Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1#include "builtin.h"
   2#include "perf.h"
 
   3
   4#include "util/util.h"
   5#include "util/evlist.h"
   6#include "util/cache.h"
   7#include "util/evsel.h"
 
   8#include "util/symbol.h"
   9#include "util/thread.h"
  10#include "util/header.h"
  11#include "util/session.h"
  12#include "util/tool.h"
  13#include "util/cloexec.h"
  14#include "util/thread_map.h"
  15#include "util/color.h"
  16#include "util/stat.h"
 
  17#include "util/callchain.h"
  18#include "util/time-utils.h"
  19
 
  20#include <subcmd/parse-options.h>
  21#include "util/trace-event.h"
  22
  23#include "util/debug.h"
 
  24
 
  25#include <linux/log2.h>
 
  26#include <sys/prctl.h>
  27#include <sys/resource.h>
 
  28
 
  29#include <semaphore.h>
  30#include <pthread.h>
  31#include <math.h>
  32#include <api/fs/fs.h>
 
  33#include <linux/time64.h>
 
 
 
  34
  35#define PR_SET_NAME		15               /* Set process name */
  36#define MAX_CPUS		4096
  37#define COMM_LEN		20
  38#define SYM_LEN			129
  39#define MAX_PID			1024000
  40
  41struct sched_atom;
  42
  43struct task_desc {
  44	unsigned long		nr;
  45	unsigned long		pid;
  46	char			comm[COMM_LEN];
  47
  48	unsigned long		nr_events;
  49	unsigned long		curr_event;
  50	struct sched_atom	**atoms;
  51
  52	pthread_t		thread;
  53	sem_t			sleep_sem;
  54
  55	sem_t			ready_for_work;
  56	sem_t			work_done_sem;
  57
  58	u64			cpu_usage;
  59};
  60
  61enum sched_event_type {
  62	SCHED_EVENT_RUN,
  63	SCHED_EVENT_SLEEP,
  64	SCHED_EVENT_WAKEUP,
  65	SCHED_EVENT_MIGRATION,
  66};
  67
  68struct sched_atom {
  69	enum sched_event_type	type;
  70	int			specific_wait;
  71	u64			timestamp;
  72	u64			duration;
  73	unsigned long		nr;
  74	sem_t			*wait_sem;
  75	struct task_desc	*wakee;
  76};
  77
  78#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80enum thread_state {
  81	THREAD_SLEEPING = 0,
  82	THREAD_WAIT_CPU,
  83	THREAD_SCHED_IN,
  84	THREAD_IGNORE
  85};
  86
  87struct work_atom {
  88	struct list_head	list;
  89	enum thread_state	state;
  90	u64			sched_out_time;
  91	u64			wake_up_time;
  92	u64			sched_in_time;
  93	u64			runtime;
  94};
  95
  96struct work_atoms {
  97	struct list_head	work_list;
  98	struct thread		*thread;
  99	struct rb_node		node;
 100	u64			max_lat;
 101	u64			max_lat_at;
 102	u64			total_lat;
 103	u64			nb_atoms;
 104	u64			total_runtime;
 105	int			num_merged;
 106};
 107
 108typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 109
 110struct perf_sched;
 111
 112struct trace_sched_handler {
 113	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 114			    struct perf_sample *sample, struct machine *machine);
 115
 116	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 117			     struct perf_sample *sample, struct machine *machine);
 118
 119	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 120			    struct perf_sample *sample, struct machine *machine);
 121
 122	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 123	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 124			  struct machine *machine);
 125
 126	int (*migrate_task_event)(struct perf_sched *sched,
 127				  struct perf_evsel *evsel,
 128				  struct perf_sample *sample,
 129				  struct machine *machine);
 130};
 131
 132#define COLOR_PIDS PERF_COLOR_BLUE
 133#define COLOR_CPUS PERF_COLOR_BG_RED
 134
 135struct perf_sched_map {
 136	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 137	int			*comp_cpus;
 138	bool			 comp;
 139	struct thread_map	*color_pids;
 140	const char		*color_pids_str;
 141	struct cpu_map		*color_cpus;
 142	const char		*color_cpus_str;
 143	struct cpu_map		*cpus;
 144	const char		*cpus_str;
 145};
 146
 147struct perf_sched {
 148	struct perf_tool tool;
 149	const char	 *sort_order;
 150	unsigned long	 nr_tasks;
 151	struct task_desc **pid_to_task;
 152	struct task_desc **tasks;
 153	const struct trace_sched_handler *tp_handler;
 154	pthread_mutex_t	 start_work_mutex;
 155	pthread_mutex_t	 work_done_wait_mutex;
 156	int		 profile_cpu;
 157/*
 158 * Track the current task - that way we can know whether there's any
 159 * weird events, such as a task being switched away that is not current.
 160 */
 161	int		 max_cpu;
 162	u32		 curr_pid[MAX_CPUS];
 163	struct thread	 *curr_thread[MAX_CPUS];
 164	char		 next_shortname1;
 165	char		 next_shortname2;
 166	unsigned int	 replay_repeat;
 167	unsigned long	 nr_run_events;
 168	unsigned long	 nr_sleep_events;
 169	unsigned long	 nr_wakeup_events;
 170	unsigned long	 nr_sleep_corrections;
 171	unsigned long	 nr_run_events_optimized;
 172	unsigned long	 targetless_wakeups;
 173	unsigned long	 multitarget_wakeups;
 174	unsigned long	 nr_runs;
 175	unsigned long	 nr_timestamps;
 176	unsigned long	 nr_unordered_timestamps;
 177	unsigned long	 nr_context_switch_bugs;
 178	unsigned long	 nr_events;
 179	unsigned long	 nr_lost_chunks;
 180	unsigned long	 nr_lost_events;
 181	u64		 run_measurement_overhead;
 182	u64		 sleep_measurement_overhead;
 183	u64		 start_time;
 184	u64		 cpu_usage;
 185	u64		 runavg_cpu_usage;
 186	u64		 parent_cpu_usage;
 187	u64		 runavg_parent_cpu_usage;
 188	u64		 sum_runtime;
 189	u64		 sum_fluct;
 190	u64		 run_avg;
 191	u64		 all_runtime;
 192	u64		 all_count;
 193	u64		 cpu_last_switched[MAX_CPUS];
 194	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
 195	struct list_head sort_list, cmp_pid;
 196	bool force;
 197	bool skip_merge;
 198	struct perf_sched_map map;
 199
 200	/* options for timehist command */
 201	bool		summary;
 202	bool		summary_only;
 203	bool		idle_hist;
 204	bool		show_callchain;
 205	unsigned int	max_stack;
 206	bool		show_cpu_visual;
 207	bool		show_wakeups;
 
 208	bool		show_migrations;
 
 209	u64		skipped_samples;
 210	const char	*time_str;
 211	struct perf_time_interval ptime;
 212	struct perf_time_interval hist_time;
 213};
 214
 215/* per thread run time data */
 216struct thread_runtime {
 217	u64 last_time;      /* time of previous sched in/out event */
 218	u64 dt_run;         /* run time */
 219	u64 dt_wait;        /* time between CPU access (off cpu) */
 
 
 220	u64 dt_delay;       /* time between wakeup and sched-in */
 221	u64 ready_to_run;   /* time of wakeup */
 222
 223	struct stats run_stats;
 224	u64 total_run_time;
 
 
 
 
 
 
 
 
 
 225
 226	u64 migrations;
 227};
 228
 229/* per event run time data */
 230struct evsel_runtime {
 231	u64 *last_time; /* time this event was last seen per cpu */
 232	u32 ncpu;       /* highest cpu slot allocated */
 233};
 234
 235/* per cpu idle time data */
 236struct idle_thread_runtime {
 237	struct thread_runtime	tr;
 238	struct thread		*last_thread;
 239	struct rb_root		sorted_root;
 240	struct callchain_root	callchain;
 241	struct callchain_cursor	cursor;
 242};
 243
 244/* track idle times per cpu */
 245static struct thread **idle_threads;
 246static int idle_max_cpu;
 247static char idle_comm[] = "<idle>";
 248
 249static u64 get_nsecs(void)
 250{
 251	struct timespec ts;
 252
 253	clock_gettime(CLOCK_MONOTONIC, &ts);
 254
 255	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 256}
 257
 258static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 259{
 260	u64 T0 = get_nsecs(), T1;
 261
 262	do {
 263		T1 = get_nsecs();
 264	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 265}
 266
 267static void sleep_nsecs(u64 nsecs)
 268{
 269	struct timespec ts;
 270
 271	ts.tv_nsec = nsecs % 999999999;
 272	ts.tv_sec = nsecs / 999999999;
 273
 274	nanosleep(&ts, NULL);
 275}
 276
 277static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 278{
 279	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 280	int i;
 281
 282	for (i = 0; i < 10; i++) {
 283		T0 = get_nsecs();
 284		burn_nsecs(sched, 0);
 285		T1 = get_nsecs();
 286		delta = T1-T0;
 287		min_delta = min(min_delta, delta);
 288	}
 289	sched->run_measurement_overhead = min_delta;
 290
 291	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 292}
 293
 294static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 295{
 296	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 297	int i;
 298
 299	for (i = 0; i < 10; i++) {
 300		T0 = get_nsecs();
 301		sleep_nsecs(10000);
 302		T1 = get_nsecs();
 303		delta = T1-T0;
 304		min_delta = min(min_delta, delta);
 305	}
 306	min_delta -= 10000;
 307	sched->sleep_measurement_overhead = min_delta;
 308
 309	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 310}
 311
 312static struct sched_atom *
 313get_new_event(struct task_desc *task, u64 timestamp)
 314{
 315	struct sched_atom *event = zalloc(sizeof(*event));
 316	unsigned long idx = task->nr_events;
 317	size_t size;
 318
 319	event->timestamp = timestamp;
 320	event->nr = idx;
 321
 322	task->nr_events++;
 323	size = sizeof(struct sched_atom *) * task->nr_events;
 324	task->atoms = realloc(task->atoms, size);
 325	BUG_ON(!task->atoms);
 326
 327	task->atoms[idx] = event;
 328
 329	return event;
 330}
 331
 332static struct sched_atom *last_event(struct task_desc *task)
 333{
 334	if (!task->nr_events)
 335		return NULL;
 336
 337	return task->atoms[task->nr_events - 1];
 338}
 339
 340static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 341				u64 timestamp, u64 duration)
 342{
 343	struct sched_atom *event, *curr_event = last_event(task);
 344
 345	/*
 346	 * optimize an existing RUN event by merging this one
 347	 * to it:
 348	 */
 349	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 350		sched->nr_run_events_optimized++;
 351		curr_event->duration += duration;
 352		return;
 353	}
 354
 355	event = get_new_event(task, timestamp);
 356
 357	event->type = SCHED_EVENT_RUN;
 358	event->duration = duration;
 359
 360	sched->nr_run_events++;
 361}
 362
 363static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 364				   u64 timestamp, struct task_desc *wakee)
 365{
 366	struct sched_atom *event, *wakee_event;
 367
 368	event = get_new_event(task, timestamp);
 369	event->type = SCHED_EVENT_WAKEUP;
 370	event->wakee = wakee;
 371
 372	wakee_event = last_event(wakee);
 373	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 374		sched->targetless_wakeups++;
 375		return;
 376	}
 377	if (wakee_event->wait_sem) {
 378		sched->multitarget_wakeups++;
 379		return;
 380	}
 381
 382	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 383	sem_init(wakee_event->wait_sem, 0, 0);
 384	wakee_event->specific_wait = 1;
 385	event->wait_sem = wakee_event->wait_sem;
 386
 387	sched->nr_wakeup_events++;
 388}
 389
 390static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 391				  u64 timestamp, u64 task_state __maybe_unused)
 392{
 393	struct sched_atom *event = get_new_event(task, timestamp);
 394
 395	event->type = SCHED_EVENT_SLEEP;
 396
 397	sched->nr_sleep_events++;
 398}
 399
 400static struct task_desc *register_pid(struct perf_sched *sched,
 401				      unsigned long pid, const char *comm)
 402{
 403	struct task_desc *task;
 404	static int pid_max;
 405
 406	if (sched->pid_to_task == NULL) {
 407		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 408			pid_max = MAX_PID;
 409		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 410	}
 411	if (pid >= (unsigned long)pid_max) {
 412		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 413			sizeof(struct task_desc *))) == NULL);
 414		while (pid >= (unsigned long)pid_max)
 415			sched->pid_to_task[pid_max++] = NULL;
 416	}
 417
 418	task = sched->pid_to_task[pid];
 419
 420	if (task)
 421		return task;
 422
 423	task = zalloc(sizeof(*task));
 424	task->pid = pid;
 425	task->nr = sched->nr_tasks;
 426	strcpy(task->comm, comm);
 427	/*
 428	 * every task starts in sleeping state - this gets ignored
 429	 * if there's no wakeup pointing to this sleep state:
 430	 */
 431	add_sched_event_sleep(sched, task, 0, 0);
 432
 433	sched->pid_to_task[pid] = task;
 434	sched->nr_tasks++;
 435	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 436	BUG_ON(!sched->tasks);
 437	sched->tasks[task->nr] = task;
 438
 439	if (verbose)
 440		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 441
 442	return task;
 443}
 444
 445
 446static void print_task_traces(struct perf_sched *sched)
 447{
 448	struct task_desc *task;
 449	unsigned long i;
 450
 451	for (i = 0; i < sched->nr_tasks; i++) {
 452		task = sched->tasks[i];
 453		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 454			task->nr, task->comm, task->pid, task->nr_events);
 455	}
 456}
 457
 458static void add_cross_task_wakeups(struct perf_sched *sched)
 459{
 460	struct task_desc *task1, *task2;
 461	unsigned long i, j;
 462
 463	for (i = 0; i < sched->nr_tasks; i++) {
 464		task1 = sched->tasks[i];
 465		j = i + 1;
 466		if (j == sched->nr_tasks)
 467			j = 0;
 468		task2 = sched->tasks[j];
 469		add_sched_event_wakeup(sched, task1, 0, task2);
 470	}
 471}
 472
 473static void perf_sched__process_event(struct perf_sched *sched,
 474				      struct sched_atom *atom)
 475{
 476	int ret = 0;
 477
 478	switch (atom->type) {
 479		case SCHED_EVENT_RUN:
 480			burn_nsecs(sched, atom->duration);
 481			break;
 482		case SCHED_EVENT_SLEEP:
 483			if (atom->wait_sem)
 484				ret = sem_wait(atom->wait_sem);
 485			BUG_ON(ret);
 486			break;
 487		case SCHED_EVENT_WAKEUP:
 488			if (atom->wait_sem)
 489				ret = sem_post(atom->wait_sem);
 490			BUG_ON(ret);
 491			break;
 492		case SCHED_EVENT_MIGRATION:
 493			break;
 494		default:
 495			BUG_ON(1);
 496	}
 497}
 498
 499static u64 get_cpu_usage_nsec_parent(void)
 500{
 501	struct rusage ru;
 502	u64 sum;
 503	int err;
 504
 505	err = getrusage(RUSAGE_SELF, &ru);
 506	BUG_ON(err);
 507
 508	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 509	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 510
 511	return sum;
 512}
 513
 514static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 515{
 516	struct perf_event_attr attr;
 517	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 518	int fd;
 519	struct rlimit limit;
 520	bool need_privilege = false;
 521
 522	memset(&attr, 0, sizeof(attr));
 523
 524	attr.type = PERF_TYPE_SOFTWARE;
 525	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 526
 527force_again:
 528	fd = sys_perf_event_open(&attr, 0, -1, -1,
 529				 perf_event_open_cloexec_flag());
 530
 531	if (fd < 0) {
 532		if (errno == EMFILE) {
 533			if (sched->force) {
 534				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 535				limit.rlim_cur += sched->nr_tasks - cur_task;
 536				if (limit.rlim_cur > limit.rlim_max) {
 537					limit.rlim_max = limit.rlim_cur;
 538					need_privilege = true;
 539				}
 540				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 541					if (need_privilege && errno == EPERM)
 542						strcpy(info, "Need privilege\n");
 543				} else
 544					goto force_again;
 545			} else
 546				strcpy(info, "Have a try with -f option\n");
 547		}
 548		pr_err("Error: sys_perf_event_open() syscall returned "
 549		       "with %d (%s)\n%s", fd,
 550		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 551		exit(EXIT_FAILURE);
 552	}
 553	return fd;
 554}
 555
 556static u64 get_cpu_usage_nsec_self(int fd)
 557{
 558	u64 runtime;
 559	int ret;
 560
 561	ret = read(fd, &runtime, sizeof(runtime));
 562	BUG_ON(ret != sizeof(runtime));
 563
 564	return runtime;
 565}
 566
 567struct sched_thread_parms {
 568	struct task_desc  *task;
 569	struct perf_sched *sched;
 570	int fd;
 571};
 572
 573static void *thread_func(void *ctx)
 574{
 575	struct sched_thread_parms *parms = ctx;
 576	struct task_desc *this_task = parms->task;
 577	struct perf_sched *sched = parms->sched;
 578	u64 cpu_usage_0, cpu_usage_1;
 579	unsigned long i, ret;
 580	char comm2[22];
 581	int fd = parms->fd;
 582
 583	zfree(&parms);
 584
 585	sprintf(comm2, ":%s", this_task->comm);
 586	prctl(PR_SET_NAME, comm2);
 587	if (fd < 0)
 588		return NULL;
 589again:
 590	ret = sem_post(&this_task->ready_for_work);
 591	BUG_ON(ret);
 592	ret = pthread_mutex_lock(&sched->start_work_mutex);
 593	BUG_ON(ret);
 594	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 595	BUG_ON(ret);
 596
 597	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 598
 599	for (i = 0; i < this_task->nr_events; i++) {
 600		this_task->curr_event = i;
 601		perf_sched__process_event(sched, this_task->atoms[i]);
 602	}
 603
 604	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 605	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 606	ret = sem_post(&this_task->work_done_sem);
 607	BUG_ON(ret);
 608
 609	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 610	BUG_ON(ret);
 611	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 612	BUG_ON(ret);
 613
 614	goto again;
 615}
 616
 617static void create_tasks(struct perf_sched *sched)
 618{
 619	struct task_desc *task;
 620	pthread_attr_t attr;
 621	unsigned long i;
 622	int err;
 623
 624	err = pthread_attr_init(&attr);
 625	BUG_ON(err);
 626	err = pthread_attr_setstacksize(&attr,
 627			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 628	BUG_ON(err);
 629	err = pthread_mutex_lock(&sched->start_work_mutex);
 630	BUG_ON(err);
 631	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 632	BUG_ON(err);
 633	for (i = 0; i < sched->nr_tasks; i++) {
 634		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 635		BUG_ON(parms == NULL);
 636		parms->task = task = sched->tasks[i];
 637		parms->sched = sched;
 638		parms->fd = self_open_counters(sched, i);
 639		sem_init(&task->sleep_sem, 0, 0);
 640		sem_init(&task->ready_for_work, 0, 0);
 641		sem_init(&task->work_done_sem, 0, 0);
 642		task->curr_event = 0;
 643		err = pthread_create(&task->thread, &attr, thread_func, parms);
 644		BUG_ON(err);
 645	}
 646}
 647
 648static void wait_for_tasks(struct perf_sched *sched)
 649{
 650	u64 cpu_usage_0, cpu_usage_1;
 651	struct task_desc *task;
 652	unsigned long i, ret;
 653
 654	sched->start_time = get_nsecs();
 655	sched->cpu_usage = 0;
 656	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 657
 658	for (i = 0; i < sched->nr_tasks; i++) {
 659		task = sched->tasks[i];
 660		ret = sem_wait(&task->ready_for_work);
 661		BUG_ON(ret);
 662		sem_init(&task->ready_for_work, 0, 0);
 663	}
 664	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 665	BUG_ON(ret);
 666
 667	cpu_usage_0 = get_cpu_usage_nsec_parent();
 668
 669	pthread_mutex_unlock(&sched->start_work_mutex);
 670
 671	for (i = 0; i < sched->nr_tasks; i++) {
 672		task = sched->tasks[i];
 673		ret = sem_wait(&task->work_done_sem);
 674		BUG_ON(ret);
 675		sem_init(&task->work_done_sem, 0, 0);
 676		sched->cpu_usage += task->cpu_usage;
 677		task->cpu_usage = 0;
 678	}
 679
 680	cpu_usage_1 = get_cpu_usage_nsec_parent();
 681	if (!sched->runavg_cpu_usage)
 682		sched->runavg_cpu_usage = sched->cpu_usage;
 683	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 684
 685	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 686	if (!sched->runavg_parent_cpu_usage)
 687		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 688	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 689					 sched->parent_cpu_usage)/sched->replay_repeat;
 690
 691	ret = pthread_mutex_lock(&sched->start_work_mutex);
 692	BUG_ON(ret);
 693
 694	for (i = 0; i < sched->nr_tasks; i++) {
 695		task = sched->tasks[i];
 696		sem_init(&task->sleep_sem, 0, 0);
 697		task->curr_event = 0;
 698	}
 699}
 700
 701static void run_one_test(struct perf_sched *sched)
 702{
 703	u64 T0, T1, delta, avg_delta, fluct;
 704
 705	T0 = get_nsecs();
 706	wait_for_tasks(sched);
 707	T1 = get_nsecs();
 708
 709	delta = T1 - T0;
 710	sched->sum_runtime += delta;
 711	sched->nr_runs++;
 712
 713	avg_delta = sched->sum_runtime / sched->nr_runs;
 714	if (delta < avg_delta)
 715		fluct = avg_delta - delta;
 716	else
 717		fluct = delta - avg_delta;
 718	sched->sum_fluct += fluct;
 719	if (!sched->run_avg)
 720		sched->run_avg = delta;
 721	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 722
 723	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 724
 725	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 726
 727	printf("cpu: %0.2f / %0.2f",
 728		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 729
 730#if 0
 731	/*
 732	 * rusage statistics done by the parent, these are less
 733	 * accurate than the sched->sum_exec_runtime based statistics:
 734	 */
 735	printf(" [%0.2f / %0.2f]",
 736		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 737		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 738#endif
 739
 740	printf("\n");
 741
 742	if (sched->nr_sleep_corrections)
 743		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 744	sched->nr_sleep_corrections = 0;
 745}
 746
 747static void test_calibrations(struct perf_sched *sched)
 748{
 749	u64 T0, T1;
 750
 751	T0 = get_nsecs();
 752	burn_nsecs(sched, NSEC_PER_MSEC);
 753	T1 = get_nsecs();
 754
 755	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 756
 757	T0 = get_nsecs();
 758	sleep_nsecs(NSEC_PER_MSEC);
 759	T1 = get_nsecs();
 760
 761	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 762}
 763
 764static int
 765replay_wakeup_event(struct perf_sched *sched,
 766		    struct perf_evsel *evsel, struct perf_sample *sample,
 767		    struct machine *machine __maybe_unused)
 768{
 769	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 770	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 771	struct task_desc *waker, *wakee;
 772
 773	if (verbose) {
 774		printf("sched_wakeup event %p\n", evsel);
 775
 776		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 777	}
 778
 779	waker = register_pid(sched, sample->tid, "<unknown>");
 780	wakee = register_pid(sched, pid, comm);
 781
 782	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 783	return 0;
 784}
 785
 786static int replay_switch_event(struct perf_sched *sched,
 787			       struct perf_evsel *evsel,
 788			       struct perf_sample *sample,
 789			       struct machine *machine __maybe_unused)
 790{
 791	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 792		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 793	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 794		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 795	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 796	struct task_desc *prev, __maybe_unused *next;
 797	u64 timestamp0, timestamp = sample->time;
 798	int cpu = sample->cpu;
 799	s64 delta;
 800
 801	if (verbose)
 802		printf("sched_switch event %p\n", evsel);
 803
 804	if (cpu >= MAX_CPUS || cpu < 0)
 805		return 0;
 806
 807	timestamp0 = sched->cpu_last_switched[cpu];
 808	if (timestamp0)
 809		delta = timestamp - timestamp0;
 810	else
 811		delta = 0;
 812
 813	if (delta < 0) {
 814		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 815		return -1;
 816	}
 817
 818	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 819		 prev_comm, prev_pid, next_comm, next_pid, delta);
 820
 821	prev = register_pid(sched, prev_pid, prev_comm);
 822	next = register_pid(sched, next_pid, next_comm);
 823
 824	sched->cpu_last_switched[cpu] = timestamp;
 825
 826	add_sched_event_run(sched, prev, timestamp, delta);
 827	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 828
 829	return 0;
 830}
 831
 832static int replay_fork_event(struct perf_sched *sched,
 833			     union perf_event *event,
 834			     struct machine *machine)
 835{
 836	struct thread *child, *parent;
 837
 838	child = machine__findnew_thread(machine, event->fork.pid,
 839					event->fork.tid);
 840	parent = machine__findnew_thread(machine, event->fork.ppid,
 841					 event->fork.ptid);
 842
 843	if (child == NULL || parent == NULL) {
 844		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 845				 child, parent);
 846		goto out_put;
 847	}
 848
 849	if (verbose) {
 850		printf("fork event\n");
 851		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 852		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 853	}
 854
 855	register_pid(sched, parent->tid, thread__comm_str(parent));
 856	register_pid(sched, child->tid, thread__comm_str(child));
 857out_put:
 858	thread__put(child);
 859	thread__put(parent);
 860	return 0;
 861}
 862
 863struct sort_dimension {
 864	const char		*name;
 865	sort_fn_t		cmp;
 866	struct list_head	list;
 867};
 868
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 869static int
 870thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 871{
 872	struct sort_dimension *sort;
 873	int ret = 0;
 874
 875	BUG_ON(list_empty(list));
 876
 877	list_for_each_entry(sort, list, list) {
 878		ret = sort->cmp(l, r);
 879		if (ret)
 880			return ret;
 881	}
 882
 883	return ret;
 884}
 885
 886static struct work_atoms *
 887thread_atoms_search(struct rb_root *root, struct thread *thread,
 888			 struct list_head *sort_list)
 889{
 890	struct rb_node *node = root->rb_node;
 891	struct work_atoms key = { .thread = thread };
 892
 893	while (node) {
 894		struct work_atoms *atoms;
 895		int cmp;
 896
 897		atoms = container_of(node, struct work_atoms, node);
 898
 899		cmp = thread_lat_cmp(sort_list, &key, atoms);
 900		if (cmp > 0)
 901			node = node->rb_left;
 902		else if (cmp < 0)
 903			node = node->rb_right;
 904		else {
 905			BUG_ON(thread != atoms->thread);
 906			return atoms;
 907		}
 908	}
 909	return NULL;
 910}
 911
 912static void
 913__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 914			 struct list_head *sort_list)
 915{
 916	struct rb_node **new = &(root->rb_node), *parent = NULL;
 
