Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * kernel/lockdep.c
   3 *
   4 * Runtime locking correctness validator
   5 *
   6 * Started by Ingo Molnar:
   7 *
   8 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   9 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  10 *
  11 * this code maps all the lock dependencies as they occur in a live kernel
  12 * and will warn about the following classes of locking bugs:
  13 *
  14 * - lock inversion scenarios
  15 * - circular lock dependencies
  16 * - hardirq/softirq safe/unsafe locking bugs
  17 *
  18 * Bugs are reported even if the current locking scenario does not cause
  19 * any deadlock at this point.
  20 *
  21 * I.e. if anytime in the past two locks were taken in a different order,
  22 * even if it happened for another task, even if those were different
  23 * locks (but of the same class as this lock), this code will detect it.
  24 *
  25 * Thanks to Arjan van de Ven for coming up with the initial idea of
  26 * mapping lock dependencies runtime.
  27 */
  28#define DISABLE_BRANCH_PROFILING
  29#include <linux/mutex.h>
  30#include <linux/sched.h>
 
 
 
  31#include <linux/delay.h>
  32#include <linux/module.h>
  33#include <linux/proc_fs.h>
  34#include <linux/seq_file.h>
  35#include <linux/spinlock.h>
  36#include <linux/kallsyms.h>
  37#include <linux/interrupt.h>
  38#include <linux/stacktrace.h>
  39#include <linux/debug_locks.h>
  40#include <linux/irqflags.h>
  41#include <linux/utsname.h>
  42#include <linux/hash.h>
  43#include <linux/ftrace.h>
  44#include <linux/stringify.h>
 
  45#include <linux/bitops.h>
  46#include <linux/gfp.h>
  47#include <linux/kmemcheck.h>
  48#include <linux/random.h>
  49#include <linux/jhash.h>
 
 
 
 
  50
  51#include <asm/sections.h>
  52
  53#include "lockdep_internals.h"
  54
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/lock.h>
  57
  58#ifdef CONFIG_PROVE_LOCKING
  59int prove_locking = 1;
  60module_param(prove_locking, int, 0644);
  61#else
  62#define prove_locking 0
  63#endif
  64
  65#ifdef CONFIG_LOCK_STAT
  66int lock_stat = 1;
  67module_param(lock_stat, int, 0644);
  68#else
  69#define lock_stat 0
  70#endif
  71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72/*
  73 * lockdep_lock: protects the lockdep graph, the hashes and the
  74 *               class/list/hash allocators.
  75 *
  76 * This is one of the rare exceptions where it's justified
  77 * to use a raw spinlock - we really dont want the spinlock
  78 * code to recurse back into the lockdep code...
  79 */
  80static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82static int graph_lock(void)
  83{
  84	arch_spin_lock(&lockdep_lock);
  85	/*
  86	 * Make sure that if another CPU detected a bug while
  87	 * walking the graph we dont change it (while the other
  88	 * CPU is busy printing out stuff with the graph lock
  89	 * dropped already)
  90	 */
  91	if (!debug_locks) {
  92		arch_spin_unlock(&lockdep_lock);
  93		return 0;
  94	}
  95	/* prevent any recursions within lockdep from causing deadlocks */
  96	current->lockdep_recursion++;
  97	return 1;
  98}
  99
 100static inline int graph_unlock(void)
 101{
 102	if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
 103		/*
 104		 * The lockdep graph lock isn't locked while we expect it to
 105		 * be, we're confused now, bye!
 106		 */
 107		return DEBUG_LOCKS_WARN_ON(1);
 108	}
 109
 110	current->lockdep_recursion--;
 111	arch_spin_unlock(&lockdep_lock);
 112	return 0;
 113}
 114
 115/*
 116 * Turn lock debugging off and return with 0 if it was off already,
 117 * and also release the graph lock:
 118 */
 119static inline int debug_locks_off_graph_unlock(void)
 120{
 121	int ret = debug_locks_off();
 122
 123	arch_spin_unlock(&lockdep_lock);
 124
 125	return ret;
 126}
 127
 128unsigned long nr_list_entries;
 129static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 
 130
 131/*
 132 * All data structures here are protected by the global debug_lock.
 133 *
 134 * Mutex key structs only get allocated, once during bootup, and never
 135 * get freed - this significantly simplifies the debugging code.
 136 */
 
 
 
 137unsigned long nr_lock_classes;
 138static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 
 
 
 
 
 139
 140static inline struct lock_class *hlock_class(struct held_lock *hlock)
 141{
 142	if (!hlock->class_idx) {
 
 
 
 
 
 143		/*
 144		 * Someone passed in garbage, we give up.
 145		 */
 146		DEBUG_LOCKS_WARN_ON(1);
 147		return NULL;
 148	}
 149	return lock_classes + hlock->class_idx - 1;
 
 
 
 
 
 150}
 151
 152#ifdef CONFIG_LOCK_STAT
 153static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 154
 155static inline u64 lockstat_clock(void)
 156{
 157	return local_clock();
 158}
 159
 160static int lock_point(unsigned long points[], unsigned long ip)
 161{
 162	int i;
 163
 164	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 165		if (points[i] == 0) {
 166			points[i] = ip;
 167			break;
 168		}
 169		if (points[i] == ip)
 170			break;
 171	}
 172
 173	return i;
 174}
 175
 176static void lock_time_inc(struct lock_time *lt, u64 time)
 177{
 178	if (time > lt->max)
 179		lt->max = time;
 180
 181	if (time < lt->min || !lt->nr)
 182		lt->min = time;
 183
 184	lt->total += time;
 185	lt->nr++;
 186}
 187
 188static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 189{
 190	if (!src->nr)
 191		return;
 192
 193	if (src->max > dst->max)
 194		dst->max = src->max;
 195
 196	if (src->min < dst->min || !dst->nr)
 197		dst->min = src->min;
 198
 199	dst->total += src->total;
 200	dst->nr += src->nr;
 201}
 202
 203struct lock_class_stats lock_stats(struct lock_class *class)
 204{
 205	struct lock_class_stats stats;
 206	int cpu, i;
 207
 208	memset(&stats, 0, sizeof(struct lock_class_stats));
 209	for_each_possible_cpu(cpu) {
 210		struct lock_class_stats *pcs =
 211			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 212
 213		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 214			stats.contention_point[i] += pcs->contention_point[i];
 215
 216		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 217			stats.contending_point[i] += pcs->contending_point[i];
 218
 219		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 220		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 221
 222		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 223		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 224
 225		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 226			stats.bounces[i] += pcs->bounces[i];
 227	}
 228
 229	return stats;
 230}
 231
 232void clear_lock_stats(struct lock_class *class)
 233{
 234	int cpu;
 235
 236	for_each_possible_cpu(cpu) {
 237		struct lock_class_stats *cpu_stats =
 238			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 239
 240		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 241	}
 242	memset(class->contention_point, 0, sizeof(class->contention_point));
 243	memset(class->contending_point, 0, sizeof(class->contending_point));
 244}
 245
 246static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 247{
 248	return &get_cpu_var(cpu_lock_stats)[class - lock_classes];
 249}
 250
 251static void put_lock_stats(struct lock_class_stats *stats)
 252{
 253	put_cpu_var(cpu_lock_stats);
 254}
 255
 256static void lock_release_holdtime(struct held_lock *hlock)
 257{
 258	struct lock_class_stats *stats;
 259	u64 holdtime;
 260
 261	if (!lock_stat)
 262		return;
 263
 264	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 265
 266	stats = get_lock_stats(hlock_class(hlock));
 267	if (hlock->read)
 268		lock_time_inc(&stats->read_holdtime, holdtime);
 269	else
 270		lock_time_inc(&stats->write_holdtime, holdtime);
 271	put_lock_stats(stats);
 272}
 273#else
 274static inline void lock_release_holdtime(struct held_lock *hlock)
 275{
 276}
 277#endif
 278
 279/*
 280 * We keep a global list of all lock classes. The list only grows,
 281 * never shrinks. The list is only accessed with the lockdep
 282 * spinlock lock held.
 
 283 */
 284LIST_HEAD(all_lock_classes);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 285
 286/*
 287 * The lockdep classes are in a hash-table as well, for fast lookup:
 288 */
 289#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 290#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 291#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 292#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 293
 294static struct hlist_head classhash_table[CLASSHASH_SIZE];
 295
 296/*
 297 * We put the lock dependency chains into a hash-table as well, to cache
 298 * their existence:
 299 */
 300#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 301#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 302#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 303#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 304
 305static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 306
 307/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308 * The hash key of the lock dependency chains is a hash itself too:
 309 * it's a hash of all locks taken up to that lock, including that lock.
 310 * It's a 64-bit hash, because it's important for the keys to be
 311 * unique.
 312 */
 313static inline u64 iterate_chain_key(u64 key, u32 idx)
 314{
 315	u32 k0 = key, k1 = key >> 32;
 316
 317	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 318
 319	return k0 | (u64)k1 << 32;
 320}
 321
 322void lockdep_off(void)
 
 
 
 
 
 
 
 
 
 
 
 
 323{
 324	current->lockdep_recursion++;
 
 325}
 326EXPORT_SYMBOL(lockdep_off);
 327
 328void lockdep_on(void)
 329{
 330	current->lockdep_recursion--;
 331}
 332EXPORT_SYMBOL(lockdep_on);
 333
 334/*
 335 * Debugging switches:
 336 */
 337
 338#define VERBOSE			0
 339#define VERY_VERBOSE		0
 340
 341#if VERBOSE
 342# define HARDIRQ_VERBOSE	1
 343# define SOFTIRQ_VERBOSE	1
 344# define RECLAIM_VERBOSE	1
 345#else
 346# define HARDIRQ_VERBOSE	0
 347# define SOFTIRQ_VERBOSE	0
 348# define RECLAIM_VERBOSE	0
 349#endif
 350
 351#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE
 352/*
 353 * Quick filtering for interesting events:
 354 */
 355static int class_filter(struct lock_class *class)
 356{
 357#if 0
 358	/* Example */
 359	if (class->name_version == 1 &&
 360			!strcmp(class->name, "lockname"))
 361		return 1;
 362	if (class->name_version == 1 &&
 363			!strcmp(class->name, "&struct->lockfield"))
 364		return 1;
 365#endif
 366	/* Filter everything else. 1 would be to allow everything else */
 367	return 0;
 368}
 369#endif
 370
 371static int verbose(struct lock_class *class)
 372{
 373#if VERBOSE
 374	return class_filter(class);
 375#endif
 376	return 0;
 377}
 378
 379/*
 380 * Stack-trace: tightly packed array of stack backtrace
 381 * addresses. Protected by the graph_lock.
 382 */
 383unsigned long nr_stack_trace_entries;
 384static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 385
 386static void print_lockdep_off(const char *bug_msg)
 387{
 388	printk(KERN_DEBUG "%s\n", bug_msg);
 389	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 390#ifdef CONFIG_LOCK_STAT
 391	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 392#endif
 393}
 394
 395static int save_trace(struct stack_trace *trace)
 396{
 397	trace->nr_entries = 0;
 398	trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
 399	trace->entries = stack_trace + nr_stack_trace_entries;
 400
 401	trace->skip = 3;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 402
 403	save_stack_trace(trace);
 
 
 
 
 
 404
 405	/*
 406	 * Some daft arches put -1 at the end to indicate its a full trace.
 407	 *
 408	 * <rant> this is buggy anyway, since it takes a whole extra entry so a
 409	 * complete trace that maxes out the entries provided will be reported
 410	 * as incomplete, friggin useless </rant>
 411	 */
 412	if (trace->nr_entries != 0 &&
 413	    trace->entries[trace->nr_entries-1] == ULONG_MAX)
 414		trace->nr_entries--;
 415
 416	trace->max_entries = trace->nr_entries;
 
 417
 418	nr_stack_trace_entries += trace->nr_entries;
 
 
 419
 420	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
 421		if (!debug_locks_off_graph_unlock())
 422			return 0;
 423
 424		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 425		dump_stack();
 426
 427		return 0;
 428	}
 
 429
 430	return 1;
 
 
 
 
 
 
 
 
 
 
 
 431}
 432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 433unsigned int nr_hardirq_chains;
 434unsigned int nr_softirq_chains;
 435unsigned int nr_process_chains;
 436unsigned int max_lockdep_depth;
 437
 438#ifdef CONFIG_DEBUG_LOCKDEP
 439/*
 440 * Various lockdep statistics:
 441 */
 442DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 443#endif
 444
 
 445/*
 446 * Locking printouts:
 447 */
 448
 449#define __USAGE(__STATE)						\
 450	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 451	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 452	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 453	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 454
 455static const char *usage_str[] =
 456{
 457#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 458#include "lockdep_states.h"
 459#undef LOCKDEP_STATE
 460	[LOCK_USED] = "INITIAL USE",
 
 
 
 461};
 
 462
 463const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
 464{
 465	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 466}
 467
 468static inline unsigned long lock_flag(enum lock_usage_bit bit)
 469{
 470	return 1UL << bit;
 471}
 472
 473static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 474{
 
 
 
 
 475	char c = '.';
 476
 477	if (class->usage_mask & lock_flag(bit + 2))
 
 
 
 
 
 
 
 
 478		c = '+';
 479	if (class->usage_mask & lock_flag(bit)) {
 480		c = '-';
 481		if (class->usage_mask & lock_flag(bit + 2))
 482			c = '?';
 483	}
 
 484
 485	return c;
 486}
 487
 488void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 489{
 490	int i = 0;
 491
 492#define LOCKDEP_STATE(__STATE) 						\
 493	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 494	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 495#include "lockdep_states.h"
 496#undef LOCKDEP_STATE
 497
 498	usage[i] = '\0';
 499}
 500
 501static void __print_lock_name(struct lock_class *class)
 502{
 503	char str[KSYM_NAME_LEN];
 504	const char *name;
 505
 506	name = class->name;
 507	if (!name) {
 508		name = __get_key_name(class->key, str);
 509		printk(KERN_CONT "%s", name);
 510	} else {
 511		printk(KERN_CONT "%s", name);
 512		if (class->name_version > 1)
 513			printk(KERN_CONT "#%d", class->name_version);
 514		if (class->subclass)
 515			printk(KERN_CONT "/%d", class->subclass);
 516	}
 517}
 518
 519static void print_lock_name(struct lock_class *class)
 520{
 521	char usage[LOCK_USAGE_CHARS];
 522
 523	get_usage_chars(class, usage);
 524
 525	printk(KERN_CONT " (");
 526	__print_lock_name(class);
 527	printk(KERN_CONT "){%s}", usage);
 
 
 528}
 529
 530static void print_lockdep_cache(struct lockdep_map *lock)
 531{
 532	const char *name;
 533	char str[KSYM_NAME_LEN];
 534
 535	name = lock->name;
 536	if (!name)
 537		name = __get_key_name(lock->key->subkeys, str);
 538
 539	printk(KERN_CONT "%s", name);
 540}
 541
 542static void print_lock(struct held_lock *hlock)
 543{
 544	/*
 545	 * We can be called locklessly through debug_show_all_locks() so be
 546	 * extra careful, the hlock might have been released and cleared.
 
 
 
 
 
 
 547	 */
 548	unsigned int class_idx = hlock->class_idx;
 549
 550	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfields: */
 551	barrier();
 552
 553	if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) {
 554		printk(KERN_CONT "<RELEASED>\n");
 555		return;
 556	}
 557
 558	print_lock_name(lock_classes + class_idx - 1);
 559	printk(KERN_CONT ", at: [<%p>] %pS\n",
 560		(void *)hlock->acquire_ip, (void *)hlock->acquire_ip);
 561}
 562
 563static void lockdep_print_held_locks(struct task_struct *curr)
 564{
 565	int i, depth = curr->lockdep_depth;
 566
 567	if (!depth) {
 568		printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
 
 
 
 
 
 
 
 
 569		return;
 570	}
 571	printk("%d lock%s held by %s/%d:\n",
 572		depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
 573
 574	for (i = 0; i < depth; i++) {
 575		printk(" #%d: ", i);
 576		print_lock(curr->held_locks + i);
 577	}
 578}
 579
 580static void print_kernel_ident(void)
 581{
 582	printk("%s %.*s %s\n", init_utsname()->release,
 583		(int)strcspn(init_utsname()->version, " "),
 584		init_utsname()->version,
 585		print_tainted());
 586}
 587
 588static int very_verbose(struct lock_class *class)
 589{
 590#if VERY_VERBOSE
 591	return class_filter(class);
 592#endif
 593	return 0;
 594}
 595
 596/*
 597 * Is this the address of a static object:
 598 */
 599#ifdef __KERNEL__
 600static int static_obj(void *obj)
 601{
 602	unsigned long start = (unsigned long) &_stext,
 603		      end   = (unsigned long) &_end,
 604		      addr  = (unsigned long) obj;
 605
 
 
 
 606	/*
 607	 * static variable?
 608	 */
 609	if ((addr >= start) && (addr < end))
 610		return 1;
 611
 612	if (arch_is_kernel_data(addr))
 613		return 1;
 614
 615	/*
 616	 * in-kernel percpu var?
 617	 */
 618	if (is_kernel_percpu_address(addr))
 619		return 1;
 620
 621	/*
 622	 * module static or percpu var?
 623	 */
 624	return is_module_address(addr) || is_module_percpu_address(addr);
 625}
 626#endif
 627
 628/*
 629 * To make lock name printouts unique, we calculate a unique
 630 * class->name_version generation counter:
 
 631 */
 632static int count_matching_names(struct lock_class *new_class)
 633{
 634	struct lock_class *class;
 635	int count = 0;
 636
 637	if (!new_class->name)
 638		return 0;
 639
 640	list_for_each_entry_rcu(class, &all_lock_classes, lock_entry) {
 641		if (new_class->key - new_class->subclass == class->key)
 642			return class->name_version;
 643		if (class->name && !strcmp(class->name, new_class->name))
 644			count = max(count, class->name_version);
 645	}
 646
 647	return count + 1;
 648}
 649
 650/*
 651 * Register a lock's class in the hash-table, if the class is not present
 652 * yet. Otherwise we look it up. We cache the result in the lock object
 653 * itself, so actual lookup of the hash should be once per lock object.
 654 */
 655static inline struct lock_class *
 656look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
 657{
 658	struct lockdep_subclass_key *key;
 659	struct hlist_head *hash_head;
 660	struct lock_class *class;
 661
 662	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 
 663		debug_locks_off();
 664		printk(KERN_ERR
 665			"BUG: looking up invalid subclass: %u\n", subclass);
 666		printk(KERN_ERR
 667			"turning off the locking correctness validator.\n");
 668		dump_stack();
 
 669		return NULL;
 670	}
 671
 672	/*
 673	 * Static locks do not have their class-keys yet - for them the key
 674	 * is the lock object itself:
 675	 */
 676	if (unlikely(!lock->key))
 677		lock->key = (void *)lock;
 678
 679	/*
 680	 * NOTE: the class-key must be unique. For dynamic locks, a static
 681	 * lock_class_key variable is passed in through the mutex_init()
 682	 * (or spin_lock_init()) call - which acts as the key. For static
 683	 * locks we use the lock object itself as the key.
 684	 */
 685	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 686			sizeof(struct lockdep_map));
 687
 688	key = lock->key->subkeys + subclass;
 689
 690	hash_head = classhashentry(key);
 691
 692	/*
 693	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 694	 */
 695	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 696		return NULL;
 697
 698	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
 699		if (class->key == key) {
 700			/*
 701			 * Huh! same key, different name? Did someone trample
 702			 * on some memory? We're most confused.
 703			 */
 704			WARN_ON_ONCE(class->name != lock->name);
 
 705			return class;
 706		}
 707	}
 708
 709	return NULL;
 710}
 711
 712/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713 * Register a lock's class in the hash-table, if the class is not present
 714 * yet. Otherwise we look it up. We cache the result in the lock object
 715 * itself, so actual lookup of the hash should be once per lock object.
 716 */
 717static struct lock_class *
 718register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
 719{
 720	struct lockdep_subclass_key *key;
 721	struct hlist_head *hash_head;
 722	struct lock_class *class;
 723
 724	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 725
 726	class = look_up_lock_class(lock, subclass);
 727	if (likely(class))
 728		goto out_set_class_cache;
 729
 730	/*
 731	 * Debug-check: all keys must be persistent!
 732 	 */
 733	if (!static_obj(lock->key)) {
 734		debug_locks_off();
 735		printk("INFO: trying to register non-static key.\n");
 736		printk("the code is fine but needs lockdep annotation.\n");
 737		printk("turning off the locking correctness validator.\n");
 738		dump_stack();
 739
 740		return NULL;
 741	}
 742
 743	key = lock->key->subkeys + subclass;
 744	hash_head = classhashentry(key);
 745
 746	if (!graph_lock()) {
 747		return NULL;
 748	}
 749	/*
 750	 * We have to do the hash-walk again, to avoid races
 751	 * with another CPU:
 752	 */
 753	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
 754		if (class->key == key)
 755			goto out_unlock_set;
 756	}
 757
 758	/*
 759	 * Allocate a new key from the static array, and add it to
 760	 * the hash:
 761	 */
 762	if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
 
 763		if (!debug_locks_off_graph_unlock()) {
 764			return NULL;
 765		}
 766
 767		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
 768		dump_stack();
 769		return NULL;
 770	}
 771	class = lock_classes + nr_lock_classes++;
 
 772	debug_atomic_inc(nr_unused_locks);
 773	class->key = key;
 774	class->name = lock->name;
 775	class->subclass = subclass;
 776	INIT_LIST_HEAD(&class->lock_entry);
 777	INIT_LIST_HEAD(&class->locks_before);
 778	INIT_LIST_HEAD(&class->locks_after);
 779	class->name_version = count_matching_names(class);
 
 
 
 780	/*
 781	 * We use RCU's safe list-add method to make
 782	 * parallel walking of the hash-list safe:
 783	 */
 784	hlist_add_head_rcu(&class->hash_entry, hash_head);
 785	/*
 786	 * Add it to the global list of classes:
 
 787	 */
 788	list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
 789
 790	if (verbose(class)) {
 791		graph_unlock();
 792
 793		printk("\nnew class %p: %s", class->key, class->name);
 794		if (class->name_version > 1)
 795			printk(KERN_CONT "#%d", class->name_version);
 796		printk(KERN_CONT "\n");
 797		dump_stack();
 798
 799		if (!graph_lock()) {
 800			return NULL;
 801		}
 802	}
 803out_unlock_set:
 804	graph_unlock();
 805
 806out_set_class_cache:
 807	if (!subclass || force)
 808		lock->class_cache[0] = class;
 809	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
 810		lock->class_cache[subclass] = class;
 811
 812	/*
 813	 * Hash collision, did we smoke some? We found a class with a matching
 814	 * hash but the subclass -- which is hashed in -- didn't match.
 815	 */
 816	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
 817		return NULL;
 818
 819	return class;
 820}
 821
 822#ifdef CONFIG_PROVE_LOCKING
 823/*
 824 * Allocate a lockdep entry. (assumes the graph_lock held, returns
 825 * with NULL on failure)
 826 */
 827static struct lock_list *alloc_list_entry(void)
 828{
 829	if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
 
 
 
 830		if (!debug_locks_off_graph_unlock())
 831			return NULL;
 832
 833		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
 834		dump_stack();
 835		return NULL;
 836	}
 837	return list_entries + nr_list_entries++;
 
 
 838}
 839
 840/*
 841 * Add a new dependency to the head of the list:
 842 */
 843static int add_lock_to_list(struct lock_class *this, struct list_head *head,
 844			    unsigned long ip, int distance,
 845			    struct stack_trace *trace)
 
 846{
 847	struct lock_list *entry;
 848	/*
 849	 * Lock not present yet - get a new dependency struct and
 850	 * add it to the list:
 851	 */
 852	entry = alloc_list_entry();
 853	if (!entry)
 854		return 0;
 855
 856	entry->class = this;
 
 
 857	entry->distance = distance;
 858	entry->trace = *trace;
 859	/*
 860	 * Both allocation and removal are done under the graph lock; but
 861	 * iteration is under RCU-sched; see look_up_lock_class() and
 862	 * lockdep_free_key_range().
 863	 */
 864	list_add_tail_rcu(&entry->entry, head);
 865
 866	return 1;
 867}
 868
 869/*
 870 * For good efficiency of modular, we use power of 2
 871 */
 872#define MAX_CIRCULAR_QUEUE_SIZE		4096UL
 873#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
 874
 875/*
 876 * The circular_queue and helpers is used to implement the
 877 * breadth-first search(BFS)algorithem, by which we can build
 878 * the shortest path from the next lock to be acquired to the
 879 * previous held lock if there is a circular between them.
 
 
 
 
 880 */
 881struct circular_queue {
 882	unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
 883	unsigned int  front, rear;
 884};
 885
 886static struct circular_queue lock_cq;
 887
 888unsigned int max_bfs_queue_depth;
 889
 890static unsigned int lockdep_dependency_gen_id;
 891
 892static inline void __cq_init(struct circular_queue *cq)
 893{
 894	cq->front = cq->rear = 0;
 895	lockdep_dependency_gen_id++;
 896}
 897
 898static inline int __cq_empty(struct circular_queue *cq)
 899{
 900	return (cq->front == cq->rear);
 901}
 902
 903static inline int __cq_full(struct circular_queue *cq)
 904{
 905	return ((cq->rear + 1) & CQ_MASK) == cq->front;
 906}
 907
 908static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
 909{
 910	if (__cq_full(cq))
 911		return -1;
 912
 913	cq->element[cq->rear] = elem;
 914	cq->rear = (cq->rear + 1) & CQ_MASK;
 915	return 0;
 916}
 917
 918static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
 
 
 
 
 919{
 
 
 920	if (__cq_empty(cq))
 921		return -1;
 922
 923	*elem = cq->element[cq->front];
 924	cq->front = (cq->front + 1) & CQ_MASK;
 925	return 0;
 
 926}
 927
 928static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
 929{
 930	return (cq->rear - cq->front) & CQ_MASK;
 931}
 932
 933static inline void mark_lock_accessed(struct lock_list *lock,
 934					struct lock_list *parent)
 935{
 936	unsigned long nr;
 
 937
 938	nr = lock - list_entries;
 939	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
 
 940	lock->parent = parent;
 941	lock->class->dep_gen_id = lockdep_dependency_gen_id;
 942}
 943
 944static inline unsigned long lock_accessed(struct lock_list *lock)
 945{
 946	unsigned long nr;
 947
 948	nr = lock - list_entries;
 949	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
 950	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
 951}
 952
 953static inline struct lock_list *get_lock_parent(struct lock_list *child)
 954{
 955	return child->parent;
 956}
 957
 958static inline int get_lock_depth(struct lock_list *child)
 959{
 960	int depth = 0;
 961	struct lock_list *parent;
 962
 963	while ((parent = get_lock_parent(child))) {
 964		child = parent;
 965		depth++;
 966	}
 967	return depth;
 968}
 969
 970static int __bfs(struct lock_list *source_entry,
 971		 void *data,
 972		 int (*match)(struct lock_list *entry, void *data),
 973		 struct lock_list **target_entry,
 974		 int forward)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976	struct lock_list *entry;
 977	struct list_head *head;
 978	struct circular_queue *cq = &lock_cq;
 979	int ret = 1;
 980
 981	if (match(source_entry, data)) {
 982		*target_entry = source_entry;
 983		ret = 0;
 984		goto exit;
 985	}
 986
 987	if (forward)
 988		head = &source_entry->class->locks_after;
 989	else
 990		head = &source_entry->class->locks_before;
 991
 992	if (list_empty(head))
 993		goto exit;
 
 994
 995	__cq_init(cq);
 996	__cq_enqueue(cq, (unsigned long)source_entry);
 
 
 
 
 
 
 
 
 
 
 
 997
 998	while (!__cq_empty(cq)) {
 999		struct lock_list *lock;
 
 
 
 
 
1000
1001		__cq_dequeue(cq, (unsigned long *)&lock);
 
 
 
 
 
 
 
 
 
 
1002
1003		if (!lock->class) {
1004			ret = -2;
1005			goto exit;
1006		}
1007
1008		if (forward)
1009			head = &lock->class->locks_after;
1010		else
1011			head = &lock->class->locks_before;
 
 
 
 
1012
1013		DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 
 
 
1014
 
 
 
 
 
 
 
1015		list_for_each_entry_rcu(entry, head, entry) {
1016			if (!lock_accessed(entry)) {
1017				unsigned int cq_depth;
1018				mark_lock_accessed(entry, lock);
1019				if (match(entry, data)) {
1020					*target_entry = entry;
1021					ret = 0;
1022					goto exit;
1023				}
1024
1025				if (__cq_enqueue(cq, (unsigned long)entry)) {
1026					ret = -1;
1027					goto exit;
1028				}
1029				cq_depth = __cq_get_elem_count(cq);
1030				if (max_bfs_queue_depth < cq_depth)
1031					max_bfs_queue_depth = cq_depth;
1032			}
 
 
 
 
 
 
 
 
 
1033		}
1034	}
1035exit:
1036	return ret;
1037}
1038
1039static inline int __bfs_forwards(struct lock_list *src_entry,
1040			void *data,
1041			int (*match)(struct lock_list *entry, void *data),
1042			struct lock_list **target_entry)
 
 
1043{
1044	return __bfs(src_entry, data, match, target_entry, 1);
 
1045
1046}
1047
1048static inline int __bfs_backwards(struct lock_list *src_entry,
1049			void *data,
1050			int (*match)(struct lock_list *entry, void *data),
1051			struct lock_list **target_entry)
 
 
1052{
1053	return __bfs(src_entry, data, match, target_entry, 0);
 
1054
1055}
1056
1057/*
1058 * Recursive, forwards-direction lock-dependency checking, used for
1059 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1060 * checking.
1061 */
1062
1063/*
1064 * Print a dependency chain entry (this is only done when a deadlock
1065 * has been detected):
1066 */
1067static noinline int
1068print_circular_bug_entry(struct lock_list *target, int depth)
1069{
1070	if (debug_locks_silent)
1071		return 0;
1072	printk("\n-> #%u", depth);
1073	print_lock_name(target->class);
1074	printk(KERN_CONT ":\n");
1075	print_stack_trace(&target->trace, 6);
1076
1077	return 0;
1078}
1079
1080static void
1081print_circular_lock_scenario(struct held_lock *src,
1082			     struct held_lock *tgt,
1083			     struct lock_list *prt)
1084{
1085	struct lock_class *source = hlock_class(src);
1086	struct lock_class *target = hlock_class(tgt);
1087	struct lock_class *parent = prt->class;
1088
1089	/*
1090	 * A direct locking problem where unsafe_class lock is taken
1091	 * directly by safe_class lock, then all we need to show
1092	 * is the deadlock scenario, as it is obvious that the
1093	 * unsafe lock is taken under the safe lock.
1094	 *
1095	 * But if there is a chain instead, where the safe lock takes
1096	 * an intermediate lock (middle_class) where this lock is
1097	 * not the same as the safe lock, then the lock chain is
1098	 * used to describe the problem. Otherwise we would need
1099	 * to show a different CPU case for each link in the chain
1100	 * from the safe_class lock to the unsafe_class lock.
1101	 */
1102	if (parent != source) {
1103		printk("Chain exists of:\n  ");
1104		__print_lock_name(source);
1105		printk(KERN_CONT " --> ");
1106		__print_lock_name(parent);
1107		printk(KERN_CONT " --> ");
1108		__print_lock_name(target);
1109		printk(KERN_CONT "\n\n");
1110	}
1111
1112	printk(" Possible unsafe locking scenario:\n\n");
1113	printk("       CPU0                    CPU1\n");
1114	printk("       ----                    ----\n");
1115	printk("  lock(");
1116	__print_lock_name(target);
1117	printk(KERN_CONT ");\n");
1118	printk("                               lock(");
1119	__print_lock_name(parent);
1120	printk(KERN_CONT ");\n");
1121	printk("                               lock(");
1122	__print_lock_name(target);
1123	printk(KERN_CONT ");\n");
1124	printk("  lock(");
1125	__print_lock_name(source);
1126	printk(KERN_CONT ");\n");
1127	printk("\n *** DEADLOCK ***\n\n");
1128}
1129
1130/*
1131 * When a circular dependency is detected, print the
1132 * header first:
1133 */
1134static noinline int
1135print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1136			struct held_lock *check_src,
1137			struct held_lock *check_tgt)
1138{
1139	struct task_struct *curr = current;
1140
1141	if (debug_locks_silent)
1142		return 0;
1143
1144	printk("\n");
1145	printk("======================================================\n");
1146	printk("[ INFO: possible circular locking dependency detected ]\n");
1147	print_kernel_ident();
1148	printk("-------------------------------------------------------\n");
1149	printk("%s/%d is trying to acquire lock:\n",
1150		curr->comm, task_pid_nr(curr));
1151	print_lock(check_src);
1152	printk("\nbut task is already holding lock:\n");
 
 
1153	print_lock(check_tgt);
1154	printk("\nwhich lock already depends on the new lock.\n\n");
1155	printk("\nthe existing dependency chain (in reverse order) is:\n");
1156
1157	print_circular_bug_entry(entry, depth);
 
1158
1159	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160}
1161
1162static inline int class_equal(struct lock_list *entry, void *data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163{
1164	return entry->class == data;
 
 
 
 
1165}
1166
1167static noinline int print_circular_bug(struct lock_list *this,
1168				struct lock_list *target,
1169				struct held_lock *check_src,
1170				struct held_lock *check_tgt)
1171{
1172	struct task_struct *curr = current;
1173	struct lock_list *parent;
1174	struct lock_list *first_parent;
1175	int depth;
1176
1177	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1178		return 0;
1179
1180	if (!save_trace(&this->trace))
1181		return 0;
 
1182
1183	depth = get_lock_depth(target);
1184
1185	print_circular_bug_header(target, depth, check_src, check_tgt);
1186
1187	parent = get_lock_parent(target);
1188	first_parent = parent;
1189
1190	while (parent) {
1191		print_circular_bug_entry(parent, --depth);
1192		parent = get_lock_parent(parent);
1193	}
1194
1195	printk("\nother info that might help us debug this:\n\n");
1196	print_circular_lock_scenario(check_src, check_tgt,
1197				     first_parent);
1198
1199	lockdep_print_held_locks(curr);
1200
1201	printk("\nstack backtrace:\n");
1202	dump_stack();
1203
1204	return 0;
1205}
1206
1207static noinline int print_bfs_bug(int ret)
1208{
1209	if (!debug_locks_off_graph_unlock())
1210		return 0;
1211
1212	/*
1213	 * Breadth-first-search failed, graph got corrupted?
1214	 */
1215	WARN(1, "lockdep bfs error:%d\n", ret);
1216
1217	return 0;
1218}
1219
1220static int noop_count(struct lock_list *entry, void *data)
1221{
1222	(*(unsigned long *)data)++;
1223	return 0;
1224}
1225
1226static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1227{
1228	unsigned long  count = 0;
1229	struct lock_list *uninitialized_var(target_entry);
1230
1231	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1232
1233	return count;
1234}
1235unsigned long lockdep_count_forward_deps(struct lock_class *class)
1236{
1237	unsigned long ret, flags;
1238	struct lock_list this;
1239
1240	this.parent = NULL;
1241	this.class = class;
1242
1243	local_irq_save(flags);
1244	arch_spin_lock(&lockdep_lock);
1245	ret = __lockdep_count_forward_deps(&this);
1246	arch_spin_unlock(&lockdep_lock);
1247	local_irq_restore(flags);
1248
1249	return ret;
1250}
1251
1252static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1253{
1254	unsigned long  count = 0;
1255	struct lock_list *uninitialized_var(target_entry);
1256
1257	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1258
1259	return count;
1260}
1261
1262unsigned long lockdep_count_backward_deps(struct lock_class *class)
1263{
1264	unsigned long ret, flags;
1265	struct lock_list this;
1266
1267	this.parent = NULL;
1268	this.class = class;
1269
1270	local_irq_save(flags);
1271	arch_spin_lock(&lockdep_lock);
1272	ret = __lockdep_count_backward_deps(&this);
1273	arch_spin_unlock(&lockdep_lock);
1274	local_irq_restore(flags);
1275
1276	return ret;
1277}
1278
1279/*
1280 * Prove that the dependency graph starting at <entry> can not
1281 * lead to <target>. Print an error and return 0 if it does.
1282 */
1283static noinline int
1284check_noncircular(struct lock_list *root, struct lock_class *target,
1285		struct lock_list **target_entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286{
1287	int result;
 
 
 
 
1288
1289	debug_atomic_inc(nr_cyclic_checks);
1290
1291	result = __bfs_forwards(root, target, class_equal, target_entry);
1292
1293	return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
1294}
1295
1296#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
 
1297/*
1298 * Forwards and backwards subgraph searching, for the purposes of
1299 * proving that two subgraphs can be connected by a new dependency
1300 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1301 */
 
 
 
 
 
 
1302
1303static inline int usage_match(struct lock_list *entry, void *bit)
 
 
 
 
 
 
 
 
 
 
 
 
1304{
1305	return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
 
 
 
1306}
1307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1308
 
 
 
 
 
1309
1310/*
1311 * Find a node in the forwards-direction dependency sub-graph starting
1312 * at @root->class that matches @bit.
1313 *
1314 * Return 0 if such a node exists in the subgraph, and put that node
1315 * into *@target_entry.
1316 *
1317 * Return 1 otherwise and keep *@target_entry unchanged.
1318 * Return <0 on error.
1319 */
1320static int
1321find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1322			struct lock_list **target_entry)
1323{
1324	int result;
1325
1326	debug_atomic_inc(nr_find_usage_forwards_checks);
1327
1328	result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1329
1330	return result;
1331}
1332
1333/*
1334 * Find a node in the backwards-direction dependency sub-graph starting
1335 * at @root->class that matches @bit.
1336 *
1337 * Return 0 if such a node exists in the subgraph, and put that node
1338 * into *@target_entry.
1339 *
1340 * Return 1 otherwise and keep *@target_entry unchanged.
1341 * Return <0 on error.
1342 */
1343static int
1344find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1345			struct lock_list **target_entry)
1346{
1347	int result;
1348
1349	debug_atomic_inc(nr_find_usage_backwards_checks);
1350
1351	result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1352
1353	return result;
1354}
1355
1356static void print_lock_class_header(struct lock_class *class, int depth)
1357{
1358	int bit;
1359
1360	printk("%*s->", depth, "");
1361	print_lock_name(class);
1362	printk(KERN_CONT " ops: %lu", class->ops);
 
 
1363	printk(KERN_CONT " {\n");
1364
1365	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1366		if (class->usage_mask & (1 << bit)) {
1367			int len = depth;
1368
1369			len += printk("%*s   %s", depth, "", usage_str[bit]);
1370			len += printk(KERN_CONT " at:\n");
1371			print_stack_trace(class->usage_traces + bit, len);
1372		}
1373	}
1374	printk("%*s }\n", depth, "");
1375
1376	printk("%*s ... key      at: [<%p>] %pS\n",
1377		depth, "", class->key, class->key);
1378}
1379
1380/*
1381 * printk the shortest lock dependencies from @start to @end in reverse order:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382 */
1383static void __used
1384print_shortest_lock_dependencies(struct lock_list *leaf,
1385				struct lock_list *root)
1386{
1387	struct lock_list *entry = leaf;
1388	int depth;
1389
1390	/*compute depth from generated tree by BFS*/
1391	depth = get_lock_depth(leaf);
1392
1393	do {
1394		print_lock_class_header(entry->class, depth);
1395		printk("%*s ... acquired at:\n", depth, "");
1396		print_stack_trace(&entry->trace, 2);
1397		printk("\n");
1398
1399		if (depth == 0 && (entry != root)) {
1400			printk("lockdep:%s bad path found in chain graph\n", __func__);
1401			break;
1402		}
1403
1404		entry = get_lock_parent(entry);
1405		depth--;
1406	} while (entry && (depth >= 0));
 
