Loading...
1/*
2 * arch/arm/include/asm/pgtable-3level.h
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * Author: Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20#ifndef _ASM_PGTABLE_3LEVEL_H
21#define _ASM_PGTABLE_3LEVEL_H
22
23/*
24 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
25 * 8 bytes each, occupying a 4K page. The first level table covers a range of
26 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
27 * address range, only 4 entries in the PGD are used.
28 *
29 * There are enough spare bits in a page table entry for the kernel specific
30 * state.
31 */
32#define PTRS_PER_PTE 512
33#define PTRS_PER_PMD 512
34#define PTRS_PER_PGD 4
35
36#define PTE_HWTABLE_PTRS (0)
37#define PTE_HWTABLE_OFF (0)
38#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
39
40/*
41 * PGDIR_SHIFT determines the size a top-level page table entry can map.
42 */
43#define PGDIR_SHIFT 30
44
45/*
46 * PMD_SHIFT determines the size a middle-level page table entry can map.
47 */
48#define PMD_SHIFT 21
49
50#define PMD_SIZE (1UL << PMD_SHIFT)
51#define PMD_MASK (~((1 << PMD_SHIFT) - 1))
52#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
53#define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1))
54
55/*
56 * section address mask and size definitions.
57 */
58#define SECTION_SHIFT 21
59#define SECTION_SIZE (1UL << SECTION_SHIFT)
60#define SECTION_MASK (~((1 << SECTION_SHIFT) - 1))
61
62#define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
63
64/*
65 * Hugetlb definitions.
66 */
67#define HPAGE_SHIFT PMD_SHIFT
68#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
69#define HPAGE_MASK (~(HPAGE_SIZE - 1))
70#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
71
72/*
73 * "Linux" PTE definitions for LPAE.
74 *
75 * These bits overlap with the hardware bits but the naming is preserved for
76 * consistency with the classic page table format.
77 */
78#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
79#define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
80#define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
81#define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
82#define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
83#define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
84#define L_PTE_DIRTY (_AT(pteval_t, 1) << 55)
85#define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56)
86#define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
87#define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */
88
89#define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
90#define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
91#define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
92#define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
93
94/*
95 * To be used in assembly code with the upper page attributes.
96 */
97#define L_PTE_XN_HIGH (1 << (54 - 32))
98#define L_PTE_DIRTY_HIGH (1 << (55 - 32))
99
100/*
101 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
102 */
103#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
104#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
105#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
106#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
107#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
108#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
109#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
110#define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
111#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
112#define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
113
114/*
115 * Software PGD flags.
116 */
117#define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
118
119/*
120 * 2nd stage PTE definitions for LPAE.
121 */
122#define L_PTE_S2_MT_UNCACHED (_AT(pteval_t, 0x0) << 2) /* strongly ordered */
123#define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* normal inner write-through */
124#define L_PTE_S2_MT_WRITEBACK (_AT(pteval_t, 0xf) << 2) /* normal inner write-back */
125#define L_PTE_S2_MT_DEV_SHARED (_AT(pteval_t, 0x1) << 2) /* device */
126#define L_PTE_S2_MT_MASK (_AT(pteval_t, 0xf) << 2)
127
128#define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */
129#define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
130
131#define L_PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[1] */
132#define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
133
134/*
135 * Hyp-mode PL2 PTE definitions for LPAE.
136 */
137#define L_PTE_HYP L_PTE_USER
138
139#ifndef __ASSEMBLY__
140
141#define pud_none(pud) (!pud_val(pud))
142#define pud_bad(pud) (!(pud_val(pud) & 2))
143#define pud_present(pud) (pud_val(pud))
144#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
145 PMD_TYPE_TABLE)
146#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
147 PMD_TYPE_SECT)
148#define pmd_large(pmd) pmd_sect(pmd)
149
150#define pud_clear(pudp) \
151 do { \
152 *pudp = __pud(0); \
153 clean_pmd_entry(pudp); \
154 } while (0)
155
156#define set_pud(pudp, pud) \
157 do { \
158 *pudp = pud; \
159 flush_pmd_entry(pudp); \
160 } while (0)
161
162static inline pmd_t *pud_page_vaddr(pud_t pud)
163{
164 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
165}
166
167/* Find an entry in the second-level page table.. */
168#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
169static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
170{
171 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
172}
173
174#define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
175
176#define copy_pmd(pmdpd,pmdps) \
177 do { \
178 *pmdpd = *pmdps; \
179 flush_pmd_entry(pmdpd); \
180 } while (0)
181
182#define pmd_clear(pmdp) \
183 do { \
184 *pmdp = __pmd(0); \
185 clean_pmd_entry(pmdp); \
186 } while (0)
187
188/*
189 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
190 * that are written to a page table but not for ptes created with mk_pte.
