Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * drivers/spi/spi-fsl-dspi.c
   3 *
   4 * Copyright 2013 Freescale Semiconductor, Inc.
   5 *
   6 * Freescale DSPI driver
   7 * This file contains a driver for the Freescale DSPI
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 */
  15
  16#include <linux/clk.h>
  17#include <linux/delay.h>
  18#include <linux/dmaengine.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/err.h>
  21#include <linux/errno.h>
  22#include <linux/interrupt.h>
  23#include <linux/io.h>
  24#include <linux/kernel.h>
  25#include <linux/math64.h>
  26#include <linux/module.h>
  27#include <linux/of.h>
  28#include <linux/of_device.h>
  29#include <linux/pinctrl/consumer.h>
  30#include <linux/platform_device.h>
  31#include <linux/pm_runtime.h>
  32#include <linux/regmap.h>
  33#include <linux/sched.h>
  34#include <linux/spi/spi.h>
  35#include <linux/spi/spi_bitbang.h>
  36#include <linux/time.h>
  37
  38#define DRIVER_NAME "fsl-dspi"
  39
  40#define TRAN_STATE_RX_VOID		0x01
  41#define TRAN_STATE_TX_VOID		0x02
  42#define TRAN_STATE_WORD_ODD_NUM	0x04
  43
 
 
 
  44#define DSPI_FIFO_SIZE			4
 
  45#define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
  46
  47#define SPI_MCR		0x00
  48#define SPI_MCR_MASTER		(1 << 31)
  49#define SPI_MCR_PCSIS		(0x3F << 16)
  50#define SPI_MCR_CLR_TXF	(1 << 11)
  51#define SPI_MCR_CLR_RXF	(1 << 10)
  52
  53#define SPI_TCR			0x08
  54#define SPI_TCR_GET_TCNT(x)	(((x) & 0xffff0000) >> 16)
  55
  56#define SPI_CTAR(x)		(0x0c + (((x) & 0x3) * 4))
  57#define SPI_CTAR_FMSZ(x)	(((x) & 0x0000000f) << 27)
  58#define SPI_CTAR_CPOL(x)	((x) << 26)
  59#define SPI_CTAR_CPHA(x)	((x) << 25)
  60#define SPI_CTAR_LSBFE(x)	((x) << 24)
  61#define SPI_CTAR_PCSSCK(x)	(((x) & 0x00000003) << 22)
  62#define SPI_CTAR_PASC(x)	(((x) & 0x00000003) << 20)
  63#define SPI_CTAR_PDT(x)	(((x) & 0x00000003) << 18)
  64#define SPI_CTAR_PBR(x)	(((x) & 0x00000003) << 16)
  65#define SPI_CTAR_CSSCK(x)	(((x) & 0x0000000f) << 12)
  66#define SPI_CTAR_ASC(x)	(((x) & 0x0000000f) << 8)
  67#define SPI_CTAR_DT(x)		(((x) & 0x0000000f) << 4)
  68#define SPI_CTAR_BR(x)		((x) & 0x0000000f)
  69#define SPI_CTAR_SCALE_BITS	0xf
  70
  71#define SPI_CTAR0_SLAVE	0x0c
  72
  73#define SPI_SR			0x2c
  74#define SPI_SR_EOQF		0x10000000
  75#define SPI_SR_TCFQF		0x80000000
  76#define SPI_SR_CLEAR		0xdaad0000
  77
  78#define SPI_RSER_TFFFE		BIT(25)
  79#define SPI_RSER_TFFFD		BIT(24)
  80#define SPI_RSER_RFDFE		BIT(17)
  81#define SPI_RSER_RFDFD		BIT(16)
  82
  83#define SPI_RSER		0x30
  84#define SPI_RSER_EOQFE		0x10000000
  85#define SPI_RSER_TCFQE		0x80000000
  86
  87#define SPI_PUSHR		0x34
  88#define SPI_PUSHR_CONT		(1 << 31)
  89#define SPI_PUSHR_CTAS(x)	(((x) & 0x00000003) << 28)
  90#define SPI_PUSHR_EOQ		(1 << 27)
  91#define SPI_PUSHR_CTCNT	(1 << 26)
  92#define SPI_PUSHR_PCS(x)	(((1 << x) & 0x0000003f) << 16)
  93#define SPI_PUSHR_TXDATA(x)	((x) & 0x0000ffff)
  94
  95#define SPI_PUSHR_SLAVE	0x34
  96
  97#define SPI_POPR		0x38
  98#define SPI_POPR_RXDATA(x)	((x) & 0x0000ffff)
  99
 100#define SPI_TXFR0		0x3c
 101#define SPI_TXFR1		0x40
 102#define SPI_TXFR2		0x44
 103#define SPI_TXFR3		0x48
 104#define SPI_RXFR0		0x7c
 105#define SPI_RXFR1		0x80
 106#define SPI_RXFR2		0x84
 107#define SPI_RXFR3		0x88
 108
 109#define SPI_FRAME_BITS(bits)	SPI_CTAR_FMSZ((bits) - 1)
 110#define SPI_FRAME_BITS_MASK	SPI_CTAR_FMSZ(0xf)
 111#define SPI_FRAME_BITS_16	SPI_CTAR_FMSZ(0xf)
 112#define SPI_FRAME_BITS_8	SPI_CTAR_FMSZ(0x7)
 113
 114#define SPI_CS_INIT		0x01
 115#define SPI_CS_ASSERT		0x02
 116#define SPI_CS_DROP		0x04
 117
 118#define SPI_TCR_TCNT_MAX	0x10000
 
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120#define DMA_COMPLETION_TIMEOUT	msecs_to_jiffies(3000)
 121
 122struct chip_data {
 123	u32 mcr_val;
 124	u32 ctar_val;
 125	u16 void_write_data;
 126};
 127
 128enum dspi_trans_mode {
 129	DSPI_EOQ_MODE = 0,
 130	DSPI_TCFQ_MODE,
 131	DSPI_DMA_MODE,
 132};
 133
 134struct fsl_dspi_devtype_data {
 135	enum dspi_trans_mode trans_mode;
 136	u8 max_clock_factor;
 
 137};
 138
 139static const struct fsl_dspi_devtype_data vf610_data = {
 140	.trans_mode = DSPI_DMA_MODE,
 141	.max_clock_factor = 2,
 142};
 143
 144static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
 145	.trans_mode = DSPI_TCFQ_MODE,
 146	.max_clock_factor = 8,
 
 147};
 148
 149static const struct fsl_dspi_devtype_data ls2085a_data = {
 150	.trans_mode = DSPI_TCFQ_MODE,
 151	.max_clock_factor = 8,
 
 
 
 
 
 152};
 153
 154struct fsl_dspi_dma {
 155	/* Length of transfer in words of DSPI_FIFO_SIZE */
 156	u32 curr_xfer_len;
 157
 158	u32 *tx_dma_buf;
 159	struct dma_chan *chan_tx;
 160	dma_addr_t tx_dma_phys;
 161	struct completion cmd_tx_complete;
 162	struct dma_async_tx_descriptor *tx_desc;
 163
 164	u32 *rx_dma_buf;
 165	struct dma_chan *chan_rx;
 166	dma_addr_t rx_dma_phys;
 167	struct completion cmd_rx_complete;
 168	struct dma_async_tx_descriptor *rx_desc;
 169};
 170
 171struct fsl_dspi {
 172	struct spi_master	*master;
 173	struct platform_device	*pdev;
 174
 175	struct regmap		*regmap;
 176	int			irq;
 177	struct clk		*clk;
 178
 179	struct spi_transfer	*cur_transfer;
 180	struct spi_message	*cur_msg;
 181	struct chip_data	*cur_chip;
 182	size_t			len;
 183	void			*tx;
 184	void			*tx_end;
 185	void			*rx;
 186	void			*rx_end;
 187	char			dataflags;
 188	u8			cs;
 189	u16			void_write_data;
 190	u32			cs_change;
 191	const struct fsl_dspi_devtype_data *devtype_data;
 192
 193	wait_queue_head_t	waitq;
 194	u32			waitflags;
 195
 196	u32			spi_tcnt;
 197	struct fsl_dspi_dma	*dma;
 198};
 199
 200static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 201
 202static inline int is_double_byte_mode(struct fsl_dspi *dspi)
 203{
 204	unsigned int val;
 
 205
 206	regmap_read(dspi->regmap, SPI_CTAR(0), &val);
 
 207
 208	return ((val & SPI_FRAME_BITS_MASK) == SPI_FRAME_BITS(8)) ? 0 : 1;
 
 
 
 
 
 
 209}
 210
 211static void dspi_tx_dma_callback(void *arg)
 212{
 213	struct fsl_dspi *dspi = arg;
 214	struct fsl_dspi_dma *dma = dspi->dma;
 215
 216	complete(&dma->cmd_tx_complete);
 217}
 218
 219static void dspi_rx_dma_callback(void *arg)
 220{
 221	struct fsl_dspi *dspi = arg;
 222	struct fsl_dspi_dma *dma = dspi->dma;
 223	int rx_word;
 224	int i;
 225	u16 d;
 226
 227	rx_word = is_double_byte_mode(dspi);
 228
 229	if (!(dspi->dataflags & TRAN_STATE_RX_VOID)) {
 230		for (i = 0; i < dma->curr_xfer_len; i++) {
 231			d = dspi->dma->rx_dma_buf[i];
 232			rx_word ? (*(u16 *)dspi->rx = d) :
 233						(*(u8 *)dspi->rx = d);
 234			dspi->rx += rx_word + 1;
 235		}
 236	}
 237
 238	complete(&dma->cmd_rx_complete);
 239}
 240
 241static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 242{
 243	struct fsl_dspi_dma *dma = dspi->dma;
 244	struct device *dev = &dspi->pdev->dev;
 
 245	int time_left;
 246	int tx_word;
 247	int i;
 248
 249	tx_word = is_double_byte_mode(dspi);
 250
 251	for (i = 0; i < dma->curr_xfer_len; i++) {
 252		dspi->dma->tx_dma_buf[i] = dspi_data_to_pushr(dspi, tx_word);
 253		if ((dspi->cs_change) && (!dspi->len))
 254			dspi->dma->tx_dma_buf[i] &= ~SPI_PUSHR_CONT;
 255	}
 256
 257	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 258					dma->tx_dma_phys,
 259					dma->curr_xfer_len *
 260					DMA_SLAVE_BUSWIDTH_4_BYTES,
 261					DMA_MEM_TO_DEV,
 262					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 263	if (!dma->tx_desc) {
 264		dev_err(dev, "Not able to get desc for DMA xfer\n");
 265		return -EIO;
 266	}
 267
 268	dma->tx_desc->callback = dspi_tx_dma_callback;
 269	dma->tx_desc->callback_param = dspi;
 270	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 271		dev_err(dev, "DMA submit failed\n");
 272		return -EINVAL;
 273	}
 274
 275	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 276					dma->rx_dma_phys,
 277					dma->curr_xfer_len *
 278					DMA_SLAVE_BUSWIDTH_4_BYTES,
 279					DMA_DEV_TO_MEM,
 280					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 281	if (!dma->rx_desc) {
 282		dev_err(dev, "Not able to get desc for DMA xfer\n");
 283		return -EIO;
 284	}
 285
 286	dma->rx_desc->callback = dspi_rx_dma_callback;
 287	dma->rx_desc->callback_param = dspi;
 288	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 289		dev_err(dev, "DMA submit failed\n");
 290		return -EINVAL;
 291	}
 292
 293	reinit_completion(&dspi->dma->cmd_rx_complete);
 294	reinit_completion(&dspi->dma->cmd_tx_complete);
 295
 296	dma_async_issue_pending(dma->chan_rx);
 297	dma_async_issue_pending(dma->chan_tx);
 298
 
