Loading...
1/*
2 * Copyright (C) 2011 STRATO. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/vmalloc.h>
20#include <linux/rbtree.h>
21#include "ctree.h"
22#include "disk-io.h"
23#include "backref.h"
24#include "ulist.h"
25#include "transaction.h"
26#include "delayed-ref.h"
27#include "locking.h"
28
29/* Just an arbitrary number so we can be sure this happened */
30#define BACKREF_FOUND_SHARED 6
31
32struct extent_inode_elem {
33 u64 inum;
34 u64 offset;
35 struct extent_inode_elem *next;
36};
37
38/*
39 * ref_root is used as the root of the ref tree that hold a collection
40 * of unique references.
41 */
42struct ref_root {
43 struct rb_root rb_root;
44
45 /*
46 * The unique_refs represents the number of ref_nodes with a positive
47 * count stored in the tree. Even if a ref_node (the count is greater
48 * than one) is added, the unique_refs will only increase by one.
49 */
50 unsigned int unique_refs;
51};
52
53/* ref_node is used to store a unique reference to the ref tree. */
54struct ref_node {
55 struct rb_node rb_node;
56
57 /* For NORMAL_REF, otherwise all these fields should be set to 0 */
58 u64 root_id;
59 u64 object_id;
60 u64 offset;
61
62 /* For SHARED_REF, otherwise parent field should be set to 0 */
63 u64 parent;
64
65 /* Ref to the ref_mod of btrfs_delayed_ref_node */
66 int ref_mod;
67};
68
69/* Dynamically allocate and initialize a ref_root */
70static struct ref_root *ref_root_alloc(void)
71{
72 struct ref_root *ref_tree;
73
74 ref_tree = kmalloc(sizeof(*ref_tree), GFP_NOFS);
75 if (!ref_tree)
76 return NULL;
77
78 ref_tree->rb_root = RB_ROOT;
79 ref_tree->unique_refs = 0;
80
81 return ref_tree;
82}
83
84/* Free all nodes in the ref tree, and reinit ref_root */
85static void ref_root_fini(struct ref_root *ref_tree)
86{
87 struct ref_node *node;
88 struct rb_node *next;
89
90 while ((next = rb_first(&ref_tree->rb_root)) != NULL) {
91 node = rb_entry(next, struct ref_node, rb_node);
92 rb_erase(next, &ref_tree->rb_root);
93 kfree(node);
94 }
95
96 ref_tree->rb_root = RB_ROOT;
97 ref_tree->unique_refs = 0;
98}
99
100static void ref_root_free(struct ref_root *ref_tree)
101{
102 if (!ref_tree)
103 return;
104
105 ref_root_fini(ref_tree);
106 kfree(ref_tree);
107}
108
109/*
110 * Compare ref_node with (root_id, object_id, offset, parent)
111 *
112 * The function compares two ref_node a and b. It returns an integer less
113 * than, equal to, or greater than zero , respectively, to be less than, to
114 * equal, or be greater than b.
115 */
116static int ref_node_cmp(struct ref_node *a, struct ref_node *b)
117{
118 if (a->root_id < b->root_id)
119 return -1;
120 else if (a->root_id > b->root_id)
121 return 1;
122
123 if (a->object_id < b->object_id)
124 return -1;
125 else if (a->object_id > b->object_id)
126 return 1;
127
128 if (a->offset < b->offset)
129 return -1;
130 else if (a->offset > b->offset)
131 return 1;
132
133 if (a->parent < b->parent)
134 return -1;
135 else if (a->parent > b->parent)
136 return 1;
137
138 return 0;
139}
140
141/*
142 * Search ref_node with (root_id, object_id, offset, parent) in the tree
143 *
144 * if found, the pointer of the ref_node will be returned;
145 * if not found, NULL will be returned and pos will point to the rb_node for
146 * insert, pos_parent will point to pos'parent for insert;
147*/
148static struct ref_node *__ref_tree_search(struct ref_root *ref_tree,
149 struct rb_node ***pos,
150 struct rb_node **pos_parent,
151 u64 root_id, u64 object_id,
152 u64 offset, u64 parent)
153{
154 struct ref_node *cur = NULL;
155 struct ref_node entry;
156 int ret;
157
158 entry.root_id = root_id;
159 entry.object_id = object_id;
160 entry.offset = offset;
161 entry.parent = parent;
162
163 *pos = &ref_tree->rb_root.rb_node;
164
165 while (**pos) {
166 *pos_parent = **pos;
167 cur = rb_entry(*pos_parent, struct ref_node, rb_node);
168
169 ret = ref_node_cmp(cur, &entry);
170 if (ret > 0)
171 *pos = &(**pos)->rb_left;
172 else if (ret < 0)
173 *pos = &(**pos)->rb_right;
174 else
175 return cur;
176 }
177
178 return NULL;
179}
180
181/*
182 * Insert a ref_node to the ref tree
183 * @pos used for specifiy the position to insert
184 * @pos_parent for specifiy pos's parent
185 *
186 * success, return 0;
187 * ref_node already exists, return -EEXIST;
188*/
189static int ref_tree_insert(struct ref_root *ref_tree, struct rb_node **pos,
190 struct rb_node *pos_parent, struct ref_node *ins)
191{
192 struct rb_node **p = NULL;
193 struct rb_node *parent = NULL;
194 struct ref_node *cur = NULL;
195
196 if (!pos) {
197 cur = __ref_tree_search(ref_tree, &p, &parent, ins->root_id,
198 ins->object_id, ins->offset,
199 ins->parent);
200 if (cur)
201 return -EEXIST;
202 } else {
203 p = pos;
204 parent = pos_parent;
205 }
206
207 rb_link_node(&ins->rb_node, parent, p);
208 rb_insert_color(&ins->rb_node, &ref_tree->rb_root);
209
210 return 0;
211}
212
213/* Erase and free ref_node, caller should update ref_root->unique_refs */
214static void ref_tree_remove(struct ref_root *ref_tree, struct ref_node *node)
215{
216 rb_erase(&node->rb_node, &ref_tree->rb_root);
217 kfree(node);
218}
219
220/*
221 * Update ref_root->unique_refs
222 *
223 * Call __ref_tree_search
224 * 1. if ref_node doesn't exist, ref_tree_insert this node, and update
225 * ref_root->unique_refs:
226 * if ref_node->ref_mod > 0, ref_root->unique_refs++;
227 * if ref_node->ref_mod < 0, do noting;
228 *
229 * 2. if ref_node is found, then get origin ref_node->ref_mod, and update
230 * ref_node->ref_mod.
231 * if ref_node->ref_mod is equal to 0,then call ref_tree_remove
232 *
233 * according to origin_mod and new_mod, update ref_root->items
234 * +----------------+--------------+-------------+
235 * | |new_count <= 0|new_count > 0|
236 * +----------------+--------------+-------------+
237 * |origin_count < 0| 0 | 1 |
238 * +----------------+--------------+-------------+
239 * |origin_count > 0| -1 | 0 |
240 * +----------------+--------------+-------------+
241 *
242 * In case of allocation failure, -ENOMEM is returned and the ref_tree stays
243 * unaltered.
244 * Success, return 0
245 */
246static int ref_tree_add(struct ref_root *ref_tree, u64 root_id, u64 object_id,
247 u64 offset, u64 parent, int count)
248{
249 struct ref_node *node = NULL;
250 struct rb_node **pos = NULL;
251 struct rb_node *pos_parent = NULL;
252 int origin_count;
253 int ret;
254
255 if (!count)
256 return 0;
257
258 node = __ref_tree_search(ref_tree, &pos, &pos_parent, root_id,
259 object_id, offset, parent);
260 if (node == NULL) {
261 node = kmalloc(sizeof(*node), GFP_NOFS);
262 if (!node)
263 return -ENOMEM;
264
265 node->root_id = root_id;
266 node->object_id = object_id;
267 node->offset = offset;
268 node->parent = parent;
269 node->ref_mod = count;
270
271 ret = ref_tree_insert(ref_tree, pos, pos_parent, node);
272 ASSERT(!ret);
273 if (ret) {
274 kfree(node);
275 return ret;
276 }
277
278 ref_tree->unique_refs += node->ref_mod > 0 ? 1 : 0;
279
280 return 0;
281 }
282
283 origin_count = node->ref_mod;
284 node->ref_mod += count;
285
286 if (node->ref_mod > 0)
287 ref_tree->unique_refs += origin_count > 0 ? 0 : 1;
288 else if (node->ref_mod <= 0)
289 ref_tree->unique_refs += origin_count > 0 ? -1 : 0;
290
291 if (!node->ref_mod)
292 ref_tree_remove(ref_tree, node);
293
294 return 0;
295}
296
297static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
298 struct btrfs_file_extent_item *fi,
299 u64 extent_item_pos,
300 struct extent_inode_elem **eie)
301{
302 u64 offset = 0;
303 struct extent_inode_elem *e;
304
305 if (!btrfs_file_extent_compression(eb, fi) &&
306 !btrfs_file_extent_encryption(eb, fi) &&
307 !btrfs_file_extent_other_encoding(eb, fi)) {
308 u64 data_offset;
309 u64 data_len;
310
311 data_offset = btrfs_file_extent_offset(eb, fi);
312 data_len = btrfs_file_extent_num_bytes(eb, fi);
313
314 if (extent_item_pos < data_offset ||
315 extent_item_pos >= data_offset + data_len)
316 return 1;
317 offset = extent_item_pos - data_offset;
318 }
319
320 e = kmalloc(sizeof(*e), GFP_NOFS);
321 if (!e)
322 return -ENOMEM;
323
324 e->next = *eie;
325 e->inum = key->objectid;
326 e->offset = key->offset + offset;
327 *eie = e;
328
329 return 0;
330}
331
332static void free_inode_elem_list(struct extent_inode_elem *eie)
333{
334 struct extent_inode_elem *eie_next;
335
336 for (; eie; eie = eie_next) {
337 eie_next = eie->next;
338 kfree(eie);
339 }
340}
341
342static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
343 u64 extent_item_pos,
344 struct extent_inode_elem **eie)
345{
346 u64 disk_byte;
347 struct btrfs_key key;
348 struct btrfs_file_extent_item *fi;
349 int slot;
350 int nritems;
351 int extent_type;
352 int ret;
353
354 /*
355 * from the shared data ref, we only have the leaf but we need
356 * the key. thus, we must look into all items and see that we
357 * find one (some) with a reference to our extent item.
358 */
359 nritems = btrfs_header_nritems(eb);
360 for (slot = 0; slot < nritems; ++slot) {
361 btrfs_item_key_to_cpu(eb, &key, slot);
362 if (key.type != BTRFS_EXTENT_DATA_KEY)
363 continue;
364 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
365 extent_type = btrfs_file_extent_type(eb, fi);
366 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
367 continue;
368 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
370 if (disk_byte != wanted_disk_byte)
371 continue;
372
373 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
374 if (ret < 0)
375 return ret;
376 }
377
378 return 0;
379}
380
381/*
382 * this structure records all encountered refs on the way up to the root
383 */
384struct __prelim_ref {
385 struct list_head list;
386 u64 root_id;
387 struct btrfs_key key_for_search;
388 int level;
389 int count;
390 struct extent_inode_elem *inode_list;
391 u64 parent;
392 u64 wanted_disk_byte;
393};
394
395static struct kmem_cache *btrfs_prelim_ref_cache;
396
397int __init btrfs_prelim_ref_init(void)
398{
399 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
400 sizeof(struct __prelim_ref),
401 0,
402 SLAB_MEM_SPREAD,
403 NULL);
404 if (!btrfs_prelim_ref_cache)
405 return -ENOMEM;
406 return 0;
407}
408
409void btrfs_prelim_ref_exit(void)
410{
411 kmem_cache_destroy(btrfs_prelim_ref_cache);
412}
413
414/*
415 * the rules for all callers of this function are:
416 * - obtaining the parent is the goal
417 * - if you add a key, you must know that it is a correct key
418 * - if you cannot add the parent or a correct key, then we will look into the
419 * block later to set a correct key
420 *
421 * delayed refs
422 * ============
423 * backref type | shared | indirect | shared | indirect
424 * information | tree | tree | data | data
425 * --------------------+--------+----------+--------+----------
426 * parent logical | y | - | - | -
427 * key to resolve | - | y | y | y
428 * tree block logical | - | - | - | -
429 * root for resolving | y | y | y | y
430 *
431 * - column 1: we've the parent -> done
432 * - column 2, 3, 4: we use the key to find the parent
433 *
434 * on disk refs (inline or keyed)
435 * ==============================
436 * backref type | shared | indirect | shared | indirect
437 * information | tree | tree | data | data
438 * --------------------+--------+----------+--------+----------
439 * parent logical | y | - | y | -
440 * key to resolve | - | - | - | y
441 * tree block logical | y | y | y | y
442 * root for resolving | - | y | y | y
443 *
444 * - column 1, 3: we've the parent -> done
445 * - column 2: we take the first key from the block to find the parent
446 * (see __add_missing_keys)
447 * - column 4: we use the key to find the parent
448 *
449 * additional information that's available but not required to find the parent
450 * block might help in merging entries to gain some speed.
451 */
452
453static int __add_prelim_ref(struct list_head *head, u64 root_id,
454 struct btrfs_key *key, int level,
455 u64 parent, u64 wanted_disk_byte, int count,
456 gfp_t gfp_mask)
457{
458 struct __prelim_ref *ref;
459
460 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
461 return 0;
462
463 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
464 if (!ref)
465 return -ENOMEM;
466
467 ref->root_id = root_id;
468 if (key) {
469 ref->key_for_search = *key;
470 /*
471 * We can often find data backrefs with an offset that is too
472 * large (>= LLONG_MAX, maximum allowed file offset) due to
473 * underflows when subtracting a file's offset with the data
474 * offset of its corresponding extent data item. This can
475 * happen for example in the clone ioctl.
476 * So if we detect such case we set the search key's offset to
477 * zero to make sure we will find the matching file extent item
478 * at add_all_parents(), otherwise we will miss it because the
479 * offset taken form the backref is much larger then the offset
480 * of the file extent item. This can make us scan a very large
481 * number of file extent items, but at least it will not make
482 * us miss any.
483 * This is an ugly workaround for a behaviour that should have
484 * never existed, but it does and a fix for the clone ioctl
485 * would touch a lot of places, cause backwards incompatibility
486 * and would not fix the problem for extents cloned with older
487 * kernels.
488 */
489 if (ref->key_for_search.type == BTRFS_EXTENT_DATA_KEY &&
490 ref->key_for_search.offset >= LLONG_MAX)
491 ref->key_for_search.offset = 0;
492 } else {
493 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
494 }
495
496 ref->inode_list = NULL;
497 ref->level = level;
498 ref->count = count;
499 ref->parent = parent;
500 ref->wanted_disk_byte = wanted_disk_byte;
501 list_add_tail(&ref->list, head);
502
503 return 0;
504}
505
506static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
507 struct ulist *parents, struct __prelim_ref *ref,
508 int level, u64 time_seq, const u64 *extent_item_pos,
509 u64 total_refs)
510{
511 int ret = 0;
512 int slot;
513 struct extent_buffer *eb;
514 struct btrfs_key key;
515 struct btrfs_key *key_for_search = &ref->key_for_search;
516 struct btrfs_file_extent_item *fi;
517 struct extent_inode_elem *eie = NULL, *old = NULL;
518 u64 disk_byte;
519 u64 wanted_disk_byte = ref->wanted_disk_byte;
520 u64 count = 0;
521
522 if (level != 0) {
523 eb = path->nodes[level];
524 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
525 if (ret < 0)
526 return ret;
527 return 0;
528 }
529
530 /*
531 * We normally enter this function with the path already pointing to
532 * the first item to check. But sometimes, we may enter it with
533 * slot==nritems. In that case, go to the next leaf before we continue.
534 */
535 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
536 if (time_seq == (u64)-1)
537 ret = btrfs_next_leaf(root, path);
538 else
539 ret = btrfs_next_old_leaf(root, path, time_seq);
540 }
541
542 while (!ret && count < total_refs) {
543 eb = path->nodes[0];
544 slot = path->slots[0];
545
546 btrfs_item_key_to_cpu(eb, &key, slot);
547
548 if (key.objectid != key_for_search->objectid ||
549 key.type != BTRFS_EXTENT_DATA_KEY)
550 break;
551
552 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
553 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
554
555 if (disk_byte == wanted_disk_byte) {
556 eie = NULL;
557 old = NULL;
558 count++;
559 if (extent_item_pos) {
560 ret = check_extent_in_eb(&key, eb, fi,
561 *extent_item_pos,
562 &eie);
563 if (ret < 0)
564 break;
565 }
566 if (ret > 0)
567 goto next;
568 ret = ulist_add_merge_ptr(parents, eb->start,
569 eie, (void **)&old, GFP_NOFS);
570 if (ret < 0)
571 break;
572 if (!ret && extent_item_pos) {
573 while (old->next)
574 old = old->next;
575 old->next = eie;
576 }
577 eie = NULL;
578 }
579next:
580 if (time_seq == (u64)-1)
581 ret = btrfs_next_item(root, path);
582 else
583 ret = btrfs_next_old_item(root, path, time_seq);
584 }
585
586 if (ret > 0)
587 ret = 0;
588 else if (ret < 0)
589 free_inode_elem_list(eie);
590 return ret;
591}
592
593/*
594 * resolve an indirect backref in the form (root_id, key, level)
595 * to a logical address
596 */
597static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
598 struct btrfs_path *path, u64 time_seq,
599 struct __prelim_ref *ref,
600 struct ulist *parents,
601 const u64 *extent_item_pos, u64 total_refs)
602{
603 struct btrfs_root *root;
604 struct btrfs_key root_key;
605 struct extent_buffer *eb;
606 int ret = 0;
607 int root_level;
608 int level = ref->level;
609 int index;
610
611 root_key.objectid = ref->root_id;
612 root_key.type = BTRFS_ROOT_ITEM_KEY;
613 root_key.offset = (u64)-1;
614
615 index = srcu_read_lock(&fs_info->subvol_srcu);
616
617 root = btrfs_get_fs_root(fs_info, &root_key, false);
618 if (IS_ERR(root)) {
619 srcu_read_unlock(&fs_info->subvol_srcu, index);
620 ret = PTR_ERR(root);
621 goto out;
622 }
623
624 if (btrfs_is_testing(fs_info)) {
625 srcu_read_unlock(&fs_info->subvol_srcu, index);
626 ret = -ENOENT;
627 goto out;
628 }
629
630 if (path->search_commit_root)
631 root_level = btrfs_header_level(root->commit_root);
632 else if (time_seq == (u64)-1)
633 root_level = btrfs_header_level(root->node);
634 else
635 root_level = btrfs_old_root_level(root, time_seq);
636
637 if (root_level + 1 == level) {
638 srcu_read_unlock(&fs_info->subvol_srcu, index);
639 goto out;
640 }
641
642 path->lowest_level = level;
643 if (time_seq == (u64)-1)
644 ret = btrfs_search_slot(NULL, root, &ref->key_for_search, path,
645 0, 0);
646 else
647 ret = btrfs_search_old_slot(root, &ref->key_for_search, path,
648 time_seq);
649
650 /* root node has been locked, we can release @subvol_srcu safely here */
651 srcu_read_unlock(&fs_info->subvol_srcu, index);
652
653 btrfs_debug(fs_info,
654 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
655 ref->root_id, level, ref->count, ret,
656 ref->key_for_search.objectid, ref->key_for_search.type,
657 ref->key_for_search.offset);
658 if (ret < 0)
659 goto out;
660
661 eb = path->nodes[level];
662 while (!eb) {
663 if (WARN_ON(!level)) {
664 ret = 1;
665 goto out;
666 }
667 level--;
668 eb = path->nodes[level];
669 }
670
671 ret = add_all_parents(root, path, parents, ref, level, time_seq,
672 extent_item_pos, total_refs);
673out:
674 path->lowest_level = 0;
675 btrfs_release_path(path);
676 return ret;
677}
678
679/*
680 * resolve all indirect backrefs from the list
681 */
682static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
683 struct btrfs_path *path, u64 time_seq,
684 struct list_head *head,
685 const u64 *extent_item_pos, u64 total_refs,
686 u64 root_objectid)
687{
688 int err;
689 int ret = 0;
690 struct __prelim_ref *ref;
691 struct __prelim_ref *ref_safe;
692 struct __prelim_ref *new_ref;
693 struct ulist *parents;
694 struct ulist_node *node;
695 struct ulist_iterator uiter;
696
697 parents = ulist_alloc(GFP_NOFS);
698 if (!parents)
699 return -ENOMEM;
700
701 /*
702 * _safe allows us to insert directly after the current item without
703 * iterating over the newly inserted items.