1407
1408	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409}
1410
1411static void
1412print_irq_lock_scenario(struct lock_list *safe_entry,
1413			struct lock_list *unsafe_entry,
1414			struct lock_class *prev_class,
1415			struct lock_class *next_class)
1416{
1417	struct lock_class *safe_class = safe_entry->class;
1418	struct lock_class *unsafe_class = unsafe_entry->class;
1419	struct lock_class *middle_class = prev_class;
1420
1421	if (middle_class == safe_class)
1422		middle_class = next_class;
1423
1424	/*
1425	 * A direct locking problem where unsafe_class lock is taken
1426	 * directly by safe_class lock, then all we need to show
1427	 * is the deadlock scenario, as it is obvious that the
1428	 * unsafe lock is taken under the safe lock.
1429	 *
1430	 * But if there is a chain instead, where the safe lock takes
1431	 * an intermediate lock (middle_class) where this lock is
1432	 * not the same as the safe lock, then the lock chain is
1433	 * used to describe the problem. Otherwise we would need
1434	 * to show a different CPU case for each link in the chain
1435	 * from the safe_class lock to the unsafe_class lock.
1436	 */
1437	if (middle_class != unsafe_class) {
1438		printk("Chain exists of:\n  ");
1439		__print_lock_name(safe_class);
1440		printk(KERN_CONT " --> ");
1441		__print_lock_name(middle_class);
1442		printk(KERN_CONT " --> ");
1443		__print_lock_name(unsafe_class);
1444		printk(KERN_CONT "\n\n");
1445	}
1446
1447	printk(" Possible interrupt unsafe locking scenario:\n\n");
1448	printk("       CPU0                    CPU1\n");
1449	printk("       ----                    ----\n");
1450	printk("  lock(");
1451	__print_lock_name(unsafe_class);
1452	printk(KERN_CONT ");\n");
1453	printk("                               local_irq_disable();\n");
1454	printk("                               lock(");
1455	__print_lock_name(safe_class);
1456	printk(KERN_CONT ");\n");
1457	printk("                               lock(");
1458	__print_lock_name(middle_class);
1459	printk(KERN_CONT ");\n");
1460	printk("  <Interrupt>\n");
1461	printk("    lock(");
1462	__print_lock_name(safe_class);
1463	printk(KERN_CONT ");\n");
1464	printk("\n *** DEADLOCK ***\n\n");
1465}
1466
1467static int
1468print_bad_irq_dependency(struct task_struct *curr,
1469			 struct lock_list *prev_root,
1470			 struct lock_list *next_root,
1471			 struct lock_list *backwards_entry,
1472			 struct lock_list *forwards_entry,
1473			 struct held_lock *prev,
1474			 struct held_lock *next,
1475			 enum lock_usage_bit bit1,
1476			 enum lock_usage_bit bit2,
1477			 const char *irqclass)
1478{
1479	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1480		return 0;
1481
1482	printk("\n");
1483	printk("======================================================\n");
1484	printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n",
1485		irqclass, irqclass);
1486	print_kernel_ident();
1487	printk("------------------------------------------------------\n");
1488	printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1489		curr->comm, task_pid_nr(curr),
1490		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1491		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1492		curr->hardirqs_enabled,
1493		curr->softirqs_enabled);
1494	print_lock(next);
1495
1496	printk("\nand this task is already holding:\n");
1497	print_lock(prev);
1498	printk("which would create a new lock dependency:\n");
1499	print_lock_name(hlock_class(prev));
1500	printk(KERN_CONT " ->");
1501	print_lock_name(hlock_class(next));
1502	printk(KERN_CONT "\n");
1503
1504	printk("\nbut this new dependency connects a %s-irq-safe lock:\n",
1505		irqclass);
1506	print_lock_name(backwards_entry->class);
1507	printk("\n... which became %s-irq-safe at:\n", irqclass);
1508
1509	print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1510
1511	printk("\nto a %s-irq-unsafe lock:\n", irqclass);
1512	print_lock_name(forwards_entry->class);
1513	printk("\n... which became %s-irq-unsafe at:\n", irqclass);
1514	printk("...");
1515
1516	print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1517
1518	printk("\nother info that might help us debug this:\n\n");
1519	print_irq_lock_scenario(backwards_entry, forwards_entry,
1520				hlock_class(prev), hlock_class(next));
1521
1522	lockdep_print_held_locks(curr);
1523
1524	printk("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
1525	if (!save_trace(&prev_root->trace))
1526		return 0;
1527	print_shortest_lock_dependencies(backwards_entry, prev_root);
1528
1529	printk("\nthe dependencies between the lock to be acquired");
1530	printk(" and %s-irq-unsafe lock:\n", irqclass);
1531	if (!save_trace(&next_root->trace))
1532		return 0;
 
1533	print_shortest_lock_dependencies(forwards_entry, next_root);
1534
1535	printk("\nstack backtrace:\n");
1536	dump_stack();
1537
1538	return 0;
1539}
1540
1541static int
1542check_usage(struct task_struct *curr, struct held_lock *prev,
1543	    struct held_lock *next, enum lock_usage_bit bit_backwards,
1544	    enum lock_usage_bit bit_forwards, const char *irqclass)
1545{
1546	int ret;
1547	struct lock_list this, that;
1548	struct lock_list *uninitialized_var(target_entry);
1549	struct lock_list *uninitialized_var(target_entry1);
1550
1551	this.parent = NULL;
1552
1553	this.class = hlock_class(prev);
1554	ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1555	if (ret < 0)
1556		return print_bfs_bug(ret);
1557	if (ret == 1)
1558		return ret;
1559
1560	that.parent = NULL;
1561	that.class = hlock_class(next);
1562	ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1563	if (ret < 0)
1564		return print_bfs_bug(ret);
1565	if (ret == 1)
1566		return ret;
1567
1568	return print_bad_irq_dependency(curr, &this, &that,
1569			target_entry, target_entry1,
1570			prev, next,
1571			bit_backwards, bit_forwards, irqclass);
1572}
1573
1574static const char *state_names[] = {
1575#define LOCKDEP_STATE(__STATE) \
1576	__stringify(__STATE),
1577#include "lockdep_states.h"
1578#undef LOCKDEP_STATE
1579};
1580
1581static const char *state_rnames[] = {
1582#define LOCKDEP_STATE(__STATE) \
1583	__stringify(__STATE)"-READ",
1584#include "lockdep_states.h"
1585#undef LOCKDEP_STATE
1586};
1587
1588static inline const char *state_name(enum lock_usage_bit bit)
1589{
1590	return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
 
 
 
1591}
1592
 
 
 
 
 
 
 
1593static int exclusive_bit(int new_bit)
1594{
1595	/*
1596	 * USED_IN
1597	 * USED_IN_READ
1598	 * ENABLED
1599	 * ENABLED_READ
1600	 *
1601	 * bit 0 - write/read
1602	 * bit 1 - used_in/enabled
1603	 * bit 2+  state
1604	 */
1605
1606	int state = new_bit & ~3;
1607	int dir = new_bit & 2;
1608
1609	/*
1610	 * keep state, bit flip the direction and strip read.
1611	 */
1612	return state | (dir ^ 2);
1613}
1614
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1615static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1616			   struct held_lock *next, enum lock_usage_bit bit)
1617{
 
 
 
 
 
 
 
1618	/*
1619	 * Prove that the new dependency does not connect a hardirq-safe
1620	 * lock with a hardirq-unsafe lock - to achieve this we search
1621	 * the backwards-subgraph starting at <prev>, and the
1622	 * forwards-subgraph starting at <next>:
1623	 */
1624	if (!check_usage(curr, prev, next, bit,
1625			   exclusive_bit(bit), state_name(bit)))
 
 
 
1626		return 0;
 
1627
1628	bit++; /* _READ */
 
 
1629
1630	/*
1631	 * Prove that the new dependency does not connect a hardirq-safe-read
1632	 * lock with a hardirq-unsafe lock - to achieve this we search
1633	 * the backwards-subgraph starting at <prev>, and the
1634	 * forwards-subgraph starting at <next>:
1635	 */
1636	if (!check_usage(curr, prev, next, bit,
1637			   exclusive_bit(bit), state_name(bit)))
 
 
 
 
 
1638		return 0;
 
 
 
1639
1640	return 1;
1641}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1642
1643static int
1644check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1645		struct held_lock *next)
1646{
1647#define LOCKDEP_STATE(__STATE)						\
1648	if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE))	\
1649		return 0;
1650#include "lockdep_states.h"
1651#undef LOCKDEP_STATE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652
 
 
 
 
 
 
 
 
1653	return 1;
1654}
1655
1656static void inc_chains(void)
1657{
1658	if (current->hardirq_context)
1659		nr_hardirq_chains++;
1660	else {
1661		if (current->softirq_context)
1662			nr_softirq_chains++;
1663		else
1664			nr_process_chains++;
1665	}
1666}
1667
1668#else
1669
1670static inline int
1671check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1672		struct held_lock *next)
 
 
 
 
 
 
 
 
1673{
1674	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1675}
1676
1677static inline void inc_chains(void)
 
 
 
1678{
1679	nr_process_chains++;
1680}
1681
1682#endif
1683
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1684static void
1685print_deadlock_scenario(struct held_lock *nxt,
1686			     struct held_lock *prv)
1687{
1688	struct lock_class *next = hlock_class(nxt);
1689	struct lock_class *prev = hlock_class(prv);
1690
1691	printk(" Possible unsafe locking scenario:\n\n");
1692	printk("       CPU0\n");
1693	printk("       ----\n");
1694	printk("  lock(");
1695	__print_lock_name(prev);
1696	printk(KERN_CONT ");\n");
1697	printk("  lock(");
1698	__print_lock_name(next);
1699	printk(KERN_CONT ");\n");
1700	printk("\n *** DEADLOCK ***\n\n");
1701	printk(" May be due to missing lock nesting notation\n\n");
1702}
1703
1704static int
1705print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1706		   struct held_lock *next)
1707{
1708	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1709		return 0;
1710
1711	printk("\n");
1712	printk("=============================================\n");
1713	printk("[ INFO: possible recursive locking detected ]\n");
1714	print_kernel_ident();
1715	printk("---------------------------------------------\n");
1716	printk("%s/%d is trying to acquire lock:\n",
1717		curr->comm, task_pid_nr(curr));
1718	print_lock(next);
1719	printk("\nbut task is already holding lock:\n");
1720	print_lock(prev);
1721
1722	printk("\nother info that might help us debug this:\n");
1723	print_deadlock_scenario(next, prev);
1724	lockdep_print_held_locks(curr);
1725
1726	printk("\nstack backtrace:\n");
1727	dump_stack();
1728
1729	return 0;
1730}
1731
1732/*
1733 * Check whether we are holding such a class already.
1734 *
1735 * (Note that this has to be done separately, because the graph cannot
1736 * detect such classes of deadlocks.)
1737 *
1738 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
 
 
1739 */
1740static int
1741check_deadlock(struct task_struct *curr, struct held_lock *next,
1742	       struct lockdep_map *next_instance, int read)
1743{
1744	struct held_lock *prev;
1745	struct held_lock *nest = NULL;
1746	int i;
1747
1748	for (i = 0; i < curr->lockdep_depth; i++) {
1749		prev = curr->held_locks + i;
1750
1751		if (prev->instance == next->nest_lock)
1752			nest = prev;
1753
1754		if (hlock_class(prev) != hlock_class(next))
1755			continue;
1756
1757		/*
1758		 * Allow read-after-read recursion of the same
1759		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
1760		 */
1761		if ((read == 2) && prev->read)
1762			return 2;
1763
1764		/*
1765		 * We're holding the nest_lock, which serializes this lock's
1766		 * nesting behaviour.
1767		 */
1768		if (nest)
1769			return 2;
1770
1771		return print_deadlock_bug(curr, prev, next);
 
1772	}
1773	return 1;
1774}
1775
1776/*
1777 * There was a chain-cache miss, and we are about to add a new dependency
1778 * to a previous lock. We recursively validate the following rules:
1779 *
1780 *  - would the adding of the <prev> -> <next> dependency create a
1781 *    circular dependency in the graph? [== circular deadlock]
1782 *
1783 *  - does the new prev->next dependency connect any hardirq-safe lock
1784 *    (in the full backwards-subgraph starting at <prev>) with any
1785 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
1786 *    <next>)? [== illegal lock inversion with hardirq contexts]
1787 *
1788 *  - does the new prev->next dependency connect any softirq-safe lock
1789 *    (in the full backwards-subgraph starting at <prev>) with any
1790 *    softirq-unsafe lock (in the full forwards-subgraph starting at
1791 *    <next>)? [== illegal lock inversion with softirq contexts]
1792 *
1793 * any of these scenarios could lead to a deadlock.
1794 *
1795 * Then if all the validations pass, we add the forwards and backwards
1796 * dependency.
1797 */
1798static int
1799check_prev_add(struct task_struct *curr, struct held_lock *prev,
1800	       struct held_lock *next, int distance, int *stack_saved)
 
1801{
1802	struct lock_list *entry;
1803	int ret;
1804	struct lock_list this;
1805	struct lock_list *uninitialized_var(target_entry);
1806	/*
1807	 * Static variable, serialized by the graph_lock().
1808	 *
1809	 * We use this static variable to save the stack trace in case
1810	 * we call into this function multiple times due to encountering
1811	 * trylocks in the held lock stack.
1812	 */
1813	static struct stack_trace trace;
 
 
 
 
 
 
 
 
1814
1815	/*
1816	 * Prove that the new <prev> -> <next> dependency would not
1817	 * create a circular dependency in the graph. (We do this by
1818	 * forward-recursing into the graph starting at <next>, and
1819	 * checking whether we can reach <prev>.)
1820	 *
1821	 * We are using global variables to control the recursion, to
1822	 * keep the stackframe size of the recursive functions low:
 
1823	 */
1824	this.class = hlock_class(next);
1825	this.parent = NULL;
1826	ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1827	if (unlikely(!ret))
1828		return print_circular_bug(&this, target_entry, next, prev);
1829	else if (unlikely(ret < 0))
1830		return print_bfs_bug(ret);
1831
1832	if (!check_prev_add_irq(curr, prev, next))
1833		return 0;
1834
1835	/*
1836	 * For recursive read-locks we do all the dependency checks,
1837	 * but we dont store read-triggered dependencies (only
1838	 * write-triggered dependencies). This ensures that only the
1839	 * write-side dependencies matter, and that if for example a
1840	 * write-lock never takes any other locks, then the reads are
1841	 * equivalent to a NOP.
1842	 */
1843	if (next->read == 2 || prev->read == 2)
1844		return 1;
1845	/*
1846	 * Is the <prev> -> <next> dependency already present?
1847	 *
1848	 * (this may occur even though this is a new chain: consider
1849	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1850	 *  chains - the second one will be new, but L1 already has
1851	 *  L2 added to its dependency list, due to the first chain.)
1852	 */
1853	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1854		if (entry->class == hlock_class(next)) {
1855			if (distance == 1)
1856				entry->distance = 1;
1857			return 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1858		}
1859	}
1860
1861	if (!*stack_saved) {
1862		if (!save_trace(&trace))
 
 
 
 
 
 
 
 
 
 
1863			return 0;
1864		*stack_saved = 1;
1865	}
1866
1867	/*
1868	 * Ok, all validations passed, add the new lock
1869	 * to the previous lock's dependency list:
1870	 */
1871	ret = add_lock_to_list(hlock_class(next),
1872			       &hlock_class(prev)->locks_after,
1873			       next->acquire_ip, distance, &trace);
 
 
1874
1875	if (!ret)
1876		return 0;
1877
1878	ret = add_lock_to_list(hlock_class(prev),
1879			       &hlock_class(next)->locks_before,
1880			       next->acquire_ip, distance, &trace);
 
 
1881	if (!ret)
1882		return 0;
1883
1884	/*
1885	 * Debugging printouts:
1886	 */
1887	if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) {
1888		/* We drop graph lock, so another thread can overwrite trace. */
1889		*stack_saved = 0;
1890		graph_unlock();
1891		printk("\n new dependency: ");
1892		print_lock_name(hlock_class(prev));
1893		printk(KERN_CONT " => ");
1894		print_lock_name(hlock_class(next));
1895		printk(KERN_CONT "\n");
1896		dump_stack();
1897		return graph_lock();
1898	}
1899	return 1;
1900}
1901
1902/*
1903 * Add the dependency to all directly-previous locks that are 'relevant'.
1904 * The ones that are relevant are (in increasing distance from curr):
1905 * all consecutive trylock entries and the final non-trylock entry - or
1906 * the end of this context's lock-chain - whichever comes first.
1907 */
1908static int
1909check_prevs_add(struct task_struct *curr, struct held_lock *next)
1910{
 
1911	int depth = curr->lockdep_depth;
1912	int stack_saved = 0;
1913	struct held_lock *hlock;
1914
1915	/*
1916	 * Debugging checks.
1917	 *
1918	 * Depth must not be zero for a non-head lock:
1919	 */
1920	if (!depth)
1921		goto out_bug;
1922	/*
1923	 * At least two relevant locks must exist for this
1924	 * to be a head:
1925	 */
1926	if (curr->held_locks[depth].irq_context !=
1927			curr->held_locks[depth-1].irq_context)
1928		goto out_bug;
1929
1930	for (;;) {
1931		int distance = curr->lockdep_depth - depth + 1;
1932		hlock = curr->held_locks + depth - 1;
1933		/*
1934		 * Only non-recursive-read entries get new dependencies
1935		 * added:
1936		 */
1937		if (hlock->read != 2 && hlock->check) {
1938			if (!check_prev_add(curr, hlock, next,
1939						distance, &stack_saved))
1940				return 0;
 
1941			/*
1942			 * Stop after the first non-trylock entry,
1943			 * as non-trylock entries have added their
1944			 * own direct dependencies already, so this
1945			 * lock is connected to them indirectly:
1946			 */
1947			if (!hlock->trylock)
1948				break;
1949		}
 
1950		depth--;
1951		/*
1952		 * End of lock-stack?
1953		 */
1954		if (!depth)
1955			break;
1956		/*
1957		 * Stop the search if we cross into another context:
1958		 */
1959		if (curr->held_locks[depth].irq_context !=
1960				curr->held_locks[depth-1].irq_context)
1961			break;
1962	}
1963	return 1;
1964out_bug:
1965	if (!debug_locks_off_graph_unlock())
1966		return 0;
1967
1968	/*
1969	 * Clearly we all shouldn't be here, but since we made it we
1970	 * can reliable say we messed up our state. See the above two
1971	 * gotos for reasons why we could possibly end up here.
1972	 */
1973	WARN_ON(1);
1974
1975	return 0;
1976}
1977
1978unsigned long nr_lock_chains;
1979struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
1980int nr_chain_hlocks;
1981static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1982
1983struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
1984{
1985	return lock_classes + chain_hlocks[chain->base + i];
 
 
 
1986}
1987
1988/*
1989 * Returns the index of the first held_lock of the current chain
1990 */
1991static inline int get_first_held_lock(struct task_struct *curr,
1992					struct held_lock *hlock)
1993{
1994	int i;
1995	struct held_lock *hlock_curr;
1996
1997	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
1998		hlock_curr = curr->held_locks + i;
1999		if (hlock_curr->irq_context != hlock->irq_context)
2000			break;
2001
2002	}
2003
2004	return ++i;
2005}
2006
2007#ifdef CONFIG_DEBUG_LOCKDEP
2008/*
2009 * Returns the next chain_key iteration
2010 */
2011static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2012{
2013	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2014
2015	printk(" class_idx:%d -> chain_key:%016Lx",
2016		class_idx,
2017		(unsigned long long)new_chain_key);
2018	return new_chain_key;
2019}
2020
2021static void
2022print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2023{
2024	struct held_lock *hlock;
2025	u64 chain_key = 0;
2026	int depth = curr->lockdep_depth;
2027	int i;
2028
2029	printk("depth: %u\n", depth + 1);
2030	for (i = get_first_held_lock(curr, hlock_next); i < depth; i++) {
 
2031		hlock = curr->held_locks + i;
2032		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2033
2034		print_lock(hlock);
2035	}
2036
2037	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2038	print_lock(hlock_next);
2039}
2040
2041static void print_chain_keys_chain(struct lock_chain *chain)
2042{
2043	int i;
2044	u64 chain_key = 0;
2045	int class_id;
2046
2047	printk("depth: %u\n", chain->depth);
2048	for (i = 0; i < chain->depth; i++) {
2049		class_id = chain_hlocks[chain->base + i];
2050		chain_key = print_chain_key_iteration(class_id + 1, chain_key);
2051
2052		print_lock_name(lock_classes + class_id);
2053		printk("\n");
2054	}
2055}
2056
2057static void print_collision(struct task_struct *curr,
2058			struct held_lock *hlock_next,
2059			struct lock_chain *chain)
2060{
2061	printk("\n");
2062	printk("======================\n");
2063	printk("[chain_key collision ]\n");
2064	print_kernel_ident();
2065	printk("----------------------\n");
2066	printk("%s/%d: ", current->comm, task_pid_nr(current));
2067	printk("Hash chain already cached but the contents don't match!\n");
2068
2069	printk("Held locks:");
2070	print_chain_keys_held_locks(curr, hlock_next);
2071
2072	printk("Locks in cached chain:");
2073	print_chain_keys_chain(chain);
2074
2075	printk("\nstack backtrace:\n");
2076	dump_stack();
2077}
2078#endif
2079
2080/*
2081 * Checks whether the chain and the current held locks are consistent
2082 * in depth and also in content. If they are not it most likely means
2083 * that there was a collision during the calculation of the chain_key.
2084 * Returns: 0 not passed, 1 passed
2085 */
2086static int check_no_collision(struct task_struct *curr,
2087			struct held_lock *hlock,
2088			struct lock_chain *chain)
2089{
2090#ifdef CONFIG_DEBUG_LOCKDEP
2091	int i, j, id;
2092
2093	i = get_first_held_lock(curr, hlock);
2094
2095	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2096		print_collision(curr, hlock, chain);
2097		return 0;
2098	}
2099
2100	for (j = 0; j < chain->depth - 1; j++, i++) {
2101		id = curr->held_locks[i].class_idx - 1;
2102
2103		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2104			print_collision(curr, hlock, chain);
2105			return 0;
2106		}
2107	}
2108#endif
2109	return 1;
2110}
2111
2112/*
2113 * Look up a dependency chain. If the key is not present yet then
2114 * add it and return 1 - in this case the new dependency chain is
2115 * validated. If the key is already hashed, return 0.
2116 * (On return with 1 graph_lock is held.)
2117 */
2118static inline int lookup_chain_cache(struct task_struct *curr,
2119				     struct held_lock *hlock,
2120				     u64 chain_key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2121{
2122	struct lock_class *class = hlock_class(hlock);
2123	struct hlist_head *hash_head = chainhashentry(chain_key);
2124	struct lock_chain *chain;
2125	int i, j;
2126
2127	/*
2128	 * We might need to take the graph lock, ensure we've got IRQs
2129	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2130	 * lockdep won't complain about its own locking errors.
2131	 */
2132	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2133		return 0;
2134	/*
2135	 * We can walk it lock-free, because entries only get added
2136	 * to the hash:
2137	 */
2138	hlist_for_each_entry_rcu(chain, hash_head, entry) {
2139		if (chain->chain_key == chain_key) {
2140cache_hit:
2141			debug_atomic_inc(chain_lookup_hits);
2142			if (!check_no_collision(curr, hlock, chain))
2143				return 0;
2144
2145			if (very_verbose(class))
2146				printk("\nhash chain already cached, key: "
2147					"%016Lx tail class: [%p] %s\n",
2148					(unsigned long long)chain_key,
2149					class->key, class->name);
2150			return 0;
2151		}
2152	}
2153	if (very_verbose(class))
2154		printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
2155			(unsigned long long)chain_key, class->key, class->name);
2156	/*
2157	 * Allocate a new chain entry from the static array, and add
2158	 * it to the hash:
2159	 */
2160	if (!graph_lock())
2161		return 0;
2162	/*
2163	 * We have to walk the chain again locked - to avoid duplicates:
2164	 */
2165	hlist_for_each_entry(chain, hash_head, entry) {
2166		if (chain->chain_key == chain_key) {
2167			graph_unlock();
2168			goto cache_hit;
2169		}
2170	}
2171	if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
2172		if (!debug_locks_off_graph_unlock())
2173			return 0;
2174
2175		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2176		dump_stack();
2177		return 0;
2178	}
2179	chain = lock_chains + nr_lock_chains++;
2180	chain->chain_key = chain_key;
2181	chain->irq_context = hlock->irq_context;
2182	i = get_first_held_lock(curr, hlock);
2183	chain->depth = curr->lockdep_depth + 1 - i;
2184
2185	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2186	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
2187	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2188
2189	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2190		chain->base = nr_chain_hlocks;
2191		for (j = 0; j < chain->depth - 1; j++, i++) {
2192			int lock_id = curr->held_locks[i].class_idx - 1;
2193			chain_hlocks[chain->base + j] = lock_id;
2194		}
2195		chain_hlocks[chain->base + j] = class - lock_classes;
2196	}
2197
2198	if (nr_chain_hlocks < MAX_LOCKDEP_CHAIN_HLOCKS)
2199		nr_chain_hlocks += chain->depth;
2200
2201#ifdef CONFIG_DEBUG_LOCKDEP
2202	/*
2203	 * Important for check_no_collision().
2204	 */
2205	if (unlikely(nr_chain_hlocks > MAX_LOCKDEP_CHAIN_HLOCKS)) {
2206		if (debug_locks_off_graph_unlock())
2207			return 0;
2208
2209		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2210		dump_stack();
2211		return 0;
2212	}
2213#endif
2214
 
 
 
 
 
 
 
2215	hlist_add_head_rcu(&chain->entry, hash_head);
2216	debug_atomic_inc(chain_lookup_misses);
2217	inc_chains();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2218
2219	return 1;
2220}
2221
2222static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
2223		struct held_lock *hlock, int chain_head, u64 chain_key)
 
2224{
2225	/*
2226	 * Trylock needs to maintain the stack of held locks, but it
2227	 * does not add new dependencies, because trylock can be done
2228	 * in any order.
2229	 *
2230	 * We look up the chain_key and do the O(N^2) check and update of
2231	 * the dependencies only if this is a new dependency chain.
2232	 * (If lookup_chain_cache() returns with 1 it acquires
2233	 * graph_lock for us)
2234	 */
2235	if (!hlock->trylock && hlock->check &&
2236	    lookup_chain_cache(curr, hlock, chain_key)) {
2237		/*
2238		 * Check whether last held lock:
2239		 *
2240		 * - is irq-safe, if this lock is irq-unsafe
2241		 * - is softirq-safe, if this lock is hardirq-unsafe
2242		 *
2243		 * And check whether the new lock's dependency graph
2244		 * could lead back to the previous lock.
2245		 *
2246		 * any of these scenarios could lead to a deadlock. If
2247		 * All validations
 
 
 
 
 
 
2248		 */
2249		int ret = check_deadlock(curr, hlock, lock, hlock->read);
2250
2251		if (!ret)
2252			return 0;
2253		/*
2254		 * Mark recursive read, as we jump over it when
2255		 * building dependencies (just like we jump over
2256		 * trylock entries):
2257		 */
2258		if (ret == 2)
2259			hlock->read = 2;
2260		/*
2261		 * Add dependency only if this lock is not the head
2262		 * of the chain, and if it's not a secondary read-lock:
 
 
 
 
2263		 */
2264		if (!chain_head && ret != 2)
2265			if (!check_prevs_add(curr, hlock))
2266				return 0;
 
 
2267		graph_unlock();
2268	} else
2269		/* after lookup_chain_cache(): */
2270		if (unlikely(!debug_locks))
2271			return 0;
 
2272
2273	return 1;
2274}
2275#else
2276static inline int validate_chain(struct task_struct *curr,
2277	       	struct lockdep_map *lock, struct held_lock *hlock,
2278		int chain_head, u64 chain_key)
2279{
2280	return 1;
2281}
2282#endif
 
 
2283
2284/*
2285 * We are building curr_chain_key incrementally, so double-check
2286 * it from scratch, to make sure that it's done correctly:
2287 */
2288static void check_chain_key(struct task_struct *curr)
2289{
2290#ifdef CONFIG_DEBUG_LOCKDEP
2291	struct held_lock *hlock, *prev_hlock = NULL;
2292	unsigned int i;
2293	u64 chain_key = 0;
2294
2295	for (i = 0; i < curr->lockdep_depth; i++) {
2296		hlock = curr->held_locks + i;
2297		if (chain_key != hlock->prev_chain_key) {
2298			debug_locks_off();
2299			/*
2300			 * We got mighty confused, our chain keys don't match
2301			 * with what we expect, someone trample on our task state?
2302			 */
2303			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
2304				curr->lockdep_depth, i,
2305				(unsigned long long)chain_key,
2306				(unsigned long long)hlock->prev_chain_key);
2307			return;
2308		}
 
2309		/*
2310		 * Whoops ran out of static storage again?
 
2311		 */
2312		if (DEBUG_LOCKS_WARN_ON(hlock->class_idx > MAX_LOCKDEP_KEYS))
2313			return;
2314
2315		if (prev_hlock && (prev_hlock->irq_context !=
2316							hlock->irq_context))
2317			chain_key = 0;
2318		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
2319		prev_hlock = hlock;
2320	}
2321	if (chain_key != curr->curr_chain_key) {
2322		debug_locks_off();
2323		/*
2324		 * More smoking hash instead of calculating it, damn see these
2325		 * numbers float.. I bet that a pink elephant stepped on my memory.
2326		 */
2327		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
2328			curr->lockdep_depth, i,
2329			(unsigned long long)chain_key,
2330			(unsigned long long)curr->curr_chain_key);
2331	}
2332#endif
2333}
2334
2335static void
2336print_usage_bug_scenario(struct held_lock *lock)
 
 
 
2337{
2338	struct lock_class *class = hlock_class(lock);
2339
2340	printk(" Possible unsafe locking scenario:\n\n");
2341	printk("       CPU0\n");
2342	printk("       ----\n");
2343	printk("  lock(");
2344	__print_lock_name(class);
2345	printk(KERN_CONT ");\n");
2346	printk("  <Interrupt>\n");
2347	printk("    lock(");
2348	__print_lock_name(class);
2349	printk(KERN_CONT ");\n");
2350	printk("\n *** DEADLOCK ***\n\n");
2351}
2352
2353static int
2354print_usage_bug(struct task_struct *curr, struct held_lock *this,
2355		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
2356{
2357	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2358		return 0;
2359
2360	printk("\n");
2361	printk("=================================\n");
2362	printk("[ INFO: inconsistent lock state ]\n");
2363	print_kernel_ident();
2364	printk("---------------------------------\n");
2365
2366	printk("inconsistent {%s} -> {%s} usage.\n",
2367		usage_str[prev_bit], usage_str[new_bit]);
2368
2369	printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2370		curr->comm, task_pid_nr(curr),
2371		trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2372		trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2373		trace_hardirqs_enabled(curr),
2374		trace_softirqs_enabled(curr));
2375	print_lock(this);
2376
2377	printk("{%s} state was registered at:\n", usage_str[prev_bit]);
2378	print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2379
2380	print_irqtrace_events(curr);
2381	printk("\nother info that might help us debug this:\n");
2382	print_usage_bug_scenario(this);
2383
2384	lockdep_print_held_locks(curr);
2385
2386	printk("\nstack backtrace:\n");
2387	dump_stack();
2388
2389	return 0;
2390}
2391
2392/*
2393 * Print out an error if an invalid bit is set:
2394 */
2395static inline int
2396valid_state(struct task_struct *curr, struct held_lock *this,
2397	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2398{
2399	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2400		return print_usage_bug(curr, this, bad_bit, new_bit);
 
 
 
2401	return 1;
2402}
2403
2404static int mark_lock(struct task_struct *curr, struct held_lock *this,
2405		     enum lock_usage_bit new_bit);
2406
2407#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2408
2409/*
2410 * print irq inversion bug:
2411 */
2412static int
2413print_irq_inversion_bug(struct task_struct *curr,
2414			struct lock_list *root, struct lock_list *other,
2415			struct held_lock *this, int forwards,
2416			const char *irqclass)
2417{
2418	struct lock_list *entry = other;
2419	struct lock_list *middle = NULL;
2420	int depth;
2421
2422	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2423		return 0;
2424
2425	printk("\n");
2426	printk("=========================================================\n");
2427	printk("[ INFO: possible irq lock inversion dependency detected ]\n");
2428	print_kernel_ident();
2429	printk("---------------------------------------------------------\n");
2430	printk("%s/%d just changed the state of lock:\n",
2431		curr->comm, task_pid_nr(curr));
2432	print_lock(this);
2433	if (forwards)
2434		printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2435	else
2436		printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2437	print_lock_name(other->class);
2438	printk("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2439
2440	printk("\nother info that might help us debug this:\n");
2441
2442	/* Find a middle lock (if one exists) */
2443	depth = get_lock_depth(other);
2444	do {
2445		if (depth == 0 && (entry != root)) {
2446			printk("lockdep:%s bad path found in chain graph\n", __func__);
2447			break;
2448		}
2449		middle = entry;
2450		entry = get_lock_parent(entry);
2451		depth--;
2452	} while (entry && entry != root && (depth >= 0));
2453	if (forwards)
2454		print_irq_lock_scenario(root, other,
2455			middle ? middle->class : root->class, other->class);
2456	else
2457		print_irq_lock_scenario(other, root,
2458			middle ? middle->class : other->class, root->class);
2459
2460	lockdep_print_held_locks(curr);
2461
2462	printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2463	if (!save_trace(&root->trace))
2464		return 0;
 
2465	print_shortest_lock_dependencies(other, root);
2466
2467	printk("\nstack backtrace:\n");
2468	dump_stack();
2469
2470	return 0;
2471}
2472
2473/*
2474 * Prove that in the forwards-direction subgraph starting at <this>
2475 * there is no lock matching <mask>:
2476 */
2477static int
2478check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2479		     enum lock_usage_bit bit, const char *irqclass)
2480{
2481	int ret;
2482	struct lock_list root;
2483	struct lock_list *uninitialized_var(target_entry);
 
 
2484
2485	root.parent = NULL;
2486	root.class = hlock_class(this);
2487	ret = find_usage_forwards(&root, bit, &target_entry);
2488	if (ret < 0)
2489		return print_bfs_bug(ret);
2490	if (ret == 1)
2491		return ret;
 
 
 
 
 
 
 
 
 
 
2492
2493	return print_irq_inversion_bug(curr, &root, target_entry,
2494					this, 1, irqclass);
2495}
2496
2497/*
2498 * Prove that in the backwards-direction subgraph starting at <this>
2499 * there is no lock matching <mask>:
2500 */
2501static int
2502check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2503		      enum lock_usage_bit bit, const char *irqclass)
2504{
2505	int ret;
2506	struct lock_list root;
2507	struct lock_list *uninitialized_var(target_entry);
 
 
2508
2509	root.parent = NULL;
2510	root.class = hlock_class(this);
2511	ret = find_usage_backwards(&root, bit, &target_entry);
2512	if (ret < 0)
2513		return print_bfs_bug(ret);
2514	if (ret == 1)
2515		return ret;
 
2516
2517	return print_irq_inversion_bug(curr, &root, target_entry,
2518					this, 0, irqclass);
 
 
 
 
 
 
 
 
2519}
2520
2521void print_irqtrace_events(struct task_struct *curr)
2522{
2523	printk("irq event stamp: %u\n", curr->irq_events);
2524	printk("hardirqs last  enabled at (%u): [<%p>] %pS\n",
2525		curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
2526		(void *)curr->hardirq_enable_ip);
2527	printk("hardirqs last disabled at (%u): [<%p>] %pS\n",
2528		curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
2529		(void *)curr->hardirq_disable_ip);
2530	printk("softirqs last  enabled at (%u): [<%p>] %pS\n",
2531		curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
2532		(void *)curr->softirq_enable_ip);
2533	printk("softirqs last disabled at (%u): [<%p>] %pS\n",
2534		curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
2535		(void *)curr->softirq_disable_ip);
 
 
2536}
2537
2538static int HARDIRQ_verbose(struct lock_class *class)
2539{
2540#if HARDIRQ_VERBOSE
2541	return class_filter(class);
2542#endif
2543	return 0;
2544}
2545
2546static int SOFTIRQ_verbose(struct lock_class *class)
2547{
2548#if SOFTIRQ_VERBOSE
2549	return class_filter(class);
2550#endif
2551	return 0;
2552}
2553
2554static int RECLAIM_FS_verbose(struct lock_class *class)
2555{
2556#if RECLAIM_VERBOSE
2557	return class_filter(class);
2558#endif
2559	return 0;
2560}
2561
2562#define STRICT_READ_CHECKS	1
2563
2564static int (*state_verbose_f[])(struct lock_class *class) = {
2565#define LOCKDEP_STATE(__STATE) \
2566	__STATE##_verbose,
2567#include "lockdep_states.h"
2568#undef LOCKDEP_STATE
2569};
2570
2571static inline int state_verbose(enum lock_usage_bit bit,
2572				struct lock_class *class)
2573{
2574	return state_verbose_f[bit >> 2](class);
2575}
2576
2577typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2578			     enum lock_usage_bit bit, const char *name);
2579
2580static int
2581mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2582		enum lock_usage_bit new_bit)
2583{
2584	int excl_bit = exclusive_bit(new_bit);
2585	int read = new_bit & 1;
2586	int dir = new_bit & 2;
2587
2588	/*
2589	 * mark USED_IN has to look forwards -- to ensure no dependency
2590	 * has ENABLED state, which would allow recursion deadlocks.
2591	 *
2592	 * mark ENABLED has to look backwards -- to ensure no dependee
2593	 * has USED_IN state, which, again, would allow  recursion deadlocks.
2594	 */
2595	check_usage_f usage = dir ?
2596		check_usage_backwards : check_usage_forwards;
2597
2598	/*
2599	 * Validate that this particular lock does not have conflicting
2600	 * usage states.
2601	 */
2602	if (!valid_state(curr, this, new_bit, excl_bit))
2603		return 0;
2604
2605	/*
2606	 * Validate that the lock dependencies don't have conflicting usage
2607	 * states.
2608	 */
2609	if ((!read || !dir || STRICT_READ_CHECKS) &&
2610			!usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2611		return 0;
2612
 
2613	/*
2614	 * Check for read in write conflicts
 
2615	 */
2616	if (!read) {
2617		if (!valid_state(curr, this, new_bit, excl_bit + 1))
 
 
 
 
2618			return 0;
2619
2620		if (STRICT_READ_CHECKS &&
2621			!usage(curr, this, excl_bit + 1,
2622				state_name(new_bit + 1)))
 
 
2623			return 0;
2624	}
2625
2626	if (state_verbose(new_bit, hlock_class(this)))
2627		return 2;
2628
2629	return 1;
2630}
2631
2632enum mark_type {
2633#define LOCKDEP_STATE(__STATE)	__STATE,
2634#include "lockdep_states.h"
2635#undef LOCKDEP_STATE
2636};
2637
2638/*
2639 * Mark all held locks with a usage bit:
2640 */
2641static int
2642mark_held_locks(struct task_struct *curr, enum mark_type mark)
2643{
2644	enum lock_usage_bit usage_bit;
2645	struct held_lock *hlock;
2646	int i;
2647
2648	for (i = 0; i < curr->lockdep_depth; i++) {
 
2649		hlock = curr->held_locks + i;
2650
2651		usage_bit = 2 + (mark << 2); /* ENABLED */
2652		if (hlock->read)
2653			usage_bit += 1; /* READ */
2654
2655		BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2656
2657		if (!hlock->check)
2658			continue;
2659
2660		if (!mark_lock(curr, hlock, usage_bit))
2661			return 0;
2662	}
2663
2664	return 1;
2665}
2666
2667/*
2668 * Hardirqs will be enabled:
2669 */
2670static void __trace_hardirqs_on_caller(unsigned long ip)
2671{
2672	struct task_struct *curr = current;
2673
2674	/* we'll do an OFF -> ON transition: */
2675	curr->hardirqs_enabled = 1;
2676
2677	/*
2678	 * We are going to turn hardirqs on, so set the
2679	 * usage bit for all held locks:
2680	 */
2681	if (!mark_held_locks(curr, HARDIRQ))
2682		return;
2683	/*
2684	 * If we have softirqs enabled, then set the usage
2685	 * bit for all held locks. (disabled hardirqs prevented
2686	 * this bit from being set before)
2687	 */
2688	if (curr->softirqs_enabled)
2689		if (!mark_held_locks(curr, SOFTIRQ))
2690			return;
2691
2692	curr->hardirq_enable_ip = ip;
2693	curr->hardirq_enable_event = ++curr->irq_events;
2694	debug_atomic_inc(hardirqs_on_events);
2695}
2696
2697__visible void trace_hardirqs_on_caller(unsigned long ip)
 