 
 
 
 
 299	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 300					DMA_COMPLETION_TIMEOUT);
 301	if (time_left == 0) {
 302		dev_err(dev, "DMA tx timeout\n");
 303		dmaengine_terminate_all(dma->chan_tx);
 304		dmaengine_terminate_all(dma->chan_rx);
 305		return -ETIMEDOUT;
 306	}
 307
 308	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 309					DMA_COMPLETION_TIMEOUT);
 310	if (time_left == 0) {
 311		dev_err(dev, "DMA rx timeout\n");
 312		dmaengine_terminate_all(dma->chan_tx);
 313		dmaengine_terminate_all(dma->chan_rx);
 314		return -ETIMEDOUT;
 315	}
 316
 317	return 0;
 318}
 319
 320static int dspi_dma_xfer(struct fsl_dspi *dspi)
 321{
 322	struct fsl_dspi_dma *dma = dspi->dma;
 323	struct device *dev = &dspi->pdev->dev;
 
 324	int curr_remaining_bytes;
 325	int bytes_per_buffer;
 326	int word = 1;
 327	int ret = 0;
 328
 329	if (is_double_byte_mode(dspi))
 330		word = 2;
 331	curr_remaining_bytes = dspi->len;
 332	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
 333	while (curr_remaining_bytes) {
 334		/* Check if current transfer fits the DMA buffer */
 335		dma->curr_xfer_len = curr_remaining_bytes / word;
 
 336		if (dma->curr_xfer_len > bytes_per_buffer)
 337			dma->curr_xfer_len = bytes_per_buffer;
 338
 339		ret = dspi_next_xfer_dma_submit(dspi);
 340		if (ret) {
 341			dev_err(dev, "DMA transfer failed\n");
 342			goto exit;
 343
 344		} else {
 345			curr_remaining_bytes -= dma->curr_xfer_len * word;
 
 
 
 346			if (curr_remaining_bytes < 0)
 347				curr_remaining_bytes = 0;
 348		}
 349	}
 350
 351exit:
 352	return ret;
 353}
 354
 355static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 356{
 357	struct fsl_dspi_dma *dma;
 358	struct dma_slave_config cfg;
 359	struct device *dev = &dspi->pdev->dev;
 
 
 360	int ret;
 361
 362	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 363	if (!dma)
 364		return -ENOMEM;
 365
 366	dma->chan_rx = dma_request_slave_channel(dev, "rx");
 367	if (!dma->chan_rx) {
 368		dev_err(dev, "rx dma channel not available\n");
 369		ret = -ENODEV;
 370		return ret;
 371	}
 372
 373	dma->chan_tx = dma_request_slave_channel(dev, "tx");
 374	if (!dma->chan_tx) {
 375		dev_err(dev, "tx dma channel not available\n");
 376		ret = -ENODEV;
 377		goto err_tx_channel;
 378	}
 379
 380	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 381					&dma->tx_dma_phys, GFP_KERNEL);
 382	if (!dma->tx_dma_buf) {
 383		ret = -ENOMEM;
 384		goto err_tx_dma_buf;
 385	}
 386
 387	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 388					&dma->rx_dma_phys, GFP_KERNEL);
 389	if (!dma->rx_dma_buf) {
 390		ret = -ENOMEM;
 391		goto err_rx_dma_buf;
 392	}
 393
 394	cfg.src_addr = phy_addr + SPI_POPR;
 395	cfg.dst_addr = phy_addr + SPI_PUSHR;
 396	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 397	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 398	cfg.src_maxburst = 1;
 399	cfg.dst_maxburst = 1;
 400
 401	cfg.direction = DMA_DEV_TO_MEM;
 402	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 403	if (ret) {
 404		dev_err(dev, "can't configure rx dma channel\n");
 405		ret = -EINVAL;
 406		goto err_slave_config;
 407	}
 408
 409	cfg.direction = DMA_MEM_TO_DEV;
 410	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 411	if (ret) {
 412		dev_err(dev, "can't configure tx dma channel\n");
 413		ret = -EINVAL;
 414		goto err_slave_config;
 415	}
 416
 417	dspi->dma = dma;
 418	init_completion(&dma->cmd_tx_complete);
 419	init_completion(&dma->cmd_rx_complete);
 420
 421	return 0;
 422
 423err_slave_config:
 424	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 425			dma->rx_dma_buf, dma->rx_dma_phys);
 426err_rx_dma_buf:
 427	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 428			dma->tx_dma_buf, dma->tx_dma_phys);
 429err_tx_dma_buf:
 430	dma_release_channel(dma->chan_tx);
 431err_tx_channel:
 432	dma_release_channel(dma->chan_rx);
 433
 434	devm_kfree(dev, dma);
 435	dspi->dma = NULL;
 436
 437	return ret;
 438}
 439
 440static void dspi_release_dma(struct fsl_dspi *dspi)
 441{
 442	struct fsl_dspi_dma *dma = dspi->dma;
 443	struct device *dev = &dspi->pdev->dev;
 444
 445	if (dma) {
 446		if (dma->chan_tx) {
 447			dma_unmap_single(dev, dma->tx_dma_phys,
 448					DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
 449			dma_release_channel(dma->chan_tx);
 450		}
 451
 452		if (dma->chan_rx) {
 453			dma_unmap_single(dev, dma->rx_dma_phys,
 454					DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
 455			dma_release_channel(dma->chan_rx);
 456		}
 
 
 
 
 
 457	}
 458}
 459
 460static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 461		unsigned long clkrate)
 462{
 463	/* Valid baud rate pre-scaler values */
 464	int pbr_tbl[4] = {2, 3, 5, 7};
 465	int brs[16] = {	2,	4,	6,	8,
 466		16,	32,	64,	128,
 467		256,	512,	1024,	2048,
 468		4096,	8192,	16384,	32768 };
 469	int scale_needed, scale, minscale = INT_MAX;
 470	int i, j;
 471
 472	scale_needed = clkrate / speed_hz;
 473	if (clkrate % speed_hz)
 474		scale_needed++;
 475
 476	for (i = 0; i < ARRAY_SIZE(brs); i++)
 477		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 478			scale = brs[i] * pbr_tbl[j];
 479			if (scale >= scale_needed) {
 480				if (scale < minscale) {
 481					minscale = scale;
 482					*br = i;
 483					*pbr = j;
 484				}
 485				break;
 486			}
 487		}
 488
 489	if (minscale == INT_MAX) {
 490		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 491			speed_hz, clkrate);
 492		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 493		*br =  ARRAY_SIZE(brs) - 1;
 494	}
 495}
 496
 497static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 498		unsigned long clkrate)
 499{
 500	int pscale_tbl[4] = {1, 3, 5, 7};
 501	int scale_needed, scale, minscale = INT_MAX;
 502	int i, j;
 503	u32 remainder;
 
 504
 505	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 506			&remainder);
 507	if (remainder)
 508		scale_needed++;
 509
 510	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 511		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 512			scale = pscale_tbl[i] * (2 << j);
 513			if (scale >= scale_needed) {
 514				if (scale < minscale) {
 515					minscale = scale;
 516					*psc = i;
 517					*sc = j;
 518				}
 519				break;
 520			}
 521		}
 522
 523	if (minscale == INT_MAX) {
 524		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 525			delay_ns, clkrate);
 526		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 527		*sc = SPI_CTAR_SCALE_BITS;
 528	}
 529}
 530
 531static u32 dspi_data_to_pushr(struct fsl_dspi *dspi, int tx_word)
 532{
 533	u16 d16;
 534
 535	if (!(dspi->dataflags & TRAN_STATE_TX_VOID))
 536		d16 = tx_word ? *(u16 *)dspi->tx : *(u8 *)dspi->tx;
 537	else
 538		d16 = dspi->void_write_data;
 539
 540	dspi->tx += tx_word + 1;
 541	dspi->len -= tx_word + 1;
 542
 543	return	SPI_PUSHR_TXDATA(d16) |
 544		SPI_PUSHR_PCS(dspi->cs) |
 545		SPI_PUSHR_CTAS(0) |
 546		SPI_PUSHR_CONT;
 547}
 548
 549static void dspi_data_from_popr(struct fsl_dspi *dspi, int rx_word)
 550{
 551	u16 d;
 552	unsigned int val;
 553
 554	regmap_read(dspi->regmap, SPI_POPR, &val);
 555	d = SPI_POPR_RXDATA(val);
 556
 557	if (!(dspi->dataflags & TRAN_STATE_RX_VOID))
 558		rx_word ? (*(u16 *)dspi->rx = d) : (*(u8 *)dspi->rx = d);
 559
 560	dspi->rx += rx_word + 1;
 
 
 561}
 562
 563static int dspi_eoq_write(struct fsl_dspi *dspi)
 564{
 565	int tx_count = 0;
 566	int tx_word;
 567	u32 dspi_pushr = 0;
 568
 569	tx_word = is_double_byte_mode(dspi);
 
 
 
 570
 571	while (dspi->len && (tx_count < DSPI_FIFO_SIZE)) {
 572		/* If we are in word mode, only have a single byte to transfer
 573		 * switch to byte mode temporarily.  Will switch back at the
 574		 * end of the transfer.
 575		 */
 576		if (tx_word && (dspi->len == 1)) {
 577			dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
 578			regmap_update_bits(dspi->regmap, SPI_CTAR(0),
 579					SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
 580			tx_word = 0;
 
 
 
 
 
 581		}
 
 
 
 
 
 
 
 
 
 
 
 
 582
 583		dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
 
 
 584
 585		if (dspi->len == 0 || tx_count == DSPI_FIFO_SIZE - 1) {
 586			/* last transfer in the transfer */
 587			dspi_pushr |= SPI_PUSHR_EOQ;
 588			if ((dspi->cs_change) && (!dspi->len))
 589				dspi_pushr &= ~SPI_PUSHR_CONT;
 590		} else if (tx_word && (dspi->len == 1))
 591			dspi_pushr |= SPI_PUSHR_EOQ;
 592
 593		regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
 
 
 
 594
 595		tx_count++;
 
 
 
 
 
 
 
 
 
 
 596	}
 
 
 
 
 