704 * we're also allowed to re-assign ref during iteration.
705 */
706 list_for_each_entry_safe(ref, ref_safe, head, list) {
707 if (ref->parent) /* already direct */
708 continue;
709 if (ref->count == 0)
710 continue;
711 if (root_objectid && ref->root_id != root_objectid) {
712 ret = BACKREF_FOUND_SHARED;
713 goto out;
714 }
715 err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
716 parents, extent_item_pos,
717 total_refs);
718 /*
719 * we can only tolerate ENOENT,otherwise,we should catch error
720 * and return directly.
721 */
722 if (err == -ENOENT) {
723 continue;
724 } else if (err) {
725 ret = err;
726 goto out;
727 }
728
729 /* we put the first parent into the ref at hand */
730 ULIST_ITER_INIT(&uiter);
731 node = ulist_next(parents, &uiter);
732 ref->parent = node ? node->val : 0;
733 ref->inode_list = node ?
734 (struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
735
736 /* additional parents require new refs being added here */
737 while ((node = ulist_next(parents, &uiter))) {
738 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
739 GFP_NOFS);
740 if (!new_ref) {
741 ret = -ENOMEM;
742 goto out;
743 }
744 memcpy(new_ref, ref, sizeof(*ref));
745 new_ref->parent = node->val;
746 new_ref->inode_list = (struct extent_inode_elem *)
747 (uintptr_t)node->aux;
748 list_add(&new_ref->list, &ref->list);
749 }
750 ulist_reinit(parents);
751 }
752out:
753 ulist_free(parents);
754 return ret;
755}
756
757static inline int ref_for_same_block(struct __prelim_ref *ref1,
758 struct __prelim_ref *ref2)
759{
760 if (ref1->level != ref2->level)
761 return 0;
762 if (ref1->root_id != ref2->root_id)
763 return 0;
764 if (ref1->key_for_search.type != ref2->key_for_search.type)
765 return 0;
766 if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
767 return 0;
768 if (ref1->key_for_search.offset != ref2->key_for_search.offset)
769 return 0;
770 if (ref1->parent != ref2->parent)
771 return 0;
772
773 return 1;
774}
775
776/*
777 * read tree blocks and add keys where required.
778 */
779static int __add_missing_keys(struct btrfs_fs_info *fs_info,
780 struct list_head *head)
781{
782 struct __prelim_ref *ref;
783 struct extent_buffer *eb;
784
785 list_for_each_entry(ref, head, list) {
786 if (ref->parent)
787 continue;
788 if (ref->key_for_search.type)
789 continue;
790 BUG_ON(!ref->wanted_disk_byte);
791 eb = read_tree_block(fs_info, ref->wanted_disk_byte, 0);
792 if (IS_ERR(eb)) {
793 return PTR_ERR(eb);
794 } else if (!extent_buffer_uptodate(eb)) {
795 free_extent_buffer(eb);
796 return -EIO;
797 }
798 btrfs_tree_read_lock(eb);
799 if (btrfs_header_level(eb) == 0)
800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 else
802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 btrfs_tree_read_unlock(eb);
804 free_extent_buffer(eb);
805 }
806 return 0;
807}
808
809/*
810 * merge backrefs and adjust counts accordingly
811 *
812 * mode = 1: merge identical keys, if key is set
813 * FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
814 * additionally, we could even add a key range for the blocks we
815 * looked into to merge even more (-> replace unresolved refs by those
816 * having a parent).
817 * mode = 2: merge identical parents
818 */
819static void __merge_refs(struct list_head *head, int mode)
820{
821 struct __prelim_ref *pos1;
822
823 list_for_each_entry(pos1, head, list) {
824 struct __prelim_ref *pos2 = pos1, *tmp;
825
826 list_for_each_entry_safe_continue(pos2, tmp, head, list) {
827 struct __prelim_ref *ref1 = pos1, *ref2 = pos2;
828 struct extent_inode_elem *eie;
829
830 if (!ref_for_same_block(ref1, ref2))
831 continue;
832 if (mode == 1) {
833 if (!ref1->parent && ref2->parent)
834 swap(ref1, ref2);
835 } else {
836 if (ref1->parent != ref2->parent)
837 continue;
838 }
839
840 eie = ref1->inode_list;
841 while (eie && eie->next)
842 eie = eie->next;
843 if (eie)
844 eie->next = ref2->inode_list;
845 else
846 ref1->inode_list = ref2->inode_list;
847 ref1->count += ref2->count;
848
849 list_del(&ref2->list);
850 kmem_cache_free(btrfs_prelim_ref_cache, ref2);
851 cond_resched();
852 }
853
854 }
855}
856
857/*
858 * add all currently queued delayed refs from this head whose seq nr is
859 * smaller or equal that seq to the list
860 */
861static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
862 struct list_head *prefs, u64 *total_refs,
863 u64 inum)
864{
865 struct btrfs_delayed_ref_node *node;
866 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
867 struct btrfs_key key;
868 struct btrfs_key op_key = {0};
869 int sgn;
870 int ret = 0;
871
872 if (extent_op && extent_op->update_key)
873 btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
874
875 spin_lock(&head->lock);
876 list_for_each_entry(node, &head->ref_list, list) {
877 if (node->seq > seq)
878 continue;
879
880 switch (node->action) {
881 case BTRFS_ADD_DELAYED_EXTENT:
882 case BTRFS_UPDATE_DELAYED_HEAD:
883 WARN_ON(1);
884 continue;
885 case BTRFS_ADD_DELAYED_REF:
886 sgn = 1;
887 break;
888 case BTRFS_DROP_DELAYED_REF:
889 sgn = -1;
890 break;
891 default:
892 BUG_ON(1);
893 }
894 *total_refs += (node->ref_mod * sgn);
895 switch (node->type) {
896 case BTRFS_TREE_BLOCK_REF_KEY: {
897 struct btrfs_delayed_tree_ref *ref;
898
899 ref = btrfs_delayed_node_to_tree_ref(node);
900 ret = __add_prelim_ref(prefs, ref->root, &op_key,
901 ref->level + 1, 0, node->bytenr,
902 node->ref_mod * sgn, GFP_ATOMIC);
903 break;
904 }
905 case BTRFS_SHARED_BLOCK_REF_KEY: {
906 struct btrfs_delayed_tree_ref *ref;
907
908 ref = btrfs_delayed_node_to_tree_ref(node);
909 ret = __add_prelim_ref(prefs, 0, NULL,
910 ref->level + 1, ref->parent,
911 node->bytenr,
912 node->ref_mod * sgn, GFP_ATOMIC);
913 break;
914 }
915 case BTRFS_EXTENT_DATA_REF_KEY: {
916 struct btrfs_delayed_data_ref *ref;
917 ref = btrfs_delayed_node_to_data_ref(node);
918
919 key.objectid = ref->objectid;
920 key.type = BTRFS_EXTENT_DATA_KEY;
921 key.offset = ref->offset;
922
923 /*
924 * Found a inum that doesn't match our known inum, we
925 * know it's shared.
926 */
927 if (inum && ref->objectid != inum) {
928 ret = BACKREF_FOUND_SHARED;
929 break;
930 }
931
932 ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
933 node->bytenr,
934 node->ref_mod * sgn, GFP_ATOMIC);
935 break;
936 }
937 case BTRFS_SHARED_DATA_REF_KEY: {
938 struct btrfs_delayed_data_ref *ref;
939
940 ref = btrfs_delayed_node_to_data_ref(node);
941 ret = __add_prelim_ref(prefs, 0, NULL, 0,
942 ref->parent, node->bytenr,
943 node->ref_mod * sgn, GFP_ATOMIC);
944 break;
945 }
946 default:
947 WARN_ON(1);
948 }
949 if (ret)
950 break;
951 }
952 spin_unlock(&head->lock);
953 return ret;
954}
955
956/*
957 * add all inline backrefs for bytenr to the list
958 */
959static int __add_inline_refs(struct btrfs_fs_info *fs_info,
960 struct btrfs_path *path, u64 bytenr,
961 int *info_level, struct list_head *prefs,
962 struct ref_root *ref_tree,
963 u64 *total_refs, u64 inum)
964{
965 int ret = 0;
966 int slot;
967 struct extent_buffer *leaf;
968 struct btrfs_key key;
969 struct btrfs_key found_key;
970 unsigned long ptr;
971 unsigned long end;
972 struct btrfs_extent_item *ei;
973 u64 flags;
974 u64 item_size;
975
976 /*
977 * enumerate all inline refs
978 */
979 leaf = path->nodes[0];
980 slot = path->slots[0];
981
982 item_size = btrfs_item_size_nr(leaf, slot);
983 BUG_ON(item_size < sizeof(*ei));
984
985 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
986 flags = btrfs_extent_flags(leaf, ei);
987 *total_refs += btrfs_extent_refs(leaf, ei);
988 btrfs_item_key_to_cpu(leaf, &found_key, slot);
989
990 ptr = (unsigned long)(ei + 1);
991 end = (unsigned long)ei + item_size;
992
993 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
994 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
995 struct btrfs_tree_block_info *info;
996
997 info = (struct btrfs_tree_block_info *)ptr;
998 *info_level = btrfs_tree_block_level(leaf, info);
999 ptr += sizeof(struct btrfs_tree_block_info);
1000 BUG_ON(ptr > end);
1001 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
1002 *info_level = found_key.offset;
1003 } else {
1004 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1005 }
1006
1007 while (ptr < end) {
1008 struct btrfs_extent_inline_ref *iref;
1009 u64 offset;
1010 int type;
1011
1012 iref = (struct btrfs_extent_inline_ref *)ptr;
1013 type = btrfs_extent_inline_ref_type(leaf, iref);
1014 offset = btrfs_extent_inline_ref_offset(leaf, iref);
1015
1016 switch (type) {
1017 case BTRFS_SHARED_BLOCK_REF_KEY:
1018 ret = __add_prelim_ref(prefs, 0, NULL,
1019 *info_level + 1, offset,
1020 bytenr, 1, GFP_NOFS);
1021 break;
1022 case BTRFS_SHARED_DATA_REF_KEY: {
1023 struct btrfs_shared_data_ref *sdref;
1024 int count;
1025
1026 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1027 count = btrfs_shared_data_ref_count(leaf, sdref);
1028 ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
1029 bytenr, count, GFP_NOFS);
1030 if (ref_tree) {
1031 if (!ret)
1032 ret = ref_tree_add(ref_tree, 0, 0, 0,
1033 bytenr, count);
1034 if (!ret && ref_tree->unique_refs > 1)
1035 ret = BACKREF_FOUND_SHARED;
1036 }
1037 break;
1038 }
1039 case BTRFS_TREE_BLOCK_REF_KEY:
1040 ret = __add_prelim_ref(prefs, offset, NULL,
1041 *info_level + 1, 0,
1042 bytenr, 1, GFP_NOFS);
1043 break;
1044 case BTRFS_EXTENT_DATA_REF_KEY: {
1045 struct btrfs_extent_data_ref *dref;
1046 int count;
1047 u64 root;
1048
1049 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1050 count = btrfs_extent_data_ref_count(leaf, dref);
1051 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1052 dref);
1053 key.type = BTRFS_EXTENT_DATA_KEY;
1054 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1055
1056 if (inum && key.objectid != inum) {
1057 ret = BACKREF_FOUND_SHARED;
1058 break;
1059 }
1060
1061 root = btrfs_extent_data_ref_root(leaf, dref);
1062 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1063 bytenr, count, GFP_NOFS);
1064 if (ref_tree) {
1065 if (!ret)
1066 ret = ref_tree_add(ref_tree, root,
1067 key.objectid,
1068 key.offset, 0,
1069 count);
1070 if (!ret && ref_tree->unique_refs > 1)
1071 ret = BACKREF_FOUND_SHARED;
1072 }
1073 break;
1074 }
1075 default:
1076 WARN_ON(1);
1077 }
1078 if (ret)
1079 return ret;
1080 ptr += btrfs_extent_inline_ref_size(type);
1081 }
1082
1083 return 0;
1084}
1085
1086/*
1087 * add all non-inline backrefs for bytenr to the list
1088 */
1089static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
1090 struct btrfs_path *path, u64 bytenr,
1091 int info_level, struct list_head *prefs,
1092 struct ref_root *ref_tree, u64 inum)
1093{
1094 struct btrfs_root *extent_root = fs_info->extent_root;
1095 int ret;
1096 int slot;
1097 struct extent_buffer *leaf;
1098 struct btrfs_key key;
1099
1100 while (1) {
1101 ret = btrfs_next_item(extent_root, path);
1102 if (ret < 0)
1103 break;
1104 if (ret) {
1105 ret = 0;
1106 break;
1107 }
1108
1109 slot = path->slots[0];
1110 leaf = path->nodes[0];
1111 btrfs_item_key_to_cpu(leaf, &key, slot);
1112
1113 if (key.objectid != bytenr)
1114 break;
1115 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1116 continue;
1117 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1118 break;
1119
1120 switch (key.type) {
1121 case BTRFS_SHARED_BLOCK_REF_KEY:
1122 ret = __add_prelim_ref(prefs, 0, NULL,
1123 info_level + 1, key.offset,
1124 bytenr, 1, GFP_NOFS);
1125 break;
1126 case BTRFS_SHARED_DATA_REF_KEY: {
1127 struct btrfs_shared_data_ref *sdref;
1128 int count;
1129
1130 sdref = btrfs_item_ptr(leaf, slot,
1131 struct btrfs_shared_data_ref);
1132 count = btrfs_shared_data_ref_count(leaf, sdref);
1133 ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
1134 bytenr, count, GFP_NOFS);
1135 if (ref_tree) {
1136 if (!ret)
1137 ret = ref_tree_add(ref_tree, 0, 0, 0,
1138 bytenr, count);
1139 if (!ret && ref_tree->unique_refs > 1)
1140 ret = BACKREF_FOUND_SHARED;
1141 }
1142 break;
1143 }
1144 case BTRFS_TREE_BLOCK_REF_KEY:
1145 ret = __add_prelim_ref(prefs, key.offset, NULL,
1146 info_level + 1, 0,
1147 bytenr, 1, GFP_NOFS);
1148 break;
1149 case BTRFS_EXTENT_DATA_REF_KEY: {
1150 struct btrfs_extent_data_ref *dref;
1151 int count;
1152 u64 root;
1153
1154 dref = btrfs_item_ptr(leaf, slot,
1155 struct btrfs_extent_data_ref);
1156 count = btrfs_extent_data_ref_count(leaf, dref);
1157 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1158 dref);
1159 key.type = BTRFS_EXTENT_DATA_KEY;
1160 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1161
1162 if (inum && key.objectid != inum) {
1163 ret = BACKREF_FOUND_SHARED;
1164 break;
1165 }
1166
1167 root = btrfs_extent_data_ref_root(leaf, dref);
1168 ret = __add_prelim_ref(prefs, root, &key, 0, 0,
1169 bytenr, count, GFP_NOFS);
1170 if (ref_tree) {
1171 if (!ret)
1172 ret = ref_tree_add(ref_tree, root,
1173 key.objectid,
1174 key.offset, 0,
1175 count);
1176 if (!ret && ref_tree->unique_refs > 1)
1177 ret = BACKREF_FOUND_SHARED;
1178 }
1179 break;
1180 }
1181 default:
1182 WARN_ON(1);
1183 }
1184 if (ret)
1185 return ret;
1186
1187 }
1188
1189 return ret;
1190}
1191
1192/*
1193 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1194 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1195 * indirect refs to their parent bytenr.
1196 * When roots are found, they're added to the roots list
1197 *
1198 * NOTE: This can return values > 0
1199 *
1200 * If time_seq is set to (u64)-1, it will not search delayed_refs, and behave
1201 * much like trans == NULL case, the difference only lies in it will not
1202 * commit root.
1203 * The special case is for qgroup to search roots in commit_transaction().
1204 *
1205 * If check_shared is set to 1, any extent has more than one ref item, will
1206 * be returned BACKREF_FOUND_SHARED immediately.
1207 *
1208 * FIXME some caching might speed things up
1209 */
1210static int find_parent_nodes(struct btrfs_trans_handle *trans,
1211 struct btrfs_fs_info *fs_info, u64 bytenr,
1212 u64 time_seq, struct ulist *refs,
1213 struct ulist *roots, const u64 *extent_item_pos,
1214 u64 root_objectid, u64 inum, int check_shared)
1215{
1216 struct btrfs_key key;
1217 struct btrfs_path *path;
1218 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1219 struct btrfs_delayed_ref_head *head;
1220 int info_level = 0;
1221 int ret;
1222 struct list_head prefs_delayed;
1223 struct list_head prefs;
1224 struct __prelim_ref *ref;
1225 struct extent_inode_elem *eie = NULL;
1226 struct ref_root *ref_tree = NULL;
1227 u64 total_refs = 0;
1228
1229 INIT_LIST_HEAD(&prefs);
1230 INIT_LIST_HEAD(&prefs_delayed);
1231
1232 key.objectid = bytenr;
1233 key.offset = (u64)-1;
1234 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1235 key.type = BTRFS_METADATA_ITEM_KEY;
1236 else
1237 key.type = BTRFS_EXTENT_ITEM_KEY;
1238
1239 path = btrfs_alloc_path();
1240 if (!path)
1241 return -ENOMEM;
1242 if (!trans) {
1243 path->search_commit_root = 1;
1244 path->skip_locking = 1;
1245 }
1246
1247 if (time_seq == (u64)-1)
1248 path->skip_locking = 1;
1249
1250 /*
1251 * grab both a lock on the path and a lock on the delayed ref head.
1252 * We need both to get a consistent picture of how the refs look
1253 * at a specified point in time
1254 */
1255again:
1256 head = NULL;
1257
1258 if (check_shared) {
1259 if (!ref_tree) {
1260 ref_tree = ref_root_alloc();
1261 if (!ref_tree) {
1262 ret = -ENOMEM;
1263 goto out;
1264 }
1265 } else {
1266 ref_root_fini(ref_tree);
1267 }
1268 }
1269
1270 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1271 if (ret < 0)
1272 goto out;
1273 BUG_ON(ret == 0);
1274
1275#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1276 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1277 time_seq != (u64)-1) {
1278#else
1279 if (trans && time_seq != (u64)-1) {
1280#endif
1281 /*
1282 * look if there are updates for this ref queued and lock the
1283 * head
1284 */
1285 delayed_refs = &trans->transaction->delayed_refs;
1286 spin_lock(&delayed_refs->lock);
1287 head = btrfs_find_delayed_ref_head(trans, bytenr);
1288 if (head) {
1289 if (!mutex_trylock(&head->mutex)) {
1290 atomic_inc(&head->node.refs);
1291 spin_unlock(&delayed_refs->lock);
1292
1293 btrfs_release_path(path);
1294
1295 /*
1296 * Mutex was contended, block until it's
1297 * released and try again
1298 */
1299 mutex_lock(&head->mutex);
1300 mutex_unlock(&head->mutex);
1301 btrfs_put_delayed_ref(&head->node);
1302 goto again;
1303 }
1304 spin_unlock(&delayed_refs->lock);
1305 ret = __add_delayed_refs(head, time_seq,
1306 &prefs_delayed, &total_refs,
1307 inum);
1308 mutex_unlock(&head->mutex);
1309 if (ret)
1310 goto out;
1311 } else {
1312 spin_unlock(&delayed_refs->lock);
1313 }
1314
1315 if (check_shared && !list_empty(&prefs_delayed)) {
1316 /*
1317 * Add all delay_ref to the ref_tree and check if there
1318 * are multiple ref items added.