 917
 918	while (*new) {
 919		struct work_atoms *this;
 920		int cmp;
 921
 922		this = container_of(*new, struct work_atoms, node);
 923		parent = *new;
 924
 925		cmp = thread_lat_cmp(sort_list, data, this);
 926
 927		if (cmp > 0)
 928			new = &((*new)->rb_left);
 929		else
 930			new = &((*new)->rb_right);
 
 
 931	}
 932
 933	rb_link_node(&data->node, parent, new);
 934	rb_insert_color(&data->node, root);
 935}
 936
 937static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
 938{
 939	struct work_atoms *atoms = zalloc(sizeof(*atoms));
 940	if (!atoms) {
 941		pr_err("No memory at %s\n", __func__);
 942		return -1;
 943	}
 944
 945	atoms->thread = thread__get(thread);
 946	INIT_LIST_HEAD(&atoms->work_list);
 947	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
 948	return 0;
 949}
 950
 951static char sched_out_state(u64 prev_state)
 952{
 953	const char *str = TASK_STATE_TO_CHAR_STR;
 954
 955	return str[prev_state];
 956}
 957
 958static int
 959add_sched_out_event(struct work_atoms *atoms,
 960		    char run_state,
 961		    u64 timestamp)
 962{
 963	struct work_atom *atom = zalloc(sizeof(*atom));
 964	if (!atom) {
 965		pr_err("Non memory at %s", __func__);
 966		return -1;
 967	}
 968
 969	atom->sched_out_time = timestamp;
 970
 971	if (run_state == 'R') {
 972		atom->state = THREAD_WAIT_CPU;
 973		atom->wake_up_time = atom->sched_out_time;
 974	}
 975
 976	list_add_tail(&atom->list, &atoms->work_list);
 977	return 0;
 978}
 979
 980static void
 981add_runtime_event(struct work_atoms *atoms, u64 delta,
 982		  u64 timestamp __maybe_unused)
 983{
 984	struct work_atom *atom;
 985
 986	BUG_ON(list_empty(&atoms->work_list));
 987
 988	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
 989
 990	atom->runtime += delta;
 991	atoms->total_runtime += delta;
 992}
 993
 994static void
 995add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
 996{
 997	struct work_atom *atom;
 998	u64 delta;
 999
1000	if (list_empty(&atoms->work_list))
1001		return;
1002
1003	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1004
1005	if (atom->state != THREAD_WAIT_CPU)
1006		return;
1007
1008	if (timestamp < atom->wake_up_time) {
1009		atom->state = THREAD_IGNORE;
1010		return;
1011	}
1012
1013	atom->state = THREAD_SCHED_IN;
1014	atom->sched_in_time = timestamp;
1015
1016	delta = atom->sched_in_time - atom->wake_up_time;
1017	atoms->total_lat += delta;
1018	if (delta > atoms->max_lat) {
1019		atoms->max_lat = delta;
1020		atoms->max_lat_at = timestamp;
1021	}
1022	atoms->nb_atoms++;
1023}
1024
1025static int latency_switch_event(struct perf_sched *sched,
1026				struct perf_evsel *evsel,
1027				struct perf_sample *sample,
1028				struct machine *machine)
1029{
1030	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1031		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1032	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1033	struct work_atoms *out_events, *in_events;
1034	struct thread *sched_out, *sched_in;
1035	u64 timestamp0, timestamp = sample->time;
1036	int cpu = sample->cpu, err = -1;
1037	s64 delta;
1038
1039	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1040
1041	timestamp0 = sched->cpu_last_switched[cpu];
1042	sched->cpu_last_switched[cpu] = timestamp;
1043	if (timestamp0)
1044		delta = timestamp - timestamp0;
1045	else
1046		delta = 0;
1047
1048	if (delta < 0) {
1049		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1050		return -1;
1051	}
1052
1053	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1054	sched_in = machine__findnew_thread(machine, -1, next_pid);
1055	if (sched_out == NULL || sched_in == NULL)
1056		goto out_put;
1057
1058	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1059	if (!out_events) {
1060		if (thread_atoms_insert(sched, sched_out))
1061			goto out_put;
1062		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1063		if (!out_events) {
1064			pr_err("out-event: Internal tree error");
1065			goto out_put;
1066		}
1067	}
1068	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1069		return -1;
1070
1071	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1072	if (!in_events) {
1073		if (thread_atoms_insert(sched, sched_in))
1074			goto out_put;
1075		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1076		if (!in_events) {
1077			pr_err("in-event: Internal tree error");
1078			goto out_put;
1079		}
1080		/*
1081		 * Take came in we have not heard about yet,
1082		 * add in an initial atom in runnable state:
1083		 */
1084		if (add_sched_out_event(in_events, 'R', timestamp))
1085			goto out_put;
1086	}
1087	add_sched_in_event(in_events, timestamp);
1088	err = 0;
1089out_put:
1090	thread__put(sched_out);
1091	thread__put(sched_in);
1092	return err;
1093}
1094
1095static int latency_runtime_event(struct perf_sched *sched,
1096				 struct perf_evsel *evsel,
1097				 struct perf_sample *sample,
1098				 struct machine *machine)
1099{
1100	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1101	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1102	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1103	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1104	u64 timestamp = sample->time;
1105	int cpu = sample->cpu, err = -1;
1106
1107	if (thread == NULL)
1108		return -1;
1109
1110	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1111	if (!atoms) {
1112		if (thread_atoms_insert(sched, thread))
1113			goto out_put;
1114		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1115		if (!atoms) {
1116			pr_err("in-event: Internal tree error");
1117			goto out_put;
1118		}
1119		if (add_sched_out_event(atoms, 'R', timestamp))
1120			goto out_put;
1121	}
1122
1123	add_runtime_event(atoms, runtime, timestamp);
1124	err = 0;
1125out_put:
1126	thread__put(thread);
1127	return err;
1128}
1129
1130static int latency_wakeup_event(struct perf_sched *sched,
1131				struct perf_evsel *evsel,
1132				struct perf_sample *sample,
1133				struct machine *machine)
1134{
1135	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1136	struct work_atoms *atoms;
1137	struct work_atom *atom;
1138	struct thread *wakee;
1139	u64 timestamp = sample->time;
1140	int err = -1;
1141
1142	wakee = machine__findnew_thread(machine, -1, pid);
1143	if (wakee == NULL)
1144		return -1;
1145	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1146	if (!atoms) {
1147		if (thread_atoms_insert(sched, wakee))
1148			goto out_put;
1149		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1150		if (!atoms) {
1151			pr_err("wakeup-event: Internal tree error");
1152			goto out_put;
1153		}
1154		if (add_sched_out_event(atoms, 'S', timestamp))
1155			goto out_put;
1156	}
1157
1158	BUG_ON(list_empty(&atoms->work_list));
1159
1160	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1161
1162	/*
1163	 * As we do not guarantee the wakeup event happens when
1164	 * task is out of run queue, also may happen when task is
1165	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1166	 * then we should not set the ->wake_up_time when wake up a
1167	 * task which is on run queue.
1168	 *
1169	 * You WILL be missing events if you've recorded only
1170	 * one CPU, or are only looking at only one, so don't
1171	 * skip in this case.
1172	 */
1173	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1174		goto out_ok;
1175
1176	sched->nr_timestamps++;
1177	if (atom->sched_out_time > timestamp) {
1178		sched->nr_unordered_timestamps++;
1179		goto out_ok;
1180	}
1181
1182	atom->state = THREAD_WAIT_CPU;
1183	atom->wake_up_time = timestamp;
1184out_ok:
1185	err = 0;
1186out_put:
1187	thread__put(wakee);
1188	return err;
1189}
1190
1191static int latency_migrate_task_event(struct perf_sched *sched,
1192				      struct perf_evsel *evsel,
1193				      struct perf_sample *sample,
1194				      struct machine *machine)
1195{
1196	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1197	u64 timestamp = sample->time;
1198	struct work_atoms *atoms;
1199	struct work_atom *atom;
1200	struct thread *migrant;
1201	int err = -1;
1202
1203	/*
1204	 * Only need to worry about migration when profiling one CPU.
1205	 */
1206	if (sched->profile_cpu == -1)
1207		return 0;
1208
1209	migrant = machine__findnew_thread(machine, -1, pid);
1210	if (migrant == NULL)
1211		return -1;
1212	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1213	if (!atoms) {
1214		if (thread_atoms_insert(sched, migrant))
1215			goto out_put;
1216		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1217		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1218		if (!atoms) {
1219			pr_err("migration-event: Internal tree error");
1220			goto out_put;
1221		}
1222		if (add_sched_out_event(atoms, 'R', timestamp))
1223			goto out_put;
1224	}
1225
1226	BUG_ON(list_empty(&atoms->work_list));
1227
1228	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1229	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1230
1231	sched->nr_timestamps++;
1232
1233	if (atom->sched_out_time > timestamp)
1234		sched->nr_unordered_timestamps++;
1235	err = 0;
1236out_put:
1237	thread__put(migrant);
1238	return err;
1239}
1240
1241static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1242{
1243	int i;
1244	int ret;
1245	u64 avg;
1246	char max_lat_at[32];
1247
1248	if (!work_list->nb_atoms)
1249		return;
1250	/*
1251	 * Ignore idle threads:
1252	 */
1253	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1254		return;
1255
1256	sched->all_runtime += work_list->total_runtime;
1257	sched->all_count   += work_list->nb_atoms;
1258
1259	if (work_list->num_merged > 1)
1260		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1261	else
1262		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1263
1264	for (i = 0; i < 24 - ret; i++)
1265		printf(" ");
1266
1267	avg = work_list->total_lat / work_list->nb_atoms;
1268	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1269
1270	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1271	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1272		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1273		 (double)work_list->max_lat / NSEC_PER_MSEC,
1274		 max_lat_at);
1275}
1276
1277static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1278{
1279	if (l->thread == r->thread)
1280		return 0;
1281	if (l->thread->tid < r->thread->tid)
1282		return -1;
1283	if (l->thread->tid > r->thread->tid)
1284		return 1;
1285	return (int)(l->thread - r->thread);
1286}
1287
1288static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1289{
1290	u64 avgl, avgr;
1291
1292	if (!l->nb_atoms)
1293		return -1;
1294
1295	if (!r->nb_atoms)
1296		return 1;
1297
1298	avgl = l->total_lat / l->nb_atoms;
1299	avgr = r->total_lat / r->nb_atoms;
1300
1301	if (avgl < avgr)
1302		return -1;
1303	if (avgl > avgr)
1304		return 1;
1305
1306	return 0;
1307}
1308
1309static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1310{
1311	if (l->max_lat < r->max_lat)
1312		return -1;
1313	if (l->max_lat > r->max_lat)
1314		return 1;
1315
1316	return 0;
1317}
1318
1319static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1320{
1321	if (l->nb_atoms < r->nb_atoms)
1322		return -1;
1323	if (l->nb_atoms > r->nb_atoms)
1324		return 1;
1325
1326	return 0;
1327}
1328
1329static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1330{
1331	if (l->total_runtime < r->total_runtime)
1332		return -1;
1333	if (l->total_runtime > r->total_runtime)
1334		return 1;
1335
1336	return 0;
1337}
1338
1339static int sort_dimension__add(const char *tok, struct list_head *list)
1340{
1341	size_t i;
1342	static struct sort_dimension avg_sort_dimension = {
1343		.name = "avg",
1344		.cmp  = avg_cmp,
1345	};
1346	static struct sort_dimension max_sort_dimension = {
1347		.name = "max",
1348		.cmp  = max_cmp,
1349	};
1350	static struct sort_dimension pid_sort_dimension = {
1351		.name = "pid",
1352		.cmp  = pid_cmp,
1353	};
1354	static struct sort_dimension runtime_sort_dimension = {
1355		.name = "runtime",
1356		.cmp  = runtime_cmp,
1357	};
1358	static struct sort_dimension switch_sort_dimension = {
1359		.name = "switch",
1360		.cmp  = switch_cmp,
1361	};
1362	struct sort_dimension *available_sorts[] = {
1363		&pid_sort_dimension,
1364		&avg_sort_dimension,
1365		&max_sort_dimension,
1366		&switch_sort_dimension,
1367		&runtime_sort_dimension,
1368	};
1369
1370	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1371		if (!strcmp(available_sorts[i]->name, tok)) {
1372			list_add_tail(&available_sorts[i]->list, list);
1373
1374			return 0;
1375		}
1376	}
1377
1378	return -1;
1379}
1380
1381static void perf_sched__sort_lat(struct perf_sched *sched)
1382{
1383	struct rb_node *node;
1384	struct rb_root *root = &sched->atom_root;
1385again:
1386	for (;;) {
1387		struct work_atoms *data;
1388		node = rb_first(root);
1389		if (!node)
1390			break;
1391
1392		rb_erase(node, root);
1393		data = rb_entry(node, struct work_atoms, node);
1394		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1395	}
1396	if (root == &sched->atom_root) {
1397		root = &sched->merged_atom_root;
1398		goto again;
1399	}
1400}
1401
1402static int process_sched_wakeup_event(struct perf_tool *tool,
1403				      struct perf_evsel *evsel,
1404				      struct perf_sample *sample,
1405				      struct machine *machine)
1406{
1407	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1408
1409	if (sched->tp_handler->wakeup_event)
1410		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1411
1412	return 0;
1413}
1414
1415union map_priv {
1416	void	*ptr;
1417	bool	 color;
1418};
1419
1420static bool thread__has_color(struct thread *thread)
1421{
1422	union map_priv priv = {
1423		.ptr = thread__priv(thread),
1424	};
1425
1426	return priv.color;
1427}
1428
1429static struct thread*
1430map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1431{
1432	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1433	union map_priv priv = {
1434		.color = false,
1435	};
1436
1437	if (!sched->map.color_pids || !thread || thread__priv(thread))
1438		return thread;
1439
1440	if (thread_map__has(sched->map.color_pids, tid))
1441		priv.color = true;
1442
1443	thread__set_priv(thread, priv.ptr);
1444	return thread;
1445}
1446
1447static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1448			    struct perf_sample *sample, struct machine *machine)
1449{
1450	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1451	struct thread *sched_in;
 
1452	int new_shortname;
1453	u64 timestamp0, timestamp = sample->time;
1454	s64 delta;
1455	int i, this_cpu = sample->cpu;
1456	int cpus_nr;
1457	bool new_cpu = false;
1458	const char *color = PERF_COLOR_NORMAL;
1459	char stimestamp[32];
1460
1461	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1462
1463	if (this_cpu > sched->max_cpu)
1464		sched->max_cpu = this_cpu;
1465
1466	if (sched->map.comp) {
1467		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1468		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1469			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1470			new_cpu = true;
1471		}
1472	} else
1473		cpus_nr = sched->max_cpu;
1474
1475	timestamp0 = sched->cpu_last_switched[this_cpu];
1476	sched->cpu_last_switched[this_cpu] = timestamp;
1477	if (timestamp0)
1478		delta = timestamp - timestamp0;
1479	else
1480		delta = 0;
1481
1482	if (delta < 0) {
1483		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1484		return -1;
1485	}
1486
1487	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1488	if (sched_in == NULL)
1489		return -1;
1490
 
 
 
 
 
 
1491	sched->curr_thread[this_cpu] = thread__get(sched_in);
1492
1493	printf("  ");
1494
1495	new_shortname = 0;
1496	if (!sched_in->shortname[0]) {
1497		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1498			/*
1499			 * Don't allocate a letter-number for swapper:0
1500			 * as a shortname. Instead, we use '.' for it.
1501			 */
1502			sched_in->shortname[0] = '.';
1503			sched_in->shortname[1] = ' ';
1504		} else {
1505			sched_in->shortname[0] = sched->next_shortname1;
1506			sched_in->shortname[1] = sched->next_shortname2;
1507
1508			if (sched->next_shortname1 < 'Z') {
1509				sched->next_shortname1++;
1510			} else {
1511				sched->next_shortname1 = 'A';
1512				if (sched->next_shortname2 < '9')
1513					sched->next_shortname2++;
1514				else
1515					sched->next_shortname2 = '0';
1516			}
1517		}
1518		new_shortname = 1;
1519	}
1520
1521	for (i = 0; i < cpus_nr; i++) {
1522		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1523		struct thread *curr_thread = sched->curr_thread[cpu];
 
1524		const char *pid_color = color;
1525		const char *cpu_color = color;
1526
1527		if (curr_thread && thread__has_color(curr_thread))
1528			pid_color = COLOR_PIDS;
1529
1530		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1531			continue;
1532
1533		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1534			cpu_color = COLOR_CPUS;
1535
1536		if (cpu != this_cpu)
1537			color_fprintf(stdout, color, " ");
1538		else
1539			color_fprintf(stdout, cpu_color, "*");
1540
1541		if (sched->curr_thread[cpu])
1542			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1543		else
 
 
 
 
 
1544			color_fprintf(stdout, color, "   ");
1545	}
1546
1547	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1548		goto out;
1549
1550	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1551	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1552	if (new_shortname || (verbose && sched_in->tid)) {
1553		const char *pid_color = color;
1554
1555		if (thread__has_color(sched_in))
1556			pid_color = COLOR_PIDS;
1557
1558		color_fprintf(stdout, pid_color, "%s => %s:%d",
1559		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
 
1560	}
1561
1562	if (sched->map.comp && new_cpu)
1563		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1564
1565out:
1566	color_fprintf(stdout, color, "\n");
1567
1568	thread__put(sched_in);
1569
1570	return 0;
1571}
1572
1573static int process_sched_switch_event(struct perf_tool *tool,
1574				      struct perf_evsel *evsel,
1575				      struct perf_sample *sample,
1576				      struct machine *machine)
1577{
1578	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1579	int this_cpu = sample->cpu, err = 0;
1580	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1581	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1582
1583	if (sched->curr_pid[this_cpu] != (u32)-1) {
1584		/*
1585		 * Are we trying to switch away a PID that is
1586		 * not current?
1587		 */
1588		if (sched->curr_pid[this_cpu] != prev_pid)
1589			sched->nr_context_switch_bugs++;
1590	}
1591
1592	if (sched->tp_handler->switch_event)
1593		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1594
1595	sched->curr_pid[this_cpu] = next_pid;
1596	return err;
1597}
1598
1599static int process_sched_runtime_event(struct perf_tool *tool,
1600				       struct perf_evsel *evsel,
1601				       struct perf_sample *sample,
1602				       struct machine *machine)
1603{
1604	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1605
1606	if (sched->tp_handler->runtime_event)
1607		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1608
1609	return 0;
1610}
1611
1612static int perf_sched__process_fork_event(struct perf_tool *tool,
1613					  union perf_event *event,
1614					  struct perf_sample *sample,
1615					  struct machine *machine)
1616{
1617	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1618
1619	/* run the fork event through the perf machineruy */
1620	perf_event__process_fork(tool, event, sample, machine);
1621
1622	/* and then run additional processing needed for this command */
1623	if (sched->tp_handler->fork_event)
1624		return sched->tp_handler->fork_event(sched, event, machine);
1625
1626	return 0;
1627}
1628
1629static int process_sched_migrate_task_event(struct perf_tool *tool,
1630					    struct perf_evsel *evsel,
1631					    struct perf_sample *sample,
1632					    struct machine *machine)
1633{
1634	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1635
1636	if (sched->tp_handler->migrate_task_event)
1637		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1638
1639	return 0;
1640}
1641
1642typedef int (*tracepoint_handler)(struct perf_tool *tool,
1643				  struct perf_evsel *evsel,
1644				  struct perf_sample *sample,
1645				  struct machine *machine);
1646
1647static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1648						 union perf_event *event __maybe_unused,
1649						 struct perf_sample *sample,
1650						 struct perf_evsel *evsel,
1651						 struct machine *machine)
1652{
1653	int err = 0;
1654
1655	if (evsel->handler != NULL) {
1656		tracepoint_handler f = evsel->handler;
1657		err = f(tool, evsel, sample, machine);
1658	}
1659
1660	return err;
1661}
1662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1663static int perf_sched__read_events(struct perf_sched *sched)
1664{
1665	const struct perf_evsel_str_handler handlers[] = {
1666		{ "sched:sched_switch",	      process_sched_switch_event, },
1667		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1668		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1669		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1670		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1671	};
1672	struct perf_session *session;
1673	struct perf_data_file file = {
1674		.path = input_name,
1675		.mode = PERF_DATA_MODE_READ,
1676		.force = sched->force,
1677	};
1678	int rc = -1;
1679
1680	session = perf_session__new(&file, false, &sched->tool);
1681	if (session == NULL) {
1682		pr_debug("No Memory for session\n");
1683		return -1;
1684	}
1685
1686	symbol__init(&session->header.env);
1687
1688	if (perf_session__set_tracepoints_handlers(session, handlers))
1689		goto out_delete;
1690
1691	if (perf_session__has_traces(session, "record -R")) {
1692		int err = perf_session__process_events(session);
1693		if (err) {
1694			pr_err("Failed to process events, error %d", err);
1695			goto out_delete;
1696		}
1697
1698		sched->nr_events      = session->evlist->stats.nr_events[0];
1699		sched->nr_lost_events = session->evlist->stats.total_lost;
1700		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1701	}
1702
1703	rc = 0;
1704out_delete:
1705	perf_session__delete(session);
1706	return rc;
1707}
1708
1709/*
1710 * scheduling times are printed as msec.usec
1711 */
1712static inline void print_sched_time(unsigned long long nsecs, int width)
1713{
1714	unsigned long msecs;
1715	unsigned long usecs;
1716
1717	msecs  = nsecs / NSEC_PER_MSEC;
1718	nsecs -= msecs * NSEC_PER_MSEC;
1719	usecs  = nsecs / NSEC_PER_USEC;
1720	printf("%*lu.%03lu ", width, msecs, usecs);
1721}
1722
1723/*
1724 * returns runtime data for event, allocating memory for it the
1725 * first time it is used.
1726 */
1727static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1728{
1729	struct evsel_runtime *r = evsel->priv;
1730
1731	if (r == NULL) {
1732		r = zalloc(sizeof(struct evsel_runtime));
1733		evsel->priv = r;
1734	}
1735
1736	return r;
1737}
1738
1739/*
1740 * save last time event was seen per cpu
1741 */
1742static void perf_evsel__save_time(struct perf_evsel *evsel,
1743				  u64 timestamp, u32 cpu)
1744{
1745	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1746
1747	if (r == NULL)
1748		return;
1749
1750	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1751		int i, n = __roundup_pow_of_two(cpu+1);
1752		void *p = r->last_time;
1753
1754		p = realloc(r->last_time, n * sizeof(u64));
1755		if (!p)
1756			return;
1757
1758		r->last_time = p;
1759		for (i = r->ncpu; i < n; ++i)
1760			r->last_time[i] = (u64) 0;
1761
1762		r->ncpu = n;
1763	}
1764
1765	r->last_time[cpu] = timestamp;
1766}
1767
1768/* returns last time this event was seen on the given cpu */
1769static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1770{
1771	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1772
1773	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1774		return 0;
1775
1776	return r->last_time[cpu];
1777}
1778
1779static int comm_width = 30;
1780
1781static char *timehist_get_commstr(struct thread *thread)
1782{
1783	static char str[32];
1784	const char *comm = thread__comm_str(thread);
1785	pid_t tid = thread->tid;
1786	pid_t pid = thread->pid_;
1787	int n;
1788
1789	if (pid == 0)
1790		n = scnprintf(str, sizeof(str), "%s", comm);
1791
1792	else if (tid != pid)
1793		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1794
1795	else
1796		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1797
1798	if (n > comm_width)
1799		comm_width = n;
1800
1801	return str;
1802}
1803
1804static void timehist_header(struct perf_sched *sched)
1805{
1806	u32 ncpus = sched->max_cpu + 1;
1807	u32 i, j;
1808
1809	printf("%15s %6s ", "time", "cpu");
1810
1811	if (sched->show_cpu_visual) {
1812		printf(" ");
1813		for (i = 0, j = 0; i < ncpus; ++i) {
1814			printf("%x", j++);
1815			if (j > 15)
1816				j = 0;
1817		}
1818		printf(" ");
1819	}
1820
1821	printf(" %-*s  %9s  %9s  %9s", comm_width,
1822		"task name", "wait time", "sch delay", "run time");
1823
 