 597
 598	return tx_count * (tx_word + 1);
 
 
 599}
 600
 601static int dspi_eoq_read(struct fsl_dspi *dspi)
 602{
 603	int rx_count = 0;
 604	int rx_word = is_double_byte_mode(dspi);
 
 
 605
 606	while ((dspi->rx < dspi->rx_end)
 607			&& (rx_count < DSPI_FIFO_SIZE)) {
 608		if (rx_word && (dspi->rx_end - dspi->rx) == 1)
 609			rx_word = 0;
 
 
 
 610
 611		dspi_data_from_popr(dspi, rx_word);
 612		rx_count++;
 613	}
 
 
 614
 615	return rx_count;
 616}
 
 617
 618static int dspi_tcfq_write(struct fsl_dspi *dspi)
 619{
 620	int tx_word;
 621	u32 dspi_pushr = 0;
 622
 623	tx_word = is_double_byte_mode(dspi);
 
 624
 625	if (tx_word && (dspi->len == 1)) {
 626		dspi->dataflags |= TRAN_STATE_WORD_ODD_NUM;
 627		regmap_update_bits(dspi->regmap, SPI_CTAR(0),
 628				SPI_FRAME_BITS_MASK, SPI_FRAME_BITS(8));
 629		tx_word = 0;
 630	}
 631
 632	dspi_pushr = dspi_data_to_pushr(dspi, tx_word);
 
 
 633
 634	if ((dspi->cs_change) && (!dspi->len))
 635		dspi_pushr &= ~SPI_PUSHR_CONT;
 
 636
 637	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pushr);
 
 638
 639	return tx_word + 1;
 640}
 641
 642static void dspi_tcfq_read(struct fsl_dspi *dspi)
 643{
 644	int rx_word = is_double_byte_mode(dspi);
 
 645
 646	if (rx_word && (dspi->rx_end - dspi->rx) == 1)
 647		rx_word = 0;
 
 
 
 648
 649	dspi_data_from_popr(dspi, rx_word);
 
 
 
 
 
 650}
 651
 652static int dspi_transfer_one_message(struct spi_master *master,
 653		struct spi_message *message)
 654{
 655	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 656	struct spi_device *spi = message->spi;
 
 657	struct spi_transfer *transfer;
 658	int status = 0;
 659	enum dspi_trans_mode trans_mode;
 660	u32 spi_tcr;
 661
 662	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
 663	dspi->spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
 664
 665	message->actual_length = 0;
 666
 667	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 668		dspi->cur_transfer = transfer;
 669		dspi->cur_msg = message;
 670		dspi->cur_chip = spi_get_ctldata(spi);
 671		dspi->cs = spi->chip_select;
 672		dspi->cs_change = 0;
 
 673		if (list_is_last(&dspi->cur_transfer->transfer_list,
 674				 &dspi->cur_msg->transfers) || transfer->cs_change)
 675			dspi->cs_change = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 676		dspi->void_write_data = dspi->cur_chip->void_write_data;
 677
 678		dspi->dataflags = 0;
 679		dspi->tx = (void *)transfer->tx_buf;
 680		dspi->tx_end = dspi->tx + transfer->len;
 681		dspi->rx = transfer->rx_buf;
 682		dspi->rx_end = dspi->rx + transfer->len;
 683		dspi->len = transfer->len;
 
 
 
 
 
 
 
 
 684
 685		if (!dspi->rx)
 686			dspi->dataflags |= TRAN_STATE_RX_VOID;
 687
 688		if (!dspi->tx)
 689			dspi->dataflags |= TRAN_STATE_TX_VOID;
 690
 691		regmap_write(dspi->regmap, SPI_MCR, dspi->cur_chip->mcr_val);
 692		regmap_update_bits(dspi->regmap, SPI_MCR,
 693				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 694				SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 695		regmap_write(dspi->regmap, SPI_CTAR(0),
 696				dspi->cur_chip->ctar_val);
 
 
 
 
 
 697
 698		trans_mode = dspi->devtype_data->trans_mode;
 699		switch (trans_mode) {
 700		case DSPI_EOQ_MODE:
 701			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
 702			dspi_eoq_write(dspi);
 703			break;
 704		case DSPI_TCFQ_MODE:
 705			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
 706			dspi_tcfq_write(dspi);
 707			break;
 708		case DSPI_DMA_MODE:
 709			regmap_write(dspi->regmap, SPI_RSER,
 710				SPI_RSER_TFFFE | SPI_RSER_TFFFD |
 711				SPI_RSER_RFDFE | SPI_RSER_RFDFD);
 712			status = dspi_dma_xfer(dspi);
 713			break;
 714		default:
 715			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 716				trans_mode);
 717			status = -EINVAL;
 718			goto out;
 719		}
 720
 721		if (trans_mode != DSPI_DMA_MODE) {
 722			if (wait_event_interruptible(dspi->waitq,
 723						dspi->waitflags))
 724				dev_err(&dspi->pdev->dev,
 725					"wait transfer complete fail!\n");
 
 
 726			dspi->waitflags = 0;
 727		}
 
 
 
 728
 729		if (transfer->delay_usecs)
 730			udelay(transfer->delay_usecs);
 731	}
 732
 733out:
 734	message->status = status;
 735	spi_finalize_current_message(master);
 736
 737	return status;
 738}
 739
 740static int dspi_setup(struct spi_device *spi)
 741{
 742	struct chip_data *chip;
 743	struct fsl_dspi *dspi = spi_master_get_devdata(spi->master);
 744	u32 cs_sck_delay = 0, sck_cs_delay = 0;
 745	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 746	unsigned char pasc = 0, asc = 0, fmsz = 0;
 
 
 
 747	unsigned long clkrate;
 748
 749	if ((spi->bits_per_word >= 4) && (spi->bits_per_word <= 16)) {
 750		fmsz = spi->bits_per_word - 1;
 751	} else {
 752		pr_err("Invalid wordsize\n");
 753		return -ENODEV;
 754	}
 755
 756	/* Only alloc on first setup */
 757	chip = spi_get_ctldata(spi);
 758	if (chip == NULL) {
 759		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 760		if (!chip)
 761			return -ENOMEM;
 762	}
 763
 764	of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
 765			&cs_sck_delay);
 766
 767	of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
 768			&sck_cs_delay);
 
 769
 770	chip->mcr_val = SPI_MCR_MASTER | SPI_MCR_PCSIS |
 771		SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF;
 
 
 
 
 772
 773	chip->void_write_data = 0;
 774
 775	clkrate = clk_get_rate(dspi->clk);
 776	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
 777
 778	/* Set PCS to SCK delay scale values */
 779	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
 780
 781	/* Set After SCK delay scale values */
 782	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
 783
 784	chip->ctar_val =  SPI_CTAR_FMSZ(fmsz)
 785		| SPI_CTAR_CPOL(spi->mode & SPI_CPOL ? 1 : 0)
 786		| SPI_CTAR_CPHA(spi->mode & SPI_CPHA ? 1 : 0)
 787		| SPI_CTAR_LSBFE(spi->mode & SPI_LSB_FIRST ? 1 : 0)
 788		| SPI_CTAR_PCSSCK(pcssck)
 789		| SPI_CTAR_CSSCK(cssck)
 790		| SPI_CTAR_PASC(pasc)
 791		| SPI_CTAR_ASC(asc)
 792		| SPI_CTAR_PBR(pbr)
 793		| SPI_CTAR_BR(br);
 
 
 
 
 
 
 
 794
 795	spi_set_ctldata(spi, chip);
 796
 797	return 0;
 798}
 799
 800static void dspi_cleanup(struct spi_device *spi)
 801{
 802	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
 803
 804	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
 805			spi->master->bus_num, spi->chip_select);
 806
 807	kfree(chip);
 808}
 809
 810static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 811{
 812	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 813	struct spi_message *msg = dspi->cur_msg;
 814	enum dspi_trans_mode trans_mode;
 815	u32 spi_sr, spi_tcr;
 816	u32 spi_tcnt, tcnt_diff;
 817	int tx_word;
 818
 819	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 820	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 821
 822
 823	if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)) {
 824		tx_word = is_double_byte_mode(dspi);
 825
 826		regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
 827		spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
 828		/*
 829		 * The width of SPI Transfer Counter in SPI_TCR is 16bits,
 830		 * so the max couner is 65535. When the counter reach 65535,
 831		 * it will wrap around, counter reset to zero.
 832		 * spi_tcnt my be less than dspi->spi_tcnt, it means the
 833		 * counter already wrapped around.
 834		 * SPI Transfer Counter is a counter of transmitted frames.
 835		 * The size of frame maybe two bytes.
 836		 */
 837		tcnt_diff = ((spi_tcnt + SPI_TCR_TCNT_MAX) - dspi->spi_tcnt)
 838			% SPI_TCR_TCNT_MAX;
 839		tcnt_diff *= (tx_word + 1);
 840		if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM)
 841			tcnt_diff--;
 842
 843		msg->actual_length += tcnt_diff;
 844
 845		dspi->spi_tcnt = spi_tcnt;
 846
 847		trans_mode = dspi->devtype_data->trans_mode;
 848		switch (trans_mode) {
 849		case DSPI_EOQ_MODE:
 850			dspi_eoq_read(dspi);
 851			break;
 852		case DSPI_TCFQ_MODE:
 853			dspi_tcfq_read(dspi);
 854			break;
 855		default:
 856			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 857				trans_mode);
 858				return IRQ_HANDLED;
 859		}
 860
 861		if (!dspi->len) {
 862			if (dspi->dataflags & TRAN_STATE_WORD_ODD_NUM) {
 863				regmap_update_bits(dspi->regmap,
 864						   SPI_CTAR(0),
 865						   SPI_FRAME_BITS_MASK,
 866						   SPI_FRAME_BITS(16));
 867				dspi->dataflags &= ~TRAN_STATE_WORD_ODD_NUM;
 868			}
 869
 870			dspi->waitflags = 1;
 871			wake_up_interruptible(&dspi->waitq);
 872		} else {
 873			switch (trans_mode) {
 874			case DSPI_EOQ_MODE:
 875				dspi_eoq_write(dspi);
 876				break;
 877			case DSPI_TCFQ_MODE:
 878				dspi_tcfq_write(dspi);
 879				break;
 880			default:
 881				dev_err(&dspi->pdev->dev,
 882					"unsupported trans_mode %u\n",
 883					trans_mode);
 884			}
 885		}
 886	}
 887
 888	return IRQ_HANDLED;
 889}
 890
 891static const struct of_device_id fsl_dspi_dt_ids[] = {
 892	{ .compatible = "fsl,vf610-dspi", .data = (void *)&vf610_data, },
 893	{ .compatible = "fsl,ls1021a-v1.0-dspi",
 894		.data = (void *)&ls1021a_v1_data, },
 895	{ .compatible = "fsl,ls2085a-dspi", .data = (void *)&ls2085a_data, },
 896	{ /* sentinel */ }
 897};
 898MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
 899
 900#ifdef CONFIG_PM_SLEEP
 901static int dspi_suspend(struct device *dev)
 902{
 903	struct spi_master *master = dev_get_drvdata(dev);
 904	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 905
 906	spi_master_suspend(master);
 907	clk_disable_unprepare(dspi->clk);
 908
 909	pinctrl_pm_select_sleep_state(dev);
 910
 911	return 0;
 912}
 913
 914static int dspi_resume(struct device *dev)
 915{
 916	struct spi_master *master = dev_get_drvdata(dev);
 917	struct fsl_dspi *dspi = spi_master_get_devdata(master);
 918	int ret;
 919
 920	pinctrl_pm_select_default_state(dev);
 921
 922	ret = clk_prepare_enable(dspi->clk);
 923	if (ret)
 924		return ret;
 925	spi_master_resume(master);
 926
 927	return 0;
 928}
 929#endif /* CONFIG_PM_SLEEP */
 930
 931static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
 932
 