 
 
 
 
 
 
 
 
2698{
2699	time_hardirqs_on(CALLER_ADDR0, ip);
 
2700
2701	if (unlikely(!debug_locks || current->lockdep_recursion))
 
 
 
2702		return;
2703
2704	if (unlikely(current->hardirqs_enabled)) {
 
 
 
2705		/*
2706		 * Neither irq nor preemption are disabled here
2707		 * so this is racy by nature but losing one hit
2708		 * in a stat is not a big deal.
2709		 */
2710		__debug_atomic_inc(redundant_hardirqs_on);
2711		return;
2712	}
2713
2714	/*
2715	 * We're enabling irqs and according to our state above irqs weren't
2716	 * already enabled, yet we find the hardware thinks they are in fact
2717	 * enabled.. someone messed up their IRQ state tracing.
2718	 */
2719	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2720		return;
2721
2722	/*
2723	 * See the fine text that goes along with this variable definition.
2724	 */
2725	if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled)))
2726		return;
2727
2728	/*
2729	 * Can't allow enabling interrupts while in an interrupt handler,
2730	 * that's general bad form and such. Recursion, limited stack etc..
2731	 */
2732	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2733		return;
2734
2735	current->lockdep_recursion = 1;
2736	__trace_hardirqs_on_caller(ip);
2737	current->lockdep_recursion = 0;
 
 
2738}
2739EXPORT_SYMBOL(trace_hardirqs_on_caller);
2740
2741void trace_hardirqs_on(void)
2742{
2743	trace_hardirqs_on_caller(CALLER_ADDR0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2744}
2745EXPORT_SYMBOL(trace_hardirqs_on);
2746
2747/*
2748 * Hardirqs were disabled:
2749 */
2750__visible void trace_hardirqs_off_caller(unsigned long ip)
2751{
2752	struct task_struct *curr = current;
2753
2754	time_hardirqs_off(CALLER_ADDR0, ip);
2755
2756	if (unlikely(!debug_locks || current->lockdep_recursion))
 
 
 
 
 
 
 
 
2757		return;
2758
2759	/*
2760	 * So we're supposed to get called after you mask local IRQs, but for
2761	 * some reason the hardware doesn't quite think you did a proper job.
2762	 */
2763	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2764		return;
2765
2766	if (curr->hardirqs_enabled) {
 
 
2767		/*
2768		 * We have done an ON -> OFF transition:
2769		 */
2770		curr->hardirqs_enabled = 0;
2771		curr->hardirq_disable_ip = ip;
2772		curr->hardirq_disable_event = ++curr->irq_events;
2773		debug_atomic_inc(hardirqs_off_events);
2774	} else
2775		debug_atomic_inc(redundant_hardirqs_off);
 
2776}
2777EXPORT_SYMBOL(trace_hardirqs_off_caller);
2778
2779void trace_hardirqs_off(void)
2780{
2781	trace_hardirqs_off_caller(CALLER_ADDR0);
2782}
2783EXPORT_SYMBOL(trace_hardirqs_off);
2784
2785/*
2786 * Softirqs will be enabled:
2787 */
2788void trace_softirqs_on(unsigned long ip)
2789{
2790	struct task_struct *curr = current;
2791
2792	if (unlikely(!debug_locks || current->lockdep_recursion))
2793		return;
2794
2795	/*
2796	 * We fancy IRQs being disabled here, see softirq.c, avoids
2797	 * funny state and nesting things.
2798	 */
2799	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2800		return;
2801
2802	if (curr->softirqs_enabled) {
2803		debug_atomic_inc(redundant_softirqs_on);
2804		return;
2805	}
2806
2807	current->lockdep_recursion = 1;
2808	/*
2809	 * We'll do an OFF -> ON transition:
2810	 */
2811	curr->softirqs_enabled = 1;
2812	curr->softirq_enable_ip = ip;
2813	curr->softirq_enable_event = ++curr->irq_events;
2814	debug_atomic_inc(softirqs_on_events);
2815	/*
2816	 * We are going to turn softirqs on, so set the
2817	 * usage bit for all held locks, if hardirqs are
2818	 * enabled too:
2819	 */
2820	if (curr->hardirqs_enabled)
2821		mark_held_locks(curr, SOFTIRQ);
2822	current->lockdep_recursion = 0;
2823}
2824
2825/*
2826 * Softirqs were disabled:
2827 */
2828void trace_softirqs_off(unsigned long ip)
2829{
2830	struct task_struct *curr = current;
2831
2832	if (unlikely(!debug_locks || current->lockdep_recursion))
2833		return;
2834
2835	/*
2836	 * We fancy IRQs being disabled here, see softirq.c
2837	 */
2838	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2839		return;
2840
2841	if (curr->softirqs_enabled) {
 
 
2842		/*
2843		 * We have done an ON -> OFF transition:
2844		 */
2845		curr->softirqs_enabled = 0;
2846		curr->softirq_disable_ip = ip;
2847		curr->softirq_disable_event = ++curr->irq_events;
2848		debug_atomic_inc(softirqs_off_events);
2849		/*
2850		 * Whoops, we wanted softirqs off, so why aren't they?
2851		 */
2852		DEBUG_LOCKS_WARN_ON(!softirq_count());
2853	} else
2854		debug_atomic_inc(redundant_softirqs_off);
2855}
2856
2857static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags)
2858{
2859	struct task_struct *curr = current;
2860
2861	if (unlikely(!debug_locks))
2862		return;
2863
2864	/* no reclaim without waiting on it */
2865	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
2866		return;
2867
2868	/* this guy won't enter reclaim */
2869	if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC))
2870		return;
2871
2872	/* We're only interested __GFP_FS allocations for now */
2873	if (!(gfp_mask & __GFP_FS))
2874		return;
2875
2876	/*
2877	 * Oi! Can't be having __GFP_FS allocations with IRQs disabled.
2878	 */
2879	if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags)))
2880		return;
2881
2882	mark_held_locks(curr, RECLAIM_FS);
2883}
2884
2885static void check_flags(unsigned long flags);
2886
2887void lockdep_trace_alloc(gfp_t gfp_mask)
2888{
2889	unsigned long flags;
2890
2891	if (unlikely(current->lockdep_recursion))
2892		return;
2893
2894	raw_local_irq_save(flags);
2895	check_flags(flags);
2896	current->lockdep_recursion = 1;
2897	__lockdep_trace_alloc(gfp_mask, flags);
2898	current->lockdep_recursion = 0;
2899	raw_local_irq_restore(flags);
2900}
2901
2902static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
2903{
2904	/*
2905	 * If non-trylock use in a hardirq or softirq context, then
2906	 * mark the lock as used in these contexts:
2907	 */
2908	if (!hlock->trylock) {
2909		if (hlock->read) {
2910			if (curr->hardirq_context)
2911				if (!mark_lock(curr, hlock,
2912						LOCK_USED_IN_HARDIRQ_READ))
2913					return 0;
2914			if (curr->softirq_context)
2915				if (!mark_lock(curr, hlock,
2916						LOCK_USED_IN_SOFTIRQ_READ))
2917					return 0;
2918		} else {
2919			if (curr->hardirq_context)
2920				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
2921					return 0;
2922			if (curr->softirq_context)
2923				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
2924					return 0;
2925		}
2926	}
2927	if (!hlock->hardirqs_off) {
2928		if (hlock->read) {
2929			if (!mark_lock(curr, hlock,
2930					LOCK_ENABLED_HARDIRQ_READ))
2931				return 0;
2932			if (curr->softirqs_enabled)
2933				if (!mark_lock(curr, hlock,
2934						LOCK_ENABLED_SOFTIRQ_READ))
2935					return 0;
2936		} else {
2937			if (!mark_lock(curr, hlock,
2938					LOCK_ENABLED_HARDIRQ))
2939				return 0;
2940			if (curr->softirqs_enabled)
2941				if (!mark_lock(curr, hlock,
2942						LOCK_ENABLED_SOFTIRQ))
2943					return 0;
2944		}
2945	}
2946
2947	/*
2948	 * We reuse the irq context infrastructure more broadly as a general
2949	 * context checking code. This tests GFP_FS recursion (a lock taken
2950	 * during reclaim for a GFP_FS allocation is held over a GFP_FS
2951	 * allocation).
2952	 */
2953	if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) {
2954		if (hlock->read) {
2955			if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ))
2956					return 0;
2957		} else {
2958			if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS))
2959					return 0;
2960		}
2961	}
2962
2963	return 1;
2964}
2965
2966static inline unsigned int task_irq_context(struct task_struct *task)
2967{
2968	return 2 * !!task->hardirq_context + !!task->softirq_context;
 
2969}
2970
2971static int separate_irq_context(struct task_struct *curr,
2972		struct held_lock *hlock)
2973{
2974	unsigned int depth = curr->lockdep_depth;
2975
2976	/*
2977	 * Keep track of points where we cross into an interrupt context:
2978	 */
2979	if (depth) {
2980		struct held_lock *prev_hlock;
2981
2982		prev_hlock = curr->held_locks + depth-1;
2983		/*
2984		 * If we cross into another context, reset the
2985		 * hash key (this also prevents the checking and the
2986		 * adding of the dependency to 'prev'):
2987		 */
2988		if (prev_hlock->irq_context != hlock->irq_context)
2989			return 1;
2990	}
2991	return 0;
2992}
2993
2994#else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
2995
2996static inline
2997int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2998		enum lock_usage_bit new_bit)
2999{
3000	WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */
3001	return 1;
3002}
3003
3004static inline int mark_irqflags(struct task_struct *curr,
3005		struct held_lock *hlock)
3006{
3007	return 1;
3008}
3009
3010static inline unsigned int task_irq_context(struct task_struct *task)
3011{
3012	return 0;
3013}
3014
3015static inline int separate_irq_context(struct task_struct *curr,
3016		struct held_lock *hlock)
3017{
3018	return 0;
3019}
3020
3021void lockdep_trace_alloc(gfp_t gfp_mask)
3022{
3023}
3024
3025#endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
3026
3027/*
3028 * Mark a lock with a usage bit, and validate the state transition:
3029 */
3030static int mark_lock(struct task_struct *curr, struct held_lock *this,
3031			     enum lock_usage_bit new_bit)
3032{
3033	unsigned int new_mask = 1 << new_bit, ret = 1;
 
 
 
 
 
 
 
 
 
 
3034
3035	/*
3036	 * If already set then do not dirty the cacheline,
3037	 * nor do any checks:
3038	 */
3039	if (likely(hlock_class(this)->usage_mask & new_mask))
3040		return 1;
3041
3042	if (!graph_lock())
3043		return 0;
3044	/*
3045	 * Make sure we didn't race:
3046	 */
3047	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3048		graph_unlock();
3049		return 1;
3050	}
 
3051
3052	hlock_class(this)->usage_mask |= new_mask;
3053
3054	if (!save_trace(hlock_class(this)->usage_traces + new_bit))
3055		return 0;
 
 
3056
3057	switch (new_bit) {
3058#define LOCKDEP_STATE(__STATE)			\
3059	case LOCK_USED_IN_##__STATE:		\
3060	case LOCK_USED_IN_##__STATE##_READ:	\
3061	case LOCK_ENABLED_##__STATE:		\
3062	case LOCK_ENABLED_##__STATE##_READ:
3063#include "lockdep_states.h"
3064#undef LOCKDEP_STATE
3065		ret = mark_lock_irq(curr, this, new_bit);
3066		if (!ret)
3067			return 0;
3068		break;
3069	case LOCK_USED:
3070		debug_atomic_dec(nr_unused_locks);
3071		break;
3072	default:
3073		if (!debug_locks_off_graph_unlock())
3074			return 0;
3075		WARN_ON(1);
3076		return 0;
3077	}
3078
 
3079	graph_unlock();
3080
3081	/*
3082	 * We must printk outside of the graph_lock:
3083	 */
3084	if (ret == 2) {
3085		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3086		print_lock(this);
3087		print_irqtrace_events(curr);
3088		dump_stack();
3089	}
3090
3091	return ret;
3092}
3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094/*
3095 * Initialize a lock instance's lock-class mapping info:
3096 */
3097void lockdep_init_map(struct lockdep_map *lock, const char *name,
3098		      struct lock_class_key *key, int subclass)
 
3099{
3100	int i;
3101
3102	kmemcheck_mark_initialized(lock, sizeof(*lock));
3103
3104	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3105		lock->class_cache[i] = NULL;
3106
3107#ifdef CONFIG_LOCK_STAT
3108	lock->cpu = raw_smp_processor_id();
3109#endif
3110
3111	/*
3112	 * Can't be having no nameless bastards around this place!
3113	 */
3114	if (DEBUG_LOCKS_WARN_ON(!name)) {
3115		lock->name = "NULL";
3116		return;
3117	}
3118
3119	lock->name = name;
3120
 
 
 
 
3121	/*
3122	 * No key, no joy, we need to hash something.
3123	 */
3124	if (DEBUG_LOCKS_WARN_ON(!key))
3125		return;
3126	/*
3127	 * Sanity check, the lock-class key must be persistent:
 
3128	 */
3129	if (!static_obj(key)) {
3130		printk("BUG: key %p not in .data!\n", key);
3131		/*
3132		 * What it says above ^^^^^, I suggest you read it.
3133		 */
3134		DEBUG_LOCKS_WARN_ON(1);
3135		return;
3136	}
3137	lock->key = key;
3138
3139	if (unlikely(!debug_locks))
3140		return;
3141
3142	if (subclass) {
3143		unsigned long flags;
3144
3145		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3146			return;
3147
3148		raw_local_irq_save(flags);
3149		current->lockdep_recursion = 1;
3150		register_lock_class(lock, subclass, 1);
3151		current->lockdep_recursion = 0;
3152		raw_local_irq_restore(flags);
3153	}
3154}
3155EXPORT_SYMBOL_GPL(lockdep_init_map);
3156
3157struct lock_class_key __lockdep_no_validate__;
3158EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3159
3160static int
3161print_lock_nested_lock_not_held(struct task_struct *curr,
3162				struct held_lock *hlock,
3163				unsigned long ip)
3164{
3165	if (!debug_locks_off())
3166		return 0;
3167	if (debug_locks_silent)
3168		return 0;
3169
3170	printk("\n");
3171	printk("==================================\n");
3172	printk("[ BUG: Nested lock was not taken ]\n");
3173	print_kernel_ident();
3174	printk("----------------------------------\n");
3175
3176	printk("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3177	print_lock(hlock);
3178
3179	printk("\nbut this task is not holding:\n");
3180	printk("%s\n", hlock->nest_lock->name);
3181
3182	printk("\nstack backtrace:\n");
3183	dump_stack();
3184
3185	printk("\nother info that might help us debug this:\n");
3186	lockdep_print_held_locks(curr);
3187
3188	printk("\nstack backtrace:\n");
3189	dump_stack();
3190
3191	return 0;
3192}
3193
3194static int __lock_is_held(struct lockdep_map *lock, int read);
3195
3196/*
3197 * This gets called for every mutex_lock*()/spin_lock*() operation.
3198 * We maintain the dependency maps and validate the locking attempt:
 
 
 
 
3199 */
3200static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3201			  int trylock, int read, int check, int hardirqs_off,
3202			  struct lockdep_map *nest_lock, unsigned long ip,
3203			  int references, int pin_count)
3204{
3205	struct task_struct *curr = current;
3206	struct lock_class *class = NULL;
3207	struct held_lock *hlock;
3208	unsigned int depth;
3209	int chain_head = 0;
3210	int class_idx;
3211	u64 chain_key;
3212
3213	if (unlikely(!debug_locks))
3214		return 0;
3215
3216	/*
3217	 * Lockdep should run with IRQs disabled, otherwise we could
3218	 * get an interrupt which would want to take locks, which would
3219	 * end up in lockdep and have you got a head-ache already?
3220	 */
3221	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3222		return 0;
3223
3224	if (!prove_locking || lock->key == &__lockdep_no_validate__)
3225		check = 0;
3226
3227	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3228		class = lock->class_cache[subclass];
3229	/*
3230	 * Not cached?
3231	 */
3232	if (unlikely(!class)) {
3233		class = register_lock_class(lock, subclass, 0);
3234		if (!class)
3235			return 0;
3236	}
3237	atomic_inc((atomic_t *)&class->ops);
 
 
3238	if (very_verbose(class)) {
3239		printk("\nacquire class [%p] %s", class->key, class->name);
3240		if (class->name_version > 1)
3241			printk(KERN_CONT "#%d", class->name_version);
3242		printk(KERN_CONT "\n");
3243		dump_stack();
3244	}
3245
3246	/*
3247	 * Add the lock to the list of currently held locks.
3248	 * (we dont increase the depth just yet, up until the
3249	 * dependency checks are done)
3250	 */
3251	depth = curr->lockdep_depth;
3252	/*
3253	 * Ran out of static storage for our per-task lock stack again have we?
3254	 */
3255	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3256		return 0;
3257
3258	class_idx = class - lock_classes + 1;
3259
3260	if (depth) {
3261		hlock = curr->held_locks + depth - 1;
3262		if (hlock->class_idx == class_idx && nest_lock) {
3263			if (hlock->references)
 
 
 
3264				hlock->references++;
3265			else
3266				hlock->references = 2;
3267
3268			return 1;
 
 
 
 
 
 
3269		}
3270	}
3271
3272	hlock = curr->held_locks + depth;
3273	/*
3274	 * Plain impossible, we just registered it and checked it weren't no
3275	 * NULL like.. I bet this mushroom I ate was good!
3276	 */
3277	if (DEBUG_LOCKS_WARN_ON(!class))
3278		return 0;
3279	hlock->class_idx = class_idx;
3280	hlock->acquire_ip = ip;
3281	hlock->instance = lock;
3282	hlock->nest_lock = nest_lock;
3283	hlock->irq_context = task_irq_context(curr);
3284	hlock->trylock = trylock;
3285	hlock->read = read;
3286	hlock->check = check;
3287	hlock->hardirqs_off = !!hardirqs_off;
3288	hlock->references = references;
3289#ifdef CONFIG_LOCK_STAT
3290	hlock->waittime_stamp = 0;
3291	hlock->holdtime_stamp = lockstat_clock();
3292#endif
3293	hlock->pin_count = pin_count;
3294
3295	if (check && !mark_irqflags(curr, hlock))
3296		return 0;
3297
3298	/* mark it as used: */
3299	if (!mark_lock(curr, hlock, LOCK_USED))
3300		return 0;
3301
3302	/*
3303	 * Calculate the chain hash: it's the combined hash of all the
3304	 * lock keys along the dependency chain. We save the hash value
3305	 * at every step so that we can get the current hash easily
3306	 * after unlock. The chain hash is then used to cache dependency
3307	 * results.
3308	 *
3309	 * The 'key ID' is what is the most compact key value to drive
3310	 * the hash, not class->key.
3311	 */
3312	/*
3313	 * Whoops, we did it again.. ran straight out of our static allocation.
3314	 */
3315	if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS))
3316		return 0;
3317
3318	chain_key = curr->curr_chain_key;
3319	if (!depth) {
3320		/*
3321		 * How can we have a chain hash when we ain't got no keys?!
3322		 */
3323		if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
3324			return 0;
3325		chain_head = 1;
3326	}
3327
3328	hlock->prev_chain_key = chain_key;
3329	if (separate_irq_context(curr, hlock)) {
3330		chain_key = 0;
3331		chain_head = 1;
3332	}
3333	chain_key = iterate_chain_key(chain_key, class_idx);
3334
3335	if (nest_lock && !__lock_is_held(nest_lock, -1))
3336		return print_lock_nested_lock_not_held(curr, hlock, ip);
 
 
3337
3338	if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
 
 
 
 
 
3339		return 0;
3340
3341	curr->curr_chain_key = chain_key;
3342	curr->lockdep_depth++;
3343	check_chain_key(curr);
3344#ifdef CONFIG_DEBUG_LOCKDEP
3345	if (unlikely(!debug_locks))
3346		return 0;
3347#endif
3348	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3349		debug_locks_off();
3350		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3351		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3352		       curr->lockdep_depth, MAX_LOCK_DEPTH);
3353
3354		lockdep_print_held_locks(current);
3355		debug_show_all_locks();
3356		dump_stack();
3357
3358		return 0;
3359	}
3360
3361	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3362		max_lockdep_depth = curr->lockdep_depth;
3363
3364	return 1;
3365}
3366
3367static int
3368print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
3369			   unsigned long ip)
3370{
3371	if (!debug_locks_off())
3372		return 0;
3373	if (debug_locks_silent)
3374		return 0;
3375
3376	printk("\n");
3377	printk("=====================================\n");
3378	printk("[ BUG: bad unlock balance detected! ]\n");
3379	print_kernel_ident();
3380	printk("-------------------------------------\n");
3381	printk("%s/%d is trying to release lock (",
3382		curr->comm, task_pid_nr(curr));
3383	print_lockdep_cache(lock);
3384	printk(KERN_CONT ") at:\n");
3385	print_ip_sym(ip);
3386	printk("but there are no more locks to release!\n");
3387	printk("\nother info that might help us debug this:\n");
3388	lockdep_print_held_locks(curr);
3389
3390	printk("\nstack backtrace:\n");
3391	dump_stack();
3392
3393	return 0;
3394}
3395
3396static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
 
3397{
3398	if (hlock->instance == lock)
3399		return 1;
3400
3401	if (hlock->references) {
3402		struct lock_class *class = lock->class_cache[0];
3403
3404		if (!class)
3405			class = look_up_lock_class(lock, 0);
3406
3407		/*
3408		 * If look_up_lock_class() failed to find a class, we're trying
3409		 * to test if we hold a lock that has never yet been acquired.
3410		 * Clearly if the lock hasn't been acquired _ever_, we're not
3411		 * holding it either, so report failure.
3412		 */
3413		if (!class)
3414			return 0;
3415
3416		/*
3417		 * References, but not a lock we're actually ref-counting?
3418		 * State got messed up, follow the sites that change ->references
3419		 * and try to make sense of it.
3420		 */
3421		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
3422			return 0;
3423
3424		if (hlock->class_idx == class - lock_classes + 1)
3425			return 1;
3426	}
3427
3428	return 0;
3429}
3430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3431static int
3432__lock_set_class(struct lockdep_map *lock, const char *name,
3433		 struct lock_class_key *key, unsigned int subclass,
3434		 unsigned long ip)
3435{
3436	struct task_struct *curr = current;
3437	struct held_lock *hlock, *prev_hlock;
 
3438	struct lock_class *class;
3439	unsigned int depth;
3440	int i;
3441
 
 
 
3442	depth = curr->lockdep_depth;
3443	/*
3444	 * This function is about (re)setting the class of a held lock,
3445	 * yet we're not actually holding any locks. Naughty user!
3446	 */
3447	if (DEBUG_LOCKS_WARN_ON(!depth))
3448		return 0;
3449
3450	prev_hlock = NULL;
3451	for (i = depth-1; i >= 0; i--) {
3452		hlock = curr->held_locks + i;
3453		/*
3454		 * We must not cross into another context:
3455		 */
3456		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3457			break;
3458		if (match_held_lock(hlock, lock))
3459			goto found_it;
3460		prev_hlock = hlock;
3461	}
3462	return print_unlock_imbalance_bug(curr, lock, ip);
3463
3464found_it:
3465	lockdep_init_map(lock, name, key, 0);
 
3466	class = register_lock_class(lock, subclass, 0);
3467	hlock->class_idx = class - lock_classes + 1;
3468
3469	curr->lockdep_depth = i;
3470	curr->curr_chain_key = hlock->prev_chain_key;
3471
3472	for (; i < depth; i++) {
3473		hlock = curr->held_locks + i;
3474		if (!__lock_acquire(hlock->instance,
3475			hlock_class(hlock)->subclass, hlock->trylock,
3476				hlock->read, hlock->check, hlock->hardirqs_off,
3477				hlock->nest_lock, hlock->acquire_ip,
3478				hlock->references, hlock->pin_count))
3479			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3480	}
3481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3482	/*
3483	 * I took it apart and put it back together again, except now I have
3484	 * these 'spare' parts.. where shall I put them.
3485	 */
3486	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
3487		return 0;
 
3488	return 1;
3489}
3490
3491/*
3492 * Remove the lock to the list of currently held locks - this gets
3493 * called on mutex_unlock()/spin_unlock*() (or on a failed
3494 * mutex_lock_interruptible()).
3495 *
3496 * @nested is an hysterical artifact, needs a tree wide cleanup.
3497 */
3498static int
3499__lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3500{
3501	struct task_struct *curr = current;
3502	struct held_lock *hlock, *prev_hlock;
3503	unsigned int depth;
3504	int i;
3505
3506	if (unlikely(!debug_locks))
3507		return 0;
3508
3509	depth = curr->lockdep_depth;
3510	/*
3511	 * So we're all set to release this lock.. wait what lock? We don't
3512	 * own any locks, you've been drinking again?
3513	 */
3514	if (DEBUG_LOCKS_WARN_ON(depth <= 0))
3515		 return print_unlock_imbalance_bug(curr, lock, ip);
 
 
3516
3517	/*
3518	 * Check whether the lock exists in the current stack
3519	 * of held locks:
3520	 */
3521	prev_hlock = NULL;
3522	for (i = depth-1; i >= 0; i--) {
3523		hlock = curr->held_locks + i;
3524		/*
3525		 * We must not cross into another context:
3526		 */
3527		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3528			break;
3529		if (match_held_lock(hlock, lock))
3530			goto found_it;
3531		prev_hlock = hlock;
3532	}
3533	return print_unlock_imbalance_bug(curr, lock, ip);
3534
3535found_it:
3536	if (hlock->instance == lock)
3537		lock_release_holdtime(hlock);
3538
3539	WARN(hlock->pin_count, "releasing a pinned lock\n");
3540
3541	if (hlock->references) {
3542		hlock->references--;
3543		if (hlock->references) {
3544			/*
3545			 * We had, and after removing one, still have
3546			 * references, the current lock stack is still
3547			 * valid. We're done!
3548			 */
3549			return 1;
3550		}
3551	}
3552
3553	/*
3554	 * We have the right lock to unlock, 'hlock' points to it.
3555	 * Now we remove it from the stack, and add back the other
3556	 * entries (if any), recalculating the hash along the way:
3557	 */
3558
3559	curr->lockdep_depth = i;
3560	curr->curr_chain_key = hlock->prev_chain_key;
3561
3562	for (i++; i < depth; i++) {
3563		hlock = curr->held_locks + i;
3564		if (!__lock_acquire(hlock->instance,
3565			hlock_class(hlock)->subclass, hlock->trylock,
3566				hlock->read, hlock->check, hlock->hardirqs_off,
3567				hlock->nest_lock, hlock->acquire_ip,
3568				hlock->references, hlock->pin_count))
3569			return 0;
3570	}
3571
3572	/*
3573	 * We had N bottles of beer on the wall, we drank one, but now
3574	 * there's not N-1 bottles of beer left on the wall...
 
3575	 */
3576	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
3577		return 0;
3578
3579	return 1;
 
 
 
 
 
3580}
3581
3582static int __lock_is_held(struct lockdep_map *lock, int read)
 
3583{
3584	struct task_struct *curr = current;
3585	int i;
3586
3587	for (i = 0; i < curr->lockdep_depth; i++) {
3588		struct held_lock *hlock = curr->held_locks + i;
3589
3590		if (match_held_lock(hlock, lock)) {
3591			if (read == -1 || hlock->read == read)
3592				return 1;
3593
3594			return 0;
3595		}
3596	}
3597
3598	return 0;
3599}
3600
3601static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
3602{
3603	struct pin_cookie cookie = NIL_COOKIE;
3604	struct task_struct *curr = current;
3605	int i;
3606
3607	if (unlikely(!debug_locks))
3608		return cookie;
3609
3610	for (i = 0; i < curr->lockdep_depth; i++) {
3611		struct held_lock *hlock = curr->held_locks + i;
3612
3613		if (match_held_lock(hlock, lock)) {
3614			/*
3615			 * Grab 16bits of randomness; this is sufficient to not
3616			 * be guessable and still allows some pin nesting in
3617			 * our u32 pin_count.
3618			 */
3619			cookie.val = 1 + (prandom_u32() >> 16);
3620			hlock->pin_count += cookie.val;
3621			return cookie;
3622		}
3623	}
3624
3625	WARN(1, "pinning an unheld lock\n");
3626	return cookie;
3627}
3628
3629static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3630{
3631	struct task_struct *curr = current;
3632	int i;
3633
3634	if (unlikely(!debug_locks))
3635		return;
3636
3637	for (i = 0; i < curr->lockdep_depth; i++) {
3638		struct held_lock *hlock = curr->held_locks + i;
3639
3640		if (match_held_lock(hlock, lock)) {
3641			hlock->pin_count += cookie.val;
3642			return;
3643		}
3644	}
3645
3646	WARN(1, "pinning an unheld lock\n");
3647}
3648
3649static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3650{
3651	struct task_struct *curr = current;
3652	int i;
3653
3654	if (unlikely(!debug_locks))
3655		return;
3656
3657	for (i = 0; i < curr->lockdep_depth; i++) {
3658		struct held_lock *hlock = curr->held_locks + i;
3659
3660		if (match_held_lock(hlock, lock)) {
3661			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
3662				return;
3663
3664			hlock->pin_count -= cookie.val;
3665
3666			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
3667				hlock->pin_count = 0;
3668
3669			return;
3670		}
3671	}
3672
3673	WARN(1, "unpinning an unheld lock\n");
3674}
3675
3676/*
3677 * Check whether we follow the irq-flags state precisely:
3678 */
3679static void check_flags(unsigned long flags)
3680{
3681#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3682    defined(CONFIG_TRACE_IRQFLAGS)
3683	if (!debug_locks)
3684		return;
3685
 
 
 
3686	if (irqs_disabled_flags(flags)) {
3687		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3688			printk("possible reason: unannotated irqs-off.\n");
3689		}
3690	} else {
3691		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3692			printk("possible reason: unannotated irqs-on.\n");
3693		}
3694	}
3695
3696	/*
3697	 * We dont accurately track softirq state in e.g.
3698	 * hardirq contexts (such as on 4KSTACKS), so only
3699	 * check if not in hardirq contexts:
3700	 */
3701	if (!hardirq_count()) {
3702		if (softirq_count()) {
3703			/* like the above, but with softirqs */
3704			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3705		} else {
3706			/* lick the above, does it taste good? */
3707			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3708		}
3709	}
3710
3711	if (!debug_locks)
3712		print_irqtrace_events(current);
 
 
3713#endif
3714}
3715
3716void lock_set_class(struct lockdep_map *lock, const char *name,
3717		    struct lock_class_key *key, unsigned int subclass,
3718		    unsigned long ip)
3719{
3720	unsigned long flags;
3721
3722	if (unlikely(current->lockdep_recursion))
3723		return;
3724
3725	raw_local_irq_save(flags);
3726	current->lockdep_recursion = 1;
3727	check_flags(flags);
3728	if (__lock_set_class(lock, name, key, subclass, ip))
3729		check_chain_key(current);
3730	current->lockdep_recursion = 0;
3731	raw_local_irq_restore(flags);
3732}
3733EXPORT_SYMBOL_GPL(lock_set_class);
3734
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3735/*
3736 * We are not always called with irqs disabled - do that here,
3737 * and also avoid lockdep recursion:
3738 */
3739void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3740			  int trylock, int read, int check,
3741			  struct lockdep_map *nest_lock, unsigned long ip)
3742{
3743	unsigned long flags;
3744
3745	if (unlikely(current->lockdep_recursion))
 
 
3746		return;
3747
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3748	raw_local_irq_save(flags);
3749	check_flags(flags);
3750
3751	current->lockdep_recursion = 1;
3752	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
3753	__lock_acquire(lock, subclass, trylock, read, check,
3754		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
3755	current->lockdep_recursion = 0;
3756	raw_local_irq_restore(flags);
3757}
3758EXPORT_SYMBOL_GPL(lock_acquire);
3759
3760void lock_release(struct lockdep_map *lock, int nested,
3761			  unsigned long ip)
3762{
3763	unsigned long flags;
3764
3765	if (unlikely(current->lockdep_recursion))
 
 
3766		return;
3767
3768	raw_local_irq_save(flags);
3769	check_flags(flags);
3770	current->lockdep_recursion = 1;
3771	trace_lock_release(lock, ip);
3772	if (__lock_release(lock, nested, ip))
3773		check_chain_key(current);
3774	current->lockdep_recursion = 0;
3775	raw_local_irq_restore(flags);
3776}
3777EXPORT_SYMBOL_GPL(lock_release);
3778
3779int lock_is_held_type(struct lockdep_map *lock, int read)
3780{
3781	unsigned long flags;
3782	int ret = 0;
3783
3784	if (unlikely(current->lockdep_recursion))
3785		return 1; /* avoid false negative lockdep_assert_held() */
 
 
 
 
3786
3787	raw_local_irq_save(flags);
3788	check_flags(flags);
3789
3790	current->lockdep_recursion = 1;
3791	ret = __lock_is_held(lock, read);
3792	current->lockdep_recursion = 0;
3793	raw_local_irq_restore(flags);
3794
3795	return ret;
3796}
3797EXPORT_SYMBOL_GPL(lock_is_held_type);
 
3798
3799struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
3800{
3801	struct pin_cookie cookie = NIL_COOKIE;
3802	unsigned long flags;
3803
3804	if (unlikely(current->lockdep_recursion))
3805		return cookie;
3806
3807	raw_local_irq_save(flags);
3808	check_flags(flags);
3809
3810	current->lockdep_recursion = 1;
3811	cookie = __lock_pin_lock(lock);
3812	current->lockdep_recursion = 0;
3813	raw_local_irq_restore(flags);
3814
3815	return cookie;
3816}
3817EXPORT_SYMBOL_GPL(lock_pin_lock);
3818
3819void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3820{
3821	unsigned long flags;
3822
3823	if (unlikely(current->lockdep_recursion))
3824		return;
3825
3826	raw_local_irq_save(flags);
3827	check_flags(flags);
3828
3829	current->lockdep_recursion = 1;
3830	__lock_repin_lock(lock, cookie);
3831	current->lockdep_recursion = 0;
3832	raw_local_irq_restore(flags);
3833}
3834EXPORT_SYMBOL_GPL(lock_repin_lock);
3835
3836void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3837{
3838	unsigned long flags;
3839
3840	if (unlikely(current->lockdep_recursion))
3841		return;
3842
3843	raw_local_irq_save(flags);
3844	check_flags(flags);
3845
3846	current->lockdep_recursion = 1;
3847	__lock_unpin_lock(lock, cookie);
3848	current->lockdep_recursion = 0;
3849	raw_local_irq_restore(flags);
3850}
3851EXPORT_SYMBOL_GPL(lock_unpin_lock);
3852
3853void lockdep_set_current_reclaim_state(gfp_t gfp_mask)
3854{
3855	current->lockdep_reclaim_gfp = gfp_mask;
3856}
3857
3858void lockdep_clear_current_reclaim_state(void)
3859{
3860	current->lockdep_reclaim_gfp = 0;
3861}
3862
3863#ifdef CONFIG_LOCK_STAT
3864static int
3865print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
3866			   unsigned long ip)
3867{
3868	if (!debug_locks_off())
3869		return 0;
3870	if (debug_locks_silent)
3871		return 0;
3872
3873	printk("\n");
3874	printk("=================================\n");
3875	printk("[ BUG: bad contention detected! ]\n");
3876	print_kernel_ident();
3877	printk("---------------------------------\n");
3878	printk("%s/%d is trying to contend lock (",
3879		curr->comm, task_pid_nr(curr));
3880	print_lockdep_cache(lock);
3881	printk(KERN_CONT ") at:\n");
3882	print_ip_sym(ip);
3883	printk("but there are no locks held!\n");
3884	printk("\nother info that might help us debug this:\n");
3885	lockdep_print_held_locks(curr);
3886
3887	printk("\nstack backtrace:\n");
3888	dump_stack();
3889
3890	return 0;
3891}
3892
3893static void
3894__lock_contended(struct lockdep_map *lock, unsigned long ip)
3895{
3896	struct task_struct *curr = current;
3897	struct held_lock *hlock, *prev_hlock;
3898	struct lock_class_stats *stats;
3899	unsigned int depth;
3900	int i, contention_point, contending_point;
3901
3902	depth = curr->lockdep_depth;
3903	/*
3904	 * Whee, we contended on this lock, except it seems we're not
3905	 * actually trying to acquire anything much at all..
3906	 */
3907	if (DEBUG_LOCKS_WARN_ON(!depth))
3908		return;
3909
3910	prev_hlock = NULL;
3911	for (i = depth-1; i >= 0; i--) {
3912		hlock = curr->held_locks + i;
3913		/*
3914		 * We must not cross into another context:
3915		 */
3916		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3917			break;
3918		if (match_held_lock(hlock, lock))
3919			goto found_it;
3920		prev_hlock = hlock;
3921	}
3922	print_lock_contention_bug(curr, lock, ip);
3923	return;
3924
3925found_it:
3926	if (hlock->instance != lock)
3927		return;
3928
3929	hlock->waittime_stamp = lockstat_clock();
3930
3931	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
3932	contending_point = lock_point(hlock_class(hlock)->contending_point,
3933				      lock->ip);
3934
3935	stats = get_lock_stats(hlock_class(hlock));
3936	if (contention_point < LOCKSTAT_POINTS)
3937		stats->contention_point[contention_point]++;
3938	if (contending_point < LOCKSTAT_POINTS)
3939		stats->contending_point[contending_point]++;
3940	if (lock->cpu != smp_processor_id())
3941		stats->bounces[bounce_contended + !!hlock->read]++;
3942	put_lock_stats(stats);
3943}
3944
3945static void
3946__lock_acquired(struct lockdep_map *lock, unsigned long ip)
3947{
3948	struct task_struct *curr = current;
3949	struct held_lock *hlock, *prev_hlock;
3950	struct lock_class_stats *stats;
3951	unsigned int depth;
3952	u64 now, waittime = 0;
3953	int i, cpu;
3954
3955	depth = curr->lockdep_depth;
3956	/*
3957	 * Yay, we acquired ownership of this lock we didn't try to
3958	 * acquire, how the heck did that happen?
3959	 */
3960	if (DEBUG_LOCKS_WARN_ON(!depth))
3961		return;
3962
3963	prev_hlock = NULL;
3964	for (i = depth-1; i >= 0; i--) {
3965		hlock = curr->held_locks + i;
3966		/*
3967		 * We must not cross into another context:
3968		 */
3969		if (prev_hlock && prev_hlock->irq_context != hlock->irq_context)
3970			break;
3971		if (match_held_lock(hlock, lock))
3972			goto found_it;
3973		prev_hlock = hlock;
3974	}
3975	print_lock_contention_bug(curr, lock, _RET_IP_);
3976	return;
3977
3978found_it:
3979	if (hlock->instance != lock)
3980		return;
3981
3982	cpu = smp_processor_id();
3983	if (hlock->waittime_stamp) {
3984		now = lockstat_clock();
3985		waittime = now - hlock->waittime_stamp;
3986		hlock->holdtime_stamp = now;
3987	}
3988
3989	trace_lock_acquired(lock, ip);
3990
3991	stats = get_lock_stats(hlock_class(hlock));
3992	if (waittime) {
3993		if (hlock->read)
3994			lock_time_inc(&stats->read_waittime, waittime);
3995		else
3996			lock_time_inc(&stats->write_waittime, waittime);
3997	}
3998	if (lock->cpu != cpu)
3999		stats->bounces[bounce_acquired + !!hlock->read]++;
4000	put_lock_stats(stats);
4001
4002	lock->cpu = cpu;
4003	lock->ip = ip;
4004}
4005
4006void lock_contended(struct lockdep_map *lock, unsigned long ip)
4007{
4008	unsigned long flags;
4009
4010	if (unlikely(!lock_stat))
4011		return;
4012
4013	if (unlikely(current->lockdep_recursion))
4014		return;
4015
4016	raw_local_irq_save(flags);
4017	check_flags(flags);
4018	current->lockdep_recursion = 1;
4019	trace_lock_contended(lock, ip);
4020	__lock_contended(lock, ip);
4021	current->lockdep_recursion = 0;
4022	raw_local_irq_restore(flags);
4023}
4024EXPORT_SYMBOL_GPL(lock_contended);
4025
4026void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4027{
4028	unsigned long flags;
4029
4030	if (unlikely(!lock_stat))
4031		return;
4032
4033	if (unlikely(current->lockdep_recursion))
4034		return;
4035
4036	raw_local_irq_save(flags);
4037	check_flags(flags);
4038	current->lockdep_recursion = 1;
4039	__lock_acquired(lock, ip);
4040	current->lockdep_recursion = 0;
4041	raw_local_irq_restore(flags);
4042}
4043EXPORT_SYMBOL_GPL(lock_acquired);
4044#endif
4045
4046/*
4047 * Used by the testsuite, sanitize the validator state
4048 * after a simulated failure:
4049 */
4050
4051void lockdep_reset(void)
4052{
4053	unsigned long flags;
4054	int i;
4055
4056	raw_local_irq_save(flags);
4057	current->curr_chain_key = 0;
4058	current->lockdep_depth = 0;
4059	current->lockdep_recursion = 0;
4060	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4061	nr_hardirq_chains = 0;
4062	nr_softirq_chains = 0;
4063	nr_process_chains = 0;
4064	debug_locks = 1;
4065	for (i = 0; i < CHAINHASH_SIZE; i++)
4066		INIT_HLIST_HEAD(chainhash_table + i);
4067	raw_local_irq_restore(flags);
4068}
4069
4070static void zap_class(struct lock_class *class)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4071{
 