191 *
192 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
193 * hugetlb_cow, where it is compared with an entry in a page table.
194 * This comparison test fails erroneously leading ultimately to a memory leak.
195 *
196 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
197 * present before running the comparison.
198 */
199#define __HAVE_ARCH_PTE_SAME
200#define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
201 : pte_val(pte_a)) \
202 == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
203 : pte_val(pte_b)))
204
205#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
206
207#define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
208#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
209
210#define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \
211 : !!(pmd_val(pmd) & (val)))
212#define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
213
214#define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
215#define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
216#define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
217static inline pte_t pte_mkspecial(pte_t pte)
218{
219 pte_val(pte) |= L_PTE_SPECIAL;
220 return pte;
221}
222#define __HAVE_ARCH_PTE_SPECIAL
223
224#define __HAVE_ARCH_PMD_WRITE
225#define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY))
226#define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY))
227#define pud_page(pud) pmd_page(__pmd(pud_val(pud)))
228#define pud_write(pud) pmd_write(__pmd(pud_val(pud)))
229
230#define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd))
231#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
232
233#ifdef CONFIG_TRANSPARENT_HUGEPAGE
234#define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
235#endif
236
237#define PMD_BIT_FUNC(fn,op) \
238static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
239
240PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
241PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
242PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY);
243PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
244PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
245PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
246
247#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
248
249#define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
250#define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
251#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
252
253/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
254static inline pmd_t pmd_mknotpresent(pmd_t pmd)
255{
256 return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
257}
258
259static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
260{
261 const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
262 L_PMD_SECT_VALID | L_PMD_SECT_NONE;
263 pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
264 return pmd;
265}
266
267static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
268 pmd_t *pmdp, pmd_t pmd)
269{
270 BUG_ON(addr >= TASK_SIZE);
271
272 /* create a faulting entry if PROT_NONE protected */
273 if (pmd_val(pmd) & L_PMD_SECT_NONE)
274 pmd_val(pmd) &= ~L_PMD_SECT_VALID;
275
276 if (pmd_write(pmd) && pmd_dirty(pmd))
277 pmd_val(pmd) &= ~PMD_SECT_AP2;
278 else
279 pmd_val(pmd) |= PMD_SECT_AP2;
280
281 *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
282 flush_pmd_entry(pmdp);
283}
284
285#endif /* __ASSEMBLY__ */
286
287#endif /* _ASM_PGTABLE_3LEVEL_H */
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * arch/arm/include/asm/pgtable-3level.h
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * Author: Catalin Marinas <catalin.marinas@arm.com>
7 */
8#ifndef _ASM_PGTABLE_3LEVEL_H
9#define _ASM_PGTABLE_3LEVEL_H
10
11/*
12 * With LPAE, there are 3 levels of page tables. Each level has 512 entries of
13 * 8 bytes each, occupying a 4K page. The first level table covers a range of
14 * 512GB, each entry representing 1GB. Since we are limited to 4GB input
15 * address range, only 4 entries in the PGD are used.
16 *
17 * There are enough spare bits in a page table entry for the kernel specific
18 * state.
19 */
20#define PTRS_PER_PTE 512
21#define PTRS_PER_PMD 512
22#define PTRS_PER_PGD 4
23
24#define PTE_HWTABLE_PTRS (0)
25#define PTE_HWTABLE_OFF (0)
26#define PTE_HWTABLE_SIZE (PTRS_PER_PTE * sizeof(u64))
27
28/*
29 * PGDIR_SHIFT determines the size a top-level page table entry can map.
30 */
31#define PGDIR_SHIFT 30
32
33/*
34 * PMD_SHIFT determines the size a middle-level page table entry can map.