 
 
 
 
 
 
 
 
 
 
 933static const struct regmap_config dspi_regmap_config = {
 934	.reg_bits = 32,
 935	.val_bits = 32,
 936	.reg_stride = 4,
 937	.max_register = 0x88,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 938};
 939
 940static void dspi_init(struct fsl_dspi *dspi)
 941{
 
 
 
 
 
 
 
 
 942	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
 
 
 
 943}
 944
 945static int dspi_probe(struct platform_device *pdev)
 946{
 947	struct device_node *np = pdev->dev.of_node;
 948	struct spi_master *master;
 
 
 
 949	struct fsl_dspi *dspi;
 950	struct resource *res;
 951	void __iomem *base;
 952	int ret = 0, cs_num, bus_num;
 953
 954	master = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
 955	if (!master)
 956		return -ENOMEM;
 957
 958	dspi = spi_master_get_devdata(master);
 959	dspi->pdev = pdev;
 960	dspi->master = master;
 961
 962	master->transfer = NULL;
 963	master->setup = dspi_setup;
 964	master->transfer_one_message = dspi_transfer_one_message;
 965	master->dev.of_node = pdev->dev.of_node;
 966
 967	master->cleanup = dspi_cleanup;
 968	master->mode_bits = SPI_CPOL | SPI_CPHA;
 969	master->bits_per_word_mask = SPI_BPW_MASK(4) | SPI_BPW_MASK(8) |
 970					SPI_BPW_MASK(16);
 971
 972	ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
 973	if (ret < 0) {
 974		dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
 975		goto out_master_put;
 976	}
 977	master->num_chipselect = cs_num;
 978
 979	ret = of_property_read_u32(np, "bus-num", &bus_num);
 980	if (ret < 0) {
 981		dev_err(&pdev->dev, "can't get bus-num\n");
 982		goto out_master_put;
 983	}
 984	master->bus_num = bus_num;
 
 985
 986	dspi->devtype_data = of_device_get_match_data(&pdev->dev);
 987	if (!dspi->devtype_data) {
 988		dev_err(&pdev->dev, "can't get devtype_data\n");
 989		ret = -EFAULT;
 990		goto out_master_put;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991	}
 992
 
 
 
 
 
 993	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 994	base = devm_ioremap_resource(&pdev->dev, res);
 995	if (IS_ERR(base)) {
 996		ret = PTR_ERR(base);
 997		goto out_master_put;
 998	}
 999
1000	dspi->regmap = devm_regmap_init_mmio_clk(&pdev->dev, NULL, base,
1001						&dspi_regmap_config);
 
 
 
1002	if (IS_ERR(dspi->regmap)) {
1003		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1004				PTR_ERR(dspi->regmap));
1005		return PTR_ERR(dspi->regmap);
1006	}
1007
1008	dspi_init(dspi);
1009	dspi->irq = platform_get_irq(pdev, 0);
1010	if (dspi->irq < 0) {
1011		dev_err(&pdev->dev, "can't get platform irq\n");
1012		ret = dspi->irq;
1013		goto out_master_put;
1014	}
1015
1016	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt, 0,
1017			pdev->name, dspi);
1018	if (ret < 0) {
1019		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1020		goto out_master_put;
 
 
 
 
 
 
1021	}
1022
1023	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1024	if (IS_ERR(dspi->clk)) {
1025		ret = PTR_ERR(dspi->clk);
1026		dev_err(&pdev->dev, "unable to get clock\n");
1027		goto out_master_put;
1028	}
1029	ret = clk_prepare_enable(dspi->clk);
1030	if (ret)
1031		goto out_master_put;
 
 
1032
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1034		if (dspi_request_dma(dspi, res->start)) {
 
1035			dev_err(&pdev->dev, "can't get dma channels\n");
1036			goto out_clk_put;
1037		}
1038	}
1039
1040	master->max_speed_hz =
1041		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1042
1043	init_waitqueue_head(&dspi->waitq);
1044	platform_set_drvdata(pdev, master);
1045
1046	ret = spi_register_master(master);
1047	if (ret != 0) {
1048		dev_err(&pdev->dev, "Problem registering DSPI master\n");
1049		goto out_clk_put;
1050	}
1051
1052	return ret;
1053
1054out_clk_put:
1055	clk_disable_unprepare(dspi->clk);
1056out_master_put:
1057	spi_master_put(master);
1058
1059	return ret;
1060}
1061
1062static int dspi_remove(struct platform_device *pdev)
1063{
1064	struct spi_master *master = platform_get_drvdata(pdev);
1065	struct fsl_dspi *dspi = spi_master_get_devdata(master);
1066
1067	/* Disconnect from the SPI framework */
1068	dspi_release_dma(dspi);
1069	clk_disable_unprepare(dspi->clk);
1070	spi_unregister_master(dspi->master);
1071
1072	return 0;
1073}
1074
1075static struct platform_driver fsl_dspi_driver = {
1076	.driver.name    = DRIVER_NAME,
1077	.driver.of_match_table = fsl_dspi_dt_ids,
1078	.driver.owner   = THIS_MODULE,
1079	.driver.pm = &dspi_pm,
1080	.probe          = dspi_probe,
1081	.remove		= dspi_remove,
1082};
1083module_platform_driver(fsl_dspi_driver);
1084
1085MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1086MODULE_LICENSE("GPL");
1087MODULE_ALIAS("platform:" DRIVER_NAME);
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2//
   3// Copyright 2013 Freescale Semiconductor, Inc.
   4//
   5// Freescale DSPI driver
   6// This file contains a driver for the Freescale DSPI
 
 
 
 
 
 
 
 
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/dmaengine.h>
  11#include <linux/dma-mapping.h>
 
 
  12#include <linux/interrupt.h>
 
  13#include <linux/kernel.h>
 
  14#include <linux/module.h>
 
  15#include <linux/of_device.h>
  16#include <linux/pinctrl/consumer.h>
 
 
  17#include <linux/regmap.h>
 
  18#include <linux/spi/spi.h>
  19#include <linux/spi/spi-fsl-dspi.h>
 
  20
  21#define DRIVER_NAME			"fsl-dspi"
 
 
 
 
  22
  23#ifdef CONFIG_M5441x
  24#define DSPI_FIFO_SIZE			16
  25#else
  26#define DSPI_FIFO_SIZE			4
  27#endif
  28#define DSPI_DMA_BUFSIZE		(DSPI_FIFO_SIZE * 1024)
  29
  30#define SPI_MCR				0x00
  31#define SPI_MCR_MASTER			BIT(31)
  32#define SPI_MCR_PCSIS			(0x3F << 16)
  33#define SPI_MCR_CLR_TXF			BIT(11)
  34#define SPI_MCR_CLR_RXF			BIT(10)
  35#define SPI_MCR_XSPI			BIT(3)
  36
  37#define SPI_TCR				0x08
  38#define SPI_TCR_GET_TCNT(x)		(((x) & GENMASK(31, 16)) >> 16)
  39
  40#define SPI_CTAR(x)			(0x0c + (((x) & GENMASK(1, 0)) * 4))
  41#define SPI_CTAR_FMSZ(x)		(((x) << 27) & GENMASK(30, 27))
  42#define SPI_CTAR_CPOL			BIT(26)
  43#define SPI_CTAR_CPHA			BIT(25)
  44#define SPI_CTAR_LSBFE			BIT(24)
  45#define SPI_CTAR_PCSSCK(x)		(((x) << 22) & GENMASK(23, 22))
  46#define SPI_CTAR_PASC(x)		(((x) << 20) & GENMASK(21, 20))
  47#define SPI_CTAR_PDT(x)			(((x) << 18) & GENMASK(19, 18))
  48#define SPI_CTAR_PBR(x)			(((x) << 16) & GENMASK(17, 16))
  49#define SPI_CTAR_CSSCK(x)		(((x) << 12) & GENMASK(15, 12))
  50#define SPI_CTAR_ASC(x)			(((x) << 8) & GENMASK(11, 8))
  51#define SPI_CTAR_DT(x)			(((x) << 4) & GENMASK(7, 4))
  52#define SPI_CTAR_BR(x)			((x) & GENMASK(3, 0))
  53#define SPI_CTAR_SCALE_BITS		0xf
  54
  55#define SPI_CTAR0_SLAVE			0x0c
  56
  57#define SPI_SR				0x2c
  58#define SPI_SR_TCFQF			BIT(31)
  59#define SPI_SR_EOQF			BIT(28)
  60#define SPI_SR_TFUF			BIT(27)
  61#define SPI_SR_TFFF			BIT(25)
  62#define SPI_SR_CMDTCF			BIT(23)
  63#define SPI_SR_SPEF			BIT(21)
  64#define SPI_SR_RFOF			BIT(19)
  65#define SPI_SR_TFIWF			BIT(18)
  66#define SPI_SR_RFDF			BIT(17)
  67#define SPI_SR_CMDFFF			BIT(16)
  68#define SPI_SR_CLEAR			(SPI_SR_TCFQF | SPI_SR_EOQF | \
  69					SPI_SR_TFUF | SPI_SR_TFFF | \
  70					SPI_SR_CMDTCF | SPI_SR_SPEF | \
  71					SPI_SR_RFOF | SPI_SR_TFIWF | \
  72					SPI_SR_RFDF | SPI_SR_CMDFFF)
  73
  74#define SPI_RSER_TFFFE			BIT(25)
  75#define SPI_RSER_TFFFD			BIT(24)
  76#define SPI_RSER_RFDFE			BIT(17)
  77#define SPI_RSER_RFDFD			BIT(16)
  78
  79#define SPI_RSER			0x30
  80#define SPI_RSER_TCFQE			BIT(31)
  81#define SPI_RSER_EOQFE			BIT(28)
  82
  83#define SPI_PUSHR			0x34
  84#define SPI_PUSHR_CMD_CONT		BIT(15)
  85#define SPI_PUSHR_CMD_CTAS(x)		(((x) << 12 & GENMASK(14, 12)))
  86#define SPI_PUSHR_CMD_EOQ		BIT(11)
  87#define SPI_PUSHR_CMD_CTCNT		BIT(10)
  88#define SPI_PUSHR_CMD_PCS(x)		(BIT(x) & GENMASK(5, 0))
  89
  90#define SPI_PUSHR_SLAVE			0x34
  91
  92#define SPI_POPR			0x38
  93
  94#define SPI_TXFR0			0x3c
  95#define SPI_TXFR1			0x40
  96#define SPI_TXFR2			0x44
  97#define SPI_TXFR3			0x48
  98#define SPI_RXFR0			0x7c
  99#define SPI_RXFR1			0x80
 100#define SPI_RXFR2			0x84
 101#define SPI_RXFR3			0x88
 102
 103#define SPI_CTARE(x)			(0x11c + (((x) & GENMASK(1, 0)) * 4))
 104#define SPI_CTARE_FMSZE(x)		(((x) & 0x1) << 16)
 105#define SPI_CTARE_DTCP(x)		((x) & 0x7ff)
 106
 107#define SPI_SREX			0x13c
 108
 109#define SPI_FRAME_BITS(bits)		SPI_CTAR_FMSZ((bits) - 1)
 110#define SPI_FRAME_EBITS(bits)		SPI_CTARE_FMSZE(((bits) - 1) >> 4)
 111
 112/* Register offsets for regmap_pushr */
 113#define PUSHR_CMD			0x0
 114#define PUSHR_TX			0x2
 115
 116#define DMA_COMPLETION_TIMEOUT		msecs_to_jiffies(3000)
 117
 118struct chip_data {
 119	u32			ctar_val;
 120	u16			void_write_data;
 