1319 */
1320 list_for_each_entry(ref, &prefs_delayed, list) {
1321 if (ref->key_for_search.type) {
1322 ret = ref_tree_add(ref_tree,
1323 ref->root_id,
1324 ref->key_for_search.objectid,
1325 ref->key_for_search.offset,
1326 0, ref->count);
1327 if (ret)
1328 goto out;
1329 } else {
1330 ret = ref_tree_add(ref_tree, 0, 0, 0,
1331 ref->parent, ref->count);
1332 if (ret)
1333 goto out;
1334 }
1335
1336 }
1337
1338 if (ref_tree->unique_refs > 1) {
1339 ret = BACKREF_FOUND_SHARED;
1340 goto out;
1341 }
1342
1343 }
1344 }
1345
1346 if (path->slots[0]) {
1347 struct extent_buffer *leaf;
1348 int slot;
1349
1350 path->slots[0]--;
1351 leaf = path->nodes[0];
1352 slot = path->slots[0];
1353 btrfs_item_key_to_cpu(leaf, &key, slot);
1354 if (key.objectid == bytenr &&
1355 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1356 key.type == BTRFS_METADATA_ITEM_KEY)) {
1357 ret = __add_inline_refs(fs_info, path, bytenr,
1358 &info_level, &prefs,
1359 ref_tree, &total_refs,
1360 inum);
1361 if (ret)
1362 goto out;
1363 ret = __add_keyed_refs(fs_info, path, bytenr,
1364 info_level, &prefs,
1365 ref_tree, inum);
1366 if (ret)
1367 goto out;
1368 }
1369 }
1370 btrfs_release_path(path);
1371
1372 list_splice_init(&prefs_delayed, &prefs);
1373
1374 ret = __add_missing_keys(fs_info, &prefs);
1375 if (ret)
1376 goto out;
1377
1378 __merge_refs(&prefs, 1);
1379
1380 ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1381 extent_item_pos, total_refs,
1382 root_objectid);
1383 if (ret)
1384 goto out;
1385
1386 __merge_refs(&prefs, 2);
1387
1388 while (!list_empty(&prefs)) {
1389 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1390 WARN_ON(ref->count < 0);
1391 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1392 if (root_objectid && ref->root_id != root_objectid) {
1393 ret = BACKREF_FOUND_SHARED;
1394 goto out;
1395 }
1396
1397 /* no parent == root of tree */
1398 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1399 if (ret < 0)
1400 goto out;
1401 }
1402 if (ref->count && ref->parent) {
1403 if (extent_item_pos && !ref->inode_list &&
1404 ref->level == 0) {
1405 struct extent_buffer *eb;
1406
1407 eb = read_tree_block(fs_info, ref->parent, 0);
1408 if (IS_ERR(eb)) {
1409 ret = PTR_ERR(eb);
1410 goto out;
1411 } else if (!extent_buffer_uptodate(eb)) {
1412 free_extent_buffer(eb);
1413 ret = -EIO;
1414 goto out;
1415 }
1416 btrfs_tree_read_lock(eb);
1417 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1418 ret = find_extent_in_eb(eb, bytenr,
1419 *extent_item_pos, &eie);
1420 btrfs_tree_read_unlock_blocking(eb);
1421 free_extent_buffer(eb);
1422 if (ret < 0)
1423 goto out;
1424 ref->inode_list = eie;
1425 }
1426 ret = ulist_add_merge_ptr(refs, ref->parent,
1427 ref->inode_list,
1428 (void **)&eie, GFP_NOFS);
1429 if (ret < 0)
1430 goto out;
1431 if (!ret && extent_item_pos) {
1432 /*
1433 * we've recorded that parent, so we must extend
1434 * its inode list here
1435 */
1436 BUG_ON(!eie);
1437 while (eie->next)
1438 eie = eie->next;
1439 eie->next = ref->inode_list;
1440 }
1441 eie = NULL;
1442 }
1443 list_del(&ref->list);
1444 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1445 }
1446
1447out:
1448 btrfs_free_path(path);
1449 ref_root_free(ref_tree);
1450 while (!list_empty(&prefs)) {
1451 ref = list_first_entry(&prefs, struct __prelim_ref, list);
1452 list_del(&ref->list);
1453 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1454 }
1455 while (!list_empty(&prefs_delayed)) {
1456 ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1457 list);
1458 list_del(&ref->list);
1459 kmem_cache_free(btrfs_prelim_ref_cache, ref);
1460 }
1461 if (ret < 0)
1462 free_inode_elem_list(eie);
1463 return ret;
1464}
1465
1466static void free_leaf_list(struct ulist *blocks)
1467{
1468 struct ulist_node *node = NULL;
1469 struct extent_inode_elem *eie;
1470 struct ulist_iterator uiter;
1471
1472 ULIST_ITER_INIT(&uiter);
1473 while ((node = ulist_next(blocks, &uiter))) {
1474 if (!node->aux)
1475 continue;
1476 eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1477 free_inode_elem_list(eie);
1478 node->aux = 0;
1479 }
1480
1481 ulist_free(blocks);
1482}
1483
1484/*
1485 * Finds all leafs with a reference to the specified combination of bytenr and
1486 * offset. key_list_head will point to a list of corresponding keys (caller must
1487 * free each list element). The leafs will be stored in the leafs ulist, which
1488 * must be freed with ulist_free.
1489 *
1490 * returns 0 on success, <0 on error
1491 */
1492static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1493 struct btrfs_fs_info *fs_info, u64 bytenr,
1494 u64 time_seq, struct ulist **leafs,
1495 const u64 *extent_item_pos)
1496{
1497 int ret;
1498
1499 *leafs = ulist_alloc(GFP_NOFS);
1500 if (!*leafs)
1501 return -ENOMEM;
1502
1503 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1504 *leafs, NULL, extent_item_pos, 0, 0, 0);
1505 if (ret < 0 && ret != -ENOENT) {
1506 free_leaf_list(*leafs);
1507 return ret;
1508 }
1509
1510 return 0;
1511}
1512
1513/*
1514 * walk all backrefs for a given extent to find all roots that reference this
1515 * extent. Walking a backref means finding all extents that reference this
1516 * extent and in turn walk the backrefs of those, too. Naturally this is a
1517 * recursive process, but here it is implemented in an iterative fashion: We
1518 * find all referencing extents for the extent in question and put them on a
1519 * list. In turn, we find all referencing extents for those, further appending
1520 * to the list. The way we iterate the list allows adding more elements after
1521 * the current while iterating. The process stops when we reach the end of the
1522 * list. Found roots are added to the roots list.
1523 *
1524 * returns 0 on success, < 0 on error.
1525 */
1526static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1527 struct btrfs_fs_info *fs_info, u64 bytenr,
1528 u64 time_seq, struct ulist **roots)
1529{
1530 struct ulist *tmp;
1531 struct ulist_node *node = NULL;
1532 struct ulist_iterator uiter;
1533 int ret;
1534
1535 tmp = ulist_alloc(GFP_NOFS);
1536 if (!tmp)
1537 return -ENOMEM;
1538 *roots = ulist_alloc(GFP_NOFS);
1539 if (!*roots) {
1540 ulist_free(tmp);
1541 return -ENOMEM;
1542 }
1543
1544 ULIST_ITER_INIT(&uiter);
1545 while (1) {
1546 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1547 tmp, *roots, NULL, 0, 0, 0);
1548 if (ret < 0 && ret != -ENOENT) {
1549 ulist_free(tmp);
1550 ulist_free(*roots);
1551 return ret;
1552 }
1553 node = ulist_next(tmp, &uiter);
1554 if (!node)
1555 break;
1556 bytenr = node->val;
1557 cond_resched();
1558 }
1559
1560 ulist_free(tmp);
1561 return 0;
1562}
1563
1564int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1565 struct btrfs_fs_info *fs_info, u64 bytenr,
1566 u64 time_seq, struct ulist **roots)
1567{
1568 int ret;
1569
1570 if (!trans)
1571 down_read(&fs_info->commit_root_sem);
1572 ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1573 if (!trans)
1574 up_read(&fs_info->commit_root_sem);
1575 return ret;
1576}
1577
1578/**
1579 * btrfs_check_shared - tell us whether an extent is shared
1580 *
1581 * @trans: optional trans handle
1582 *
1583 * btrfs_check_shared uses the backref walking code but will short
1584 * circuit as soon as it finds a root or inode that doesn't match the
1585 * one passed in. This provides a significant performance benefit for
1586 * callers (such as fiemap) which want to know whether the extent is
1587 * shared but do not need a ref count.
1588 *
1589 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1590 */
1591int btrfs_check_shared(struct btrfs_trans_handle *trans,
1592 struct btrfs_fs_info *fs_info, u64 root_objectid,
1593 u64 inum, u64 bytenr)
1594{
1595 struct ulist *tmp = NULL;
1596 struct ulist *roots = NULL;
1597 struct ulist_iterator uiter;
1598 struct ulist_node *node;
1599 struct seq_list elem = SEQ_LIST_INIT(elem);
1600 int ret = 0;
1601
1602 tmp = ulist_alloc(GFP_NOFS);
1603 roots = ulist_alloc(GFP_NOFS);
1604 if (!tmp || !roots) {
1605 ulist_free(tmp);
1606 ulist_free(roots);
1607 return -ENOMEM;
1608 }
1609
1610 if (trans)
1611 btrfs_get_tree_mod_seq(fs_info, &elem);
1612 else
1613 down_read(&fs_info->commit_root_sem);
1614 ULIST_ITER_INIT(&uiter);
1615 while (1) {
1616 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1617 roots, NULL, root_objectid, inum, 1);
1618 if (ret == BACKREF_FOUND_SHARED) {
1619 /* this is the only condition under which we return 1 */
1620 ret = 1;
1621 break;
1622 }
1623 if (ret < 0 && ret != -ENOENT)
1624 break;
1625 ret = 0;
1626 node = ulist_next(tmp, &uiter);
1627 if (!node)
1628 break;
1629 bytenr = node->val;
1630 cond_resched();
1631 }
1632 if (trans)
1633 btrfs_put_tree_mod_seq(fs_info, &elem);
1634 else
1635 up_read(&fs_info->commit_root_sem);
1636 ulist_free(tmp);
1637 ulist_free(roots);
1638 return ret;
1639}
1640
1641int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1642 u64 start_off, struct btrfs_path *path,
1643 struct btrfs_inode_extref **ret_extref,
1644 u64 *found_off)
1645{
1646 int ret, slot;
1647 struct btrfs_key key;
1648 struct btrfs_key found_key;
1649 struct btrfs_inode_extref *extref;
1650 struct extent_buffer *leaf;
1651 unsigned long ptr;
1652
1653 key.objectid = inode_objectid;
1654 key.type = BTRFS_INODE_EXTREF_KEY;
1655 key.offset = start_off;
1656
1657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1658 if (ret < 0)
1659 return ret;
1660
1661 while (1) {
1662 leaf = path->nodes[0];
1663 slot = path->slots[0];
1664 if (slot >= btrfs_header_nritems(leaf)) {
1665 /*
1666 * If the item at offset is not found,
1667 * btrfs_search_slot will point us to the slot
1668 * where it should be inserted. In our case
1669 * that will be the slot directly before the
1670 * next INODE_REF_KEY_V2 item. In the case
1671 * that we're pointing to the last slot in a
1672 * leaf, we must move one leaf over.
1673 */
1674 ret = btrfs_next_leaf(root, path);
1675 if (ret) {
1676 if (ret >= 1)
1677 ret = -ENOENT;
1678 break;
1679 }
1680 continue;
1681 }
1682
1683 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1684
1685 /*
1686 * Check that we're still looking at an extended ref key for
1687 * this particular objectid. If we have different
1688 * objectid or type then there are no more to be found
1689 * in the tree and we can exit.
1690 */
1691 ret = -ENOENT;
1692 if (found_key.objectid != inode_objectid)
1693 break;
1694 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1695 break;
1696
1697 ret = 0;
1698 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1699 extref = (struct btrfs_inode_extref *)ptr;
1700 *ret_extref = extref;
1701 if (found_off)
1702 *found_off = found_key.offset;
1703 break;
1704 }
1705
1706 return ret;
1707}
1708
1709/*
1710 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1711 * Elements of the path are separated by '/' and the path is guaranteed to be
1712 * 0-terminated. the path is only given within the current file system.
1713 * Therefore, it never starts with a '/'. the caller is responsible to provide
1714 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1715 * the start point of the resulting string is returned. this pointer is within
1716 * dest, normally.
1717 * in case the path buffer would overflow, the pointer is decremented further
1718 * as if output was written to the buffer, though no more output is actually
1719 * generated. that way, the caller can determine how much space would be
1720 * required for the path to fit into the buffer. in that case, the returned
1721 * value will be smaller than dest. callers must check this!
1722 */
1723char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1724 u32 name_len, unsigned long name_off,
1725 struct extent_buffer *eb_in, u64 parent,
1726 char *dest, u32 size)
1727{
1728 int slot;
1729 u64 next_inum;
1730 int ret;
1731 s64 bytes_left = ((s64)size) - 1;
1732 struct extent_buffer *eb = eb_in;
1733 struct btrfs_key found_key;
1734 int leave_spinning = path->leave_spinning;
1735 struct btrfs_inode_ref *iref;
1736
1737 if (bytes_left >= 0)
1738 dest[bytes_left] = '\0';
1739
1740 path->leave_spinning = 1;
1741 while (1) {
1742 bytes_left -= name_len;
1743 if (bytes_left >= 0)
1744 read_extent_buffer(eb, dest + bytes_left,
1745 name_off, name_len);
1746 if (eb != eb_in) {
1747 if (!path->skip_locking)
1748 btrfs_tree_read_unlock_blocking(eb);
1749 free_extent_buffer(eb);
1750 }
1751 ret = btrfs_find_item(fs_root, path, parent, 0,
1752 BTRFS_INODE_REF_KEY, &found_key);
1753 if (ret > 0)
1754 ret = -ENOENT;
1755 if (ret)
1756 break;
1757
1758 next_inum = found_key.offset;
1759
1760 /* regular exit ahead */
1761 if (parent == next_inum)
1762 break;
1763
1764 slot = path->slots[0];
1765 eb = path->nodes[0];
1766 /* make sure we can use eb after releasing the path */
1767 if (eb != eb_in) {
1768 if (!path->skip_locking)
1769 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1770 path->nodes[0] = NULL;
1771 path->locks[0] = 0;
1772 }
1773 btrfs_release_path(path);
1774 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1775
1776 name_len = btrfs_inode_ref_name_len(eb, iref);
1777 name_off = (unsigned long)(iref + 1);
1778
1779 parent = next_inum;
1780 --bytes_left;
1781 if (bytes_left >= 0)
1782 dest[bytes_left] = '/';
1783 }
1784
1785 btrfs_release_path(path);
1786 path->leave_spinning = leave_spinning;
1787
1788 if (ret)
1789 return ERR_PTR(ret);
1790
1791 return dest + bytes_left;
1792}
1793
1794/*
1795 * this makes the path point to (logical EXTENT_ITEM *)
1796 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1797 * tree blocks and <0 on error.
1798 */
1799int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1800 struct btrfs_path *path, struct btrfs_key *found_key,
1801 u64 *flags_ret)
1802{
1803 int ret;
1804 u64 flags;
1805 u64 size = 0;
1806 u32 item_size;
1807 struct extent_buffer *eb;
1808 struct btrfs_extent_item *ei;
1809 struct btrfs_key key;
1810
1811 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1812 key.type = BTRFS_METADATA_ITEM_KEY;
1813 else
1814 key.type = BTRFS_EXTENT_ITEM_KEY;
1815 key.objectid = logical;
1816 key.offset = (u64)-1;
1817
1818 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1819 if (ret < 0)
1820 return ret;
1821
1822 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1823 if (ret) {
1824 if (ret > 0)
1825 ret = -ENOENT;
1826 return ret;
1827 }
1828 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1829 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1830 size = fs_info->nodesize;
1831 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1832 size = found_key->offset;
1833
1834 if (found_key->objectid > logical ||
1835 found_key->objectid + size <= logical) {
1836 btrfs_debug(fs_info,
1837 "logical %llu is not within any extent", logical);
1838 return -ENOENT;
1839 }
1840
1841 eb = path->nodes[0];
1842 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1843 BUG_ON(item_size < sizeof(*ei));
1844
1845 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1846 flags = btrfs_extent_flags(eb, ei);
1847
1848 btrfs_debug(fs_info,
1849 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1850 logical, logical - found_key->objectid, found_key->objectid,
1851 found_key->offset, flags, item_size);
1852
1853 WARN_ON(!flags_ret);
1854 if (flags_ret) {
1855 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1856 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1857 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1858 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1859 else
1860 BUG_ON(1);
1861 return 0;
1862 }
1863
1864 return -EIO;
1865}
1866
1867/*
1868 * helper function to iterate extent inline refs. ptr must point to a 0 value
1869 * for the first call and may be modified. it is used to track state.
1870 * if more refs exist, 0 is returned and the next call to
1871 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1872 * next ref. after the last ref was processed, 1 is returned.
1873 * returns <0 on error
1874 */
1875static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1876 struct btrfs_key *key,
1877 struct btrfs_extent_item *ei, u32 item_size,
1878 struct btrfs_extent_inline_ref **out_eiref,
1879 int *out_type)
1880{
1881 unsigned long end;
1882 u64 flags;
1883 struct btrfs_tree_block_info *info;
1884
1885 if (!*ptr) {
1886 /* first call */
1887 flags = btrfs_extent_flags(eb, ei);
1888 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1889 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1890 /* a skinny metadata extent */
1891 *out_eiref =
1892 (struct btrfs_extent_inline_ref *)(ei + 1);
1893 } else {
1894 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1895 info = (struct btrfs_tree_block_info *)(ei + 1);
1896 *out_eiref =
1897 (struct btrfs_extent_inline_ref *)(info + 1);
1898 }
1899 } else {
1900 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1901 }
1902 *ptr = (unsigned long)*out_eiref;
1903 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1904 return -ENOENT;
1905 }
1906
1907 end = (unsigned long)ei + item_size;
1908 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1909 *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1910
1911 *ptr += btrfs_extent_inline_ref_size(*out_type);
1912 WARN_ON(*ptr > end);
1913 if (*ptr == end)
1914 return 1; /* last */
1915
1916 return 0;
1917}
1918
1919/*
1920 * reads the tree block backref for an extent. tree level and root are returned
1921 * through out_level and out_root. ptr must point to a 0 value for the first
1922 * call and may be modified (see __get_extent_inline_ref comment).
1923 * returns 0 if data was provided, 1 if there was no more data to provide or
1924 * <0 on error.
1925 */
1926int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1927 struct btrfs_key *key, struct btrfs_extent_item *ei,
1928 u32 item_size, u64 *out_root, u8 *out_level)
1929{
1930 int ret;
1931 int type;
1932 struct btrfs_extent_inline_ref *eiref;
1933
1934 if (*ptr == (unsigned long)-1)
1935 return 1;
1936
1937 while (1) {
1938 ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1939 &eiref, &type);
1940 if (ret < 0)
1941 return ret;
1942
1943 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1944 type == BTRFS_SHARED_BLOCK_REF_KEY)
1945 break;
1946
1947 if (ret == 1)
1948 return 1;
1949 }
1950
1951 /* we can treat both ref types equally here */
1952 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1953
1954 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1955 struct btrfs_tree_block_info *info;
1956
1957 info = (struct btrfs_tree_block_info *)(ei + 1);
1958 *out_level = btrfs_tree_block_level(eb, info);
1959 } else {
1960 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1961 *out_level = (u8)key->offset;
1962 }
1963
1964 if (ret == 1)
1965 *ptr = (unsigned long)-1;
1966
1967 return 0;
1968}
1969
1970static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1971 struct extent_inode_elem *inode_list,
1972 u64 root, u64 extent_item_objectid,
1973 iterate_extent_inodes_t *iterate, void *ctx)
1974{
1975 struct extent_inode_elem *eie;
1976 int ret = 0;
1977
1978 for (eie = inode_list; eie; eie = eie->next) {
1979 btrfs_debug(fs_info,
1980 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1981 extent_item_objectid, eie->inum,
1982 eie->offset, root);
1983 ret = iterate(eie->inum, eie->offset, root, ctx);
1984 if (ret) {
1985 btrfs_debug(fs_info,
1986 "stopping iteration for %llu due to ret=%d",
1987 extent_item_objectid, ret);
1988 break;
1989 }
1990 }
1991
1992 return ret;
1993}
1994
1995/*
1996 * calls iterate() for every inode that references the extent identified by
1997 * the given parameters.
1998 * when the iterator function returns a non-zero value, iteration stops.