35 */
36#define PMD_SHIFT 21
37
38#define PMD_SIZE (1UL << PMD_SHIFT)
39#define PMD_MASK (~((1 << PMD_SHIFT) - 1))
40#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
41#define PGDIR_MASK (~((1 << PGDIR_SHIFT) - 1))
42
43/*
44 * section address mask and size definitions.
45 */
46#define SECTION_SHIFT 21
47#define SECTION_SIZE (1UL << SECTION_SHIFT)
48#define SECTION_MASK (~((1 << SECTION_SHIFT) - 1))
49
50#define USER_PTRS_PER_PGD (PAGE_OFFSET / PGDIR_SIZE)
51
52/*
53 * Hugetlb definitions.
54 */
55#define HPAGE_SHIFT PMD_SHIFT
56#define HPAGE_SIZE (_AC(1, UL) << HPAGE_SHIFT)
57#define HPAGE_MASK (~(HPAGE_SIZE - 1))
58#define HUGETLB_PAGE_ORDER (HPAGE_SHIFT - PAGE_SHIFT)
59
60/*
61 * "Linux" PTE definitions for LPAE.
62 *
63 * These bits overlap with the hardware bits but the naming is preserved for
64 * consistency with the classic page table format.
65 */
66#define L_PTE_VALID (_AT(pteval_t, 1) << 0) /* Valid */
67#define L_PTE_PRESENT (_AT(pteval_t, 3) << 0) /* Present */
68#define L_PTE_USER (_AT(pteval_t, 1) << 6) /* AP[1] */
69#define L_PTE_SHARED (_AT(pteval_t, 3) << 8) /* SH[1:0], inner shareable */
70#define L_PTE_YOUNG (_AT(pteval_t, 1) << 10) /* AF */
71#define L_PTE_XN (_AT(pteval_t, 1) << 54) /* XN */
72#define L_PTE_DIRTY (_AT(pteval_t, 1) << 55)
73#define L_PTE_SPECIAL (_AT(pteval_t, 1) << 56)
74#define L_PTE_NONE (_AT(pteval_t, 1) << 57) /* PROT_NONE */
75#define L_PTE_RDONLY (_AT(pteval_t, 1) << 58) /* READ ONLY */
76
77#define L_PMD_SECT_VALID (_AT(pmdval_t, 1) << 0)
78#define L_PMD_SECT_DIRTY (_AT(pmdval_t, 1) << 55)
79#define L_PMD_SECT_NONE (_AT(pmdval_t, 1) << 57)
80#define L_PMD_SECT_RDONLY (_AT(pteval_t, 1) << 58)
81
82/*
83 * To be used in assembly code with the upper page attributes.
84 */
85#define L_PTE_XN_HIGH (1 << (54 - 32))
86#define L_PTE_DIRTY_HIGH (1 << (55 - 32))
87
88/*
89 * AttrIndx[2:0] encoding (mapping attributes defined in the MAIR* registers).
90 */
91#define L_PTE_MT_UNCACHED (_AT(pteval_t, 0) << 2) /* strongly ordered */
92#define L_PTE_MT_BUFFERABLE (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
93#define L_PTE_MT_WRITETHROUGH (_AT(pteval_t, 2) << 2) /* normal inner write-through */
94#define L_PTE_MT_WRITEBACK (_AT(pteval_t, 3) << 2) /* normal inner write-back */
95#define L_PTE_MT_WRITEALLOC (_AT(pteval_t, 7) << 2) /* normal inner write-alloc */
96#define L_PTE_MT_DEV_SHARED (_AT(pteval_t, 4) << 2) /* device */
97#define L_PTE_MT_DEV_NONSHARED (_AT(pteval_t, 4) << 2) /* device */
98#define L_PTE_MT_DEV_WC (_AT(pteval_t, 1) << 2) /* normal non-cacheable */
99#define L_PTE_MT_DEV_CACHED (_AT(pteval_t, 3) << 2) /* normal inner write-back */
100#define L_PTE_MT_MASK (_AT(pteval_t, 7) << 2)
101
102/*
103 * Software PGD flags.
104 */
105#define L_PGD_SWAPPER (_AT(pgdval_t, 1) << 55) /* swapper_pg_dir entry */
106
107/*
108 * 2nd stage PTE definitions for LPAE.