4072	int i;
4073
 
 
4074	/*
4075	 * Remove all dependencies this lock is
4076	 * involved in:
4077	 */
4078	for (i = 0; i < nr_list_entries; i++) {
4079		if (list_entries[i].class == class)
4080			list_del_rcu(&list_entries[i].entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4081	}
4082	/*
4083	 * Unhash the class and remove it from the all_lock_classes list:
4084	 */
4085	hlist_del_rcu(&class->hash_entry);
4086	list_del_rcu(&class->lock_entry);
4087
4088	RCU_INIT_POINTER(class->key, NULL);
4089	RCU_INIT_POINTER(class->name, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4090}
4091
4092static inline int within(const void *addr, void *start, unsigned long size)
4093{
4094	return addr >= start && addr < start + size;
4095}
4096
 
 
 
 
 
 
 
 
 
 
 
 
 
4097/*
4098 * Used in module.c to remove lock classes from memory that is going to be
4099 * freed; and possibly re-used by other modules.
4100 *
4101 * We will have had one sync_sched() before getting here, so we're guaranteed
4102 * nobody will look up these exact classes -- they're properly dead but still
4103 * allocated.
4104 */
4105void lockdep_free_key_range(void *start, unsigned long size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4106{
4107	struct lock_class *class;
4108	struct hlist_head *head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4109	unsigned long flags;
4110	int i;
4111	int locked;
 
4112
4113	raw_local_irq_save(flags);
4114	locked = graph_lock();
 
 
 
 
 
4115
4116	/*
4117	 * Unhash all classes that were created by this module:
4118	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4119	for (i = 0; i < CLASSHASH_SIZE; i++) {
4120		head = classhash_table + i;
4121		hlist_for_each_entry_rcu(class, head, hash_entry) {
4122			if (within(class->key, start, size))
4123				zap_class(class);
4124			else if (within(class->name, start, size))
4125				zap_class(class);
4126		}
4127	}
 
4128
4129	if (locked)
4130		graph_unlock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4131	raw_local_irq_restore(flags);
4132
4133	/*
4134	 * Wait for any possible iterators from look_up_lock_class() to pass
4135	 * before continuing to free the memory they refer to.
4136	 *
4137	 * sync_sched() is sufficient because the read-side is IRQ disable.
4138	 */
4139	synchronize_sched();
 
4140
4141	/*
4142	 * XXX at this point we could return the resources to the pool;
4143	 * instead we leak them. We would need to change to bitmap allocators
4144	 * instead of the linear allocators we have now.
4145	 */
 
 
 
 
 
 
 
 
 
 
 
 
4146}
4147
4148void lockdep_reset_lock(struct lockdep_map *lock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4149{
4150	struct lock_class *class;
4151	struct hlist_head *head;
4152	unsigned long flags;
4153	int i, j;
4154	int locked;
4155
4156	raw_local_irq_save(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4157
4158	/*
4159	 * Remove all classes this lock might have:
4160	 */
4161	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
4162		/*
4163		 * If the class exists we look it up and zap it:
4164		 */
4165		class = look_up_lock_class(lock, j);
4166		if (class)
4167			zap_class(class);
4168	}
4169	/*
4170	 * Debug check: in the end all mapped classes should
4171	 * be gone.
4172	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4173	locked = graph_lock();
4174	for (i = 0; i < CLASSHASH_SIZE; i++) {
4175		head = classhash_table + i;
4176		hlist_for_each_entry_rcu(class, head, hash_entry) {
4177			int match = 0;
4178
4179			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
4180				match |= class == lock->class_cache[j];
 
4181
4182			if (unlikely(match)) {
4183				if (debug_locks_off_graph_unlock()) {
4184					/*
4185					 * We all just reset everything, how did it match?
4186					 */
4187					WARN_ON(1);
4188				}
4189				goto out_restore;
4190			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4191		}
4192	}
4193	if (locked)
4194		graph_unlock();
4195
4196out_restore:
 
4197	raw_local_irq_restore(flags);
 
 
 
4198}
 
4199
4200void __init lockdep_info(void)
4201{
4202	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
4203
4204	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
4205	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
4206	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
4207	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
4208	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
4209	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
4210	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
4211
4212	printk(" memory used by lock dependency info: %lu kB\n",
4213		(sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
4214		sizeof(struct list_head) * CLASSHASH_SIZE +
4215		sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
4216		sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
4217		sizeof(struct list_head) * CHAINHASH_SIZE
 
 
4218#ifdef CONFIG_PROVE_LOCKING
4219		+ sizeof(struct circular_queue)
 
 
 
4220#endif
4221		) / 1024
4222		);
4223
4224	printk(" per task-struct memory footprint: %lu bytes\n",
4225		sizeof(struct held_lock) * MAX_LOCK_DEPTH);
 
 
 
 
 
 
4226}
4227
4228static void
4229print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
4230		     const void *mem_to, struct held_lock *hlock)
4231{
4232	if (!debug_locks_off())
4233		return;
4234	if (debug_locks_silent)
4235		return;
4236
4237	printk("\n");
4238	printk("=========================\n");
4239	printk("[ BUG: held lock freed! ]\n");
4240	print_kernel_ident();
4241	printk("-------------------------\n");
4242	printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
4243		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
4244	print_lock(hlock);
4245	lockdep_print_held_locks(curr);
4246
4247	printk("\nstack backtrace:\n");
4248	dump_stack();
4249}
4250
4251static inline int not_in_range(const void* mem_from, unsigned long mem_len,
4252				const void* lock_from, unsigned long lock_len)
4253{
4254	return lock_from + lock_len <= mem_from ||
4255		mem_from + mem_len <= lock_from;
4256}
4257
4258/*
4259 * Called when kernel memory is freed (or unmapped), or if a lock
4260 * is destroyed or reinitialized - this code checks whether there is
4261 * any held lock in the memory range of <from> to <to>:
4262 */
4263void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
4264{
4265	struct task_struct *curr = current;
4266	struct held_lock *hlock;
4267	unsigned long flags;
4268	int i;
4269
4270	if (unlikely(!debug_locks))
4271		return;
4272
4273	local_irq_save(flags);
4274	for (i = 0; i < curr->lockdep_depth; i++) {
4275		hlock = curr->held_locks + i;
4276
4277		if (not_in_range(mem_from, mem_len, hlock->instance,
4278					sizeof(*hlock->instance)))
4279			continue;
4280
4281		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
4282		break;
4283	}
4284	local_irq_restore(flags);
4285}
4286EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
4287
4288static void print_held_locks_bug(void)
4289{
4290	if (!debug_locks_off())
4291		return;
4292	if (debug_locks_silent)
4293		return;
4294
4295	printk("\n");
4296	printk("=====================================\n");
4297	printk("[ BUG: %s/%d still has locks held! ]\n",
4298	       current->comm, task_pid_nr(current));
4299	print_kernel_ident();
4300	printk("-------------------------------------\n");
4301	lockdep_print_held_locks(current);
4302	printk("\nstack backtrace:\n");
4303	dump_stack();
4304}
4305
4306void debug_check_no_locks_held(void)
4307{
4308	if (unlikely(current->lockdep_depth > 0))
4309		print_held_locks_bug();
4310}
4311EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
4312
4313#ifdef __KERNEL__
4314void debug_show_all_locks(void)
4315{
4316	struct task_struct *g, *p;
4317	int count = 10;
4318	int unlock = 1;
4319
4320	if (unlikely(!debug_locks)) {
4321		printk("INFO: lockdep is turned off.\n");
4322		return;
4323	}
4324	printk("\nShowing all locks held in the system:\n");
4325
4326	/*
4327	 * Here we try to get the tasklist_lock as hard as possible,
4328	 * if not successful after 2 seconds we ignore it (but keep
4329	 * trying). This is to enable a debug printout even if a
4330	 * tasklist_lock-holding task deadlocks or crashes.
4331	 */
4332retry:
4333	if (!read_trylock(&tasklist_lock)) {
4334		if (count == 10)
4335			printk("hm, tasklist_lock locked, retrying... ");
4336		if (count) {
4337			count--;
4338			printk(" #%d", 10-count);
4339			mdelay(200);
4340			goto retry;
4341		}
4342		printk(" ignoring it.\n");
4343		unlock = 0;
4344	} else {
4345		if (count != 10)
4346			printk(KERN_CONT " locked it.\n");
4347	}
4348
4349	do_each_thread(g, p) {
4350		/*
4351		 * It's not reliable to print a task's held locks
4352		 * if it's not sleeping (or if it's not the current
4353		 * task):
4354		 */
4355		if (p->state == TASK_RUNNING && p != current)
4356			continue;
4357		if (p->lockdep_depth)
4358			lockdep_print_held_locks(p);
4359		if (!unlock)
4360			if (read_trylock(&tasklist_lock))
4361				unlock = 1;
4362	} while_each_thread(g, p);
4363
4364	printk("\n");
4365	printk("=============================================\n\n");
4366
4367	if (unlock)
4368		read_unlock(&tasklist_lock);
4369}
4370EXPORT_SYMBOL_GPL(debug_show_all_locks);
4371#endif
4372
4373/*
4374 * Careful: only use this function if you are sure that
4375 * the task cannot run in parallel!
4376 */
4377void debug_show_held_locks(struct task_struct *task)
4378{
4379	if (unlikely(!debug_locks)) {
4380		printk("INFO: lockdep is turned off.\n");
4381		return;
4382	}
4383	lockdep_print_held_locks(task);
4384}
4385EXPORT_SYMBOL_GPL(debug_show_held_locks);
4386
4387asmlinkage __visible void lockdep_sys_exit(void)
4388{
4389	struct task_struct *curr = current;
4390
4391	if (unlikely(curr->lockdep_depth)) {
4392		if (!debug_locks_off())
4393			return;
4394		printk("\n");
4395		printk("================================================\n");
4396		printk("[ BUG: lock held when returning to user space! ]\n");
4397		print_kernel_ident();
4398		printk("------------------------------------------------\n");
4399		printk("%s/%d is leaving the kernel with locks still held!\n",
4400				curr->comm, curr->pid);
4401		lockdep_print_held_locks(curr);
4402	}
 
 
 
 
 
 
4403}
4404
4405void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
4406{
4407	struct task_struct *curr = current;
 
4408
4409#ifndef CONFIG_PROVE_RCU_REPEATEDLY
4410	if (!debug_locks_off())
4411		return;
4412#endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */
4413	/* Note: the following can be executed concurrently, so be careful. */
4414	printk("\n");
4415	printk("===============================\n");
4416	printk("[ INFO: suspicious RCU usage. ]\n");
4417	print_kernel_ident();
4418	printk("-------------------------------\n");
4419	printk("%s:%d %s!\n", file, line, s);
4420	printk("\nother info that might help us debug this:\n\n");
4421	printk("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
4422	       !rcu_lockdep_current_cpu_online()
4423			? "RCU used illegally from offline CPU!\n"
4424			: !rcu_is_watching()
4425				? "RCU used illegally from idle CPU!\n"
4426				: "",
4427	       rcu_scheduler_active, debug_locks);
4428
4429	/*
4430	 * If a CPU is in the RCU-free window in idle (ie: in the section
4431	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
4432	 * considers that CPU to be in an "extended quiescent state",
4433	 * which means that RCU will be completely ignoring that CPU.
4434	 * Therefore, rcu_read_lock() and friends have absolutely no
4435	 * effect on a CPU running in that state. In other words, even if
4436	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
4437	 * delete data structures out from under it.  RCU really has no
4438	 * choice here: we need to keep an RCU-free window in idle where
4439	 * the CPU may possibly enter into low power mode. This way we can
4440	 * notice an extended quiescent state to other CPUs that started a grace
4441	 * period. Otherwise we would delay any grace period as long as we run
4442	 * in the idle task.
4443	 *
4444	 * So complain bitterly if someone does call rcu_read_lock(),
4445	 * rcu_read_lock_bh() and so on from extended quiescent states.
4446	 */
4447	if (!rcu_is_watching())
4448		printk("RCU used illegally from extended quiescent state!\n");
4449
4450	lockdep_print_held_locks(curr);
4451	printk("\nstack backtrace:\n");
4452	dump_stack();
4453}
4454EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kernel/lockdep.c
   4 *
   5 * Runtime locking correctness validator
   6 *
   7 * Started by Ingo Molnar:
   8 *
   9 *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  10 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  11 *
  12 * this code maps all the lock dependencies as they occur in a live kernel
  13 * and will warn about the following classes of locking bugs:
  14 *
  15 * - lock inversion scenarios
  16 * - circular lock dependencies
  17 * - hardirq/softirq safe/unsafe locking bugs
  18 *
  19 * Bugs are reported even if the current locking scenario does not cause
  20 * any deadlock at this point.
  21 *
  22 * I.e. if anytime in the past two locks were taken in a different order,
  23 * even if it happened for another task, even if those were different
  24 * locks (but of the same class as this lock), this code will detect it.
  25 *
  26 * Thanks to Arjan van de Ven for coming up with the initial idea of
  27 * mapping lock dependencies runtime.
  28 */
  29#define DISABLE_BRANCH_PROFILING
  30#include <linux/mutex.h>
  31#include <linux/sched.h>
  32#include <linux/sched/clock.h>
  33#include <linux/sched/task.h>
  34#include <linux/sched/mm.h>
  35#include <linux/delay.h>
  36#include <linux/module.h>
  37#include <linux/proc_fs.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40#include <linux/kallsyms.h>
  41#include <linux/interrupt.h>
  42#include <linux/stacktrace.h>
  43#include <linux/debug_locks.h>
  44#include <linux/irqflags.h>
  45#include <linux/utsname.h>
  46#include <linux/hash.h>
  47#include <linux/ftrace.h>
  48#include <linux/stringify.h>
  49#include <linux/bitmap.h>
  50#include <linux/bitops.h>
  51#include <linux/gfp.h>
 
  52#include <linux/random.h>
  53#include <linux/jhash.h>
  54#include <linux/nmi.h>
  55#include <linux/rcupdate.h>
  56#include <linux/kprobes.h>
  57#include <linux/lockdep.h>
  58
  59#include <asm/sections.h>
  60
  61#include "lockdep_internals.h"
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/lock.h>
  65
  66#ifdef CONFIG_PROVE_LOCKING
  67int prove_locking = 1;
  68module_param(prove_locking, int, 0644);
  69#else
  70#define prove_locking 0
  71#endif
  72
  73#ifdef CONFIG_LOCK_STAT
  74int lock_stat = 1;
  75module_param(lock_stat, int, 0644);
  76#else
  77#define lock_stat 0
  78#endif
  79
  80DEFINE_PER_CPU(unsigned int, lockdep_recursion);
  81EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
  82
  83static __always_inline bool lockdep_enabled(void)
  84{
  85	if (!debug_locks)
  86		return false;
  87
  88	if (this_cpu_read(lockdep_recursion))
  89		return false;
  90
  91	if (current->lockdep_recursion)
  92		return false;
  93
  94	return true;
  95}
  96
  97/*
  98 * lockdep_lock: protects the lockdep graph, the hashes and the
  99 *               class/list/hash allocators.
 100 *
 101 * This is one of the rare exceptions where it's justified
 102 * to use a raw spinlock - we really dont want the spinlock
 103 * code to recurse back into the lockdep code...
 104 */
 105static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
 106static struct task_struct *__owner;
 107
 108static inline void lockdep_lock(void)
 109{
 110	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 111
 112	__this_cpu_inc(lockdep_recursion);
 113	arch_spin_lock(&__lock);
 114	__owner = current;
 115}
 116
 117static inline void lockdep_unlock(void)
 118{
 119	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
 120
 121	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
 122		return;
 123
 124	__owner = NULL;
 125	arch_spin_unlock(&__lock);
 126	__this_cpu_dec(lockdep_recursion);
 127}
 128
 129static inline bool lockdep_assert_locked(void)
 130{
 131	return DEBUG_LOCKS_WARN_ON(__owner != current);
 132}
 133
 134static struct task_struct *lockdep_selftest_task_struct;
 135
 136
 137static int graph_lock(void)
 138{
 139	lockdep_lock();
 140	/*
 141	 * Make sure that if another CPU detected a bug while
 142	 * walking the graph we dont change it (while the other
 143	 * CPU is busy printing out stuff with the graph lock
 144	 * dropped already)
 145	 */
 146	if (!debug_locks) {
 147		lockdep_unlock();
 148		return 0;
 149	}
 
 
 150	return 1;
 151}
 152
 153static inline void graph_unlock(void)
 154{
 155	lockdep_unlock();
 
 
 
 
 
 
 
 
 
 
 156}
 157
 158/*
 159 * Turn lock debugging off and return with 0 if it was off already,
 160 * and also release the graph lock:
 161 */
 162static inline int debug_locks_off_graph_unlock(void)
 163{
 164	int ret = debug_locks_off();
 165
 166	lockdep_unlock();
 167
 168	return ret;
 169}
 170
 171unsigned long nr_list_entries;
 172static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
 173static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
 174
 175/*
 176 * All data structures here are protected by the global debug_lock.
 177 *
 178 * nr_lock_classes is the number of elements of lock_classes[] that is
 179 * in use.
 180 */
 181#define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 182#define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
 183static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
 184unsigned long nr_lock_classes;
 185unsigned long nr_zapped_classes;
 186#ifndef CONFIG_DEBUG_LOCKDEP
 187static
 188#endif
 189struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
 190static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
 191
 192static inline struct lock_class *hlock_class(struct held_lock *hlock)
 193{
 194	unsigned int class_idx = hlock->class_idx;
 195
 196	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
 197	barrier();
 198
 199	if (!test_bit(class_idx, lock_classes_in_use)) {
 200		/*
 201		 * Someone passed in garbage, we give up.
 202		 */
 203		DEBUG_LOCKS_WARN_ON(1);
 204		return NULL;
 205	}
 206
 207	/*
 208	 * At this point, if the passed hlock->class_idx is still garbage,
 209	 * we just have to live with it
 210	 */
 211	return lock_classes + class_idx;
 212}
 213
 214#ifdef CONFIG_LOCK_STAT
 215static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
 216
 217static inline u64 lockstat_clock(void)
 218{
 219	return local_clock();
 220}
 221
 222static int lock_point(unsigned long points[], unsigned long ip)
 223{
 224	int i;
 225
 226	for (i = 0; i < LOCKSTAT_POINTS; i++) {
 227		if (points[i] == 0) {
 228			points[i] = ip;
 229			break;
 230		}
 231		if (points[i] == ip)
 232			break;
 233	}
 234
 235	return i;
 236}
 237
 238static void lock_time_inc(struct lock_time *lt, u64 time)
 239{
 240	if (time > lt->max)
 241		lt->max = time;
 242
 243	if (time < lt->min || !lt->nr)
 244		lt->min = time;
 245
 246	lt->total += time;
 247	lt->nr++;
 248}
 249
 250static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
 251{
 252	if (!src->nr)
 253		return;
 254
 255	if (src->max > dst->max)
 256		dst->max = src->max;
 257
 258	if (src->min < dst->min || !dst->nr)
 259		dst->min = src->min;
 260
 261	dst->total += src->total;
 262	dst->nr += src->nr;
 263}
 264
 265struct lock_class_stats lock_stats(struct lock_class *class)
 266{
 267	struct lock_class_stats stats;
 268	int cpu, i;
 269
 270	memset(&stats, 0, sizeof(struct lock_class_stats));
 271	for_each_possible_cpu(cpu) {
 272		struct lock_class_stats *pcs =
 273			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 274
 275		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
 276			stats.contention_point[i] += pcs->contention_point[i];
 277
 278		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
 279			stats.contending_point[i] += pcs->contending_point[i];
 280
 281		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
 282		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
 283
 284		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
 285		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
 286
 287		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
 288			stats.bounces[i] += pcs->bounces[i];
 289	}
 290
 291	return stats;
 292}
 293
 294void clear_lock_stats(struct lock_class *class)
 295{
 296	int cpu;
 297
 298	for_each_possible_cpu(cpu) {
 299		struct lock_class_stats *cpu_stats =
 300			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
 301
 302		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
 303	}
 304	memset(class->contention_point, 0, sizeof(class->contention_point));
 305	memset(class->contending_point, 0, sizeof(class->contending_point));
 306}
 307
 308static struct lock_class_stats *get_lock_stats(struct lock_class *class)
 309{
 310	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
 
 
 
 
 
 311}
 312
 313static void lock_release_holdtime(struct held_lock *hlock)
 314{
 315	struct lock_class_stats *stats;
 316	u64 holdtime;
 317
 318	if (!lock_stat)
 319		return;
 320
 321	holdtime = lockstat_clock() - hlock->holdtime_stamp;
 322
 323	stats = get_lock_stats(hlock_class(hlock));
 324	if (hlock->read)
 325		lock_time_inc(&stats->read_holdtime, holdtime);
 326	else
 327		lock_time_inc(&stats->write_holdtime, holdtime);
 
 328}
 329#else
 330static inline void lock_release_holdtime(struct held_lock *hlock)
 331{
 332}
 333#endif
 334
 335/*
 336 * We keep a global list of all lock classes. The list is only accessed with
 337 * the lockdep spinlock lock held. free_lock_classes is a list with free
 338 * elements. These elements are linked together by the lock_entry member in
 339 * struct lock_class.
 340 */
 341LIST_HEAD(all_lock_classes);
 342static LIST_HEAD(free_lock_classes);
 343
 344/**
 345 * struct pending_free - information about data structures about to be freed
 346 * @zapped: Head of a list with struct lock_class elements.
 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
 348 *	are about to be freed.
 349 */
 350struct pending_free {
 351	struct list_head zapped;
 352	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
 353};
 354
 355/**
 356 * struct delayed_free - data structures used for delayed freeing
 357 *
 358 * A data structure for delayed freeing of data structures that may be
 359 * accessed by RCU readers at the time these were freed.
 360 *
 361 * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
 362 * @index:     Index of @pf to which freed data structures are added.
 363 * @scheduled: Whether or not an RCU callback has been scheduled.
 364 * @pf:        Array with information about data structures about to be freed.
 365 */
 366static struct delayed_free {
 367	struct rcu_head		rcu_head;
 368	int			index;
 369	int			scheduled;
 370	struct pending_free	pf[2];
 371} delayed_free;
 372
 373/*
 374 * The lockdep classes are in a hash-table as well, for fast lookup:
 375 */
 376#define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
 377#define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
 378#define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
 379#define classhashentry(key)	(classhash_table + __classhashfn((key)))
 380
 381static struct hlist_head classhash_table[CLASSHASH_SIZE];
 382
 383/*
 384 * We put the lock dependency chains into a hash-table as well, to cache
 385 * their existence:
 386 */
 387#define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
 388#define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
 389#define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
 390#define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
 391
 392static struct hlist_head chainhash_table[CHAINHASH_SIZE];
 393
 394/*
 395 * the id of held_lock
 396 */
 397static inline u16 hlock_id(struct held_lock *hlock)
 398{
 399	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
 400
 401	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
 402}
 403
 404static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
 405{
 406	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
 407}
 408
 409/*
 410 * The hash key of the lock dependency chains is a hash itself too:
 411 * it's a hash of all locks taken up to that lock, including that lock.
 412 * It's a 64-bit hash, because it's important for the keys to be
 413 * unique.
 414 */
 415static inline u64 iterate_chain_key(u64 key, u32 idx)
 416{
 417	u32 k0 = key, k1 = key >> 32;
 418
 419	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
 420
 421	return k0 | (u64)k1 << 32;
 422}
 423
 424void lockdep_init_task(struct task_struct *task)
 425{
 426	task->lockdep_depth = 0; /* no locks held yet */
 427	task->curr_chain_key = INITIAL_CHAIN_KEY;
 428	task->lockdep_recursion = 0;
 429}
 430
 431static __always_inline void lockdep_recursion_inc(void)
 432{
 433	__this_cpu_inc(lockdep_recursion);
 434}
 435
 436static __always_inline void lockdep_recursion_finish(void)
 437{
 438	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
 439		__this_cpu_write(lockdep_recursion, 0);
 440}
 
 441
 442void lockdep_set_selftest_task(struct task_struct *task)
 443{
 444	lockdep_selftest_task_struct = task;
 445}
 
 446
 447/*
 448 * Debugging switches:
 449 */
 450
 451#define VERBOSE			0
 452#define VERY_VERBOSE		0
 453
 454#if VERBOSE
 455# define HARDIRQ_VERBOSE	1
 456# define SOFTIRQ_VERBOSE	1
 
 457#else
 458# define HARDIRQ_VERBOSE	0
 459# define SOFTIRQ_VERBOSE	0
 
 460#endif
 461
 462#if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
 463/*
 464 * Quick filtering for interesting events:
 465 */
 466static int class_filter(struct lock_class *class)
 467{
 468#if 0
 469	/* Example */
 470	if (class->name_version == 1 &&
 471			!strcmp(class->name, "lockname"))
 472		return 1;
 473	if (class->name_version == 1 &&
 474			!strcmp(class->name, "&struct->lockfield"))
 475		return 1;
 476#endif
 477	/* Filter everything else. 1 would be to allow everything else */
 478	return 0;
 479}
 480#endif
 481
 482static int verbose(struct lock_class *class)
 483{
 484#if VERBOSE
 485	return class_filter(class);
 486#endif
 487	return 0;
 488}
 489
 
 
 
 
 
 
 
 490static void print_lockdep_off(const char *bug_msg)
 491{
 492	printk(KERN_DEBUG "%s\n", bug_msg);
 493	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
 494#ifdef CONFIG_LOCK_STAT
 495	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
 496#endif
 497}
 498
 499unsigned long nr_stack_trace_entries;
 
 
 
 
 500
 501#ifdef CONFIG_PROVE_LOCKING
 502/**
 503 * struct lock_trace - single stack backtrace
 504 * @hash_entry:	Entry in a stack_trace_hash[] list.
 505 * @hash:	jhash() of @entries.
 506 * @nr_entries:	Number of entries in @entries.
 507 * @entries:	Actual stack backtrace.
 508 */
 509struct lock_trace {
 510	struct hlist_node	hash_entry;
 511	u32			hash;
 512	u32			nr_entries;
 513	unsigned long		entries[] __aligned(sizeof(unsigned long));
 514};
 515#define LOCK_TRACE_SIZE_IN_LONGS				\
 516	(sizeof(struct lock_trace) / sizeof(unsigned long))
 517/*
 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
 519 */
 520static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
 521static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
 522
 523static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
 524{
 525	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
 526		memcmp(t1->entries, t2->entries,
 527		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
 528}
 529
 530static struct lock_trace *save_trace(void)
 531{
 532	struct lock_trace *trace, *t2;
 533	struct hlist_head *hash_head;
 534	u32 hash;
 535	int max_entries;
 
 
 
 
 536
 537	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
 538	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
 539
 540	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
 541	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
 542		LOCK_TRACE_SIZE_IN_LONGS;
 543
 544	if (max_entries <= 0) {
 545		if (!debug_locks_off_graph_unlock())
 546			return NULL;
 547
 548		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
 549		dump_stack();
 550
 551		return NULL;
 552	}
 553	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
 554
 555	hash = jhash(trace->entries, trace->nr_entries *
 556		     sizeof(trace->entries[0]), 0);
 557	trace->hash = hash;
 558	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
 559	hlist_for_each_entry(t2, hash_head, hash_entry) {
 560		if (traces_identical(trace, t2))
 561			return t2;
 562	}
 563	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
 564	hlist_add_head(&trace->hash_entry, hash_head);
 565
 566	return trace;
 567}
 568
 569/* Return the number of stack traces in the stack_trace[] array. */
 570u64 lockdep_stack_trace_count(void)
 571{
 572	struct lock_trace *trace;
 573	u64 c = 0;
 574	int i;
 575
 576	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
 577		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
 578			c++;
 579		}
 580	}
 581
 582	return c;
 583}
 584
 585/* Return the number of stack hash chains that have at least one stack trace. */
 586u64 lockdep_stack_hash_count(void)
 587{
 588	u64 c = 0;
 589	int i;
 590
 591	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
 592		if (!hlist_empty(&stack_trace_hash[i]))
 593			c++;
 594
 595	return c;
 596}
 597#endif
 598
 599unsigned int nr_hardirq_chains;
 600unsigned int nr_softirq_chains;
 601unsigned int nr_process_chains;
 602unsigned int max_lockdep_depth;
 603
 604#ifdef CONFIG_DEBUG_LOCKDEP
 605/*
 606 * Various lockdep statistics:
 607 */
 608DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
 609#endif
 610
 611#ifdef CONFIG_PROVE_LOCKING
 612/*
 613 * Locking printouts:
 614 */
 615
 616#define __USAGE(__STATE)						\
 617	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
 618	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
 619	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
 620	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
 621
 622static const char *usage_str[] =
 623{
 624#define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
 625#include "lockdep_states.h"
 626#undef LOCKDEP_STATE
 627	[LOCK_USED] = "INITIAL USE",
 628	[LOCK_USED_READ] = "INITIAL READ USE",
 629	/* abused as string storage for verify_lock_unused() */
 630	[LOCK_USAGE_STATES] = "IN-NMI",
 631};
 632#endif
 633
 634const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
 635{
 636	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
 637}
 638
 639static inline unsigned long lock_flag(enum lock_usage_bit bit)
 640{
 641	return 1UL << bit;
 642}
 643
 644static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
 645{
 646	/*
 647	 * The usage character defaults to '.' (i.e., irqs disabled and not in
 648	 * irq context), which is the safest usage category.
 649	 */
 650	char c = '.';
 651
 652	/*
 653	 * The order of the following usage checks matters, which will
 654	 * result in the outcome character as follows:
 655	 *
 656	 * - '+': irq is enabled and not in irq context
 657	 * - '-': in irq context and irq is disabled
 658	 * - '?': in irq context and irq is enabled
 659	 */
 660	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
 661		c = '+';
 662		if (class->usage_mask & lock_flag(bit))
 
 
 663			c = '?';
 664	} else if (class->usage_mask & lock_flag(bit))
 665		c = '-';
 666
 667	return c;
 668}
 669
 670void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
 671{
 672	int i = 0;
 673
 674#define LOCKDEP_STATE(__STATE) 						\
 675	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
 676	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
 677#include "lockdep_states.h"
 678#undef LOCKDEP_STATE
 679
 680	usage[i] = '\0';
 681}
 682
 683static void __print_lock_name(struct lock_class *class)
 684{
 685	char str[KSYM_NAME_LEN];
 686	const char *name;
 687
 688	name = class->name;
 689	if (!name) {
 690		name = __get_key_name(class->key, str);
 691		printk(KERN_CONT "%s", name);
 692	} else {
 693		printk(KERN_CONT "%s", name);
 694		if (class->name_version > 1)
 695			printk(KERN_CONT "#%d", class->name_version);
 696		if (class->subclass)
 697			printk(KERN_CONT "/%d", class->subclass);
 698	}
 699}
 700
 701static void print_lock_name(struct lock_class *class)
 702{
 703	char usage[LOCK_USAGE_CHARS];
 704
 705	get_usage_chars(class, usage);
 706
 707	printk(KERN_CONT " (");
 708	__print_lock_name(class);
 709	printk(KERN_CONT "){%s}-{%d:%d}", usage,
 710			class->wait_type_outer ?: class->wait_type_inner,
 711			class->wait_type_inner);
 712}
 713
 714static void print_lockdep_cache(struct lockdep_map *lock)
 715{
 716	const char *name;
 717	char str[KSYM_NAME_LEN];
 718
 719	name = lock->name;
 720	if (!name)
 721		name = __get_key_name(lock->key->subkeys, str);
 722
 723	printk(KERN_CONT "%s", name);
 724}
 725
 726static void print_lock(struct held_lock *hlock)
 727{
 728	/*
 729	 * We can be called locklessly through debug_show_all_locks() so be
 730	 * extra careful, the hlock might have been released and cleared.
 731	 *
 732	 * If this indeed happens, lets pretend it does not hurt to continue
 733	 * to print the lock unless the hlock class_idx does not point to a
 734	 * registered class. The rationale here is: since we don't attempt
 735	 * to distinguish whether we are in this situation, if it just
 736	 * happened we can't count on class_idx to tell either.
 737	 */
 738	struct lock_class *lock = hlock_class(hlock);
 
 
 
 739
 740	if (!lock) {
 741		printk(KERN_CONT "<RELEASED>\n");
 742		return;
 743	}
 744
 745	printk(KERN_CONT "%px", hlock->instance);
 746	print_lock_name(lock);
 747	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
 748}
 749
 750static void lockdep_print_held_locks(struct task_struct *p)
 751{
 752	int i, depth = READ_ONCE(p->lockdep_depth);
 753
 754	if (!depth)
 755		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
 756	else
 757		printk("%d lock%s held by %s/%d:\n", depth,
 758		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
 759	/*
 760	 * It's not reliable to print a task's held locks if it's not sleeping
 761	 * and it's not the current task.
 762	 */
 763	if (p != current && task_is_running(p))
 764		return;
 
 
 
 
 765	for (i = 0; i < depth; i++) {
 766		printk(" #%d: ", i);
 767		print_lock(p->held_locks + i);
 768	}
 769}
 770
 771static void print_kernel_ident(void)
 772{
 773	printk("%s %.*s %s\n", init_utsname()->release,
 774		(int)strcspn(init_utsname()->version, " "),
 775		init_utsname()->version,
 776		print_tainted());
 777}
 778
 779static int very_verbose(struct lock_class *class)
 780{
 781#if VERY_VERBOSE
 782	return class_filter(class);
 783#endif
 784	return 0;
 785}
 786
 787/*
 788 * Is this the address of a static object:
 789 */
 790#ifdef __KERNEL__
 791static int static_obj(const void *obj)
 792{
 793	unsigned long start = (unsigned long) &_stext,
 794		      end   = (unsigned long) &_end,
 795		      addr  = (unsigned long) obj;
 796
 797	if (arch_is_kernel_initmem_freed(addr))
 798		return 0;
 799
 800	/*
 801	 * static variable?
 802	 */
 803	if ((addr >= start) && (addr < end))
 804		return 1;
 805
 806	if (arch_is_kernel_data(addr))
 807		return 1;
 808
 809	/*
 810	 * in-kernel percpu var?
 811	 */
 812	if (is_kernel_percpu_address(addr))
 813		return 1;
 814
 815	/*
 816	 * module static or percpu var?
 817	 */
 818	return is_module_address(addr) || is_module_percpu_address(addr);
 819}
 820#endif
 821
 822/*
 823 * To make lock name printouts unique, we calculate a unique
 824 * class->name_version generation counter. The caller must hold the graph
 825 * lock.
 826 */
 827static int count_matching_names(struct lock_class *new_class)
 828{
 829	struct lock_class *class;
 830	int count = 0;
 831
 832	if (!new_class->name)
 833		return 0;
 834
 835	list_for_each_entry(class, &all_lock_classes, lock_entry) {
 836		if (new_class->key - new_class->subclass == class->key)
 837			return class->name_version;
 838		if (class->name && !strcmp(class->name, new_class->name))
 839			count = max(count, class->name_version);
 840	}
 841
 842	return count + 1;
 843}
 844
 845/* used from NMI context -- must be lockless */
 846static noinstr struct lock_class *
 847look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
 
 
 