1999 */
2000int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
2001 u64 extent_item_objectid, u64 extent_item_pos,
2002 int search_commit_root,
2003 iterate_extent_inodes_t *iterate, void *ctx)
2004{
2005 int ret;
2006 struct btrfs_trans_handle *trans = NULL;
2007 struct ulist *refs = NULL;
2008 struct ulist *roots = NULL;
2009 struct ulist_node *ref_node = NULL;
2010 struct ulist_node *root_node = NULL;
2011 struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
2012 struct ulist_iterator ref_uiter;
2013 struct ulist_iterator root_uiter;
2014
2015 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
2016 extent_item_objectid);
2017
2018 if (!search_commit_root) {
2019 trans = btrfs_join_transaction(fs_info->extent_root);
2020 if (IS_ERR(trans))
2021 return PTR_ERR(trans);
2022 btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2023 } else {
2024 down_read(&fs_info->commit_root_sem);
2025 }
2026
2027 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
2028 tree_mod_seq_elem.seq, &refs,
2029 &extent_item_pos);
2030 if (ret)
2031 goto out;
2032
2033 ULIST_ITER_INIT(&ref_uiter);
2034 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
2035 ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
2036 tree_mod_seq_elem.seq, &roots);
2037 if (ret)
2038 break;
2039 ULIST_ITER_INIT(&root_uiter);
2040 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
2041 btrfs_debug(fs_info,
2042 "root %llu references leaf %llu, data list %#llx",
2043 root_node->val, ref_node->val,
2044 ref_node->aux);
2045 ret = iterate_leaf_refs(fs_info,
2046 (struct extent_inode_elem *)
2047 (uintptr_t)ref_node->aux,
2048 root_node->val,
2049 extent_item_objectid,
2050 iterate, ctx);
2051 }
2052 ulist_free(roots);
2053 }
2054
2055 free_leaf_list(refs);
2056out:
2057 if (!search_commit_root) {
2058 btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
2059 btrfs_end_transaction(trans);
2060 } else {
2061 up_read(&fs_info->commit_root_sem);
2062 }
2063
2064 return ret;
2065}
2066
2067int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2068 struct btrfs_path *path,
2069 iterate_extent_inodes_t *iterate, void *ctx)
2070{
2071 int ret;
2072 u64 extent_item_pos;
2073 u64 flags = 0;
2074 struct btrfs_key found_key;
2075 int search_commit_root = path->search_commit_root;
2076
2077 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2078 btrfs_release_path(path);
2079 if (ret < 0)
2080 return ret;
2081 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2082 return -EINVAL;
2083
2084 extent_item_pos = logical - found_key.objectid;
2085 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2086 extent_item_pos, search_commit_root,
2087 iterate, ctx);
2088
2089 return ret;
2090}
2091
2092typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2093 struct extent_buffer *eb, void *ctx);
2094
2095static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2096 struct btrfs_path *path,
2097 iterate_irefs_t *iterate, void *ctx)
2098{
2099 int ret = 0;
2100 int slot;
2101 u32 cur;
2102 u32 len;
2103 u32 name_len;
2104 u64 parent = 0;
2105 int found = 0;
2106 struct extent_buffer *eb;
2107 struct btrfs_item *item;
2108 struct btrfs_inode_ref *iref;
2109 struct btrfs_key found_key;
2110
2111 while (!ret) {
2112 ret = btrfs_find_item(fs_root, path, inum,
2113 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2114 &found_key);
2115
2116 if (ret < 0)
2117 break;
2118 if (ret) {
2119 ret = found ? 0 : -ENOENT;
2120 break;
2121 }
2122 ++found;
2123
2124 parent = found_key.offset;
2125 slot = path->slots[0];
2126 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2127 if (!eb) {
2128 ret = -ENOMEM;
2129 break;
2130 }
2131 extent_buffer_get(eb);
2132 btrfs_tree_read_lock(eb);
2133 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2134 btrfs_release_path(path);
2135
2136 item = btrfs_item_nr(slot);
2137 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2138
2139 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2140 name_len = btrfs_inode_ref_name_len(eb, iref);
2141 /* path must be released before calling iterate()! */
2142 btrfs_debug(fs_root->fs_info,
2143 "following ref at offset %u for inode %llu in tree %llu",
2144 cur, found_key.objectid, fs_root->objectid);
2145 ret = iterate(parent, name_len,
2146 (unsigned long)(iref + 1), eb, ctx);
2147 if (ret)
2148 break;
2149 len = sizeof(*iref) + name_len;
2150 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2151 }
2152 btrfs_tree_read_unlock_blocking(eb);
2153 free_extent_buffer(eb);
2154 }
2155
2156 btrfs_release_path(path);
2157
2158 return ret;
2159}
2160
2161static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2162 struct btrfs_path *path,
2163 iterate_irefs_t *iterate, void *ctx)
2164{
2165 int ret;
2166 int slot;
2167 u64 offset = 0;
2168 u64 parent;
2169 int found = 0;
2170 struct extent_buffer *eb;
2171 struct btrfs_inode_extref *extref;
2172 u32 item_size;
2173 u32 cur_offset;
2174 unsigned long ptr;
2175
2176 while (1) {
2177 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2178 &offset);
2179 if (ret < 0)
2180 break;
2181 if (ret) {
2182 ret = found ? 0 : -ENOENT;
2183 break;
2184 }
2185 ++found;
2186
2187 slot = path->slots[0];
2188 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2189 if (!eb) {
2190 ret = -ENOMEM;
2191 break;
2192 }
2193 extent_buffer_get(eb);
2194
2195 btrfs_tree_read_lock(eb);
2196 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
2197 btrfs_release_path(path);
2198
2199 item_size = btrfs_item_size_nr(eb, slot);
2200 ptr = btrfs_item_ptr_offset(eb, slot);
2201 cur_offset = 0;
2202
2203 while (cur_offset < item_size) {
2204 u32 name_len;
2205
2206 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2207 parent = btrfs_inode_extref_parent(eb, extref);
2208 name_len = btrfs_inode_extref_name_len(eb, extref);
2209 ret = iterate(parent, name_len,
2210 (unsigned long)&extref->name, eb, ctx);
2211 if (ret)
2212 break;
2213
2214 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2215 cur_offset += sizeof(*extref);
2216 }
2217 btrfs_tree_read_unlock_blocking(eb);
2218 free_extent_buffer(eb);
2219
2220 offset++;
2221 }
2222
2223 btrfs_release_path(path);
2224
2225 return ret;
2226}
2227
2228static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2229 struct btrfs_path *path, iterate_irefs_t *iterate,
2230 void *ctx)
2231{
2232 int ret;
2233 int found_refs = 0;
2234
2235 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2236 if (!ret)
2237 ++found_refs;
2238 else if (ret != -ENOENT)
2239 return ret;
2240
2241 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2242 if (ret == -ENOENT && found_refs)
2243 return 0;
2244
2245 return ret;
2246}
2247
2248/*
2249 * returns 0 if the path could be dumped (probably truncated)
2250 * returns <0 in case of an error
2251 */
2252static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2253 struct extent_buffer *eb, void *ctx)
2254{
2255 struct inode_fs_paths *ipath = ctx;
2256 char *fspath;
2257 char *fspath_min;
2258 int i = ipath->fspath->elem_cnt;
2259 const int s_ptr = sizeof(char *);
2260 u32 bytes_left;
2261
2262 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2263 ipath->fspath->bytes_left - s_ptr : 0;
2264
2265 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2266 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2267 name_off, eb, inum, fspath_min, bytes_left);
2268 if (IS_ERR(fspath))
2269 return PTR_ERR(fspath);
2270
2271 if (fspath > fspath_min) {
2272 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2273 ++ipath->fspath->elem_cnt;
2274 ipath->fspath->bytes_left = fspath - fspath_min;
2275 } else {
2276 ++ipath->fspath->elem_missed;
2277 ipath->fspath->bytes_missing += fspath_min - fspath;
2278 ipath->fspath->bytes_left = 0;
2279 }
2280
2281 return 0;
2282}
2283
2284/*
2285 * this dumps all file system paths to the inode into the ipath struct, provided
2286 * is has been created large enough. each path is zero-terminated and accessed
2287 * from ipath->fspath->val[i].
2288 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2289 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2290 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2291 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2292 * have been needed to return all paths.
2293 */
2294int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2295{
2296 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2297 inode_to_path, ipath);
2298}
2299
2300struct btrfs_data_container *init_data_container(u32 total_bytes)
2301{
2302 struct btrfs_data_container *data;
2303 size_t alloc_bytes;
2304
2305 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2306 data = vmalloc(alloc_bytes);
2307 if (!data)
2308 return ERR_PTR(-ENOMEM);
2309
2310 if (total_bytes >= sizeof(*data)) {
2311 data->bytes_left = total_bytes - sizeof(*data);
2312 data->bytes_missing = 0;
2313 } else {
2314 data->bytes_missing = sizeof(*data) - total_bytes;
2315 data->bytes_left = 0;
2316 }
2317
2318 data->elem_cnt = 0;
2319 data->elem_missed = 0;
2320
2321 return data;
2322}
2323
2324/*
2325 * allocates space to return multiple file system paths for an inode.
2326 * total_bytes to allocate are passed, note that space usable for actual path
2327 * information will be total_bytes - sizeof(struct inode_fs_paths).
2328 * the returned pointer must be freed with free_ipath() in the end.
2329 */
2330struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2331 struct btrfs_path *path)
2332{
2333 struct inode_fs_paths *ifp;
2334 struct btrfs_data_container *fspath;
2335
2336 fspath = init_data_container(total_bytes);
2337 if (IS_ERR(fspath))
2338 return (void *)fspath;
2339
2340 ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
2341 if (!ifp) {
2342 vfree(fspath);
2343 return ERR_PTR(-ENOMEM);
2344 }
2345
2346 ifp->btrfs_path = path;
2347 ifp->fspath = fspath;
2348 ifp->fs_root = fs_root;
2349
2350 return ifp;
2351}
2352
2353void free_ipath(struct inode_fs_paths *ipath)
2354{
2355 if (!ipath)
2356 return;
2357 vfree(ipath->fspath);
2358 kfree(ipath);
2359}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2011 STRATO. All rights reserved.
4 */
5
6#include <linux/mm.h>
7#include <linux/rbtree.h>
8#include <trace/events/btrfs.h>
9#include "ctree.h"
10#include "disk-io.h"
11#include "backref.h"
12#include "ulist.h"
13#include "transaction.h"
14#include "delayed-ref.h"
15#include "locking.h"
16#include "misc.h"
17#include "tree-mod-log.h"
18
19/* Just an arbitrary number so we can be sure this happened */
20#define BACKREF_FOUND_SHARED 6
21
22struct extent_inode_elem {
23 u64 inum;
24 u64 offset;
25 struct extent_inode_elem *next;
26};
27
28static int check_extent_in_eb(const struct btrfs_key *key,
29 const struct extent_buffer *eb,
30 const struct btrfs_file_extent_item *fi,
31 u64 extent_item_pos,
32 struct extent_inode_elem **eie,
33 bool ignore_offset)
34{
35 u64 offset = 0;
36 struct extent_inode_elem *e;
37
38 if (!ignore_offset &&
39 !btrfs_file_extent_compression(eb, fi) &&
40 !btrfs_file_extent_encryption(eb, fi) &&
41 !btrfs_file_extent_other_encoding(eb, fi)) {
42 u64 data_offset;
43 u64 data_len;
44
45 data_offset = btrfs_file_extent_offset(eb, fi);
46 data_len = btrfs_file_extent_num_bytes(eb, fi);
47
48 if (extent_item_pos < data_offset ||
49 extent_item_pos >= data_offset + data_len)
50 return 1;
51 offset = extent_item_pos - data_offset;
52 }
53
54 e = kmalloc(sizeof(*e), GFP_NOFS);
55 if (!e)
56 return -ENOMEM;
57
58 e->next = *eie;
59 e->inum = key->objectid;
60 e->offset = key->offset + offset;
61 *eie = e;
62
63 return 0;
64}
65
66static void free_inode_elem_list(struct extent_inode_elem *eie)
67{
68 struct extent_inode_elem *eie_next;
69
70 for (; eie; eie = eie_next) {
71 eie_next = eie->next;
72 kfree(eie);
73 }
74}
75
76static int find_extent_in_eb(const struct extent_buffer *eb,
77 u64 wanted_disk_byte, u64 extent_item_pos,
78 struct extent_inode_elem **eie,
79 bool ignore_offset)
80{
81 u64 disk_byte;
82 struct btrfs_key key;
83 struct btrfs_file_extent_item *fi;
84 int slot;
85 int nritems;
86 int extent_type;
87 int ret;
88
89 /*
90 * from the shared data ref, we only have the leaf but we need
91 * the key. thus, we must look into all items and see that we
92 * find one (some) with a reference to our extent item.
93 */
94 nritems = btrfs_header_nritems(eb);
95 for (slot = 0; slot < nritems; ++slot) {
96 btrfs_item_key_to_cpu(eb, &key, slot);
97 if (key.type != BTRFS_EXTENT_DATA_KEY)
98 continue;
99 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
100 extent_type = btrfs_file_extent_type(eb, fi);
101 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
102 continue;
103 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
104 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
105 if (disk_byte != wanted_disk_byte)
106 continue;
107
108 ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie, ignore_offset);
109 if (ret < 0)
110 return ret;
111 }
112
113 return 0;
114}
115
116struct preftree {
117 struct rb_root_cached root;
118 unsigned int count;
119};
120
121#define PREFTREE_INIT { .root = RB_ROOT_CACHED, .count = 0 }
122
123struct preftrees {
124 struct preftree direct; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
125 struct preftree indirect; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
126 struct preftree indirect_missing_keys;
127};
128
129/*
130 * Checks for a shared extent during backref search.
131 *
132 * The share_count tracks prelim_refs (direct and indirect) having a
133 * ref->count >0:
134 * - incremented when a ref->count transitions to >0
135 * - decremented when a ref->count transitions to <1
136 */
137struct share_check {
138 u64 root_objectid;
139 u64 inum;
140 int share_count;
141};
142
143static inline int extent_is_shared(struct share_check *sc)
144{
145 return (sc && sc->share_count > 1) ? BACKREF_FOUND_SHARED : 0;
146}
147
148static struct kmem_cache *btrfs_prelim_ref_cache;
149
150int __init btrfs_prelim_ref_init(void)
151{
152 btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
153 sizeof(struct prelim_ref),
154 0,
155 SLAB_MEM_SPREAD,
156 NULL);
157 if (!btrfs_prelim_ref_cache)
158 return -ENOMEM;
159 return 0;
160}
161
162void __cold btrfs_prelim_ref_exit(void)
163{
164 kmem_cache_destroy(btrfs_prelim_ref_cache);
165}
166
167static void free_pref(struct prelim_ref *ref)
168{
169 kmem_cache_free(btrfs_prelim_ref_cache, ref);
170}
171
172/*
173 * Return 0 when both refs are for the same block (and can be merged).
174 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
175 * indicates a 'higher' block.
176 */
177static int prelim_ref_compare(struct prelim_ref *ref1,
178 struct prelim_ref *ref2)
179{
180 if (ref1->level < ref2->level)
181 return -1;
182 if (ref1->level > ref2->level)
183 return 1;
184 if (ref1->root_id < ref2->root_id)
185 return -1;
186 if (ref1->root_id > ref2->root_id)
187 return 1;
188 if (ref1->key_for_search.type < ref2->key_for_search.type)
189 return -1;
190 if (ref1->key_for_search.type > ref2->key_for_search.type)
191 return 1;
192 if (ref1->key_for_search.objectid < ref2->key_for_search.objectid)
193 return -1;
194 if (ref1->key_for_search.objectid > ref2->key_for_search.objectid)
195 return 1;
196 if (ref1->key_for_search.offset < ref2->key_for_search.offset)
197 return -1;
198 if (ref1->key_for_search.offset > ref2->key_for_search.offset)
199 return 1;
200 if (ref1->parent < ref2->parent)
201 return -1;
202 if (ref1->parent > ref2->parent)
203 return 1;
204
205 return 0;
206}
207
208static void update_share_count(struct share_check *sc, int oldcount,
209 int newcount)
210{
211 if ((!sc) || (oldcount == 0 && newcount < 1))
212 return;
213
214 if (oldcount > 0 && newcount < 1)
215 sc->share_count--;
216 else if (oldcount < 1 && newcount > 0)
217 sc->share_count++;
218}
219
220/*
221 * Add @newref to the @root rbtree, merging identical refs.
222 *
223 * Callers should assume that newref has been freed after calling.
224 */
225static void prelim_ref_insert(const struct btrfs_fs_info *fs_info,
226 struct preftree *preftree,
227 struct prelim_ref *newref,
228 struct share_check *sc)
229{
230 struct rb_root_cached *root;
231 struct rb_node **p;
232 struct rb_node *parent = NULL;
233 struct prelim_ref *ref;
234 int result;
235 bool leftmost = true;
236
237 root = &preftree->root;
238 p = &root->rb_root.rb_node;
239
240 while (*p) {
241 parent = *p;
242 ref = rb_entry(parent, struct prelim_ref, rbnode);
243 result = prelim_ref_compare(ref, newref);
244 if (result < 0) {
245 p = &(*p)->rb_left;
246 } else if (result > 0) {
247 p = &(*p)->rb_right;
248 leftmost = false;
249 } else {
250 /* Identical refs, merge them and free @newref */
251 struct extent_inode_elem *eie = ref->inode_list;
252
253 while (eie && eie->next)
254 eie = eie->next;
255
256 if (!eie)
257 ref->inode_list = newref->inode_list;
258 else
259 eie->next = newref->inode_list;
260 trace_btrfs_prelim_ref_merge(fs_info, ref, newref,
261 preftree->count);
262 /*
263 * A delayed ref can have newref->count < 0.
264 * The ref->count is updated to follow any
265 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
266 */
267 update_share_count(sc, ref->count,
268 ref->count + newref->count);
269 ref->count += newref->count;
270 free_pref(newref);
271 return;
272 }
273 }
274
275 update_share_count(sc, 0, newref->count);
276 preftree->count++;
277 trace_btrfs_prelim_ref_insert(fs_info, newref, NULL, preftree->count);
278 rb_link_node(&newref->rbnode, parent, p);
279 rb_insert_color_cached(&newref->rbnode, root, leftmost);
280}
281
282/*
283 * Release the entire tree. We don't care about internal consistency so
284 * just free everything and then reset the tree root.
285 */
286static void prelim_release(struct preftree *preftree)
287{
288 struct prelim_ref *ref, *next_ref;
289
290 rbtree_postorder_for_each_entry_safe(ref, next_ref,
291 &preftree->root.rb_root, rbnode)
292 free_pref(ref);
293
294 preftree->root = RB_ROOT_CACHED;
295 preftree->count = 0;
296}
297
298/*
299 * the rules for all callers of this function are:
300 * - obtaining the parent is the goal
301 * - if you add a key, you must know that it is a correct key
302 * - if you cannot add the parent or a correct key, then we will look into the
303 * block later to set a correct key
304 *
305 * delayed refs
306 * ============
307 * backref type | shared | indirect | shared | indirect
308 * information | tree | tree | data | data
309 * --------------------+--------+----------+--------+----------
310 * parent logical | y | - | - | -
311 * key to resolve | - | y | y | y
312 * tree block logical | - | - | - | -
313 * root for resolving | y | y | y | y
314 *
315 * - column 1: we've the parent -> done
316 * - column 2, 3, 4: we use the key to find the parent
317 *
318 * on disk refs (inline or keyed)
319 * ==============================
320 * backref type | shared | indirect | shared | indirect
321 * information | tree | tree | data | data
322 * --------------------+--------+----------+--------+----------
323 * parent logical | y | - | y | -
324 * key to resolve | - | - | - | y
325 * tree block logical | y | y | y | y
326 * root for resolving | - | y | y | y
327 *
328 * - column 1, 3: we've the parent -> done
329 * - column 2: we take the first key from the block to find the parent
330 * (see add_missing_keys)
331 * - column 4: we use the key to find the parent
332 *
333 * additional information that's available but not required to find the parent
334 * block might help in merging entries to gain some speed.