109 */
110#define L_PTE_S2_MT_UNCACHED (_AT(pteval_t, 0x0) << 2) /* strongly ordered */
111#define L_PTE_S2_MT_WRITETHROUGH (_AT(pteval_t, 0xa) << 2) /* normal inner write-through */
112#define L_PTE_S2_MT_WRITEBACK (_AT(pteval_t, 0xf) << 2) /* normal inner write-back */
113#define L_PTE_S2_MT_DEV_SHARED (_AT(pteval_t, 0x1) << 2) /* device */
114#define L_PTE_S2_MT_MASK (_AT(pteval_t, 0xf) << 2)
115
116#define L_PTE_S2_RDONLY (_AT(pteval_t, 1) << 6) /* HAP[1] */
117#define L_PTE_S2_RDWR (_AT(pteval_t, 3) << 6) /* HAP[2:1] */
118
119#define L_PMD_S2_RDONLY (_AT(pmdval_t, 1) << 6) /* HAP[1] */
120#define L_PMD_S2_RDWR (_AT(pmdval_t, 3) << 6) /* HAP[2:1] */
121
122/*
123 * Hyp-mode PL2 PTE definitions for LPAE.
124 */
125#define L_PTE_HYP L_PTE_USER
126
127#ifndef __ASSEMBLY__
128
129#define pud_none(pud) (!pud_val(pud))
130#define pud_bad(pud) (!(pud_val(pud) & 2))
131#define pud_present(pud) (pud_val(pud))
132#define pmd_table(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
133 PMD_TYPE_TABLE)
134#define pmd_sect(pmd) ((pmd_val(pmd) & PMD_TYPE_MASK) == \
135 PMD_TYPE_SECT)
136#define pmd_large(pmd) pmd_sect(pmd)
137
138#define pud_clear(pudp) \
139 do { \
140 *pudp = __pud(0); \
141 clean_pmd_entry(pudp); \
142 } while (0)
143
144#define set_pud(pudp, pud) \
145 do { \
146 *pudp = pud; \
147 flush_pmd_entry(pudp); \
148 } while (0)
149
150static inline pmd_t *pud_page_vaddr(pud_t pud)
151{
152 return __va(pud_val(pud) & PHYS_MASK & (s32)PAGE_MASK);
153}
154
155/* Find an entry in the second-level page table.. */
156#define pmd_index(addr) (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1))
157static inline pmd_t *pmd_offset(pud_t *pud, unsigned long addr)
158{
159 return (pmd_t *)pud_page_vaddr(*pud) + pmd_index(addr);
160}
161
162#define pmd_bad(pmd) (!(pmd_val(pmd) & 2))
163
164#define copy_pmd(pmdpd,pmdps) \
165 do { \
166 *pmdpd = *pmdps; \
167 flush_pmd_entry(pmdpd); \
168 } while (0)
169
170#define pmd_clear(pmdp) \
171 do { \
172 *pmdp = __pmd(0); \
173 clean_pmd_entry(pmdp); \
174 } while (0)
175
176/*
177 * For 3 levels of paging the PTE_EXT_NG bit will be set for user address ptes
178 * that are written to a page table but not for ptes created with mk_pte.
179 *
180 * In hugetlb_no_page, a new huge pte (new_pte) is generated and passed to
181 * hugetlb_cow, where it is compared with an entry in a page table.
182 * This comparison test fails erroneously leading ultimately to a memory leak.
183 *
184 * To correct this behaviour, we mask off PTE_EXT_NG for any pte that is
185 * present before running the comparison.