 
 
1824	printf("\n");
1825
1826	/*
1827	 * units row
1828	 */
1829	printf("%15s %-6s ", "", "");
1830
1831	if (sched->show_cpu_visual)
1832		printf(" %*s ", ncpus, "");
1833
1834	printf(" %-*s  %9s  %9s  %9s\n", comm_width,
1835	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1836
 
 
 
 
 
1837	/*
1838	 * separator
1839	 */
1840	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1841
1842	if (sched->show_cpu_visual)
1843		printf(" %.*s ", ncpus, graph_dotted_line);
1844
1845	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1846		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1847		graph_dotted_line);
1848
 
 
 
1849	printf("\n");
1850}
1851
 
 
 
 
 
 
 
 
 
 
 
 
1852static void timehist_print_sample(struct perf_sched *sched,
 
1853				  struct perf_sample *sample,
1854				  struct addr_location *al,
1855				  struct thread *thread,
1856				  u64 t)
1857{
1858	struct thread_runtime *tr = thread__priv(thread);
 
 
1859	u32 max_cpus = sched->max_cpu + 1;
1860	char tstr[64];
 
 
1861
1862	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1863	printf("%15s [%04d] ", tstr, sample->cpu);
1864
1865	if (sched->show_cpu_visual) {
1866		u32 i;
1867		char c;
1868
1869		printf(" ");
1870		for (i = 0; i < max_cpus; ++i) {
1871			/* flag idle times with 'i'; others are sched events */
1872			if (i == sample->cpu)
1873				c = (thread->tid == 0) ? 'i' : 's';
1874			else
1875				c = ' ';
1876			printf("%c", c);
1877		}
1878		printf(" ");
1879	}
1880
1881	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1882
1883	print_sched_time(tr->dt_wait, 6);
 
 
1884	print_sched_time(tr->dt_delay, 6);
1885	print_sched_time(tr->dt_run, 6);
1886
1887	if (sched->show_wakeups)
 
 
 
 
 
 
 
 
1888		printf("  %-*s", comm_width, "");
1889
1890	if (thread->tid == 0)
1891		goto out;
1892
1893	if (sched->show_callchain)
1894		printf("  ");
1895
1896	sample__fprintf_sym(sample, al, 0,
1897			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1898			    EVSEL__PRINT_CALLCHAIN_ARROW |
1899			    EVSEL__PRINT_SKIP_IGNORED,
1900			    &callchain_cursor, stdout);
1901
1902out:
1903	printf("\n");
1904}
1905
1906/*
1907 * Explanation of delta-time stats:
1908 *
1909 *            t = time of current schedule out event
1910 *        tprev = time of previous sched out event
1911 *                also time of schedule-in event for current task
1912 *    last_time = time of last sched change event for current task
1913 *                (i.e, time process was last scheduled out)
1914 * ready_to_run = time of wakeup for current task
1915 *
1916 * -----|------------|------------|------------|------
1917 *    last         ready        tprev          t
1918 *    time         to run
1919 *
1920 *      |-------- dt_wait --------|
1921 *                   |- dt_delay -|-- dt_run --|
1922 *
1923 *   dt_run = run time of current task
1924 *  dt_wait = time between last schedule out event for task and tprev
1925 *            represents time spent off the cpu
1926 * dt_delay = time between wakeup and schedule-in of task
1927 */
1928
1929static void timehist_update_runtime_stats(struct thread_runtime *r,
1930					 u64 t, u64 tprev)
1931{
1932	r->dt_delay   = 0;
1933	r->dt_wait    = 0;
 
 
1934	r->dt_run     = 0;
 
1935	if (tprev) {
1936		r->dt_run = t - tprev;
1937		if (r->ready_to_run) {
1938			if (r->ready_to_run > tprev)
1939				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
1940			else
1941				r->dt_delay = tprev - r->ready_to_run;
1942		}
1943
1944		if (r->last_time > tprev)
1945			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
1946		else if (r->last_time)
1947			r->dt_wait = tprev - r->last_time;
 
 
 
 
 
 
 
 
1948	}
1949
1950	update_stats(&r->run_stats, r->dt_run);
1951	r->total_run_time += r->dt_run;
 
 
 
 
 
1952}
1953
1954static bool is_idle_sample(struct perf_sample *sample,
1955			   struct perf_evsel *evsel)
1956{
1957	/* pid 0 == swapper == idle task */
1958	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
1959		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
1960
1961	return sample->pid == 0;
1962}
1963
1964static void save_task_callchain(struct perf_sched *sched,
1965				struct perf_sample *sample,
1966				struct perf_evsel *evsel,
1967				struct machine *machine)
1968{
1969	struct callchain_cursor *cursor = &callchain_cursor;
1970	struct thread *thread;
1971
1972	/* want main thread for process - has maps */
1973	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
1974	if (thread == NULL) {
1975		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
1976		return;
1977	}
1978
1979	if (!symbol_conf.use_callchain || sample->callchain == NULL)
1980		return;
1981
1982	if (thread__resolve_callchain(thread, cursor, evsel, sample,
1983				      NULL, NULL, sched->max_stack + 2) != 0) {
1984		if (verbose)
1985			error("Failed to resolve callchain. Skipping\n");
1986
1987		return;
1988	}
1989
1990	callchain_cursor_commit(cursor);
1991
1992	while (true) {
1993		struct callchain_cursor_node *node;
1994		struct symbol *sym;
1995
1996		node = callchain_cursor_current(cursor);
1997		if (node == NULL)
1998			break;
1999
2000		sym = node->sym;
2001		if (sym && sym->name) {
2002			if (!strcmp(sym->name, "schedule") ||
2003			    !strcmp(sym->name, "__schedule") ||
2004			    !strcmp(sym->name, "preempt_schedule"))
2005				sym->ignore = 1;
2006		}
2007
2008		callchain_cursor_advance(cursor);
2009	}
2010}
2011
2012static int init_idle_thread(struct thread *thread)
2013{
2014	struct idle_thread_runtime *itr;
2015
2016	thread__set_comm(thread, idle_comm, 0);
2017
2018	itr = zalloc(sizeof(*itr));
2019	if (itr == NULL)
2020		return -ENOMEM;
2021
2022	init_stats(&itr->tr.run_stats);
2023	callchain_init(&itr->callchain);
2024	callchain_cursor_reset(&itr->cursor);
2025	thread__set_priv(thread, itr);
2026
2027	return 0;
2028}
2029
2030/*
2031 * Track idle stats per cpu by maintaining a local thread
2032 * struct for the idle task on each cpu.
2033 */
2034static int init_idle_threads(int ncpu)
2035{
2036	int i, ret;
2037
2038	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2039	if (!idle_threads)
2040		return -ENOMEM;
2041
2042	idle_max_cpu = ncpu;
2043
2044	/* allocate the actual thread struct if needed */
2045	for (i = 0; i < ncpu; ++i) {
2046		idle_threads[i] = thread__new(0, 0);
2047		if (idle_threads[i] == NULL)
2048			return -ENOMEM;
2049
2050		ret = init_idle_thread(idle_threads[i]);
2051		if (ret < 0)
2052			return ret;
2053	}
2054
2055	return 0;
2056}
2057
2058static void free_idle_threads(void)
2059{
2060	int i;
2061
2062	if (idle_threads == NULL)
2063		return;
2064
2065	for (i = 0; i < idle_max_cpu; ++i) {
2066		if ((idle_threads[i]))
2067			thread__delete(idle_threads[i]);
2068	}
2069
2070	free(idle_threads);
2071}
2072
2073static struct thread *get_idle_thread(int cpu)
2074{
2075	/*
2076	 * expand/allocate array of pointers to local thread
2077	 * structs if needed
2078	 */
2079	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2080		int i, j = __roundup_pow_of_two(cpu+1);
2081		void *p;
2082
2083		p = realloc(idle_threads, j * sizeof(struct thread *));
2084		if (!p)
2085			return NULL;
2086
2087		idle_threads = (struct thread **) p;
2088		for (i = idle_max_cpu; i < j; ++i)
2089			idle_threads[i] = NULL;
2090
2091		idle_max_cpu = j;
2092	}
2093
2094	/* allocate a new thread struct if needed */
2095	if (idle_threads[cpu] == NULL) {
2096		idle_threads[cpu] = thread__new(0, 0);
2097
2098		if (idle_threads[cpu]) {
2099			if (init_idle_thread(idle_threads[cpu]) < 0)
2100				return NULL;
2101		}
2102	}
2103
2104	return idle_threads[cpu];
2105}
2106
2107static void save_idle_callchain(struct idle_thread_runtime *itr,
 
2108				struct perf_sample *sample)
2109{
2110	if (!symbol_conf.use_callchain || sample->callchain == NULL)
2111		return;
2112
2113	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2114}
2115
2116/*
2117 * handle runtime stats saved per thread
2118 */
2119static struct thread_runtime *thread__init_runtime(struct thread *thread)
2120{
2121	struct thread_runtime *r;
2122
2123	r = zalloc(sizeof(struct thread_runtime));
2124	if (!r)
2125		return NULL;
2126
2127	init_stats(&r->run_stats);
2128	thread__set_priv(thread, r);
2129
2130	return r;
2131}
2132
2133static struct thread_runtime *thread__get_runtime(struct thread *thread)
2134{
2135	struct thread_runtime *tr;
2136
2137	tr = thread__priv(thread);
2138	if (tr == NULL) {
2139		tr = thread__init_runtime(thread);
2140		if (tr == NULL)
2141			pr_debug("Failed to malloc memory for runtime data.\n");
2142	}
2143
2144	return tr;
2145}
2146
2147static struct thread *timehist_get_thread(struct perf_sched *sched,
2148					  struct perf_sample *sample,
2149					  struct machine *machine,
2150					  struct perf_evsel *evsel)
2151{
2152	struct thread *thread;
2153
2154	if (is_idle_sample(sample, evsel)) {
2155		thread = get_idle_thread(sample->cpu);
2156		if (thread == NULL)
2157			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2158
2159	} else {
2160		/* there were samples with tid 0 but non-zero pid */
2161		thread = machine__findnew_thread(machine, sample->pid,
2162						 sample->tid ?: sample->pid);
2163		if (thread == NULL) {
2164			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2165				 sample->tid);
2166		}
2167
2168		save_task_callchain(sched, sample, evsel, machine);
2169		if (sched->idle_hist) {
2170			struct thread *idle;
2171			struct idle_thread_runtime *itr;
2172
2173			idle = get_idle_thread(sample->cpu);
2174			if (idle == NULL) {
2175				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2176				return NULL;
2177			}
2178
2179			itr = thread__priv(idle);
2180			if (itr == NULL)
2181				return NULL;
2182
2183			itr->last_thread = thread;
2184
2185			/* copy task callchain when entering to idle */
2186			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2187				save_idle_callchain(itr, sample);
2188		}
2189	}
2190
2191	return thread;
2192}
2193
2194static bool timehist_skip_sample(struct perf_sched *sched,
2195				 struct thread *thread,
2196				 struct perf_evsel *evsel,
2197				 struct perf_sample *sample)
2198{
2199	bool rc = false;
2200
2201	if (thread__is_filtered(thread)) {
2202		rc = true;
2203		sched->skipped_samples++;
2204	}
2205
2206	if (sched->idle_hist) {
2207		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2208			rc = true;
2209		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2210			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2211			rc = true;
2212	}
2213
2214	return rc;
2215}
2216
2217static void timehist_print_wakeup_event(struct perf_sched *sched,
2218					struct perf_evsel *evsel,
2219					struct perf_sample *sample,
2220					struct machine *machine,
2221					struct thread *awakened)
2222{
2223	struct thread *thread;
2224	char tstr[64];
2225
2226	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2227	if (thread == NULL)
2228		return;
2229
2230	/* show wakeup unless both awakee and awaker are filtered */
2231	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2232	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2233		return;
2234	}
2235
2236	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2237	printf("%15s [%04d] ", tstr, sample->cpu);
2238	if (sched->show_cpu_visual)
2239		printf(" %*s ", sched->max_cpu + 1, "");
2240
2241	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2242
2243	/* dt spacer */
2244	printf("  %9s  %9s  %9s ", "", "", "");
2245
2246	printf("awakened: %s", timehist_get_commstr(awakened));
2247
2248	printf("\n");
2249}
2250
2251static int timehist_sched_wakeup_event(struct perf_tool *tool,
2252				       union perf_event *event __maybe_unused,
2253				       struct perf_evsel *evsel,
2254				       struct perf_sample *sample,
2255				       struct machine *machine)
2256{
2257	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2258	struct thread *thread;
2259	struct thread_runtime *tr = NULL;
2260	/* want pid of awakened task not pid in sample */
2261	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2262
2263	thread = machine__findnew_thread(machine, 0, pid);
2264	if (thread == NULL)
2265		return -1;
2266
2267	tr = thread__get_runtime(thread);
2268	if (tr == NULL)
2269		return -1;
2270
2271	if (tr->ready_to_run == 0)
2272		tr->ready_to_run = sample->time;
2273
2274	/* show wakeups if requested */
2275	if (sched->show_wakeups &&
2276	    !perf_time__skip_sample(&sched->ptime, sample->time))
2277		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2278
2279	return 0;
2280}
2281
2282static void timehist_print_migration_event(struct perf_sched *sched,
2283					struct perf_evsel *evsel,
2284					struct perf_sample *sample,
2285					struct machine *machine,
2286					struct thread *migrated)
2287{
2288	struct thread *thread;
2289	char tstr[64];
2290	u32 max_cpus = sched->max_cpu + 1;
2291	u32 ocpu, dcpu;
2292
2293	if (sched->summary_only)
2294		return;
2295
2296	max_cpus = sched->max_cpu + 1;
2297	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2298	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2299
2300	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2301	if (thread == NULL)
2302		return;
2303
2304	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2305	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2306		return;
2307	}
2308
2309	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2310	printf("%15s [%04d] ", tstr, sample->cpu);
2311
2312	if (sched->show_cpu_visual) {
2313		u32 i;
2314		char c;
2315
2316		printf("  ");
2317		for (i = 0; i < max_cpus; ++i) {
2318			c = (i == sample->cpu) ? 'm' : ' ';
2319			printf("%c", c);
2320		}
2321		printf("  ");
2322	}
2323
2324	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2325
2326	/* dt spacer */
2327	printf("  %9s  %9s  %9s ", "", "", "");
2328
2329	printf("migrated: %s", timehist_get_commstr(migrated));
2330	printf(" cpu %d => %d", ocpu, dcpu);
2331
2332	printf("\n");
2333}
2334
2335static int timehist_migrate_task_event(struct perf_tool *tool,
2336				       union perf_event *event __maybe_unused,
2337				       struct perf_evsel *evsel,
2338				       struct perf_sample *sample,
2339				       struct machine *machine)
2340{
2341	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2342	struct thread *thread;
2343	struct thread_runtime *tr = NULL;
2344	/* want pid of migrated task not pid in sample */
2345	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2346
2347	thread = machine__findnew_thread(machine, 0, pid);
2348	if (thread == NULL)
2349		return -1;
2350
2351	tr = thread__get_runtime(thread);
2352	if (tr == NULL)
2353		return -1;
2354
2355	tr->migrations++;
2356
2357	/* show migrations if requested */
2358	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2359
2360	return 0;
2361}
2362
2363static int timehist_sched_change_event(struct perf_tool *tool,
2364				       union perf_event *event,
2365				       struct perf_evsel *evsel,
2366				       struct perf_sample *sample,
2367				       struct machine *machine)
2368{
2369	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2370	struct perf_time_interval *ptime = &sched->ptime;
2371	struct addr_location al;
2372	struct thread *thread;
2373	struct thread_runtime *tr = NULL;
2374	u64 tprev, t = sample->time;
2375	int rc = 0;
 
 
2376
2377	if (machine__resolve(machine, &al, sample) < 0) {
2378		pr_err("problem processing %d event. skipping it\n",
2379		       event->header.type);
2380		rc = -1;
2381		goto out;
2382	}
2383
2384	thread = timehist_get_thread(sched, sample, machine, evsel);
2385	if (thread == NULL) {
2386		rc = -1;
2387		goto out;
2388	}
2389
2390	if (timehist_skip_sample(sched, thread, evsel, sample))
2391		goto out;
2392
2393	tr = thread__get_runtime(thread);
2394	if (tr == NULL) {
2395		rc = -1;
2396		goto out;
2397	}
2398
2399	tprev = perf_evsel__get_time(evsel, sample->cpu);
2400
2401	/*
2402	 * If start time given:
2403	 * - sample time is under window user cares about - skip sample
2404	 * - tprev is under window user cares about  - reset to start of window
2405	 */
2406	if (ptime->start && ptime->start > t)
2407		goto out;
2408
2409	if (tprev && ptime->start > tprev)
2410		tprev = ptime->start;
2411
2412	/*
2413	 * If end time given:
2414	 * - previous sched event is out of window - we are done
2415	 * - sample time is beyond window user cares about - reset it
2416	 *   to close out stats for time window interest
2417	 */
2418	if (ptime->end) {
2419		if (tprev > ptime->end)
2420			goto out;
2421
2422		if (t > ptime->end)
2423			t = ptime->end;
2424	}
2425
2426	if (!sched->idle_hist || thread->tid == 0) {
2427		timehist_update_runtime_stats(tr, t, tprev);
2428
2429		if (sched->idle_hist) {
2430			struct idle_thread_runtime *itr = (void *)tr;
2431			struct thread_runtime *last_tr;
2432
2433			BUG_ON(thread->tid != 0);
2434
2435			if (itr->last_thread == NULL)
2436				goto out;
2437
2438			/* add current idle time as last thread's runtime */
2439			last_tr = thread__get_runtime(itr->last_thread);
2440			if (last_tr == NULL)
2441				goto out;
2442
2443			timehist_update_runtime_stats(last_tr, t, tprev);
2444			/*
2445			 * remove delta time of last thread as it's not updated
2446			 * and otherwise it will show an invalid value next
2447			 * time.  we only care total run time and run stat.
2448			 */
2449			last_tr->dt_run = 0;
2450			last_tr->dt_wait = 0;
2451			last_tr->dt_delay = 0;
 
 
 
2452
2453			if (itr->cursor.nr)
2454				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2455
2456			itr->last_thread = NULL;
2457		}
2458	}
2459
2460	if (!sched->summary_only)
2461		timehist_print_sample(sched, sample, &al, thread, t);
2462
2463out:
2464	if (sched->hist_time.start == 0 && t >= ptime->start)
2465		sched->hist_time.start = t;
2466	if (ptime->end == 0 || t <= ptime->end)
2467		sched->hist_time.end = t;
2468
2469	if (tr) {
2470		/* time of this sched_switch event becomes last time task seen */
2471		tr->last_time = sample->time;
2472
 
 
 
2473		/* sched out event for task so reset ready to run time */
2474		tr->ready_to_run = 0;
2475	}
2476
2477	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2478
2479	return rc;
2480}
2481
2482static int timehist_sched_switch_event(struct perf_tool *tool,
2483			     union perf_event *event,
2484			     struct perf_evsel *evsel,
2485			     struct perf_sample *sample,
2486			     struct machine *machine __maybe_unused)
2487{
2488	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2489}
2490
2491static int process_lost(struct perf_tool *tool __maybe_unused,
2492			union perf_event *event,
2493			struct perf_sample *sample,
2494			struct machine *machine __maybe_unused)
2495{
2496	char tstr[64];
2497
2498	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2499	printf("%15s ", tstr);
2500	printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2501
2502	return 0;
2503}
2504
2505
2506static void print_thread_runtime(struct thread *t,
2507				 struct thread_runtime *r)
2508{
2509	double mean = avg_stats(&r->run_stats);
2510	float stddev;
2511
2512	printf("%*s   %5d  %9" PRIu64 " ",
2513	       comm_width, timehist_get_commstr(t), t->ppid,
2514	       (u64) r->run_stats.n);
2515
2516	print_sched_time(r->total_run_time, 8);
2517	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2518	print_sched_time(r->run_stats.min, 6);
2519	printf(" ");
2520	print_sched_time((u64) mean, 6);
2521	printf(" ");
2522	print_sched_time(r->run_stats.max, 6);
2523	printf("  ");
2524	printf("%5.2f", stddev);
2525	printf("   %5" PRIu64, r->migrations);
2526	printf("\n");
2527}
2528
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2529struct total_run_stats {
 
2530	u64  sched_count;
2531	u64  task_count;
2532	u64  total_run_time;
2533};
2534
2535static int __show_thread_runtime(struct thread *t, void *priv)
2536{
2537	struct total_run_stats *stats = priv;
2538	struct thread_runtime *r;
2539
2540	if (thread__is_filtered(t))
2541		return 0;
2542
2543	r = thread__priv(t);
2544	if (r && r->run_stats.n) {
2545		stats->task_count++;
2546		stats->sched_count += r->run_stats.n;
2547		stats->total_run_time += r->total_run_time;
2548		print_thread_runtime(t, r);
 
 
 
 
2549	}
2550
2551	return 0;
2552}
2553
2554static int show_thread_runtime(struct thread *t, void *priv)
2555{
2556	if (t->dead)
2557		return 0;
2558
2559	return __show_thread_runtime(t, priv);
2560}
2561
2562static int show_deadthread_runtime(struct thread *t, void *priv)
2563{
2564	if (!t->dead)
2565		return 0;
2566
2567	return __show_thread_runtime(t, priv);
2568}
2569
2570static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2571{
2572	const char *sep = " <- ";
2573	struct callchain_list *chain;
2574	size_t ret = 0;
2575	char bf[1024];
2576	bool first;
2577
2578	if (node == NULL)
2579		return 0;
2580
2581	ret = callchain__fprintf_folded(fp, node->parent);
2582	first = (ret == 0);
2583
2584	list_for_each_entry(chain, &node->val, list) {
2585		if (chain->ip >= PERF_CONTEXT_MAX)
2586			continue;
2587		if (chain->ms.sym && chain->ms.sym->ignore)
2588			continue;
2589		ret += fprintf(fp, "%s%s", first ? "" : sep,
2590			       callchain_list__sym_name(chain, bf, sizeof(bf),
2591							false));
2592		first = false;
2593	}
2594
2595	return ret;
2596}
2597
2598static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2599{
2600	size_t ret = 0;
2601	FILE *fp = stdout;
2602	struct callchain_node *chain;
2603	struct rb_node *rb_node = rb_first(root);
2604
2605	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2606	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2607	       graph_dotted_line);
2608
2609	while (rb_node) {
2610		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2611		rb_node = rb_next(rb_node);
2612
2613		ret += fprintf(fp, "  ");
2614		print_sched_time(chain->hit, 12);
2615		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2616		ret += fprintf(fp, " %8d  ", chain->count);
2617		ret += callchain__fprintf_folded(fp, chain);
2618		ret += fprintf(fp, "\n");
2619	}
2620
2621	return ret;
2622}
2623
2624static void timehist_print_summary(struct perf_sched *sched,
2625				   struct perf_session *session)
2626{
2627	struct machine *m = &session->machines.host;
2628	struct total_run_stats totals;
2629	u64 task_count;
2630	struct thread *t;
2631	struct thread_runtime *r;
2632	int i;
2633	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2634
2635	memset(&totals, 0, sizeof(totals));
 