 121};
 122
 123enum dspi_trans_mode {
 124	DSPI_EOQ_MODE = 0,
 125	DSPI_TCFQ_MODE,
 126	DSPI_DMA_MODE,
 127};
 128
 129struct fsl_dspi_devtype_data {
 130	enum dspi_trans_mode	trans_mode;
 131	u8			max_clock_factor;
 132	bool			xspi_mode;
 133};
 134
 135static const struct fsl_dspi_devtype_data vf610_data = {
 136	.trans_mode		= DSPI_DMA_MODE,
 137	.max_clock_factor	= 2,
 138};
 139
 140static const struct fsl_dspi_devtype_data ls1021a_v1_data = {
 141	.trans_mode		= DSPI_TCFQ_MODE,
 142	.max_clock_factor	= 8,
 143	.xspi_mode		= true,
 144};
 145
 146static const struct fsl_dspi_devtype_data ls2085a_data = {
 147	.trans_mode		= DSPI_TCFQ_MODE,
 148	.max_clock_factor	= 8,
 149};
 150
 151static const struct fsl_dspi_devtype_data coldfire_data = {
 152	.trans_mode		= DSPI_EOQ_MODE,
 153	.max_clock_factor	= 8,
 154};
 155
 156struct fsl_dspi_dma {
 157	/* Length of transfer in words of DSPI_FIFO_SIZE */
 158	u32					curr_xfer_len;
 159
 160	u32					*tx_dma_buf;
 161	struct dma_chan				*chan_tx;
 162	dma_addr_t				tx_dma_phys;
 163	struct completion			cmd_tx_complete;
 164	struct dma_async_tx_descriptor		*tx_desc;
 165
 166	u32					*rx_dma_buf;
 167	struct dma_chan				*chan_rx;
 168	dma_addr_t				rx_dma_phys;
 169	struct completion			cmd_rx_complete;
 170	struct dma_async_tx_descriptor		*rx_desc;
 171};
 172
 173struct fsl_dspi {
 174	struct spi_controller			*ctlr;
 175	struct platform_device			*pdev;
 176
 177	struct regmap				*regmap;
 178	struct regmap				*regmap_pushr;
 179	int					irq;
 180	struct clk				*clk;
 181
 182	struct spi_transfer			*cur_transfer;
 183	struct spi_message			*cur_msg;
 184	struct chip_data			*cur_chip;
 185	size_t					len;
 186	const void				*tx;
 187	void					*rx;
 188	void					*rx_end;
 189	u16					void_write_data;
 190	u16					tx_cmd;
 191	u8					bits_per_word;
 192	u8					bytes_per_word;
 193	const struct fsl_dspi_devtype_data	*devtype_data;
 194
 195	wait_queue_head_t			waitq;
 196	u32					waitflags;
 197
 198	struct fsl_dspi_dma			*dma;
 
 199};
 200
 201static u32 dspi_pop_tx(struct fsl_dspi *dspi)
 202{
 203	u32 txdata = 0;
 204
 205	if (dspi->tx) {
 206		if (dspi->bytes_per_word == 1)
 207			txdata = *(u8 *)dspi->tx;
 208		else if (dspi->bytes_per_word == 2)
 209			txdata = *(u16 *)dspi->tx;
 210		else  /* dspi->bytes_per_word == 4 */
 211			txdata = *(u32 *)dspi->tx;
 212		dspi->tx += dspi->bytes_per_word;
 213	}
 214	dspi->len -= dspi->bytes_per_word;
 215	return txdata;
 216}
 217
 218static u32 dspi_pop_tx_pushr(struct fsl_dspi *dspi)
 219{
 220	u16 cmd = dspi->tx_cmd, data = dspi_pop_tx(dspi);
 221
 222	if (spi_controller_is_slave(dspi->ctlr))
 223		return data;
 224
 225	if (dspi->len > 0)
 226		cmd |= SPI_PUSHR_CMD_CONT;
 227	return cmd << 16 | data;
 228}
 229
 230static void dspi_push_rx(struct fsl_dspi *dspi, u32 rxdata)
 231{
 232	if (!dspi->rx)
 233		return;
 234
 235	/* Mask off undefined bits */
 236	rxdata &= (1 << dspi->bits_per_word) - 1;
 237
 238	if (dspi->bytes_per_word == 1)
 239		*(u8 *)dspi->rx = rxdata;
 240	else if (dspi->bytes_per_word == 2)
 241		*(u16 *)dspi->rx = rxdata;
 242	else /* dspi->bytes_per_word == 4 */
 243		*(u32 *)dspi->rx = rxdata;
 244	dspi->rx += dspi->bytes_per_word;
 245}
 246
 247static void dspi_tx_dma_callback(void *arg)
 248{
 249	struct fsl_dspi *dspi = arg;
 250	struct fsl_dspi_dma *dma = dspi->dma;
 251
 252	complete(&dma->cmd_tx_complete);
 253}
 254
 255static void dspi_rx_dma_callback(void *arg)
 256{
 257	struct fsl_dspi *dspi = arg;
 258	struct fsl_dspi_dma *dma = dspi->dma;
 
 259	int i;
 
 
 
 260
 261	if (dspi->rx) {
 262		for (i = 0; i < dma->curr_xfer_len; i++)
 263			dspi_push_rx(dspi, dspi->dma->rx_dma_buf[i]);
 
 
 
 
 264	}
 265
 266	complete(&dma->cmd_rx_complete);
 267}
 268
 269static int dspi_next_xfer_dma_submit(struct fsl_dspi *dspi)
 270{
 
 271	struct device *dev = &dspi->pdev->dev;
 272	struct fsl_dspi_dma *dma = dspi->dma;
 273	int time_left;
 
 274	int i;
 275
 276	for (i = 0; i < dma->curr_xfer_len; i++)
 277		dspi->dma->tx_dma_buf[i] = dspi_pop_tx_pushr(dspi);
 
 
 
 
 
 278
 279	dma->tx_desc = dmaengine_prep_slave_single(dma->chan_tx,
 280					dma->tx_dma_phys,
 281					dma->curr_xfer_len *
 282					DMA_SLAVE_BUSWIDTH_4_BYTES,
 283					DMA_MEM_TO_DEV,
 284					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 285	if (!dma->tx_desc) {
 286		dev_err(dev, "Not able to get desc for DMA xfer\n");
 287		return -EIO;
 288	}
 289
 290	dma->tx_desc->callback = dspi_tx_dma_callback;
 291	dma->tx_desc->callback_param = dspi;
 292	if (dma_submit_error(dmaengine_submit(dma->tx_desc))) {
 293		dev_err(dev, "DMA submit failed\n");
 294		return -EINVAL;
 295	}
 296
 297	dma->rx_desc = dmaengine_prep_slave_single(dma->chan_rx,
 298					dma->rx_dma_phys,
 299					dma->curr_xfer_len *
 300					DMA_SLAVE_BUSWIDTH_4_BYTES,
 301					DMA_DEV_TO_MEM,
 302					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 303	if (!dma->rx_desc) {
 304		dev_err(dev, "Not able to get desc for DMA xfer\n");
 305		return -EIO;
 306	}
 307
 308	dma->rx_desc->callback = dspi_rx_dma_callback;
 309	dma->rx_desc->callback_param = dspi;
 310	if (dma_submit_error(dmaengine_submit(dma->rx_desc))) {
 311		dev_err(dev, "DMA submit failed\n");
 312		return -EINVAL;
 313	}
 314
 315	reinit_completion(&dspi->dma->cmd_rx_complete);
 316	reinit_completion(&dspi->dma->cmd_tx_complete);
 317
 318	dma_async_issue_pending(dma->chan_rx);
 319	dma_async_issue_pending(dma->chan_tx);
 320
 321	if (spi_controller_is_slave(dspi->ctlr)) {
 322		wait_for_completion_interruptible(&dspi->dma->cmd_rx_complete);
 323		return 0;
 324	}
 325
 326	time_left = wait_for_completion_timeout(&dspi->dma->cmd_tx_complete,
 327						DMA_COMPLETION_TIMEOUT);
 328	if (time_left == 0) {
 329		dev_err(dev, "DMA tx timeout\n");
 330		dmaengine_terminate_all(dma->chan_tx);
 331		dmaengine_terminate_all(dma->chan_rx);
 332		return -ETIMEDOUT;
 333	}
 334
 335	time_left = wait_for_completion_timeout(&dspi->dma->cmd_rx_complete,
 336						DMA_COMPLETION_TIMEOUT);
 337	if (time_left == 0) {
 338		dev_err(dev, "DMA rx timeout\n");
 339		dmaengine_terminate_all(dma->chan_tx);
 340		dmaengine_terminate_all(dma->chan_rx);
 341		return -ETIMEDOUT;
 342	}
 343
 344	return 0;
 345}
 346
 347static int dspi_dma_xfer(struct fsl_dspi *dspi)
 348{
 349	struct spi_message *message = dspi->cur_msg;
 350	struct device *dev = &dspi->pdev->dev;
 351	struct fsl_dspi_dma *dma = dspi->dma;
 352	int curr_remaining_bytes;
 353	int bytes_per_buffer;
 