335 */
336static int add_prelim_ref(const struct btrfs_fs_info *fs_info,
337 struct preftree *preftree, u64 root_id,
338 const struct btrfs_key *key, int level, u64 parent,
339 u64 wanted_disk_byte, int count,
340 struct share_check *sc, gfp_t gfp_mask)
341{
342 struct prelim_ref *ref;
343
344 if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
345 return 0;
346
347 ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
348 if (!ref)
349 return -ENOMEM;
350
351 ref->root_id = root_id;
352 if (key)
353 ref->key_for_search = *key;
354 else
355 memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
356
357 ref->inode_list = NULL;
358 ref->level = level;
359 ref->count = count;
360 ref->parent = parent;
361 ref->wanted_disk_byte = wanted_disk_byte;
362 prelim_ref_insert(fs_info, preftree, ref, sc);
363 return extent_is_shared(sc);
364}
365
366/* direct refs use root == 0, key == NULL */
367static int add_direct_ref(const struct btrfs_fs_info *fs_info,
368 struct preftrees *preftrees, int level, u64 parent,
369 u64 wanted_disk_byte, int count,
370 struct share_check *sc, gfp_t gfp_mask)
371{
372 return add_prelim_ref(fs_info, &preftrees->direct, 0, NULL, level,
373 parent, wanted_disk_byte, count, sc, gfp_mask);
374}
375
376/* indirect refs use parent == 0 */
377static int add_indirect_ref(const struct btrfs_fs_info *fs_info,
378 struct preftrees *preftrees, u64 root_id,
379 const struct btrfs_key *key, int level,
380 u64 wanted_disk_byte, int count,
381 struct share_check *sc, gfp_t gfp_mask)
382{
383 struct preftree *tree = &preftrees->indirect;
384
385 if (!key)
386 tree = &preftrees->indirect_missing_keys;
387 return add_prelim_ref(fs_info, tree, root_id, key, level, 0,
388 wanted_disk_byte, count, sc, gfp_mask);
389}
390
391static int is_shared_data_backref(struct preftrees *preftrees, u64 bytenr)
392{
393 struct rb_node **p = &preftrees->direct.root.rb_root.rb_node;
394 struct rb_node *parent = NULL;
395 struct prelim_ref *ref = NULL;
396 struct prelim_ref target = {};
397 int result;
398
399 target.parent = bytenr;
400
401 while (*p) {
402 parent = *p;
403 ref = rb_entry(parent, struct prelim_ref, rbnode);
404 result = prelim_ref_compare(ref, &target);
405
406 if (result < 0)
407 p = &(*p)->rb_left;
408 else if (result > 0)
409 p = &(*p)->rb_right;
410 else
411 return 1;
412 }
413 return 0;
414}
415
416static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
417 struct ulist *parents,
418 struct preftrees *preftrees, struct prelim_ref *ref,
419 int level, u64 time_seq, const u64 *extent_item_pos,
420 bool ignore_offset)
421{
422 int ret = 0;
423 int slot;
424 struct extent_buffer *eb;
425 struct btrfs_key key;
426 struct btrfs_key *key_for_search = &ref->key_for_search;
427 struct btrfs_file_extent_item *fi;
428 struct extent_inode_elem *eie = NULL, *old = NULL;
429 u64 disk_byte;
430 u64 wanted_disk_byte = ref->wanted_disk_byte;
431 u64 count = 0;
432 u64 data_offset;
433
434 if (level != 0) {
435 eb = path->nodes[level];
436 ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
437 if (ret < 0)
438 return ret;
439 return 0;
440 }
441
442 /*
443 * 1. We normally enter this function with the path already pointing to
444 * the first item to check. But sometimes, we may enter it with
445 * slot == nritems.
446 * 2. We are searching for normal backref but bytenr of this leaf
447 * matches shared data backref
448 * 3. The leaf owner is not equal to the root we are searching
449 *
450 * For these cases, go to the next leaf before we continue.
451 */
452 eb = path->nodes[0];
453 if (path->slots[0] >= btrfs_header_nritems(eb) ||
454 is_shared_data_backref(preftrees, eb->start) ||
455 ref->root_id != btrfs_header_owner(eb)) {
456 if (time_seq == BTRFS_SEQ_LAST)
457 ret = btrfs_next_leaf(root, path);
458 else
459 ret = btrfs_next_old_leaf(root, path, time_seq);
460 }
461
462 while (!ret && count < ref->count) {
463 eb = path->nodes[0];
464 slot = path->slots[0];
465
466 btrfs_item_key_to_cpu(eb, &key, slot);
467
468 if (key.objectid != key_for_search->objectid ||
469 key.type != BTRFS_EXTENT_DATA_KEY)
470 break;
471
472 /*
473 * We are searching for normal backref but bytenr of this leaf
474 * matches shared data backref, OR
475 * the leaf owner is not equal to the root we are searching for
476 */
477 if (slot == 0 &&
478 (is_shared_data_backref(preftrees, eb->start) ||
479 ref->root_id != btrfs_header_owner(eb))) {
480 if (time_seq == BTRFS_SEQ_LAST)
481 ret = btrfs_next_leaf(root, path);
482 else
483 ret = btrfs_next_old_leaf(root, path, time_seq);
484 continue;
485 }
486 fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
487 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
488 data_offset = btrfs_file_extent_offset(eb, fi);
489
490 if (disk_byte == wanted_disk_byte) {
491 eie = NULL;
492 old = NULL;
493 if (ref->key_for_search.offset == key.offset - data_offset)
494 count++;
495 else
496 goto next;
497 if (extent_item_pos) {
498 ret = check_extent_in_eb(&key, eb, fi,
499 *extent_item_pos,
500 &eie, ignore_offset);
501 if (ret < 0)
502 break;
503 }
504 if (ret > 0)
505 goto next;
506 ret = ulist_add_merge_ptr(parents, eb->start,
507 eie, (void **)&old, GFP_NOFS);
508 if (ret < 0)
509 break;
510 if (!ret && extent_item_pos) {
511 while (old->next)
512 old = old->next;
513 old->next = eie;
514 }
515 eie = NULL;
516 }
517next:
518 if (time_seq == BTRFS_SEQ_LAST)
519 ret = btrfs_next_item(root, path);
520 else
521 ret = btrfs_next_old_item(root, path, time_seq);
522 }
523
524 if (ret > 0)
525 ret = 0;
526 else if (ret < 0)
527 free_inode_elem_list(eie);
528 return ret;
529}
530
531/*
532 * resolve an indirect backref in the form (root_id, key, level)
533 * to a logical address
534 */
535static int resolve_indirect_ref(struct btrfs_fs_info *fs_info,
536 struct btrfs_path *path, u64 time_seq,
537 struct preftrees *preftrees,
538 struct prelim_ref *ref, struct ulist *parents,
539 const u64 *extent_item_pos, bool ignore_offset)
540{
541 struct btrfs_root *root;
542 struct extent_buffer *eb;
543 int ret = 0;
544 int root_level;
545 int level = ref->level;
546 struct btrfs_key search_key = ref->key_for_search;
547
548 /*
549 * If we're search_commit_root we could possibly be holding locks on
550 * other tree nodes. This happens when qgroups does backref walks when
551 * adding new delayed refs. To deal with this we need to look in cache
552 * for the root, and if we don't find it then we need to search the
553 * tree_root's commit root, thus the btrfs_get_fs_root_commit_root usage
554 * here.
555 */
556 if (path->search_commit_root)
557 root = btrfs_get_fs_root_commit_root(fs_info, path, ref->root_id);
558 else
559 root = btrfs_get_fs_root(fs_info, ref->root_id, false);
560 if (IS_ERR(root)) {
561 ret = PTR_ERR(root);
562 goto out_free;
563 }
564
565 if (!path->search_commit_root &&
566 test_bit(BTRFS_ROOT_DELETING, &root->state)) {
567 ret = -ENOENT;
568 goto out;
569 }
570
571 if (btrfs_is_testing(fs_info)) {
572 ret = -ENOENT;
573 goto out;
574 }
575
576 if (path->search_commit_root)
577 root_level = btrfs_header_level(root->commit_root);
578 else if (time_seq == BTRFS_SEQ_LAST)
579 root_level = btrfs_header_level(root->node);
580 else
581 root_level = btrfs_old_root_level(root, time_seq);
582
583 if (root_level + 1 == level)
584 goto out;
585
586 /*
587 * We can often find data backrefs with an offset that is too large
588 * (>= LLONG_MAX, maximum allowed file offset) due to underflows when
589 * subtracting a file's offset with the data offset of its
590 * corresponding extent data item. This can happen for example in the
591 * clone ioctl.
592 *
593 * So if we detect such case we set the search key's offset to zero to
594 * make sure we will find the matching file extent item at
595 * add_all_parents(), otherwise we will miss it because the offset
596 * taken form the backref is much larger then the offset of the file
597 * extent item. This can make us scan a very large number of file
598 * extent items, but at least it will not make us miss any.
599 *
600 * This is an ugly workaround for a behaviour that should have never
601 * existed, but it does and a fix for the clone ioctl would touch a lot
602 * of places, cause backwards incompatibility and would not fix the
603 * problem for extents cloned with older kernels.
604 */
605 if (search_key.type == BTRFS_EXTENT_DATA_KEY &&
606 search_key.offset >= LLONG_MAX)
607 search_key.offset = 0;
608 path->lowest_level = level;
609 if (time_seq == BTRFS_SEQ_LAST)
610 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
611 else
612 ret = btrfs_search_old_slot(root, &search_key, path, time_seq);
613
614 btrfs_debug(fs_info,
615 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
616 ref->root_id, level, ref->count, ret,
617 ref->key_for_search.objectid, ref->key_for_search.type,
618 ref->key_for_search.offset);
619 if (ret < 0)
620 goto out;
621
622 eb = path->nodes[level];
623 while (!eb) {
624 if (WARN_ON(!level)) {
625 ret = 1;
626 goto out;
627 }
628 level--;
629 eb = path->nodes[level];
630 }
631
632 ret = add_all_parents(root, path, parents, preftrees, ref, level,
633 time_seq, extent_item_pos, ignore_offset);
634out:
635 btrfs_put_root(root);
636out_free:
637 path->lowest_level = 0;
638 btrfs_release_path(path);
639 return ret;
640}
641
642static struct extent_inode_elem *
643unode_aux_to_inode_list(struct ulist_node *node)
644{
645 if (!node)
646 return NULL;
647 return (struct extent_inode_elem *)(uintptr_t)node->aux;
648}
649
650/*
651 * We maintain three separate rbtrees: one for direct refs, one for
652 * indirect refs which have a key, and one for indirect refs which do not
653 * have a key. Each tree does merge on insertion.
654 *
655 * Once all of the references are located, we iterate over the tree of
656 * indirect refs with missing keys. An appropriate key is located and
657 * the ref is moved onto the tree for indirect refs. After all missing
658 * keys are thus located, we iterate over the indirect ref tree, resolve
659 * each reference, and then insert the resolved reference onto the
660 * direct tree (merging there too).
661 *
662 * New backrefs (i.e., for parent nodes) are added to the appropriate
663 * rbtree as they are encountered. The new backrefs are subsequently
664 * resolved as above.
665 */
666static int resolve_indirect_refs(struct btrfs_fs_info *fs_info,
667 struct btrfs_path *path, u64 time_seq,
668 struct preftrees *preftrees,
669 const u64 *extent_item_pos,
670 struct share_check *sc, bool ignore_offset)
671{
672 int err;
673 int ret = 0;
674 struct ulist *parents;
675 struct ulist_node *node;
676 struct ulist_iterator uiter;
677 struct rb_node *rnode;
678
679 parents = ulist_alloc(GFP_NOFS);
680 if (!parents)
681 return -ENOMEM;
682
683 /*
684 * We could trade memory usage for performance here by iterating
685 * the tree, allocating new refs for each insertion, and then
686 * freeing the entire indirect tree when we're done. In some test
687 * cases, the tree can grow quite large (~200k objects).
688 */
689 while ((rnode = rb_first_cached(&preftrees->indirect.root))) {
690 struct prelim_ref *ref;
691
692 ref = rb_entry(rnode, struct prelim_ref, rbnode);
693 if (WARN(ref->parent,
694 "BUG: direct ref found in indirect tree")) {
695 ret = -EINVAL;
696 goto out;
697 }
698
699 rb_erase_cached(&ref->rbnode, &preftrees->indirect.root);
700 preftrees->indirect.count--;
701
702 if (ref->count == 0) {
703 free_pref(ref);
704 continue;
705 }
706
707 if (sc && sc->root_objectid &&
708 ref->root_id != sc->root_objectid) {
709 free_pref(ref);
710 ret = BACKREF_FOUND_SHARED;
711 goto out;
712 }
713 err = resolve_indirect_ref(fs_info, path, time_seq, preftrees,
714 ref, parents, extent_item_pos,
715 ignore_offset);
716 /*
717 * we can only tolerate ENOENT,otherwise,we should catch error
718 * and return directly.
719 */
720 if (err == -ENOENT) {
721 prelim_ref_insert(fs_info, &preftrees->direct, ref,
722 NULL);
723 continue;
724 } else if (err) {
725 free_pref(ref);
726 ret = err;
727 goto out;
728 }
729
730 /* we put the first parent into the ref at hand */
731 ULIST_ITER_INIT(&uiter);
732 node = ulist_next(parents, &uiter);
733 ref->parent = node ? node->val : 0;
734 ref->inode_list = unode_aux_to_inode_list(node);
735
736 /* Add a prelim_ref(s) for any other parent(s). */
737 while ((node = ulist_next(parents, &uiter))) {
738 struct prelim_ref *new_ref;
739
740 new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
741 GFP_NOFS);
742 if (!new_ref) {
743 free_pref(ref);
744 ret = -ENOMEM;
745 goto out;
746 }
747 memcpy(new_ref, ref, sizeof(*ref));
748 new_ref->parent = node->val;
749 new_ref->inode_list = unode_aux_to_inode_list(node);
750 prelim_ref_insert(fs_info, &preftrees->direct,
751 new_ref, NULL);
752 }
753
754 /*
755 * Now it's a direct ref, put it in the direct tree. We must
756 * do this last because the ref could be merged/freed here.
757 */
758 prelim_ref_insert(fs_info, &preftrees->direct, ref, NULL);
759
760 ulist_reinit(parents);
761 cond_resched();
762 }
763out:
764 ulist_free(parents);
765 return ret;
766}
767
768/*
769 * read tree blocks and add keys where required.
770 */
771static int add_missing_keys(struct btrfs_fs_info *fs_info,
772 struct preftrees *preftrees, bool lock)
773{
774 struct prelim_ref *ref;
775 struct extent_buffer *eb;
776 struct preftree *tree = &preftrees->indirect_missing_keys;
777 struct rb_node *node;
778
779 while ((node = rb_first_cached(&tree->root))) {
780 ref = rb_entry(node, struct prelim_ref, rbnode);
781 rb_erase_cached(node, &tree->root);
782
783 BUG_ON(ref->parent); /* should not be a direct ref */
784 BUG_ON(ref->key_for_search.type);
785 BUG_ON(!ref->wanted_disk_byte);
786
787 eb = read_tree_block(fs_info, ref->wanted_disk_byte,
788 ref->root_id, 0, ref->level - 1, NULL);
789 if (IS_ERR(eb)) {
790 free_pref(ref);
791 return PTR_ERR(eb);
792 } else if (!extent_buffer_uptodate(eb)) {
793 free_pref(ref);
794 free_extent_buffer(eb);
795 return -EIO;
796 }
797 if (lock)
798 btrfs_tree_read_lock(eb);
799 if (btrfs_header_level(eb) == 0)
800 btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
801 else
802 btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
803 if (lock)
804 btrfs_tree_read_unlock(eb);
805 free_extent_buffer(eb);
806 prelim_ref_insert(fs_info, &preftrees->indirect, ref, NULL);
807 cond_resched();
808 }
809 return 0;
810}
811
812/*
813 * add all currently queued delayed refs from this head whose seq nr is
814 * smaller or equal that seq to the list
815 */
816static int add_delayed_refs(const struct btrfs_fs_info *fs_info,
817 struct btrfs_delayed_ref_head *head, u64 seq,
818 struct preftrees *preftrees, struct share_check *sc)
819{
820 struct btrfs_delayed_ref_node *node;
821 struct btrfs_delayed_extent_op *extent_op = head->extent_op;
822 struct btrfs_key key;
823 struct btrfs_key tmp_op_key;
824 struct rb_node *n;
825 int count;
826 int ret = 0;
827
828 if (extent_op && extent_op->update_key)
829 btrfs_disk_key_to_cpu(&tmp_op_key, &extent_op->key);
830
831 spin_lock(&head->lock);
832 for (n = rb_first_cached(&head->ref_tree); n; n = rb_next(n)) {
833 node = rb_entry(n, struct btrfs_delayed_ref_node,
834 ref_node);
835 if (node->seq > seq)
836 continue;
837
838 switch (node->action) {
839 case BTRFS_ADD_DELAYED_EXTENT:
840 case BTRFS_UPDATE_DELAYED_HEAD:
841 WARN_ON(1);
842 continue;
843 case BTRFS_ADD_DELAYED_REF:
844 count = node->ref_mod;
845 break;
846 case BTRFS_DROP_DELAYED_REF:
847 count = node->ref_mod * -1;
848 break;
849 default:
850 BUG();
851 }
852 switch (node->type) {
853 case BTRFS_TREE_BLOCK_REF_KEY: {
854 /* NORMAL INDIRECT METADATA backref */
855 struct btrfs_delayed_tree_ref *ref;
856
857 ref = btrfs_delayed_node_to_tree_ref(node);
858 ret = add_indirect_ref(fs_info, preftrees, ref->root,
859 &tmp_op_key, ref->level + 1,
860 node->bytenr, count, sc,
861 GFP_ATOMIC);
862 break;
863 }
864 case BTRFS_SHARED_BLOCK_REF_KEY: {
865 /* SHARED DIRECT METADATA backref */
866 struct btrfs_delayed_tree_ref *ref;
867
868 ref = btrfs_delayed_node_to_tree_ref(node);
869
870 ret = add_direct_ref(fs_info, preftrees, ref->level + 1,
871 ref->parent, node->bytenr, count,
872 sc, GFP_ATOMIC);
873 break;
874 }
875 case BTRFS_EXTENT_DATA_REF_KEY: {
876 /* NORMAL INDIRECT DATA backref */
877 struct btrfs_delayed_data_ref *ref;
878 ref = btrfs_delayed_node_to_data_ref(node);
879
880 key.objectid = ref->objectid;
881 key.type = BTRFS_EXTENT_DATA_KEY;
882 key.offset = ref->offset;
883
884 /*
885 * Found a inum that doesn't match our known inum, we
886 * know it's shared.
887 */
888 if (sc && sc->inum && ref->objectid != sc->inum) {
889 ret = BACKREF_FOUND_SHARED;
890 goto out;
891 }
892
893 ret = add_indirect_ref(fs_info, preftrees, ref->root,
894 &key, 0, node->bytenr, count, sc,
895 GFP_ATOMIC);
896 break;
897 }
898 case BTRFS_SHARED_DATA_REF_KEY: {
899 /* SHARED DIRECT FULL backref */
900 struct btrfs_delayed_data_ref *ref;
901
902 ref = btrfs_delayed_node_to_data_ref(node);
903
904 ret = add_direct_ref(fs_info, preftrees, 0, ref->parent,
905 node->bytenr, count, sc,
906 GFP_ATOMIC);
907 break;
908 }
909 default:
910 WARN_ON(1);
911 }
912 /*
913 * We must ignore BACKREF_FOUND_SHARED until all delayed
914 * refs have been checked.