2636
2637	if (sched->idle_hist) {
2638		printf("\nIdle-time summary\n");
2639		printf("%*s  parent  sched-out  ", comm_width, "comm");
2640		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
 
 
 
 
2641	} else {
2642		printf("\nRuntime summary\n");
2643		printf("%*s  parent   sched-in  ", comm_width, "comm");
2644		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2645	}
2646	printf("%*s            (count)  ", comm_width, "");
2647	printf("     (msec)     (msec)      (msec)      (msec)       %%\n");
 
2648	printf("%.117s\n", graph_dotted_line);
2649
2650	machine__for_each_thread(m, show_thread_runtime, &totals);
2651	task_count = totals.task_count;
2652	if (!task_count)
2653		printf("<no still running tasks>\n");
2654
2655	printf("\nTerminated tasks:\n");
2656	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2657	if (task_count == totals.task_count)
2658		printf("<no terminated tasks>\n");
2659
2660	/* CPU idle stats not tracked when samples were skipped */
2661	if (sched->skipped_samples && !sched->idle_hist)
2662		return;
2663
2664	printf("\nIdle stats:\n");
2665	for (i = 0; i < idle_max_cpu; ++i) {
2666		t = idle_threads[i];
2667		if (!t)
2668			continue;
2669
2670		r = thread__priv(t);
2671		if (r && r->run_stats.n) {
2672			totals.sched_count += r->run_stats.n;
2673			printf("    CPU %2d idle for ", i);
2674			print_sched_time(r->total_run_time, 6);
2675			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2676		} else
2677			printf("    CPU %2d idle entire time window\n", i);
2678	}
2679
2680	if (sched->idle_hist && symbol_conf.use_callchain) {
2681		callchain_param.mode  = CHAIN_FOLDED;
2682		callchain_param.value = CCVAL_PERIOD;
2683
2684		callchain_register_param(&callchain_param);
2685
2686		printf("\nIdle stats by callchain:\n");
2687		for (i = 0; i < idle_max_cpu; ++i) {
2688			struct idle_thread_runtime *itr;
2689
2690			t = idle_threads[i];
2691			if (!t)
2692				continue;
2693
2694			itr = thread__priv(t);
2695			if (itr == NULL)
2696				continue;
2697
2698			callchain_param.sort(&itr->sorted_root, &itr->callchain,
2699					     0, &callchain_param);
2700
2701			printf("  CPU %2d:", i);
2702			print_sched_time(itr->tr.total_run_time, 6);
2703			printf(" msec\n");
2704			timehist_print_idlehist_callchain(&itr->sorted_root);
2705			printf("\n");
2706		}
2707	}
2708
2709	printf("\n"
2710	       "    Total number of unique tasks: %" PRIu64 "\n"
2711	       "Total number of context switches: %" PRIu64 "\n",
2712	       totals.task_count, totals.sched_count);
2713
2714	printf("           Total run time (msec): ");
2715	print_sched_time(totals.total_run_time, 2);
2716	printf("\n");
2717
2718	printf("    Total scheduling time (msec): ");
2719	print_sched_time(hist_time, 2);
2720	printf(" (x %d)\n", sched->max_cpu);
2721}
2722
2723typedef int (*sched_handler)(struct perf_tool *tool,
2724			  union perf_event *event,
2725			  struct perf_evsel *evsel,
2726			  struct perf_sample *sample,
2727			  struct machine *machine);
2728
2729static int perf_timehist__process_sample(struct perf_tool *tool,
2730					 union perf_event *event,
2731					 struct perf_sample *sample,
2732					 struct perf_evsel *evsel,
2733					 struct machine *machine)
2734{
2735	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2736	int err = 0;
2737	int this_cpu = sample->cpu;
2738
2739	if (this_cpu > sched->max_cpu)
2740		sched->max_cpu = this_cpu;
2741
2742	if (evsel->handler != NULL) {
2743		sched_handler f = evsel->handler;
2744
2745		err = f(tool, event, evsel, sample, machine);
2746	}
2747
2748	return err;
2749}
2750
2751static int timehist_check_attr(struct perf_sched *sched,
2752			       struct perf_evlist *evlist)
2753{
2754	struct perf_evsel *evsel;
2755	struct evsel_runtime *er;
2756
2757	list_for_each_entry(evsel, &evlist->entries, node) {
2758		er = perf_evsel__get_runtime(evsel);
2759		if (er == NULL) {
2760			pr_err("Failed to allocate memory for evsel runtime data\n");
2761			return -1;
2762		}
2763
2764		if (sched->show_callchain &&
2765		    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2766			pr_info("Samples do not have callchains.\n");
2767			sched->show_callchain = 0;
2768			symbol_conf.use_callchain = 0;
2769		}
2770	}
2771
2772	return 0;
2773}
2774
2775static int perf_sched__timehist(struct perf_sched *sched)
2776{
2777	const struct perf_evsel_str_handler handlers[] = {
2778		{ "sched:sched_switch",       timehist_sched_switch_event, },
2779		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2780		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2781	};
2782	const struct perf_evsel_str_handler migrate_handlers[] = {
2783		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2784	};
2785	struct perf_data_file file = {
2786		.path = input_name,
2787		.mode = PERF_DATA_MODE_READ,
2788		.force = sched->force,
2789	};
2790
2791	struct perf_session *session;
2792	struct perf_evlist *evlist;
2793	int err = -1;
2794
2795	/*
2796	 * event handlers for timehist option
2797	 */
2798	sched->tool.sample	 = perf_timehist__process_sample;
2799	sched->tool.mmap	 = perf_event__process_mmap;
2800	sched->tool.comm	 = perf_event__process_comm;
2801	sched->tool.exit	 = perf_event__process_exit;
2802	sched->tool.fork	 = perf_event__process_fork;
2803	sched->tool.lost	 = process_lost;
2804	sched->tool.attr	 = perf_event__process_attr;
2805	sched->tool.tracing_data = perf_event__process_tracing_data;
2806	sched->tool.build_id	 = perf_event__process_build_id;
2807
2808	sched->tool.ordered_events = true;
2809	sched->tool.ordering_requires_timestamps = true;
2810
2811	symbol_conf.use_callchain = sched->show_callchain;
2812
2813	session = perf_session__new(&file, false, &sched->tool);
2814	if (session == NULL)
2815		return -ENOMEM;
2816
2817	evlist = session->evlist;
2818
2819	symbol__init(&session->header.env);
2820
2821	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2822		pr_err("Invalid time string\n");
2823		return -EINVAL;
2824	}
2825
2826	if (timehist_check_attr(sched, evlist) != 0)
2827		goto out;
2828
2829	setup_pager();
2830
2831	/* setup per-evsel handlers */
2832	if (perf_session__set_tracepoints_handlers(session, handlers))
2833		goto out;
2834
2835	/* sched_switch event at a minimum needs to exist */
2836	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2837						  "sched:sched_switch")) {
2838		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2839		goto out;
2840	}
2841
2842	if (sched->show_migrations &&
2843	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
2844		goto out;
2845
2846	/* pre-allocate struct for per-CPU idle stats */
2847	sched->max_cpu = session->header.env.nr_cpus_online;
2848	if (sched->max_cpu == 0)
2849		sched->max_cpu = 4;
2850	if (init_idle_threads(sched->max_cpu))
2851		goto out;
2852
2853	/* summary_only implies summary option, but don't overwrite summary if set */
2854	if (sched->summary_only)
2855		sched->summary = sched->summary_only;
2856
2857	if (!sched->summary_only)
2858		timehist_header(sched);
2859
2860	err = perf_session__process_events(session);
2861	if (err) {
2862		pr_err("Failed to process events, error %d", err);
2863		goto out;
2864	}
2865
2866	sched->nr_events      = evlist->stats.nr_events[0];
2867	sched->nr_lost_events = evlist->stats.total_lost;
2868	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2869
2870	if (sched->summary)
2871		timehist_print_summary(sched, session);
2872
2873out:
2874	free_idle_threads();
2875	perf_session__delete(session);
2876
2877	return err;
2878}
2879
2880
2881static void print_bad_events(struct perf_sched *sched)
2882{
2883	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
2884		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
2885			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
2886			sched->nr_unordered_timestamps, sched->nr_timestamps);
2887	}
2888	if (sched->nr_lost_events && sched->nr_events) {
2889		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
2890			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
2891			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
2892	}
2893	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
2894		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
2895			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
2896			sched->nr_context_switch_bugs, sched->nr_timestamps);
2897		if (sched->nr_lost_events)
2898			printf(" (due to lost events?)");
2899		printf("\n");
2900	}
2901}
2902
2903static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
2904{
2905	struct rb_node **new = &(root->rb_node), *parent = NULL;
2906	struct work_atoms *this;
2907	const char *comm = thread__comm_str(data->thread), *this_comm;
 
2908
2909	while (*new) {
2910		int cmp;
2911
2912		this = container_of(*new, struct work_atoms, node);
2913		parent = *new;
2914
2915		this_comm = thread__comm_str(this->thread);
2916		cmp = strcmp(comm, this_comm);
2917		if (cmp > 0) {
2918			new = &((*new)->rb_left);
2919		} else if (cmp < 0) {
2920			new = &((*new)->rb_right);
 
2921		} else {
2922			this->num_merged++;
2923			this->total_runtime += data->total_runtime;
2924			this->nb_atoms += data->nb_atoms;
2925			this->total_lat += data->total_lat;
2926			list_splice(&data->work_list, &this->work_list);
2927			if (this->max_lat < data->max_lat) {
2928				this->max_lat = data->max_lat;
2929				this->max_lat_at = data->max_lat_at;
2930			}
2931			zfree(&data);
2932			return;
2933		}
2934	}
2935
2936	data->num_merged++;
2937	rb_link_node(&data->node, parent, new);
2938	rb_insert_color(&data->node, root);
2939}
2940
2941static void perf_sched__merge_lat(struct perf_sched *sched)
2942{
2943	struct work_atoms *data;
2944	struct rb_node *node;
2945
2946	if (sched->skip_merge)
2947		return;
2948
2949	while ((node = rb_first(&sched->atom_root))) {
2950		rb_erase(node, &sched->atom_root);
2951		data = rb_entry(node, struct work_atoms, node);
2952		__merge_work_atoms(&sched->merged_atom_root, data);
2953	}
2954}
2955
2956static int perf_sched__lat(struct perf_sched *sched)
2957{
2958	struct rb_node *next;
2959
2960	setup_pager();
2961
2962	if (perf_sched__read_events(sched))
2963		return -1;
2964
2965	perf_sched__merge_lat(sched);
2966	perf_sched__sort_lat(sched);
2967
2968	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
2969	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
2970	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2971
2972	next = rb_first(&sched->sorted_atom_root);
2973
2974	while (next) {
2975		struct work_atoms *work_list;
2976
2977		work_list = rb_entry(next, struct work_atoms, node);
2978		output_lat_thread(sched, work_list);
2979		next = rb_next(next);
2980		thread__zput(work_list->thread);
2981	}
2982
2983	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2984	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
2985		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
2986
2987	printf(" ---------------------------------------------------\n");
2988
2989	print_bad_events(sched);
2990	printf("\n");
2991
2992	return 0;
2993}
2994
2995static int setup_map_cpus(struct perf_sched *sched)
2996{
2997	struct cpu_map *map;
2998
2999	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3000
3001	if (sched->map.comp) {
3002		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3003		if (!sched->map.comp_cpus)
3004			return -1;
3005	}
3006
3007	if (!sched->map.cpus_str)
3008		return 0;
3009
3010	map = cpu_map__new(sched->map.cpus_str);
3011	if (!map) {
3012		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3013		return -1;
3014	}
3015
3016	sched->map.cpus = map;
3017	return 0;
3018}
3019
3020static int setup_color_pids(struct perf_sched *sched)
3021{
3022	struct thread_map *map;
3023
3024	if (!sched->map.color_pids_str)
3025		return 0;
3026
3027	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3028	if (!map) {
3029		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3030		return -1;
3031	}
3032
3033	sched->map.color_pids = map;
3034	return 0;
3035}
3036
3037static int setup_color_cpus(struct perf_sched *sched)
3038{
3039	struct cpu_map *map;
3040
3041	if (!sched->map.color_cpus_str)
3042		return 0;
3043
3044	map = cpu_map__new(sched->map.color_cpus_str);
3045	if (!map) {
3046		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3047		return -1;
3048	}
3049
3050	sched->map.color_cpus = map;
3051	return 0;
3052}
3053
3054static int perf_sched__map(struct perf_sched *sched)
3055{
3056	if (setup_map_cpus(sched))
3057		return -1;
3058
3059	if (setup_color_pids(sched))
3060		return -1;
3061
3062	if (setup_color_cpus(sched))
3063		return -1;
3064
3065	setup_pager();
3066	if (perf_sched__read_events(sched))
3067		return -1;
3068	print_bad_events(sched);
3069	return 0;
3070}
3071
3072static int perf_sched__replay(struct perf_sched *sched)
3073{
3074	unsigned long i;
3075
3076	calibrate_run_measurement_overhead(sched);
3077	calibrate_sleep_measurement_overhead(sched);
3078
3079	test_calibrations(sched);
3080
3081	if (perf_sched__read_events(sched))
3082		return -1;
3083
3084	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3085	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3086	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3087
3088	if (sched->targetless_wakeups)
3089		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3090	if (sched->multitarget_wakeups)
3091		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3092	if (sched->nr_run_events_optimized)
3093		printf("run atoms optimized: %ld\n",
3094			sched->nr_run_events_optimized);
3095
3096	print_task_traces(sched);
3097	add_cross_task_wakeups(sched);
3098
3099	create_tasks(sched);
3100	printf("------------------------------------------------------------\n");
3101	for (i = 0; i < sched->replay_repeat; i++)
3102		run_one_test(sched);
3103
3104	return 0;
3105}
3106
3107static void setup_sorting(struct perf_sched *sched, const struct option *options,
3108			  const char * const usage_msg[])
3109{
3110	char *tmp, *tok, *str = strdup(sched->sort_order);
3111
3112	for (tok = strtok_r(str, ", ", &tmp);
3113			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3114		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3115			usage_with_options_msg(usage_msg, options,
3116					"Unknown --sort key: `%s'", tok);
3117		}
3118	}
3119
3120	free(str);
3121
3122	sort_dimension__add("pid", &sched->cmp_pid);
3123}
3124
3125static int __cmd_record(int argc, const char **argv)
3126{
3127	unsigned int rec_argc, i, j;
3128	const char **rec_argv;
3129	const char * const record_args[] = {
3130		"record",
3131		"-a",
3132		"-R",
3133		"-m", "1024",
3134		"-c", "1",
3135		"-e", "sched:sched_switch",
3136		"-e", "sched:sched_stat_wait",
3137		"-e", "sched:sched_stat_sleep",
3138		"-e", "sched:sched_stat_iowait",
3139		"-e", "sched:sched_stat_runtime",
3140		"-e", "sched:sched_process_fork",
3141		"-e", "sched:sched_wakeup",
3142		"-e", "sched:sched_wakeup_new",
3143		"-e", "sched:sched_migrate_task",
3144	};
3145
3146	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3147	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3148
3149	if (rec_argv == NULL)
3150		return -ENOMEM;
3151
3152	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3153		rec_argv[i] = strdup(record_args[i]);
3154
3155	for (j = 1; j < (unsigned int)argc; j++, i++)
3156		rec_argv[i] = argv[j];
3157
3158	BUG_ON(i != rec_argc);
3159
3160	return cmd_record(i, rec_argv, NULL);
3161}
3162
3163int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
3164{
3165	const char default_sort_order[] = "avg, max, switch, runtime";
3166	struct perf_sched sched = {
3167		.tool = {
3168			.sample		 = perf_sched__process_tracepoint_sample,
3169			.comm		 = perf_event__process_comm,
 
3170			.lost		 = perf_event__process_lost,
3171			.fork		 = perf_sched__process_fork_event,
3172			.ordered_events = true,
3173		},
3174		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3175		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3176		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3177		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3178		.sort_order	      = default_sort_order,
3179		.replay_repeat	      = 10,
3180		.profile_cpu	      = -1,
3181		.next_shortname1      = 'A',
3182		.next_shortname2      = '0',
3183		.skip_merge           = 0,
3184		.show_callchain	      = 1,
3185		.max_stack            = 5,
3186	};
3187	const struct option sched_options[] = {
3188	OPT_STRING('i', "input", &input_name, "file",
3189		    "input file name"),
3190	OPT_INCR('v', "verbose", &verbose,
3191		    "be more verbose (show symbol address, etc)"),
3192	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3193		    "dump raw trace in ASCII"),
3194	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3195	OPT_END()
3196	};
3197	const struct option latency_options[] = {
3198	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3199		   "sort by key(s): runtime, switch, avg, max"),
3200	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3201		    "CPU to profile on"),
3202	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3203		    "latency stats per pid instead of per comm"),
3204	OPT_PARENT(sched_options)
3205	};
3206	const struct option replay_options[] = {
3207	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3208		     "repeat the workload replay N times (-1: infinite)"),
3209	OPT_PARENT(sched_options)
3210	};
3211	const struct option map_options[] = {
3212	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3213		    "map output in compact mode"),
3214	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3215		   "highlight given pids in map"),
3216	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3217                    "highlight given CPUs in map"),
3218	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3219                    "display given CPUs in map"),
3220	OPT_PARENT(sched_options)
3221	};
3222	const struct option timehist_options[] = {
3223	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3224		   "file", "vmlinux pathname"),
3225	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3226		   "file", "kallsyms pathname"),
3227	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3228		    "Display call chains if present (default on)"),
3229	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3230		   "Maximum number of functions to display backtrace."),
3231	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3232		    "Look for files with symbols relative to this directory"),
3233	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3234		    "Show only syscall summary with statistics"),
3235	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3236		    "Show all syscalls and summary with statistics"),
3237	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
 
3238	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3239	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3240	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3241	OPT_STRING(0, "time", &sched.time_str, "str",
3242		   "Time span for analysis (start,stop)"),
 
 
 
 
 
3243	OPT_PARENT(sched_options)
3244	};
3245
3246	const char * const latency_usage[] = {
3247		"perf sched latency [<options>]",
3248		NULL
3249	};
3250	const char * const replay_usage[] = {
3251		"perf sched replay [<options>]",
3252		NULL
3253	};
3254	const char * const map_usage[] = {
3255		"perf sched map [<options>]",
3256		NULL
3257	};
3258	const char * const timehist_usage[] = {
3259		"perf sched timehist [<options>]",
3260		NULL
3261	};
3262	const char *const sched_subcommands[] = { "record", "latency", "map",
3263						  "replay", "script",
3264						  "timehist", NULL };
3265	const char *sched_usage[] = {
3266		NULL,
3267		NULL
3268	};
3269	struct trace_sched_handler lat_ops  = {
3270		.wakeup_event	    = latency_wakeup_event,
3271		.switch_event	    = latency_switch_event,
3272		.runtime_event	    = latency_runtime_event,
3273		.migrate_task_event = latency_migrate_task_event,
3274	};
3275	struct trace_sched_handler map_ops  = {
3276		.switch_event	    = map_switch_event,
3277	};
3278	struct trace_sched_handler replay_ops  = {
3279		.wakeup_event	    = replay_wakeup_event,
3280		.switch_event	    = replay_switch_event,
3281		.fork_event	    = replay_fork_event,
3282	};
3283	unsigned int i;
3284
3285	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3286		sched.curr_pid[i] = -1;
3287
3288	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3289					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3290	if (!argc)
3291		usage_with_options(sched_usage, sched_options);
3292
3293	/*
3294	 * Aliased to 'perf script' for now:
3295	 */
3296	if (!strcmp(argv[0], "script"))
3297		return cmd_script(argc, argv, prefix);
3298
3299	if (!strncmp(argv[0], "rec", 3)) {
3300		return __cmd_record(argc, argv);
3301	} else if (!strncmp(argv[0], "lat", 3)) {
3302		sched.tp_handler = &lat_ops;
3303		if (argc > 1) {
3304			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3305			if (argc)
3306				usage_with_options(latency_usage, latency_options);
3307		}
3308		setup_sorting(&sched, latency_options, latency_usage);
3309		return perf_sched__lat(&sched);
3310	} else if (!strcmp(argv[0], "map")) {
3311		if (argc) {
3312			argc = parse_options(argc, argv, map_options, map_usage, 0);
3313			if (argc)
3314				usage_with_options(map_usage, map_options);
3315		}
3316		sched.tp_handler = &map_ops;
3317		setup_sorting(&sched, latency_options, latency_usage);
3318		return perf_sched__map(&sched);
3319	} else if (!strncmp(argv[0], "rep", 3)) {
3320		sched.tp_handler = &replay_ops;
3321		if (argc) {
3322			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3323			if (argc)
3324				usage_with_options(replay_usage, replay_options);
3325		}
3326		return perf_sched__replay(&sched);
3327	} else if (!strcmp(argv[0], "timehist")) {
3328		if (argc) {
3329			argc = parse_options(argc, argv, timehist_options,
3330					     timehist_usage, 0);
3331			if (argc)
3332				usage_with_options(timehist_usage, timehist_options);
3333		}
3334		if (sched.show_wakeups && sched.summary_only) {
3335			pr_err(" Error: -s and -w are mutually exclusive.\n");
 
3336			parse_options_usage(timehist_usage, timehist_options, "s", true);
3337			parse_options_usage(NULL, timehist_options, "w", true);
 
 
 
3338			return -EINVAL;
3339		}
3340
3341		return perf_sched__timehist(&sched);
3342	} else {
3343		usage_with_options(sched_usage, sched_options);
3344	}
3345
3346	return 0;
3347}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4#include "perf-sys.h"
   5
   6#include "util/cpumap.h"
   7#include "util/evlist.h"
 