 354	int ret = 0;
 355
 
 
 356	curr_remaining_bytes = dspi->len;
 357	bytes_per_buffer = DSPI_DMA_BUFSIZE / DSPI_FIFO_SIZE;
 358	while (curr_remaining_bytes) {
 359		/* Check if current transfer fits the DMA buffer */
 360		dma->curr_xfer_len = curr_remaining_bytes
 361			/ dspi->bytes_per_word;
 362		if (dma->curr_xfer_len > bytes_per_buffer)
 363			dma->curr_xfer_len = bytes_per_buffer;
 364
 365		ret = dspi_next_xfer_dma_submit(dspi);
 366		if (ret) {
 367			dev_err(dev, "DMA transfer failed\n");
 368			goto exit;
 369
 370		} else {
 371			const int len =
 372				dma->curr_xfer_len * dspi->bytes_per_word;
 373			curr_remaining_bytes -= len;
 374			message->actual_length += len;
 375			if (curr_remaining_bytes < 0)
 376				curr_remaining_bytes = 0;
 377		}
 378	}
 379
 380exit:
 381	return ret;
 382}
 383
 384static int dspi_request_dma(struct fsl_dspi *dspi, phys_addr_t phy_addr)
 385{
 
 
 386	struct device *dev = &dspi->pdev->dev;
 387	struct dma_slave_config cfg;
 388	struct fsl_dspi_dma *dma;
 389	int ret;
 390
 391	dma = devm_kzalloc(dev, sizeof(*dma), GFP_KERNEL);
 392	if (!dma)
 393		return -ENOMEM;
 394
 395	dma->chan_rx = dma_request_slave_channel(dev, "rx");
 396	if (!dma->chan_rx) {
 397		dev_err(dev, "rx dma channel not available\n");
 398		ret = -ENODEV;
 399		return ret;
 400	}
 401
 402	dma->chan_tx = dma_request_slave_channel(dev, "tx");
 403	if (!dma->chan_tx) {
 404		dev_err(dev, "tx dma channel not available\n");
 405		ret = -ENODEV;
 406		goto err_tx_channel;
 407	}
 408
 409	dma->tx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 410					     &dma->tx_dma_phys, GFP_KERNEL);
 411	if (!dma->tx_dma_buf) {
 412		ret = -ENOMEM;
 413		goto err_tx_dma_buf;
 414	}
 415
 416	dma->rx_dma_buf = dma_alloc_coherent(dev, DSPI_DMA_BUFSIZE,
 417					     &dma->rx_dma_phys, GFP_KERNEL);
 418	if (!dma->rx_dma_buf) {
 419		ret = -ENOMEM;
 420		goto err_rx_dma_buf;
 421	}
 422
 423	cfg.src_addr = phy_addr + SPI_POPR;
 424	cfg.dst_addr = phy_addr + SPI_PUSHR;
 425	cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 426	cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 427	cfg.src_maxburst = 1;
 428	cfg.dst_maxburst = 1;
 429
 430	cfg.direction = DMA_DEV_TO_MEM;
 431	ret = dmaengine_slave_config(dma->chan_rx, &cfg);
 432	if (ret) {
 433		dev_err(dev, "can't configure rx dma channel\n");
 434		ret = -EINVAL;
 435		goto err_slave_config;
 436	}
 437
 438	cfg.direction = DMA_MEM_TO_DEV;
 439	ret = dmaengine_slave_config(dma->chan_tx, &cfg);
 440	if (ret) {
 441		dev_err(dev, "can't configure tx dma channel\n");
 442		ret = -EINVAL;
 443		goto err_slave_config;
 444	}
 445
 446	dspi->dma = dma;
 447	init_completion(&dma->cmd_tx_complete);
 448	init_completion(&dma->cmd_rx_complete);
 449
 450	return 0;
 451
 452err_slave_config:
 453	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 454			dma->rx_dma_buf, dma->rx_dma_phys);
 455err_rx_dma_buf:
 456	dma_free_coherent(dev, DSPI_DMA_BUFSIZE,
 457			dma->tx_dma_buf, dma->tx_dma_phys);
 458err_tx_dma_buf:
 459	dma_release_channel(dma->chan_tx);
 460err_tx_channel:
 461	dma_release_channel(dma->chan_rx);
 462
 463	devm_kfree(dev, dma);
 464	dspi->dma = NULL;
 465
 466	return ret;
 467}
 468
 469static void dspi_release_dma(struct fsl_dspi *dspi)
 470{
 471	struct fsl_dspi_dma *dma = dspi->dma;
 472	struct device *dev = &dspi->pdev->dev;
 473
 474	if (!dma)
 475		return;
 
 
 
 
 476
 477	if (dma->chan_tx) {
 478		dma_unmap_single(dev, dma->tx_dma_phys,
 479				 DSPI_DMA_BUFSIZE, DMA_TO_DEVICE);
 480		dma_release_channel(dma->chan_tx);
 481	}
 482
 483	if (dma->chan_rx) {
 484		dma_unmap_single(dev, dma->rx_dma_phys,
 485				 DSPI_DMA_BUFSIZE, DMA_FROM_DEVICE);
 486		dma_release_channel(dma->chan_rx);
 487	}
 488}
 489
 490static void hz_to_spi_baud(char *pbr, char *br, int speed_hz,
 491			   unsigned long clkrate)
 492{
 493	/* Valid baud rate pre-scaler values */
 494	int pbr_tbl[4] = {2, 3, 5, 7};
 495	int brs[16] = {	2,	4,	6,	8,
 496			16,	32,	64,	128,
 497			256,	512,	1024,	2048,
 498			4096,	8192,	16384,	32768 };
 499	int scale_needed, scale, minscale = INT_MAX;
 500	int i, j;
 501
 502	scale_needed = clkrate / speed_hz;
 503	if (clkrate % speed_hz)
 504		scale_needed++;
 505
 506	for (i = 0; i < ARRAY_SIZE(brs); i++)
 507		for (j = 0; j < ARRAY_SIZE(pbr_tbl); j++) {
 508			scale = brs[i] * pbr_tbl[j];
 509			if (scale >= scale_needed) {
 510				if (scale < minscale) {
 511					minscale = scale;
 512					*br = i;
 513					*pbr = j;
 514				}
 515				break;
 516			}
 517		}
 518
 519	if (minscale == INT_MAX) {
 520		pr_warn("Can not find valid baud rate,speed_hz is %d,clkrate is %ld, we use the max prescaler value.\n",
 521			speed_hz, clkrate);
 522		*pbr = ARRAY_SIZE(pbr_tbl) - 1;
 523		*br =  ARRAY_SIZE(brs) - 1;
 524	}
 525}
 526
 527static void ns_delay_scale(char *psc, char *sc, int delay_ns,
 528			   unsigned long clkrate)
 529{
 
 530	int scale_needed, scale, minscale = INT_MAX;
 531	int pscale_tbl[4] = {1, 3, 5, 7};
 532	u32 remainder;
 533	int i, j;
 534
 535	scale_needed = div_u64_rem((u64)delay_ns * clkrate, NSEC_PER_SEC,
 536				   &remainder);
 537	if (remainder)
 538		scale_needed++;
 539
 540	for (i = 0; i < ARRAY_SIZE(pscale_tbl); i++)
 541		for (j = 0; j <= SPI_CTAR_SCALE_BITS; j++) {
 542			scale = pscale_tbl[i] * (2 << j);
 543			if (scale >= scale_needed) {
 544				if (scale < minscale) {
 545					minscale = scale;
 546					*psc = i;
 547					*sc = j;
 548				}
 549				break;
 550			}
 551		}
 552
 553	if (minscale == INT_MAX) {
 554		pr_warn("Cannot find correct scale values for %dns delay at clkrate %ld, using max prescaler value",
 555			delay_ns, clkrate);
 556		*psc = ARRAY_SIZE(pscale_tbl) - 1;
 557		*sc = SPI_CTAR_SCALE_BITS;
 558	}
 559}
 560
 561static void fifo_write(struct fsl_dspi *dspi)
 562{
 563	regmap_write(dspi->regmap, SPI_PUSHR, dspi_pop_tx_pushr(dspi));
 
 
 
 
 
 
 
 
 
 
 
 
 
 564}
 565
 566static void cmd_fifo_write(struct fsl_dspi *dspi)
 567{
 568	u16 cmd = dspi->tx_cmd;
 
 
 
 
 
 
 
 569
 570	if (dspi->len > 0)
 571		cmd |= SPI_PUSHR_CMD_CONT;
 572	regmap_write(dspi->regmap_pushr, PUSHR_CMD, cmd);
 573}
 574
 575static void tx_fifo_write(struct fsl_dspi *dspi, u16 txdata)
 576{
 577	regmap_write(dspi->regmap_pushr, PUSHR_TX, txdata);
 578}
 
 579
 580static void dspi_tcfq_write(struct fsl_dspi *dspi)
 581{
 582	/* Clear transfer count */
 583	dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
 584
 585	if (dspi->devtype_data->xspi_mode && dspi->bits_per_word > 16) {
 586		/* Write two TX FIFO entries first, and then the corresponding
 587		 * CMD FIFO entry.
 
 588		 */
 589		u32 data = dspi_pop_tx(dspi);
 590
 591		if (dspi->cur_chip->ctar_val & SPI_CTAR_LSBFE) {
 592			/* LSB */
 593			tx_fifo_write(dspi, data & 0xFFFF);
 594			tx_fifo_write(dspi, data >> 16);
 595		} else {
 596			/* MSB */
 597			tx_fifo_write(dspi, data >> 16);
 598			tx_fifo_write(dspi, data & 0xFFFF);
 599		}
 600		cmd_fifo_write(dspi);
 601	} else {
 602		/* Write one entry to both TX FIFO and CMD FIFO
 603		 * simultaneously.
 604		 */
 605		fifo_write(dspi);
 606	}
 607}
 608
 609static u32 fifo_read(struct fsl_dspi *dspi)
 610{
 611	u32 rxdata = 0;
 612
 613	regmap_read(dspi->regmap, SPI_POPR, &rxdata);
 614	return rxdata;
 615}
 616
 617static void dspi_tcfq_read(struct fsl_dspi *dspi)
 618{
 619	dspi_push_rx(dspi, fifo_read(dspi));
 620}
 
 
 