 
 848{
 849	struct lockdep_subclass_key *key;
 850	struct hlist_head *hash_head;
 851	struct lock_class *class;
 852
 853	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
 854		instrumentation_begin();
 855		debug_locks_off();
 856		printk(KERN_ERR
 857			"BUG: looking up invalid subclass: %u\n", subclass);
 858		printk(KERN_ERR
 859			"turning off the locking correctness validator.\n");
 860		dump_stack();
 861		instrumentation_end();
 862		return NULL;
 863	}
 864
 865	/*
 866	 * If it is not initialised then it has never been locked,
 867	 * so it won't be present in the hash table.
 868	 */
 869	if (unlikely(!lock->key))
 870		return NULL;
 871
 872	/*
 873	 * NOTE: the class-key must be unique. For dynamic locks, a static
 874	 * lock_class_key variable is passed in through the mutex_init()
 875	 * (or spin_lock_init()) call - which acts as the key. For static
 876	 * locks we use the lock object itself as the key.
 877	 */
 878	BUILD_BUG_ON(sizeof(struct lock_class_key) >
 879			sizeof(struct lockdep_map));
 880
 881	key = lock->key->subkeys + subclass;
 882
 883	hash_head = classhashentry(key);
 884
 885	/*
 886	 * We do an RCU walk of the hash, see lockdep_free_key_range().
 887	 */
 888	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
 889		return NULL;
 890
 891	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
 892		if (class->key == key) {
 893			/*
 894			 * Huh! same key, different name? Did someone trample
 895			 * on some memory? We're most confused.
 896			 */
 897			WARN_ON_ONCE(class->name != lock->name &&
 898				     lock->key != &__lockdep_no_validate__);
 899			return class;
 900		}
 901	}
 902
 903	return NULL;
 904}
 905
 906/*
 907 * Static locks do not have their class-keys yet - for them the key is
 908 * the lock object itself. If the lock is in the per cpu area, the
 909 * canonical address of the lock (per cpu offset removed) is used.
 910 */
 911static bool assign_lock_key(struct lockdep_map *lock)
 912{
 913	unsigned long can_addr, addr = (unsigned long)lock;
 914
 915#ifdef __KERNEL__
 916	/*
 917	 * lockdep_free_key_range() assumes that struct lock_class_key
 918	 * objects do not overlap. Since we use the address of lock
 919	 * objects as class key for static objects, check whether the
 920	 * size of lock_class_key objects does not exceed the size of
 921	 * the smallest lock object.
 922	 */
 923	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
 924#endif
 925
 926	if (__is_kernel_percpu_address(addr, &can_addr))
 927		lock->key = (void *)can_addr;
 928	else if (__is_module_percpu_address(addr, &can_addr))
 929		lock->key = (void *)can_addr;
 930	else if (static_obj(lock))
 931		lock->key = (void *)lock;
 932	else {
 933		/* Debug-check: all keys must be persistent! */
 934		debug_locks_off();
 935		pr_err("INFO: trying to register non-static key.\n");
 936		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
 937		pr_err("you didn't initialize this object before use?\n");
 938		pr_err("turning off the locking correctness validator.\n");
 939		dump_stack();
 940		return false;
 941	}
 942
 943	return true;
 944}
 945
 946#ifdef CONFIG_DEBUG_LOCKDEP
 947
 948/* Check whether element @e occurs in list @h */
 949static bool in_list(struct list_head *e, struct list_head *h)
 950{
 951	struct list_head *f;
 952
 953	list_for_each(f, h) {
 954		if (e == f)
 955			return true;
 956	}
 957
 958	return false;
 959}
 960
 961/*
 962 * Check whether entry @e occurs in any of the locks_after or locks_before
 963 * lists.
 964 */
 965static bool in_any_class_list(struct list_head *e)
 966{
 967	struct lock_class *class;
 968	int i;
 969
 970	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
 971		class = &lock_classes[i];
 972		if (in_list(e, &class->locks_after) ||
 973		    in_list(e, &class->locks_before))
 974			return true;
 975	}
 976	return false;
 977}
 978
 979static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
 980{
 981	struct lock_list *e;
 982
 983	list_for_each_entry(e, h, entry) {
 984		if (e->links_to != c) {
 985			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
 986			       c->name ? : "(?)",
 987			       (unsigned long)(e - list_entries),
 988			       e->links_to && e->links_to->name ?
 989			       e->links_to->name : "(?)",
 990			       e->class && e->class->name ? e->class->name :
 991			       "(?)");
 992			return false;
 993		}
 994	}
 995	return true;
 996}
 997
 998#ifdef CONFIG_PROVE_LOCKING
 999static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000#endif
1001
1002static bool check_lock_chain_key(struct lock_chain *chain)
1003{
1004#ifdef CONFIG_PROVE_LOCKING
1005	u64 chain_key = INITIAL_CHAIN_KEY;
1006	int i;
1007
1008	for (i = chain->base; i < chain->base + chain->depth; i++)
1009		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010	/*
1011	 * The 'unsigned long long' casts avoid that a compiler warning
1012	 * is reported when building tools/lib/lockdep.
1013	 */
1014	if (chain->chain_key != chain_key) {
1015		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016		       (unsigned long long)(chain - lock_chains),
1017		       (unsigned long long)chain->chain_key,
1018		       (unsigned long long)chain_key);
1019		return false;
1020	}
1021#endif
1022	return true;
1023}
1024
1025static bool in_any_zapped_class_list(struct lock_class *class)
1026{
1027	struct pending_free *pf;
1028	int i;
1029
1030	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031		if (in_list(&class->lock_entry, &pf->zapped))
1032			return true;
1033	}
1034
1035	return false;
1036}
1037
1038static bool __check_data_structures(void)
1039{
1040	struct lock_class *class;
1041	struct lock_chain *chain;
1042	struct hlist_head *head;
1043	struct lock_list *e;
1044	int i;
1045
1046	/* Check whether all classes occur in a lock list. */
1047	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048		class = &lock_classes[i];
1049		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050		    !in_list(&class->lock_entry, &free_lock_classes) &&
1051		    !in_any_zapped_class_list(class)) {
1052			printk(KERN_INFO "class %px/%s is not in any class list\n",
1053			       class, class->name ? : "(?)");
1054			return false;
1055		}
1056	}
1057
1058	/* Check whether all classes have valid lock lists. */
1059	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060		class = &lock_classes[i];
1061		if (!class_lock_list_valid(class, &class->locks_before))
1062			return false;
1063		if (!class_lock_list_valid(class, &class->locks_after))
1064			return false;
1065	}
1066
1067	/* Check the chain_key of all lock chains. */
1068	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069		head = chainhash_table + i;
1070		hlist_for_each_entry_rcu(chain, head, entry) {
1071			if (!check_lock_chain_key(chain))
1072				return false;
1073		}
1074	}
1075
1076	/*
1077	 * Check whether all list entries that are in use occur in a class
1078	 * lock list.
1079	 */
1080	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081		e = list_entries + i;
1082		if (!in_any_class_list(&e->entry)) {
1083			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084			       (unsigned int)(e - list_entries),
1085			       e->class->name ? : "(?)",
1086			       e->links_to->name ? : "(?)");
1087			return false;
1088		}
1089	}
1090
1091	/*
1092	 * Check whether all list entries that are not in use do not occur in
1093	 * a class lock list.
1094	 */
1095	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096		e = list_entries + i;
1097		if (in_any_class_list(&e->entry)) {
1098			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099			       (unsigned int)(e - list_entries),
1100			       e->class && e->class->name ? e->class->name :
1101			       "(?)",
1102			       e->links_to && e->links_to->name ?
1103			       e->links_to->name : "(?)");
1104			return false;
1105		}
1106	}
1107
1108	return true;
1109}
1110
1111int check_consistency = 0;
1112module_param(check_consistency, int, 0644);
1113
1114static void check_data_structures(void)
1115{
1116	static bool once = false;
1117
1118	if (check_consistency && !once) {
1119		if (!__check_data_structures()) {
1120			once = true;
1121			WARN_ON(once);
1122		}
1123	}
1124}
1125
1126#else /* CONFIG_DEBUG_LOCKDEP */
1127
1128static inline void check_data_structures(void) { }
1129
1130#endif /* CONFIG_DEBUG_LOCKDEP */
1131
1132static void init_chain_block_buckets(void);
1133
1134/*
1135 * Initialize the lock_classes[] array elements, the free_lock_classes list
1136 * and also the delayed_free structure.
1137 */
1138static void init_data_structures_once(void)
1139{
1140	static bool __read_mostly ds_initialized, rcu_head_initialized;
1141	int i;
1142
1143	if (likely(rcu_head_initialized))
1144		return;
1145
1146	if (system_state >= SYSTEM_SCHEDULING) {
1147		init_rcu_head(&delayed_free.rcu_head);
1148		rcu_head_initialized = true;
1149	}
1150
1151	if (ds_initialized)
1152		return;
1153
1154	ds_initialized = true;
1155
1156	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158
1159	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163	}
1164	init_chain_block_buckets();
1165}
1166
1167static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168{
1169	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170
1171	return lock_keys_hash + hash;
1172}
1173
1174/* Register a dynamically allocated key. */
1175void lockdep_register_key(struct lock_class_key *key)
1176{
1177	struct hlist_head *hash_head;
1178	struct lock_class_key *k;
1179	unsigned long flags;
1180
1181	if (WARN_ON_ONCE(static_obj(key)))
1182		return;
1183	hash_head = keyhashentry(key);
1184
1185	raw_local_irq_save(flags);
1186	if (!graph_lock())
1187		goto restore_irqs;
1188	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189		if (WARN_ON_ONCE(k == key))
1190			goto out_unlock;
1191	}
1192	hlist_add_head_rcu(&key->hash_entry, hash_head);
1193out_unlock:
1194	graph_unlock();
1195restore_irqs:
1196	raw_local_irq_restore(flags);
1197}
1198EXPORT_SYMBOL_GPL(lockdep_register_key);
1199
1200/* Check whether a key has been registered as a dynamic key. */
1201static bool is_dynamic_key(const struct lock_class_key *key)
1202{
1203	struct hlist_head *hash_head;
1204	struct lock_class_key *k;
1205	bool found = false;
1206
1207	if (WARN_ON_ONCE(static_obj(key)))
1208		return false;
1209
1210	/*
1211	 * If lock debugging is disabled lock_keys_hash[] may contain
1212	 * pointers to memory that has already been freed. Avoid triggering
1213	 * a use-after-free in that case by returning early.
1214	 */
1215	if (!debug_locks)
1216		return true;
1217
1218	hash_head = keyhashentry(key);
1219
1220	rcu_read_lock();
1221	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222		if (k == key) {
1223			found = true;
1224			break;
1225		}
1226	}
1227	rcu_read_unlock();
1228
1229	return found;
1230}
1231
1232/*
1233 * Register a lock's class in the hash-table, if the class is not present
1234 * yet. Otherwise we look it up. We cache the result in the lock object
1235 * itself, so actual lookup of the hash should be once per lock object.
1236 */
1237static struct lock_class *
1238register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239{
1240	struct lockdep_subclass_key *key;
1241	struct hlist_head *hash_head;
1242	struct lock_class *class;
1243
1244	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245
1246	class = look_up_lock_class(lock, subclass);
1247	if (likely(class))
1248		goto out_set_class_cache;
1249
1250	if (!lock->key) {
1251		if (!assign_lock_key(lock))
1252			return NULL;
1253	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
 
 
 
 
 
 
1254		return NULL;
1255	}
1256
1257	key = lock->key->subkeys + subclass;
1258	hash_head = classhashentry(key);
1259
1260	if (!graph_lock()) {
1261		return NULL;
1262	}
1263	/*
1264	 * We have to do the hash-walk again, to avoid races
1265	 * with another CPU:
1266	 */
1267	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268		if (class->key == key)
1269			goto out_unlock_set;
1270	}
1271
1272	init_data_structures_once();
1273
1274	/* Allocate a new lock class and add it to the hash. */
1275	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276					 lock_entry);
1277	if (!class) {
1278		if (!debug_locks_off_graph_unlock()) {
1279			return NULL;
1280		}
1281
1282		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283		dump_stack();
1284		return NULL;
1285	}
1286	nr_lock_classes++;
1287	__set_bit(class - lock_classes, lock_classes_in_use);
1288	debug_atomic_inc(nr_unused_locks);
1289	class->key = key;
1290	class->name = lock->name;
1291	class->subclass = subclass;
1292	WARN_ON_ONCE(!list_empty(&class->locks_before));
1293	WARN_ON_ONCE(!list_empty(&class->locks_after));
 
1294	class->name_version = count_matching_names(class);
1295	class->wait_type_inner = lock->wait_type_inner;
1296	class->wait_type_outer = lock->wait_type_outer;
1297	class->lock_type = lock->lock_type;
1298	/*
1299	 * We use RCU's safe list-add method to make
1300	 * parallel walking of the hash-list safe:
1301	 */
1302	hlist_add_head_rcu(&class->hash_entry, hash_head);
1303	/*
1304	 * Remove the class from the free list and add it to the global list
1305	 * of classes.
1306	 */
1307	list_move_tail(&class->lock_entry, &all_lock_classes);
1308
1309	if (verbose(class)) {
1310		graph_unlock();
1311
1312		printk("\nnew class %px: %s", class->key, class->name);
1313		if (class->name_version > 1)
1314			printk(KERN_CONT "#%d", class->name_version);
1315		printk(KERN_CONT "\n");
1316		dump_stack();
1317
1318		if (!graph_lock()) {
1319			return NULL;
1320		}
1321	}
1322out_unlock_set:
1323	graph_unlock();
1324
1325out_set_class_cache:
1326	if (!subclass || force)
1327		lock->class_cache[0] = class;
1328	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329		lock->class_cache[subclass] = class;
1330
1331	/*
1332	 * Hash collision, did we smoke some? We found a class with a matching
1333	 * hash but the subclass -- which is hashed in -- didn't match.
1334	 */
1335	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336		return NULL;
1337
1338	return class;
1339}
1340
1341#ifdef CONFIG_PROVE_LOCKING
1342/*
1343 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344 * with NULL on failure)
1345 */
1346static struct lock_list *alloc_list_entry(void)
1347{
1348	int idx = find_first_zero_bit(list_entries_in_use,
1349				      ARRAY_SIZE(list_entries));
1350
1351	if (idx >= ARRAY_SIZE(list_entries)) {
1352		if (!debug_locks_off_graph_unlock())
1353			return NULL;
1354
1355		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356		dump_stack();
1357		return NULL;
1358	}
1359	nr_list_entries++;
1360	__set_bit(idx, list_entries_in_use);
1361	return list_entries + idx;
1362}
1363
1364/*
1365 * Add a new dependency to the head of the list:
1366 */
1367static int add_lock_to_list(struct lock_class *this,
1368			    struct lock_class *links_to, struct list_head *head,
1369			    unsigned long ip, u16 distance, u8 dep,
1370			    const struct lock_trace *trace)
1371{
1372	struct lock_list *entry;
1373	/*
1374	 * Lock not present yet - get a new dependency struct and
1375	 * add it to the list:
1376	 */
1377	entry = alloc_list_entry();
1378	if (!entry)
1379		return 0;
1380
1381	entry->class = this;
1382	entry->links_to = links_to;
1383	entry->dep = dep;
1384	entry->distance = distance;
1385	entry->trace = trace;
1386	/*
1387	 * Both allocation and removal are done under the graph lock; but
1388	 * iteration is under RCU-sched; see look_up_lock_class() and
1389	 * lockdep_free_key_range().
1390	 */
1391	list_add_tail_rcu(&entry->entry, head);
1392
1393	return 1;
1394}
1395
1396/*
1397 * For good efficiency of modular, we use power of 2
1398 */
1399#define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400#define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1401
1402/*
1403 * The circular_queue and helpers are used to implement graph
1404 * breadth-first search (BFS) algorithm, by which we can determine
1405 * whether there is a path from a lock to another. In deadlock checks,
1406 * a path from the next lock to be acquired to a previous held lock
1407 * indicates that adding the <prev> -> <next> lock dependency will
1408 * produce a circle in the graph. Breadth-first search instead of
1409 * depth-first search is used in order to find the shortest (circular)
1410 * path.
1411 */
1412struct circular_queue {
1413	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414	unsigned int  front, rear;
1415};
1416
1417static struct circular_queue lock_cq;
1418
1419unsigned int max_bfs_queue_depth;
1420
1421static unsigned int lockdep_dependency_gen_id;
1422
1423static inline void __cq_init(struct circular_queue *cq)
1424{
1425	cq->front = cq->rear = 0;
1426	lockdep_dependency_gen_id++;
1427}
1428
1429static inline int __cq_empty(struct circular_queue *cq)
1430{
1431	return (cq->front == cq->rear);
1432}
1433
1434static inline int __cq_full(struct circular_queue *cq)
1435{
1436	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437}
1438
1439static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440{
1441	if (__cq_full(cq))
1442		return -1;
1443
1444	cq->element[cq->rear] = elem;
1445	cq->rear = (cq->rear + 1) & CQ_MASK;
1446	return 0;
1447}
1448
1449/*
1450 * Dequeue an element from the circular_queue, return a lock_list if
1451 * the queue is not empty, or NULL if otherwise.
1452 */
1453static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454{
1455	struct lock_list * lock;
1456
1457	if (__cq_empty(cq))
1458		return NULL;
1459
1460	lock = cq->element[cq->front];
1461	cq->front = (cq->front + 1) & CQ_MASK;
1462
1463	return lock;
1464}
1465
1466static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1467{
1468	return (cq->rear - cq->front) & CQ_MASK;
1469}
1470
1471static inline void mark_lock_accessed(struct lock_list *lock)
 
1472{
1473	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474}
1475
1476static inline void visit_lock_entry(struct lock_list *lock,
1477				    struct lock_list *parent)
1478{
1479	lock->parent = parent;
 
1480}
1481
1482static inline unsigned long lock_accessed(struct lock_list *lock)
1483{
 
 
 
 
1484	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485}
1486
1487static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488{
1489	return child->parent;
1490}
1491
1492static inline int get_lock_depth(struct lock_list *child)
1493{
1494	int depth = 0;
1495	struct lock_list *parent;
1496
1497	while ((parent = get_lock_parent(child))) {
1498		child = parent;
1499		depth++;
1500	}
1501	return depth;
1502}
1503
1504/*
1505 * Return the forward or backward dependency list.
1506 *
1507 * @lock:   the lock_list to get its class's dependency list
1508 * @offset: the offset to struct lock_class to determine whether it is
1509 *          locks_after or locks_before
1510 */
1511static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512{
1513	void *lock_class = lock->class;
1514
1515	return lock_class + offset;
1516}
1517/*
1518 * Return values of a bfs search:
1519 *
1520 * BFS_E* indicates an error
1521 * BFS_R* indicates a result (match or not)
1522 *
1523 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524 *
1525 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526 *
1527 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528 *             *@target_entry.
1529 *
1530 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531 *               _unchanged_.
1532 */
1533enum bfs_result {
1534	BFS_EINVALIDNODE = -2,
1535	BFS_EQUEUEFULL = -1,
1536	BFS_RMATCH = 0,
1537	BFS_RNOMATCH = 1,
1538};
1539
1540/*
1541 * bfs_result < 0 means error
1542 */
1543static inline bool bfs_error(enum bfs_result res)
1544{
1545	return res < 0;
1546}
1547
1548/*
1549 * DEP_*_BIT in lock_list::dep
1550 *
1551 * For dependency @prev -> @next:
1552 *
1553 *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554 *       (->read == 2)
1555 *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556 *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557 *   EN: @prev is exclusive locker and @next is non-recursive locker
1558 *
1559 * Note that we define the value of DEP_*_BITs so that:
1560 *   bit0 is prev->read == 0
1561 *   bit1 is next->read != 2
1562 */
1563#define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564#define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565#define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566#define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567
1568#define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569#define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570#define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571#define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572
1573static inline unsigned int
1574__calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575{
1576	return (prev->read == 0) + ((next->read != 2) << 1);
1577}
1578
1579static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580{
1581	return 1U << __calc_dep_bit(prev, next);
1582}
1583
1584/*
1585 * calculate the dep_bit for backwards edges. We care about whether @prev is
1586 * shared and whether @next is recursive.
1587 */
1588static inline unsigned int
1589__calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590{
1591	return (next->read != 2) + ((prev->read == 0) << 1);
1592}
1593
1594static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595{
1596	return 1U << __calc_dep_bitb(prev, next);
1597}
1598
1599/*
1600 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601 * search.
1602 */
1603static inline void __bfs_init_root(struct lock_list *lock,
1604				   struct lock_class *class)
1605{
1606	lock->class = class;
1607	lock->parent = NULL;
1608	lock->only_xr = 0;
1609}
1610
1611/*
1612 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613 * root for a BFS search.
1614 *
1615 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617 * and -(S*)->.
1618 */
1619static inline void bfs_init_root(struct lock_list *lock,
1620				 struct held_lock *hlock)
1621{
1622	__bfs_init_root(lock, hlock_class(hlock));
1623	lock->only_xr = (hlock->read == 2);
1624}
1625
1626/*
1627 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628 *
1629 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632 */
1633static inline void bfs_init_rootb(struct lock_list *lock,
1634				  struct held_lock *hlock)
1635{
1636	__bfs_init_root(lock, hlock_class(hlock));
1637	lock->only_xr = (hlock->read != 0);
1638}
1639
1640static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641{
1642	if (!lock || !lock->parent)
1643		return NULL;
1644
1645	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646				     &lock->entry, struct lock_list, entry);
1647}
1648
1649/*
1650 * Breadth-First Search to find a strong path in the dependency graph.
1651 *
1652 * @source_entry: the source of the path we are searching for.
1653 * @data: data used for the second parameter of @match function
1654 * @match: match function for the search
1655 * @target_entry: pointer to the target of a matched path
1656 * @offset: the offset to struct lock_class to determine whether it is
1657 *          locks_after or locks_before
1658 *
1659 * We may have multiple edges (considering different kinds of dependencies,
1660 * e.g. ER and SN) between two nodes in the dependency graph. But
1661 * only the strong dependency path in the graph is relevant to deadlocks. A
1662 * strong dependency path is a dependency path that doesn't have two adjacent
1663 * dependencies as -(*R)-> -(S*)->, please see:
1664 *
1665 *         Documentation/locking/lockdep-design.rst
1666 *
1667 * for more explanation of the definition of strong dependency paths
1668 *
1669 * In __bfs(), we only traverse in the strong dependency path:
1670 *
1671 *     In lock_list::only_xr, we record whether the previous dependency only
1672 *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673 *     filter out any -(S*)-> in the current dependency and after that, the
1674 *     ->only_xr is set according to whether we only have -(*R)-> left.
1675 */
1676static enum bfs_result __bfs(struct lock_list *source_entry,
1677			     void *data,
1678			     bool (*match)(struct lock_list *entry, void *data),
1679			     bool (*skip)(struct lock_list *entry, void *data),
1680			     struct lock_list **target_entry,
1681			     int offset)
1682{
1683	struct circular_queue *cq = &lock_cq;
1684	struct lock_list *lock = NULL;
1685	struct lock_list *entry;
1686	struct list_head *head;
1687	unsigned int cq_depth;
1688	bool first;
1689
1690	lockdep_assert_locked();
 
 
 
 
1691
1692	__cq_init(cq);
1693	__cq_enqueue(cq, source_entry);
 
 
1694
1695	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696		if (!lock->class)
1697			return BFS_EINVALIDNODE;
1698
1699		/*
1700		 * Step 1: check whether we already finish on this one.
1701		 *
1702		 * If we have visited all the dependencies from this @lock to
1703		 * others (iow, if we have visited all lock_list entries in
1704		 * @lock->class->locks_{after,before}) we skip, otherwise go
1705		 * and visit all the dependencies in the list and mark this
1706		 * list accessed.
1707		 */
1708		if (lock_accessed(lock))
1709			continue;
1710		else
1711			mark_lock_accessed(lock);
1712
1713		/*
1714		 * Step 2: check whether prev dependency and this form a strong
1715		 *         dependency path.
1716		 */
1717		if (lock->parent) { /* Parent exists, check prev dependency */
1718			u8 dep = lock->dep;
1719			bool prev_only_xr = lock->parent->only_xr;
1720
1721			/*
1722			 * Mask out all -(S*)-> if we only have *R in previous
1723			 * step, because -(*R)-> -(S*)-> don't make up a strong
1724			 * dependency.
1725			 */
1726			if (prev_only_xr)
1727				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729			/* If nothing left, we skip */
1730			if (!dep)
1731				continue;
1732
1733			/* If there are only -(*R)-> left, set that for the next step */
1734			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
 
1735		}
1736
1737		/*
1738		 * Step 3: we haven't visited this and there is a strong
1739		 *         dependency path to this, so check with @match.
1740		 *         If @skip is provide and returns true, we skip this
1741		 *         lock (and any path this lock is in).
1742		 */
1743		if (skip && skip(lock, data))
1744			continue;
1745
1746		if (match(lock, data)) {
1747			*target_entry = lock;
1748			return BFS_RMATCH;
1749		}
1750
1751		/*
1752		 * Step 4: if not match, expand the path by adding the
1753		 *         forward or backwards dependencies in the search
1754		 *
1755		 */
1756		first = true;
1757		head = get_dep_list(lock, offset);
1758		list_for_each_entry_rcu(entry, head, entry) {
1759			visit_lock_entry(entry, lock);
 
 
 
 
 
 
 
1760
1761			/*
1762			 * Note we only enqueue the first of the list into the
1763			 * queue, because we can always find a sibling
1764			 * dependency from one (see __bfs_next()), as a result
1765			 * the space of queue is saved.
1766			 */
1767			if (!first)
1768				continue;
1769
1770			first = false;
1771
1772			if (__cq_enqueue(cq, entry))
1773				return BFS_EQUEUEFULL;
1774
1775			cq_depth = __cq_get_elem_count(cq);
1776			if (max_bfs_queue_depth < cq_depth)
1777				max_bfs_queue_depth = cq_depth;
1778		}
1779	}
1780
1781	return BFS_RNOMATCH;
1782}
1783
1784static inline enum bfs_result
1785__bfs_forwards(struct lock_list *src_entry,
1786	       void *data,
1787	       bool (*match)(struct lock_list *entry, void *data),
1788	       bool (*skip)(struct lock_list *entry, void *data),
1789	       struct lock_list **target_entry)
1790{
1791	return __bfs(src_entry, data, match, skip, target_entry,
1792		     offsetof(struct lock_class, locks_after));
1793
1794}
1795
1796static inline enum bfs_result
1797__bfs_backwards(struct lock_list *src_entry,
1798		void *data,
1799		bool (*match)(struct lock_list *entry, void *data),
1800	       bool (*skip)(struct lock_list *entry, void *data),
1801		struct lock_list **target_entry)
1802{
1803	return __bfs(src_entry, data, match, skip, target_entry,
1804		     offsetof(struct lock_class, locks_before));
1805
1806}
1807
1808static void print_lock_trace(const struct lock_trace *trace,
1809			     unsigned int spaces)
1810{
1811	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812}
1813
1814/*
1815 * Print a dependency chain entry (this is only done when a deadlock
1816 * has been detected):
1817 */
1818static noinline void
1819print_circular_bug_entry(struct lock_list *target, int depth)
1820{
1821	if (debug_locks_silent)
1822		return;
1823	printk("\n-> #%u", depth);
1824	print_lock_name(target->class);
1825	printk(KERN_CONT ":\n");
1826	print_lock_trace(target->trace, 6);
 
 
1827}
1828
1829static void
1830print_circular_lock_scenario(struct held_lock *src,
1831			     struct held_lock *tgt,
1832			     struct lock_list *prt)
1833{
1834	struct lock_class *source = hlock_class(src);
1835	struct lock_class *target = hlock_class(tgt);
1836	struct lock_class *parent = prt->class;
1837
1838	/*
1839	 * A direct locking problem where unsafe_class lock is taken
1840	 * directly by safe_class lock, then all we need to show
1841	 * is the deadlock scenario, as it is obvious that the
1842	 * unsafe lock is taken under the safe lock.
1843	 *
1844	 * But if there is a chain instead, where the safe lock takes
1845	 * an intermediate lock (middle_class) where this lock is
1846	 * not the same as the safe lock, then the lock chain is
1847	 * used to describe the problem. Otherwise we would need
1848	 * to show a different CPU case for each link in the chain
1849	 * from the safe_class lock to the unsafe_class lock.
1850	 */
1851	if (parent != source) {
1852		printk("Chain exists of:\n  ");
1853		__print_lock_name(source);
1854		printk(KERN_CONT " --> ");
1855		__print_lock_name(parent);
1856		printk(KERN_CONT " --> ");
1857		__print_lock_name(target);
1858		printk(KERN_CONT "\n\n");
1859	}
1860
1861	printk(" Possible unsafe locking scenario:\n\n");
1862	printk("       CPU0                    CPU1\n");
1863	printk("       ----                    ----\n");
1864	printk("  lock(");
1865	__print_lock_name(target);
1866	printk(KERN_CONT ");\n");
1867	printk("                               lock(");
1868	__print_lock_name(parent);
1869	printk(KERN_CONT ");\n");
1870	printk("                               lock(");
1871	__print_lock_name(target);
1872	printk(KERN_CONT ");\n");
1873	printk("  lock(");
1874	__print_lock_name(source);
1875	printk(KERN_CONT ");\n");
1876	printk("\n *** DEADLOCK ***\n\n");
1877}
1878
1879/*
1880 * When a circular dependency is detected, print the
1881 * header first:
1882 */
1883static noinline void
1884print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885			struct held_lock *check_src,
1886			struct held_lock *check_tgt)
1887{
1888	struct task_struct *curr = current;
1889
1890	if (debug_locks_silent)
1891		return;
1892
1893	pr_warn("\n");
1894	pr_warn("======================================================\n");
1895	pr_warn("WARNING: possible circular locking dependency detected\n");
1896	print_kernel_ident();
1897	pr_warn("------------------------------------------------------\n");
1898	pr_warn("%s/%d is trying to acquire lock:\n",
1899		curr->comm, task_pid_nr(curr));
1900	print_lock(check_src);
1901
1902	pr_warn("\nbut task is already holding lock:\n");
1903
1904	print_lock(check_tgt);
1905	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907
1908	print_circular_bug_entry(entry, depth);
1909}
1910
1911/*
1912 * We are about to add A -> B into the dependency graph, and in __bfs() a
1913 * strong dependency path A -> .. -> B is found: hlock_class equals
1914 * entry->class.
1915 *
1916 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923 *
1924 * We need to make sure both the start and the end of A -> .. -> B is not
1925 * weaker than A -> B. For the start part, please see the comment in
1926 * check_redundant(). For the end part, we need:
1927 *
1928 * Either
1929 *
1930 *     a) A -> B is -(*R)-> (everything is not weaker than that)
1931 *
1932 * or
1933 *
1934 *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935 *
1936 */
1937static inline bool hlock_equal(struct lock_list *entry, void *data)
1938{
1939	struct held_lock *hlock = (struct held_lock *)data;
1940
1941	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1943		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944}
1945
1946/*
1947 * We are about to add B -> A into the dependency graph, and in __bfs() a
1948 * strong dependency path A -> .. -> B is found: hlock_class equals
1949 * entry->class.
1950 *
1951 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952 * dependency cycle, that means:
1953 *
1954 * Either
1955 *
1956 *     a) B -> A is -(E*)->
1957 *
1958 * or
1959 *
1960 *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961 *
1962 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963 */
1964static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965{
1966	struct held_lock *hlock = (struct held_lock *)data;
1967
1968	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1970		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971}
1972
1973static noinline void print_circular_bug(struct lock_list *this,
1974				struct lock_list *target,
1975				struct held_lock *check_src,
1976				struct held_lock *check_tgt)
1977{
1978	struct task_struct *curr = current;
1979	struct lock_list *parent;
1980	struct lock_list *first_parent;
1981	int depth;
1982
1983	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984		return;
1985
1986	this->trace = save_trace();
1987	if (!this->trace)
1988		return;
1989
1990	depth = get_lock_depth(target);
1991
1992	print_circular_bug_header(target, depth, check_src, check_tgt);
1993
1994	parent = get_lock_parent(target);
1995	first_parent = parent;
1996
1997	while (parent) {
1998		print_circular_bug_entry(parent, --depth);
1999		parent = get_lock_parent(parent);
2000	}
2001
2002	printk("\nother info that might help us debug this:\n\n");
2003	print_circular_lock_scenario(check_src, check_tgt,
2004				     first_parent);
2005
2006	lockdep_print_held_locks(curr);
2007
2008	printk("\nstack backtrace:\n");
2009	dump_stack();
 
 
2010}
2011
2012static noinline void print_bfs_bug(int ret)
2013{
2014	if (!debug_locks_off_graph_unlock())
2015		return;
2016
2017	/*
2018	 * Breadth-first-search failed, graph got corrupted?
2019	 */
2020	WARN(1, "lockdep bfs error:%d\n", ret);
 
 
2021}
2022
2023static bool noop_count(struct lock_list *entry, void *data)
2024{
2025	(*(unsigned long *)data)++;
2026	return false;
2027}
2028
2029static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030{
2031	unsigned long  count = 0;
2032	struct lock_list *target_entry;
2033
2034	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035
2036	return count;
2037}
2038unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039{
2040	unsigned long ret, flags;
2041	struct lock_list this;
2042
2043	__bfs_init_root(&this, class);
 
2044
2045	raw_local_irq_save(flags);
2046	lockdep_lock();
2047	ret = __lockdep_count_forward_deps(&this);
2048	lockdep_unlock();
2049	raw_local_irq_restore(flags);
2050
2051	return ret;
2052}
2053
2054static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055{
2056	unsigned long  count = 0;
2057	struct lock_list *target_entry;
2058
2059	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060
2061	return count;
2062}
2063
2064unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065{
2066	unsigned long ret, flags;
2067	struct lock_list this;
2068
2069	__bfs_init_root(&this, class);
 
2070
2071	raw_local_irq_save(flags);
2072	lockdep_lock();
2073	ret = __lockdep_count_backward_deps(&this);
2074	lockdep_unlock();
2075	raw_local_irq_restore(flags);
2076
2077	return ret;
2078}
2079
2080/*
2081 * Check that the dependency graph starting at <src> can lead to
2082 * <target> or not.
2083 */
2084static noinline enum bfs_result
2085check_path(struct held_lock *target, struct lock_list *src_entry,
2086	   bool (*match)(struct lock_list *entry, void *data),
2087	   bool (*skip)(struct lock_list *entry, void *data),
2088	   struct lock_list **target_entry)
2089{
2090	enum bfs_result ret;
2091
2092	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093
2094	if (unlikely(bfs_error(ret)))
2095		print_bfs_bug(ret);
2096
2097	return ret;
2098}
2099
2100/*
2101 * Prove that the dependency graph starting at <src> can not
2102 * lead to <target>. If it can, there is a circle when adding
2103 * <target> -> <src> dependency.
2104 *
2105 * Print an error and return BFS_RMATCH if it does.
2106 */
2107static noinline enum bfs_result
2108check_noncircular(struct held_lock *src, struct held_lock *target,
2109		  struct lock_trace **const trace)
2110{
2111	enum bfs_result ret;
2112	struct lock_list *target_entry;
2113	struct lock_list src_entry;
2114
2115	bfs_init_root(&src_entry, src);
2116
2117	debug_atomic_inc(nr_cyclic_checks);
2118
2119	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120
2121	if (unlikely(ret == BFS_RMATCH)) {
2122		if (!*trace) {
2123			/*
2124			 * If save_trace fails here, the printing might
2125			 * trigger a WARN but because of the !nr_entries it
2126			 * should not do bad things.
2127			 */
2128			*trace = save_trace();
2129		}
2130
2131		print_circular_bug(&src_entry, target_entry, src, target);
2132	}
2133
2134	return ret;
2135}
2136
2137#ifdef CONFIG_TRACE_IRQFLAGS
2138
2139/*
2140 * Forwards and backwards subgraph searching, for the purposes of
2141 * proving that two subgraphs can be connected by a new dependency
2142 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143 *
2144 * A irq safe->unsafe deadlock happens with the following conditions:
2145 *
2146 * 1) We have a strong dependency path A -> ... -> B
2147 *
2148 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149 *    irq can create a new dependency B -> A (consider the case that a holder
2150 *    of B gets interrupted by an irq whose handler will try to acquire A).
2151 *
2152 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153 *    strong circle:
2154 *
2155 *      For the usage bits of B:
2156 *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157 *           ENABLED_IRQ usage suffices.
2158 *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159 *           ENABLED_IRQ_*_READ usage suffices.
2160 *
2161 *      For the usage bits of A:
2162 *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163 *           USED_IN_IRQ usage suffices.
2164 *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165 *           USED_IN_IRQ_*_READ usage suffices.
2166 */
2167
2168/*
2169 * There is a strong dependency path in the dependency graph: A -> B, and now
2170 * we need to decide which usage bit of A should be accumulated to detect
2171 * safe->unsafe bugs.
2172 *
2173 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175 *
2176 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177 * path, any usage of A should be considered. Otherwise, we should only
2178 * consider _READ usage.
2179 */
2180static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181{
2182	if (!entry->only_xr)
2183		*(unsigned long *)mask |= entry->class->usage_mask;
2184	else /* Mask out _READ usage bits */
2185		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186
2187	return false;
2188}
2189
2190/*
2191 * There is a strong dependency path in the dependency graph: A -> B, and now
2192 * we need to decide which usage bit of B conflicts with the usage bits of A,
2193 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194 *
2195 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196 * path, any usage of B should be considered. Otherwise, we should only
2197 * consider _READ usage.
2198 */
2199static inline bool usage_match(struct lock_list *entry, void *mask)
2200{
2201	if (!entry->only_xr)
2202		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203	else /* Mask out _READ usage bits */
2204		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205}
2206
2207static inline bool usage_skip(struct lock_list *entry, void *mask)
2208{
2209	/*
2210	 * Skip local_lock() for irq inversion detection.
2211	 *
2212	 * For !RT, local_lock() is not a real lock, so it won't carry any
2213	 * dependency.
2214	 *
2215	 * For RT, an irq inversion happens when we have lock A and B, and on
2216	 * some CPU we can have:
2217	 *
2218	 *	lock(A);
2219	 *	<interrupted>
2220	 *	  lock(B);
2221	 *
2222	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223	 *
2224	 * Now we prove local_lock() cannot exist in that dependency. First we
2225	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2226	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227	 * wait context check will complain. And since B is not a sleep lock,
2228	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229	 * local_lock() is 3, which is greater than 2, therefore there is no
2230	 * way the local_lock() exists in the dependency B -> ... -> A.
2231	 *
2232	 * As a result, we will skip local_lock(), when we search for irq
2233	 * inversion bugs.
2234	 */
2235	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237			return false;
2238
2239		return true;
2240	}
2241
2242	return false;
2243}
2244
2245/*
2246 * Find a node in the forwards-direction dependency sub-graph starting
2247 * at @root->class that matches @bit.
2248 *
2249 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250 * into *@target_entry.
 
 
 
2251 */
2252static enum bfs_result
2253find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254			struct lock_list **target_entry)
2255{
2256	enum bfs_result result;
2257
2258	debug_atomic_inc(nr_find_usage_forwards_checks);
2259
2260	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261
2262	return result;
2263}
2264
2265/*
2266 * Find a node in the backwards-direction dependency sub-graph starting
2267 * at @root->class that matches @bit.
 
