_to_* and friends definitions
 16 *  05-Oct-2004 BJD     Moved memory string functions to use void __iomem
 17 */
 18#ifndef __ASM_ARM_IO_H
 19#define __ASM_ARM_IO_H
 20
 21#ifdef __KERNEL__
 22
 23#include <linux/string.h>
 24#include <linux/types.h>
 25#include <asm/byteorder.h>
 26#include <asm/memory.h>
 27#include <asm-generic/pci_iomap.h>
 
 28
 29/*
 30 * ISA I/O bus memory addresses are 1:1 with the physical address.
 31 */
 32#define isa_virt_to_bus virt_to_phys
 
 33#define isa_bus_to_virt phys_to_virt
 34
 35/*
 36 * Atomic MMIO-wide IO modify
 37 */
 38extern void atomic_io_modify(void __iomem *reg, u32 mask, u32 set);
 39extern void atomic_io_modify_relaxed(void __iomem *reg, u32 mask, u32 set);
 40
 41/*
 42 * Generic IO read/write.  These perform native-endian accesses.  Note
 43 * that some architectures will want to re-define __raw_{read,write}w.
 44 */
 45void __raw_writesb(volatile void __iomem *addr, const void *data, int bytelen);
 46void __raw_writesw(volatile void __iomem *addr, const void *data, int wordlen);
 47void __raw_writesl(volatile void __iomem *addr, const void *data, int longlen);
 48
 49void __raw_readsb(const volatile void __iomem *addr, void *data, int bytelen);
 50void __raw_readsw(const volatile void __iomem *addr, void *data, int wordlen);
 51void __raw_readsl(const volatile void __iomem *addr, void *data, int longlen);
 52
 53#if __LINUX_ARM_ARCH__ < 6
 54/*
 55 * Half-word accesses are problematic with RiscPC due to limitations of
 56 * the bus. Rather than special-case the machine, just let the compiler
 57 * generate the access for CPUs prior to ARMv6.
 58 */
 59#define __raw_readw(a)         (__chk_io_ptr(a), *(volatile unsigned short __force *)(a))
 60#define __raw_writew(v,a)      ((void)(__chk_io_ptr(a), *(volatile unsigned short __force *)(a) = (v)))
 61#else
 62/*
 63 * When running under a hypervisor, we want to avoid I/O accesses with
 64 * writeback addressing modes as these incur a significant performance
 65 * overhead (the address generation must be emulated in software).
 66 */
 67#define __raw_writew __raw_writew
 68static inline void __raw_writew(u16 val, volatile void __iomem *addr)
 69{
 70	asm volatile("strh %1, %0"
 71		     : : "Q" (*(volatile u16 __force *)addr), "r" (val));
 72}
 73
 74#define __raw_readw __raw_readw
 75static inline u16 __raw_readw(const volatile void __iomem *addr)
 76{
 77	u16 val;
 78	asm volatile("ldrh %0, %1"
 79		     : "=r" (val)
 80		     : "Q" (*(volatile u16 __force *)addr));
 81	return val;
 82}
 83#endif
 84
 85#define __raw_writeb __raw_writeb
 86static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
 87{
 88	asm volatile("strb %1, %0"
 89		     : : "Qo" (*(volatile u8 __force *)addr), "r" (val));
 90}
 91
 92#define __raw_writel __raw_writel
 93static inline void __raw_writel(u32 val, volatile void __iomem *addr)
 94{
 95	asm volatile("str %1, %0"
 96		     : : "Qo" (*(volatile u32 __force *)addr), "r" (val));
 97}
 98
 99#define __raw_readb __raw_readb
100static inline u8 __raw_readb(const volatile void __iomem *addr)
101{
102	u8 val;
103	asm volatile("ldrb %0, %1"
104		     : "=r" (val)
105		     : "Qo" (*(volatile u8 __force *)addr));
106	return val;
107}
108
109#define __raw_readl __raw_readl
110static inline u32 __raw_readl(const volatile void __iomem *addr)
111{
112	u32 val;
113	asm volatile("ldr %0, %1"
114		     : "=r" (val)
115		     : "Qo" (*(volatile u32 __force *)addr));
116	return val;
117}
118
119/*
120 * Architecture ioremap implementation.
121 */
122#define MT_DEVICE		0
123#define MT_DEVICE_NONSHARED	1
124#define MT_DEVICE_CACHED	2
125#define MT_DEVICE_WC		3
126/*
127 * types 4 onwards can be found in asm/mach/map.h and are undefined
128 * for ioremap
129 */
130
131/*
132 * __arm_ioremap takes CPU physical address.
133 * __arm_ioremap_pfn takes a Page Frame Number and an offset into that page
134 * The _caller variety takes a __builtin_return_address(0) value for
135 * /proc/vmalloc to use - and should only be used in non-inline functions.