   8#include "util/evsel.h"
   9#include "util/evsel_fprintf.h"
  10#include "util/symbol.h"
  11#include "util/thread.h"
  12#include "util/header.h"
  13#include "util/session.h"
  14#include "util/tool.h"
  15#include "util/cloexec.h"
  16#include "util/thread_map.h"
  17#include "util/color.h"
  18#include "util/stat.h"
  19#include "util/string2.h"
  20#include "util/callchain.h"
  21#include "util/time-utils.h"
  22
  23#include <subcmd/pager.h>
  24#include <subcmd/parse-options.h>
  25#include "util/trace-event.h"
  26
  27#include "util/debug.h"
  28#include "util/event.h"
  29
  30#include <linux/kernel.h>
  31#include <linux/log2.h>
  32#include <linux/zalloc.h>
  33#include <sys/prctl.h>
  34#include <sys/resource.h>
  35#include <inttypes.h>
  36
  37#include <errno.h>
  38#include <semaphore.h>
  39#include <pthread.h>
  40#include <math.h>
  41#include <api/fs/fs.h>
  42#include <perf/cpumap.h>
  43#include <linux/time64.h>
  44#include <linux/err.h>
  45
  46#include <linux/ctype.h>
  47
  48#define PR_SET_NAME		15               /* Set process name */
  49#define MAX_CPUS		4096
  50#define COMM_LEN		20
  51#define SYM_LEN			129
  52#define MAX_PID			1024000
  53
  54struct sched_atom;
  55
  56struct task_desc {
  57	unsigned long		nr;
  58	unsigned long		pid;
  59	char			comm[COMM_LEN];
  60
  61	unsigned long		nr_events;
  62	unsigned long		curr_event;
  63	struct sched_atom	**atoms;
  64
  65	pthread_t		thread;
  66	sem_t			sleep_sem;
  67
  68	sem_t			ready_for_work;
  69	sem_t			work_done_sem;
  70
  71	u64			cpu_usage;
  72};
  73
  74enum sched_event_type {
  75	SCHED_EVENT_RUN,
  76	SCHED_EVENT_SLEEP,
  77	SCHED_EVENT_WAKEUP,
  78	SCHED_EVENT_MIGRATION,
  79};
  80
  81struct sched_atom {
  82	enum sched_event_type	type;
  83	int			specific_wait;
  84	u64			timestamp;
  85	u64			duration;
  86	unsigned long		nr;
  87	sem_t			*wait_sem;
  88	struct task_desc	*wakee;
  89};
  90
  91#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  92
  93/* task state bitmask, copied from include/linux/sched.h */
  94#define TASK_RUNNING		0
  95#define TASK_INTERRUPTIBLE	1
  96#define TASK_UNINTERRUPTIBLE	2
  97#define __TASK_STOPPED		4
  98#define __TASK_TRACED		8
  99/* in tsk->exit_state */
 100#define EXIT_DEAD		16
 101#define EXIT_ZOMBIE		32
 102#define EXIT_TRACE		(EXIT_ZOMBIE | EXIT_DEAD)
 103/* in tsk->state again */
 104#define TASK_DEAD		64
 105#define TASK_WAKEKILL		128
 106#define TASK_WAKING		256
 107#define TASK_PARKED		512
 108
 109enum thread_state {
 110	THREAD_SLEEPING = 0,
 111	THREAD_WAIT_CPU,
 112	THREAD_SCHED_IN,
 113	THREAD_IGNORE
 114};
 115
 116struct work_atom {
 117	struct list_head	list;
 118	enum thread_state	state;
 119	u64			sched_out_time;
 120	u64			wake_up_time;
 121	u64			sched_in_time;
 122	u64			runtime;
 123};
 124
 125struct work_atoms {
 126	struct list_head	work_list;
 127	struct thread		*thread;
 128	struct rb_node		node;
 129	u64			max_lat;
 130	u64			max_lat_at;
 131	u64			total_lat;
 132	u64			nb_atoms;
 133	u64			total_runtime;
 134	int			num_merged;
 135};
 136
 137typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 138
 139struct perf_sched;
 140
 141struct trace_sched_handler {
 142	int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
 143			    struct perf_sample *sample, struct machine *machine);
 144
 145	int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
 146			     struct perf_sample *sample, struct machine *machine);
 147
 148	int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
 149			    struct perf_sample *sample, struct machine *machine);
 150
 151	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 152	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 153			  struct machine *machine);
 154
 155	int (*migrate_task_event)(struct perf_sched *sched,
 156				  struct evsel *evsel,
 157				  struct perf_sample *sample,
 158				  struct machine *machine);
 159};
 160
 161#define COLOR_PIDS PERF_COLOR_BLUE
 162#define COLOR_CPUS PERF_COLOR_BG_RED
 163
 164struct perf_sched_map {
 165	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 166	int			*comp_cpus;
 167	bool			 comp;
 168	struct perf_thread_map *color_pids;
 169	const char		*color_pids_str;
 170	struct perf_cpu_map	*color_cpus;
 171	const char		*color_cpus_str;
 172	struct perf_cpu_map	*cpus;
 173	const char		*cpus_str;
 174};
 175
 176struct perf_sched {
 177	struct perf_tool tool;
 178	const char	 *sort_order;
 179	unsigned long	 nr_tasks;
 180	struct task_desc **pid_to_task;
 181	struct task_desc **tasks;
 182	const struct trace_sched_handler *tp_handler;
 183	pthread_mutex_t	 start_work_mutex;
 184	pthread_mutex_t	 work_done_wait_mutex;
 185	int		 profile_cpu;
 186/*
 187 * Track the current task - that way we can know whether there's any
 188 * weird events, such as a task being switched away that is not current.
 189 */
 190	int		 max_cpu;
 191	u32		 curr_pid[MAX_CPUS];
 192	struct thread	 *curr_thread[MAX_CPUS];
 193	char		 next_shortname1;
 194	char		 next_shortname2;
 195	unsigned int	 replay_repeat;
 196	unsigned long	 nr_run_events;
 197	unsigned long	 nr_sleep_events;
 198	unsigned long	 nr_wakeup_events;
 199	unsigned long	 nr_sleep_corrections;
 200	unsigned long	 nr_run_events_optimized;
 201	unsigned long	 targetless_wakeups;
 202	unsigned long	 multitarget_wakeups;
 203	unsigned long	 nr_runs;
 204	unsigned long	 nr_timestamps;
 205	unsigned long	 nr_unordered_timestamps;
 206	unsigned long	 nr_context_switch_bugs;
 207	unsigned long	 nr_events;
 208	unsigned long	 nr_lost_chunks;
 209	unsigned long	 nr_lost_events;
 210	u64		 run_measurement_overhead;
 211	u64		 sleep_measurement_overhead;
 212	u64		 start_time;
 213	u64		 cpu_usage;
 214	u64		 runavg_cpu_usage;
 215	u64		 parent_cpu_usage;
 216	u64		 runavg_parent_cpu_usage;
 217	u64		 sum_runtime;
 218	u64		 sum_fluct;
 219	u64		 run_avg;
 220	u64		 all_runtime;
 221	u64		 all_count;
 222	u64		 cpu_last_switched[MAX_CPUS];
 223	struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
 224	struct list_head sort_list, cmp_pid;
 225	bool force;
 226	bool skip_merge;
 227	struct perf_sched_map map;
 228
 229	/* options for timehist command */
 230	bool		summary;
 231	bool		summary_only;
 232	bool		idle_hist;
 233	bool		show_callchain;
 234	unsigned int	max_stack;
 235	bool		show_cpu_visual;
 236	bool		show_wakeups;
 237	bool		show_next;
 238	bool		show_migrations;
 239	bool		show_state;
 240	u64		skipped_samples;
 241	const char	*time_str;
 242	struct perf_time_interval ptime;
 243	struct perf_time_interval hist_time;
 244};
 245
 246/* per thread run time data */
 247struct thread_runtime {
 248	u64 last_time;      /* time of previous sched in/out event */
 249	u64 dt_run;         /* run time */
 250	u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 251	u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 252	u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 253	u64 dt_delay;       /* time between wakeup and sched-in */
 254	u64 ready_to_run;   /* time of wakeup */
 255
 256	struct stats run_stats;
 257	u64 total_run_time;
 258	u64 total_sleep_time;
 259	u64 total_iowait_time;
 260	u64 total_preempt_time;
 261	u64 total_delay_time;
 262
 263	int last_state;
 264
 265	char shortname[3];
 266	bool comm_changed;
 267
 268	u64 migrations;
 269};
 270
 271/* per event run time data */
 272struct evsel_runtime {
 273	u64 *last_time; /* time this event was last seen per cpu */
 274	u32 ncpu;       /* highest cpu slot allocated */
 275};
 276
 277/* per cpu idle time data */
 278struct idle_thread_runtime {
 279	struct thread_runtime	tr;
 280	struct thread		*last_thread;
 281	struct rb_root_cached	sorted_root;
 282	struct callchain_root	callchain;
 283	struct callchain_cursor	cursor;
 284};
 285
 286/* track idle times per cpu */
 287static struct thread **idle_threads;
 288static int idle_max_cpu;
 289static char idle_comm[] = "<idle>";
 290
 291static u64 get_nsecs(void)
 292{
 293	struct timespec ts;
 294
 295	clock_gettime(CLOCK_MONOTONIC, &ts);
 296
 297	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 298}
 299
 300static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 301{
 302	u64 T0 = get_nsecs(), T1;
 303
 304	do {
 305		T1 = get_nsecs();
 306	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 307}
 308
 309static void sleep_nsecs(u64 nsecs)
 310{
 311	struct timespec ts;
 312
 313	ts.tv_nsec = nsecs % 999999999;
 314	ts.tv_sec = nsecs / 999999999;
 315
 316	nanosleep(&ts, NULL);
 317}
 318
 319static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 320{
 321	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 322	int i;
 323
 324	for (i = 0; i < 10; i++) {
 325		T0 = get_nsecs();
 326		burn_nsecs(sched, 0);
 327		T1 = get_nsecs();
 328		delta = T1-T0;
 329		min_delta = min(min_delta, delta);
 330	}
 331	sched->run_measurement_overhead = min_delta;
 332
 333	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 334}
 335
 336static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 337{
 338	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 339	int i;
 340
 341	for (i = 0; i < 10; i++) {
 342		T0 = get_nsecs();
 343		sleep_nsecs(10000);
 344		T1 = get_nsecs();
 345		delta = T1-T0;
 346		min_delta = min(min_delta, delta);
 347	}
 348	min_delta -= 10000;
 349	sched->sleep_measurement_overhead = min_delta;
 350
 351	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 352}
 353
 354static struct sched_atom *
 355get_new_event(struct task_desc *task, u64 timestamp)
 356{
 357	struct sched_atom *event = zalloc(sizeof(*event));
 358	unsigned long idx = task->nr_events;
 359	size_t size;
 360
 361	event->timestamp = timestamp;
 362	event->nr = idx;
 363
 364	task->nr_events++;
 365	size = sizeof(struct sched_atom *) * task->nr_events;
 366	task->atoms = realloc(task->atoms, size);
 367	BUG_ON(!task->atoms);
 368
 369	task->atoms[idx] = event;
 370
 371	return event;
 372}
 373
 374static struct sched_atom *last_event(struct task_desc *task)
 375{
 376	if (!task->nr_events)
 377		return NULL;
 378
 379	return task->atoms[task->nr_events - 1];
 380}
 381
 382static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 383				u64 timestamp, u64 duration)
 384{
 385	struct sched_atom *event, *curr_event = last_event(task);
 386
 387	/*
 388	 * optimize an existing RUN event by merging this one
 389	 * to it:
 390	 */
 391	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 392		sched->nr_run_events_optimized++;
 393		curr_event->duration += duration;
 394		return;
 395	}
 396
 397	event = get_new_event(task, timestamp);
 398
 399	event->type = SCHED_EVENT_RUN;
 400	event->duration = duration;
 401
 402	sched->nr_run_events++;
 403}
 404
 405static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 406				   u64 timestamp, struct task_desc *wakee)
 407{
 408	struct sched_atom *event, *wakee_event;
 409
 410	event = get_new_event(task, timestamp);
 411	event->type = SCHED_EVENT_WAKEUP;
 412	event->wakee = wakee;
 413
 414	wakee_event = last_event(wakee);
 415	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 416		sched->targetless_wakeups++;
 417		return;
 418	}
 419	if (wakee_event->wait_sem) {
 420		sched->multitarget_wakeups++;
 421		return;
 422	}
 423
 424	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 425	sem_init(wakee_event->wait_sem, 0, 0);
 426	wakee_event->specific_wait = 1;
 427	event->wait_sem = wakee_event->wait_sem;
 428
 429	sched->nr_wakeup_events++;
 430}
 431
 432static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 433				  u64 timestamp, u64 task_state __maybe_unused)
 434{
 435	struct sched_atom *event = get_new_event(task, timestamp);
 436
 437	event->type = SCHED_EVENT_SLEEP;
 438
 439	sched->nr_sleep_events++;
 440}
 441
 442static struct task_desc *register_pid(struct perf_sched *sched,
 443				      unsigned long pid, const char *comm)
 444{
 445	struct task_desc *task;
 446	static int pid_max;
 447
 448	if (sched->pid_to_task == NULL) {
 449		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 450			pid_max = MAX_PID;
 451		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 452	}
 453	if (pid >= (unsigned long)pid_max) {
 454		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 455			sizeof(struct task_desc *))) == NULL);
 456		while (pid >= (unsigned long)pid_max)
 457			sched->pid_to_task[pid_max++] = NULL;
 458	}
 459
 460	task = sched->pid_to_task[pid];
 461
 462	if (task)
 463		return task;
 464
 465	task = zalloc(sizeof(*task));
 466	task->pid = pid;
 467	task->nr = sched->nr_tasks;
 468	strcpy(task->comm, comm);
 469	/*
 470	 * every task starts in sleeping state - this gets ignored
 471	 * if there's no wakeup pointing to this sleep state:
 472	 */
 473	add_sched_event_sleep(sched, task, 0, 0);
 474
 475	sched->pid_to_task[pid] = task;
 476	sched->nr_tasks++;
 477	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 478	BUG_ON(!sched->tasks);
 479	sched->tasks[task->nr] = task;
 480
 481	if (verbose > 0)
 482		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 483
 484	return task;
 485}
 486
 487
 488static void print_task_traces(struct perf_sched *sched)
 489{
 490	struct task_desc *task;
 491	unsigned long i;
 492
 493	for (i = 0; i < sched->nr_tasks; i++) {
 494		task = sched->tasks[i];
 495		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 496			task->nr, task->comm, task->pid, task->nr_events);
 497	}
 498}
 499
 500static void add_cross_task_wakeups(struct perf_sched *sched)
 501{
 502	struct task_desc *task1, *task2;
 503	unsigned long i, j;
 504
 505	for (i = 0; i < sched->nr_tasks; i++) {
 506		task1 = sched->tasks[i];
 507		j = i + 1;
 508		if (j == sched->nr_tasks)
 509			j = 0;
 510		task2 = sched->tasks[j];
 511		add_sched_event_wakeup(sched, task1, 0, task2);
 512	}
 513}
 514
 515static void perf_sched__process_event(struct perf_sched *sched,
 516				      struct sched_atom *atom)
 517{
 518	int ret = 0;
 519
 520	switch (atom->type) {
 521		case SCHED_EVENT_RUN:
 522			burn_nsecs(sched, atom->duration);
 523			break;
 524		case SCHED_EVENT_SLEEP:
 525			if (atom->wait_sem)
 526				ret = sem_wait(atom->wait_sem);
 527			BUG_ON(ret);
 528			break;
 529		case SCHED_EVENT_WAKEUP:
 530			if (atom->wait_sem)
 531				ret = sem_post(atom->wait_sem);
 532			BUG_ON(ret);
 533			break;
 534		case SCHED_EVENT_MIGRATION:
 535			break;
 536		default:
 537			BUG_ON(1);
 538	}
 539}
 540
 541static u64 get_cpu_usage_nsec_parent(void)
 542{
 543	struct rusage ru;
 544	u64 sum;
 545	int err;
 546
 547	err = getrusage(RUSAGE_SELF, &ru);
 548	BUG_ON(err);
 549
 550	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 551	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 552
 553	return sum;
 554}
 555
 556static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 557{
 558	struct perf_event_attr attr;
 559	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 560	int fd;
 561	struct rlimit limit;
 562	bool need_privilege = false;
 563
 564	memset(&attr, 0, sizeof(attr));
 565
 566	attr.type = PERF_TYPE_SOFTWARE;
 567	attr.config = PERF_COUNT_SW_TASK_CLOCK;
 568
 569force_again:
 570	fd = sys_perf_event_open(&attr, 0, -1, -1,
 571				 perf_event_open_cloexec_flag());
 572
 573	if (fd < 0) {
 574		if (errno == EMFILE) {
 575			if (sched->force) {
 576				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 577				limit.rlim_cur += sched->nr_tasks - cur_task;
 578				if (limit.rlim_cur > limit.rlim_max) {
 579					limit.rlim_max = limit.rlim_cur;
 580					need_privilege = true;
 581				}
 582				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 583					if (need_privilege && errno == EPERM)
 584						strcpy(info, "Need privilege\n");
 585				} else
 586					goto force_again;
 587			} else
 588				strcpy(info, "Have a try with -f option\n");
 589		}
 590		pr_err("Error: sys_perf_event_open() syscall returned "
 591		       "with %d (%s)\n%s", fd,
 592		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 593		exit(EXIT_FAILURE);
 594	}
 595	return fd;
 596}
 597
 598static u64 get_cpu_usage_nsec_self(int fd)
 599{
 600	u64 runtime;
 601	int ret;
 602
 603	ret = read(fd, &runtime, sizeof(runtime));
 604	BUG_ON(ret != sizeof(runtime));
 605
 606	return runtime;
 607}
 608
 609struct sched_thread_parms {
 610	struct task_desc  *task;
 611	struct perf_sched *sched;
 612	int fd;
 613};
 614
 615static void *thread_func(void *ctx)
 616{
 617	struct sched_thread_parms *parms = ctx;
 618	struct task_desc *this_task = parms->task;
 619	struct perf_sched *sched = parms->sched;
 620	u64 cpu_usage_0, cpu_usage_1;
 621	unsigned long i, ret;
 622	char comm2[22];
 623	int fd = parms->fd;
 624
 625	zfree(&parms);
 626
 627	sprintf(comm2, ":%s", this_task->comm);
 628	prctl(PR_SET_NAME, comm2);
 629	if (fd < 0)
 630		return NULL;
 631again:
 632	ret = sem_post(&this_task->ready_for_work);
 633	BUG_ON(ret);
 634	ret = pthread_mutex_lock(&sched->start_work_mutex);
 635	BUG_ON(ret);
 636	ret = pthread_mutex_unlock(&sched->start_work_mutex);
 637	BUG_ON(ret);
 638
 639	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 640
 641	for (i = 0; i < this_task->nr_events; i++) {
 642		this_task->curr_event = i;
 643		perf_sched__process_event(sched, this_task->atoms[i]);
 644	}
 645
 646	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 647	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 648	ret = sem_post(&this_task->work_done_sem);
 649	BUG_ON(ret);
 650
 651	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 652	BUG_ON(ret);
 653	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 654	BUG_ON(ret);
 655
 656	goto again;
 657}
 658
 659static void create_tasks(struct perf_sched *sched)
 660{
 661	struct task_desc *task;
 662	pthread_attr_t attr;
 663	unsigned long i;
 664	int err;
 665
 666	err = pthread_attr_init(&attr);
 667	BUG_ON(err);
 668	err = pthread_attr_setstacksize(&attr,
 669			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 670	BUG_ON(err);
 671	err = pthread_mutex_lock(&sched->start_work_mutex);
 672	BUG_ON(err);
 673	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 674	BUG_ON(err);
 675	for (i = 0; i < sched->nr_tasks; i++) {
 676		struct sched_thread_parms *parms = malloc(sizeof(*parms));
 677		BUG_ON(parms == NULL);
 678		parms->task = task = sched->tasks[i];
 679		parms->sched = sched;
 680		parms->fd = self_open_counters(sched, i);
 681		sem_init(&task->sleep_sem, 0, 0);
 682		sem_init(&task->ready_for_work, 0, 0);
 683		sem_init(&task->work_done_sem, 0, 0);
 684		task->curr_event = 0;
 685		err = pthread_create(&task->thread, &attr, thread_func, parms);
 686		BUG_ON(err);
 687	}
 688}
 689
 690static void wait_for_tasks(struct perf_sched *sched)
 691{
 692	u64 cpu_usage_0, cpu_usage_1;
 693	struct task_desc *task;
 694	unsigned long i, ret;
 695
 696	sched->start_time = get_nsecs();
 697	sched->cpu_usage = 0;
 698	pthread_mutex_unlock(&sched->work_done_wait_mutex);
 699
 700	for (i = 0; i < sched->nr_tasks; i++) {
 701		task = sched->tasks[i];
 702		ret = sem_wait(&task->ready_for_work);
 703		BUG_ON(ret);
 704		sem_init(&task->ready_for_work, 0, 0);
 705	}
 706	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 707	BUG_ON(ret);
 708
 709	cpu_usage_0 = get_cpu_usage_nsec_parent();
 710
 711	pthread_mutex_unlock(&sched->start_work_mutex);
 712
 713	for (i = 0; i < sched->nr_tasks; i++) {
 714		task = sched->tasks[i];
 715		ret = sem_wait(&task->work_done_sem);
 716		BUG_ON(ret);
 717		sem_init(&task->work_done_sem, 0, 0);
 718		sched->cpu_usage += task->cpu_usage;
 719		task->cpu_usage = 0;
 720	}
 721
 722	cpu_usage_1 = get_cpu_usage_nsec_parent();
 723	if (!sched->runavg_cpu_usage)
 724		sched->runavg_cpu_usage = sched->cpu_usage;
 725	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 726
 727	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 728	if (!sched->runavg_parent_cpu_usage)
 729		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 730	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 731					 sched->parent_cpu_usage)/sched->replay_repeat;
 732
 733	ret = pthread_mutex_lock(&sched->start_work_mutex);
 734	BUG_ON(ret);
 735
 736	for (i = 0; i < sched->nr_tasks; i++) {
 737		task = sched->tasks[i];
 738		sem_init(&task->sleep_sem, 0, 0);
 739		task->curr_event = 0;
 740	}
 741}
 742
 743static void run_one_test(struct perf_sched *sched)
 744{
 745	u64 T0, T1, delta, avg_delta, fluct;
 746
 747	T0 = get_nsecs();
 748	wait_for_tasks(sched);
 749	T1 = get_nsecs();
 750
 751	delta = T1 - T0;
 752	sched->sum_runtime += delta;
 753	sched->nr_runs++;
 754
 755	avg_delta = sched->sum_runtime / sched->nr_runs;
 756	if (delta < avg_delta)
 757		fluct = avg_delta - delta;
 758	else
 759		fluct = delta - avg_delta;
 760	sched->sum_fluct += fluct;
 761	if (!sched->run_avg)
 762		sched->run_avg = delta;
 763	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 764
 765	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 766
 767	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 768
 769	printf("cpu: %0.2f / %0.2f",
 770		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 771
 772#if 0
 773	/*
 774	 * rusage statistics done by the parent, these are less
 775	 * accurate than the sched->sum_exec_runtime based statistics:
 776	 */
 777	printf(" [%0.2f / %0.2f]",
 778		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 779		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 780#endif
 781
 782	printf("\n");
 783
 784	if (sched->nr_sleep_corrections)
 785		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 786	sched->nr_sleep_corrections = 0;
 787}
 788
 789static void test_calibrations(struct perf_sched *sched)
 790{
 791	u64 T0, T1;
 792
 793	T0 = get_nsecs();
 794	burn_nsecs(sched, NSEC_PER_MSEC);
 795	T1 = get_nsecs();
 796
 797	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 798
 799	T0 = get_nsecs();
 800	sleep_nsecs(NSEC_PER_MSEC);
 801	T1 = get_nsecs();
 802
 803	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 804}
 805
 806static int
 807replay_wakeup_event(struct perf_sched *sched,
 808		    struct evsel *evsel, struct perf_sample *sample,
 809		    struct machine *machine __maybe_unused)
 810{
 811	const char *comm = perf_evsel__strval(evsel, sample, "comm");
 812	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
 813	struct task_desc *waker, *wakee;
 814
 815	if (verbose > 0) {
 816		printf("sched_wakeup event %p\n", evsel);
 817
 818		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 819	}
 820
 821	waker = register_pid(sched, sample->tid, "<unknown>");
 822	wakee = register_pid(sched, pid, comm);
 823
 824	add_sched_event_wakeup(sched, waker, sample->time, wakee);
 825	return 0;
 826}
 827
 828static int replay_switch_event(struct perf_sched *sched,
 829			       struct evsel *evsel,
 830			       struct perf_sample *sample,
 831			       struct machine *machine __maybe_unused)
 832{
 833	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 834		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 835	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 836		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 837	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 838	struct task_desc *prev, __maybe_unused *next;
 839	u64 timestamp0, timestamp = sample->time;
 840	int cpu = sample->cpu;
 841	s64 delta;
 842
 843	if (verbose > 0)
 844		printf("sched_switch event %p\n", evsel);
 845
 846	if (cpu >= MAX_CPUS || cpu < 0)
 847		return 0;
 848
 849	timestamp0 = sched->cpu_last_switched[cpu];
 850	if (timestamp0)
 851		delta = timestamp - timestamp0;
 852	else
 853		delta = 0;
 854
 855	if (delta < 0) {
 856		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 857		return -1;
 858	}
 859
 860	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 861		 prev_comm, prev_pid, next_comm, next_pid, delta);
 862
 863	prev = register_pid(sched, prev_pid, prev_comm);
 864	next = register_pid(sched, next_pid, next_comm);
 865
 866	sched->cpu_last_switched[cpu] = timestamp;
 867
 868	add_sched_event_run(sched, prev, timestamp, delta);
 869	add_sched_event_sleep(sched, prev, timestamp, prev_state);
 870
 871	return 0;
 872}
 873
 874static int replay_fork_event(struct perf_sched *sched,
 875			     union perf_event *event,
 876			     struct machine *machine)
 877{
 878	struct thread *child, *parent;
 879
 880	child = machine__findnew_thread(machine, event->fork.pid,
 881					event->fork.tid);
 882	parent = machine__findnew_thread(machine, event->fork.ppid,
 883					 event->fork.ptid);
 884
 885	if (child == NULL || parent == NULL) {
 886		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 887				 child, parent);
 888		goto out_put;
 889	}
 890
 891	if (verbose > 0) {
 892		printf("fork event\n");
 893		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 894		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 895	}
 896
 897	register_pid(sched, parent->tid, thread__comm_str(parent));
 898	register_pid(sched, child->tid, thread__comm_str(child));
 899out_put:
 900	thread__put(child);
 901	thread__put(parent);
 902	return 0;
 903}
 904
 905struct sort_dimension {
 906	const char		*name;
 907	sort_fn_t		cmp;
 908	struct list_head	list;
 909};
 910
 911/*
 912 * handle runtime stats saved per thread
 913 */
 914static struct thread_runtime *thread__init_runtime(struct thread *thread)
 915{
 916	struct thread_runtime *r;
 917
 918	r = zalloc(sizeof(struct thread_runtime));
 919	if (!r)
 920		return NULL;
 921
 922	init_stats(&r->run_stats);
 923	thread__set_priv(thread, r);
 924
 925	return r;
 926}
 927
 928static struct thread_runtime *thread__get_runtime(struct thread *thread)
 929{
 930	struct thread_runtime *tr;
 931
 932	tr = thread__priv(thread);
 933	if (tr == NULL) {
 934		tr = thread__init_runtime(thread);
 935		if (tr == NULL)
 936			pr_debug("Failed to malloc memory for runtime data.\n");
 937	}
 938
 939	return tr;
 940}
 941
 942static int
 943thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 944{
 945	struct sort_dimension *sort;
 946	int ret = 0;
 947
 948	BUG_ON(list_empty(list));
 949
 950	list_for_each_entry(sort, list, list) {
 951		ret = sort->cmp(l, r);
 952		if (ret)
 953			return ret;
 954	}
 955
 956	return ret;
 957}
 958
 959static struct work_atoms *
 960thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
 961			 struct list_head *sort_list)
 962{
 963	struct rb_node *node = root->rb_root.rb_node;
 964	struct work_atoms key = { .thread = thread };
 965
 966	while (node) {
 967		struct work_atoms *atoms;
 968		int cmp;
 969
 970		atoms = container_of(node, struct work_atoms, node);
 971
 972		cmp = thread_lat_cmp(sort_list, &key, atoms);
 973		if (cmp > 0)
 974			node = node->rb_left;
 975		else if (cmp < 0)
 976			node = node->rb_right;
 977		else {
 978			BUG_ON(thread != atoms->thread);
 979			return atoms;
 980		}
 981	}
 982	return NULL;
 983}
 984
 985static void
 986__thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
 987			 struct list_head *sort_list)
 988{
 989	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
 990	bool leftmost = true;
 991
 992	while (*new) {
 993		struct work_atoms *this;
 994		int cmp;
 995
 996		this = container_of(*new, struct work_atoms, node);
 997		parent = *new;
 998
 999		cmp = thread_lat_cmp(sort_list, data, this);
1000
1001		if (cmp > 0)
1002			new = &((*new)->rb_left);
1003		else {
1004			new = &((*new)->rb_right);
1005			leftmost = false;
1006		}
1007	}
1008
1009	rb_link_node(&data->node, parent, new);
1010	rb_insert_color_cached(&data->node, root, leftmost);
1011}
1012
1013static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1014{
1015	struct work_atoms *atoms = zalloc(sizeof(*atoms));
1016	if (!atoms) {
1017		pr_err("No memory at %s\n", __func__);
1018		return -1;
1019	}
1020
1021	atoms->thread = thread__get(thread);
1022	INIT_LIST_HEAD(&atoms->work_list);
1023	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1024	return 0;
1025}
1026
1027static char sched_out_state(u64 prev_state)
1028{
1029	const char *str = TASK_STATE_TO_CHAR_STR;
1030
1031	return str[prev_state];
1032}
1033
1034static int
1035add_sched_out_event(struct work_atoms *atoms,
1036		    char run_state,
1037		    u64 timestamp)
1038{
1039	struct work_atom *atom = zalloc(sizeof(*atom));
1040	if (!atom) {
1041		pr_err("Non memory at %s", __func__);
1042		return -1;
1043	}
1044
1045	atom->sched_out_time = timestamp;
1046
1047	if (run_state == 'R') {
1048		atom->state = THREAD_WAIT_CPU;
1049		atom->wake_up_time = atom->sched_out_time;
1050	}
1051
1052	list_add_tail(&atom->list, &atoms->work_list);
1053	return 0;
1054}
1055
1056static void
1057add_runtime_event(struct work_atoms *atoms, u64 delta,
1058		  u64 timestamp __maybe_unused)
1059{
1060	struct work_atom *atom;
1061
1062	BUG_ON(list_empty(&atoms->work_list));
1063
1064	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1065
1066	atom->runtime += delta;
1067	atoms->total_runtime += delta;
1068}
1069
1070static void
1071add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1072{
1073	struct work_atom *atom;
1074	u64 delta;
1075
1076	if (list_empty(&atoms->work_list))
1077		return;
1078
1079	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1080
1081	if (atom->state != THREAD_WAIT_CPU)
1082		return;
1083
1084	if (timestamp < atom->wake_up_time) {
1085		atom->state = THREAD_IGNORE;
1086		return;
1087	}
1088
1089	atom->state = THREAD_SCHED_IN;
1090	atom->sched_in_time = timestamp;
1091
1092	delta = atom->sched_in_time - atom->wake_up_time;
1093	atoms->total_lat += delta;
1094	if (delta > atoms->max_lat) {
1095		atoms->max_lat = delta;
1096		atoms->max_lat_at = timestamp;
1097	}
1098	atoms->nb_atoms++;
1099}
1100
1101static int latency_switch_event(struct perf_sched *sched,
1102				struct evsel *evsel,
1103				struct perf_sample *sample,
1104				struct machine *machine)
1105{
1106	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1107		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1108	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1109	struct work_atoms *out_events, *in_events;
1110	struct thread *sched_out, *sched_in;
1111	u64 timestamp0, timestamp = sample->time;
1112	int cpu = sample->cpu, err = -1;
1113	s64 delta;
1114
1115	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1116
1117	timestamp0 = sched->cpu_last_switched[cpu];
1118	sched->cpu_last_switched[cpu] = timestamp;
1119	if (timestamp0)
1120		delta = timestamp - timestamp0;
1121	else
1122		delta = 0;
1123
1124	if (delta < 0) {
1125		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1126		return -1;
1127	}
1128
1129	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1130	sched_in = machine__findnew_thread(machine, -1, next_pid);
1131	if (sched_out == NULL || sched_in == NULL)
1132		goto out_put;
1133
1134	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1135	if (!out_events) {
1136		if (thread_atoms_insert(sched, sched_out))
1137			goto out_put;
1138		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1139		if (!out_events) {
1140			pr_err("out-event: Internal tree error");
1141			goto out_put;
1142		}
1143	}
1144	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1145		return -1;
1146
1147	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1148	if (!in_events) {
1149		if (thread_atoms_insert(sched, sched_in))
1150			goto out_put;
1151		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1152		if (!in_events) {
1153			pr_err("in-event: Internal tree error");
1154			goto out_put;
1155		}
1156		/*
1157		 * Take came in we have not heard about yet,
1158		 * add in an initial atom in runnable state:
1159		 */
1160		if (add_sched_out_event(in_events, 'R', timestamp))
1161			goto out_put;
1162	}
1163	add_sched_in_event(in_events, timestamp);
1164	err = 0;
1165out_put:
1166	thread__put(sched_out);
1167	thread__put(sched_in);
1168	return err;
1169}
1170
1171static int latency_runtime_event(struct perf_sched *sched,
1172				 struct evsel *evsel,
1173				 struct perf_sample *sample,
1174				 struct machine *machine)
1175{
1176	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1177	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1178	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1179	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1180	u64 timestamp = sample->time;
1181	int cpu = sample->cpu, err = -1;
1182
1183	if (thread == NULL)
1184		return -1;
1185
1186	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1187	if (!atoms) {
1188		if (thread_atoms_insert(sched, thread))
1189			goto out_put;
1190		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1191		if (!atoms) {
1192			pr_err("in-event: Internal tree error");
1193			goto out_put;
1194		}
1195		if (add_sched_out_event(atoms, 'R', timestamp))
1196			goto out_put;
1197	}
1198
1199	add_runtime_event(atoms, runtime, timestamp);
1200	err = 0;
1201out_put:
1202	thread__put(thread);
1203	return err;
1204}
1205
1206static int latency_wakeup_event(struct perf_sched *sched,
1207				struct evsel *evsel,
1208				struct perf_sample *sample,
1209				struct machine *machine)
1210{
1211	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1212	struct work_atoms *atoms;
1213	struct work_atom *atom;
1214	struct thread *wakee;
1215	u64 timestamp = sample->time;
1216	int err = -1;
1217
1218	wakee = machine__findnew_thread(machine, -1, pid);
1219	if (wakee == NULL)
1220		return -1;
1221	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1222	if (!atoms) {
1223		if (thread_atoms_insert(sched, wakee))
1224			goto out_put;
1225		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1226		if (!atoms) {
1227			pr_err("wakeup-event: Internal tree error");
1228			goto out_put;
1229		}
1230		if (add_sched_out_event(atoms, 'S', timestamp))
1231			goto out_put;
1232	}
1233
1234	BUG_ON(list_empty(&atoms->work_list));
1235
1236	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1237
1238	/*
1239	 * As we do not guarantee the wakeup event happens when
1240	 * task is out of run queue, also may happen when task is
1241	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1242	 * then we should not set the ->wake_up_time when wake up a
1243	 * task which is on run queue.
1244	 *
1245	 * You WILL be missing events if you've recorded only
1246	 * one CPU, or are only looking at only one, so don't
1247	 * skip in this case.
1248	 */
1249	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1250		goto out_ok;
1251
1252	sched->nr_timestamps++;
1253	if (atom->sched_out_time > timestamp) {
1254		sched->nr_unordered_timestamps++;
1255		goto out_ok;
1256	}
1257
1258	atom->state = THREAD_WAIT_CPU;
1259	atom->wake_up_time = timestamp;
1260out_ok:
1261	err = 0;
1262out_put:
1263	thread__put(wakee);
1264	return err;
1265}
1266
1267static int latency_migrate_task_event(struct perf_sched *sched,
1268				      struct evsel *evsel,
1269				      struct perf_sample *sample,
1270				      struct machine *machine)
1271{
1272	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1273	u64 timestamp = sample->time;
1274	struct work_atoms *atoms;
1275	struct work_atom *atom;
1276	struct thread *migrant;
1277	int err = -1;
1278
1279	/*
1280	 * Only need to worry about migration when profiling one CPU.
1281	 */
1282	if (sched->profile_cpu == -1)
1283		return 0;
1284
1285	migrant = machine__findnew_thread(machine, -1, pid);
1286	if (migrant == NULL)
1287		return -1;
1288	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1289	if (!atoms) {
1290		if (thread_atoms_insert(sched, migrant))
1291			goto out_put;
1292		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1293		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1294		if (!atoms) {
