Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  fs/eventfd.c
  3 *
  4 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
  5 *
  6 */
  7
  8#include <linux/file.h>
  9#include <linux/poll.h>
 10#include <linux/init.h>
 11#include <linux/fs.h>
 12#include <linux/sched.h>
 13#include <linux/kernel.h>
 14#include <linux/slab.h>
 15#include <linux/list.h>
 16#include <linux/spinlock.h>
 17#include <linux/anon_inodes.h>
 18#include <linux/syscalls.h>
 19#include <linux/export.h>
 20#include <linux/kref.h>
 21#include <linux/eventfd.h>
 22#include <linux/proc_fs.h>
 23#include <linux/seq_file.h>
 
 
 
 24
 25struct eventfd_ctx {
 26	struct kref kref;
 27	wait_queue_head_t wqh;
 28	/*
 29	 * Every time that a write(2) is performed on an eventfd, the
 30	 * value of the __u64 being written is added to "count" and a
 31	 * wakeup is performed on "wqh". A read(2) will return the "count"
 32	 * value to userspace, and will reset "count" to zero. The kernel
 33	 * side eventfd_signal() also, adds to the "count" counter and
 34	 * issue a wakeup.
 35	 */
 36	__u64 count;
 37	unsigned int flags;
 
 38};
 39
 40/**
 41 * eventfd_signal - Adds @n to the eventfd counter.
 42 * @ctx: [in] Pointer to the eventfd context.
 43 * @n: [in] Value of the counter to be added to the eventfd internal counter.
 44 *          The value cannot be negative.
 45 *
 46 * This function is supposed to be called by the kernel in paths that do not
 47 * allow sleeping. In this function we allow the counter to reach the ULLONG_MAX
 48 * value, and we signal this as overflow condition by returning a POLLERR
 49 * to poll(2).
 50 *
 51 * Returns the amount by which the counter was incremented.  This will be less
 52 * than @n if the counter has overflowed.
 53 */
 54__u64 eventfd_signal(struct eventfd_ctx *ctx, __u64 n)
 55{
 56	unsigned long flags;
 57
 58	spin_lock_irqsave(&ctx->wqh.lock, flags);
 59	if (ULLONG_MAX - ctx->count < n)
 60		n = ULLONG_MAX - ctx->count;
 61	ctx->count += n;
 62	if (waitqueue_active(&ctx->wqh))
 63		wake_up_locked_poll(&ctx->wqh, POLLIN);
 64	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
 65
 66	return n;
 67}
 68EXPORT_SYMBOL_GPL(eventfd_signal);
 69
 70static void eventfd_free_ctx(struct eventfd_ctx *ctx)
 71{
 