136 */
137extern void __iomem *__arm_ioremap_caller(phys_addr_t, size_t, unsigned int,
138	void *);
139extern void __iomem *__arm_ioremap_pfn(unsigned long, unsigned long, size_t, unsigned int);
140extern void __iomem *__arm_ioremap_exec(phys_addr_t, size_t, bool cached);
141extern void __iounmap(volatile void __iomem *addr);
142
143extern void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
144	unsigned int, void *);
145extern void (*arch_iounmap)(volatile void __iomem *);
146
147/*
148 * Bad read/write accesses...
149 */
150extern void __readwrite_bug(const char *fn);
151
152/*
153 * A typesafe __io() helper
154 */
155static inline void __iomem *__typesafe_io(unsigned long addr)
156{
157	return (void __iomem *)addr;
158}
159
160#define IOMEM(x)	((void __force __iomem *)(x))
161
162/* IO barriers */
163#ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
164#include <asm/barrier.h>
165#define __iormb()		rmb()
166#define __iowmb()		wmb()
167#else
168#define __iormb()		do { } while (0)
169#define __iowmb()		do { } while (0)
170#endif
171
172/* PCI fixed i/o mapping */
173#define PCI_IO_VIRT_BASE	0xfee00000
174#define PCI_IOBASE		((void __iomem *)PCI_IO_VIRT_BASE)
175
176#if defined(CONFIG_PCI)
177void pci_ioremap_set_mem_type(int mem_type);
178#else
179static inline void pci_ioremap_set_mem_type(int mem_type) {}
180#endif
181
182extern int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr);
183
184/*
185 * PCI configuration space mapping function.
186 *
187 * The PCI specification does not allow configuration write
188 * transactions to be posted. Add an arch specific
189 * pci_remap_cfgspace() definition that is implemented
190 * through strongly ordered memory mappings.
191 */
192#define pci_remap_cfgspace pci_remap_cfgspace
193void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size);
194/*
195 * Now, pick up the machine-defined IO definitions
196 */
197#ifdef CONFIG_NEED_MACH_IO_H
198#include <mach/io.h>
199#elif defined(CONFIG_PCI)
200#define IO_SPACE_LIMIT	((resource_size_t)0xfffff)
201#define __io(a)		__typesafe_io(PCI_IO_VIRT_BASE + ((a) & IO_SPACE_LIMIT))
202#else
203#define __io(a)		__typesafe_io((a) & IO_SPACE_LIMIT)
204#endif
205
206/*
207 * This is the limit of PC card/PCI/ISA IO space, which is by default
208 * 64K if we have PC card, PCI or ISA support.  Otherwise, default to
209 * zero to prevent ISA/PCI drivers claiming IO space (and potentially
210 * oopsing.)
211 *
212 * Only set this larger if you really need inb() et.al. to operate over
213 * a larger address space.  Note that SOC_COMMON ioremaps each sockets
214 * IO space area, and so inb() et.al. must be defined to operate as per
215 * readb() et.al. on such platforms.
216 */
217#ifndef IO_SPACE_LIMIT
218#if defined(CONFIG_PCMCIA_SOC_COMMON) || defined(CONFIG_PCMCIA_SOC_COMMON_MODULE)
219#define IO_SPACE_LIMIT ((resource_size_t)0xffffffff)
220#elif defined(CONFIG_PCI) || defined(CONFIG_ISA) || defined(CONFIG_PCCARD)
221#define IO_SPACE_LIMIT ((resource_size_t)0xffff)
222#else
223#define IO_SPACE_LIMIT ((resource_size_t)0)
224#endif
225#endif
226
227/*
228 *  IO port access primitives
229 *  -------------------------
230 *
231 * The ARM doesn't have special IO access instructions; all IO is memory
232 * mapped.  Note that these are defined to perform little endian accesses
233 * only.  Their primary purpose is to access PCI and ISA peripherals.
234 *
235 * Note that for a big endian machine, this implies that the following
236 * big endian mode connectivity is in place, as described by numerous
237 * ARM documents:
238 *
239 *    PCI:  D0-D7   D8-D15 D16-D23 D24-D31
240 *    ARM: D24-D31 D16-D23  D8-D15  D0-D7
241 *
242 * The machine specific io.h include defines __io to translate an "IO"
243 * address to a memory address.
244 *
245 * Note that we prevent GCC re-ordering or caching values in expressions
246 * by introducing sequence points into the in*() definitions.  Note that
247 * __raw_* do not guarantee this behaviour.
248 *
249 * The {in,out}[bwl] macros are for emulating x86-style PCI/ISA IO space.