 
 
 
 
 
2268 */
2269static enum bfs_result
2270find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271			struct lock_list **target_entry)
2272{
2273	enum bfs_result result;
2274
2275	debug_atomic_inc(nr_find_usage_backwards_checks);
2276
2277	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278
2279	return result;
2280}
2281
2282static void print_lock_class_header(struct lock_class *class, int depth)
2283{
2284	int bit;
2285
2286	printk("%*s->", depth, "");
2287	print_lock_name(class);
2288#ifdef CONFIG_DEBUG_LOCKDEP
2289	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290#endif
2291	printk(KERN_CONT " {\n");
2292
2293	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294		if (class->usage_mask & (1 << bit)) {
2295			int len = depth;
2296
2297			len += printk("%*s   %s", depth, "", usage_str[bit]);
2298			len += printk(KERN_CONT " at:\n");
2299			print_lock_trace(class->usage_traces[bit], len);
2300		}
2301	}
2302	printk("%*s }\n", depth, "");
2303
2304	printk("%*s ... key      at: [<%px>] %pS\n",
2305		depth, "", class->key, class->key);
2306}
2307
2308/*
2309 * Dependency path printing:
2310 *
2311 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2312 * printing out each lock in the dependency path will help on understanding how
2313 * the deadlock could happen. Here are some details about dependency path
2314 * printing:
2315 *
2316 * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2317 * 	for a lock dependency A -> B, there are two lock_lists:
2318 *
2319 * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2320 * 		->links_to is A. In this case, we can say the lock_list is
2321 * 		"A -> B" (forwards case).
2322 *
2323 * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2324 * 		and ->links_to is B. In this case, we can say the lock_list is
2325 * 		"B <- A" (bacwards case).
2326 *
2327 * 	The ->trace of both a) and b) point to the call trace where B was
2328 * 	acquired with A held.
2329 *
2330 * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2331 * 	represent a certain lock dependency, it only provides an initial entry
2332 * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2333 * 	->class is A, as a result BFS will search all dependencies starting with
2334 * 	A, e.g. A -> B or A -> C.
2335 *
2336 * 	The notation of a forwards helper lock_list is like "-> A", which means
2337 * 	we should search the forwards dependencies starting with "A", e.g A -> B
2338 * 	or A -> C.
2339 *
2340 * 	The notation of a bacwards helper lock_list is like "<- B", which means
2341 * 	we should search the backwards dependencies ending with "B", e.g.
2342 * 	B <- A or B <- C.
2343 */
2344
2345/*
2346 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2347 *
2348 * We have a lock dependency path as follow:
2349 *
2350 *    @root                                                                 @leaf
2351 *      |                                                                     |
2352 *      V                                                                     V
2353 *	          ->parent                                   ->parent
2354 * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2355 * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2356 *
2357 * , so it's natural that we start from @leaf and print every ->class and
2358 * ->trace until we reach the @root.
2359 */
2360static void __used
2361print_shortest_lock_dependencies(struct lock_list *leaf,
2362				 struct lock_list *root)
2363{
2364	struct lock_list *entry = leaf;
2365	int depth;
2366
2367	/*compute depth from generated tree by BFS*/
2368	depth = get_lock_depth(leaf);
2369
2370	do {
2371		print_lock_class_header(entry->class, depth);
2372		printk("%*s ... acquired at:\n", depth, "");
2373		print_lock_trace(entry->trace, 2);
2374		printk("\n");
2375
2376		if (depth == 0 && (entry != root)) {
2377			printk("lockdep:%s bad path found in chain graph\n", __func__);
2378			break;
2379		}
2380
2381		entry = get_lock_parent(entry);
2382		depth--;
2383	} while (entry && (depth >= 0));
2384}
2385
2386/*
2387 * printk the shortest lock dependencies from @leaf to @root.
2388 *
2389 * We have a lock dependency path (from a backwards search) as follow:
2390 *
2391 *    @leaf                                                                 @root
2392 *      |                                                                     |
2393 *      V                                                                     V
2394 *	          ->parent                                   ->parent
2395 * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2396 * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2397 *
2398 * , so when we iterate from @leaf to @root, we actually print the lock
2399 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2400 *
2401 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2402 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2403 * trace of L1 in the dependency path, which is alright, because most of the
2404 * time we can figure out where L1 is held from the call trace of L2.
2405 */
2406static void __used
2407print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2408					   struct lock_list *root)
2409{
2410	struct lock_list *entry = leaf;
2411	const struct lock_trace *trace = NULL;
2412	int depth;
2413
2414	/*compute depth from generated tree by BFS*/
2415	depth = get_lock_depth(leaf);
2416
2417	do {
2418		print_lock_class_header(entry->class, depth);
2419		if (trace) {
2420			printk("%*s ... acquired at:\n", depth, "");
2421			print_lock_trace(trace, 2);
2422			printk("\n");
2423		}
2424
2425		/*
2426		 * Record the pointer to the trace for the next lock_list
2427		 * entry, see the comments for the function.
2428		 */
2429		trace = entry->trace;
2430
2431		if (depth == 0 && (entry != root)) {
2432			printk("lockdep:%s bad path found in chain graph\n", __func__);
2433			break;
2434		}
2435
2436		entry = get_lock_parent(entry);
2437		depth--;
2438	} while (entry && (depth >= 0));
2439}
2440
2441static void
2442print_irq_lock_scenario(struct lock_list *safe_entry,
2443			struct lock_list *unsafe_entry,
2444			struct lock_class *prev_class,
2445			struct lock_class *next_class)
2446{
2447	struct lock_class *safe_class = safe_entry->class;
2448	struct lock_class *unsafe_class = unsafe_entry->class;
2449	struct lock_class *middle_class = prev_class;
2450
2451	if (middle_class == safe_class)
2452		middle_class = next_class;
2453
2454	/*
2455	 * A direct locking problem where unsafe_class lock is taken
2456	 * directly by safe_class lock, then all we need to show
2457	 * is the deadlock scenario, as it is obvious that the
2458	 * unsafe lock is taken under the safe lock.
2459	 *
2460	 * But if there is a chain instead, where the safe lock takes
2461	 * an intermediate lock (middle_class) where this lock is
2462	 * not the same as the safe lock, then the lock chain is
2463	 * used to describe the problem. Otherwise we would need
2464	 * to show a different CPU case for each link in the chain
2465	 * from the safe_class lock to the unsafe_class lock.
2466	 */
2467	if (middle_class != unsafe_class) {
2468		printk("Chain exists of:\n  ");
2469		__print_lock_name(safe_class);
2470		printk(KERN_CONT " --> ");
2471		__print_lock_name(middle_class);
2472		printk(KERN_CONT " --> ");
2473		__print_lock_name(unsafe_class);
2474		printk(KERN_CONT "\n\n");
2475	}
2476
2477	printk(" Possible interrupt unsafe locking scenario:\n\n");
2478	printk("       CPU0                    CPU1\n");
2479	printk("       ----                    ----\n");
2480	printk("  lock(");
2481	__print_lock_name(unsafe_class);
2482	printk(KERN_CONT ");\n");
2483	printk("                               local_irq_disable();\n");
2484	printk("                               lock(");
2485	__print_lock_name(safe_class);
2486	printk(KERN_CONT ");\n");
2487	printk("                               lock(");
2488	__print_lock_name(middle_class);
2489	printk(KERN_CONT ");\n");
2490	printk("  <Interrupt>\n");
2491	printk("    lock(");
2492	__print_lock_name(safe_class);
2493	printk(KERN_CONT ");\n");
2494	printk("\n *** DEADLOCK ***\n\n");
2495}
2496
2497static void
2498print_bad_irq_dependency(struct task_struct *curr,
2499			 struct lock_list *prev_root,
2500			 struct lock_list *next_root,
2501			 struct lock_list *backwards_entry,
2502			 struct lock_list *forwards_entry,
2503			 struct held_lock *prev,
2504			 struct held_lock *next,
2505			 enum lock_usage_bit bit1,
2506			 enum lock_usage_bit bit2,
2507			 const char *irqclass)
2508{
2509	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2510		return;
2511
2512	pr_warn("\n");
2513	pr_warn("=====================================================\n");
2514	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2515		irqclass, irqclass);
2516	print_kernel_ident();
2517	pr_warn("-----------------------------------------------------\n");
2518	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2519		curr->comm, task_pid_nr(curr),
2520		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2521		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2522		lockdep_hardirqs_enabled(),
2523		curr->softirqs_enabled);
2524	print_lock(next);
2525
2526	pr_warn("\nand this task is already holding:\n");
2527	print_lock(prev);
2528	pr_warn("which would create a new lock dependency:\n");
2529	print_lock_name(hlock_class(prev));
2530	pr_cont(" ->");
2531	print_lock_name(hlock_class(next));
2532	pr_cont("\n");
2533
2534	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2535		irqclass);
2536	print_lock_name(backwards_entry->class);
2537	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2538
2539	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2540
2541	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2542	print_lock_name(forwards_entry->class);
2543	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2544	pr_warn("...");
2545
2546	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2547
2548	pr_warn("\nother info that might help us debug this:\n\n");
2549	print_irq_lock_scenario(backwards_entry, forwards_entry,
2550				hlock_class(prev), hlock_class(next));
2551
2552	lockdep_print_held_locks(curr);
2553
2554	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2555	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
 
 
2556
2557	pr_warn("\nthe dependencies between the lock to be acquired");
2558	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2559	next_root->trace = save_trace();
2560	if (!next_root->trace)
2561		return;
2562	print_shortest_lock_dependencies(forwards_entry, next_root);
2563
2564	pr_warn("\nstack backtrace:\n");
2565	dump_stack();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2566}
2567
2568static const char *state_names[] = {
2569#define LOCKDEP_STATE(__STATE) \
2570	__stringify(__STATE),
2571#include "lockdep_states.h"
2572#undef LOCKDEP_STATE
2573};
2574
2575static const char *state_rnames[] = {
2576#define LOCKDEP_STATE(__STATE) \
2577	__stringify(__STATE)"-READ",
2578#include "lockdep_states.h"
2579#undef LOCKDEP_STATE
2580};
2581
2582static inline const char *state_name(enum lock_usage_bit bit)
2583{
2584	if (bit & LOCK_USAGE_READ_MASK)
2585		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2586	else
2587		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2588}
2589
2590/*
2591 * The bit number is encoded like:
2592 *
2593 *  bit0: 0 exclusive, 1 read lock
2594 *  bit1: 0 used in irq, 1 irq enabled
2595 *  bit2-n: state
2596 */
2597static int exclusive_bit(int new_bit)
2598{
2599	int state = new_bit & LOCK_USAGE_STATE_MASK;
2600	int dir = new_bit & LOCK_USAGE_DIR_MASK;
 
 
 
 
 
 
 
 
 
 
 
2601
2602	/*
2603	 * keep state, bit flip the direction and strip read.
2604	 */
2605	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2606}
2607
2608/*
2609 * Observe that when given a bitmask where each bitnr is encoded as above, a
2610 * right shift of the mask transforms the individual bitnrs as -1 and
2611 * conversely, a left shift transforms into +1 for the individual bitnrs.
2612 *
2613 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2614 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2615 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2616 *
2617 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2618 *
2619 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2620 * all bits set) and recompose with bitnr1 flipped.
2621 */
2622static unsigned long invert_dir_mask(unsigned long mask)
2623{
2624	unsigned long excl = 0;
2625
2626	/* Invert dir */
2627	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2628	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2629
2630	return excl;
2631}
2632
2633/*
2634 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2635 * usage may cause deadlock too, for example:
2636 *
2637 * P1				P2
2638 * <irq disabled>
2639 * write_lock(l1);		<irq enabled>
2640 *				read_lock(l2);
2641 * write_lock(l2);
2642 * 				<in irq>
2643 * 				read_lock(l1);
2644 *
2645 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2646 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2647 * deadlock.
2648 *
2649 * In fact, all of the following cases may cause deadlocks:
2650 *
2651 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2652 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2653 * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2654 * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2655 *
2656 * As a result, to calculate the "exclusive mask", first we invert the
2657 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2658 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2659 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2660 */
2661static unsigned long exclusive_mask(unsigned long mask)
2662{
2663	unsigned long excl = invert_dir_mask(mask);
2664
2665	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2666	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2667
2668	return excl;
2669}
2670
2671/*
2672 * Retrieve the _possible_ original mask to which @mask is
2673 * exclusive. Ie: this is the opposite of exclusive_mask().
2674 * Note that 2 possible original bits can match an exclusive
2675 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2676 * cleared. So both are returned for each exclusive bit.
2677 */
2678static unsigned long original_mask(unsigned long mask)
2679{
2680	unsigned long excl = invert_dir_mask(mask);
2681
2682	/* Include read in existing usages */
2683	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2684	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2685
2686	return excl;
2687}
2688
2689/*
2690 * Find the first pair of bit match between an original
2691 * usage mask and an exclusive usage mask.
2692 */
2693static int find_exclusive_match(unsigned long mask,
2694				unsigned long excl_mask,
2695				enum lock_usage_bit *bitp,
2696				enum lock_usage_bit *excl_bitp)
2697{
2698	int bit, excl, excl_read;
2699
2700	for_each_set_bit(bit, &mask, LOCK_USED) {
2701		/*
2702		 * exclusive_bit() strips the read bit, however,
2703		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2704		 * to search excl | LOCK_USAGE_READ_MASK as well.
2705		 */
2706		excl = exclusive_bit(bit);
2707		excl_read = excl | LOCK_USAGE_READ_MASK;
2708		if (excl_mask & lock_flag(excl)) {
2709			*bitp = bit;
2710			*excl_bitp = excl;
2711			return 0;
2712		} else if (excl_mask & lock_flag(excl_read)) {
2713			*bitp = bit;
2714			*excl_bitp = excl_read;
2715			return 0;
2716		}
2717	}
2718	return -1;
2719}
2720
2721/*
2722 * Prove that the new dependency does not connect a hardirq-safe(-read)
2723 * lock with a hardirq-unsafe lock - to achieve this we search
2724 * the backwards-subgraph starting at <prev>, and the
2725 * forwards-subgraph starting at <next>:
2726 */
2727static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2728			   struct held_lock *next)
2729{
2730	unsigned long usage_mask = 0, forward_mask, backward_mask;
2731	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2732	struct lock_list *target_entry1;
2733	struct lock_list *target_entry;
2734	struct lock_list this, that;
2735	enum bfs_result ret;
2736
2737	/*
2738	 * Step 1: gather all hard/soft IRQs usages backward in an
2739	 * accumulated usage mask.
 
 
2740	 */
2741	bfs_init_rootb(&this, prev);
2742
2743	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2744	if (bfs_error(ret)) {
2745		print_bfs_bug(ret);
2746		return 0;
2747	}
2748
2749	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2750	if (!usage_mask)
2751		return 1;
2752
2753	/*
2754	 * Step 2: find exclusive uses forward that match the previous
2755	 * backward accumulated mask.
 
 
2756	 */
2757	forward_mask = exclusive_mask(usage_mask);
2758
2759	bfs_init_root(&that, next);
2760
2761	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2762	if (bfs_error(ret)) {
2763		print_bfs_bug(ret);
2764		return 0;
2765	}
2766	if (ret == BFS_RNOMATCH)
2767		return 1;
2768
2769	/*
2770	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2771	 * list whose usage mask matches the exclusive usage mask from the
2772	 * lock found on the forward list.
2773	 *
2774	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2775	 * the follow case:
2776	 *
2777	 * When trying to add A -> B to the graph, we find that there is a
2778	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2779	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2780	 * invert bits of M's usage_mask, we will find another lock N that is
2781	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2782	 * cause a inversion deadlock.
2783	 */
2784	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2785
2786	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2787	if (bfs_error(ret)) {
2788		print_bfs_bug(ret);
 
 
 
2789		return 0;
2790	}
2791	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2792		return 1;
2793
2794	/*
2795	 * Step 4: narrow down to a pair of incompatible usage bits
2796	 * and report it.
2797	 */
2798	ret = find_exclusive_match(target_entry->class->usage_mask,
2799				   target_entry1->class->usage_mask,
2800				   &backward_bit, &forward_bit);
2801	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2802		return 1;
2803
2804	print_bad_irq_dependency(curr, &this, &that,
2805				 target_entry, target_entry1,
2806				 prev, next,
2807				 backward_bit, forward_bit,
2808				 state_name(backward_bit));
2809
2810	return 0;
2811}
2812
2813#else
2814
2815static inline int check_irq_usage(struct task_struct *curr,
2816				  struct held_lock *prev, struct held_lock *next)
2817{
2818	return 1;
2819}
2820
2821static inline bool usage_skip(struct lock_list *entry, void *mask)
2822{
2823	return false;
 
 
 
 
 
 
 
2824}
2825
2826#endif /* CONFIG_TRACE_IRQFLAGS */
2827
2828#ifdef CONFIG_LOCKDEP_SMALL
2829/*
2830 * Check that the dependency graph starting at <src> can lead to
2831 * <target> or not. If it can, <src> -> <target> dependency is already
2832 * in the graph.
2833 *
2834 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2835 * any error appears in the bfs search.
2836 */
2837static noinline enum bfs_result
2838check_redundant(struct held_lock *src, struct held_lock *target)
2839{
2840	enum bfs_result ret;
2841	struct lock_list *target_entry;
2842	struct lock_list src_entry;
2843
2844	bfs_init_root(&src_entry, src);
2845	/*
2846	 * Special setup for check_redundant().
2847	 *
2848	 * To report redundant, we need to find a strong dependency path that
2849	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2850	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2851	 * we achieve this by setting the initial node's ->only_xr to true in
2852	 * that case. And if <prev> is S, we set initial ->only_xr to false
2853	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2854	 */
2855	src_entry.only_xr = src->read == 0;
2856
2857	debug_atomic_inc(nr_redundant_checks);
2858
2859	/*
2860	 * Note: we skip local_lock() for redundant check, because as the
2861	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2862	 * the same.
2863	 */
2864	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2865
2866	if (ret == BFS_RMATCH)
2867		debug_atomic_inc(nr_redundant);
2868
2869	return ret;
2870}
2871
2872#else
2873
2874static inline enum bfs_result
2875check_redundant(struct held_lock *src, struct held_lock *target)
2876{
2877	return BFS_RNOMATCH;
2878}
2879
2880#endif
2881
2882static void inc_chains(int irq_context)
2883{
2884	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2885		nr_hardirq_chains++;
2886	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2887		nr_softirq_chains++;
2888	else
2889		nr_process_chains++;
2890}
2891
2892static void dec_chains(int irq_context)
2893{
2894	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2895		nr_hardirq_chains--;
2896	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2897		nr_softirq_chains--;
2898	else
2899		nr_process_chains--;
2900}
2901
2902static void
2903print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
 
2904{
2905	struct lock_class *next = hlock_class(nxt);
2906	struct lock_class *prev = hlock_class(prv);
2907
2908	printk(" Possible unsafe locking scenario:\n\n");
2909	printk("       CPU0\n");
2910	printk("       ----\n");
2911	printk("  lock(");
2912	__print_lock_name(prev);
2913	printk(KERN_CONT ");\n");
2914	printk("  lock(");
2915	__print_lock_name(next);
2916	printk(KERN_CONT ");\n");
2917	printk("\n *** DEADLOCK ***\n\n");
2918	printk(" May be due to missing lock nesting notation\n\n");
2919}
2920
2921static void
2922print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2923		   struct held_lock *next)
2924{
2925	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2926		return;
2927
2928	pr_warn("\n");
2929	pr_warn("============================================\n");
2930	pr_warn("WARNING: possible recursive locking detected\n");
2931	print_kernel_ident();
2932	pr_warn("--------------------------------------------\n");
2933	pr_warn("%s/%d is trying to acquire lock:\n",
2934		curr->comm, task_pid_nr(curr));
2935	print_lock(next);
2936	pr_warn("\nbut task is already holding lock:\n");
2937	print_lock(prev);
2938
2939	pr_warn("\nother info that might help us debug this:\n");
2940	print_deadlock_scenario(next, prev);
2941	lockdep_print_held_locks(curr);
2942
2943	pr_warn("\nstack backtrace:\n");
2944	dump_stack();
 
 
2945}
2946
2947/*
2948 * Check whether we are holding such a class already.
2949 *
2950 * (Note that this has to be done separately, because the graph cannot
2951 * detect such classes of deadlocks.)
2952 *
2953 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2954 * lock class is held but nest_lock is also held, i.e. we rely on the
2955 * nest_lock to avoid the deadlock.
2956 */
2957static int
2958check_deadlock(struct task_struct *curr, struct held_lock *next)
 
2959{
2960	struct held_lock *prev;
2961	struct held_lock *nest = NULL;
2962	int i;
2963
2964	for (i = 0; i < curr->lockdep_depth; i++) {
2965		prev = curr->held_locks + i;
2966
2967		if (prev->instance == next->nest_lock)
2968			nest = prev;
2969
2970		if (hlock_class(prev) != hlock_class(next))
2971			continue;
2972
2973		/*
2974		 * Allow read-after-read recursion of the same
2975		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2976		 */
2977		if ((next->read == 2) && prev->read)
2978			continue;
2979
2980		/*
2981		 * We're holding the nest_lock, which serializes this lock's
2982		 * nesting behaviour.
2983		 */
2984		if (nest)
2985			return 2;
2986
2987		print_deadlock_bug(curr, prev, next);
2988		return 0;
2989	}
2990	return 1;
2991}
2992
2993/*
2994 * There was a chain-cache miss, and we are about to add a new dependency
2995 * to a previous lock. We validate the following rules:
2996 *
2997 *  - would the adding of the <prev> -> <next> dependency create a
2998 *    circular dependency in the graph? [== circular deadlock]
2999 *
3000 *  - does the new prev->next dependency connect any hardirq-safe lock
3001 *    (in the full backwards-subgraph starting at <prev>) with any
3002 *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3003 *    <next>)? [== illegal lock inversion with hardirq contexts]
3004 *
3005 *  - does the new prev->next dependency connect any softirq-safe lock
3006 *    (in the full backwards-subgraph starting at <prev>) with any
3007 *    softirq-unsafe lock (in the full forwards-subgraph starting at
3008 *    <next>)? [== illegal lock inversion with softirq contexts]
3009 *
3010 * any of these scenarios could lead to a deadlock.
3011 *
3012 * Then if all the validations pass, we add the forwards and backwards
3013 * dependency.
3014 */
3015static int
3016check_prev_add(struct task_struct *curr, struct held_lock *prev,
3017	       struct held_lock *next, u16 distance,
3018	       struct lock_trace **const trace)
3019{
3020	struct lock_list *entry;
3021	enum bfs_result ret;
3022
3023	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3024		/*
3025		 * The warning statements below may trigger a use-after-free
3026		 * of the class name. It is better to trigger a use-after free
3027		 * and to have the class name most of the time instead of not
3028		 * having the class name available.
3029		 */
3030		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3031			  "Detected use-after-free of lock class %px/%s\n",
3032			  hlock_class(prev),
3033			  hlock_class(prev)->name);
3034		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3035			  "Detected use-after-free of lock class %px/%s\n",
3036			  hlock_class(next),
3037			  hlock_class(next)->name);
3038		return 2;
3039	}
3040
3041	/*
3042	 * Prove that the new <prev> -> <next> dependency would not
3043	 * create a circular dependency in the graph. (We do this by
3044	 * a breadth-first search into the graph starting at <next>,
3045	 * and check whether we can reach <prev>.)
3046	 *
3047	 * The search is limited by the size of the circular queue (i.e.,
3048	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3049	 * in the graph whose neighbours are to be checked.
3050	 */
3051	ret = check_noncircular(next, prev, trace);
3052	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3053		return 0;
 
 
 
 
3054
3055	if (!check_irq_usage(curr, prev, next))
3056		return 0;
3057
3058	/*
 
 
 
 
 
 
 
 
 
 
3059	 * Is the <prev> -> <next> dependency already present?
3060	 *
3061	 * (this may occur even though this is a new chain: consider
3062	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3063	 *  chains - the second one will be new, but L1 already has
3064	 *  L2 added to its dependency list, due to the first chain.)
3065	 */
3066	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3067		if (entry->class == hlock_class(next)) {
3068			if (distance == 1)
3069				entry->distance = 1;
3070			entry->dep |= calc_dep(prev, next);
3071
3072			/*
3073			 * Also, update the reverse dependency in @next's
3074			 * ->locks_before list.
3075			 *
3076			 *  Here we reuse @entry as the cursor, which is fine
3077			 *  because we won't go to the next iteration of the
3078			 *  outer loop:
3079			 *
3080			 *  For normal cases, we return in the inner loop.
3081			 *
3082			 *  If we fail to return, we have inconsistency, i.e.
3083			 *  <prev>::locks_after contains <next> while
3084			 *  <next>::locks_before doesn't contain <prev>. In
3085			 *  that case, we return after the inner and indicate
3086			 *  something is wrong.
3087			 */
3088			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3089				if (entry->class == hlock_class(prev)) {
3090					if (distance == 1)
3091						entry->distance = 1;
3092					entry->dep |= calc_depb(prev, next);
3093					return 1;
3094				}
3095			}
3096
3097			/* <prev> is not found in <next>::locks_before */
3098			return 0;
3099		}
3100	}
3101
3102	/*
3103	 * Is the <prev> -> <next> link redundant?
3104	 */
3105	ret = check_redundant(prev, next);
3106	if (bfs_error(ret))
3107		return 0;
3108	else if (ret == BFS_RMATCH)
3109		return 2;
3110
3111	if (!*trace) {
3112		*trace = save_trace();
3113		if (!*trace)
3114			return 0;
 
3115	}
3116
3117	/*
3118	 * Ok, all validations passed, add the new lock
3119	 * to the previous lock's dependency list:
3120	 */
3121	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3122			       &hlock_class(prev)->locks_after,
3123			       next->acquire_ip, distance,
3124			       calc_dep(prev, next),
3125			       *trace);
3126
3127	if (!ret)
3128		return 0;
3129
3130	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131			       &hlock_class(next)->locks_before,
3132			       next->acquire_ip, distance,
3133			       calc_depb(prev, next),
3134			       *trace);
3135	if (!ret)
3136		return 0;
3137
3138	return 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3139}
3140
3141/*
3142 * Add the dependency to all directly-previous locks that are 'relevant'.
3143 * The ones that are relevant are (in increasing distance from curr):
3144 * all consecutive trylock entries and the final non-trylock entry - or
3145 * the end of this context's lock-chain - whichever comes first.
3146 */
3147static int
3148check_prevs_add(struct task_struct *curr, struct held_lock *next)
3149{
3150	struct lock_trace *trace = NULL;
3151	int depth = curr->lockdep_depth;
 
3152	struct held_lock *hlock;
3153
3154	/*
3155	 * Debugging checks.
3156	 *
3157	 * Depth must not be zero for a non-head lock:
3158	 */
3159	if (!depth)
3160		goto out_bug;
3161	/*
3162	 * At least two relevant locks must exist for this
3163	 * to be a head:
3164	 */
3165	if (curr->held_locks[depth].irq_context !=
3166			curr->held_locks[depth-1].irq_context)
3167		goto out_bug;
3168
3169	for (;;) {
3170		u16 distance = curr->lockdep_depth - depth + 1;
3171		hlock = curr->held_locks + depth - 1;
3172
3173		if (hlock->check) {
3174			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3175			if (!ret)
 
 
 
3176				return 0;
3177
3178			/*
3179			 * Stop after the first non-trylock entry,
3180			 * as non-trylock entries have added their
3181			 * own direct dependencies already, so this
3182			 * lock is connected to them indirectly:
3183			 */
3184			if (!hlock->trylock)
3185				break;
3186		}
3187
3188		depth--;
3189		/*
3190		 * End of lock-stack?
3191		 */
3192		if (!depth)
3193			break;
3194		/*
3195		 * Stop the search if we cross into another context:
3196		 */
3197		if (curr->held_locks[depth].irq_context !=
3198				curr->held_locks[depth-1].irq_context)
3199			break;
3200	}
3201	return 1;
3202out_bug:
3203	if (!debug_locks_off_graph_unlock())
3204		return 0;
3205
3206	/*
3207	 * Clearly we all shouldn't be here, but since we made it we
3208	 * can reliable say we messed up our state. See the above two
3209	 * gotos for reasons why we could possibly end up here.
3210	 */
3211	WARN_ON(1);
3212
3213	return 0;
3214}
3215
 
3216struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3217static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3218static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3219unsigned long nr_zapped_lock_chains;
3220unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3221unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3222unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3223
3224/*
3225 * The first 2 chain_hlocks entries in the chain block in the bucket
3226 * list contains the following meta data:
3227 *
3228 *   entry[0]:
3229 *     Bit    15 - always set to 1 (it is not a class index)
3230 *     Bits 0-14 - upper 15 bits of the next block index
3231 *   entry[1]    - lower 16 bits of next block index
3232 *
3233 * A next block index of all 1 bits means it is the end of the list.
3234 *
3235 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3236 * the chain block size:
3237 *
3238 *   entry[2] - upper 16 bits of the chain block size
3239 *   entry[3] - lower 16 bits of the chain block size
3240 */
3241#define MAX_CHAIN_BUCKETS	16
3242#define CHAIN_BLK_FLAG		(1U << 15)
3243#define CHAIN_BLK_LIST_END	0xFFFFU
3244
3245static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3246
3247static inline int size_to_bucket(int size)
3248{
3249	if (size > MAX_CHAIN_BUCKETS)
3250		return 0;
3251
3252	return size - 1;
3253}
3254
3255/*
3256 * Iterate all the chain blocks in a bucket.
3257 */
3258#define for_each_chain_block(bucket, prev, curr)		\
3259	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3260	     (curr) >= 0;					\
3261	     (prev) = (curr), (curr) = chain_block_next(curr))
3262
3263/*
3264 * next block or -1
3265 */
3266static inline int chain_block_next(int offset)
3267{
3268	int next = chain_hlocks[offset];
3269
3270	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3271
3272	if (next == CHAIN_BLK_LIST_END)
3273		return -1;
3274
3275	next &= ~CHAIN_BLK_FLAG;
3276	next <<= 16;
3277	next |= chain_hlocks[offset + 1];
3278
3279	return next;
3280}
3281
3282/*
3283 * bucket-0 only
3284 */
3285static inline int chain_block_size(int offset)
3286{
3287	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3288}
3289
3290static inline void init_chain_block(int offset, int next, int bucket, int size)
3291{
3292	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3293	chain_hlocks[offset + 1] = (u16)next;
3294
3295	if (size && !bucket) {
3296		chain_hlocks[offset + 2] = size >> 16;
3297		chain_hlocks[offset + 3] = (u16)size;
3298	}
3299}
3300
3301static inline void add_chain_block(int offset, int size)
3302{
3303	int bucket = size_to_bucket(size);
3304	int next = chain_block_buckets[bucket];
3305	int prev, curr;
3306
3307	if (unlikely(size < 2)) {
3308		/*
3309		 * We can't store single entries on the freelist. Leak them.
3310		 *
3311		 * One possible way out would be to uniquely mark them, other
3312		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3313		 * the block before it is re-added.
3314		 */
3315		if (size)
3316			nr_lost_chain_hlocks++;
3317		return;
3318	}
3319
3320	nr_free_chain_hlocks += size;
3321	if (!bucket) {
3322		nr_large_chain_blocks++;
3323
3324		/*
3325		 * Variable sized, sort large to small.
3326		 */
3327		for_each_chain_block(0, prev, curr) {
3328			if (size >= chain_block_size(curr))
3329				break;
3330		}
3331		init_chain_block(offset, curr, 0, size);
3332		if (prev < 0)
3333			chain_block_buckets[0] = offset;
3334		else
3335			init_chain_block(prev, offset, 0, 0);
3336		return;
3337	}
3338	/*
3339	 * Fixed size, add to head.
3340	 */
3341	init_chain_block(offset, next, bucket, size);
3342	chain_block_buckets[bucket] = offset;
3343}
3344
3345/*
3346 * Only the first block in the list can be deleted.
3347 *
3348 * For the variable size bucket[0], the first block (the largest one) is
3349 * returned, broken up and put back into the pool. So if a chain block of
3350 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3351 * queued up after the primordial chain block and never be used until the
3352 * hlock entries in the primordial chain block is almost used up. That
3353 * causes fragmentation and reduce allocation efficiency. That can be
3354 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3355 */
3356static inline void del_chain_block(int bucket, int size, int next)
3357{
3358	nr_free_chain_hlocks -= size;
3359	chain_block_buckets[bucket] = next;
3360
3361	if (!bucket)
3362		nr_large_chain_blocks--;
3363}
3364
3365static void init_chain_block_buckets(void)
3366{
3367	int i;
3368
3369	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3370		chain_block_buckets[i] = -1;
3371
3372	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3373}
3374
3375/*
3376 * Return offset of a chain block of the right size or -1 if not found.
3377 *
3378 * Fairly simple worst-fit allocator with the addition of a number of size
3379 * specific free lists.
3380 */
3381static int alloc_chain_hlocks(int req)
3382{
3383	int bucket, curr, size;
3384
3385	/*
3386	 * We rely on the MSB to act as an escape bit to denote freelist
3387	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3388	 */
3389	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3390
3391	init_data_structures_once();
3392
3393	if (nr_free_chain_hlocks < req)
3394		return -1;
3395
3396	/*
3397	 * We require a minimum of 2 (u16) entries to encode a freelist
3398	 * 'pointer'.
3399	 */
3400	req = max(req, 2);
3401	bucket = size_to_bucket(req);
3402	curr = chain_block_buckets[bucket];
3403
3404	if (bucket) {
3405		if (curr >= 0) {
3406			del_chain_block(bucket, req, chain_block_next(curr));
3407			return curr;
3408		}
3409		/* Try bucket 0 */
3410		curr = chain_block_buckets[0];
3411	}
3412
3413	/*
3414	 * The variable sized freelist is sorted by size; the first entry is
3415	 * the largest. Use it if it fits.
3416	 */
3417	if (curr >= 0) {
3418		size = chain_block_size(curr);
3419		if (likely(size >= req)) {
3420			del_chain_block(0, size, chain_block_next(curr));
3421			add_chain_block(curr + req, size - req);
3422			return curr;
3423		}
3424	}
3425
3426	/*
3427	 * Last resort, split a block in a larger sized bucket.
3428	 */
3429	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3430		bucket = size_to_bucket(size);
3431		curr = chain_block_buckets[bucket];
3432		if (curr < 0)
3433			continue;
3434
3435		del_chain_block(bucket, size, chain_block_next(curr));
3436		add_chain_block(curr + req, size - req);
3437		return curr;
3438	}
3439
3440	return -1;
3441}
3442
3443static inline void free_chain_hlocks(int base, int size)
3444{
3445	add_chain_block(base, max(size, 2));
3446}
3447
3448struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3449{
3450	u16 chain_hlock = chain_hlocks[chain->base + i];
3451	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3452
3453	return lock_classes + class_idx - 1;
3454}
3455
3456/*
3457 * Returns the index of the first held_lock of the current chain
3458 */
3459static inline int get_first_held_lock(struct task_struct *curr,
3460					struct held_lock *hlock)
3461{
3462	int i;
3463	struct held_lock *hlock_curr;
3464
3465	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3466		hlock_curr = curr->held_locks + i;
3467		if (hlock_curr->irq_context != hlock->irq_context)
3468			break;
3469
3470	}
3471
3472	return ++i;
3473}
3474
3475#ifdef CONFIG_DEBUG_LOCKDEP
3476/*
3477 * Returns the next chain_key iteration
3478 */
3479static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3480{
3481	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3482
3483	printk(" hlock_id:%d -> chain_key:%016Lx",
3484		(unsigned int)hlock_id,
3485		(unsigned long long)new_chain_key);
3486	return new_chain_key;
3487}
3488
3489static void
3490print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3491{
3492	struct held_lock *hlock;
3493	u64 chain_key = INITIAL_CHAIN_KEY;
3494	int depth = curr->lockdep_depth;
3495	int i = get_first_held_lock(curr, hlock_next);
3496
3497	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3498		hlock_next->irq_context);
3499	for (; i < depth; i++) {
3500		hlock = curr->held_locks + i;
3501		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3502
3503		print_lock(hlock);
3504	}
3505
3506	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3507	print_lock(hlock_next);
3508}
3509
3510static void print_chain_keys_chain(struct lock_chain *chain)
3511{
3512	int i;
3513	u64 chain_key = INITIAL_CHAIN_KEY;
3514	u16 hlock_id;
3515
3516	printk("depth: %u\n", chain->depth);
3517	for (i = 0; i < chain->depth; i++) {
3518		hlock_id = chain_hlocks[chain->base + i];
3519		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3520
3521		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3522		printk("\n");
3523	}
3524}
3525
3526static void print_collision(struct task_struct *curr,
3527			struct held_lock *hlock_next,
3528			struct lock_chain *chain)
3529{
3530	pr_warn("\n");
3531	pr_warn("============================\n");
3532	pr_warn("WARNING: chain_key collision\n");
3533	print_kernel_ident();
3534	pr_warn("----------------------------\n");
3535	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3536	pr_warn("Hash chain already cached but the contents don't match!\n");
3537
3538	pr_warn("Held locks:");
3539	print_chain_keys_held_locks(curr, hlock_next);
3540
3541	pr_warn("Locks in cached chain:");
3542	print_chain_keys_chain(chain);
3543
3544	pr_warn("\nstack backtrace:\n");
3545	dump_stack();
3546}
3547#endif
3548
3549/*
3550 * Checks whether the chain and the current held locks are consistent
3551 * in depth and also in content. If they are not it most likely means
3552 * that there was a collision during the calculation of the chain_key.
3553 * Returns: 0 not passed, 1 passed
3554 */
3555static int check_no_collision(struct task_struct *curr,
3556			struct held_lock *hlock,
3557			struct lock_chain *chain)
3558{
3559#ifdef CONFIG_DEBUG_LOCKDEP
3560	int i, j, id;
3561
3562	i = get_first_held_lock(curr, hlock);
3563
3564	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3565		print_collision(curr, hlock, chain);
3566		return 0;
3567	}
3568
3569	for (j = 0; j < chain->depth - 1; j++, i++) {
3570		id = hlock_id(&curr->held_locks[i]);
3571
3572		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3573			print_collision(curr, hlock, chain);
3574			return 0;
3575		}
3576	}
3577#endif
3578	return 1;
3579}
3580
3581/*
3582 * Given an index that is >= -1, return the index of the next lock chain.
3583 * Return -2 if there is no next lock chain.
 
 
3584 */
3585long lockdep_next_lockchain(long i)
3586{
3587	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3588	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3589}
3590
3591unsigned long lock_chain_count(void)
3592{
3593	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3594}
3595
3596/* Must be called with the graph lock held. */
3597static struct lock_chain *alloc_lock_chain(void)
3598{
3599	int idx = find_first_zero_bit(lock_chains_in_use,
3600				      ARRAY_SIZE(lock_chains));
3601
3602	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3603		return NULL;
3604	__set_bit(idx, lock_chains_in_use);
3605	return lock_chains + idx;
3606}
3607
3608/*
3609 * Adds a dependency chain into chain hashtable. And must be called with
3610 * graph_lock held.
3611 *
3612 * Return 0 if fail, and graph_lock is released.
3613 * Return 1 if succeed, with graph_lock held.
3614 */
3615static inline int add_chain_cache(struct task_struct *curr,
3616				  struct held_lock *hlock,
3617				  u64 chain_key)
3618{
 
3619	struct hlist_head *hash_head = chainhashentry(chain_key);
3620	struct lock_chain *chain;
3621	int i, j;
3622
3623	/*
3624	 * The caller must hold the graph lock, ensure we've got IRQs
3625	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3626	 * lockdep won't complain about its own locking errors.
3627	 */
3628	if (lockdep_assert_locked())
3629		return 0;
 
 
 
 
 
 
 
 
 
 
3630
3631	chain = alloc_lock_chain();
3632	if (!chain) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3633		if (!debug_locks_off_graph_unlock())
3634			return 0;
3635
3636		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3637		dump_stack();
3638		return 0;
3639	}
 
3640	chain->chain_key = chain_key;
3641	chain->irq_context = hlock->irq_context;
3642	i = get_first_held_lock(curr, hlock);
3643	chain->depth = curr->lockdep_depth + 1 - i;
3644
3645	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3646	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3647	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3648
3649	j = alloc_chain_hlocks(chain->depth);
3650	if (j < 0) {
3651		if (!debug_locks_off_graph_unlock())
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3652			return 0;
3653
3654		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3655		dump_stack();
3656		return 0;
3657	}
 
3658
3659	chain->base = j;
3660	for (j = 0; j < chain->depth - 1; j++, i++) {
3661		int lock_id = hlock_id(curr->held_locks + i);
3662
3663		chain_hlocks[chain->base + j] = lock_id;
3664	}
3665	chain_hlocks[chain->base + j] = hlock_id(hlock);
3666	hlist_add_head_rcu(&chain->entry, hash_head);
3667	debug_atomic_inc(chain_lookup_misses);
3668	inc_chains(chain->irq_context);
3669
3670	return 1;
3671}
3672
3673/*
3674 * Look up a dependency chain. Must be called with either the graph lock or
3675 * the RCU read lock held.
3676 */
3677static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3678{
3679	struct hlist_head *hash_head = chainhashentry(chain_key);
3680	struct lock_chain *chain;
3681
3682	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3683		if (READ_ONCE(chain->chain_key) == chain_key) {
3684			debug_atomic_inc(chain_lookup_hits);
3685			return chain;
3686		}
3687	}
3688	return NULL;
3689}
3690
3691/*
3692 * If the key is not present yet in dependency chain cache then
3693 * add it and return 1 - in this case the new dependency chain is
3694 * validated. If the key is already hashed, return 0.
3695 * (On return with 1 graph_lock is held.)
3696 */
3697static inline int lookup_chain_cache_add(struct task_struct *curr,
3698					 struct held_lock *hlock,
3699					 u64 chain_key)
3700{
3701	struct lock_class *class = hlock_class(hlock);
3702	struct lock_chain *chain = lookup_chain_cache(chain_key);
3703
3704	if (chain) {
3705cache_hit:
3706		if (!check_no_collision(curr, hlock, chain))
3707			return 0;
3708
3709		if (very_verbose(class)) {
3710			printk("\nhash chain already cached, key: "
3711					"%016Lx tail class: [%px] %s\n",
3712					(unsigned long long)chain_key,
3713					class->key, class->name);
3714		}
3715
3716		return 0;
3717	}
3718
3719	if (very_verbose(class)) {
3720		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3721			(unsigned long long)chain_key, class->key, class->name);
3722	}
3723
3724	if (!graph_lock())
3725		return 0;
3726
3727	/*
3728	 * We have to walk the chain again locked - to avoid duplicates:
3729	 */
3730	chain = lookup_chain_cache(chain_key);
3731	if (chain) {
3732		graph_unlock();
3733		goto cache_hit;
3734	}
3735
3736	if (!add_chain_cache(curr, hlock, chain_key))
3737		return 0;
3738
3739	return 1;
3740}
3741
3742static int validate_chain(struct task_struct *curr,
3743			  struct held_lock *hlock,
3744			  int chain_head, u64 chain_key)
3745{
3746	/*
3747	 * Trylock needs to maintain the stack of held locks, but it
3748	 * does not add new dependencies, because trylock can be done
3749	 * in any order.
3750	 *
3751	 * We look up the chain_key and do the O(N^2) check and update of
3752	 * the dependencies only if this is a new dependency chain.
3753	 * (If lookup_chain_cache_add() return with 1 it acquires
3754	 * graph_lock for us)
3755	 */
3756	if (!hlock->trylock && hlock->check &&
3757	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3758		/*
3759		 * Check whether last held lock:
3760		 *
3761		 * - is irq-safe, if this lock is irq-unsafe
3762		 * - is softirq-safe, if this lock is hardirq-unsafe
3763		 *
3764		 * And check whether the new lock's dependency graph
3765		 * could lead back to the previous lock:
3766		 *
3767		 * - within the current held-lock stack
3768		 * - across our accumulated lock dependency records
3769		 *
3770		 * any of these scenarios could lead to a deadlock.
3771		 */
3772		/*
3773		 * The simple case: does the current hold the same lock
3774		 * already?
3775		 */
3776		int ret = check_deadlock(curr, hlock);
3777
3778		if (!ret)
3779			return 0;
3780		/*
 
 
 
 
 
 
 