915 */
916 if (ret && (ret != BACKREF_FOUND_SHARED))
917 break;
918 }
919 if (!ret)
920 ret = extent_is_shared(sc);
921out:
922 spin_unlock(&head->lock);
923 return ret;
924}
925
926/*
927 * add all inline backrefs for bytenr to the list
928 *
929 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
930 */
931static int add_inline_refs(const struct btrfs_fs_info *fs_info,
932 struct btrfs_path *path, u64 bytenr,
933 int *info_level, struct preftrees *preftrees,
934 struct share_check *sc)
935{
936 int ret = 0;
937 int slot;
938 struct extent_buffer *leaf;
939 struct btrfs_key key;
940 struct btrfs_key found_key;
941 unsigned long ptr;
942 unsigned long end;
943 struct btrfs_extent_item *ei;
944 u64 flags;
945 u64 item_size;
946
947 /*
948 * enumerate all inline refs
949 */
950 leaf = path->nodes[0];
951 slot = path->slots[0];
952
953 item_size = btrfs_item_size_nr(leaf, slot);
954 BUG_ON(item_size < sizeof(*ei));
955
956 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
957 flags = btrfs_extent_flags(leaf, ei);
958 btrfs_item_key_to_cpu(leaf, &found_key, slot);
959
960 ptr = (unsigned long)(ei + 1);
961 end = (unsigned long)ei + item_size;
962
963 if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
964 flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
965 struct btrfs_tree_block_info *info;
966
967 info = (struct btrfs_tree_block_info *)ptr;
968 *info_level = btrfs_tree_block_level(leaf, info);
969 ptr += sizeof(struct btrfs_tree_block_info);
970 BUG_ON(ptr > end);
971 } else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
972 *info_level = found_key.offset;
973 } else {
974 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
975 }
976
977 while (ptr < end) {
978 struct btrfs_extent_inline_ref *iref;
979 u64 offset;
980 int type;
981
982 iref = (struct btrfs_extent_inline_ref *)ptr;
983 type = btrfs_get_extent_inline_ref_type(leaf, iref,
984 BTRFS_REF_TYPE_ANY);
985 if (type == BTRFS_REF_TYPE_INVALID)
986 return -EUCLEAN;
987
988 offset = btrfs_extent_inline_ref_offset(leaf, iref);
989
990 switch (type) {
991 case BTRFS_SHARED_BLOCK_REF_KEY:
992 ret = add_direct_ref(fs_info, preftrees,
993 *info_level + 1, offset,
994 bytenr, 1, NULL, GFP_NOFS);
995 break;
996 case BTRFS_SHARED_DATA_REF_KEY: {
997 struct btrfs_shared_data_ref *sdref;
998 int count;
999
1000 sdref = (struct btrfs_shared_data_ref *)(iref + 1);
1001 count = btrfs_shared_data_ref_count(leaf, sdref);
1002
1003 ret = add_direct_ref(fs_info, preftrees, 0, offset,
1004 bytenr, count, sc, GFP_NOFS);
1005 break;
1006 }
1007 case BTRFS_TREE_BLOCK_REF_KEY:
1008 ret = add_indirect_ref(fs_info, preftrees, offset,
1009 NULL, *info_level + 1,
1010 bytenr, 1, NULL, GFP_NOFS);
1011 break;
1012 case BTRFS_EXTENT_DATA_REF_KEY: {
1013 struct btrfs_extent_data_ref *dref;
1014 int count;
1015 u64 root;
1016
1017 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1018 count = btrfs_extent_data_ref_count(leaf, dref);
1019 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1020 dref);
1021 key.type = BTRFS_EXTENT_DATA_KEY;
1022 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1023
1024 if (sc && sc->inum && key.objectid != sc->inum) {
1025 ret = BACKREF_FOUND_SHARED;
1026 break;
1027 }
1028
1029 root = btrfs_extent_data_ref_root(leaf, dref);
1030
1031 ret = add_indirect_ref(fs_info, preftrees, root,
1032 &key, 0, bytenr, count,
1033 sc, GFP_NOFS);
1034 break;
1035 }
1036 default:
1037 WARN_ON(1);
1038 }
1039 if (ret)
1040 return ret;
1041 ptr += btrfs_extent_inline_ref_size(type);
1042 }
1043
1044 return 0;
1045}
1046
1047/*
1048 * add all non-inline backrefs for bytenr to the list
1049 *
1050 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1051 */
1052static int add_keyed_refs(struct btrfs_fs_info *fs_info,
1053 struct btrfs_path *path, u64 bytenr,
1054 int info_level, struct preftrees *preftrees,
1055 struct share_check *sc)
1056{
1057 struct btrfs_root *extent_root = fs_info->extent_root;
1058 int ret;
1059 int slot;
1060 struct extent_buffer *leaf;
1061 struct btrfs_key key;
1062
1063 while (1) {
1064 ret = btrfs_next_item(extent_root, path);
1065 if (ret < 0)
1066 break;
1067 if (ret) {
1068 ret = 0;
1069 break;
1070 }
1071
1072 slot = path->slots[0];
1073 leaf = path->nodes[0];
1074 btrfs_item_key_to_cpu(leaf, &key, slot);
1075
1076 if (key.objectid != bytenr)
1077 break;
1078 if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
1079 continue;
1080 if (key.type > BTRFS_SHARED_DATA_REF_KEY)
1081 break;
1082
1083 switch (key.type) {
1084 case BTRFS_SHARED_BLOCK_REF_KEY:
1085 /* SHARED DIRECT METADATA backref */
1086 ret = add_direct_ref(fs_info, preftrees,
1087 info_level + 1, key.offset,
1088 bytenr, 1, NULL, GFP_NOFS);
1089 break;
1090 case BTRFS_SHARED_DATA_REF_KEY: {
1091 /* SHARED DIRECT FULL backref */
1092 struct btrfs_shared_data_ref *sdref;
1093 int count;
1094
1095 sdref = btrfs_item_ptr(leaf, slot,
1096 struct btrfs_shared_data_ref);
1097 count = btrfs_shared_data_ref_count(leaf, sdref);
1098 ret = add_direct_ref(fs_info, preftrees, 0,
1099 key.offset, bytenr, count,
1100 sc, GFP_NOFS);
1101 break;
1102 }
1103 case BTRFS_TREE_BLOCK_REF_KEY:
1104 /* NORMAL INDIRECT METADATA backref */
1105 ret = add_indirect_ref(fs_info, preftrees, key.offset,
1106 NULL, info_level + 1, bytenr,
1107 1, NULL, GFP_NOFS);
1108 break;
1109 case BTRFS_EXTENT_DATA_REF_KEY: {
1110 /* NORMAL INDIRECT DATA backref */
1111 struct btrfs_extent_data_ref *dref;
1112 int count;
1113 u64 root;
1114
1115 dref = btrfs_item_ptr(leaf, slot,
1116 struct btrfs_extent_data_ref);
1117 count = btrfs_extent_data_ref_count(leaf, dref);
1118 key.objectid = btrfs_extent_data_ref_objectid(leaf,
1119 dref);
1120 key.type = BTRFS_EXTENT_DATA_KEY;
1121 key.offset = btrfs_extent_data_ref_offset(leaf, dref);
1122
1123 if (sc && sc->inum && key.objectid != sc->inum) {
1124 ret = BACKREF_FOUND_SHARED;
1125 break;
1126 }
1127
1128 root = btrfs_extent_data_ref_root(leaf, dref);
1129 ret = add_indirect_ref(fs_info, preftrees, root,
1130 &key, 0, bytenr, count,
1131 sc, GFP_NOFS);
1132 break;
1133 }
1134 default:
1135 WARN_ON(1);
1136 }
1137 if (ret)
1138 return ret;
1139
1140 }
1141
1142 return ret;
1143}
1144
1145/*
1146 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1147 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1148 * indirect refs to their parent bytenr.
1149 * When roots are found, they're added to the roots list
1150 *
1151 * If time_seq is set to BTRFS_SEQ_LAST, it will not search delayed_refs, and
1152 * behave much like trans == NULL case, the difference only lies in it will not
1153 * commit root.
1154 * The special case is for qgroup to search roots in commit_transaction().
1155 *
1156 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1157 * shared extent is detected.
1158 *
1159 * Otherwise this returns 0 for success and <0 for an error.
1160 *
1161 * If ignore_offset is set to false, only extent refs whose offsets match
1162 * extent_item_pos are returned. If true, every extent ref is returned
1163 * and extent_item_pos is ignored.
1164 *
1165 * FIXME some caching might speed things up
1166 */
1167static int find_parent_nodes(struct btrfs_trans_handle *trans,
1168 struct btrfs_fs_info *fs_info, u64 bytenr,
1169 u64 time_seq, struct ulist *refs,
1170 struct ulist *roots, const u64 *extent_item_pos,
1171 struct share_check *sc, bool ignore_offset)
1172{
1173 struct btrfs_key key;
1174 struct btrfs_path *path;
1175 struct btrfs_delayed_ref_root *delayed_refs = NULL;
1176 struct btrfs_delayed_ref_head *head;
1177 int info_level = 0;
1178 int ret;
1179 struct prelim_ref *ref;
1180 struct rb_node *node;
1181 struct extent_inode_elem *eie = NULL;
1182 struct preftrees preftrees = {
1183 .direct = PREFTREE_INIT,
1184 .indirect = PREFTREE_INIT,
1185 .indirect_missing_keys = PREFTREE_INIT
1186 };
1187
1188 key.objectid = bytenr;
1189 key.offset = (u64)-1;
1190 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1191 key.type = BTRFS_METADATA_ITEM_KEY;
1192 else
1193 key.type = BTRFS_EXTENT_ITEM_KEY;
1194
1195 path = btrfs_alloc_path();
1196 if (!path)
1197 return -ENOMEM;
1198 if (!trans) {
1199 path->search_commit_root = 1;
1200 path->skip_locking = 1;
1201 }
1202
1203 if (time_seq == BTRFS_SEQ_LAST)
1204 path->skip_locking = 1;
1205
1206 /*
1207 * grab both a lock on the path and a lock on the delayed ref head.
1208 * We need both to get a consistent picture of how the refs look
1209 * at a specified point in time
1210 */
1211again:
1212 head = NULL;
1213
1214 ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
1215 if (ret < 0)
1216 goto out;
1217 BUG_ON(ret == 0);
1218
1219#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1220 if (trans && likely(trans->type != __TRANS_DUMMY) &&
1221 time_seq != BTRFS_SEQ_LAST) {
1222#else
1223 if (trans && time_seq != BTRFS_SEQ_LAST) {
1224#endif
1225 /*
1226 * look if there are updates for this ref queued and lock the
1227 * head
1228 */
1229 delayed_refs = &trans->transaction->delayed_refs;
1230 spin_lock(&delayed_refs->lock);
1231 head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
1232 if (head) {
1233 if (!mutex_trylock(&head->mutex)) {
1234 refcount_inc(&head->refs);
1235 spin_unlock(&delayed_refs->lock);
1236
1237 btrfs_release_path(path);
1238
1239 /*
1240 * Mutex was contended, block until it's
1241 * released and try again
1242 */
1243 mutex_lock(&head->mutex);
1244 mutex_unlock(&head->mutex);
1245 btrfs_put_delayed_ref_head(head);
1246 goto again;
1247 }
1248 spin_unlock(&delayed_refs->lock);
1249 ret = add_delayed_refs(fs_info, head, time_seq,
1250 &preftrees, sc);
1251 mutex_unlock(&head->mutex);
1252 if (ret)
1253 goto out;
1254 } else {
1255 spin_unlock(&delayed_refs->lock);
1256 }
1257 }
1258
1259 if (path->slots[0]) {
1260 struct extent_buffer *leaf;
1261 int slot;
1262
1263 path->slots[0]--;
1264 leaf = path->nodes[0];
1265 slot = path->slots[0];
1266 btrfs_item_key_to_cpu(leaf, &key, slot);
1267 if (key.objectid == bytenr &&
1268 (key.type == BTRFS_EXTENT_ITEM_KEY ||
1269 key.type == BTRFS_METADATA_ITEM_KEY)) {
1270 ret = add_inline_refs(fs_info, path, bytenr,
1271 &info_level, &preftrees, sc);
1272 if (ret)
1273 goto out;
1274 ret = add_keyed_refs(fs_info, path, bytenr, info_level,
1275 &preftrees, sc);
1276 if (ret)
1277 goto out;
1278 }
1279 }
1280
1281 btrfs_release_path(path);
1282
1283 ret = add_missing_keys(fs_info, &preftrees, path->skip_locking == 0);
1284 if (ret)
1285 goto out;
1286
1287 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect_missing_keys.root.rb_root));
1288
1289 ret = resolve_indirect_refs(fs_info, path, time_seq, &preftrees,
1290 extent_item_pos, sc, ignore_offset);
1291 if (ret)
1292 goto out;
1293
1294 WARN_ON(!RB_EMPTY_ROOT(&preftrees.indirect.root.rb_root));
1295
1296 /*
1297 * This walks the tree of merged and resolved refs. Tree blocks are
1298 * read in as needed. Unique entries are added to the ulist, and
1299 * the list of found roots is updated.
1300 *
1301 * We release the entire tree in one go before returning.
1302 */
1303 node = rb_first_cached(&preftrees.direct.root);
1304 while (node) {
1305 ref = rb_entry(node, struct prelim_ref, rbnode);
1306 node = rb_next(&ref->rbnode);
1307 /*
1308 * ref->count < 0 can happen here if there are delayed
1309 * refs with a node->action of BTRFS_DROP_DELAYED_REF.
1310 * prelim_ref_insert() relies on this when merging
1311 * identical refs to keep the overall count correct.
1312 * prelim_ref_insert() will merge only those refs
1313 * which compare identically. Any refs having
1314 * e.g. different offsets would not be merged,
1315 * and would retain their original ref->count < 0.
1316 */
1317 if (roots && ref->count && ref->root_id && ref->parent == 0) {
1318 if (sc && sc->root_objectid &&
1319 ref->root_id != sc->root_objectid) {
1320 ret = BACKREF_FOUND_SHARED;
1321 goto out;
1322 }
1323
1324 /* no parent == root of tree */
1325 ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1326 if (ret < 0)
1327 goto out;
1328 }
1329 if (ref->count && ref->parent) {
1330 if (extent_item_pos && !ref->inode_list &&
1331 ref->level == 0) {
1332 struct extent_buffer *eb;
1333
1334 eb = read_tree_block(fs_info, ref->parent, 0,
1335 0, ref->level, NULL);
1336 if (IS_ERR(eb)) {
1337 ret = PTR_ERR(eb);
1338 goto out;
1339 } else if (!extent_buffer_uptodate(eb)) {
1340 free_extent_buffer(eb);
1341 ret = -EIO;
1342 goto out;
1343 }
1344
1345 if (!path->skip_locking)
1346 btrfs_tree_read_lock(eb);
1347 ret = find_extent_in_eb(eb, bytenr,
1348 *extent_item_pos, &eie, ignore_offset);
1349 if (!path->skip_locking)
1350 btrfs_tree_read_unlock(eb);
1351 free_extent_buffer(eb);
1352 if (ret < 0)
1353 goto out;
1354 ref->inode_list = eie;
1355 }
1356 ret = ulist_add_merge_ptr(refs, ref->parent,
1357 ref->inode_list,
1358 (void **)&eie, GFP_NOFS);
1359 if (ret < 0)
1360 goto out;
1361 if (!ret && extent_item_pos) {
1362 /*
1363 * we've recorded that parent, so we must extend
1364 * its inode list here
1365 */
1366 BUG_ON(!eie);
1367 while (eie->next)
1368 eie = eie->next;
1369 eie->next = ref->inode_list;
1370 }
1371 eie = NULL;
1372 }
1373 cond_resched();
1374 }
1375
1376out:
1377 btrfs_free_path(path);
1378
1379 prelim_release(&preftrees.direct);
1380 prelim_release(&preftrees.indirect);
1381 prelim_release(&preftrees.indirect_missing_keys);
1382
1383 if (ret < 0)
1384 free_inode_elem_list(eie);
1385 return ret;
1386}
1387
1388static void free_leaf_list(struct ulist *blocks)
1389{
1390 struct ulist_node *node = NULL;
1391 struct extent_inode_elem *eie;
1392 struct ulist_iterator uiter;
1393
1394 ULIST_ITER_INIT(&uiter);
1395 while ((node = ulist_next(blocks, &uiter))) {
1396 if (!node->aux)
1397 continue;
1398 eie = unode_aux_to_inode_list(node);
1399 free_inode_elem_list(eie);
1400 node->aux = 0;
1401 }
1402
1403 ulist_free(blocks);
1404}
1405
1406/*
1407 * Finds all leafs with a reference to the specified combination of bytenr and
1408 * offset. key_list_head will point to a list of corresponding keys (caller must
1409 * free each list element). The leafs will be stored in the leafs ulist, which
1410 * must be freed with ulist_free.
1411 *
1412 * returns 0 on success, <0 on error
1413 */
1414int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1415 struct btrfs_fs_info *fs_info, u64 bytenr,
1416 u64 time_seq, struct ulist **leafs,
1417 const u64 *extent_item_pos, bool ignore_offset)
1418{
1419 int ret;
1420
1421 *leafs = ulist_alloc(GFP_NOFS);
1422 if (!*leafs)
1423 return -ENOMEM;
1424
1425 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1426 *leafs, NULL, extent_item_pos, NULL, ignore_offset);
1427 if (ret < 0 && ret != -ENOENT) {
1428 free_leaf_list(*leafs);
1429 return ret;
1430 }
1431
1432 return 0;
1433}
1434
1435/*
1436 * walk all backrefs for a given extent to find all roots that reference this
1437 * extent. Walking a backref means finding all extents that reference this
1438 * extent and in turn walk the backrefs of those, too. Naturally this is a
1439 * recursive process, but here it is implemented in an iterative fashion: We
1440 * find all referencing extents for the extent in question and put them on a
1441 * list. In turn, we find all referencing extents for those, further appending
1442 * to the list. The way we iterate the list allows adding more elements after
1443 * the current while iterating. The process stops when we reach the end of the
1444 * list. Found roots are added to the roots list.
1445 *
1446 * returns 0 on success, < 0 on error.
1447 */
1448static int btrfs_find_all_roots_safe(struct btrfs_trans_handle *trans,
1449 struct btrfs_fs_info *fs_info, u64 bytenr,
1450 u64 time_seq, struct ulist **roots,
1451 bool ignore_offset)
1452{
1453 struct ulist *tmp;
1454 struct ulist_node *node = NULL;
1455 struct ulist_iterator uiter;
1456 int ret;
1457
1458 tmp = ulist_alloc(GFP_NOFS);
1459 if (!tmp)
1460 return -ENOMEM;
1461 *roots = ulist_alloc(GFP_NOFS);
1462 if (!*roots) {
1463 ulist_free(tmp);
1464 return -ENOMEM;
1465 }
1466
1467 ULIST_ITER_INIT(&uiter);
1468 while (1) {
1469 ret = find_parent_nodes(trans, fs_info, bytenr, time_seq,
1470 tmp, *roots, NULL, NULL, ignore_offset);
1471 if (ret < 0 && ret != -ENOENT) {
1472 ulist_free(tmp);
1473 ulist_free(*roots);
1474 *roots = NULL;
1475 return ret;
1476 }
1477 node = ulist_next(tmp, &uiter);
1478 if (!node)
1479 break;
1480 bytenr = node->val;
1481 cond_resched();
1482 }
1483
1484 ulist_free(tmp);
1485 return 0;
1486}
1487
1488int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1489 struct btrfs_fs_info *fs_info, u64 bytenr,
1490 u64 time_seq, struct ulist **roots,
1491 bool ignore_offset, bool skip_commit_root_sem)
1492{
1493 int ret;
1494
1495 if (!trans && !skip_commit_root_sem)
1496 down_read(&fs_info->commit_root_sem);
1497 ret = btrfs_find_all_roots_safe(trans, fs_info, bytenr,
1498 time_seq, roots, ignore_offset);
1499 if (!trans && !skip_commit_root_sem)
1500 up_read(&fs_info->commit_root_sem);
1501 return ret;
1502}
1503
1504/**
1505 * Check if an extent is shared or not
1506 *
1507 * @root: root inode belongs to
1508 * @inum: inode number of the inode whose extent we are checking
1509 * @bytenr: logical bytenr of the extent we are checking
1510 * @roots: list of roots this extent is shared among
1511 * @tmp: temporary list used for iteration
1512 *
1513 * btrfs_check_shared uses the backref walking code but will short
1514 * circuit as soon as it finds a root or inode that doesn't match the
1515 * one passed in. This provides a significant performance benefit for
1516 * callers (such as fiemap) which want to know whether the extent is
1517 * shared but do not need a ref count.
1518 *
1519 * This attempts to attach to the running transaction in order to account for
1520 * delayed refs, but continues on even when no running transaction exists.