 
 72	kfree(ctx);
 73}
 74
 75static void eventfd_free(struct kref *kref)
 76{
 77	struct eventfd_ctx *ctx = container_of(kref, struct eventfd_ctx, kref);
 78
 79	eventfd_free_ctx(ctx);
 80}
 81
 82/**
 83 * eventfd_ctx_get - Acquires a reference to the internal eventfd context.
 84 * @ctx: [in] Pointer to the eventfd context.
 85 *
 86 * Returns: In case of success, returns a pointer to the eventfd context.
 87 */
 88struct eventfd_ctx *eventfd_ctx_get(struct eventfd_ctx *ctx)
 89{
 90	kref_get(&ctx->kref);
 91	return ctx;
 92}
 93EXPORT_SYMBOL_GPL(eventfd_ctx_get);
 94
 95/**
 96 * eventfd_ctx_put - Releases a reference to the internal eventfd context.
 97 * @ctx: [in] Pointer to eventfd context.
 98 *
 99 * The eventfd context reference must have been previously acquired either
100 * with eventfd_ctx_get() or eventfd_ctx_fdget().
101 */
102void eventfd_ctx_put(struct eventfd_ctx *ctx)
103{
104	kref_put(&ctx->kref, eventfd_free);
105}
106EXPORT_SYMBOL_GPL(eventfd_ctx_put);
107
108static int eventfd_release(struct inode *inode, struct file *file)
109{
110	struct eventfd_ctx *ctx = file->private_data;
111
112	wake_up_poll(&ctx->wqh, POLLHUP);
113	eventfd_ctx_put(ctx);
114	return 0;
115}
116
117static unsigned int eventfd_poll(struct file *file, poll_table *wait)
118{
119	struct eventfd_ctx *ctx = file->private_data;
120	unsigned int events = 0;
121	u64 count;
122
123	poll_wait(file, &ctx->wqh, wait);
124
125	/*
126	 * All writes to ctx->count occur within ctx->wqh.lock.  This read
127	 * can be done outside ctx->wqh.lock because we know that poll_wait
128	 * takes that lock (through add_wait_queue) if our caller will sleep.
129	 *
130	 * The read _can_ therefore seep into add_wait_queue's critical
131	 * section, but cannot move above it!  add_wait_queue's spin_lock acts
132	 * as an acquire barrier and ensures that the read be ordered properly
133	 * against the writes.  The following CAN happen and is safe:
134	 *
135	 *     poll                               write
136	 *     -----------------                  ------------
137	 *     lock ctx->wqh.lock (in poll_wait)
138	 *     count = ctx->count
139	 *     __add_wait_queue
140	 *     unlock ctx->wqh.lock
141	 *                                        lock ctx->qwh.lock
142	 *                                        ctx->count += n
143	 *                                        if (waitqueue_active)
144	 *                                          wake_up_locked_poll
145	 *                                        unlock ctx->qwh.lock
146	 *     eventfd_poll returns 0
147	 *
148	 * but the following, which would miss a wakeup, cannot happen:
149	 *
150	 *     poll                               write
151	 *     -----------------                  ------------
152	 *     count = ctx->count (INVALID!)
153	 *                                        lock ctx->qwh.lock
154	 *                                        ctx->count += n
155	 *                                        **waitqueue_active is false**
156	 *                                        **no wake_up_locked_poll!**
157	 *                                        unlock ctx->qwh.lock
158	 *     lock ctx->wqh.lock (in poll_wait)
159	 *     __add_wait_queue
160	 *     unlock ctx->wqh.lock
161	 *     eventfd_poll returns 0
162	 */
163	count = READ_ONCE(ctx->count);
164
165	if (count > 0)
166		events |= POLLIN;
167	if (count == ULLONG_MAX)
168		events |= POLLERR;
169	if (ULLONG_MAX - 1 > count)
170		events |= POLLOUT;
171
172	return events;
173}
174
175static void eventfd_ctx_do_read(struct eventfd_ctx *ctx, __u64 *cnt)
176{
177	*cnt = (ctx->flags & EFD_SEMAPHORE) ? 1 : ctx->count;
178	ctx->count -= *cnt;
179}
180
181/**
182 * eventfd_ctx_remove_wait_queue - Read the current counter and removes wait queue.
183 * @ctx: [in] Pointer to eventfd context.
184 * @wait: [in] Wait queue to be removed.
185 * @cnt: [out] Pointer to the 64-bit counter value.
186 *
187 * Returns %0 if successful, or the following error codes:
188 *
189 * -EAGAIN      : The operation would have blocked.
190 *
191 * This is used to atomically remove a wait queue entry from the eventfd wait
192 * queue head, and read/reset the counter value.
193 */
194int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_t *wait,
195				  __u64 *cnt)
196{
197	unsigned long flags;
198
199	spin_lock_irqsave(&ctx->wqh.lock, flags);
200	eventfd_ctx_do_read(ctx, cnt);
201	__remove_wait_queue(&ctx->wqh, wait);
202	if (*cnt != 0 && waitqueue_active(&ctx->wqh))
203		wake_up_locked_poll(&ctx->wqh, POLLOUT);
204	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
205
206	return *cnt != 0 ? 0 : -EAGAIN;
207}
208EXPORT_SYMBOL_GPL(eventfd_ctx_remove_wait_queue);
209
210/**
211 * eventfd_ctx_read - Reads the eventfd counter or wait if it is zero.
212 * @ctx: [in] Pointer to eventfd context.
213 * @no_wait: [in] Different from zero if the operation should not block.
214 * @cnt: [out] Pointer to the 64-bit counter value.
215 *
216 * Returns %0 if successful, or the following error codes:
217 *
218 * -EAGAIN      : The operation would have blocked but @no_wait was non-zero.
219 * -ERESTARTSYS : A signal interrupted the wait operation.
220 *
221 * If @no_wait is zero, the function might sleep until the eventfd internal
222 * counter becomes greater than zero.
223 */
224ssize_t eventfd_ctx_read(struct eventfd_ctx *ctx, int no_wait, __u64 *cnt)
225{
 