1295			pr_err("migration-event: Internal tree error");
1296			goto out_put;
1297		}
1298		if (add_sched_out_event(atoms, 'R', timestamp))
1299			goto out_put;
1300	}
1301
1302	BUG_ON(list_empty(&atoms->work_list));
1303
1304	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1305	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1306
1307	sched->nr_timestamps++;
1308
1309	if (atom->sched_out_time > timestamp)
1310		sched->nr_unordered_timestamps++;
1311	err = 0;
1312out_put:
1313	thread__put(migrant);
1314	return err;
1315}
1316
1317static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1318{
1319	int i;
1320	int ret;
1321	u64 avg;
1322	char max_lat_at[32];
1323
1324	if (!work_list->nb_atoms)
1325		return;
1326	/*
1327	 * Ignore idle threads:
1328	 */
1329	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1330		return;
1331
1332	sched->all_runtime += work_list->total_runtime;
1333	sched->all_count   += work_list->nb_atoms;
1334
1335	if (work_list->num_merged > 1)
1336		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1337	else
1338		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1339
1340	for (i = 0; i < 24 - ret; i++)
1341		printf(" ");
1342
1343	avg = work_list->total_lat / work_list->nb_atoms;
1344	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1345
1346	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1347	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1348		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1349		 (double)work_list->max_lat / NSEC_PER_MSEC,
1350		 max_lat_at);
1351}
1352
1353static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1354{
1355	if (l->thread == r->thread)
1356		return 0;
1357	if (l->thread->tid < r->thread->tid)
1358		return -1;
1359	if (l->thread->tid > r->thread->tid)
1360		return 1;
1361	return (int)(l->thread - r->thread);
1362}
1363
1364static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1365{
1366	u64 avgl, avgr;
1367
1368	if (!l->nb_atoms)
1369		return -1;
1370
1371	if (!r->nb_atoms)
1372		return 1;
1373
1374	avgl = l->total_lat / l->nb_atoms;
1375	avgr = r->total_lat / r->nb_atoms;
1376
1377	if (avgl < avgr)
1378		return -1;
1379	if (avgl > avgr)
1380		return 1;
1381
1382	return 0;
1383}
1384
1385static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387	if (l->max_lat < r->max_lat)
1388		return -1;
1389	if (l->max_lat > r->max_lat)
1390		return 1;
1391
1392	return 0;
1393}
1394
1395static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397	if (l->nb_atoms < r->nb_atoms)
1398		return -1;
1399	if (l->nb_atoms > r->nb_atoms)
1400		return 1;
1401
1402	return 0;
1403}
1404
1405static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1406{
1407	if (l->total_runtime < r->total_runtime)
1408		return -1;
1409	if (l->total_runtime > r->total_runtime)
1410		return 1;
1411
1412	return 0;
1413}
1414
1415static int sort_dimension__add(const char *tok, struct list_head *list)
1416{
1417	size_t i;
1418	static struct sort_dimension avg_sort_dimension = {
1419		.name = "avg",
1420		.cmp  = avg_cmp,
1421	};
1422	static struct sort_dimension max_sort_dimension = {
1423		.name = "max",
1424		.cmp  = max_cmp,
1425	};
1426	static struct sort_dimension pid_sort_dimension = {
1427		.name = "pid",
1428		.cmp  = pid_cmp,
1429	};
1430	static struct sort_dimension runtime_sort_dimension = {
1431		.name = "runtime",
1432		.cmp  = runtime_cmp,
1433	};
1434	static struct sort_dimension switch_sort_dimension = {
1435		.name = "switch",
1436		.cmp  = switch_cmp,
1437	};
1438	struct sort_dimension *available_sorts[] = {
1439		&pid_sort_dimension,
1440		&avg_sort_dimension,
1441		&max_sort_dimension,
1442		&switch_sort_dimension,
1443		&runtime_sort_dimension,
1444	};
1445
1446	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1447		if (!strcmp(available_sorts[i]->name, tok)) {
1448			list_add_tail(&available_sorts[i]->list, list);
1449
1450			return 0;
1451		}
1452	}
1453
1454	return -1;
1455}
1456
1457static void perf_sched__sort_lat(struct perf_sched *sched)
1458{
1459	struct rb_node *node;
1460	struct rb_root_cached *root = &sched->atom_root;
1461again:
1462	for (;;) {
1463		struct work_atoms *data;
1464		node = rb_first_cached(root);
1465		if (!node)
1466			break;
1467
1468		rb_erase_cached(node, root);
1469		data = rb_entry(node, struct work_atoms, node);
1470		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1471	}
1472	if (root == &sched->atom_root) {
1473		root = &sched->merged_atom_root;
1474		goto again;
1475	}
1476}
1477
1478static int process_sched_wakeup_event(struct perf_tool *tool,
1479				      struct evsel *evsel,
1480				      struct perf_sample *sample,
1481				      struct machine *machine)
1482{
1483	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1484
1485	if (sched->tp_handler->wakeup_event)
1486		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1487
1488	return 0;
1489}
1490
1491union map_priv {
1492	void	*ptr;
1493	bool	 color;
1494};
1495
1496static bool thread__has_color(struct thread *thread)
1497{
1498	union map_priv priv = {
1499		.ptr = thread__priv(thread),
1500	};
1501
1502	return priv.color;
1503}
1504
1505static struct thread*
1506map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1507{
1508	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1509	union map_priv priv = {
1510		.color = false,
1511	};
1512
1513	if (!sched->map.color_pids || !thread || thread__priv(thread))
1514		return thread;
1515
1516	if (thread_map__has(sched->map.color_pids, tid))
1517		priv.color = true;
1518
1519	thread__set_priv(thread, priv.ptr);
1520	return thread;
1521}
1522
1523static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1524			    struct perf_sample *sample, struct machine *machine)
1525{
1526	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1527	struct thread *sched_in;
1528	struct thread_runtime *tr;
1529	int new_shortname;
1530	u64 timestamp0, timestamp = sample->time;
1531	s64 delta;
1532	int i, this_cpu = sample->cpu;
1533	int cpus_nr;
1534	bool new_cpu = false;
1535	const char *color = PERF_COLOR_NORMAL;
1536	char stimestamp[32];
1537
1538	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1539
1540	if (this_cpu > sched->max_cpu)
1541		sched->max_cpu = this_cpu;
1542
1543	if (sched->map.comp) {
1544		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1545		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1546			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1547			new_cpu = true;
1548		}
1549	} else
1550		cpus_nr = sched->max_cpu;
1551
1552	timestamp0 = sched->cpu_last_switched[this_cpu];
1553	sched->cpu_last_switched[this_cpu] = timestamp;
1554	if (timestamp0)
1555		delta = timestamp - timestamp0;
1556	else
1557		delta = 0;
1558
1559	if (delta < 0) {
1560		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1561		return -1;
1562	}
1563
1564	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1565	if (sched_in == NULL)
1566		return -1;
1567
1568	tr = thread__get_runtime(sched_in);
1569	if (tr == NULL) {
1570		thread__put(sched_in);
1571		return -1;
1572	}
1573
1574	sched->curr_thread[this_cpu] = thread__get(sched_in);
1575
1576	printf("  ");
1577
1578	new_shortname = 0;
1579	if (!tr->shortname[0]) {
1580		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1581			/*
1582			 * Don't allocate a letter-number for swapper:0
1583			 * as a shortname. Instead, we use '.' for it.
1584			 */
1585			tr->shortname[0] = '.';
1586			tr->shortname[1] = ' ';
1587		} else {
1588			tr->shortname[0] = sched->next_shortname1;
1589			tr->shortname[1] = sched->next_shortname2;
1590
1591			if (sched->next_shortname1 < 'Z') {
1592				sched->next_shortname1++;
1593			} else {
1594				sched->next_shortname1 = 'A';
1595				if (sched->next_shortname2 < '9')
1596					sched->next_shortname2++;
1597				else
1598					sched->next_shortname2 = '0';
1599			}
1600		}
1601		new_shortname = 1;
1602	}
1603
1604	for (i = 0; i < cpus_nr; i++) {
1605		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1606		struct thread *curr_thread = sched->curr_thread[cpu];
1607		struct thread_runtime *curr_tr;
1608		const char *pid_color = color;
1609		const char *cpu_color = color;
1610
1611		if (curr_thread && thread__has_color(curr_thread))
1612			pid_color = COLOR_PIDS;
1613
1614		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1615			continue;
1616
1617		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1618			cpu_color = COLOR_CPUS;
1619
1620		if (cpu != this_cpu)
1621			color_fprintf(stdout, color, " ");
1622		else
1623			color_fprintf(stdout, cpu_color, "*");
1624
1625		if (sched->curr_thread[cpu]) {
1626			curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1627			if (curr_tr == NULL) {
1628				thread__put(sched_in);
1629				return -1;
1630			}
1631			color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1632		} else
1633			color_fprintf(stdout, color, "   ");
1634	}
1635
1636	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1637		goto out;
1638
1639	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1640	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1641	if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1642		const char *pid_color = color;
1643
1644		if (thread__has_color(sched_in))
1645			pid_color = COLOR_PIDS;
1646
1647		color_fprintf(stdout, pid_color, "%s => %s:%d",
1648		       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1649		tr->comm_changed = false;
1650	}
1651
1652	if (sched->map.comp && new_cpu)
1653		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1654
1655out:
1656	color_fprintf(stdout, color, "\n");
1657
1658	thread__put(sched_in);
1659
1660	return 0;
1661}
1662
1663static int process_sched_switch_event(struct perf_tool *tool,
1664				      struct evsel *evsel,
1665				      struct perf_sample *sample,
1666				      struct machine *machine)
1667{
1668	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1669	int this_cpu = sample->cpu, err = 0;
1670	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1671	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1672
1673	if (sched->curr_pid[this_cpu] != (u32)-1) {
1674		/*
1675		 * Are we trying to switch away a PID that is
1676		 * not current?
1677		 */
1678		if (sched->curr_pid[this_cpu] != prev_pid)
1679			sched->nr_context_switch_bugs++;
1680	}
1681
1682	if (sched->tp_handler->switch_event)
1683		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1684
1685	sched->curr_pid[this_cpu] = next_pid;
1686	return err;
1687}
1688
1689static int process_sched_runtime_event(struct perf_tool *tool,
1690				       struct evsel *evsel,
1691				       struct perf_sample *sample,
1692				       struct machine *machine)
1693{
1694	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1695
1696	if (sched->tp_handler->runtime_event)
1697		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1698
1699	return 0;
1700}
1701
1702static int perf_sched__process_fork_event(struct perf_tool *tool,
1703					  union perf_event *event,
1704					  struct perf_sample *sample,
1705					  struct machine *machine)
1706{
1707	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1708
1709	/* run the fork event through the perf machineruy */
1710	perf_event__process_fork(tool, event, sample, machine);
1711
1712	/* and then run additional processing needed for this command */
1713	if (sched->tp_handler->fork_event)
1714		return sched->tp_handler->fork_event(sched, event, machine);
1715
1716	return 0;
1717}
1718
1719static int process_sched_migrate_task_event(struct perf_tool *tool,
1720					    struct evsel *evsel,
1721					    struct perf_sample *sample,
1722					    struct machine *machine)
1723{
1724	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1725
1726	if (sched->tp_handler->migrate_task_event)
1727		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1728
1729	return 0;
1730}
1731
1732typedef int (*tracepoint_handler)(struct perf_tool *tool,
1733				  struct evsel *evsel,
1734				  struct perf_sample *sample,
1735				  struct machine *machine);
1736
1737static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1738						 union perf_event *event __maybe_unused,
1739						 struct perf_sample *sample,
1740						 struct evsel *evsel,
1741						 struct machine *machine)
1742{
1743	int err = 0;
1744
1745	if (evsel->handler != NULL) {
1746		tracepoint_handler f = evsel->handler;
1747		err = f(tool, evsel, sample, machine);
1748	}
1749
1750	return err;
1751}
1752
1753static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1754				    union perf_event *event,
1755				    struct perf_sample *sample,
1756				    struct machine *machine)
1757{
1758	struct thread *thread;
1759	struct thread_runtime *tr;
1760	int err;
1761
1762	err = perf_event__process_comm(tool, event, sample, machine);
1763	if (err)
1764		return err;
1765
1766	thread = machine__find_thread(machine, sample->pid, sample->tid);
1767	if (!thread) {
1768		pr_err("Internal error: can't find thread\n");
1769		return -1;
1770	}
1771
1772	tr = thread__get_runtime(thread);
1773	if (tr == NULL) {
1774		thread__put(thread);
1775		return -1;
1776	}
1777
1778	tr->comm_changed = true;
1779	thread__put(thread);
1780
1781	return 0;
1782}
1783
1784static int perf_sched__read_events(struct perf_sched *sched)
1785{
1786	const struct evsel_str_handler handlers[] = {
1787		{ "sched:sched_switch",	      process_sched_switch_event, },
1788		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1789		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1790		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1791		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1792	};
1793	struct perf_session *session;
1794	struct perf_data data = {
1795		.path  = input_name,
1796		.mode  = PERF_DATA_MODE_READ,
1797		.force = sched->force,
1798	};
1799	int rc = -1;
1800
1801	session = perf_session__new(&data, false, &sched->tool);
1802	if (IS_ERR(session)) {
1803		pr_debug("Error creating perf session");
1804		return PTR_ERR(session);
1805	}
1806
1807	symbol__init(&session->header.env);
1808
1809	if (perf_session__set_tracepoints_handlers(session, handlers))
1810		goto out_delete;
1811
1812	if (perf_session__has_traces(session, "record -R")) {
1813		int err = perf_session__process_events(session);
1814		if (err) {
1815			pr_err("Failed to process events, error %d", err);
1816			goto out_delete;
1817		}
1818
1819		sched->nr_events      = session->evlist->stats.nr_events[0];
1820		sched->nr_lost_events = session->evlist->stats.total_lost;
1821		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1822	}
1823
1824	rc = 0;
1825out_delete:
1826	perf_session__delete(session);
1827	return rc;
1828}
1829
1830/*
1831 * scheduling times are printed as msec.usec
1832 */
1833static inline void print_sched_time(unsigned long long nsecs, int width)
1834{
1835	unsigned long msecs;
1836	unsigned long usecs;
1837
1838	msecs  = nsecs / NSEC_PER_MSEC;
1839	nsecs -= msecs * NSEC_PER_MSEC;
1840	usecs  = nsecs / NSEC_PER_USEC;
1841	printf("%*lu.%03lu ", width, msecs, usecs);
1842}
1843
1844/*
1845 * returns runtime data for event, allocating memory for it the
1846 * first time it is used.
1847 */
1848static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel)
1849{
1850	struct evsel_runtime *r = evsel->priv;
1851
1852	if (r == NULL) {
1853		r = zalloc(sizeof(struct evsel_runtime));
1854		evsel->priv = r;
1855	}
1856
1857	return r;
1858}
1859
1860/*
1861 * save last time event was seen per cpu
1862 */
1863static void perf_evsel__save_time(struct evsel *evsel,
1864				  u64 timestamp, u32 cpu)
1865{
1866	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1867
1868	if (r == NULL)
1869		return;
1870
1871	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1872		int i, n = __roundup_pow_of_two(cpu+1);
1873		void *p = r->last_time;
1874
1875		p = realloc(r->last_time, n * sizeof(u64));
1876		if (!p)
1877			return;
1878
1879		r->last_time = p;
1880		for (i = r->ncpu; i < n; ++i)
1881			r->last_time[i] = (u64) 0;
1882
1883		r->ncpu = n;
1884	}
1885
1886	r->last_time[cpu] = timestamp;
1887}
1888
1889/* returns last time this event was seen on the given cpu */
1890static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu)
1891{
1892	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1893
1894	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1895		return 0;
1896
1897	return r->last_time[cpu];
1898}
1899
1900static int comm_width = 30;
1901
1902static char *timehist_get_commstr(struct thread *thread)
1903{
1904	static char str[32];
1905	const char *comm = thread__comm_str(thread);
1906	pid_t tid = thread->tid;
1907	pid_t pid = thread->pid_;
1908	int n;
1909
1910	if (pid == 0)
1911		n = scnprintf(str, sizeof(str), "%s", comm);
1912
1913	else if (tid != pid)
1914		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1915
1916	else
1917		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1918
1919	if (n > comm_width)
1920		comm_width = n;
1921
1922	return str;
1923}
1924
1925static void timehist_header(struct perf_sched *sched)
1926{
1927	u32 ncpus = sched->max_cpu + 1;
1928	u32 i, j;
1929
1930	printf("%15s %6s ", "time", "cpu");
1931
1932	if (sched->show_cpu_visual) {
1933		printf(" ");
1934		for (i = 0, j = 0; i < ncpus; ++i) {
1935			printf("%x", j++);
1936			if (j > 15)
1937				j = 0;
1938		}
1939		printf(" ");
1940	}
1941
1942	printf(" %-*s  %9s  %9s  %9s", comm_width,
1943		"task name", "wait time", "sch delay", "run time");
1944
1945	if (sched->show_state)
1946		printf("  %s", "state");
1947
1948	printf("\n");
1949
1950	/*
1951	 * units row
1952	 */
1953	printf("%15s %-6s ", "", "");
1954
1955	if (sched->show_cpu_visual)
1956		printf(" %*s ", ncpus, "");
1957
1958	printf(" %-*s  %9s  %9s  %9s", comm_width,
1959	       "[tid/pid]", "(msec)", "(msec)", "(msec)");
1960
1961	if (sched->show_state)
1962		printf("  %5s", "");
1963
1964	printf("\n");
1965
1966	/*
1967	 * separator
1968	 */
1969	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1970
1971	if (sched->show_cpu_visual)
1972		printf(" %.*s ", ncpus, graph_dotted_line);
1973
1974	printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1975		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1976		graph_dotted_line);
1977
1978	if (sched->show_state)
1979		printf("  %.5s", graph_dotted_line);
1980
1981	printf("\n");
1982}
1983
1984static char task_state_char(struct thread *thread, int state)
1985{
1986	static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1987	unsigned bit = state ? ffs(state) : 0;
1988
1989	/* 'I' for idle */
1990	if (thread->tid == 0)
1991		return 'I';
1992
1993	return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1994}
1995
1996static void timehist_print_sample(struct perf_sched *sched,
1997				  struct evsel *evsel,
1998				  struct perf_sample *sample,
1999				  struct addr_location *al,
2000				  struct thread *thread,
2001				  u64 t, int state)
2002{
2003	struct thread_runtime *tr = thread__priv(thread);
2004	const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
2005	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
2006	u32 max_cpus = sched->max_cpu + 1;
2007	char tstr[64];
2008	char nstr[30];
2009	u64 wait_time;
2010
2011	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2012	printf("%15s [%04d] ", tstr, sample->cpu);
2013
2014	if (sched->show_cpu_visual) {
2015		u32 i;
2016		char c;
2017
2018		printf(" ");
2019		for (i = 0; i < max_cpus; ++i) {
2020			/* flag idle times with 'i'; others are sched events */
2021			if (i == sample->cpu)
2022				c = (thread->tid == 0) ? 'i' : 's';
2023			else
2024				c = ' ';
2025			printf("%c", c);
2026		}
2027		printf(" ");
2028	}
2029
2030	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2031
2032	wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2033	print_sched_time(wait_time, 6);
2034
2035	print_sched_time(tr->dt_delay, 6);
2036	print_sched_time(tr->dt_run, 6);
2037
2038	if (sched->show_state)
2039		printf(" %5c ", task_state_char(thread, state));
2040
2041	if (sched->show_next) {
2042		snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2043		printf(" %-*s", comm_width, nstr);
2044	}
2045
2046	if (sched->show_wakeups && !sched->show_next)
2047		printf("  %-*s", comm_width, "");
2048
2049	if (thread->tid == 0)
2050		goto out;
2051
2052	if (sched->show_callchain)
2053		printf("  ");
2054
2055	sample__fprintf_sym(sample, al, 0,
2056			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2057			    EVSEL__PRINT_CALLCHAIN_ARROW |
2058			    EVSEL__PRINT_SKIP_IGNORED,
2059			    &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2060
2061out:
2062	printf("\n");
2063}
2064
2065/*
2066 * Explanation of delta-time stats:
2067 *
2068 *            t = time of current schedule out event
2069 *        tprev = time of previous sched out event
2070 *                also time of schedule-in event for current task
2071 *    last_time = time of last sched change event for current task
2072 *                (i.e, time process was last scheduled out)
2073 * ready_to_run = time of wakeup for current task
2074 *
2075 * -----|------------|------------|------------|------
2076 *    last         ready        tprev          t
2077 *    time         to run
2078 *
2079 *      |-------- dt_wait --------|
2080 *                   |- dt_delay -|-- dt_run --|
2081 *
2082 *   dt_run = run time of current task
2083 *  dt_wait = time between last schedule out event for task and tprev
2084 *            represents time spent off the cpu
2085 * dt_delay = time between wakeup and schedule-in of task
2086 */
2087
2088static void timehist_update_runtime_stats(struct thread_runtime *r,
2089					 u64 t, u64 tprev)
2090{
2091	r->dt_delay   = 0;
2092	r->dt_sleep   = 0;
2093	r->dt_iowait  = 0;
2094	r->dt_preempt = 0;
2095	r->dt_run     = 0;
2096
2097	if (tprev) {
2098		r->dt_run = t - tprev;
2099		if (r->ready_to_run) {
2100			if (r->ready_to_run > tprev)
2101				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2102			else
2103				r->dt_delay = tprev - r->ready_to_run;
2104		}
2105
2106		if (r->last_time > tprev)
2107			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2108		else if (r->last_time) {
2109			u64 dt_wait = tprev - r->last_time;
2110
2111			if (r->last_state == TASK_RUNNING)
2112				r->dt_preempt = dt_wait;
2113			else if (r->last_state == TASK_UNINTERRUPTIBLE)
2114				r->dt_iowait = dt_wait;
2115			else
2116				r->dt_sleep = dt_wait;
2117		}
2118	}
2119
2120	update_stats(&r->run_stats, r->dt_run);
2121
2122	r->total_run_time     += r->dt_run;
2123	r->total_delay_time   += r->dt_delay;
2124	r->total_sleep_time   += r->dt_sleep;
2125	r->total_iowait_time  += r->dt_iowait;
2126	r->total_preempt_time += r->dt_preempt;
2127}
2128
2129static bool is_idle_sample(struct perf_sample *sample,
2130			   struct evsel *evsel)
2131{
2132	/* pid 0 == swapper == idle task */
2133	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2134		return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2135
2136	return sample->pid == 0;
2137}
2138
2139static void save_task_callchain(struct perf_sched *sched,
2140				struct perf_sample *sample,
2141				struct evsel *evsel,
2142				struct machine *machine)
2143{
2144	struct callchain_cursor *cursor = &callchain_cursor;
2145	struct thread *thread;
2146
2147	/* want main thread for process - has maps */
2148	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2149	if (thread == NULL) {
2150		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2151		return;
2152	}
2153
2154	if (!sched->show_callchain || sample->callchain == NULL)
2155		return;
2156
2157	if (thread__resolve_callchain(thread, cursor, evsel, sample,
2158				      NULL, NULL, sched->max_stack + 2) != 0) {
2159		if (verbose > 0)
2160			pr_err("Failed to resolve callchain. Skipping\n");
2161
2162		return;
2163	}
2164
2165	callchain_cursor_commit(cursor);
2166
2167	while (true) {
2168		struct callchain_cursor_node *node;
2169		struct symbol *sym;
2170
2171		node = callchain_cursor_current(cursor);
2172		if (node == NULL)
2173			break;
2174
2175		sym = node->sym;
2176		if (sym) {
2177			if (!strcmp(sym->name, "schedule") ||
2178			    !strcmp(sym->name, "__schedule") ||
2179			    !strcmp(sym->name, "preempt_schedule"))
2180				sym->ignore = 1;
2181		}
2182
2183		callchain_cursor_advance(cursor);
2184	}
2185}
2186
2187static int init_idle_thread(struct thread *thread)
2188{
2189	struct idle_thread_runtime *itr;
2190
2191	thread__set_comm(thread, idle_comm, 0);
2192
2193	itr = zalloc(sizeof(*itr));
2194	if (itr == NULL)
2195		return -ENOMEM;
2196
2197	init_stats(&itr->tr.run_stats);
2198	callchain_init(&itr->callchain);
2199	callchain_cursor_reset(&itr->cursor);
2200	thread__set_priv(thread, itr);
2201
2202	return 0;
2203}
2204
2205/*
2206 * Track idle stats per cpu by maintaining a local thread
2207 * struct for the idle task on each cpu.
2208 */
2209static int init_idle_threads(int ncpu)
2210{
2211	int i, ret;
2212
2213	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2214	if (!idle_threads)
2215		return -ENOMEM;
2216
2217	idle_max_cpu = ncpu;
2218
2219	/* allocate the actual thread struct if needed */
2220	for (i = 0; i < ncpu; ++i) {
2221		idle_threads[i] = thread__new(0, 0);
2222		if (idle_threads[i] == NULL)
2223			return -ENOMEM;
2224
2225		ret = init_idle_thread(idle_threads[i]);
2226		if (ret < 0)
2227			return ret;
2228	}
2229
2230	return 0;
2231}
2232
2233static void free_idle_threads(void)
2234{
2235	int i;
2236
2237	if (idle_threads == NULL)
2238		return;
2239
2240	for (i = 0; i < idle_max_cpu; ++i) {
2241		if ((idle_threads[i]))
2242			thread__delete(idle_threads[i]);
2243	}
2244
2245	free(idle_threads);
2246}
2247
2248static struct thread *get_idle_thread(int cpu)
2249{
2250	/*
2251	 * expand/allocate array of pointers to local thread
2252	 * structs if needed
2253	 */
2254	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2255		int i, j = __roundup_pow_of_two(cpu+1);
2256		void *p;
2257
2258		p = realloc(idle_threads, j * sizeof(struct thread *));
2259		if (!p)
2260			return NULL;
2261
2262		idle_threads = (struct thread **) p;
2263		for (i = idle_max_cpu; i < j; ++i)
2264			idle_threads[i] = NULL;
2265
2266		idle_max_cpu = j;
2267	}
2268
2269	/* allocate a new thread struct if needed */
2270	if (idle_threads[cpu] == NULL) {
2271		idle_threads[cpu] = thread__new(0, 0);
2272
2273		if (idle_threads[cpu]) {
2274			if (init_idle_thread(idle_threads[cpu]) < 0)
2275				return NULL;
2276		}
2277	}
2278
2279	return idle_threads[cpu];
2280}
2281
2282static void save_idle_callchain(struct perf_sched *sched,
2283				struct idle_thread_runtime *itr,
2284				struct perf_sample *sample)
2285{
2286	if (!sched->show_callchain || sample->callchain == NULL)
2287		return;
2288
2289	callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292static struct thread *timehist_get_thread(struct perf_sched *sched,
2293					  struct perf_sample *sample,
2294					  struct machine *machine,
2295					  struct evsel *evsel)
2296{
2297	struct thread *thread;
2298
2299	if (is_idle_sample(sample, evsel)) {
2300		thread = get_idle_thread(sample->cpu);
2301		if (thread == NULL)
2302			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2303
2304	} else {
2305		/* there were samples with tid 0 but non-zero pid */
2306		thread = machine__findnew_thread(machine, sample->pid,
2307						 sample->tid ?: sample->pid);
2308		if (thread == NULL) {
2309			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2310				 sample->tid);
2311		}
2312
2313		save_task_callchain(sched, sample, evsel, machine);
2314		if (sched->idle_hist) {
2315			struct thread *idle;
2316			struct idle_thread_runtime *itr;
2317
2318			idle = get_idle_thread(sample->cpu);
2319			if (idle == NULL) {
2320				pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2321				return NULL;
2322			}
2323
2324			itr = thread__priv(idle);
2325			if (itr == NULL)
2326				return NULL;
2327
2328			itr->last_thread = thread;
2329
2330			/* copy task callchain when entering to idle */
2331			if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2332				save_idle_callchain(sched, itr, sample);
2333		}
2334	}
2335
2336	return thread;
2337}
2338
2339static bool timehist_skip_sample(struct perf_sched *sched,
2340				 struct thread *thread,
2341				 struct evsel *evsel,
2342				 struct perf_sample *sample)
2343{
2344	bool rc = false;
2345
2346	if (thread__is_filtered(thread)) {
2347		rc = true;
2348		sched->skipped_samples++;
2349	}
2350
2351	if (sched->idle_hist) {
2352		if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2353			rc = true;
2354		else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2355			 perf_evsel__intval(evsel, sample, "next_pid") != 0)
2356			rc = true;
2357	}
2358
2359	return rc;
2360}
2361
2362static void timehist_print_wakeup_event(struct perf_sched *sched,
2363					struct evsel *evsel,
2364					struct perf_sample *sample,
2365					struct machine *machine,
2366					struct thread *awakened)
2367{
2368	struct thread *thread;
2369	char tstr[64];
2370
2371	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2372	if (thread == NULL)
2373		return;
2374
2375	/* show wakeup unless both awakee and awaker are filtered */
2376	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2377	    timehist_skip_sample(sched, awakened, evsel, sample)) {
2378		return;
2379	}
2380
2381	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2382	printf("%15s [%04d] ", tstr, sample->cpu);
2383	if (sched->show_cpu_visual)
2384		printf(" %*s ", sched->max_cpu + 1, "");
2385
2386	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2387
2388	/* dt spacer */
2389	printf("  %9s  %9s  %9s ", "", "", "");
2390
2391	printf("awakened: %s", timehist_get_commstr(awakened));
2392
2393	printf("\n");
2394}
2395
2396static int timehist_sched_wakeup_event(struct perf_tool *tool,
2397				       union perf_event *event __maybe_unused,
2398				       struct evsel *evsel,
2399				       struct perf_sample *sample,
2400				       struct machine *machine)
2401{
2402	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2403	struct thread *thread;
2404	struct thread_runtime *tr = NULL;
2405	/* want pid of awakened task not pid in sample */
2406	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2407
2408	thread = machine__findnew_thread(machine, 0, pid);
2409	if (thread == NULL)
2410		return -1;
2411
2412	tr = thread__get_runtime(thread);
2413	if (tr == NULL)
2414		return -1;
2415
2416	if (tr->ready_to_run == 0)
2417		tr->ready_to_run = sample->time;
2418
2419	/* show wakeups if requested */
2420	if (sched->show_wakeups &&
2421	    !perf_time__skip_sample(&sched->ptime, sample->time))
2422		timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2423
2424	return 0;
2425}
2426
2427static void timehist_print_migration_event(struct perf_sched *sched,
2428					struct evsel *evsel,
2429					struct perf_sample *sample,
2430					struct machine *machine,
2431					struct thread *migrated)
2432{
2433	struct thread *thread;
2434	char tstr[64];
2435	u32 max_cpus = sched->max_cpu + 1;
2436	u32 ocpu, dcpu;
2437
2438	if (sched->summary_only)
2439		return;
2440
2441	max_cpus = sched->max_cpu + 1;
2442	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2443	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2444
2445	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2446	if (thread == NULL)
2447		return;
2448
2449	if (timehist_skip_sample(sched, thread, evsel, sample) &&
2450	    timehist_skip_sample(sched, migrated, evsel, sample)) {
2451		return;
2452	}
2453
2454	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2455	printf("%15s [%04d] ", tstr, sample->cpu);
2456
2457	if (sched->show_cpu_visual) {
2458		u32 i;
2459		char c;
2460
2461		printf("  ");
2462		for (i = 0; i < max_cpus; ++i) {
2463			c = (i == sample->cpu) ? 'm' : ' ';
2464			printf("%c", c);
2465		}
2466		printf("  ");
2467	}
2468
2469	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2470
2471	/* dt spacer */
2472	printf("  %9s  %9s  %9s ", "", "", "");
2473
2474	printf("migrated: %s", timehist_get_commstr(migrated));
2475	printf(" cpu %d => %d", ocpu, dcpu);
2476
2477	printf("\n");
2478}
2479
2480static int timehist_migrate_task_event(struct perf_tool *tool,
2481				       union perf_event *event __maybe_unused,
2482				       struct evsel *evsel,
2483				       struct perf_sample *sample,
2484				       struct machine *machine)
2485{
2486	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2487	struct thread *thread;
2488	struct thread_runtime *tr = NULL;
2489	/* want pid of migrated task not pid in sample */
2490	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2491
2492	thread = machine__findnew_thread(machine, 0, pid);
2493	if (thread == NULL)
2494		return -1;
2495
2496	tr = thread__get_runtime(thread);
2497	if (tr == NULL)
2498		return -1;
2499
2500	tr->migrations++;
2501
2502	/* show migrations if requested */
2503	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2504
2505	return 0;
2506}
2507
2508static int timehist_sched_change_event(struct perf_tool *tool,
2509				       union perf_event *event,
2510				       struct evsel *evsel,
2511				       struct perf_sample *sample,
2512				       struct machine *machine)
2513{
2514	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2515	struct perf_time_interval *ptime = &sched->ptime;
2516	struct addr_location al;
2517	struct thread *thread;
2518	struct thread_runtime *tr = NULL;
2519	u64 tprev, t = sample->time;
2520	int rc = 0;
2521	int state = perf_evsel__intval(evsel, sample, "prev_state");
2522
2523
2524	if (machine__resolve(machine, &al, sample) < 0) {
2525		pr_err("problem processing %d event. skipping it\n",
2526		       event->header.type);
2527		rc = -1;
2528		goto out;
2529	}
2530
2531	thread = timehist_get_thread(sched, sample, machine, evsel);
2532	if (thread == NULL) {
2533		rc = -1;
2534		goto out;
2535	}
2536
2537	if (timehist_skip_sample(sched, thread, evsel, sample))
2538		goto out;
2539
2540	tr = thread__get_runtime(thread);
2541	if (tr == NULL) {
2542		rc = -1;
2543		goto out;
2544	}
2545
2546	tprev = perf_evsel__get_time(evsel, sample->cpu);
2547
2548	/*
2549	 * If start time given:
2550	 * - sample time is under window user cares about - skip sample
2551	 * - tprev is under window user cares about  - reset to start of window
2552	 */
2553	if (ptime->start && ptime->start > t)
2554		goto out;
2555
2556	if (tprev && ptime->start > tprev)
2557		tprev = ptime->start;
2558
2559	/*
2560	 * If end time given:
2561	 * - previous sched event is out of window - we are done
2562	 * - sample time is beyond window user cares about - reset it
2563	 *   to close out stats for time window interest
2564	 */
2565	if (ptime->end) {
2566		if (tprev > ptime->end)
2567			goto out;
2568
2569		if (t > ptime->end)
2570			t = ptime->end;
2571	}
2572
2573	if (!sched->idle_hist || thread->tid == 0) {
2574		timehist_update_runtime_stats(tr, t, tprev);
2575
2576		if (sched->idle_hist) {
2577			struct idle_thread_runtime *itr = (void *)tr;
2578			struct thread_runtime *last_tr;
2579
2580			BUG_ON(thread->tid != 0);
2581
2582			if (itr->last_thread == NULL)
2583				goto out;
2584
2585			/* add current idle time as last thread's runtime */
2586			last_tr = thread__get_runtime(itr->last_thread);
2587			if (last_tr == NULL)
2588				goto out;
2589
2590			timehist_update_runtime_stats(last_tr, t, tprev);
2591			/*
2592			 * remove delta time of last thread as it's not updated
2593			 * and otherwise it will show an invalid value next
2594			 * time.  we only care total run time and run stat.
2595			 */
2596			last_tr->dt_run = 0;
 