250 */
251#ifdef __io
252#define outb(v,p)	({ __iowmb(); __raw_writeb(v,__io(p)); })
253#define outw(v,p)	({ __iowmb(); __raw_writew((__force __u16) \
254					cpu_to_le16(v),__io(p)); })
255#define outl(v,p)	({ __iowmb(); __raw_writel((__force __u32) \
256					cpu_to_le32(v),__io(p)); })
257
258#define inb(p)	({ __u8 __v = __raw_readb(__io(p)); __iormb(); __v; })
259#define inw(p)	({ __u16 __v = le16_to_cpu((__force __le16) \
260			__raw_readw(__io(p))); __iormb(); __v; })
261#define inl(p)	({ __u32 __v = le32_to_cpu((__force __le32) \
262			__raw_readl(__io(p))); __iormb(); __v; })
263
264#define outsb(p,d,l)		__raw_writesb(__io(p),d,l)
265#define outsw(p,d,l)		__raw_writesw(__io(p),d,l)
266#define outsl(p,d,l)		__raw_writesl(__io(p),d,l)
267
268#define insb(p,d,l)		__raw_readsb(__io(p),d,l)
269#define insw(p,d,l)		__raw_readsw(__io(p),d,l)
270#define insl(p,d,l)		__raw_readsl(__io(p),d,l)
271#endif
272
273/*
274 * String version of IO memory access ops:
275 */
276extern void _memcpy_fromio(void *, const volatile void __iomem *, size_t);
277extern void _memcpy_toio(volatile void __iomem *, const void *, size_t);
278extern void _memset_io(volatile void __iomem *, int, size_t);
279
 
 
280/*
281 *  Memory access primitives
282 *  ------------------------
283 *
284 * These perform PCI memory accesses via an ioremap region.  They don't
285 * take an address as such, but a cookie.
286 *
287 * Again, these are defined to perform little endian accesses.  See the
288 * IO port primitives for more information.
289 */
290#ifndef readl
291#define readb_relaxed(c) ({ u8  __r = __raw_readb(c); __r; })
292#define readw_relaxed(c) ({ u16 __r = le16_to_cpu((__force __le16) \
293					__raw_readw(c)); __r; })
294#define readl_relaxed(c) ({ u32 __r = le32_to_cpu((__force __le32) \
295					__raw_readl(c)); __r; })
296
297#define writeb_relaxed(v,c)	__raw_writeb(v,c)
298#define writew_relaxed(v,c)	__raw_writew((__force u16) cpu_to_le16(v),c)
299#define writel_relaxed(v,c)	__raw_writel((__force u32) cpu_to_le32(v),c)
300
301#define readb(c)		({ u8  __v = readb_relaxed(c); __iormb(); __v; })
302#define readw(c)		({ u16 __v = readw_relaxed(c); __iormb(); __v; })
303#define readl(c)		({ u32 __v = readl_relaxed(c); __iormb(); __v; })
304
305#define writeb(v,c)		({ __iowmb(); writeb_relaxed(v,c); })
306#define writew(v,c)		({ __iowmb(); writew_relaxed(v,c); })
307#define writel(v,c)		({ __iowmb(); writel_relaxed(v,c); })
308
309#define readsb(p,d,l)		__raw_readsb(p,d,l)
310#define readsw(p,d,l)		__raw_readsw(p,d,l)
311#define readsl(p,d,l)		__raw_readsl(p,d,l)
312
313#define writesb(p,d,l)		__raw_writesb(p,d,l)
314#define writesw(p,d,l)		__raw_writesw(p,d,l)
315#define writesl(p,d,l)		__raw_writesl(p,d,l)
316
317#ifndef __ARMBE__
318static inline void memset_io(volatile void __iomem *dst, unsigned c,
319	size_t count)
320{
321	extern void mmioset(void *, unsigned int, size_t);
322	mmioset((void __force *)dst, c, count);
323}
324#define memset_io(dst,c,count) memset_io(dst,c,count)
325
326static inline void memcpy_fromio(void *to, const volatile void __iomem *from,
327	size_t count)
328{
329	extern void mmiocpy(void *, const void *, size_t);
330	mmiocpy(to, (const void __force *)from, count);
331}
332#define memcpy_fromio(to,from,count) memcpy_fromio(to,from,count)
333
334static inline void memcpy_toio(volatile void __iomem *to, const void *from,
335	size_t count)
336{
337	extern void mmiocpy(void *, const void *, size_t);
338	mmiocpy((void __force *)to, from, count);
339}
340#define memcpy_toio(to,from,count) memcpy_toio(to,from,count)
341
342#else
343#define memset_io(c,v,l)	_memset_io(c,(v),(l))
344#define memcpy_fromio(a,c,l)	_memcpy_fromio((a),c,(l))
345#define memcpy_toio(c,a,l)	_memcpy_toio(c,(a),(l))
346#endif
347
348#endif	/* readl */
349
350/*
351 * ioremap() and friends.