226	ssize_t res;
 
227	DECLARE_WAITQUEUE(wait, current);
228
 
 
 
229	spin_lock_irq(&ctx->wqh.lock);
230	*cnt = 0;
231	res = -EAGAIN;
232	if (ctx->count > 0)
233		res = 0;
234	else if (!no_wait) {
235		__add_wait_queue(&ctx->wqh, &wait);
236		for (;;) {
237			set_current_state(TASK_INTERRUPTIBLE);
238			if (ctx->count > 0) {
239				res = 0;
240				break;
241			}
242			if (signal_pending(current)) {
243				res = -ERESTARTSYS;
244				break;
245			}
246			spin_unlock_irq(&ctx->wqh.lock);
247			schedule();
248			spin_lock_irq(&ctx->wqh.lock);
249		}
250		__remove_wait_queue(&ctx->wqh, &wait);
251		__set_current_state(TASK_RUNNING);
252	}
253	if (likely(res == 0)) {
254		eventfd_ctx_do_read(ctx, cnt);
255		if (waitqueue_active(&ctx->wqh))
256			wake_up_locked_poll(&ctx->wqh, POLLOUT);
257	}
258	spin_unlock_irq(&ctx->wqh.lock);
259
260	return res;
261}
262EXPORT_SYMBOL_GPL(eventfd_ctx_read);
263
264static ssize_t eventfd_read(struct file *file, char __user *buf, size_t count,
265			    loff_t *ppos)
266{
267	struct eventfd_ctx *ctx = file->private_data;
268	ssize_t res;
269	__u64 cnt;
270
271	if (count < sizeof(cnt))
272		return -EINVAL;
273	res = eventfd_ctx_read(ctx, file->f_flags & O_NONBLOCK, &cnt);
274	if (res < 0)
275		return res;
276
277	return put_user(cnt, (__u64 __user *) buf) ? -EFAULT : sizeof(cnt);
278}
279
280static ssize_t eventfd_write(struct file *file, const char __user *buf, size_t count,
281			     loff_t *ppos)
282{
283	struct eventfd_ctx *ctx = file->private_data;
284	ssize_t res;
285	__u64 ucnt;
286	DECLARE_WAITQUEUE(wait, current);
287
288	if (count < sizeof(ucnt))
289		return -EINVAL;
290	if (copy_from_user(&ucnt, buf, sizeof(ucnt)))
291		return -EFAULT;
292	if (ucnt == ULLONG_MAX)
293		return -EINVAL;
294	spin_lock_irq(&ctx->wqh.lock);
295	res = -EAGAIN;
296	if (ULLONG_MAX - ctx->count > ucnt)
297		res = sizeof(ucnt);
298	else if (!(file->f_flags & O_NONBLOCK)) {
299		__add_wait_queue(&ctx->wqh, &wait);
300		for (res = 0;;) {
301			set_current_state(TASK_INTERRUPTIBLE);
302			if (ULLONG_MAX - ctx->count > ucnt) {
303				res = sizeof(ucnt);
304				break;
305			}
306			if (signal_pending(current)) {
307				res = -ERESTARTSYS;
308				break;
309			}
310			spin_unlock_irq(&ctx->wqh.lock);
311			schedule();
312			spin_lock_irq(&ctx->wqh.lock);
313		}
314		__remove_wait_queue(&ctx->wqh, &wait);
315		__set_current_state(TASK_RUNNING);
316	}
317	if (likely(res > 0)) {
318		ctx->count += ucnt;
319		if (waitqueue_active(&ctx->wqh))
320			wake_up_locked_poll(&ctx->wqh, POLLIN);
321	}
322	spin_unlock_irq(&ctx->wqh.lock);
323
324	return res;
325}
326
327#ifdef CONFIG_PROC_FS
328static void eventfd_show_fdinfo(struct seq_file *m, struct file *f)
329{
330	struct eventfd_ctx *ctx = f->private_data;
331
332	spin_lock_irq(&ctx->wqh.lock);
333	seq_printf(m, "eventfd-count: %16llx\n",
334		   (unsigned long long)ctx->count);
335	spin_unlock_irq(&ctx->wqh.lock);
 