 621
 622static void dspi_eoq_write(struct fsl_dspi *dspi)
 623{
 624	int fifo_size = DSPI_FIFO_SIZE;
 625	u16 xfer_cmd = dspi->tx_cmd;
 626
 627	/* Fill TX FIFO with as many transfers as possible */
 628	while (dspi->len && fifo_size--) {
 629		dspi->tx_cmd = xfer_cmd;
 630		/* Request EOQF for last transfer in FIFO */
 631		if (dspi->len == dspi->bytes_per_word || fifo_size == 0)
 632			dspi->tx_cmd |= SPI_PUSHR_CMD_EOQ;
 633		/* Clear transfer count for first transfer in FIFO */
 634		if (fifo_size == (DSPI_FIFO_SIZE - 1))
 635			dspi->tx_cmd |= SPI_PUSHR_CMD_CTCNT;
 636		/* Write combined TX FIFO and CMD FIFO entry */
 637		fifo_write(dspi);
 638	}
 639}
 640
 641static void dspi_eoq_read(struct fsl_dspi *dspi)
 642{
 643	int fifo_size = DSPI_FIFO_SIZE;
 644
 645	/* Read one FIFO entry and push to rx buffer */
 646	while ((dspi->rx < dspi->rx_end) && fifo_size--)
 647		dspi_push_rx(dspi, fifo_read(dspi));
 648}
 649
 650static int dspi_rxtx(struct fsl_dspi *dspi)
 651{
 652	struct spi_message *msg = dspi->cur_msg;
 653	enum dspi_trans_mode trans_mode;
 654	u16 spi_tcnt;
 655	u32 spi_tcr;
 656
 657	/* Get transfer counter (in number of SPI transfers). It was
 658	 * reset to 0 when transfer(s) were started.
 659	 */
 660	regmap_read(dspi->regmap, SPI_TCR, &spi_tcr);
 661	spi_tcnt = SPI_TCR_GET_TCNT(spi_tcr);
 662	/* Update total number of bytes that were transferred */
 663	msg->actual_length += spi_tcnt * dspi->bytes_per_word;
 664
 665	trans_mode = dspi->devtype_data->trans_mode;
 666	if (trans_mode == DSPI_EOQ_MODE)
 667		dspi_eoq_read(dspi);
 668	else if (trans_mode == DSPI_TCFQ_MODE)
 669		dspi_tcfq_read(dspi);
 670
 671	if (!dspi->len)
 672		/* Success! */
 673		return 0;
 674
 675	if (trans_mode == DSPI_EOQ_MODE)
 676		dspi_eoq_write(dspi);
 677	else if (trans_mode == DSPI_TCFQ_MODE)
 678		dspi_tcfq_write(dspi);
 679
 680	return -EINPROGRESS;
 681}
 682
 683static int dspi_poll(struct fsl_dspi *dspi)
 684{
 685	int tries = 1000;
 686	u32 spi_sr;
 
 
 687
 688	do {
 689		regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 690		regmap_write(dspi->regmap, SPI_SR, spi_sr);
 691
 692		if (spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF))
 693			break;
 694	} while (--tries);
 695
 696	if (!tries)
 697		return -ETIMEDOUT;
 698
 699	return dspi_rxtx(dspi);
 700}
 701
 702static irqreturn_t dspi_interrupt(int irq, void *dev_id)
 703{
 704	struct fsl_dspi *dspi = (struct fsl_dspi *)dev_id;
 705	u32 spi_sr;
 706
 707	regmap_read(dspi->regmap, SPI_SR, &spi_sr);
 708	regmap_write(dspi->regmap, SPI_SR, spi_sr);
 709
 710	if (!(spi_sr & (SPI_SR_EOQF | SPI_SR_TCFQF)))
 711		return IRQ_NONE;
 712
 713	if (dspi_rxtx(dspi) == 0) {
 714		dspi->waitflags = 1;
 715		wake_up_interruptible(&dspi->waitq);
 716	}
 717
 718	return IRQ_HANDLED;
 719}
 720
 721static int dspi_transfer_one_message(struct spi_controller *ctlr,
 722				     struct spi_message *message)
 723{
 724	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 725	struct spi_device *spi = message->spi;
 726	enum dspi_trans_mode trans_mode;
 727	struct spi_transfer *transfer;
 728	int status = 0;
 
 
 
 
 
 729
 730	message->actual_length = 0;
 731
 732	list_for_each_entry(transfer, &message->transfers, transfer_list) {
 733		dspi->cur_transfer = transfer;
 734		dspi->cur_msg = message;
 735		dspi->cur_chip = spi_get_ctldata(spi);
 736		/* Prepare command word for CMD FIFO */
 737		dspi->tx_cmd = SPI_PUSHR_CMD_CTAS(0) |
 738			       SPI_PUSHR_CMD_PCS(spi->chip_select);
 739		if (list_is_last(&dspi->cur_transfer->transfer_list,
 740				 &dspi->cur_msg->transfers)) {
 741			/* Leave PCS activated after last transfer when
 742			 * cs_change is set.
 743			 */
 744			if (transfer->cs_change)
 745				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 746		} else {
 747			/* Keep PCS active between transfers in same message
 748			 * when cs_change is not set, and de-activate PCS
 749			 * between transfers in the same message when
 750			 * cs_change is set.
 751			 */
 752			if (!transfer->cs_change)
 753				dspi->tx_cmd |= SPI_PUSHR_CMD_CONT;
 754		}
 755
 756		dspi->void_write_data = dspi->cur_chip->void_write_data;
 757
 758		dspi->tx = transfer->tx_buf;
 
 
 759		dspi->rx = transfer->rx_buf;
 760		dspi->rx_end = dspi->rx + transfer->len;
 761		dspi->len = transfer->len;
 762		/* Validated transfer specific frame size (defaults applied) */
 763		dspi->bits_per_word = transfer->bits_per_word;
 764		if (transfer->bits_per_word <= 8)
 765			dspi->bytes_per_word = 1;
 766		else if (transfer->bits_per_word <= 16)
 767			dspi->bytes_per_word = 2;
 768		else
 769			dspi->bytes_per_word = 4;
 770
 
 
 
 
 
 
 
 771		regmap_update_bits(dspi->regmap, SPI_MCR,
 772				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF,
 773				   SPI_MCR_CLR_TXF | SPI_MCR_CLR_RXF);
 774		regmap_write(dspi->regmap, SPI_CTAR(0),
 775			     dspi->cur_chip->ctar_val |
 776			     SPI_FRAME_BITS(transfer->bits_per_word));
 777		if (dspi->devtype_data->xspi_mode)
 778			regmap_write(dspi->regmap, SPI_CTARE(0),
 779				     SPI_FRAME_EBITS(transfer->bits_per_word) |
 780				     SPI_CTARE_DTCP(1));
 781
 782		trans_mode = dspi->devtype_data->trans_mode;
 783		switch (trans_mode) {
 784		case DSPI_EOQ_MODE:
 785			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_EOQFE);
 786			dspi_eoq_write(dspi);
 787			break;
 788		case DSPI_TCFQ_MODE:
 789			regmap_write(dspi->regmap, SPI_RSER, SPI_RSER_TCFQE);
 790			dspi_tcfq_write(dspi);
 791			break;
 792		case DSPI_DMA_MODE:
 793			regmap_write(dspi->regmap, SPI_RSER,
 794				     SPI_RSER_TFFFE | SPI_RSER_TFFFD |
 795				     SPI_RSER_RFDFE | SPI_RSER_RFDFD);
 796			status = dspi_dma_xfer(dspi);
 797			break;
 798		default:
 799			dev_err(&dspi->pdev->dev, "unsupported trans_mode %u\n",
 800				trans_mode);
 801			status = -EINVAL;
 802			goto out;
 803		}
 804
 805		if (!dspi->irq) {
 806			do {
 807				status = dspi_poll(dspi);
 808			} while (status == -EINPROGRESS);
 809		} else if (trans_mode != DSPI_DMA_MODE) {
 810			status = wait_event_interruptible(dspi->waitq,
 811							  dspi->waitflags);
 812			dspi->waitflags = 0;
 813		}
 814		if (status)
 815			dev_err(&dspi->pdev->dev,
 816				"Waiting for transfer to complete failed!\n");
 817
 818		if (transfer->delay_usecs)
 819			udelay(transfer->delay_usecs);
 820	}
 821
 822out:
 823	message->status = status;
 824	spi_finalize_current_message(ctlr);
 825
 826	return status;
 827}
 828
 829static int dspi_setup(struct spi_device *spi)
 830{
 831	struct fsl_dspi *dspi = spi_controller_get_devdata(spi->controller);
 
 
 832	unsigned char br = 0, pbr = 0, pcssck = 0, cssck = 0;
 833	u32 cs_sck_delay = 0, sck_cs_delay = 0;
 834	struct fsl_dspi_platform_data *pdata;
 835	unsigned char pasc = 0, asc = 0;
 836	struct chip_data *chip;
 837	unsigned long clkrate;
 838
 
 
 
 
 
 
 
 839	/* Only alloc on first setup */
 840	chip = spi_get_ctldata(spi);
 841	if (chip == NULL) {
 842		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
 843		if (!chip)
 844			return -ENOMEM;
 845	}
 846
 847	pdata = dev_get_platdata(&dspi->pdev->dev);
 
 848
 849	if (!pdata) {
 850		of_property_read_u32(spi->dev.of_node, "fsl,spi-cs-sck-delay",
 851				     &cs_sck_delay);
 852
 853		of_property_read_u32(spi->dev.of_node, "fsl,spi-sck-cs-delay",
 854				     &sck_cs_delay);
 855	} else {
 856		cs_sck_delay = pdata->cs_sck_delay;
 857		sck_cs_delay = pdata->sck_cs_delay;
 858	}
 859
 860	chip->void_write_data = 0;
 861
 862	clkrate = clk_get_rate(dspi->clk);
 863	hz_to_spi_baud(&pbr, &br, spi->max_speed_hz, clkrate);
 864
 865	/* Set PCS to SCK delay scale values */
 866	ns_delay_scale(&pcssck, &cssck, cs_sck_delay, clkrate);
 867
 868	/* Set After SCK delay scale values */
 869	ns_delay_scale(&pasc, &asc, sck_cs_delay, clkrate);
 870
 871	chip->ctar_val = 0;
 872	if (spi->mode & SPI_CPOL)
 873		chip->ctar_val |= SPI_CTAR_CPOL;
 874	if (spi->mode & SPI_CPHA)
 875		chip->ctar_val |= SPI_CTAR_CPHA;
 876
 877	if (!spi_controller_is_slave(dspi->ctlr)) {
 878		chip->ctar_val |= SPI_CTAR_PCSSCK(pcssck) |
 879				  SPI_CTAR_CSSCK(cssck) |
 880				  SPI_CTAR_PASC(pasc) |
 881				  SPI_CTAR_ASC(asc) |
 882				  SPI_CTAR_PBR(pbr) |
 883				  SPI_CTAR_BR(br);
 884
 885		if (spi->mode & SPI_LSB_FIRST)
 886			chip->ctar_val |= SPI_CTAR_LSBFE;
 887	}
 888
 889	spi_set_ctldata(spi, chip);
 890
 891	return 0;
 892}
 893
 894static void dspi_cleanup(struct spi_device *spi)
 895{
 896	struct chip_data *chip = spi_get_ctldata((struct spi_device *)spi);
 897
 898	dev_dbg(&spi->dev, "spi_device %u.%u cleanup\n",
 899		spi->controller->bus_num, spi->chip_select);
 900
 901	kfree(chip);
 902}
 903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904static const struct of_device_id fsl_dspi_dt_ids[] = {
 905	{ .compatible = "fsl,vf610-dspi", .data = &vf610_data, },
 906	{ .compatible = "fsl,ls1021a-v1.0-dspi", .data = &ls1021a_v1_data, },
 907	{ .compatible = "fsl,ls2085a-dspi", .data = &ls2085a_data, },
 