3781		 * Add dependency only if this lock is not the head
3782		 * of the chain, and if the new lock introduces no more
3783		 * lock dependency (because we already hold a lock with the
3784		 * same lock class) nor deadlock (because the nest_lock
3785		 * serializes nesting locks), see the comments for
3786		 * check_deadlock().
3787		 */
3788		if (!chain_head && ret != 2) {
3789			if (!check_prevs_add(curr, hlock))
3790				return 0;
3791		}
3792
3793		graph_unlock();
3794	} else {
3795		/* after lookup_chain_cache_add(): */
3796		if (unlikely(!debug_locks))
3797			return 0;
3798	}
3799
3800	return 1;
3801}
3802#else
3803static inline int validate_chain(struct task_struct *curr,
3804				 struct held_lock *hlock,
3805				 int chain_head, u64 chain_key)
3806{
3807	return 1;
3808}
3809
3810static void init_chain_block_buckets(void)	{ }
3811#endif /* CONFIG_PROVE_LOCKING */
3812
3813/*
3814 * We are building curr_chain_key incrementally, so double-check
3815 * it from scratch, to make sure that it's done correctly:
3816 */
3817static void check_chain_key(struct task_struct *curr)
3818{
3819#ifdef CONFIG_DEBUG_LOCKDEP
3820	struct held_lock *hlock, *prev_hlock = NULL;
3821	unsigned int i;
3822	u64 chain_key = INITIAL_CHAIN_KEY;
3823
3824	for (i = 0; i < curr->lockdep_depth; i++) {
3825		hlock = curr->held_locks + i;
3826		if (chain_key != hlock->prev_chain_key) {
3827			debug_locks_off();
3828			/*
3829			 * We got mighty confused, our chain keys don't match
3830			 * with what we expect, someone trample on our task state?
3831			 */
3832			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3833				curr->lockdep_depth, i,
3834				(unsigned long long)chain_key,
3835				(unsigned long long)hlock->prev_chain_key);
3836			return;
3837		}
3838
3839		/*
3840		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3841		 * it registered lock class index?
3842		 */
3843		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3844			return;
3845
3846		if (prev_hlock && (prev_hlock->irq_context !=
3847							hlock->irq_context))
3848			chain_key = INITIAL_CHAIN_KEY;
3849		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3850		prev_hlock = hlock;
3851	}
3852	if (chain_key != curr->curr_chain_key) {
3853		debug_locks_off();
3854		/*
3855		 * More smoking hash instead of calculating it, damn see these
3856		 * numbers float.. I bet that a pink elephant stepped on my memory.
3857		 */
3858		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3859			curr->lockdep_depth, i,
3860			(unsigned long long)chain_key,
3861			(unsigned long long)curr->curr_chain_key);
3862	}
3863#endif
3864}
3865
3866#ifdef CONFIG_PROVE_LOCKING
3867static int mark_lock(struct task_struct *curr, struct held_lock *this,
3868		     enum lock_usage_bit new_bit);
3869
3870static void print_usage_bug_scenario(struct held_lock *lock)
3871{
3872	struct lock_class *class = hlock_class(lock);
3873
3874	printk(" Possible unsafe locking scenario:\n\n");
3875	printk("       CPU0\n");
3876	printk("       ----\n");
3877	printk("  lock(");
3878	__print_lock_name(class);
3879	printk(KERN_CONT ");\n");
3880	printk("  <Interrupt>\n");
3881	printk("    lock(");
3882	__print_lock_name(class);
3883	printk(KERN_CONT ");\n");
3884	printk("\n *** DEADLOCK ***\n\n");
3885}
3886
3887static void
3888print_usage_bug(struct task_struct *curr, struct held_lock *this,
3889		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3890{
3891	if (!debug_locks_off() || debug_locks_silent)
3892		return;
3893
3894	pr_warn("\n");
3895	pr_warn("================================\n");
3896	pr_warn("WARNING: inconsistent lock state\n");
3897	print_kernel_ident();
3898	pr_warn("--------------------------------\n");
3899
3900	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3901		usage_str[prev_bit], usage_str[new_bit]);
3902
3903	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3904		curr->comm, task_pid_nr(curr),
3905		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3906		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3907		lockdep_hardirqs_enabled(),
3908		lockdep_softirqs_enabled(curr));
3909	print_lock(this);
3910
3911	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3912	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3913
3914	print_irqtrace_events(curr);
3915	pr_warn("\nother info that might help us debug this:\n");
3916	print_usage_bug_scenario(this);
3917
3918	lockdep_print_held_locks(curr);
3919
3920	pr_warn("\nstack backtrace:\n");
3921	dump_stack();
 
 
3922}
3923
3924/*
3925 * Print out an error if an invalid bit is set:
3926 */
3927static inline int
3928valid_state(struct task_struct *curr, struct held_lock *this,
3929	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3930{
3931	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3932		graph_unlock();
3933		print_usage_bug(curr, this, bad_bit, new_bit);
3934		return 0;
3935	}
3936	return 1;
3937}
3938
 
 
 
 
3939
3940/*
3941 * print irq inversion bug:
3942 */
3943static void
3944print_irq_inversion_bug(struct task_struct *curr,
3945			struct lock_list *root, struct lock_list *other,
3946			struct held_lock *this, int forwards,
3947			const char *irqclass)
3948{
3949	struct lock_list *entry = other;
3950	struct lock_list *middle = NULL;
3951	int depth;
3952
3953	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3954		return;
3955
3956	pr_warn("\n");
3957	pr_warn("========================================================\n");
3958	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3959	print_kernel_ident();
3960	pr_warn("--------------------------------------------------------\n");
3961	pr_warn("%s/%d just changed the state of lock:\n",
3962		curr->comm, task_pid_nr(curr));
3963	print_lock(this);
3964	if (forwards)
3965		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3966	else
3967		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3968	print_lock_name(other->class);
3969	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3970
3971	pr_warn("\nother info that might help us debug this:\n");
3972
3973	/* Find a middle lock (if one exists) */
3974	depth = get_lock_depth(other);
3975	do {
3976		if (depth == 0 && (entry != root)) {
3977			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3978			break;
3979		}
3980		middle = entry;
3981		entry = get_lock_parent(entry);
3982		depth--;
3983	} while (entry && entry != root && (depth >= 0));
3984	if (forwards)
3985		print_irq_lock_scenario(root, other,
3986			middle ? middle->class : root->class, other->class);
3987	else
3988		print_irq_lock_scenario(other, root,
3989			middle ? middle->class : other->class, root->class);
3990
3991	lockdep_print_held_locks(curr);
3992
3993	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3994	root->trace = save_trace();
3995	if (!root->trace)
3996		return;
3997	print_shortest_lock_dependencies(other, root);
3998
3999	pr_warn("\nstack backtrace:\n");
4000	dump_stack();
 
 
4001}
4002
4003/*
4004 * Prove that in the forwards-direction subgraph starting at <this>
4005 * there is no lock matching <mask>:
4006 */
4007static int
4008check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4009		     enum lock_usage_bit bit)
4010{
4011	enum bfs_result ret;
4012	struct lock_list root;
4013	struct lock_list *target_entry;
4014	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4015	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4016
4017	bfs_init_root(&root, this);
4018	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4019	if (bfs_error(ret)) {
4020		print_bfs_bug(ret);
4021		return 0;
4022	}
4023	if (ret == BFS_RNOMATCH)
4024		return 1;
4025
4026	/* Check whether write or read usage is the match */
4027	if (target_entry->class->usage_mask & lock_flag(bit)) {
4028		print_irq_inversion_bug(curr, &root, target_entry,
4029					this, 1, state_name(bit));
4030	} else {
4031		print_irq_inversion_bug(curr, &root, target_entry,
4032					this, 1, state_name(read_bit));
4033	}
4034
4035	return 0;
 
4036}
4037
4038/*
4039 * Prove that in the backwards-direction subgraph starting at <this>
4040 * there is no lock matching <mask>:
4041 */
4042static int
4043check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4044		      enum lock_usage_bit bit)
4045{
4046	enum bfs_result ret;
4047	struct lock_list root;
4048	struct lock_list *target_entry;
4049	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4050	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4051
4052	bfs_init_rootb(&root, this);
4053	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4054	if (bfs_error(ret)) {
4055		print_bfs_bug(ret);
4056		return 0;
4057	}
4058	if (ret == BFS_RNOMATCH)
4059		return 1;
4060
4061	/* Check whether write or read usage is the match */
4062	if (target_entry->class->usage_mask & lock_flag(bit)) {
4063		print_irq_inversion_bug(curr, &root, target_entry,
4064					this, 0, state_name(bit));
4065	} else {
4066		print_irq_inversion_bug(curr, &root, target_entry,
4067					this, 0, state_name(read_bit));
4068	}
4069
4070	return 0;
4071}
4072
4073void print_irqtrace_events(struct task_struct *curr)
4074{
4075	const struct irqtrace_events *trace = &curr->irqtrace;
4076
4077	printk("irq event stamp: %u\n", trace->irq_events);
4078	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4079		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4080		(void *)trace->hardirq_enable_ip);
4081	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4082		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4083		(void *)trace->hardirq_disable_ip);
4084	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4085		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4086		(void *)trace->softirq_enable_ip);
4087	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4088		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4089		(void *)trace->softirq_disable_ip);
4090}
4091
4092static int HARDIRQ_verbose(struct lock_class *class)
4093{
4094#if HARDIRQ_VERBOSE
4095	return class_filter(class);
4096#endif
4097	return 0;
4098}
4099
4100static int SOFTIRQ_verbose(struct lock_class *class)
4101{
4102#if SOFTIRQ_VERBOSE
4103	return class_filter(class);
4104#endif
4105	return 0;
4106}
4107
 
 
 
 
 
 
 
 
 
 
4108static int (*state_verbose_f[])(struct lock_class *class) = {
4109#define LOCKDEP_STATE(__STATE) \
4110	__STATE##_verbose,
4111#include "lockdep_states.h"
4112#undef LOCKDEP_STATE
4113};
4114
4115static inline int state_verbose(enum lock_usage_bit bit,
4116				struct lock_class *class)
4117{
4118	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4119}
4120
4121typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4122			     enum lock_usage_bit bit, const char *name);
4123
4124static int
4125mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4126		enum lock_usage_bit new_bit)
4127{
4128	int excl_bit = exclusive_bit(new_bit);
4129	int read = new_bit & LOCK_USAGE_READ_MASK;
4130	int dir = new_bit & LOCK_USAGE_DIR_MASK;
 
 
 
 
 
 
 
 
 
 
4131
4132	/*
4133	 * Validate that this particular lock does not have conflicting
4134	 * usage states.
4135	 */
4136	if (!valid_state(curr, this, new_bit, excl_bit))
4137		return 0;
4138
4139	/*
4140	 * Check for read in write conflicts
 
4141	 */
4142	if (!read && !valid_state(curr, this, new_bit,
4143				  excl_bit + LOCK_USAGE_READ_MASK))
4144		return 0;
4145
4146
4147	/*
4148	 * Validate that the lock dependencies don't have conflicting usage
4149	 * states.
4150	 */
4151	if (dir) {
4152		/*
4153		 * mark ENABLED has to look backwards -- to ensure no dependee
4154		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4155		 */
4156		if (!check_usage_backwards(curr, this, excl_bit))
4157			return 0;
4158	} else {
4159		/*
4160		 * mark USED_IN has to look forwards -- to ensure no dependency
4161		 * has ENABLED state, which would allow recursion deadlocks.
4162		 */
4163		if (!check_usage_forwards(curr, this, excl_bit))
4164			return 0;
4165	}
4166
4167	if (state_verbose(new_bit, hlock_class(this)))
4168		return 2;
4169
4170	return 1;
4171}
4172
 
 
 
 
 
 
4173/*
4174 * Mark all held locks with a usage bit:
4175 */
4176static int
4177mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4178{
 
4179	struct held_lock *hlock;
4180	int i;
4181
4182	for (i = 0; i < curr->lockdep_depth; i++) {
4183		enum lock_usage_bit hlock_bit = base_bit;
4184		hlock = curr->held_locks + i;
4185
 
4186		if (hlock->read)
4187			hlock_bit += LOCK_USAGE_READ_MASK;
4188
4189		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4190
4191		if (!hlock->check)
4192			continue;
4193
4194		if (!mark_lock(curr, hlock, hlock_bit))
4195			return 0;
4196	}
4197
4198	return 1;
4199}
4200
4201/*
4202 * Hardirqs will be enabled:
4203 */
4204static void __trace_hardirqs_on_caller(void)
4205{
4206	struct task_struct *curr = current;
4207
 
 
 
4208	/*
4209	 * We are going to turn hardirqs on, so set the
4210	 * usage bit for all held locks:
4211	 */
4212	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4213		return;
4214	/*
4215	 * If we have softirqs enabled, then set the usage
4216	 * bit for all held locks. (disabled hardirqs prevented
4217	 * this bit from being set before)
4218	 */
4219	if (curr->softirqs_enabled)
4220		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
 
 
 
 
 
4221}
4222
4223/**
4224 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4225 * @ip:		Caller address
4226 *
4227 * Invoked before a possible transition to RCU idle from exit to user or
4228 * guest mode. This ensures that all RCU operations are done before RCU
4229 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4230 * invoked to set the final state.
4231 */
4232void lockdep_hardirqs_on_prepare(unsigned long ip)
4233{
4234	if (unlikely(!debug_locks))
4235		return;
4236
4237	/*
4238	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4239	 */
4240	if (unlikely(in_nmi()))
4241		return;
4242
4243	if (unlikely(this_cpu_read(lockdep_recursion)))
4244		return;
4245
4246	if (unlikely(lockdep_hardirqs_enabled())) {
4247		/*
4248		 * Neither irq nor preemption are disabled here
4249		 * so this is racy by nature but losing one hit
4250		 * in a stat is not a big deal.
4251		 */
4252		__debug_atomic_inc(redundant_hardirqs_on);
4253		return;
4254	}
4255
4256	/*
4257	 * We're enabling irqs and according to our state above irqs weren't
4258	 * already enabled, yet we find the hardware thinks they are in fact
4259	 * enabled.. someone messed up their IRQ state tracing.
4260	 */
4261	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4262		return;
4263
4264	/*
4265	 * See the fine text that goes along with this variable definition.
4266	 */
4267	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4268		return;
4269
4270	/*
4271	 * Can't allow enabling interrupts while in an interrupt handler,
4272	 * that's general bad form and such. Recursion, limited stack etc..
4273	 */
4274	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4275		return;
4276
4277	current->hardirq_chain_key = current->curr_chain_key;
4278
4279	lockdep_recursion_inc();
4280	__trace_hardirqs_on_caller();
4281	lockdep_recursion_finish();
4282}
4283EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4284
4285void noinstr lockdep_hardirqs_on(unsigned long ip)
4286{
4287	struct irqtrace_events *trace = &current->irqtrace;
4288
4289	if (unlikely(!debug_locks))
4290		return;
4291
4292	/*
4293	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4294	 * tracking state and hardware state are out of sync.
4295	 *
4296	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4297	 * and not rely on hardware state like normal interrupts.
4298	 */
4299	if (unlikely(in_nmi())) {
4300		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4301			return;
4302
4303		/*
4304		 * Skip:
4305		 *  - recursion check, because NMI can hit lockdep;
4306		 *  - hardware state check, because above;
4307		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4308		 */
4309		goto skip_checks;
4310	}
4311
4312	if (unlikely(this_cpu_read(lockdep_recursion)))
4313		return;
4314
4315	if (lockdep_hardirqs_enabled()) {
4316		/*
4317		 * Neither irq nor preemption are disabled here
4318		 * so this is racy by nature but losing one hit
4319		 * in a stat is not a big deal.
4320		 */
4321		__debug_atomic_inc(redundant_hardirqs_on);
4322		return;
4323	}
4324
4325	/*
4326	 * We're enabling irqs and according to our state above irqs weren't
4327	 * already enabled, yet we find the hardware thinks they are in fact
4328	 * enabled.. someone messed up their IRQ state tracing.
4329	 */
4330	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4331		return;
4332
4333	/*
4334	 * Ensure the lock stack remained unchanged between
4335	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4336	 */
4337	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4338			    current->curr_chain_key);
4339
4340skip_checks:
4341	/* we'll do an OFF -> ON transition: */
4342	__this_cpu_write(hardirqs_enabled, 1);
4343	trace->hardirq_enable_ip = ip;
4344	trace->hardirq_enable_event = ++trace->irq_events;
4345	debug_atomic_inc(hardirqs_on_events);
4346}
4347EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4348
4349/*
4350 * Hardirqs were disabled:
4351 */
4352void noinstr lockdep_hardirqs_off(unsigned long ip)
4353{
4354	if (unlikely(!debug_locks))
4355		return;
 
4356
4357	/*
4358	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4359	 * they will restore the software state. This ensures the software
4360	 * state is consistent inside NMIs as well.
4361	 */
4362	if (in_nmi()) {
4363		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4364			return;
4365	} else if (__this_cpu_read(lockdep_recursion))
4366		return;
4367
4368	/*
4369	 * So we're supposed to get called after you mask local IRQs, but for
4370	 * some reason the hardware doesn't quite think you did a proper job.
4371	 */
4372	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4373		return;
4374
4375	if (lockdep_hardirqs_enabled()) {
4376		struct irqtrace_events *trace = &current->irqtrace;
4377
4378		/*
4379		 * We have done an ON -> OFF transition:
4380		 */
4381		__this_cpu_write(hardirqs_enabled, 0);
4382		trace->hardirq_disable_ip = ip;
4383		trace->hardirq_disable_event = ++trace->irq_events;
4384		debug_atomic_inc(hardirqs_off_events);
4385	} else {
4386		debug_atomic_inc(redundant_hardirqs_off);
4387	}
4388}
4389EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
 
 
 
 
 
 
4390
4391/*
4392 * Softirqs will be enabled:
4393 */
4394void lockdep_softirqs_on(unsigned long ip)
4395{
4396	struct irqtrace_events *trace = &current->irqtrace;
4397
4398	if (unlikely(!lockdep_enabled()))
4399		return;
4400
4401	/*
4402	 * We fancy IRQs being disabled here, see softirq.c, avoids
4403	 * funny state and nesting things.
4404	 */
4405	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4406		return;
4407
4408	if (current->softirqs_enabled) {
4409		debug_atomic_inc(redundant_softirqs_on);
4410		return;
4411	}
4412
4413	lockdep_recursion_inc();
4414	/*
4415	 * We'll do an OFF -> ON transition:
4416	 */
4417	current->softirqs_enabled = 1;
4418	trace->softirq_enable_ip = ip;
4419	trace->softirq_enable_event = ++trace->irq_events;
4420	debug_atomic_inc(softirqs_on_events);
4421	/*
4422	 * We are going to turn softirqs on, so set the
4423	 * usage bit for all held locks, if hardirqs are
4424	 * enabled too:
4425	 */
4426	if (lockdep_hardirqs_enabled())
4427		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4428	lockdep_recursion_finish();
4429}
4430
4431/*
4432 * Softirqs were disabled:
4433 */
4434void lockdep_softirqs_off(unsigned long ip)
4435{
4436	if (unlikely(!lockdep_enabled()))
 
 
4437		return;
4438
4439	/*
4440	 * We fancy IRQs being disabled here, see softirq.c
4441	 */
4442	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4443		return;
4444
4445	if (current->softirqs_enabled) {
4446		struct irqtrace_events *trace = &current->irqtrace;
4447
4448		/*
4449		 * We have done an ON -> OFF transition:
4450		 */
4451		current->softirqs_enabled = 0;
4452		trace->softirq_disable_ip = ip;
4453		trace->softirq_disable_event = ++trace->irq_events;
4454		debug_atomic_inc(softirqs_off_events);
4455		/*
4456		 * Whoops, we wanted softirqs off, so why aren't they?
4457		 */
4458		DEBUG_LOCKS_WARN_ON(!softirq_count());
4459	} else
4460		debug_atomic_inc(redundant_softirqs_off);
4461}
4462
4463static int
4464mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4465{
4466	if (!check)
4467		goto lock_used;
 
 
4468
 
 
 
 
 
 
 
 
 
 
4469	/*
4470	 * If non-trylock use in a hardirq or softirq context, then
4471	 * mark the lock as used in these contexts:
4472	 */
4473	if (!hlock->trylock) {
4474		if (hlock->read) {
4475			if (lockdep_hardirq_context())
4476				if (!mark_lock(curr, hlock,
4477						LOCK_USED_IN_HARDIRQ_READ))
4478					return 0;
4479			if (curr->softirq_context)
4480				if (!mark_lock(curr, hlock,
4481						LOCK_USED_IN_SOFTIRQ_READ))
4482					return 0;
4483		} else {
4484			if (lockdep_hardirq_context())
4485				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4486					return 0;
4487			if (curr->softirq_context)
4488				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4489					return 0;
4490		}
4491	}
4492	if (!hlock->hardirqs_off) {
4493		if (hlock->read) {
4494			if (!mark_lock(curr, hlock,
4495					LOCK_ENABLED_HARDIRQ_READ))
4496				return 0;
4497			if (curr->softirqs_enabled)
4498				if (!mark_lock(curr, hlock,
4499						LOCK_ENABLED_SOFTIRQ_READ))
4500					return 0;
4501		} else {
4502			if (!mark_lock(curr, hlock,
4503					LOCK_ENABLED_HARDIRQ))
4504				return 0;
4505			if (curr->softirqs_enabled)
4506				if (!mark_lock(curr, hlock,
4507						LOCK_ENABLED_SOFTIRQ))
4508					return 0;
4509		}
4510	}
4511
4512lock_used:
4513	/* mark it as used: */
4514	if (!mark_lock(curr, hlock, LOCK_USED))
4515		return 0;
 
 
 
 
 
 
 
 
 
 
 
4516
4517	return 1;
4518}
4519
4520static inline unsigned int task_irq_context(struct task_struct *task)
4521{
4522	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4523	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4524}
4525
4526static int separate_irq_context(struct task_struct *curr,
4527		struct held_lock *hlock)
4528{
4529	unsigned int depth = curr->lockdep_depth;
4530
4531	/*
4532	 * Keep track of points where we cross into an interrupt context:
4533	 */
4534	if (depth) {
4535		struct held_lock *prev_hlock;
4536
4537		prev_hlock = curr->held_locks + depth-1;
4538		/*
4539		 * If we cross into another context, reset the
4540		 * hash key (this also prevents the checking and the
4541		 * adding of the dependency to 'prev'):
4542		 */
4543		if (prev_hlock->irq_context != hlock->irq_context)
4544			return 1;
4545	}
4546	return 0;
4547}
4548
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4549/*
4550 * Mark a lock with a usage bit, and validate the state transition:
4551 */
4552static int mark_lock(struct task_struct *curr, struct held_lock *this,
4553			     enum lock_usage_bit new_bit)
4554{
4555	unsigned int new_mask, ret = 1;
4556
4557	if (new_bit >= LOCK_USAGE_STATES) {
4558		DEBUG_LOCKS_WARN_ON(1);
4559		return 0;
4560	}
4561
4562	if (new_bit == LOCK_USED && this->read)
4563		new_bit = LOCK_USED_READ;
4564
4565	new_mask = 1 << new_bit;
4566
4567	/*
4568	 * If already set then do not dirty the cacheline,
4569	 * nor do any checks:
4570	 */
4571	if (likely(hlock_class(this)->usage_mask & new_mask))
4572		return 1;
4573
4574	if (!graph_lock())
4575		return 0;
4576	/*
4577	 * Make sure we didn't race:
4578	 */
4579	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4580		goto unlock;
4581
4582	if (!hlock_class(this)->usage_mask)
4583		debug_atomic_dec(nr_unused_locks);
4584
4585	hlock_class(this)->usage_mask |= new_mask;
4586
4587	if (new_bit < LOCK_TRACE_STATES) {
4588		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4589			return 0;
4590	}
4591
4592	if (new_bit < LOCK_USED) {
 
 
 
 
 
 
 
4593		ret = mark_lock_irq(curr, this, new_bit);
4594		if (!ret)
4595			return 0;
 
 
 
 
 
 
 
 
 
4596	}
4597
4598unlock:
4599	graph_unlock();
4600
4601	/*
4602	 * We must printk outside of the graph_lock:
4603	 */
4604	if (ret == 2) {
4605		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4606		print_lock(this);
4607		print_irqtrace_events(curr);
4608		dump_stack();
4609	}
4610
4611	return ret;
4612}
4613
4614static inline short task_wait_context(struct task_struct *curr)
4615{
4616	/*
4617	 * Set appropriate wait type for the context; for IRQs we have to take
4618	 * into account force_irqthread as that is implied by PREEMPT_RT.
4619	 */
4620	if (lockdep_hardirq_context()) {
4621		/*
4622		 * Check if force_irqthreads will run us threaded.
4623		 */
4624		if (curr->hardirq_threaded || curr->irq_config)
4625			return LD_WAIT_CONFIG;
4626
4627		return LD_WAIT_SPIN;
4628	} else if (curr->softirq_context) {
4629		/*
4630		 * Softirqs are always threaded.
4631		 */
4632		return LD_WAIT_CONFIG;
4633	}
4634
4635	return LD_WAIT_MAX;
4636}
4637
4638static int
4639print_lock_invalid_wait_context(struct task_struct *curr,
4640				struct held_lock *hlock)
4641{
4642	short curr_inner;
4643
4644	if (!debug_locks_off())
4645		return 0;
4646	if (debug_locks_silent)
4647		return 0;
4648
4649	pr_warn("\n");
4650	pr_warn("=============================\n");
4651	pr_warn("[ BUG: Invalid wait context ]\n");
4652	print_kernel_ident();
4653	pr_warn("-----------------------------\n");
4654
4655	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4656	print_lock(hlock);
4657
4658	pr_warn("other info that might help us debug this:\n");
4659
4660	curr_inner = task_wait_context(curr);
4661	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4662
4663	lockdep_print_held_locks(curr);
4664
4665	pr_warn("stack backtrace:\n");
4666	dump_stack();
4667
4668	return 0;
4669}
4670
4671/*
4672 * Verify the wait_type context.
4673 *
4674 * This check validates we takes locks in the right wait-type order; that is it
4675 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4676 * acquire spinlocks inside raw_spinlocks and the sort.
4677 *
4678 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4679 * can be taken from (pretty much) any context but also has constraints.
4680 * However when taken in a stricter environment the RCU lock does not loosen
4681 * the constraints.
4682 *
4683 * Therefore we must look for the strictest environment in the lock stack and
4684 * compare that to the lock we're trying to acquire.
4685 */
4686static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4687{
4688	u8 next_inner = hlock_class(next)->wait_type_inner;
4689	u8 next_outer = hlock_class(next)->wait_type_outer;
4690	u8 curr_inner;
4691	int depth;
4692
4693	if (!next_inner || next->trylock)
4694		return 0;
4695
4696	if (!next_outer)
4697		next_outer = next_inner;
4698
4699	/*
4700	 * Find start of current irq_context..
4701	 */
4702	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4703		struct held_lock *prev = curr->held_locks + depth;
4704		if (prev->irq_context != next->irq_context)
4705			break;
4706	}
4707	depth++;
4708
4709	curr_inner = task_wait_context(curr);
4710
4711	for (; depth < curr->lockdep_depth; depth++) {
4712		struct held_lock *prev = curr->held_locks + depth;
4713		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4714
4715		if (prev_inner) {
4716			/*
4717			 * We can have a bigger inner than a previous one
4718			 * when outer is smaller than inner, as with RCU.
4719			 *
4720			 * Also due to trylocks.
4721			 */
4722			curr_inner = min(curr_inner, prev_inner);
4723		}
4724	}
4725
4726	if (next_outer > curr_inner)
4727		return print_lock_invalid_wait_context(curr, next);
4728
4729	return 0;
4730}
4731
4732#else /* CONFIG_PROVE_LOCKING */
4733
4734static inline int
4735mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4736{
4737	return 1;
4738}
4739
4740static inline unsigned int task_irq_context(struct task_struct *task)
4741{
4742	return 0;
4743}
4744
4745static inline int separate_irq_context(struct task_struct *curr,
4746		struct held_lock *hlock)
4747{
4748	return 0;
4749}
4750
4751static inline int check_wait_context(struct task_struct *curr,
4752				     struct held_lock *next)
4753{
4754	return 0;
4755}
4756
4757#endif /* CONFIG_PROVE_LOCKING */
4758
4759/*
4760 * Initialize a lock instance's lock-class mapping info:
4761 */
4762void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4763			    struct lock_class_key *key, int subclass,
4764			    u8 inner, u8 outer, u8 lock_type)
4765{
4766	int i;
4767
 
 
4768	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4769		lock->class_cache[i] = NULL;
4770
4771#ifdef CONFIG_LOCK_STAT
4772	lock->cpu = raw_smp_processor_id();
4773#endif
4774
4775	/*
4776	 * Can't be having no nameless bastards around this place!
4777	 */
4778	if (DEBUG_LOCKS_WARN_ON(!name)) {
4779		lock->name = "NULL";
4780		return;
4781	}
4782
4783	lock->name = name;
4784
4785	lock->wait_type_outer = outer;
4786	lock->wait_type_inner = inner;
4787	lock->lock_type = lock_type;
4788
4789	/*
4790	 * No key, no joy, we need to hash something.
4791	 */
4792	if (DEBUG_LOCKS_WARN_ON(!key))
4793		return;
4794	/*
4795	 * Sanity check, the lock-class key must either have been allocated
4796	 * statically or must have been registered as a dynamic key.
4797	 */
4798	if (!static_obj(key) && !is_dynamic_key(key)) {
4799		if (debug_locks)
4800			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
 
 
4801		DEBUG_LOCKS_WARN_ON(1);
4802		return;
4803	}
4804	lock->key = key;
4805
4806	if (unlikely(!debug_locks))
4807		return;
4808
4809	if (subclass) {
4810		unsigned long flags;
4811
4812		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4813			return;
4814
4815		raw_local_irq_save(flags);
4816		lockdep_recursion_inc();
4817		register_lock_class(lock, subclass, 1);
4818		lockdep_recursion_finish();
4819		raw_local_irq_restore(flags);
4820	}
4821}
4822EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4823
4824struct lock_class_key __lockdep_no_validate__;
4825EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4826
4827static void
4828print_lock_nested_lock_not_held(struct task_struct *curr,
4829				struct held_lock *hlock,
4830				unsigned long ip)
4831{
4832	if (!debug_locks_off())
4833		return;
4834	if (debug_locks_silent)
4835		return;
4836
4837	pr_warn("\n");
4838	pr_warn("==================================\n");
4839	pr_warn("WARNING: Nested lock was not taken\n");
4840	print_kernel_ident();
4841	pr_warn("----------------------------------\n");
4842
4843	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4844	print_lock(hlock);
4845
4846	pr_warn("\nbut this task is not holding:\n");
4847	pr_warn("%s\n", hlock->nest_lock->name);
4848
4849	pr_warn("\nstack backtrace:\n");
4850	dump_stack();
4851
4852	pr_warn("\nother info that might help us debug this:\n");
4853	lockdep_print_held_locks(curr);
4854
4855	pr_warn("\nstack backtrace:\n");
4856	dump_stack();
 
 
4857}
4858
4859static int __lock_is_held(const struct lockdep_map *lock, int read);
4860
4861/*
4862 * This gets called for every mutex_lock*()/spin_lock*() operation.
4863 * We maintain the dependency maps and validate the locking attempt:
4864 *
4865 * The callers must make sure that IRQs are disabled before calling it,
4866 * otherwise we could get an interrupt which would want to take locks,
4867 * which would end up in lockdep again.
4868 */
4869static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4870			  int trylock, int read, int check, int hardirqs_off,
4871			  struct lockdep_map *nest_lock, unsigned long ip,
4872			  int references, int pin_count)
4873{
4874	struct task_struct *curr = current;
4875	struct lock_class *class = NULL;
4876	struct held_lock *hlock;
4877	unsigned int depth;
4878	int chain_head = 0;
4879	int class_idx;
4880	u64 chain_key;
4881
4882	if (unlikely(!debug_locks))
4883		return 0;
4884
 
 
 
 
 
 
 
 
4885	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4886		check = 0;
4887
4888	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4889		class = lock->class_cache[subclass];
4890	/*
4891	 * Not cached?
4892	 */
4893	if (unlikely(!class)) {
4894		class = register_lock_class(lock, subclass, 0);
4895		if (!class)
4896			return 0;
4897	}
4898
4899	debug_class_ops_inc(class);
4900
4901	if (very_verbose(class)) {
4902		printk("\nacquire class [%px] %s", class->key, class->name);
4903		if (class->name_version > 1)
4904			printk(KERN_CONT "#%d", class->name_version);
4905		printk(KERN_CONT "\n");
4906		dump_stack();
4907	}
4908
4909	/*
4910	 * Add the lock to the list of currently held locks.
4911	 * (we dont increase the depth just yet, up until the
4912	 * dependency checks are done)
4913	 */
4914	depth = curr->lockdep_depth;
4915	/*
4916	 * Ran out of static storage for our per-task lock stack again have we?
4917	 */
4918	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4919		return 0;
4920
4921	class_idx = class - lock_classes;
4922
4923	if (depth) { /* we're holding locks */
4924		hlock = curr->held_locks + depth - 1;
4925		if (hlock->class_idx == class_idx && nest_lock) {
4926			if (!references)
4927				references++;
4928
4929			if (!hlock->references)
4930				hlock->references++;
 
 
4931
4932			hlock->references += references;
4933
4934			/* Overflow */
4935			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4936				return 0;
4937
4938			return 2;
4939		}
4940	}
4941
4942	hlock = curr->held_locks + depth;
4943	/*
4944	 * Plain impossible, we just registered it and checked it weren't no
4945	 * NULL like.. I bet this mushroom I ate was good!
4946	 */
4947	if (DEBUG_LOCKS_WARN_ON(!class))
4948		return 0;
4949	hlock->class_idx = class_idx;
4950	hlock->acquire_ip = ip;
4951	hlock->instance = lock;
4952	hlock->nest_lock = nest_lock;
4953	hlock->irq_context = task_irq_context(curr);
4954	hlock->trylock = trylock;
4955	hlock->read = read;
4956	hlock->check = check;
4957	hlock->hardirqs_off = !!hardirqs_off;
4958	hlock->references = references;
4959#ifdef CONFIG_LOCK_STAT
4960	hlock->waittime_stamp = 0;
4961	hlock->holdtime_stamp = lockstat_clock();
4962#endif
4963	hlock->pin_count = pin_count;
4964
4965	if (check_wait_context(curr, hlock))
4966		return 0;
4967
4968	/* Initialize the lock usage bit */
4969	if (!mark_usage(curr, hlock, check))
4970		return 0;
4971
4972	/*
4973	 * Calculate the chain hash: it's the combined hash of all the
4974	 * lock keys along the dependency chain. We save the hash value
4975	 * at every step so that we can get the current hash easily
4976	 * after unlock. The chain hash is then used to cache dependency
4977	 * results.
4978	 *
4979	 * The 'key ID' is what is the most compact key value to drive
4980	 * the hash, not class->key.
4981	 */
4982	/*
4983	 * Whoops, we did it again.. class_idx is invalid.
4984	 */
4985	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4986		return 0;
4987
4988	chain_key = curr->curr_chain_key;
4989	if (!depth) {
4990		/*
4991		 * How can we have a chain hash when we ain't got no keys?!
4992		 */
4993		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4994			return 0;
4995		chain_head = 1;
4996	}
4997
4998	hlock->prev_chain_key = chain_key;
4999	if (separate_irq_context(curr, hlock)) {
5000		chain_key = INITIAL_CHAIN_KEY;
5001		chain_head = 1;
5002	}
5003	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5004
5005	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5006		print_lock_nested_lock_not_held(curr, hlock, ip);
5007		return 0;
5008	}
5009
5010	if (!debug_locks_silent) {
5011		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5012		WARN_ON_ONCE(!hlock_class(hlock)->key);
5013	}
5014
5015	if (!validate_chain(curr, hlock, chain_head, chain_key))
5016		return 0;
5017
5018	curr->curr_chain_key = chain_key;
5019	curr->lockdep_depth++;
5020	check_chain_key(curr);
5021#ifdef CONFIG_DEBUG_LOCKDEP
5022	if (unlikely(!debug_locks))
5023		return 0;
5024#endif
5025	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5026		debug_locks_off();
5027		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5028		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5029		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5030
5031		lockdep_print_held_locks(current);
5032		debug_show_all_locks();
5033		dump_stack();
5034
5035		return 0;
5036	}
5037
5038	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5039		max_lockdep_depth = curr->lockdep_depth;
5040
5041	return 1;
5042}
5043
5044static void print_unlock_imbalance_bug(struct task_struct *curr,
5045				       struct lockdep_map *lock,
5046				       unsigned long ip)
5047{
5048	if (!debug_locks_off())
5049		return;
5050	if (debug_locks_silent)
5051		return;
5052
5053	pr_warn("\n");
5054	pr_warn("=====================================\n");
5055	pr_warn("WARNING: bad unlock balance detected!\n");
5056	print_kernel_ident();
5057	pr_warn("-------------------------------------\n");
5058	pr_warn("%s/%d is trying to release lock (",
5059		curr->comm, task_pid_nr(curr));
5060	print_lockdep_cache(lock);
5061	pr_cont(") at:\n");
5062	print_ip_sym(KERN_WARNING, ip);
5063	pr_warn("but there are no more locks to release!\n");
5064	pr_warn("\nother info that might help us debug this:\n");
5065	lockdep_print_held_locks(curr);
5066
5067	pr_warn("\nstack backtrace:\n");
5068	dump_stack();
 
 
5069}
5070
5071static noinstr int match_held_lock(const struct held_lock *hlock,
5072				   const struct lockdep_map *lock)
5073{
5074	if (hlock->instance == lock)
5075		return 1;
5076
5077	if (hlock->references) {
5078		const struct lock_class *class = lock->class_cache[0];
5079
5080		if (!class)
5081			class = look_up_lock_class(lock, 0);
5082
5083		/*
5084		 * If look_up_lock_class() failed to find a class, we're trying
5085		 * to test if we hold a lock that has never yet been acquired.
5086		 * Clearly if the lock hasn't been acquired _ever_, we're not
5087		 * holding it either, so report failure.
5088		 */
5089		if (!class)
5090			return 0;
5091
5092		/*
5093		 * References, but not a lock we're actually ref-counting?
5094		 * State got messed up, follow the sites that change ->references
5095		 * and try to make sense of it.
5096		 */
5097		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5098			return 0;
5099
5100		if (hlock->class_idx == class - lock_classes)
5101			return 1;
5102	}
5103
5104	return 0;
5105}
5106
5107/* @depth must not be zero */
5108static struct held_lock *find_held_lock(struct task_struct *curr,
5109					struct lockdep_map *lock,
5110					unsigned int depth, int *idx)
5111{
5112	struct held_lock *ret, *hlock, *prev_hlock;
5113	int i;
5114
5115	i = depth - 1;
5116	hlock = curr->held_locks + i;
5117	ret = hlock;
5118	if (match_held_lock(hlock, lock))
5119		goto out;
5120
5121	ret = NULL;
5122	for (i--, prev_hlock = hlock--;
5123	     i >= 0;
5124	     i--, prev_hlock = hlock--) {
5125		/*
5126		 * We must not cross into another context:
5127		 */
5128		if (prev_hlock->irq_context != hlock->irq_context) {
5129			ret = NULL;
5130			break;
5131		}
5132		if (match_held_lock(hlock, lock)) {
5133			ret = hlock;
5134			break;
5135		}
5136	}
5137
5138out:
5139	*idx = i;
5140	return ret;
5141}
5142
5143static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5144				int idx, unsigned int *merged)
5145{
5146	struct held_lock *hlock;
5147	int first_idx = idx;
5148
5149	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5150		return 0;
5151
5152	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5153		switch (__lock_acquire(hlock->instance,
5154				    hlock_class(hlock)->subclass,
5155				    hlock->trylock,
5156				    hlock->read, hlock->check,
5157				    hlock->hardirqs_off,
5158				    hlock->nest_lock, hlock->acquire_ip,
5159				    hlock->references, hlock->pin_count)) {
5160		case 0:
5161			return 1;
5162		case 1:
5163			break;
5164		case 2:
5165			*merged += (idx == first_idx);
5166			break;
5167		default:
5168			WARN_ON(1);
5169			return 0;
5170		}
5171	}
5172	return 0;
5173}
5174
5175static int
5176__lock_set_class(struct lockdep_map *lock, const char *name,
5177		 struct lock_class_key *key, unsigned int subclass,
5178		 unsigned long ip)
5179{
5180	struct task_struct *curr = current;
5181	unsigned int depth, merged = 0;
5182	struct held_lock *hlock;
5183	struct lock_class *class;
 
5184	int i;
5185
5186	if (unlikely(!debug_locks))
5187		return 0;
5188
5189	depth = curr->lockdep_depth;
5190	/*
5191	 * This function is about (re)setting the class of a held lock,
5192	 * yet we're not actually holding any locks. Naughty user!
5193	 */
5194	if (DEBUG_LOCKS_WARN_ON(!depth))
5195		return 0;
5196
5197	hlock = find_held_lock(curr, lock, depth, &i);
5198	if (!hlock) {
5199		print_unlock_imbalance_bug(curr, lock, ip);
5200		return 0;
 
 
 
 
 
 
 
5201	}
 
5202
5203	lockdep_init_map_waits(lock, name, key, 0,
5204			       lock->wait_type_inner,
5205			       lock->wait_type_outer);
5206	class = register_lock_class(lock, subclass, 0);
5207	hlock->class_idx = class - lock_classes;
5208
5209	curr->lockdep_depth = i;
5210	curr->curr_chain_key = hlock->prev_chain_key;
5211
5212	if (reacquire_held_locks(curr, depth, i, &merged))
5213		return 0;
5214
5215	/*
5216	 * I took it apart and put it back together again, except now I have
5217	 * these 'spare' parts.. where shall I put them.
5218	 */
5219	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5220		return 0;
5221	return 1;
5222}
5223
5224static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5225{
5226	struct task_struct *curr = current;
5227	unsigned int depth, merged = 0;
5228	struct held_lock *hlock;
5229	int i;
5230
5231	if (unlikely(!debug_locks))
5232		return 0;
5233
5234	depth = curr->lockdep_depth;
5235	/*
5236	 * This function is about (re)setting the class of a held lock,
5237	 * yet we're not actually holding any locks. Naughty user!
5238	 */
5239	if (DEBUG_LOCKS_WARN_ON(!depth))
5240		return 0;
5241
5242	hlock = find_held_lock(curr, lock, depth, &i);
5243	if (!hlock) {
5244		print_unlock_imbalance_bug(curr, lock, ip);
5245		return 0;
5246	}
5247
5248	curr->lockdep_depth = i;
5249	curr->curr_chain_key = hlock->prev_chain_key;
5250
5251	WARN(hlock->read, "downgrading a read lock");
5252	hlock->read = 1;
5253	hlock->acquire_ip = ip;
5254
5255	if (reacquire_held_locks(curr, depth, i, &merged))
5256		return 0;
5257
5258	/* Merging can't happen with unchanged classes.. */
5259	if (DEBUG_LOCKS_WARN_ON(merged))
5260		return 0;
5261
5262	/*
5263	 * I took it apart and put it back together again, except now I have
5264	 * these 'spare' parts.. where shall I put them.
5265	 */
5266	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5267		return 0;
5268
5269	return 1;
5270}
5271
5272/*
5273 * Remove the lock from the list of currently held locks - this gets
5274 * called on mutex_unlock()/spin_unlock*() (or on a failed
5275 * mutex_lock_interruptible()).
 