336}
337#endif
338
339static const struct file_operations eventfd_fops = {
340#ifdef CONFIG_PROC_FS
341	.show_fdinfo	= eventfd_show_fdinfo,
342#endif
343	.release	= eventfd_release,
344	.poll		= eventfd_poll,
345	.read		= eventfd_read,
346	.write		= eventfd_write,
347	.llseek		= noop_llseek,
348};
349
350/**
351 * eventfd_fget - Acquire a reference of an eventfd file descriptor.
352 * @fd: [in] Eventfd file descriptor.
353 *
354 * Returns a pointer to the eventfd file structure in case of success, or the
355 * following error pointer:
356 *
357 * -EBADF    : Invalid @fd file descriptor.
358 * -EINVAL   : The @fd file descriptor is not an eventfd file.
359 */
360struct file *eventfd_fget(int fd)
361{
362	struct file *file;
363
364	file = fget(fd);
365	if (!file)
366		return ERR_PTR(-EBADF);
367	if (file->f_op != &eventfd_fops) {
368		fput(file);
369		return ERR_PTR(-EINVAL);
370	}
371
372	return file;
373}
374EXPORT_SYMBOL_GPL(eventfd_fget);
375
376/**
377 * eventfd_ctx_fdget - Acquires a reference to the internal eventfd context.
378 * @fd: [in] Eventfd file descriptor.
379 *
380 * Returns a pointer to the internal eventfd context, otherwise the error
381 * pointers returned by the following functions:
382 *
383 * eventfd_fget
384 */
385struct eventfd_ctx *eventfd_ctx_fdget(int fd)
386{
387	struct eventfd_ctx *ctx;
388	struct fd f = fdget(fd);
389	if (!f.file)
390		return ERR_PTR(-EBADF);
391	ctx = eventfd_ctx_fileget(f.file);
392	fdput(f);
393	return ctx;
394}
395EXPORT_SYMBOL_GPL(eventfd_ctx_fdget);
396
397/**
398 * eventfd_ctx_fileget - Acquires a reference to the internal eventfd context.
399 * @file: [in] Eventfd file pointer.
400 *
401 * Returns a pointer to the internal eventfd context, otherwise the error
402 * pointer:
403 *
404 * -EINVAL   : The @fd file descriptor is not an eventfd file.
405 */
406struct eventfd_ctx *eventfd_ctx_fileget(struct file *file)
407{
 
 
408	if (file->f_op != &eventfd_fops)
409		return ERR_PTR(-EINVAL);
410
411	return eventfd_ctx_get(file->private_data);
 
 
412}
413EXPORT_SYMBOL_GPL(eventfd_ctx_fileget);
414
415/**
416 * eventfd_file_create - Creates an eventfd file pointer.
417 * @count: Initial eventfd counter value.
418 * @flags: Flags for the eventfd file.
419 *
420 * This function creates an eventfd file pointer, w/out installing it into
421 * the fd table. This is useful when the eventfd file is used during the
422 * initialization of data structures that require extra setup after the eventfd
423 * creation. So the eventfd creation is split into the file pointer creation
424 * phase, and the file descriptor installation phase.
425 * In this way races with userspace closing the newly installed file descriptor
426 * can be avoided.
427 * Returns an eventfd file pointer, or a proper error pointer.
428 */
429struct file *eventfd_file_create(unsigned int count, int flags)
430{
431	struct file *file;
432	struct eventfd_ctx *ctx;
 
433
434	/* Check the EFD_* constants for consistency.  */
435	BUILD_BUG_ON(EFD_CLOEXEC != O_CLOEXEC);
436	BUILD_BUG_ON(EFD_NONBLOCK != O_NONBLOCK);
437
438	if (flags & ~EFD_FLAGS_SET)
439		return ERR_PTR(-EINVAL);
440
441	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
442	if (!ctx)
443		return ERR_PTR(-ENOMEM);
444
445	kref_init(&ctx->kref);
446	init_waitqueue_head(&ctx->wqh);
447	ctx->count = count;
448	ctx->flags = flags;
 