2597			last_tr->dt_delay = 0;
2598			last_tr->dt_sleep = 0;
2599			last_tr->dt_iowait = 0;
2600			last_tr->dt_preempt = 0;
2601
2602			if (itr->cursor.nr)
2603				callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2604
2605			itr->last_thread = NULL;
2606		}
2607	}
2608
2609	if (!sched->summary_only)
2610		timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2611
2612out:
2613	if (sched->hist_time.start == 0 && t >= ptime->start)
2614		sched->hist_time.start = t;
2615	if (ptime->end == 0 || t <= ptime->end)
2616		sched->hist_time.end = t;
2617
2618	if (tr) {
2619		/* time of this sched_switch event becomes last time task seen */
2620		tr->last_time = sample->time;
2621
2622		/* last state is used to determine where to account wait time */
2623		tr->last_state = state;
2624
2625		/* sched out event for task so reset ready to run time */
2626		tr->ready_to_run = 0;
2627	}
2628
2629	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2630
2631	return rc;
2632}
2633
2634static int timehist_sched_switch_event(struct perf_tool *tool,
2635			     union perf_event *event,
2636			     struct evsel *evsel,
2637			     struct perf_sample *sample,
2638			     struct machine *machine __maybe_unused)
2639{
2640	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2641}
2642
2643static int process_lost(struct perf_tool *tool __maybe_unused,
2644			union perf_event *event,
2645			struct perf_sample *sample,
2646			struct machine *machine __maybe_unused)
2647{
2648	char tstr[64];
2649
2650	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2651	printf("%15s ", tstr);
2652	printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2653
2654	return 0;
2655}
2656
2657
2658static void print_thread_runtime(struct thread *t,
2659				 struct thread_runtime *r)
2660{
2661	double mean = avg_stats(&r->run_stats);
2662	float stddev;
2663
2664	printf("%*s   %5d  %9" PRIu64 " ",
2665	       comm_width, timehist_get_commstr(t), t->ppid,
2666	       (u64) r->run_stats.n);
2667
2668	print_sched_time(r->total_run_time, 8);
2669	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2670	print_sched_time(r->run_stats.min, 6);
2671	printf(" ");
2672	print_sched_time((u64) mean, 6);
2673	printf(" ");
2674	print_sched_time(r->run_stats.max, 6);
2675	printf("  ");
2676	printf("%5.2f", stddev);
2677	printf("   %5" PRIu64, r->migrations);
2678	printf("\n");
2679}
2680
2681static void print_thread_waittime(struct thread *t,
2682				  struct thread_runtime *r)
2683{
2684	printf("%*s   %5d  %9" PRIu64 " ",
2685	       comm_width, timehist_get_commstr(t), t->ppid,
2686	       (u64) r->run_stats.n);
2687
2688	print_sched_time(r->total_run_time, 8);
2689	print_sched_time(r->total_sleep_time, 6);
2690	printf(" ");
2691	print_sched_time(r->total_iowait_time, 6);
2692	printf(" ");
2693	print_sched_time(r->total_preempt_time, 6);
2694	printf(" ");
2695	print_sched_time(r->total_delay_time, 6);
2696	printf("\n");
2697}
2698
2699struct total_run_stats {
2700	struct perf_sched *sched;
2701	u64  sched_count;
2702	u64  task_count;
2703	u64  total_run_time;
2704};
2705
2706static int __show_thread_runtime(struct thread *t, void *priv)
2707{
2708	struct total_run_stats *stats = priv;
2709	struct thread_runtime *r;
2710
2711	if (thread__is_filtered(t))
2712		return 0;
2713
2714	r = thread__priv(t);
2715	if (r && r->run_stats.n) {
2716		stats->task_count++;
2717		stats->sched_count += r->run_stats.n;
2718		stats->total_run_time += r->total_run_time;
2719
2720		if (stats->sched->show_state)
2721			print_thread_waittime(t, r);
2722		else
2723			print_thread_runtime(t, r);
2724	}
2725
2726	return 0;
2727}
2728
2729static int show_thread_runtime(struct thread *t, void *priv)
2730{
2731	if (t->dead)
2732		return 0;
2733
2734	return __show_thread_runtime(t, priv);
2735}
2736
2737static int show_deadthread_runtime(struct thread *t, void *priv)
2738{
2739	if (!t->dead)
2740		return 0;
2741
2742	return __show_thread_runtime(t, priv);
2743}
2744
2745static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2746{
2747	const char *sep = " <- ";
2748	struct callchain_list *chain;
2749	size_t ret = 0;
2750	char bf[1024];
2751	bool first;
2752
2753	if (node == NULL)
2754		return 0;
2755
2756	ret = callchain__fprintf_folded(fp, node->parent);
2757	first = (ret == 0);
2758
2759	list_for_each_entry(chain, &node->val, list) {
2760		if (chain->ip >= PERF_CONTEXT_MAX)
2761			continue;
2762		if (chain->ms.sym && chain->ms.sym->ignore)
2763			continue;
2764		ret += fprintf(fp, "%s%s", first ? "" : sep,
2765			       callchain_list__sym_name(chain, bf, sizeof(bf),
2766							false));
2767		first = false;
2768	}
2769
2770	return ret;
2771}
2772
2773static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2774{
2775	size_t ret = 0;
2776	FILE *fp = stdout;
2777	struct callchain_node *chain;
2778	struct rb_node *rb_node = rb_first_cached(root);
2779
2780	printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2781	printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2782	       graph_dotted_line);
2783
2784	while (rb_node) {
2785		chain = rb_entry(rb_node, struct callchain_node, rb_node);
2786		rb_node = rb_next(rb_node);
2787
2788		ret += fprintf(fp, "  ");
2789		print_sched_time(chain->hit, 12);
2790		ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2791		ret += fprintf(fp, " %8d  ", chain->count);
2792		ret += callchain__fprintf_folded(fp, chain);
2793		ret += fprintf(fp, "\n");
2794	}
2795
2796	return ret;
2797}
2798
2799static void timehist_print_summary(struct perf_sched *sched,
2800				   struct perf_session *session)
2801{
2802	struct machine *m = &session->machines.host;
2803	struct total_run_stats totals;
2804	u64 task_count;
2805	struct thread *t;
2806	struct thread_runtime *r;
2807	int i;
2808	u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2809
2810	memset(&totals, 0, sizeof(totals));
2811	totals.sched = sched;
2812
2813	if (sched->idle_hist) {
2814		printf("\nIdle-time summary\n");
2815		printf("%*s  parent  sched-out  ", comm_width, "comm");
2816		printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2817	} else if (sched->show_state) {
2818		printf("\nWait-time summary\n");
2819		printf("%*s  parent   sched-in  ", comm_width, "comm");
2820		printf("   run-time      sleep      iowait     preempt       delay\n");
2821	} else {
2822		printf("\nRuntime summary\n");
2823		printf("%*s  parent   sched-in  ", comm_width, "comm");
2824		printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2825	}
2826	printf("%*s            (count)  ", comm_width, "");
2827	printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2828	       sched->show_state ? "(msec)" : "%");
2829	printf("%.117s\n", graph_dotted_line);
2830
2831	machine__for_each_thread(m, show_thread_runtime, &totals);
2832	task_count = totals.task_count;
2833	if (!task_count)
2834		printf("<no still running tasks>\n");
2835
2836	printf("\nTerminated tasks:\n");
2837	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2838	if (task_count == totals.task_count)
2839		printf("<no terminated tasks>\n");
2840
2841	/* CPU idle stats not tracked when samples were skipped */
2842	if (sched->skipped_samples && !sched->idle_hist)
2843		return;
2844
2845	printf("\nIdle stats:\n");
2846	for (i = 0; i < idle_max_cpu; ++i) {
2847		t = idle_threads[i];
2848		if (!t)
2849			continue;
2850
2851		r = thread__priv(t);
2852		if (r && r->run_stats.n) {
2853			totals.sched_count += r->run_stats.n;
2854			printf("    CPU %2d idle for ", i);
2855			print_sched_time(r->total_run_time, 6);
2856			printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2857		} else
2858			printf("    CPU %2d idle entire time window\n", i);
2859	}
2860
2861	if (sched->idle_hist && sched->show_callchain) {
2862		callchain_param.mode  = CHAIN_FOLDED;
2863		callchain_param.value = CCVAL_PERIOD;
2864
2865		callchain_register_param(&callchain_param);
2866
2867		printf("\nIdle stats by callchain:\n");
2868		for (i = 0; i < idle_max_cpu; ++i) {
2869			struct idle_thread_runtime *itr;
2870
2871			t = idle_threads[i];
2872			if (!t)
2873				continue;
2874
2875			itr = thread__priv(t);
2876			if (itr == NULL)
2877				continue;
2878
2879			callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2880					     0, &callchain_param);
2881
2882			printf("  CPU %2d:", i);
2883			print_sched_time(itr->tr.total_run_time, 6);
2884			printf(" msec\n");
2885			timehist_print_idlehist_callchain(&itr->sorted_root);
2886			printf("\n");
2887		}
2888	}
2889
2890	printf("\n"
2891	       "    Total number of unique tasks: %" PRIu64 "\n"
2892	       "Total number of context switches: %" PRIu64 "\n",
2893	       totals.task_count, totals.sched_count);
2894
2895	printf("           Total run time (msec): ");
2896	print_sched_time(totals.total_run_time, 2);
2897	printf("\n");
2898
2899	printf("    Total scheduling time (msec): ");
2900	print_sched_time(hist_time, 2);
2901	printf(" (x %d)\n", sched->max_cpu);
2902}
2903
2904typedef int (*sched_handler)(struct perf_tool *tool,
2905			  union perf_event *event,
2906			  struct evsel *evsel,
2907			  struct perf_sample *sample,
2908			  struct machine *machine);
2909
2910static int perf_timehist__process_sample(struct perf_tool *tool,
2911					 union perf_event *event,
2912					 struct perf_sample *sample,
2913					 struct evsel *evsel,
2914					 struct machine *machine)
2915{
2916	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2917	int err = 0;
2918	int this_cpu = sample->cpu;
2919
2920	if (this_cpu > sched->max_cpu)
2921		sched->max_cpu = this_cpu;
2922
2923	if (evsel->handler != NULL) {
2924		sched_handler f = evsel->handler;
2925
2926		err = f(tool, event, evsel, sample, machine);
2927	}
2928
2929	return err;
2930}
2931
2932static int timehist_check_attr(struct perf_sched *sched,
2933			       struct evlist *evlist)
2934{
2935	struct evsel *evsel;
2936	struct evsel_runtime *er;
2937
2938	list_for_each_entry(evsel, &evlist->core.entries, core.node) {
2939		er = perf_evsel__get_runtime(evsel);
2940		if (er == NULL) {
2941			pr_err("Failed to allocate memory for evsel runtime data\n");
2942			return -1;
2943		}
2944
2945		if (sched->show_callchain && !evsel__has_callchain(evsel)) {
 