 908	{ /* sentinel */ }
 909};
 910MODULE_DEVICE_TABLE(of, fsl_dspi_dt_ids);
 911
 912#ifdef CONFIG_PM_SLEEP
 913static int dspi_suspend(struct device *dev)
 914{
 915	struct spi_controller *ctlr = dev_get_drvdata(dev);
 916	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 917
 918	spi_controller_suspend(ctlr);
 919	clk_disable_unprepare(dspi->clk);
 920
 921	pinctrl_pm_select_sleep_state(dev);
 922
 923	return 0;
 924}
 925
 926static int dspi_resume(struct device *dev)
 927{
 928	struct spi_controller *ctlr = dev_get_drvdata(dev);
 929	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
 930	int ret;
 931
 932	pinctrl_pm_select_default_state(dev);
 933
 934	ret = clk_prepare_enable(dspi->clk);
 935	if (ret)
 936		return ret;
 937	spi_controller_resume(ctlr);
 938
 939	return 0;
 940}
 941#endif /* CONFIG_PM_SLEEP */
 942
 943static SIMPLE_DEV_PM_OPS(dspi_pm, dspi_suspend, dspi_resume);
 944
 945static const struct regmap_range dspi_volatile_ranges[] = {
 946	regmap_reg_range(SPI_MCR, SPI_TCR),
 947	regmap_reg_range(SPI_SR, SPI_SR),
 948	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
 949};
 950
 951static const struct regmap_access_table dspi_volatile_table = {
 952	.yes_ranges	= dspi_volatile_ranges,
 953	.n_yes_ranges	= ARRAY_SIZE(dspi_volatile_ranges),
 954};
 955
 956static const struct regmap_config dspi_regmap_config = {
 957	.reg_bits	= 32,
 958	.val_bits	= 32,
 959	.reg_stride	= 4,
 960	.max_register	= 0x88,
 961	.volatile_table	= &dspi_volatile_table,
 962};
 963
 964static const struct regmap_range dspi_xspi_volatile_ranges[] = {
 965	regmap_reg_range(SPI_MCR, SPI_TCR),
 966	regmap_reg_range(SPI_SR, SPI_SR),
 967	regmap_reg_range(SPI_PUSHR, SPI_RXFR3),
 968	regmap_reg_range(SPI_SREX, SPI_SREX),
 969};
 970
 971static const struct regmap_access_table dspi_xspi_volatile_table = {
 972	.yes_ranges	= dspi_xspi_volatile_ranges,
 973	.n_yes_ranges	= ARRAY_SIZE(dspi_xspi_volatile_ranges),
 974};
 975
 976static const struct regmap_config dspi_xspi_regmap_config[] = {
 977	{
 978		.reg_bits	= 32,
 979		.val_bits	= 32,
 980		.reg_stride	= 4,
 981		.max_register	= 0x13c,
 982		.volatile_table	= &dspi_xspi_volatile_table,
 983	},
 984	{
 985		.name		= "pushr",
 986		.reg_bits	= 16,
 987		.val_bits	= 16,
 988		.reg_stride	= 2,
 989		.max_register	= 0x2,
 990	},
 991};
 992
 993static void dspi_init(struct fsl_dspi *dspi)
 994{
 995	unsigned int mcr = SPI_MCR_PCSIS;
 996
 997	if (dspi->devtype_data->xspi_mode)
 998		mcr |= SPI_MCR_XSPI;
 999	if (!spi_controller_is_slave(dspi->ctlr))
1000		mcr |= SPI_MCR_MASTER;
1001
1002	regmap_write(dspi->regmap, SPI_MCR, mcr);
1003	regmap_write(dspi->regmap, SPI_SR, SPI_SR_CLEAR);
1004	if (dspi->devtype_data->xspi_mode)
1005		regmap_write(dspi->regmap, SPI_CTARE(0),
1006			     SPI_CTARE_FMSZE(0) | SPI_CTARE_DTCP(1));
1007}
1008
1009static int dspi_probe(struct platform_device *pdev)
1010{
1011	struct device_node *np = pdev->dev.of_node;
1012	const struct regmap_config *regmap_config;
1013	struct fsl_dspi_platform_data *pdata;
1014	struct spi_controller *ctlr;
1015	int ret, cs_num, bus_num;
1016	struct fsl_dspi *dspi;
1017	struct resource *res;
1018	void __iomem *base;
 
1019
1020	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct fsl_dspi));
1021	if (!ctlr)
1022		return -ENOMEM;
1023
1024	dspi = spi_controller_get_devdata(ctlr);
1025	dspi->pdev = pdev;
1026	dspi->ctlr = ctlr;
1027
1028	ctlr->setup = dspi_setup;
1029	ctlr->transfer_one_message = dspi_transfer_one_message;
1030	ctlr->dev.of_node = pdev->dev.of_node;
 
 
 
 
 
 
1031
1032	ctlr->cleanup = dspi_cleanup;
1033	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
 
 
 
 
1034
1035	pdata = dev_get_platdata(&pdev->dev);
1036	if (pdata) {
1037		ctlr->num_chipselect = pdata->cs_num;
1038		ctlr->bus_num = pdata->bus_num;
1039
1040		dspi->devtype_data = &coldfire_data;
1041	} else {
1042
1043		ret = of_property_read_u32(np, "spi-num-chipselects", &cs_num);
1044		if (ret < 0) {
1045			dev_err(&pdev->dev, "can't get spi-num-chipselects\n");
1046			goto out_ctlr_put;
1047		}
1048		ctlr->num_chipselect = cs_num;
1049
1050		ret = of_property_read_u32(np, "bus-num", &bus_num);
1051		if (ret < 0) {
1052			dev_err(&pdev->dev, "can't get bus-num\n");
1053			goto out_ctlr_put;
1054		}
1055		ctlr->bus_num = bus_num;
1056
1057		if (of_property_read_bool(np, "spi-slave"))
1058			ctlr->slave = true;
1059
1060		dspi->devtype_data = of_device_get_match_data(&pdev->dev);
1061		if (!dspi->devtype_data) {
1062			dev_err(&pdev->dev, "can't get devtype_data\n");
1063			ret = -EFAULT;
1064			goto out_ctlr_put;
1065		}
1066	}
1067
1068	if (dspi->devtype_data->xspi_mode)
1069		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1070	else
1071		ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1072
1073	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1074	base = devm_ioremap_resource(&pdev->dev, res);
1075	if (IS_ERR(base)) {
1076		ret = PTR_ERR(base);
1077		goto out_ctlr_put;
1078	}
1079
1080	if (dspi->devtype_data->xspi_mode)
1081		regmap_config = &dspi_xspi_regmap_config[0];
1082	else
1083		regmap_config = &dspi_regmap_config;
1084	dspi->regmap = devm_regmap_init_mmio(&pdev->dev, base, regmap_config);
1085	if (IS_ERR(dspi->regmap)) {
1086		dev_err(&pdev->dev, "failed to init regmap: %ld\n",
1087				PTR_ERR(dspi->regmap));
1088		ret = PTR_ERR(dspi->regmap);
1089		goto out_ctlr_put;
 
 
 
 
 
 
 
1090	}
1091
1092	if (dspi->devtype_data->xspi_mode) {
1093		dspi->regmap_pushr = devm_regmap_init_mmio(
1094			&pdev->dev, base + SPI_PUSHR,
1095			&dspi_xspi_regmap_config[1]);
1096		if (IS_ERR(dspi->regmap_pushr)) {
1097			dev_err(&pdev->dev,
1098				"failed to init pushr regmap: %ld\n",
1099				PTR_ERR(dspi->regmap_pushr));
1100			ret = PTR_ERR(dspi->regmap_pushr);
1101			goto out_ctlr_put;
1102		}
1103	}
1104
1105	dspi->clk = devm_clk_get(&pdev->dev, "dspi");
1106	if (IS_ERR(dspi->clk)) {
1107		ret = PTR_ERR(dspi->clk);
1108		dev_err(&pdev->dev, "unable to get clock\n");
1109		goto out_ctlr_put;
1110	}
1111	ret = clk_prepare_enable(dspi->clk);
1112	if (ret)
1113		goto out_ctlr_put;
1114
1115	dspi_init(dspi);
1116
1117	dspi->irq = platform_get_irq(pdev, 0);
1118	if (dspi->irq <= 0) {
1119		dev_info(&pdev->dev,
1120			 "can't get platform irq, using poll mode\n");
1121		dspi->irq = 0;
1122		goto poll_mode;
1123	}
1124
1125	ret = devm_request_irq(&pdev->dev, dspi->irq, dspi_interrupt,
1126			       IRQF_SHARED, pdev->name, dspi);
1127	if (ret < 0) {
1128		dev_err(&pdev->dev, "Unable to attach DSPI interrupt\n");
1129		goto out_clk_put;
1130	}
1131
1132	init_waitqueue_head(&dspi->waitq);
1133
1134poll_mode:
1135	if (dspi->devtype_data->trans_mode == DSPI_DMA_MODE) {
1136		ret = dspi_request_dma(dspi, res->start);
1137		if (ret < 0) {
1138			dev_err(&pdev->dev, "can't get dma channels\n");
1139			goto out_clk_put;
1140		}
1141	}
1142
1143	ctlr->max_speed_hz =
1144		clk_get_rate(dspi->clk) / dspi->devtype_data->max_clock_factor;
1145
1146	platform_set_drvdata(pdev, ctlr);
 
1147
1148	ret = spi_register_controller(ctlr);
1149	if (ret != 0) {
1150		dev_err(&pdev->dev, "Problem registering DSPI ctlr\n");
1151		goto out_clk_put;
1152	}
1153
1154	return ret;
1155
1156out_clk_put:
1157	clk_disable_unprepare(dspi->clk);
1158out_ctlr_put:
1159	spi_controller_put(ctlr);
1160
1161	return ret;
1162}
1163
1164static int dspi_remove(struct platform_device *pdev)
1165{
1166	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1167	struct fsl_dspi *dspi = spi_controller_get_devdata(ctlr);
1168
1169	/* Disconnect from the SPI framework */
1170	dspi_release_dma(dspi);
1171	clk_disable_unprepare(dspi->clk);
1172	spi_unregister_controller(dspi->ctlr);
1173
1174	return 0;
1175}
1176
1177static struct platform_driver fsl_dspi_driver = {
1178	.driver.name		= DRIVER_NAME,
1179	.driver.of_match_table	= fsl_dspi_dt_ids,
1180	.driver.owner		= THIS_MODULE,
1181	.driver.pm		= &dspi_pm,
1182	.probe			= dspi_probe,
1183	.remove			= dspi_remove,
1184};
1185module_platform_driver(fsl_dspi_driver);
1186
1187MODULE_DESCRIPTION("Freescale DSPI Controller Driver");
1188MODULE_LICENSE("GPL");
1189MODULE_ALIAS("platform:" DRIVER_NAME);