449
450	file = anon_inode_getfile("[eventfd]", &eventfd_fops, ctx,
451				  O_RDWR | (flags & EFD_SHARED_FCNTL_FLAGS));
452	if (IS_ERR(file))
453		eventfd_free_ctx(ctx);
454
455	return file;
456}
457
458SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags)
459{
460	int fd, error;
461	struct file *file;
462
463	error = get_unused_fd_flags(flags & EFD_SHARED_FCNTL_FLAGS);
464	if (error < 0)
465		return error;
466	fd = error;
467
468	file = eventfd_file_create(count, flags);
469	if (IS_ERR(file)) {
470		error = PTR_ERR(file);
471		goto err_put_unused_fd;
472	}
473	fd_install(fd, file);
474
475	return fd;
476
477err_put_unused_fd:
478	put_unused_fd(fd);
479
480	return error;
481}
482
483SYSCALL_DEFINE1(eventfd, unsigned int, count)
484{
485	return sys_eventfd2(count, 0);
486}
487
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  fs/eventfd.c
  4 *
  5 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
  6 *
  7 */
  8
  9#include <linux/file.h>
 10#include <linux/poll.h>
 11#include <linux/init.h>
 12#include <linux/fs.h>
 13#include <linux/sched/signal.h>
 14#include <linux/kernel.h>
 15#include <linux/slab.h>
 16#include <linux/list.h>
 17#include <linux/spinlock.h>
 18#include <linux/anon_inodes.h>
 19#include <linux/syscalls.h>
 20#include <linux/export.h>
 21#include <linux/kref.h>
 22#include <linux/eventfd.h>
 23#include <linux/proc_fs.h>
 24#include <linux/seq_file.h>
 25#include <linux/idr.h>
 26
 27static DEFINE_IDA(eventfd_ida);
 28
 29struct eventfd_ctx {
 30	struct kref kref;
 31	wait_queue_head_t wqh;
 32	/*
 33	 * Every time that a write(2) is performed on an eventfd, the
 34	 * value of the __u64 being written is added to "count" and a
 35	 * wakeup is performed on "wqh". A read(2) will return the "count"
 36	 * value to userspace, and will reset "count" to zero. The kernel
 37	 * side eventfd_signal() also, adds to the "count" counter and
 38	 * issue a wakeup.
 39	 */
 40	__u64 count;
 41	unsigned int flags;
 42	int id;
 43};
 44
 45/**
 46 * eventfd_signal - Adds @n to the eventfd counter.
 47 * @ctx: [in] Pointer to the eventfd context.
 48 * @n: [in] Value of the counter to be added to the eventfd internal counter.
 49 *          The value cannot be negative.
 50 *
 51 * This function is supposed to be called by the kernel in paths that do not
 52 * allow sleeping. In this function we allow the counter to reach the ULLONG_MAX
 53 * value, and we signal this as overflow condition by returning a EPOLLERR
 54 * to poll(2).
 55 *
 56 * Returns the amount by which the counter was incremented.  This will be less
 57 * than @n if the counter has overflowed.
 58 */
 59__u64 eventfd_signal(struct eventfd_ctx *ctx, __u64 n)
 60{
 61	unsigned long flags;
 62
 63	spin_lock_irqsave(&ctx->wqh.lock, flags);
 64	if (ULLONG_MAX - ctx->count < n)
 65		n = ULLONG_MAX - ctx->count;
 66	ctx->count += n;
 67	if (waitqueue_active(&ctx->wqh))
 68		wake_up_locked_poll(&ctx->wqh, EPOLLIN);
 69	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
 70
 71	return n;
 72}
 73EXPORT_SYMBOL_GPL(eventfd_signal);
 74
 75static void eventfd_free_ctx(struct eventfd_ctx *ctx)
 76{
 77	if (ctx->id >= 0)
 78		ida_simple_remove(&eventfd_ida, ctx->id);
 79	kfree(ctx);
 80}
 81
 82static void eventfd_free(struct kref *kref)
 83{
 84	struct eventfd_ctx *ctx = container_of(kref, struct eventfd_ctx, kref);
 85
 86	eventfd_free_ctx(ctx);
 87}
 88
 89/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 90 * eventfd_ctx_put - Releases a reference to the internal eventfd context.
 91 * @ctx: [in] Pointer to eventfd context.
 92 *
 93 * The eventfd context reference must have been previously acquired either
 94 * with eventfd_ctx_fdget() or eventfd_ctx_fileget().
 95 */
 96void eventfd_ctx_put(struct eventfd_ctx *ctx)
 97{
 98	kref_put(&ctx->kref, eventfd_free);
 99}
100EXPORT_SYMBOL_GPL(eventfd_ctx_put);
101
102static int eventfd_release(struct inode *inode, struct file *file)
103{
104	struct eventfd_ctx *ctx = file->private_data;