2946			pr_info("Samples do not have callchains.\n");
2947			sched->show_callchain = 0;
2948			symbol_conf.use_callchain = 0;
2949		}
2950	}
2951
2952	return 0;
2953}
2954
2955static int perf_sched__timehist(struct perf_sched *sched)
2956{
2957	const struct evsel_str_handler handlers[] = {
2958		{ "sched:sched_switch",       timehist_sched_switch_event, },
2959		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2960		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2961	};
2962	const struct evsel_str_handler migrate_handlers[] = {
2963		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2964	};
2965	struct perf_data data = {
2966		.path  = input_name,
2967		.mode  = PERF_DATA_MODE_READ,
2968		.force = sched->force,
2969	};
2970
2971	struct perf_session *session;
2972	struct evlist *evlist;
2973	int err = -1;
2974
2975	/*
2976	 * event handlers for timehist option
2977	 */
2978	sched->tool.sample	 = perf_timehist__process_sample;
2979	sched->tool.mmap	 = perf_event__process_mmap;
2980	sched->tool.comm	 = perf_event__process_comm;
2981	sched->tool.exit	 = perf_event__process_exit;
2982	sched->tool.fork	 = perf_event__process_fork;
2983	sched->tool.lost	 = process_lost;
2984	sched->tool.attr	 = perf_event__process_attr;
2985	sched->tool.tracing_data = perf_event__process_tracing_data;
2986	sched->tool.build_id	 = perf_event__process_build_id;
2987
2988	sched->tool.ordered_events = true;
2989	sched->tool.ordering_requires_timestamps = true;
2990
2991	symbol_conf.use_callchain = sched->show_callchain;
2992
2993	session = perf_session__new(&data, false, &sched->tool);
2994	if (IS_ERR(session))
2995		return PTR_ERR(session);
2996
2997	evlist = session->evlist;
2998
2999	symbol__init(&session->header.env);
3000
3001	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3002		pr_err("Invalid time string\n");
3003		return -EINVAL;
3004	}
3005
3006	if (timehist_check_attr(sched, evlist) != 0)
3007		goto out;
3008
3009	setup_pager();
3010
3011	/* setup per-evsel handlers */
3012	if (perf_session__set_tracepoints_handlers(session, handlers))
3013		goto out;
3014
3015	/* sched_switch event at a minimum needs to exist */
3016	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3017						  "sched:sched_switch")) {
3018		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3019		goto out;
3020	}
3021
3022	if (sched->show_migrations &&
3023	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
3024		goto out;
3025
3026	/* pre-allocate struct for per-CPU idle stats */
3027	sched->max_cpu = session->header.env.nr_cpus_online;
3028	if (sched->max_cpu == 0)
3029		sched->max_cpu = 4;
3030	if (init_idle_threads(sched->max_cpu))
3031		goto out;
3032
3033	/* summary_only implies summary option, but don't overwrite summary if set */
3034	if (sched->summary_only)
3035		sched->summary = sched->summary_only;
3036
3037	if (!sched->summary_only)
3038		timehist_header(sched);
3039
3040	err = perf_session__process_events(session);
3041	if (err) {
3042		pr_err("Failed to process events, error %d", err);
3043		goto out;
3044	}
3045
3046	sched->nr_events      = evlist->stats.nr_events[0];
3047	sched->nr_lost_events = evlist->stats.total_lost;
3048	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3049
3050	if (sched->summary)
3051		timehist_print_summary(sched, session);
3052
3053out:
3054	free_idle_threads();
3055	perf_session__delete(session);
3056
3057	return err;
3058}
3059
3060
3061static void print_bad_events(struct perf_sched *sched)
3062{
3063	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3064		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3065			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3066			sched->nr_unordered_timestamps, sched->nr_timestamps);
3067	}
3068	if (sched->nr_lost_events && sched->nr_events) {
3069		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3070			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3071			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3072	}
3073	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3074		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3075			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3076			sched->nr_context_switch_bugs, sched->nr_timestamps);
3077		if (sched->nr_lost_events)
3078			printf(" (due to lost events?)");
3079		printf("\n");
3080	}
3081}
3082
3083static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3084{
3085	struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3086	struct work_atoms *this;
3087	const char *comm = thread__comm_str(data->thread), *this_comm;
3088	bool leftmost = true;
3089
3090	while (*new) {
3091		int cmp;
3092
3093		this = container_of(*new, struct work_atoms, node);
3094		parent = *new;
3095
3096		this_comm = thread__comm_str(this->thread);
3097		cmp = strcmp(comm, this_comm);
3098		if (cmp > 0) {
3099			new = &((*new)->rb_left);
3100		} else if (cmp < 0) {
3101			new = &((*new)->rb_right);
3102			leftmost = false;
3103		} else {
3104			this->num_merged++;
3105			this->total_runtime += data->total_runtime;
3106			this->nb_atoms += data->nb_atoms;
3107			this->total_lat += data->total_lat;
3108			list_splice(&data->work_list, &this->work_list);
3109			if (this->max_lat < data->max_lat) {
3110				this->max_lat = data->max_lat;
3111				this->max_lat_at = data->max_lat_at;
3112			}
3113			zfree(&data);
3114			return;
3115		}
3116	}
3117
3118	data->num_merged++;
3119	rb_link_node(&data->node, parent, new);
3120	rb_insert_color_cached(&data->node, root, leftmost);
3121}
3122
3123static void perf_sched__merge_lat(struct perf_sched *sched)
3124{
3125	struct work_atoms *data;
3126	struct rb_node *node;
3127
3128	if (sched->skip_merge)
3129		return;
3130
3131	while ((node = rb_first_cached(&sched->atom_root))) {
3132		rb_erase_cached(node, &sched->atom_root);
3133		data = rb_entry(node, struct work_atoms, node);
3134		__merge_work_atoms(&sched->merged_atom_root, data);
3135	}
3136}
3137
3138static int perf_sched__lat(struct perf_sched *sched)
3139{
3140	struct rb_node *next;
3141
3142	setup_pager();
3143
3144	if (perf_sched__read_events(sched))
3145		return -1;
3146
3147	perf_sched__merge_lat(sched);
3148	perf_sched__sort_lat(sched);
3149
3150	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3151	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3152	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3153
3154	next = rb_first_cached(&sched->sorted_atom_root);
3155
3156	while (next) {
3157		struct work_atoms *work_list;
3158
3159		work_list = rb_entry(next, struct work_atoms, node);
3160		output_lat_thread(sched, work_list);
3161		next = rb_next(next);
3162		thread__zput(work_list->thread);
3163	}
3164
3165	printf(" -----------------------------------------------------------------------------------------------------------------\n");
3166	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3167		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3168
3169	printf(" ---------------------------------------------------\n");
3170
3171	print_bad_events(sched);
3172	printf("\n");
3173
3174	return 0;
3175}
3176
3177static int setup_map_cpus(struct perf_sched *sched)
3178{
3179	struct perf_cpu_map *map;
3180
3181	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3182
3183	if (sched->map.comp) {
3184		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3185		if (!sched->map.comp_cpus)
3186			return -1;
3187	}
3188
3189	if (!sched->map.cpus_str)
3190		return 0;
3191
3192	map = perf_cpu_map__new(sched->map.cpus_str);
3193	if (!map) {
3194		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3195		return -1;
3196	}
3197
3198	sched->map.cpus = map;
3199	return 0;
3200}
3201
3202static int setup_color_pids(struct perf_sched *sched)
3203{
3204	struct perf_thread_map *map;
3205
3206	if (!sched->map.color_pids_str)
3207		return 0;
3208
3209	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3210	if (!map) {
3211		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3212		return -1;
3213	}
3214
3215	sched->map.color_pids = map;
3216	return 0;
3217}
3218
3219static int setup_color_cpus(struct perf_sched *sched)
3220{
3221	struct perf_cpu_map *map;
3222
3223	if (!sched->map.color_cpus_str)
3224		return 0;
3225
3226	map = perf_cpu_map__new(sched->map.color_cpus_str);
3227	if (!map) {
3228		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3229		return -1;
3230	}
3231
3232	sched->map.color_cpus = map;
3233	return 0;
3234}
3235
3236static int perf_sched__map(struct perf_sched *sched)
3237{
3238	if (setup_map_cpus(sched))
3239		return -1;
3240
3241	if (setup_color_pids(sched))
3242		return -1;
3243
3244	if (setup_color_cpus(sched))
3245		return -1;
3246
3247	setup_pager();
3248	if (perf_sched__read_events(sched))
3249		return -1;
3250	print_bad_events(sched);
3251	return 0;
3252}
3253
3254static int perf_sched__replay(struct perf_sched *sched)
3255{
3256	unsigned long i;
3257
3258	calibrate_run_measurement_overhead(sched);
3259	calibrate_sleep_measurement_overhead(sched);
3260
3261	test_calibrations(sched);
3262
3263	if (perf_sched__read_events(sched))
3264		return -1;
3265
3266	printf("nr_run_events:        %ld\n", sched->nr_run_events);
3267	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3268	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3269
3270	if (sched->targetless_wakeups)
3271		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3272	if (sched->multitarget_wakeups)
3273		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3274	if (sched->nr_run_events_optimized)
3275		printf("run atoms optimized: %ld\n",
3276			sched->nr_run_events_optimized);
3277
3278	print_task_traces(sched);
3279	add_cross_task_wakeups(sched);
3280
3281	create_tasks(sched);
3282	printf("------------------------------------------------------------\n");
3283	for (i = 0; i < sched->replay_repeat; i++)
3284		run_one_test(sched);
3285
3286	return 0;
3287}
3288
3289static void setup_sorting(struct perf_sched *sched, const struct option *options,
3290			  const char * const usage_msg[])
3291{
3292	char *tmp, *tok, *str = strdup(sched->sort_order);
3293
3294	for (tok = strtok_r(str, ", ", &tmp);
3295			tok; tok = strtok_r(NULL, ", ", &tmp)) {
3296		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3297			usage_with_options_msg(usage_msg, options,
3298					"Unknown --sort key: `%s'", tok);
3299		}
3300	}
3301
3302	free(str);
3303
3304	sort_dimension__add("pid", &sched->cmp_pid);
3305}
3306
3307static int __cmd_record(int argc, const char **argv)
3308{
3309	unsigned int rec_argc, i, j;
3310	const char **rec_argv;
3311	const char * const record_args[] = {
3312		"record",
3313		"-a",
3314		"-R",
3315		"-m", "1024",
3316		"-c", "1",
3317		"-e", "sched:sched_switch",
3318		"-e", "sched:sched_stat_wait",
3319		"-e", "sched:sched_stat_sleep",
3320		"-e", "sched:sched_stat_iowait",
3321		"-e", "sched:sched_stat_runtime",
3322		"-e", "sched:sched_process_fork",
3323		"-e", "sched:sched_wakeup",
3324		"-e", "sched:sched_wakeup_new",
3325		"-e", "sched:sched_migrate_task",
3326	};
3327
3328	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3329	rec_argv = calloc(rec_argc + 1, sizeof(char *));
3330
3331	if (rec_argv == NULL)
3332		return -ENOMEM;
3333
3334	for (i = 0; i < ARRAY_SIZE(record_args); i++)
3335		rec_argv[i] = strdup(record_args[i]);
3336
3337	for (j = 1; j < (unsigned int)argc; j++, i++)
3338		rec_argv[i] = argv[j];
3339
3340	BUG_ON(i != rec_argc);
3341
3342	return cmd_record(i, rec_argv);
3343}
3344
3345int cmd_sched(int argc, const char **argv)
3346{
3347	static const char default_sort_order[] = "avg, max, switch, runtime";
3348	struct perf_sched sched = {
3349		.tool = {
3350			.sample		 = perf_sched__process_tracepoint_sample,
3351			.comm		 = perf_sched__process_comm,
3352			.namespaces	 = perf_event__process_namespaces,
3353			.lost		 = perf_event__process_lost,
3354			.fork		 = perf_sched__process_fork_event,
3355			.ordered_events = true,
3356		},
3357		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
3358		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
3359		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3360		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3361		.sort_order	      = default_sort_order,
3362		.replay_repeat	      = 10,
3363		.profile_cpu	      = -1,
3364		.next_shortname1      = 'A',
3365		.next_shortname2      = '0',
3366		.skip_merge           = 0,
3367		.show_callchain	      = 1,
3368		.max_stack            = 5,
3369	};
3370	const struct option sched_options[] = {
3371	OPT_STRING('i', "input", &input_name, "file",
3372		    "input file name"),
3373	OPT_INCR('v', "verbose", &verbose,
3374		    "be more verbose (show symbol address, etc)"),
3375	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3376		    "dump raw trace in ASCII"),
3377	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3378	OPT_END()
3379	};
3380	const struct option latency_options[] = {
3381	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3382		   "sort by key(s): runtime, switch, avg, max"),
3383	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3384		    "CPU to profile on"),
3385	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3386		    "latency stats per pid instead of per comm"),
3387	OPT_PARENT(sched_options)
3388	};
3389	const struct option replay_options[] = {
3390	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3391		     "repeat the workload replay N times (-1: infinite)"),
3392	OPT_PARENT(sched_options)
3393	};
3394	const struct option map_options[] = {
3395	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3396		    "map output in compact mode"),
3397	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3398		   "highlight given pids in map"),
3399	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3400                    "highlight given CPUs in map"),
3401	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3402                    "display given CPUs in map"),
3403	OPT_PARENT(sched_options)
3404	};
3405	const struct option timehist_options[] = {
3406	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3407		   "file", "vmlinux pathname"),
3408	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3409		   "file", "kallsyms pathname"),
3410	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3411		    "Display call chains if present (default on)"),
3412	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3413		   "Maximum number of functions to display backtrace."),
3414	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3415		    "Look for files with symbols relative to this directory"),
3416	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3417		    "Show only syscall summary with statistics"),
3418	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3419		    "Show all syscalls and summary with statistics"),
3420	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3421	OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3422	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3423	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3424	OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3425	OPT_STRING(0, "time", &sched.time_str, "str",
3426		   "Time span for analysis (start,stop)"),
3427	OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3428	OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3429		   "analyze events only for given process id(s)"),
3430	OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3431		   "analyze events only for given thread id(s)"),
3432	OPT_PARENT(sched_options)
3433	};
3434
3435	const char * const latency_usage[] = {
3436		"perf sched latency [<options>]",
3437		NULL
3438	};
3439	const char * const replay_usage[] = {
3440		"perf sched replay [<options>]",
3441		NULL
3442	};
3443	const char * const map_usage[] = {
3444		"perf sched map [<options>]",
3445		NULL
3446	};
3447	const char * const timehist_usage[] = {
3448		"perf sched timehist [<options>]",
3449		NULL
3450	};
3451	const char *const sched_subcommands[] = { "record", "latency", "map",
3452						  "replay", "script",
3453						  "timehist", NULL };
3454	const char *sched_usage[] = {
3455		NULL,
3456		NULL
3457	};
3458	struct trace_sched_handler lat_ops  = {
3459		.wakeup_event	    = latency_wakeup_event,
3460		.switch_event	    = latency_switch_event,
3461		.runtime_event	    = latency_runtime_event,
3462		.migrate_task_event = latency_migrate_task_event,
3463	};
3464	struct trace_sched_handler map_ops  = {
3465		.switch_event	    = map_switch_event,
3466	};
3467	struct trace_sched_handler replay_ops  = {
3468		.wakeup_event	    = replay_wakeup_event,
3469		.switch_event	    = replay_switch_event,
3470		.fork_event	    = replay_fork_event,
3471	};
3472	unsigned int i;
3473
3474	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3475		sched.curr_pid[i] = -1;
3476
3477	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3478					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3479	if (!argc)
3480		usage_with_options(sched_usage, sched_options);
3481
3482	/*
3483	 * Aliased to 'perf script' for now:
3484	 */
3485	if (!strcmp(argv[0], "script"))
3486		return cmd_script(argc, argv);
3487
3488	if (!strncmp(argv[0], "rec", 3)) {
3489		return __cmd_record(argc, argv);
3490	} else if (!strncmp(argv[0], "lat", 3)) {
3491		sched.tp_handler = &lat_ops;
3492		if (argc > 1) {
3493			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3494			if (argc)
3495				usage_with_options(latency_usage, latency_options);
3496		}
3497		setup_sorting(&sched, latency_options, latency_usage);
3498		return perf_sched__lat(&sched);
3499	} else if (!strcmp(argv[0], "map")) {
3500		if (argc) {
3501			argc = parse_options(argc, argv, map_options, map_usage, 0);
3502			if (argc)
3503				usage_with_options(map_usage, map_options);
3504		}
3505		sched.tp_handler = &map_ops;
3506		setup_sorting(&sched, latency_options, latency_usage);
3507		return perf_sched__map(&sched);
3508	} else if (!strncmp(argv[0], "rep", 3)) {
3509		sched.tp_handler = &replay_ops;
3510		if (argc) {
3511			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3512			if (argc)
3513				usage_with_options(replay_usage, replay_options);
3514		}
3515		return perf_sched__replay(&sched);
3516	} else if (!strcmp(argv[0], "timehist")) {
3517		if (argc) {
3518			argc = parse_options(argc, argv, timehist_options,
3519					     timehist_usage, 0);
3520			if (argc)
3521				usage_with_options(timehist_usage, timehist_options);
3522		}
3523		if ((sched.show_wakeups || sched.show_next) &&
3524		    sched.summary_only) {
3525			pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3526			parse_options_usage(timehist_usage, timehist_options, "s", true);
3527			if (sched.show_wakeups)
3528				parse_options_usage(NULL, timehist_options, "w", true);
3529			if (sched.show_next)
3530				parse_options_usage(NULL, timehist_options, "n", true);
3531			return -EINVAL;
3532		}
3533
3534		return perf_sched__timehist(&sched);
3535	} else {
3536		usage_with_options(sched_usage, sched_options);
3537	}
3538
3539	return 0;
3540}