352 *
353 * ioremap() takes a resource address, and size.  Due to the ARM memory
354 * types, it is important to use the correct ioremap() function as each
355 * mapping has specific properties.
356 *
357 * Function		Memory type	Cacheability	Cache hint
358 * ioremap()		Device		n/a		n/a
359 * ioremap_nocache()	Device		n/a		n/a
360 * ioremap_cache()	Normal		Writeback	Read allocate
361 * ioremap_wc()		Normal		Non-cacheable	n/a
362 * ioremap_wt()		Normal		Non-cacheable	n/a
363 *
364 * All device mappings have the following properties:
365 * - no access speculation
366 * - no repetition (eg, on return from an exception)
367 * - number, order and size of accesses are maintained
368 * - unaligned accesses are "unpredictable"
369 * - writes may be delayed before they hit the endpoint device
370 *
371 * ioremap_nocache() is the same as ioremap() as there are too many device
372 * drivers using this for device registers, and documentation which tells
373 * people to use it for such for this to be any different.  This is not a
374 * safe fallback for memory-like mappings, or memory regions where the
375 * compiler may generate unaligned accesses - eg, via inlining its own
376 * memcpy.
377 *
378 * All normal memory mappings have the following properties:
379 * - reads can be repeated with no side effects
380 * - repeated reads return the last value written
381 * - reads can fetch additional locations without side effects
382 * - writes can be repeated (in certain cases) with no side effects
383 * - writes can be merged before accessing the target
384 * - unaligned accesses can be supported
385 * - ordering is not guaranteed without explicit dependencies or barrier
386 *   instructions
387 * - writes may be delayed before they hit the endpoint memory
388 *
389 * The cache hint is only a performance hint: CPUs may alias these hints.
390 * Eg, a CPU not implementing read allocate but implementing write allocate
391 * will provide a write allocate mapping instead.
392 */
393void __iomem *ioremap(resource_size_t res_cookie, size_t size);
394#define ioremap ioremap
395#define ioremap_nocache ioremap
396
397/*
398 * Do not use ioremap_cache for mapping memory. Use memremap instead.
399 */
400void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size);
401#define ioremap_cache ioremap_cache
402
403/*
404 * Do not use ioremap_cached in new code. Provided for the benefit of
405 * the pxa2xx-flash MTD driver only.
406 */
407void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size);
408
409void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size);
410#define ioremap_wc ioremap_wc
411#define ioremap_wt ioremap_wc
412
413void iounmap(volatile void __iomem *iomem_cookie);
414#define iounmap iounmap
415
416void *arch_memremap_wb(phys_addr_t phys_addr, size_t size);
417#define arch_memremap_wb arch_memremap_wb
418
419/*
420 * io{read,write}{16,32}be() macros
421 */
422#define ioread16be(p)		({ __u16 __v = be16_to_cpu((__force __be16)__raw_readw(p)); __iormb(); __v; })
423#define ioread32be(p)		({ __u32 __v = be32_to_cpu((__force __be32)__raw_readl(p)); __iormb(); __v; })
424
425#define iowrite16be(v,p)	({ __iowmb(); __raw_writew((__force __u16)cpu_to_be16(v), p); })
426#define iowrite32be(v,p)	({ __iowmb(); __raw_writel((__force __u32)cpu_to_be32(v), p); })
427
428#ifndef ioport_map
429#define ioport_map ioport_map
430extern void __iomem *ioport_map(unsigned long port, unsigned int nr);
431#endif
432#ifndef ioport_unmap
433#define ioport_unmap ioport_unmap
434extern void ioport_unmap(void __iomem *addr);
435#endif
436
437struct pci_dev;
438
439#define pci_iounmap pci_iounmap
440extern void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
441
442/*
443 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
444 * access
445 */
446#define xlate_dev_mem_ptr(p)	__va(p)
447
448/*
449 * Convert a virtual cached pointer to an uncached pointer
450 */
451#define xlate_dev_kmem_ptr(p)	p
452
453#include <asm-generic/io.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
455#ifdef CONFIG_MMU
456#define ARCH_HAS_VALID_PHYS_ADDR_RANGE
457extern int valid_phys_addr_range(phys_addr_t addr, size_t size);
458extern int valid_mmap_phys_addr_range(unsigned long pfn, size_t size);
459extern int devmem_is_allowed(unsigned long pfn);
460#endif
461
462/*
463 * Register ISA memory and port locations for glibc iopl/inb/outb
464 * emulation.
465 */
466extern void register_isa_ports(unsigned int mmio, unsigned int io,
467			       unsigned int io_shift);
468
469#endif	/* __KERNEL__ */
470#endif	/* __ASM_ARM_IO_H */