105
106	wake_up_poll(&ctx->wqh, EPOLLHUP);
107	eventfd_ctx_put(ctx);
108	return 0;
109}
110
111static __poll_t eventfd_poll(struct file *file, poll_table *wait)
112{
113	struct eventfd_ctx *ctx = file->private_data;
114	__poll_t events = 0;
115	u64 count;
116
117	poll_wait(file, &ctx->wqh, wait);
118
119	/*
120	 * All writes to ctx->count occur within ctx->wqh.lock.  This read
121	 * can be done outside ctx->wqh.lock because we know that poll_wait
122	 * takes that lock (through add_wait_queue) if our caller will sleep.
123	 *
124	 * The read _can_ therefore seep into add_wait_queue's critical
125	 * section, but cannot move above it!  add_wait_queue's spin_lock acts
126	 * as an acquire barrier and ensures that the read be ordered properly
127	 * against the writes.  The following CAN happen and is safe:
128	 *
129	 *     poll                               write
130	 *     -----------------                  ------------
131	 *     lock ctx->wqh.lock (in poll_wait)
132	 *     count = ctx->count
133	 *     __add_wait_queue
134	 *     unlock ctx->wqh.lock
135	 *                                        lock ctx->qwh.lock
136	 *                                        ctx->count += n
137	 *                                        if (waitqueue_active)
138	 *                                          wake_up_locked_poll
139	 *                                        unlock ctx->qwh.lock
140	 *     eventfd_poll returns 0
141	 *
142	 * but the following, which would miss a wakeup, cannot happen:
143	 *
144	 *     poll                               write
145	 *     -----------------                  ------------
146	 *     count = ctx->count (INVALID!)
147	 *                                        lock ctx->qwh.lock
148	 *                                        ctx->count += n
149	 *                                        **waitqueue_active is false**
150	 *                                        **no wake_up_locked_poll!**
151	 *                                        unlock ctx->qwh.lock
152	 *     lock ctx->wqh.lock (in poll_wait)
153	 *     __add_wait_queue
154	 *     unlock ctx->wqh.lock
155	 *     eventfd_poll returns 0
156	 */
157	count = READ_ONCE(ctx->count);
158
159	if (count > 0)
160		events |= EPOLLIN;
161	if (count == ULLONG_MAX)
162		events |= EPOLLERR;
163	if (ULLONG_MAX - 1 > count)
164		events |= EPOLLOUT;
165
166	return events;
167}
168
169static void eventfd_ctx_do_read(struct eventfd_ctx *ctx, __u64 *cnt)
170{
171	*cnt = (ctx->flags & EFD_SEMAPHORE) ? 1 : ctx->count;
172	ctx->count -= *cnt;
173}
174
175/**
176 * eventfd_ctx_remove_wait_queue - Read the current counter and removes wait queue.
177 * @ctx: [in] Pointer to eventfd context.
178 * @wait: [in] Wait queue to be removed.
179 * @cnt: [out] Pointer to the 64-bit counter value.
180 *
181 * Returns %0 if successful, or the following error codes:
182 *
183 * -EAGAIN      : The operation would have blocked.
184 *
185 * This is used to atomically remove a wait queue entry from the eventfd wait
186 * queue head, and read/reset the counter value.
187 */
188int eventfd_ctx_remove_wait_queue(struct eventfd_ctx *ctx, wait_queue_entry_t *wait,
189				  __u64 *cnt)
190{
191	unsigned long flags;
192
193	spin_lock_irqsave(&ctx->wqh.lock, flags);
194	eventfd_ctx_do_read(ctx, cnt);
195	__remove_wait_queue(&ctx->wqh, wait);
196	if (*cnt != 0 && waitqueue_active(&ctx->wqh))
197		wake_up_locked_poll(&ctx->wqh, EPOLLOUT);
198	spin_unlock_irqrestore(&ctx->wqh.lock, flags);
199
200	return *cnt != 0 ? 0 : -EAGAIN;
201}
202EXPORT_SYMBOL_GPL(eventfd_ctx_remove_wait_queue);
203
204static ssize_t eventfd_read(struct file *file, char __user *buf, size_t count,
205			    loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
206{
207	struct eventfd_ctx *ctx = file->private_data;
208	ssize_t res;
209	__u64 ucnt = 0;
210	DECLARE_WAITQUEUE(wait, current);
211
212	if (count < sizeof(ucnt))
213		return -EINVAL;
214
215	spin_lock_irq(&ctx->wqh.lock);
 