186 */
187#define __HAVE_ARCH_PTE_SAME
188#define pte_same(pte_a,pte_b) ((pte_present(pte_a) ? pte_val(pte_a) & ~PTE_EXT_NG \
189 : pte_val(pte_a)) \
190 == (pte_present(pte_b) ? pte_val(pte_b) & ~PTE_EXT_NG \
191 : pte_val(pte_b)))
192
193#define set_pte_ext(ptep,pte,ext) cpu_set_pte_ext(ptep,__pte(pte_val(pte)|(ext)))
194
195#define pte_huge(pte) (pte_val(pte) && !(pte_val(pte) & PTE_TABLE_BIT))
196#define pte_mkhuge(pte) (__pte(pte_val(pte) & ~PTE_TABLE_BIT))
197
198#define pmd_isset(pmd, val) ((u32)(val) == (val) ? pmd_val(pmd) & (val) \
199 : !!(pmd_val(pmd) & (val)))
200#define pmd_isclear(pmd, val) (!(pmd_val(pmd) & (val)))
201
202#define pmd_present(pmd) (pmd_isset((pmd), L_PMD_SECT_VALID))
203#define pmd_young(pmd) (pmd_isset((pmd), PMD_SECT_AF))
204#define pte_special(pte) (pte_isset((pte), L_PTE_SPECIAL))
205static inline pte_t pte_mkspecial(pte_t pte)
206{
207 pte_val(pte) |= L_PTE_SPECIAL;
208 return pte;
209}
210
211#define pmd_write(pmd) (pmd_isclear((pmd), L_PMD_SECT_RDONLY))
212#define pmd_dirty(pmd) (pmd_isset((pmd), L_PMD_SECT_DIRTY))
213#define pud_page(pud) pmd_page(__pmd(pud_val(pud)))
214#define pud_write(pud) pmd_write(__pmd(pud_val(pud)))
215
216#define pmd_hugewillfault(pmd) (!pmd_young(pmd) || !pmd_write(pmd))
217#define pmd_thp_or_huge(pmd) (pmd_huge(pmd) || pmd_trans_huge(pmd))
218
219#ifdef CONFIG_TRANSPARENT_HUGEPAGE
220#define pmd_trans_huge(pmd) (pmd_val(pmd) && !pmd_table(pmd))
221#endif
222
223#define PMD_BIT_FUNC(fn,op) \
224static inline pmd_t pmd_##fn(pmd_t pmd) { pmd_val(pmd) op; return pmd; }
225
226PMD_BIT_FUNC(wrprotect, |= L_PMD_SECT_RDONLY);
227PMD_BIT_FUNC(mkold, &= ~PMD_SECT_AF);
228PMD_BIT_FUNC(mkwrite, &= ~L_PMD_SECT_RDONLY);
229PMD_BIT_FUNC(mkdirty, |= L_PMD_SECT_DIRTY);
230PMD_BIT_FUNC(mkclean, &= ~L_PMD_SECT_DIRTY);
231PMD_BIT_FUNC(mkyoung, |= PMD_SECT_AF);
232
233#define pmd_mkhuge(pmd) (__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
234
235#define pmd_pfn(pmd) (((pmd_val(pmd) & PMD_MASK) & PHYS_MASK) >> PAGE_SHIFT)
236#define pfn_pmd(pfn,prot) (__pmd(((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot)))
237#define mk_pmd(page,prot) pfn_pmd(page_to_pfn(page),prot)
238
239/* No hardware dirty/accessed bits -- generic_pmdp_establish() fits */
240#define pmdp_establish generic_pmdp_establish
241
242/* represent a notpresent pmd by faulting entry, this is used by pmdp_invalidate */
243static inline pmd_t pmd_mknotpresent(pmd_t pmd)
244{
245 return __pmd(pmd_val(pmd) & ~L_PMD_SECT_VALID);
246}
247
248static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
249{
250 const pmdval_t mask = PMD_SECT_USER | PMD_SECT_XN | L_PMD_SECT_RDONLY |
251 L_PMD_SECT_VALID | L_PMD_SECT_NONE;
252 pmd_val(pmd) = (pmd_val(pmd) & ~mask) | (pgprot_val(newprot) & mask);
253 return pmd;
254}
255
256static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
257 pmd_t *pmdp, pmd_t pmd)
258{
259 BUG_ON(addr >= TASK_SIZE);
260
261 /* create a faulting entry if PROT_NONE protected */
262 if (pmd_val(pmd) & L_PMD_SECT_NONE)
263 pmd_val(pmd) &= ~L_PMD_SECT_VALID;
264
265 if (pmd_write(pmd) && pmd_dirty(pmd))
266 pmd_val(pmd) &= ~PMD_SECT_AP2;
267 else
268 pmd_val(pmd) |= PMD_SECT_AP2;
269
270 *pmdp = __pmd(pmd_val(pmd) | PMD_SECT_nG);
271 flush_pmd_entry(pmdp);
272}
273
274#endif /* __ASSEMBLY__ */
275
276#endif /* _ASM_PGTABLE_3LEVEL_H */