1521 *
1522 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1523 */
1524int btrfs_check_shared(struct btrfs_root *root, u64 inum, u64 bytenr,
1525 struct ulist *roots, struct ulist *tmp)
1526{
1527 struct btrfs_fs_info *fs_info = root->fs_info;
1528 struct btrfs_trans_handle *trans;
1529 struct ulist_iterator uiter;
1530 struct ulist_node *node;
1531 struct btrfs_seq_list elem = BTRFS_SEQ_LIST_INIT(elem);
1532 int ret = 0;
1533 struct share_check shared = {
1534 .root_objectid = root->root_key.objectid,
1535 .inum = inum,
1536 .share_count = 0,
1537 };
1538
1539 ulist_init(roots);
1540 ulist_init(tmp);
1541
1542 trans = btrfs_join_transaction_nostart(root);
1543 if (IS_ERR(trans)) {
1544 if (PTR_ERR(trans) != -ENOENT && PTR_ERR(trans) != -EROFS) {
1545 ret = PTR_ERR(trans);
1546 goto out;
1547 }
1548 trans = NULL;
1549 down_read(&fs_info->commit_root_sem);
1550 } else {
1551 btrfs_get_tree_mod_seq(fs_info, &elem);
1552 }
1553
1554 ULIST_ITER_INIT(&uiter);
1555 while (1) {
1556 ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1557 roots, NULL, &shared, false);
1558 if (ret == BACKREF_FOUND_SHARED) {
1559 /* this is the only condition under which we return 1 */
1560 ret = 1;
1561 break;
1562 }
1563 if (ret < 0 && ret != -ENOENT)
1564 break;
1565 ret = 0;
1566 node = ulist_next(tmp, &uiter);
1567 if (!node)
1568 break;
1569 bytenr = node->val;
1570 shared.share_count = 0;
1571 cond_resched();
1572 }
1573
1574 if (trans) {
1575 btrfs_put_tree_mod_seq(fs_info, &elem);
1576 btrfs_end_transaction(trans);
1577 } else {
1578 up_read(&fs_info->commit_root_sem);
1579 }
1580out:
1581 ulist_release(roots);
1582 ulist_release(tmp);
1583 return ret;
1584}
1585
1586int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1587 u64 start_off, struct btrfs_path *path,
1588 struct btrfs_inode_extref **ret_extref,
1589 u64 *found_off)
1590{
1591 int ret, slot;
1592 struct btrfs_key key;
1593 struct btrfs_key found_key;
1594 struct btrfs_inode_extref *extref;
1595 const struct extent_buffer *leaf;
1596 unsigned long ptr;
1597
1598 key.objectid = inode_objectid;
1599 key.type = BTRFS_INODE_EXTREF_KEY;
1600 key.offset = start_off;
1601
1602 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1603 if (ret < 0)
1604 return ret;
1605
1606 while (1) {
1607 leaf = path->nodes[0];
1608 slot = path->slots[0];
1609 if (slot >= btrfs_header_nritems(leaf)) {
1610 /*
1611 * If the item at offset is not found,
1612 * btrfs_search_slot will point us to the slot
1613 * where it should be inserted. In our case
1614 * that will be the slot directly before the
1615 * next INODE_REF_KEY_V2 item. In the case
1616 * that we're pointing to the last slot in a
1617 * leaf, we must move one leaf over.
1618 */
1619 ret = btrfs_next_leaf(root, path);
1620 if (ret) {
1621 if (ret >= 1)
1622 ret = -ENOENT;
1623 break;
1624 }
1625 continue;
1626 }
1627
1628 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1629
1630 /*
1631 * Check that we're still looking at an extended ref key for
1632 * this particular objectid. If we have different
1633 * objectid or type then there are no more to be found
1634 * in the tree and we can exit.
1635 */
1636 ret = -ENOENT;
1637 if (found_key.objectid != inode_objectid)
1638 break;
1639 if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1640 break;
1641
1642 ret = 0;
1643 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1644 extref = (struct btrfs_inode_extref *)ptr;
1645 *ret_extref = extref;
1646 if (found_off)
1647 *found_off = found_key.offset;
1648 break;
1649 }
1650
1651 return ret;
1652}
1653
1654/*
1655 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1656 * Elements of the path are separated by '/' and the path is guaranteed to be
1657 * 0-terminated. the path is only given within the current file system.
1658 * Therefore, it never starts with a '/'. the caller is responsible to provide
1659 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1660 * the start point of the resulting string is returned. this pointer is within
1661 * dest, normally.
1662 * in case the path buffer would overflow, the pointer is decremented further
1663 * as if output was written to the buffer, though no more output is actually
1664 * generated. that way, the caller can determine how much space would be
1665 * required for the path to fit into the buffer. in that case, the returned
1666 * value will be smaller than dest. callers must check this!
1667 */
1668char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1669 u32 name_len, unsigned long name_off,
1670 struct extent_buffer *eb_in, u64 parent,
1671 char *dest, u32 size)
1672{
1673 int slot;
1674 u64 next_inum;
1675 int ret;
1676 s64 bytes_left = ((s64)size) - 1;
1677 struct extent_buffer *eb = eb_in;
1678 struct btrfs_key found_key;
1679 struct btrfs_inode_ref *iref;
1680
1681 if (bytes_left >= 0)
1682 dest[bytes_left] = '\0';
1683
1684 while (1) {
1685 bytes_left -= name_len;
1686 if (bytes_left >= 0)
1687 read_extent_buffer(eb, dest + bytes_left,
1688 name_off, name_len);
1689 if (eb != eb_in) {
1690 if (!path->skip_locking)
1691 btrfs_tree_read_unlock(eb);
1692 free_extent_buffer(eb);
1693 }
1694 ret = btrfs_find_item(fs_root, path, parent, 0,
1695 BTRFS_INODE_REF_KEY, &found_key);
1696 if (ret > 0)
1697 ret = -ENOENT;
1698 if (ret)
1699 break;
1700
1701 next_inum = found_key.offset;
1702
1703 /* regular exit ahead */
1704 if (parent == next_inum)
1705 break;
1706
1707 slot = path->slots[0];
1708 eb = path->nodes[0];
1709 /* make sure we can use eb after releasing the path */
1710 if (eb != eb_in) {
1711 path->nodes[0] = NULL;
1712 path->locks[0] = 0;
1713 }
1714 btrfs_release_path(path);
1715 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1716
1717 name_len = btrfs_inode_ref_name_len(eb, iref);
1718 name_off = (unsigned long)(iref + 1);
1719
1720 parent = next_inum;
1721 --bytes_left;
1722 if (bytes_left >= 0)
1723 dest[bytes_left] = '/';
1724 }
1725
1726 btrfs_release_path(path);
1727
1728 if (ret)
1729 return ERR_PTR(ret);
1730
1731 return dest + bytes_left;
1732}
1733
1734/*
1735 * this makes the path point to (logical EXTENT_ITEM *)
1736 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1737 * tree blocks and <0 on error.
1738 */
1739int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1740 struct btrfs_path *path, struct btrfs_key *found_key,
1741 u64 *flags_ret)
1742{
1743 int ret;
1744 u64 flags;
1745 u64 size = 0;
1746 u32 item_size;
1747 const struct extent_buffer *eb;
1748 struct btrfs_extent_item *ei;
1749 struct btrfs_key key;
1750
1751 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1752 key.type = BTRFS_METADATA_ITEM_KEY;
1753 else
1754 key.type = BTRFS_EXTENT_ITEM_KEY;
1755 key.objectid = logical;
1756 key.offset = (u64)-1;
1757
1758 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1759 if (ret < 0)
1760 return ret;
1761
1762 ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1763 if (ret) {
1764 if (ret > 0)
1765 ret = -ENOENT;
1766 return ret;
1767 }
1768 btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1769 if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1770 size = fs_info->nodesize;
1771 else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1772 size = found_key->offset;
1773
1774 if (found_key->objectid > logical ||
1775 found_key->objectid + size <= logical) {
1776 btrfs_debug(fs_info,
1777 "logical %llu is not within any extent", logical);
1778 return -ENOENT;
1779 }
1780
1781 eb = path->nodes[0];
1782 item_size = btrfs_item_size_nr(eb, path->slots[0]);
1783 BUG_ON(item_size < sizeof(*ei));
1784
1785 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1786 flags = btrfs_extent_flags(eb, ei);
1787
1788 btrfs_debug(fs_info,
1789 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1790 logical, logical - found_key->objectid, found_key->objectid,
1791 found_key->offset, flags, item_size);
1792
1793 WARN_ON(!flags_ret);
1794 if (flags_ret) {
1795 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1796 *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1797 else if (flags & BTRFS_EXTENT_FLAG_DATA)
1798 *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1799 else
1800 BUG();
1801 return 0;
1802 }
1803
1804 return -EIO;
1805}
1806
1807/*
1808 * helper function to iterate extent inline refs. ptr must point to a 0 value
1809 * for the first call and may be modified. it is used to track state.
1810 * if more refs exist, 0 is returned and the next call to
1811 * get_extent_inline_ref must pass the modified ptr parameter to get the
1812 * next ref. after the last ref was processed, 1 is returned.
1813 * returns <0 on error
1814 */
1815static int get_extent_inline_ref(unsigned long *ptr,
1816 const struct extent_buffer *eb,
1817 const struct btrfs_key *key,
1818 const struct btrfs_extent_item *ei,
1819 u32 item_size,
1820 struct btrfs_extent_inline_ref **out_eiref,
1821 int *out_type)
1822{
1823 unsigned long end;
1824 u64 flags;
1825 struct btrfs_tree_block_info *info;
1826
1827 if (!*ptr) {
1828 /* first call */
1829 flags = btrfs_extent_flags(eb, ei);
1830 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1831 if (key->type == BTRFS_METADATA_ITEM_KEY) {
1832 /* a skinny metadata extent */
1833 *out_eiref =
1834 (struct btrfs_extent_inline_ref *)(ei + 1);
1835 } else {
1836 WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1837 info = (struct btrfs_tree_block_info *)(ei + 1);
1838 *out_eiref =
1839 (struct btrfs_extent_inline_ref *)(info + 1);
1840 }
1841 } else {
1842 *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1843 }
1844 *ptr = (unsigned long)*out_eiref;
1845 if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1846 return -ENOENT;
1847 }
1848
1849 end = (unsigned long)ei + item_size;
1850 *out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1851 *out_type = btrfs_get_extent_inline_ref_type(eb, *out_eiref,
1852 BTRFS_REF_TYPE_ANY);
1853 if (*out_type == BTRFS_REF_TYPE_INVALID)
1854 return -EUCLEAN;
1855
1856 *ptr += btrfs_extent_inline_ref_size(*out_type);
1857 WARN_ON(*ptr > end);
1858 if (*ptr == end)
1859 return 1; /* last */
1860
1861 return 0;
1862}
1863
1864/*
1865 * reads the tree block backref for an extent. tree level and root are returned
1866 * through out_level and out_root. ptr must point to a 0 value for the first
1867 * call and may be modified (see get_extent_inline_ref comment).
1868 * returns 0 if data was provided, 1 if there was no more data to provide or
1869 * <0 on error.
1870 */
1871int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1872 struct btrfs_key *key, struct btrfs_extent_item *ei,
1873 u32 item_size, u64 *out_root, u8 *out_level)
1874{
1875 int ret;
1876 int type;
1877 struct btrfs_extent_inline_ref *eiref;
1878
1879 if (*ptr == (unsigned long)-1)
1880 return 1;
1881
1882 while (1) {
1883 ret = get_extent_inline_ref(ptr, eb, key, ei, item_size,
1884 &eiref, &type);
1885 if (ret < 0)
1886 return ret;
1887
1888 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1889 type == BTRFS_SHARED_BLOCK_REF_KEY)
1890 break;
1891
1892 if (ret == 1)
1893 return 1;
1894 }
1895
1896 /* we can treat both ref types equally here */
1897 *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1898
1899 if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1900 struct btrfs_tree_block_info *info;
1901
1902 info = (struct btrfs_tree_block_info *)(ei + 1);
1903 *out_level = btrfs_tree_block_level(eb, info);
1904 } else {
1905 ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1906 *out_level = (u8)key->offset;
1907 }
1908
1909 if (ret == 1)
1910 *ptr = (unsigned long)-1;
1911
1912 return 0;
1913}
1914
1915static int iterate_leaf_refs(struct btrfs_fs_info *fs_info,
1916 struct extent_inode_elem *inode_list,
1917 u64 root, u64 extent_item_objectid,
1918 iterate_extent_inodes_t *iterate, void *ctx)
1919{
1920 struct extent_inode_elem *eie;
1921 int ret = 0;
1922
1923 for (eie = inode_list; eie; eie = eie->next) {
1924 btrfs_debug(fs_info,
1925 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1926 extent_item_objectid, eie->inum,
1927 eie->offset, root);
1928 ret = iterate(eie->inum, eie->offset, root, ctx);
1929 if (ret) {
1930 btrfs_debug(fs_info,
1931 "stopping iteration for %llu due to ret=%d",
1932 extent_item_objectid, ret);
1933 break;
1934 }
1935 }
1936
1937 return ret;
1938}
1939
1940/*
1941 * calls iterate() for every inode that references the extent identified by
1942 * the given parameters.
1943 * when the iterator function returns a non-zero value, iteration stops.
1944 */
1945int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1946 u64 extent_item_objectid, u64 extent_item_pos,
1947 int search_commit_root,
1948 iterate_extent_inodes_t *iterate, void *ctx,
1949 bool ignore_offset)
1950{
1951 int ret;
1952 struct btrfs_trans_handle *trans = NULL;
1953 struct ulist *refs = NULL;
1954 struct ulist *roots = NULL;
1955 struct ulist_node *ref_node = NULL;
1956 struct ulist_node *root_node = NULL;
1957 struct btrfs_seq_list seq_elem = BTRFS_SEQ_LIST_INIT(seq_elem);
1958 struct ulist_iterator ref_uiter;
1959 struct ulist_iterator root_uiter;
1960
1961 btrfs_debug(fs_info, "resolving all inodes for extent %llu",
1962 extent_item_objectid);
1963
1964 if (!search_commit_root) {
1965 trans = btrfs_attach_transaction(fs_info->extent_root);
1966 if (IS_ERR(trans)) {
1967 if (PTR_ERR(trans) != -ENOENT &&
1968 PTR_ERR(trans) != -EROFS)
1969 return PTR_ERR(trans);
1970 trans = NULL;
1971 }
1972 }
1973
1974 if (trans)
1975 btrfs_get_tree_mod_seq(fs_info, &seq_elem);
1976 else
1977 down_read(&fs_info->commit_root_sem);
1978
1979 ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1980 seq_elem.seq, &refs,
1981 &extent_item_pos, ignore_offset);
1982 if (ret)
1983 goto out;
1984
1985 ULIST_ITER_INIT(&ref_uiter);
1986 while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1987 ret = btrfs_find_all_roots_safe(trans, fs_info, ref_node->val,
1988 seq_elem.seq, &roots,
1989 ignore_offset);
1990 if (ret)
1991 break;
1992 ULIST_ITER_INIT(&root_uiter);
1993 while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1994 btrfs_debug(fs_info,
1995 "root %llu references leaf %llu, data list %#llx",
1996 root_node->val, ref_node->val,
1997 ref_node->aux);
1998 ret = iterate_leaf_refs(fs_info,
1999 (struct extent_inode_elem *)
2000 (uintptr_t)ref_node->aux,
2001 root_node->val,
2002 extent_item_objectid,
2003 iterate, ctx);
2004 }
2005 ulist_free(roots);
2006 }
2007
2008 free_leaf_list(refs);
2009out:
2010 if (trans) {
2011 btrfs_put_tree_mod_seq(fs_info, &seq_elem);
2012 btrfs_end_transaction(trans);
2013 } else {
2014 up_read(&fs_info->commit_root_sem);
2015 }
2016
2017 return ret;
2018}
2019
2020int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
2021 struct btrfs_path *path,
2022 iterate_extent_inodes_t *iterate, void *ctx,
2023 bool ignore_offset)
2024{
2025 int ret;
2026 u64 extent_item_pos;
2027 u64 flags = 0;
2028 struct btrfs_key found_key;
2029 int search_commit_root = path->search_commit_root;
2030
2031 ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
2032 btrfs_release_path(path);
2033 if (ret < 0)
2034 return ret;
2035 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
2036 return -EINVAL;
2037
2038 extent_item_pos = logical - found_key.objectid;
2039 ret = iterate_extent_inodes(fs_info, found_key.objectid,
2040 extent_item_pos, search_commit_root,
2041 iterate, ctx, ignore_offset);
2042
2043 return ret;
2044}
2045
2046typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
2047 struct extent_buffer *eb, void *ctx);
2048
2049static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
2050 struct btrfs_path *path,
2051 iterate_irefs_t *iterate, void *ctx)
2052{
2053 int ret = 0;
2054 int slot;
2055 u32 cur;
2056 u32 len;
2057 u32 name_len;
2058 u64 parent = 0;
2059 int found = 0;
2060 struct extent_buffer *eb;
2061 struct btrfs_item *item;
2062 struct btrfs_inode_ref *iref;
2063 struct btrfs_key found_key;
2064
2065 while (!ret) {
2066 ret = btrfs_find_item(fs_root, path, inum,
2067 parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
2068 &found_key);
2069
2070 if (ret < 0)
2071 break;
2072 if (ret) {
2073 ret = found ? 0 : -ENOENT;
2074 break;
2075 }
2076 ++found;
2077
2078 parent = found_key.offset;
2079 slot = path->slots[0];
2080 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2081 if (!eb) {
2082 ret = -ENOMEM;
2083 break;
2084 }
2085 btrfs_release_path(path);
2086
2087 item = btrfs_item_nr(slot);
2088 iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
2089
2090 for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
2091 name_len = btrfs_inode_ref_name_len(eb, iref);
2092 /* path must be released before calling iterate()! */
2093 btrfs_debug(fs_root->fs_info,
2094 "following ref at offset %u for inode %llu in tree %llu",
2095 cur, found_key.objectid,
2096 fs_root->root_key.objectid);
2097 ret = iterate(parent, name_len,
2098 (unsigned long)(iref + 1), eb, ctx);
2099 if (ret)
2100 break;
2101 len = sizeof(*iref) + name_len;
2102 iref = (struct btrfs_inode_ref *)((char *)iref + len);
2103 }
2104 free_extent_buffer(eb);
2105 }
2106
2107 btrfs_release_path(path);
2108
2109 return ret;
2110}
2111
2112static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
2113 struct btrfs_path *path,
2114 iterate_irefs_t *iterate, void *ctx)
2115{
2116 int ret;
2117 int slot;
2118 u64 offset = 0;
2119 u64 parent;
2120 int found = 0;
2121 struct extent_buffer *eb;
2122 struct btrfs_inode_extref *extref;
2123 u32 item_size;
2124 u32 cur_offset;
2125 unsigned long ptr;
2126
2127 while (1) {
2128 ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
2129 &offset);
2130 if (ret < 0)
2131 break;
2132 if (ret) {
2133 ret = found ? 0 : -ENOENT;
2134 break;
2135 }
2136 ++found;
2137
2138 slot = path->slots[0];
2139 eb = btrfs_clone_extent_buffer(path->nodes[0]);
2140 if (!eb) {
2141 ret = -ENOMEM;
2142 break;
2143 }
2144 btrfs_release_path(path);
2145
2146 item_size = btrfs_item_size_nr(eb, slot);
2147 ptr = btrfs_item_ptr_offset(eb, slot);
2148 cur_offset = 0;
2149
2150 while (cur_offset < item_size) {
2151 u32 name_len;
2152
2153 extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
2154 parent = btrfs_inode_extref_parent(eb, extref);
2155 name_len = btrfs_inode_extref_name_len(eb, extref);
2156 ret = iterate(parent, name_len,
2157 (unsigned long)&extref->name, eb, ctx);
2158 if (ret)
2159 break;
2160
2161 cur_offset += btrfs_inode_extref_name_len(eb, extref);
2162 cur_offset += sizeof(*extref);
2163 }
2164 free_extent_buffer(eb);
2165
2166 offset++;
2167 }
2168
2169 btrfs_release_path(path);
2170
2171 return ret;
2172}
2173
2174static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
2175 struct btrfs_path *path, iterate_irefs_t *iterate,
2176 void *ctx)
2177{
2178 int ret;
2179 int found_refs = 0;
2180
2181 ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
2182 if (!ret)
2183 ++found_refs;
2184 else if (ret != -ENOENT)
2185 return ret;
2186
2187 ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
2188 if (ret == -ENOENT && found_refs)
2189 return 0;
2190
2191 return ret;
2192}
2193
2194/*
2195 * returns 0 if the path could be dumped (probably truncated)
2196 * returns <0 in case of an error
2197 */
2198static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
2199 struct extent_buffer *eb, void *ctx)
2200{
2201 struct inode_fs_paths *ipath = ctx;
2202 char *fspath;
2203 char *fspath_min;
2204 int i = ipath->fspath->elem_cnt;
2205 const int s_ptr = sizeof(char *);
2206 u32 bytes_left;
2207
2208 bytes_left = ipath->fspath->bytes_left > s_ptr ?
2209 ipath->fspath->bytes_left - s_ptr : 0;
2210
2211 fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
2212 fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
2213 name_off, eb, inum, fspath_min, bytes_left);
2214 if (IS_ERR(fspath))
2215 return PTR_ERR(fspath);
2216
2217 if (fspath > fspath_min) {
2218 ipath->fspath->val[i] = (u64)(unsigned long)fspath;
2219 ++ipath->fspath->elem_cnt;
2220 ipath->fspath->bytes_left = fspath - fspath_min;
2221 } else {
2222 ++ipath->fspath->elem_missed;
2223 ipath->fspath->bytes_missing += fspath_min - fspath;
2224 ipath->fspath->bytes_left = 0;
2225 }
2226
2227 return 0;
2228}
2229
2230/*
2231 * this dumps all file system paths to the inode into the ipath struct, provided
2232 * is has been created large enough. each path is zero-terminated and accessed
2233 * from ipath->fspath->val[i].