216	res = -EAGAIN;
217	if (ctx->count > 0)
218		res = sizeof(ucnt);
219	else if (!(file->f_flags & O_NONBLOCK)) {
220		__add_wait_queue(&ctx->wqh, &wait);
221		for (;;) {
222			set_current_state(TASK_INTERRUPTIBLE);
223			if (ctx->count > 0) {
224				res = sizeof(ucnt);
225				break;
226			}
227			if (signal_pending(current)) {
228				res = -ERESTARTSYS;
229				break;
230			}
231			spin_unlock_irq(&ctx->wqh.lock);
232			schedule();
233			spin_lock_irq(&ctx->wqh.lock);
234		}
235		__remove_wait_queue(&ctx->wqh, &wait);
236		__set_current_state(TASK_RUNNING);
237	}
238	if (likely(res > 0)) {
239		eventfd_ctx_do_read(ctx, &ucnt);
240		if (waitqueue_active(&ctx->wqh))
241			wake_up_locked_poll(&ctx->wqh, EPOLLOUT);
242	}
243	spin_unlock_irq(&ctx->wqh.lock);
244
245	if (res > 0 && put_user(ucnt, (__u64 __user *)buf))
246		return -EFAULT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247
248	return res;
249}
250
251static ssize_t eventfd_write(struct file *file, const char __user *buf, size_t count,
252			     loff_t *ppos)
253{
254	struct eventfd_ctx *ctx = file->private_data;
255	ssize_t res;
256	__u64 ucnt;
257	DECLARE_WAITQUEUE(wait, current);
258
259	if (count < sizeof(ucnt))
260		return -EINVAL;
261	if (copy_from_user(&ucnt, buf, sizeof(ucnt)))
262		return -EFAULT;
263	if (ucnt == ULLONG_MAX)
264		return -EINVAL;
265	spin_lock_irq(&ctx->wqh.lock);
266	res = -EAGAIN;
267	if (ULLONG_MAX - ctx->count > ucnt)
268		res = sizeof(ucnt);
269	else if (!(file->f_flags & O_NONBLOCK)) {
270		__add_wait_queue(&ctx->wqh, &wait);
271		for (res = 0;;) {
272			set_current_state(TASK_INTERRUPTIBLE);
273			if (ULLONG_MAX - ctx->count > ucnt) {
274				res = sizeof(ucnt);
275				break;
276			}
277			if (signal_pending(current)) {
278				res = -ERESTARTSYS;
279				break;
280			}
281			spin_unlock_irq(&ctx->wqh.lock);
282			schedule();
283			spin_lock_irq(&ctx->wqh.lock);
284		}
285		__remove_wait_queue(&ctx->wqh, &wait);
286		__set_current_state(TASK_RUNNING);
287	}
288	if (likely(res > 0)) {
289		ctx->count += ucnt;
290		if (waitqueue_active(&ctx->wqh))
291			wake_up_locked_poll(&ctx->wqh, EPOLLIN);
292	}
293	spin_unlock_irq(&ctx->wqh.lock);
294
295	return res;
296}
297
298#ifdef CONFIG_PROC_FS
299static void eventfd_show_fdinfo(struct seq_file *m, struct file *f)
300{
301	struct eventfd_ctx *ctx = f->private_data;
302
303	spin_lock_irq(&ctx->wqh.lock);
304	seq_printf(m, "eventfd-count: %16llx\n",
305		   (unsigned long long)ctx->count);
306	spin_unlock_irq(&ctx->wqh.lock);
307	seq_printf(m, "eventfd-id: %d\n", ctx->id);
308}
309#endif
310
311static const struct file_operations eventfd_fops = {
312#ifdef CONFIG_PROC_FS
313	.show_fdinfo	= eventfd_show_fdinfo,
314#endif
315	.release	= eventfd_release,
316	.poll		= eventfd_poll,
317	.read		= eventfd_read,
318	.write		= eventfd_write,
319	.llseek		= noop_llseek,
320};
321
322/**
323 * eventfd_fget - Acquire a reference of an eventfd file descriptor.
324 * @fd: [in] Eventfd file descriptor.
325 *
326 * Returns a pointer to the eventfd file structure in case of success, or the
327 * following error pointer:
328 *
329 * -EBADF    : Invalid @fd file descriptor.
330 * -EINVAL   : The @fd file descriptor is not an eventfd file.
331 */
332struct file *eventfd_fget(int fd)
333{
334	struct file *file;
335
336	file = fget(fd);
337	if (!file)
338		return ERR_PTR(-EBADF);
339	if (file->f_op != &eventfd_fops) {
340		fput(file);
341		return ERR_PTR(-EINVAL);
342	}
343
344	return file;
345}
346EXPORT_SYMBOL_GPL(eventfd_fget);
347
348/**
349 * eventfd_ctx_fdget - Acquires a reference to the internal eventfd context.
350 * @fd: [in] Eventfd file descriptor.
351 *
352 * Returns a pointer to the internal eventfd context, otherwise the error
353 * pointers returned by the following functions:
354 *
355 * eventfd_fget
356 */
357struct eventfd_ctx *eventfd_ctx_fdget(int fd)
358{
359	struct eventfd_ctx *ctx;
360	struct fd f = fdget(fd);
361	if (!f.file)
362		return ERR_PTR(-EBADF);
363	ctx = eventfd_ctx_fileget(f.file);
364	fdput(f);
365	return ctx;
366}
367EXPORT_SYMBOL_GPL(eventfd_ctx_fdget);
368
369/**
370 * eventfd_ctx_fileget - Acquires a reference to the internal eventfd context.
371 * @file: [in] Eventfd file pointer.
372 *
373 * Returns a pointer to the internal eventfd context, otherwise the error
374 * pointer:
375 *
376 * -EINVAL   : The @fd file descriptor is not an eventfd file.
377 */
378struct eventfd_ctx *eventfd_ctx_fileget(struct file *file)
379{
380	struct eventfd_ctx *ctx;
381
382	if (file->f_op != &eventfd_fops)
383		return ERR_PTR(-EINVAL);
384
385	ctx = file->private_data;
386	kref_get(&ctx->kref);
387	return ctx;
388}
389EXPORT_SYMBOL_GPL(eventfd_ctx_fileget);
390
391static int do_eventfd(unsigned int count, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392{
 