 
5276 */
5277static int
5278__lock_release(struct lockdep_map *lock, unsigned long ip)
5279{
5280	struct task_struct *curr = current;
5281	unsigned int depth, merged = 1;
5282	struct held_lock *hlock;
5283	int i;
5284
5285	if (unlikely(!debug_locks))
5286		return 0;
5287
5288	depth = curr->lockdep_depth;
5289	/*
5290	 * So we're all set to release this lock.. wait what lock? We don't
5291	 * own any locks, you've been drinking again?
5292	 */
5293	if (depth <= 0) {
5294		print_unlock_imbalance_bug(curr, lock, ip);
5295		return 0;
5296	}
5297
5298	/*
5299	 * Check whether the lock exists in the current stack
5300	 * of held locks:
5301	 */
5302	hlock = find_held_lock(curr, lock, depth, &i);
5303	if (!hlock) {
5304		print_unlock_imbalance_bug(curr, lock, ip);
5305		return 0;
 
 
 
 
 
 
 
5306	}
 
5307
 
5308	if (hlock->instance == lock)
5309		lock_release_holdtime(hlock);
5310
5311	WARN(hlock->pin_count, "releasing a pinned lock\n");
5312
5313	if (hlock->references) {
5314		hlock->references--;
5315		if (hlock->references) {
5316			/*
5317			 * We had, and after removing one, still have
5318			 * references, the current lock stack is still
5319			 * valid. We're done!
5320			 */
5321			return 1;
5322		}
5323	}
5324
5325	/*
5326	 * We have the right lock to unlock, 'hlock' points to it.
5327	 * Now we remove it from the stack, and add back the other
5328	 * entries (if any), recalculating the hash along the way:
5329	 */
5330
5331	curr->lockdep_depth = i;
5332	curr->curr_chain_key = hlock->prev_chain_key;
5333
5334	/*
5335	 * The most likely case is when the unlock is on the innermost
5336	 * lock. In this case, we are done!
5337	 */
5338	if (i == depth-1)
5339		return 1;
5340
5341	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5342		return 0;
5343
5344	/*
5345	 * We had N bottles of beer on the wall, we drank one, but now
5346	 * there's not N-1 bottles of beer left on the wall...
5347	 * Pouring two of the bottles together is acceptable.
5348	 */
5349	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
 
5350
5351	/*
5352	 * Since reacquire_held_locks() would have called check_chain_key()
5353	 * indirectly via __lock_acquire(), we don't need to do it again
5354	 * on return.
5355	 */
5356	return 0;
5357}
5358
5359static __always_inline
5360int __lock_is_held(const struct lockdep_map *lock, int read)
5361{
5362	struct task_struct *curr = current;
5363	int i;
5364
5365	for (i = 0; i < curr->lockdep_depth; i++) {
5366		struct held_lock *hlock = curr->held_locks + i;
5367
5368		if (match_held_lock(hlock, lock)) {
5369			if (read == -1 || hlock->read == read)
5370				return LOCK_STATE_HELD;
5371
5372			return LOCK_STATE_NOT_HELD;
5373		}
5374	}
5375
5376	return LOCK_STATE_NOT_HELD;
5377}
5378
5379static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5380{
5381	struct pin_cookie cookie = NIL_COOKIE;
5382	struct task_struct *curr = current;
5383	int i;
5384
5385	if (unlikely(!debug_locks))
5386		return cookie;
5387
5388	for (i = 0; i < curr->lockdep_depth; i++) {
5389		struct held_lock *hlock = curr->held_locks + i;
5390
5391		if (match_held_lock(hlock, lock)) {
5392			/*
5393			 * Grab 16bits of randomness; this is sufficient to not
5394			 * be guessable and still allows some pin nesting in
5395			 * our u32 pin_count.
5396			 */
5397			cookie.val = 1 + (prandom_u32() >> 16);
5398			hlock->pin_count += cookie.val;
5399			return cookie;
5400		}
5401	}
5402
5403	WARN(1, "pinning an unheld lock\n");
5404	return cookie;
5405}
5406
5407static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5408{
5409	struct task_struct *curr = current;
5410	int i;
5411
5412	if (unlikely(!debug_locks))
5413		return;
5414
5415	for (i = 0; i < curr->lockdep_depth; i++) {
5416		struct held_lock *hlock = curr->held_locks + i;
5417
5418		if (match_held_lock(hlock, lock)) {
5419			hlock->pin_count += cookie.val;
5420			return;
5421		}
5422	}
5423
5424	WARN(1, "pinning an unheld lock\n");
5425}
5426
5427static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5428{
5429	struct task_struct *curr = current;
5430	int i;
5431
5432	if (unlikely(!debug_locks))
5433		return;
5434
5435	for (i = 0; i < curr->lockdep_depth; i++) {
5436		struct held_lock *hlock = curr->held_locks + i;
5437
5438		if (match_held_lock(hlock, lock)) {
5439			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5440				return;
5441
5442			hlock->pin_count -= cookie.val;
5443
5444			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5445				hlock->pin_count = 0;
5446
5447			return;
5448		}
5449	}
5450
5451	WARN(1, "unpinning an unheld lock\n");
5452}
5453
5454/*
5455 * Check whether we follow the irq-flags state precisely:
5456 */
5457static noinstr void check_flags(unsigned long flags)
5458{
5459#if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
 
5460	if (!debug_locks)
5461		return;
5462
5463	/* Get the warning out..  */
5464	instrumentation_begin();
5465
5466	if (irqs_disabled_flags(flags)) {
5467		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5468			printk("possible reason: unannotated irqs-off.\n");
5469		}
5470	} else {
5471		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5472			printk("possible reason: unannotated irqs-on.\n");
5473		}
5474	}
5475
5476	/*
5477	 * We dont accurately track softirq state in e.g.
5478	 * hardirq contexts (such as on 4KSTACKS), so only
5479	 * check if not in hardirq contexts:
5480	 */
5481	if (!hardirq_count()) {
5482		if (softirq_count()) {
5483			/* like the above, but with softirqs */
5484			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5485		} else {
5486			/* lick the above, does it taste good? */
5487			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5488		}
5489	}
5490
5491	if (!debug_locks)
5492		print_irqtrace_events(current);
5493
5494	instrumentation_end();
5495#endif
5496}
5497
5498void lock_set_class(struct lockdep_map *lock, const char *name,
5499		    struct lock_class_key *key, unsigned int subclass,
5500		    unsigned long ip)
5501{
5502	unsigned long flags;
5503
5504	if (unlikely(!lockdep_enabled()))
5505		return;
5506
5507	raw_local_irq_save(flags);
5508	lockdep_recursion_inc();
5509	check_flags(flags);
5510	if (__lock_set_class(lock, name, key, subclass, ip))
5511		check_chain_key(current);
5512	lockdep_recursion_finish();
5513	raw_local_irq_restore(flags);
5514}
5515EXPORT_SYMBOL_GPL(lock_set_class);
5516
5517void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5518{
5519	unsigned long flags;
5520
5521	if (unlikely(!lockdep_enabled()))
5522		return;
5523
5524	raw_local_irq_save(flags);
5525	lockdep_recursion_inc();
5526	check_flags(flags);
5527	if (__lock_downgrade(lock, ip))
5528		check_chain_key(current);
5529	lockdep_recursion_finish();
5530	raw_local_irq_restore(flags);
5531}
5532EXPORT_SYMBOL_GPL(lock_downgrade);
5533
5534/* NMI context !!! */
5535static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5536{
5537#ifdef CONFIG_PROVE_LOCKING
5538	struct lock_class *class = look_up_lock_class(lock, subclass);
5539	unsigned long mask = LOCKF_USED;
5540
5541	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5542	if (!class)
5543		return;
5544
5545	/*
5546	 * READ locks only conflict with USED, such that if we only ever use
5547	 * READ locks, there is no deadlock possible -- RCU.
5548	 */
5549	if (!hlock->read)
5550		mask |= LOCKF_USED_READ;
5551
5552	if (!(class->usage_mask & mask))
5553		return;
5554
5555	hlock->class_idx = class - lock_classes;
5556
5557	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5558#endif
5559}
5560
5561static bool lockdep_nmi(void)
5562{
5563	if (raw_cpu_read(lockdep_recursion))
5564		return false;
5565
5566	if (!in_nmi())
5567		return false;
5568
5569	return true;
5570}
5571
5572/*
5573 * read_lock() is recursive if:
5574 * 1. We force lockdep think this way in selftests or
5575 * 2. The implementation is not queued read/write lock or
5576 * 3. The locker is at an in_interrupt() context.
5577 */
5578bool read_lock_is_recursive(void)
5579{
5580	return force_read_lock_recursive ||
5581	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5582	       in_interrupt();
5583}
5584EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5585
5586/*
5587 * We are not always called with irqs disabled - do that here,
5588 * and also avoid lockdep recursion:
5589 */
5590void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5591			  int trylock, int read, int check,
5592			  struct lockdep_map *nest_lock, unsigned long ip)
5593{
5594	unsigned long flags;
5595
5596	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5597
5598	if (!debug_locks)
5599		return;
5600
5601	if (unlikely(!lockdep_enabled())) {
5602		/* XXX allow trylock from NMI ?!? */
5603		if (lockdep_nmi() && !trylock) {
5604			struct held_lock hlock;
5605
5606			hlock.acquire_ip = ip;
5607			hlock.instance = lock;
5608			hlock.nest_lock = nest_lock;
5609			hlock.irq_context = 2; // XXX
5610			hlock.trylock = trylock;
5611			hlock.read = read;
5612			hlock.check = check;
5613			hlock.hardirqs_off = true;
5614			hlock.references = 0;
5615
5616			verify_lock_unused(lock, &hlock, subclass);
5617		}
5618		return;
5619	}
5620
5621	raw_local_irq_save(flags);
5622	check_flags(flags);
5623
5624	lockdep_recursion_inc();
 
5625	__lock_acquire(lock, subclass, trylock, read, check,
5626		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5627	lockdep_recursion_finish();
5628	raw_local_irq_restore(flags);
5629}
5630EXPORT_SYMBOL_GPL(lock_acquire);
5631
5632void lock_release(struct lockdep_map *lock, unsigned long ip)
 
5633{
5634	unsigned long flags;
5635
5636	trace_lock_release(lock, ip);
5637
5638	if (unlikely(!lockdep_enabled()))
5639		return;
5640
5641	raw_local_irq_save(flags);
5642	check_flags(flags);
5643
5644	lockdep_recursion_inc();
5645	if (__lock_release(lock, ip))
5646		check_chain_key(current);
5647	lockdep_recursion_finish();
5648	raw_local_irq_restore(flags);
5649}
5650EXPORT_SYMBOL_GPL(lock_release);
5651
5652noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5653{
5654	unsigned long flags;
5655	int ret = LOCK_STATE_NOT_HELD;
5656
5657	/*
5658	 * Avoid false negative lockdep_assert_held() and
5659	 * lockdep_assert_not_held().
5660	 */
5661	if (unlikely(!lockdep_enabled()))
5662		return LOCK_STATE_UNKNOWN;
5663
5664	raw_local_irq_save(flags);
5665	check_flags(flags);
5666
5667	lockdep_recursion_inc();
5668	ret = __lock_is_held(lock, read);
5669	lockdep_recursion_finish();
5670	raw_local_irq_restore(flags);
5671
5672	return ret;
5673}
5674EXPORT_SYMBOL_GPL(lock_is_held_type);
5675NOKPROBE_SYMBOL(lock_is_held_type);
5676
5677struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5678{
5679	struct pin_cookie cookie = NIL_COOKIE;
5680	unsigned long flags;
5681
5682	if (unlikely(!lockdep_enabled()))
5683		return cookie;
5684
5685	raw_local_irq_save(flags);
5686	check_flags(flags);
5687
5688	lockdep_recursion_inc();
5689	cookie = __lock_pin_lock(lock);
5690	lockdep_recursion_finish();
5691	raw_local_irq_restore(flags);
5692
5693	return cookie;
5694}
5695EXPORT_SYMBOL_GPL(lock_pin_lock);
5696
5697void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5698{
5699	unsigned long flags;
5700
5701	if (unlikely(!lockdep_enabled()))
5702		return;
5703
5704	raw_local_irq_save(flags);
5705	check_flags(flags);
5706
5707	lockdep_recursion_inc();
5708	__lock_repin_lock(lock, cookie);
5709	lockdep_recursion_finish();
5710	raw_local_irq_restore(flags);
5711}
5712EXPORT_SYMBOL_GPL(lock_repin_lock);
5713
5714void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5715{
5716	unsigned long flags;
5717
5718	if (unlikely(!lockdep_enabled()))
5719		return;
5720
5721	raw_local_irq_save(flags);
5722	check_flags(flags);
5723
5724	lockdep_recursion_inc();
5725	__lock_unpin_lock(lock, cookie);
5726	lockdep_recursion_finish();
5727	raw_local_irq_restore(flags);
5728}
5729EXPORT_SYMBOL_GPL(lock_unpin_lock);
5730
 
 
 
 
 
 
 
 
 
 
5731#ifdef CONFIG_LOCK_STAT
5732static void print_lock_contention_bug(struct task_struct *curr,
5733				      struct lockdep_map *lock,
5734				      unsigned long ip)
5735{
5736	if (!debug_locks_off())
5737		return;
5738	if (debug_locks_silent)
5739		return;
5740
5741	pr_warn("\n");
5742	pr_warn("=================================\n");
5743	pr_warn("WARNING: bad contention detected!\n");
5744	print_kernel_ident();
5745	pr_warn("---------------------------------\n");
5746	pr_warn("%s/%d is trying to contend lock (",
5747		curr->comm, task_pid_nr(curr));
5748	print_lockdep_cache(lock);
5749	pr_cont(") at:\n");
5750	print_ip_sym(KERN_WARNING, ip);
5751	pr_warn("but there are no locks held!\n");
5752	pr_warn("\nother info that might help us debug this:\n");
5753	lockdep_print_held_locks(curr);
5754
5755	pr_warn("\nstack backtrace:\n");
5756	dump_stack();
 
 
5757}
5758
5759static void
5760__lock_contended(struct lockdep_map *lock, unsigned long ip)
5761{
5762	struct task_struct *curr = current;
5763	struct held_lock *hlock;
5764	struct lock_class_stats *stats;
5765	unsigned int depth;
5766	int i, contention_point, contending_point;
5767
5768	depth = curr->lockdep_depth;
5769	/*
5770	 * Whee, we contended on this lock, except it seems we're not
5771	 * actually trying to acquire anything much at all..
5772	 */
5773	if (DEBUG_LOCKS_WARN_ON(!depth))
5774		return;
5775
5776	hlock = find_held_lock(curr, lock, depth, &i);
5777	if (!hlock) {
5778		print_lock_contention_bug(curr, lock, ip);
5779		return;
 
 
 
 
 
 
 
5780	}
 
 
5781
 
5782	if (hlock->instance != lock)
5783		return;
5784
5785	hlock->waittime_stamp = lockstat_clock();
5786
5787	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5788	contending_point = lock_point(hlock_class(hlock)->contending_point,
5789				      lock->ip);
5790
5791	stats = get_lock_stats(hlock_class(hlock));
5792	if (contention_point < LOCKSTAT_POINTS)
5793		stats->contention_point[contention_point]++;
5794	if (contending_point < LOCKSTAT_POINTS)
5795		stats->contending_point[contending_point]++;
5796	if (lock->cpu != smp_processor_id())
5797		stats->bounces[bounce_contended + !!hlock->read]++;
 
5798}
5799
5800static void
5801__lock_acquired(struct lockdep_map *lock, unsigned long ip)
5802{
5803	struct task_struct *curr = current;
5804	struct held_lock *hlock;
5805	struct lock_class_stats *stats;
5806	unsigned int depth;
5807	u64 now, waittime = 0;
5808	int i, cpu;
5809
5810	depth = curr->lockdep_depth;
5811	/*
5812	 * Yay, we acquired ownership of this lock we didn't try to
5813	 * acquire, how the heck did that happen?
5814	 */
5815	if (DEBUG_LOCKS_WARN_ON(!depth))
5816		return;
5817
5818	hlock = find_held_lock(curr, lock, depth, &i);
5819	if (!hlock) {
5820		print_lock_contention_bug(curr, lock, _RET_IP_);
5821		return;
 
 
 
 
 
 
 
5822	}
 
 
5823
 
5824	if (hlock->instance != lock)
5825		return;
5826
5827	cpu = smp_processor_id();
5828	if (hlock->waittime_stamp) {
5829		now = lockstat_clock();
5830		waittime = now - hlock->waittime_stamp;
5831		hlock->holdtime_stamp = now;
5832	}
5833
 
 
5834	stats = get_lock_stats(hlock_class(hlock));
5835	if (waittime) {
5836		if (hlock->read)
5837			lock_time_inc(&stats->read_waittime, waittime);
5838		else
5839			lock_time_inc(&stats->write_waittime, waittime);
5840	}
5841	if (lock->cpu != cpu)
5842		stats->bounces[bounce_acquired + !!hlock->read]++;
 
5843
5844	lock->cpu = cpu;
5845	lock->ip = ip;
5846}
5847
5848void lock_contended(struct lockdep_map *lock, unsigned long ip)
5849{
5850	unsigned long flags;
5851
5852	trace_lock_contended(lock, ip);
 
5853
5854	if (unlikely(!lock_stat || !lockdep_enabled()))
5855		return;
5856
5857	raw_local_irq_save(flags);
5858	check_flags(flags);
5859	lockdep_recursion_inc();
 
5860	__lock_contended(lock, ip);
5861	lockdep_recursion_finish();
5862	raw_local_irq_restore(flags);
5863}
5864EXPORT_SYMBOL_GPL(lock_contended);
5865
5866void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5867{
5868	unsigned long flags;
5869
5870	trace_lock_acquired(lock, ip);
 
5871
5872	if (unlikely(!lock_stat || !lockdep_enabled()))
5873		return;
5874
5875	raw_local_irq_save(flags);
5876	check_flags(flags);
5877	lockdep_recursion_inc();
5878	__lock_acquired(lock, ip);
5879	lockdep_recursion_finish();
5880	raw_local_irq_restore(flags);
5881}
5882EXPORT_SYMBOL_GPL(lock_acquired);
5883#endif
5884
5885/*
5886 * Used by the testsuite, sanitize the validator state
5887 * after a simulated failure:
5888 */
5889
5890void lockdep_reset(void)
5891{
5892	unsigned long flags;
5893	int i;
5894
5895	raw_local_irq_save(flags);
5896	lockdep_init_task(current);
 
 
5897	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5898	nr_hardirq_chains = 0;
5899	nr_softirq_chains = 0;
5900	nr_process_chains = 0;
5901	debug_locks = 1;
5902	for (i = 0; i < CHAINHASH_SIZE; i++)
5903		INIT_HLIST_HEAD(chainhash_table + i);
5904	raw_local_irq_restore(flags);
5905}
5906
5907/* Remove a class from a lock chain. Must be called with the graph lock held. */
5908static void remove_class_from_lock_chain(struct pending_free *pf,
5909					 struct lock_chain *chain,
5910					 struct lock_class *class)
5911{
5912#ifdef CONFIG_PROVE_LOCKING
5913	int i;
5914
5915	for (i = chain->base; i < chain->base + chain->depth; i++) {
5916		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5917			continue;
5918		/*
5919		 * Each lock class occurs at most once in a lock chain so once
5920		 * we found a match we can break out of this loop.
5921		 */
5922		goto free_lock_chain;
5923	}
5924	/* Since the chain has not been modified, return. */
5925	return;
5926
5927free_lock_chain:
5928	free_chain_hlocks(chain->base, chain->depth);
5929	/* Overwrite the chain key for concurrent RCU readers. */
5930	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5931	dec_chains(chain->irq_context);
5932
5933	/*
5934	 * Note: calling hlist_del_rcu() from inside a
5935	 * hlist_for_each_entry_rcu() loop is safe.
5936	 */
5937	hlist_del_rcu(&chain->entry);
5938	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5939	nr_zapped_lock_chains++;
5940#endif
5941}
5942
5943/* Must be called with the graph lock held. */
5944static void remove_class_from_lock_chains(struct pending_free *pf,
5945					  struct lock_class *class)
5946{
5947	struct lock_chain *chain;
5948	struct hlist_head *head;
5949	int i;
5950
5951	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5952		head = chainhash_table + i;
5953		hlist_for_each_entry_rcu(chain, head, entry) {
5954			remove_class_from_lock_chain(pf, chain, class);
5955		}
5956	}
5957}
5958
5959/*
5960 * Remove all references to a lock class. The caller must hold the graph lock.
5961 */
5962static void zap_class(struct pending_free *pf, struct lock_class *class)
5963{
5964	struct lock_list *entry;
5965	int i;
5966
5967	WARN_ON_ONCE(!class->key);
5968
5969	/*
5970	 * Remove all dependencies this lock is
5971	 * involved in:
5972	 */
5973	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5974		entry = list_entries + i;
5975		if (entry->class != class && entry->links_to != class)
5976			continue;
5977		__clear_bit(i, list_entries_in_use);
5978		nr_list_entries--;
5979		list_del_rcu(&entry->entry);
5980	}
5981	if (list_empty(&class->locks_after) &&
5982	    list_empty(&class->locks_before)) {
5983		list_move_tail(&class->lock_entry, &pf->zapped);
5984		hlist_del_rcu(&class->hash_entry);
5985		WRITE_ONCE(class->key, NULL);
5986		WRITE_ONCE(class->name, NULL);
5987		nr_lock_classes--;
5988		__clear_bit(class - lock_classes, lock_classes_in_use);
5989	} else {
5990		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5991			  class->name);
5992	}
 
 
 
 
 
5993
5994	remove_class_from_lock_chains(pf, class);
5995	nr_zapped_classes++;
5996}
5997
5998static void reinit_class(struct lock_class *class)
5999{
6000	void *const p = class;
6001	const unsigned int offset = offsetof(struct lock_class, key);
6002
6003	WARN_ON_ONCE(!class->lock_entry.next);
6004	WARN_ON_ONCE(!list_empty(&class->locks_after));
6005	WARN_ON_ONCE(!list_empty(&class->locks_before));
6006	memset(p + offset, 0, sizeof(*class) - offset);
6007	WARN_ON_ONCE(!class->lock_entry.next);
6008	WARN_ON_ONCE(!list_empty(&class->locks_after));
6009	WARN_ON_ONCE(!list_empty(&class->locks_before));
6010}
6011
6012static inline int within(const void *addr, void *start, unsigned long size)
6013{
6014	return addr >= start && addr < start + size;
6015}
6016
6017static bool inside_selftest(void)
6018{
6019	return current == lockdep_selftest_task_struct;
6020}
6021
6022/* The caller must hold the graph lock. */
6023static struct pending_free *get_pending_free(void)
6024{
6025	return delayed_free.pf + delayed_free.index;
6026}
6027
6028static void free_zapped_rcu(struct rcu_head *cb);
6029
6030/*
6031 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6032 * the graph lock held.
 
 
 
 
6033 */
6034static void call_rcu_zapped(struct pending_free *pf)
6035{
6036	WARN_ON_ONCE(inside_selftest());
6037
6038	if (list_empty(&pf->zapped))
6039		return;
6040
6041	if (delayed_free.scheduled)
6042		return;
6043
6044	delayed_free.scheduled = true;
6045
6046	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6047	delayed_free.index ^= 1;
6048
6049	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6050}
6051
6052/* The caller must hold the graph lock. May be called from RCU context. */
6053static void __free_zapped_classes(struct pending_free *pf)
6054{
6055	struct lock_class *class;
6056
6057	check_data_structures();
6058
6059	list_for_each_entry(class, &pf->zapped, lock_entry)
6060		reinit_class(class);
6061
6062	list_splice_init(&pf->zapped, &free_lock_classes);
6063
6064#ifdef CONFIG_PROVE_LOCKING
6065	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6066		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6067	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6068#endif
6069}
6070
6071static void free_zapped_rcu(struct rcu_head *ch)
6072{
6073	struct pending_free *pf;
6074	unsigned long flags;
6075
6076	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6077		return;
6078
6079	raw_local_irq_save(flags);
6080	lockdep_lock();
6081
6082	/* closed head */
6083	pf = delayed_free.pf + (delayed_free.index ^ 1);
6084	__free_zapped_classes(pf);
6085	delayed_free.scheduled = false;
6086
6087	/*
6088	 * If there's anything on the open list, close and start a new callback.
6089	 */
6090	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6091
6092	lockdep_unlock();
6093	raw_local_irq_restore(flags);
6094}
6095
6096/*
6097 * Remove all lock classes from the class hash table and from the
6098 * all_lock_classes list whose key or name is in the address range [start,
6099 * start + size). Move these lock classes to the zapped_classes list. Must
6100 * be called with the graph lock held.
6101 */
6102static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6103				     unsigned long size)
6104{
6105	struct lock_class *class;
6106	struct hlist_head *head;
6107	int i;
6108
6109	/* Unhash all classes that were created by a module. */
6110	for (i = 0; i < CLASSHASH_SIZE; i++) {
6111		head = classhash_table + i;
6112		hlist_for_each_entry_rcu(class, head, hash_entry) {
6113			if (!within(class->key, start, size) &&
6114			    !within(class->name, start, size))
6115				continue;
6116			zap_class(pf, class);
6117		}
6118	}
6119}
6120
6121/*
6122 * Used in module.c to remove lock classes from memory that is going to be
6123 * freed; and possibly re-used by other modules.
6124 *
6125 * We will have had one synchronize_rcu() before getting here, so we're
6126 * guaranteed nobody will look up these exact classes -- they're properly dead
6127 * but still allocated.
6128 */
6129static void lockdep_free_key_range_reg(void *start, unsigned long size)
6130{
6131	struct pending_free *pf;
6132	unsigned long flags;
6133
6134	init_data_structures_once();
6135
6136	raw_local_irq_save(flags);
6137	lockdep_lock();
6138	pf = get_pending_free();
6139	__lockdep_free_key_range(pf, start, size);
6140	call_rcu_zapped(pf);
6141	lockdep_unlock();
6142	raw_local_irq_restore(flags);
6143
6144	/*
6145	 * Wait for any possible iterators from look_up_lock_class() to pass
6146	 * before continuing to free the memory they refer to.
 
 
6147	 */
6148	synchronize_rcu();
6149}
6150
6151/*
6152 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6153 * Ignores debug_locks. Must only be used by the lockdep selftests.
6154 */
6155static void lockdep_free_key_range_imm(void *start, unsigned long size)
6156{
6157	struct pending_free *pf = delayed_free.pf;
6158	unsigned long flags;
6159
6160	init_data_structures_once();
6161
6162	raw_local_irq_save(flags);
6163	lockdep_lock();
6164	__lockdep_free_key_range(pf, start, size);
6165	__free_zapped_classes(pf);
6166	lockdep_unlock();
6167	raw_local_irq_restore(flags);
6168}
6169
6170void lockdep_free_key_range(void *start, unsigned long size)
6171{
6172	init_data_structures_once();
6173
6174	if (inside_selftest())
6175		lockdep_free_key_range_imm(start, size);
6176	else
6177		lockdep_free_key_range_reg(start, size);
6178}
6179
6180/*
6181 * Check whether any element of the @lock->class_cache[] array refers to a
6182 * registered lock class. The caller must hold either the graph lock or the
6183 * RCU read lock.
6184 */
6185static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6186{
6187	struct lock_class *class;
6188	struct hlist_head *head;
 
6189	int i, j;
 
6190
6191	for (i = 0; i < CLASSHASH_SIZE; i++) {
6192		head = classhash_table + i;
6193		hlist_for_each_entry_rcu(class, head, hash_entry) {
6194			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6195				if (lock->class_cache[j] == class)
6196					return true;
6197		}
6198	}
6199	return false;
6200}
6201
6202/* The caller must hold the graph lock. Does not sleep. */
6203static void __lockdep_reset_lock(struct pending_free *pf,
6204				 struct lockdep_map *lock)
6205{
6206	struct lock_class *class;
6207	int j;
6208
6209	/*
6210	 * Remove all classes this lock might have:
6211	 */
6212	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6213		/*
6214		 * If the class exists we look it up and zap it:
6215		 */
6216		class = look_up_lock_class(lock, j);
6217		if (class)
6218			zap_class(pf, class);
6219	}
6220	/*
6221	 * Debug check: in the end all mapped classes should
6222	 * be gone.
6223	 */
6224	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6225		debug_locks_off();
6226}
6227
6228/*
6229 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6230 * released data structures from RCU context.
6231 */
6232static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6233{
6234	struct pending_free *pf;
6235	unsigned long flags;
6236	int locked;
6237
6238	raw_local_irq_save(flags);
6239	locked = graph_lock();
6240	if (!locked)
6241		goto out_irq;
 
 
6242
6243	pf = get_pending_free();
6244	__lockdep_reset_lock(pf, lock);
6245	call_rcu_zapped(pf);
6246
6247	graph_unlock();
6248out_irq:
6249	raw_local_irq_restore(flags);
6250}
6251
6252/*
6253 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6254 * lockdep selftests.
6255 */
6256static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6257{
6258	struct pending_free *pf = delayed_free.pf;
6259	unsigned long flags;
6260
6261	raw_local_irq_save(flags);
6262	lockdep_lock();
6263	__lockdep_reset_lock(pf, lock);
6264	__free_zapped_classes(pf);
6265	lockdep_unlock();
6266	raw_local_irq_restore(flags);
6267}
6268
6269void lockdep_reset_lock(struct lockdep_map *lock)
6270{
6271	init_data_structures_once();
6272
6273	if (inside_selftest())
6274		lockdep_reset_lock_imm(lock);
6275	else
6276		lockdep_reset_lock_reg(lock);
6277}
6278
6279/* Unregister a dynamically allocated key. */
6280void lockdep_unregister_key(struct lock_class_key *key)
6281{
6282	struct hlist_head *hash_head = keyhashentry(key);
6283	struct lock_class_key *k;
6284	struct pending_free *pf;
6285	unsigned long flags;
6286	bool found = false;
6287
6288	might_sleep();
6289
6290	if (WARN_ON_ONCE(static_obj(key)))
6291		return;
6292
6293	raw_local_irq_save(flags);
6294	if (!graph_lock())
6295		goto out_irq;
6296
6297	pf = get_pending_free();
6298	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6299		if (k == key) {
6300			hlist_del_rcu(&k->hash_entry);
6301			found = true;
6302			break;
6303		}
6304	}
6305	WARN_ON_ONCE(!found);
6306	__lockdep_free_key_range(pf, key, 1);
6307	call_rcu_zapped(pf);
6308	graph_unlock();
6309out_irq:
6310	raw_local_irq_restore(flags);
6311
6312	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6313	synchronize_rcu();
6314}
6315EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6316
6317void __init lockdep_init(void)
6318{
6319	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6320
6321	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6322	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6323	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6324	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6325	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6326	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6327	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6328
6329	printk(" memory used by lock dependency info: %zu kB\n",
6330	       (sizeof(lock_classes) +
6331		sizeof(lock_classes_in_use) +
6332		sizeof(classhash_table) +
6333		sizeof(list_entries) +
6334		sizeof(list_entries_in_use) +
6335		sizeof(chainhash_table) +
6336		sizeof(delayed_free)
6337#ifdef CONFIG_PROVE_LOCKING
6338		+ sizeof(lock_cq)
6339		+ sizeof(lock_chains)
6340		+ sizeof(lock_chains_in_use)
6341		+ sizeof(chain_hlocks)
6342#endif
6343		) / 1024
6344		);
6345
6346#if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6347	printk(" memory used for stack traces: %zu kB\n",
6348	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6349	       );
6350#endif
6351
6352	printk(" per task-struct memory footprint: %zu bytes\n",
6353	       sizeof(((struct task_struct *)NULL)->held_locks));
6354}
6355
6356static void
6357print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6358		     const void *mem_to, struct held_lock *hlock)
6359{
6360	if (!debug_locks_off())
6361		return;
6362	if (debug_locks_silent)
6363		return;
6364
6365	pr_warn("\n");
6366	pr_warn("=========================\n");
6367	pr_warn("WARNING: held lock freed!\n");
6368	print_kernel_ident();
6369	pr_warn("-------------------------\n");
6370	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6371		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6372	print_lock(hlock);
6373	lockdep_print_held_locks(curr);
6374
6375	pr_warn("\nstack backtrace:\n");
6376	dump_stack();
6377}
6378
6379static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6380				const void* lock_from, unsigned long lock_len)
6381{
6382	return lock_from + lock_len <= mem_from ||
6383		mem_from + mem_len <= lock_from;
6384}
6385
6386/*
6387 * Called when kernel memory is freed (or unmapped), or if a lock
6388 * is destroyed or reinitialized - this code checks whether there is
6389 * any held lock in the memory range of <from> to <to>:
6390 */
6391void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6392{
6393	struct task_struct *curr = current;
6394	struct held_lock *hlock;
6395	unsigned long flags;
6396	int i;
6397
6398	if (unlikely(!debug_locks))
6399		return;
6400
6401	raw_local_irq_save(flags);
6402	for (i = 0; i < curr->lockdep_depth; i++) {
6403		hlock = curr->held_locks + i;
6404
6405		if (not_in_range(mem_from, mem_len, hlock->instance,
6406					sizeof(*hlock->instance)))
6407			continue;
6408
6409		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6410		break;
6411	}
6412	raw_local_irq_restore(flags);
6413}
6414EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6415
6416static void print_held_locks_bug(void)
6417{
6418	if (!debug_locks_off())
6419		return;
6420	if (debug_locks_silent)
6421		return;
6422
6423	pr_warn("\n");
6424	pr_warn("====================================\n");
6425	pr_warn("WARNING: %s/%d still has locks held!\n",
6426	       current->comm, task_pid_nr(current));
6427	print_kernel_ident();
6428	pr_warn("------------------------------------\n");
6429	lockdep_print_held_locks(current);
6430	pr_warn("\nstack backtrace:\n");
6431	dump_stack();
6432}
6433
6434void debug_check_no_locks_held(void)
6435{
6436	if (unlikely(current->lockdep_depth > 0))
6437		print_held_locks_bug();
6438}
6439EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6440
6441#ifdef __KERNEL__
6442void debug_show_all_locks(void)
6443{
6444	struct task_struct *g, *p;
 
 
6445
6446	if (unlikely(!debug_locks)) {
6447		pr_warn("INFO: lockdep is turned off.\n");
6448		return;
6449	}
6450	pr_warn("\nShowing all locks held in the system:\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6451
6452	rcu_read_lock();
6453	for_each_process_thread(g, p) {
6454		if (!p->lockdep_depth)
 
 
 
 
6455			continue;
6456		lockdep_print_held_locks(p);
6457		touch_nmi_watchdog();
6458		touch_all_softlockup_watchdogs();
6459	}
6460	rcu_read_unlock();
 
 
 
 
6461
6462	pr_warn("\n");
6463	pr_warn("=============================================\n\n");
6464}
6465EXPORT_SYMBOL_GPL(debug_show_all_locks);
6466#endif
6467
6468/*
6469 * Careful: only use this function if you are sure that
6470 * the task cannot run in parallel!
6471 */
6472void debug_show_held_locks(struct task_struct *task)
6473{
6474	if (unlikely(!debug_locks)) {
6475		printk("INFO: lockdep is turned off.\n");
6476		return;
6477	}
6478	lockdep_print_held_locks(task);
6479}
6480EXPORT_SYMBOL_GPL(debug_show_held_locks);
6481
6482asmlinkage __visible void lockdep_sys_exit(void)
6483{
6484	struct task_struct *curr = current;
6485
6486	if (unlikely(curr->lockdep_depth)) {
6487		if (!debug_locks_off())
6488			return;
6489		pr_warn("\n");
6490		pr_warn("================================================\n");
6491		pr_warn("WARNING: lock held when returning to user space!\n");
6492		print_kernel_ident();
6493		pr_warn("------------------------------------------------\n");
6494		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6495				curr->comm, curr->pid);
6496		lockdep_print_held_locks(curr);
6497	}
6498
6499	/*
6500	 * The lock history for each syscall should be independent. So wipe the
6501	 * slate clean on return to userspace.
6502	 */
6503	lockdep_invariant_state(false);
6504}
6505
6506void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6507{
6508	struct task_struct *curr = current;
6509	int dl = READ_ONCE(debug_locks);
6510
 
 
 
 
6511	/* Note: the following can be executed concurrently, so be careful. */
6512	pr_warn("\n");
6513	pr_warn("=============================\n");
6514	pr_warn("WARNING: suspicious RCU usage\n");
6515	print_kernel_ident();
6516	pr_warn("-----------------------------\n");
6517	pr_warn("%s:%d %s!\n", file, line, s);
6518	pr_warn("\nother info that might help us debug this:\n\n");
6519	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6520	       !rcu_lockdep_current_cpu_online()
6521			? "RCU used illegally from offline CPU!\n"
6522			: "",
6523	       rcu_scheduler_active, dl,
6524	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
 
6525
6526	/*
6527	 * If a CPU is in the RCU-free window in idle (ie: in the section
6528	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6529	 * considers that CPU to be in an "extended quiescent state",
6530	 * which means that RCU will be completely ignoring that CPU.
6531	 * Therefore, rcu_read_lock() and friends have absolutely no
6532	 * effect on a CPU running in that state. In other words, even if
6533	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6534	 * delete data structures out from under it.  RCU really has no
6535	 * choice here: we need to keep an RCU-free window in idle where
6536	 * the CPU may possibly enter into low power mode. This way we can
6537	 * notice an extended quiescent state to other CPUs that started a grace
6538	 * period. Otherwise we would delay any grace period as long as we run
6539	 * in the idle task.
6540	 *
6541	 * So complain bitterly if someone does call rcu_read_lock(),
6542	 * rcu_read_lock_bh() and so on from extended quiescent states.
6543	 */
6544	if (!rcu_is_watching())
6545		pr_warn("RCU used illegally from extended quiescent state!\n");
6546
6547	lockdep_print_held_locks(curr);
6548	pr_warn("\nstack backtrace:\n");
6549	dump_stack();
6550}
6551EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);