393	struct eventfd_ctx *ctx;
394	int fd;
395
396	/* Check the EFD_* constants for consistency.  */
397	BUILD_BUG_ON(EFD_CLOEXEC != O_CLOEXEC);
398	BUILD_BUG_ON(EFD_NONBLOCK != O_NONBLOCK);
399
400	if (flags & ~EFD_FLAGS_SET)
401		return -EINVAL;
402
403	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
404	if (!ctx)
405		return -ENOMEM;
406
407	kref_init(&ctx->kref);
408	init_waitqueue_head(&ctx->wqh);
409	ctx->count = count;
410	ctx->flags = flags;
411	ctx->id = ida_simple_get(&eventfd_ida, 0, 0, GFP_KERNEL);
412
413	fd = anon_inode_getfd("[eventfd]", &eventfd_fops, ctx,
414			      O_RDWR | (flags & EFD_SHARED_FCNTL_FLAGS));
415	if (fd < 0)
416		eventfd_free_ctx(ctx);
417
418	return fd;
419}
420
421SYSCALL_DEFINE2(eventfd2, unsigned int, count, int, flags)
422{
423	return do_eventfd(count, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424}
425
426SYSCALL_DEFINE1(eventfd, unsigned int, count)
427{
428	return do_eventfd(count, 0);
429}
430