2234 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2235 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2236 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2237 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2238 * have been needed to return all paths.
2239 */
2240int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
2241{
2242 return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
2243 inode_to_path, ipath);
2244}
2245
2246struct btrfs_data_container *init_data_container(u32 total_bytes)
2247{
2248 struct btrfs_data_container *data;
2249 size_t alloc_bytes;
2250
2251 alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
2252 data = kvmalloc(alloc_bytes, GFP_KERNEL);
2253 if (!data)
2254 return ERR_PTR(-ENOMEM);
2255
2256 if (total_bytes >= sizeof(*data)) {
2257 data->bytes_left = total_bytes - sizeof(*data);
2258 data->bytes_missing = 0;
2259 } else {
2260 data->bytes_missing = sizeof(*data) - total_bytes;
2261 data->bytes_left = 0;
2262 }
2263
2264 data->elem_cnt = 0;
2265 data->elem_missed = 0;
2266
2267 return data;
2268}
2269
2270/*
2271 * allocates space to return multiple file system paths for an inode.
2272 * total_bytes to allocate are passed, note that space usable for actual path
2273 * information will be total_bytes - sizeof(struct inode_fs_paths).
2274 * the returned pointer must be freed with free_ipath() in the end.
2275 */
2276struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
2277 struct btrfs_path *path)
2278{
2279 struct inode_fs_paths *ifp;
2280 struct btrfs_data_container *fspath;
2281
2282 fspath = init_data_container(total_bytes);
2283 if (IS_ERR(fspath))
2284 return ERR_CAST(fspath);
2285
2286 ifp = kmalloc(sizeof(*ifp), GFP_KERNEL);
2287 if (!ifp) {
2288 kvfree(fspath);
2289 return ERR_PTR(-ENOMEM);
2290 }
2291
2292 ifp->btrfs_path = path;
2293 ifp->fspath = fspath;
2294 ifp->fs_root = fs_root;
2295
2296 return ifp;
2297}
2298
2299void free_ipath(struct inode_fs_paths *ipath)
2300{
2301 if (!ipath)
2302 return;
2303 kvfree(ipath->fspath);
2304 kfree(ipath);
2305}
2306
2307struct btrfs_backref_iter *btrfs_backref_iter_alloc(
2308 struct btrfs_fs_info *fs_info, gfp_t gfp_flag)
2309{
2310 struct btrfs_backref_iter *ret;
2311
2312 ret = kzalloc(sizeof(*ret), gfp_flag);
2313 if (!ret)
2314 return NULL;
2315
2316 ret->path = btrfs_alloc_path();
2317 if (!ret->path) {
2318 kfree(ret);
2319 return NULL;
2320 }
2321
2322 /* Current backref iterator only supports iteration in commit root */
2323 ret->path->search_commit_root = 1;
2324 ret->path->skip_locking = 1;
2325 ret->fs_info = fs_info;
2326
2327 return ret;
2328}
2329
2330int btrfs_backref_iter_start(struct btrfs_backref_iter *iter, u64 bytenr)
2331{
2332 struct btrfs_fs_info *fs_info = iter->fs_info;
2333 struct btrfs_path *path = iter->path;
2334 struct btrfs_extent_item *ei;
2335 struct btrfs_key key;
2336 int ret;
2337
2338 key.objectid = bytenr;
2339 key.type = BTRFS_METADATA_ITEM_KEY;
2340 key.offset = (u64)-1;
2341 iter->bytenr = bytenr;
2342
2343 ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
2344 if (ret < 0)
2345 return ret;
2346 if (ret == 0) {
2347 ret = -EUCLEAN;
2348 goto release;
2349 }
2350 if (path->slots[0] == 0) {
2351 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
2352 ret = -EUCLEAN;
2353 goto release;
2354 }
2355 path->slots[0]--;
2356
2357 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2358 if ((key.type != BTRFS_EXTENT_ITEM_KEY &&
2359 key.type != BTRFS_METADATA_ITEM_KEY) || key.objectid != bytenr) {
2360 ret = -ENOENT;
2361 goto release;
2362 }
2363 memcpy(&iter->cur_key, &key, sizeof(key));
2364 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2365 path->slots[0]);
2366 iter->end_ptr = (u32)(iter->item_ptr +
2367 btrfs_item_size_nr(path->nodes[0], path->slots[0]));
2368 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
2369 struct btrfs_extent_item);
2370
2371 /*
2372 * Only support iteration on tree backref yet.
2373 *
2374 * This is an extra precaution for non skinny-metadata, where
2375 * EXTENT_ITEM is also used for tree blocks, that we can only use
2376 * extent flags to determine if it's a tree block.
2377 */
2378 if (btrfs_extent_flags(path->nodes[0], ei) & BTRFS_EXTENT_FLAG_DATA) {
2379 ret = -ENOTSUPP;
2380 goto release;
2381 }
2382 iter->cur_ptr = (u32)(iter->item_ptr + sizeof(*ei));
2383
2384 /* If there is no inline backref, go search for keyed backref */
2385 if (iter->cur_ptr >= iter->end_ptr) {
2386 ret = btrfs_next_item(fs_info->extent_root, path);
2387
2388 /* No inline nor keyed ref */
2389 if (ret > 0) {
2390 ret = -ENOENT;
2391 goto release;
2392 }
2393 if (ret < 0)
2394 goto release;
2395
2396 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key,
2397 path->slots[0]);
2398 if (iter->cur_key.objectid != bytenr ||
2399 (iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY &&
2400 iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY)) {
2401 ret = -ENOENT;
2402 goto release;
2403 }
2404 iter->cur_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2405 path->slots[0]);
2406 iter->item_ptr = iter->cur_ptr;
2407 iter->end_ptr = (u32)(iter->item_ptr + btrfs_item_size_nr(
2408 path->nodes[0], path->slots[0]));
2409 }
2410
2411 return 0;
2412release:
2413 btrfs_backref_iter_release(iter);
2414 return ret;
2415}
2416
2417/*
2418 * Go to the next backref item of current bytenr, can be either inlined or
2419 * keyed.
2420 *
2421 * Caller needs to check whether it's inline ref or not by iter->cur_key.
2422 *
2423 * Return 0 if we get next backref without problem.
2424 * Return >0 if there is no extra backref for this bytenr.
2425 * Return <0 if there is something wrong happened.
2426 */
2427int btrfs_backref_iter_next(struct btrfs_backref_iter *iter)
2428{
2429 struct extent_buffer *eb = btrfs_backref_get_eb(iter);
2430 struct btrfs_path *path = iter->path;
2431 struct btrfs_extent_inline_ref *iref;
2432 int ret;
2433 u32 size;
2434
2435 if (btrfs_backref_iter_is_inline_ref(iter)) {
2436 /* We're still inside the inline refs */
2437 ASSERT(iter->cur_ptr < iter->end_ptr);
2438
2439 if (btrfs_backref_has_tree_block_info(iter)) {
2440 /* First tree block info */
2441 size = sizeof(struct btrfs_tree_block_info);
2442 } else {
2443 /* Use inline ref type to determine the size */
2444 int type;
2445
2446 iref = (struct btrfs_extent_inline_ref *)
2447 ((unsigned long)iter->cur_ptr);
2448 type = btrfs_extent_inline_ref_type(eb, iref);
2449
2450 size = btrfs_extent_inline_ref_size(type);
2451 }
2452 iter->cur_ptr += size;
2453 if (iter->cur_ptr < iter->end_ptr)
2454 return 0;
2455
2456 /* All inline items iterated, fall through */
2457 }
2458
2459 /* We're at keyed items, there is no inline item, go to the next one */
2460 ret = btrfs_next_item(iter->fs_info->extent_root, iter->path);
2461 if (ret)
2462 return ret;
2463
2464 btrfs_item_key_to_cpu(path->nodes[0], &iter->cur_key, path->slots[0]);
2465 if (iter->cur_key.objectid != iter->bytenr ||
2466 (iter->cur_key.type != BTRFS_TREE_BLOCK_REF_KEY &&
2467 iter->cur_key.type != BTRFS_SHARED_BLOCK_REF_KEY))
2468 return 1;
2469 iter->item_ptr = (u32)btrfs_item_ptr_offset(path->nodes[0],
2470 path->slots[0]);
2471 iter->cur_ptr = iter->item_ptr;
2472 iter->end_ptr = iter->item_ptr + (u32)btrfs_item_size_nr(path->nodes[0],
2473 path->slots[0]);
2474 return 0;
2475}
2476
2477void btrfs_backref_init_cache(struct btrfs_fs_info *fs_info,
2478 struct btrfs_backref_cache *cache, int is_reloc)
2479{
2480 int i;
2481
2482 cache->rb_root = RB_ROOT;
2483 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2484 INIT_LIST_HEAD(&cache->pending[i]);
2485 INIT_LIST_HEAD(&cache->changed);
2486 INIT_LIST_HEAD(&cache->detached);
2487 INIT_LIST_HEAD(&cache->leaves);
2488 INIT_LIST_HEAD(&cache->pending_edge);
2489 INIT_LIST_HEAD(&cache->useless_node);
2490 cache->fs_info = fs_info;
2491 cache->is_reloc = is_reloc;
2492}
2493
2494struct btrfs_backref_node *btrfs_backref_alloc_node(
2495 struct btrfs_backref_cache *cache, u64 bytenr, int level)
2496{
2497 struct btrfs_backref_node *node;
2498
2499 ASSERT(level >= 0 && level < BTRFS_MAX_LEVEL);
2500 node = kzalloc(sizeof(*node), GFP_NOFS);
2501 if (!node)
2502 return node;
2503
2504 INIT_LIST_HEAD(&node->list);
2505 INIT_LIST_HEAD(&node->upper);
2506 INIT_LIST_HEAD(&node->lower);
2507 RB_CLEAR_NODE(&node->rb_node);
2508 cache->nr_nodes++;
2509 node->level = level;
2510 node->bytenr = bytenr;
2511
2512 return node;
2513}
2514
2515struct btrfs_backref_edge *btrfs_backref_alloc_edge(
2516 struct btrfs_backref_cache *cache)
2517{
2518 struct btrfs_backref_edge *edge;
2519
2520 edge = kzalloc(sizeof(*edge), GFP_NOFS);
2521 if (edge)
2522 cache->nr_edges++;
2523 return edge;
2524}
2525
2526/*
2527 * Drop the backref node from cache, also cleaning up all its
2528 * upper edges and any uncached nodes in the path.
2529 *
2530 * This cleanup happens bottom up, thus the node should either
2531 * be the lowest node in the cache or a detached node.
2532 */
2533void btrfs_backref_cleanup_node(struct btrfs_backref_cache *cache,
2534 struct btrfs_backref_node *node)
2535{
2536 struct btrfs_backref_node *upper;
2537 struct btrfs_backref_edge *edge;
2538
2539 if (!node)
2540 return;
2541
2542 BUG_ON(!node->lowest && !node->detached);
2543 while (!list_empty(&node->upper)) {
2544 edge = list_entry(node->upper.next, struct btrfs_backref_edge,
2545 list[LOWER]);
2546 upper = edge->node[UPPER];
2547 list_del(&edge->list[LOWER]);
2548 list_del(&edge->list[UPPER]);
2549 btrfs_backref_free_edge(cache, edge);
2550
2551 /*
2552 * Add the node to leaf node list if no other child block
2553 * cached.
2554 */
2555 if (list_empty(&upper->lower)) {
2556 list_add_tail(&upper->lower, &cache->leaves);
2557 upper->lowest = 1;
2558 }
2559 }
2560
2561 btrfs_backref_drop_node(cache, node);
2562}
2563
2564/*
2565 * Release all nodes/edges from current cache
2566 */
2567void btrfs_backref_release_cache(struct btrfs_backref_cache *cache)
2568{
2569 struct btrfs_backref_node *node;
2570 int i;
2571
2572 while (!list_empty(&cache->detached)) {
2573 node = list_entry(cache->detached.next,
2574 struct btrfs_backref_node, list);
2575 btrfs_backref_cleanup_node(cache, node);
2576 }
2577
2578 while (!list_empty(&cache->leaves)) {
2579 node = list_entry(cache->leaves.next,
2580 struct btrfs_backref_node, lower);
2581 btrfs_backref_cleanup_node(cache, node);
2582 }
2583
2584 cache->last_trans = 0;
2585
2586 for (i = 0; i < BTRFS_MAX_LEVEL; i++)
2587 ASSERT(list_empty(&cache->pending[i]));
2588 ASSERT(list_empty(&cache->pending_edge));
2589 ASSERT(list_empty(&cache->useless_node));
2590 ASSERT(list_empty(&cache->changed));
2591 ASSERT(list_empty(&cache->detached));
2592 ASSERT(RB_EMPTY_ROOT(&cache->rb_root));
2593 ASSERT(!cache->nr_nodes);
2594 ASSERT(!cache->nr_edges);
2595}
2596
2597/*
2598 * Handle direct tree backref
2599 *
2600 * Direct tree backref means, the backref item shows its parent bytenr
2601 * directly. This is for SHARED_BLOCK_REF backref (keyed or inlined).
2602 *
2603 * @ref_key: The converted backref key.
2604 * For keyed backref, it's the item key.
2605 * For inlined backref, objectid is the bytenr,
2606 * type is btrfs_inline_ref_type, offset is
2607 * btrfs_inline_ref_offset.
2608 */
2609static int handle_direct_tree_backref(struct btrfs_backref_cache *cache,
2610 struct btrfs_key *ref_key,
2611 struct btrfs_backref_node *cur)
2612{
2613 struct btrfs_backref_edge *edge;
2614 struct btrfs_backref_node *upper;
2615 struct rb_node *rb_node;
2616
2617 ASSERT(ref_key->type == BTRFS_SHARED_BLOCK_REF_KEY);
2618
2619 /* Only reloc root uses backref pointing to itself */
2620 if (ref_key->objectid == ref_key->offset) {
2621 struct btrfs_root *root;
2622
2623 cur->is_reloc_root = 1;
2624 /* Only reloc backref cache cares about a specific root */
2625 if (cache->is_reloc) {
2626 root = find_reloc_root(cache->fs_info, cur->bytenr);
2627 if (!root)
2628 return -ENOENT;
2629 cur->root = root;
2630 } else {
2631 /*
2632 * For generic purpose backref cache, reloc root node
2633 * is useless.
2634 */
2635 list_add(&cur->list, &cache->useless_node);
2636 }
2637 return 0;
2638 }
2639
2640 edge = btrfs_backref_alloc_edge(cache);
2641 if (!edge)
2642 return -ENOMEM;
2643
2644 rb_node = rb_simple_search(&cache->rb_root, ref_key->offset);
2645 if (!rb_node) {
2646 /* Parent node not yet cached */
2647 upper = btrfs_backref_alloc_node(cache, ref_key->offset,
2648 cur->level + 1);
2649 if (!upper) {
2650 btrfs_backref_free_edge(cache, edge);
2651 return -ENOMEM;
2652 }
2653
2654 /*
2655 * Backrefs for the upper level block isn't cached, add the
2656 * block to pending list
2657 */
2658 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2659 } else {
2660 /* Parent node already cached */
2661 upper = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
2662 ASSERT(upper->checked);
2663 INIT_LIST_HEAD(&edge->list[UPPER]);
2664 }
2665 btrfs_backref_link_edge(edge, cur, upper, LINK_LOWER);
2666 return 0;
2667}
2668
2669/*
2670 * Handle indirect tree backref
2671 *
2672 * Indirect tree backref means, we only know which tree the node belongs to.
2673 * We still need to do a tree search to find out the parents. This is for
2674 * TREE_BLOCK_REF backref (keyed or inlined).
2675 *
2676 * @ref_key: The same as @ref_key in handle_direct_tree_backref()
2677 * @tree_key: The first key of this tree block.
2678 * @path: A clean (released) path, to avoid allocating path every time
2679 * the function get called.
2680 */
2681static int handle_indirect_tree_backref(struct btrfs_backref_cache *cache,
2682 struct btrfs_path *path,
2683 struct btrfs_key *ref_key,
2684 struct btrfs_key *tree_key,
2685 struct btrfs_backref_node *cur)
2686{
2687 struct btrfs_fs_info *fs_info = cache->fs_info;
2688 struct btrfs_backref_node *upper;
2689 struct btrfs_backref_node *lower;
2690 struct btrfs_backref_edge *edge;
2691 struct extent_buffer *eb;
2692 struct btrfs_root *root;
2693 struct rb_node *rb_node;
2694 int level;
2695 bool need_check = true;
2696 int ret;
2697
2698 root = btrfs_get_fs_root(fs_info, ref_key->offset, false);
2699 if (IS_ERR(root))
2700 return PTR_ERR(root);
2701 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2702 cur->cowonly = 1;
2703
2704 if (btrfs_root_level(&root->root_item) == cur->level) {
2705 /* Tree root */
2706 ASSERT(btrfs_root_bytenr(&root->root_item) == cur->bytenr);
2707 /*
2708 * For reloc backref cache, we may ignore reloc root. But for
2709 * general purpose backref cache, we can't rely on
2710 * btrfs_should_ignore_reloc_root() as it may conflict with
2711 * current running relocation and lead to missing root.
2712 *
2713 * For general purpose backref cache, reloc root detection is
2714 * completely relying on direct backref (key->offset is parent
2715 * bytenr), thus only do such check for reloc cache.
2716 */
2717 if (btrfs_should_ignore_reloc_root(root) && cache->is_reloc) {
2718 btrfs_put_root(root);
2719 list_add(&cur->list, &cache->useless_node);
2720 } else {
2721 cur->root = root;
2722 }
2723 return 0;
2724 }
2725
2726 level = cur->level + 1;
2727
2728 /* Search the tree to find parent blocks referring to the block */
2729 path->search_commit_root = 1;
2730 path->skip_locking = 1;
2731 path->lowest_level = level;
2732 ret = btrfs_search_slot(NULL, root, tree_key, path, 0, 0);
2733 path->lowest_level = 0;
2734 if (ret < 0) {
2735 btrfs_put_root(root);
2736 return ret;
2737 }
2738 if (ret > 0 && path->slots[level] > 0)
2739 path->slots[level]--;
2740
2741 eb = path->nodes[level];
2742 if (btrfs_node_blockptr(eb, path->slots[level]) != cur->bytenr) {
2743 btrfs_err(fs_info,
2744"couldn't find block (%llu) (level %d) in tree (%llu) with key (%llu %u %llu)",
2745 cur->bytenr, level - 1, root->root_key.objectid,
2746 tree_key->objectid, tree_key->type, tree_key->offset);
2747 btrfs_put_root(root);
2748 ret = -ENOENT;
2749 goto out;
2750 }
2751 lower = cur;
2752
2753 /* Add all nodes and edges in the path */
2754 for (; level < BTRFS_MAX_LEVEL; level++) {
2755 if (!path->nodes[level]) {
2756 ASSERT(btrfs_root_bytenr(&root->root_item) ==
2757 lower->bytenr);
2758 /* Same as previous should_ignore_reloc_root() call */
2759 if (btrfs_should_ignore_reloc_root(root) &&
2760 cache->is_reloc) {
2761 btrfs_put_root(root);
2762 list_add(&lower->list, &cache->useless_node);
2763 } else {
2764 lower->root = root;
2765 }
2766 break;
2767 }
2768
2769 edge = btrfs_backref_alloc_edge(cache);
2770 if (!edge) {
2771 btrfs_put_root(root);
2772 ret = -ENOMEM;
2773 goto out;
2774 }
2775
2776 eb = path->nodes[level];
2777 rb_node = rb_simple_search(&cache->rb_root, eb->start);
2778 if (!rb_node) {
2779 upper = btrfs_backref_alloc_node(cache, eb->start,
2780 lower->level + 1);
2781 if (!upper) {
2782 btrfs_put_root(root);
2783 btrfs_backref_free_edge(cache, edge);
2784 ret = -ENOMEM;
2785 goto out;
2786 }
2787 upper->owner = btrfs_header_owner(eb);
2788 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2789 upper->cowonly = 1;
2790
2791 /*
2792 * If we know the block isn't shared we can avoid
2793 * checking its backrefs.
2794 */
2795 if (btrfs_block_can_be_shared(root, eb))
2796 upper->checked = 0;
2797 else
2798 upper->checked = 1;
2799
2800 /*
2801 * Add the block to pending list if we need to check its
2802 * backrefs, we only do this once while walking up a
2803 * tree as we will catch anything else later on.
2804 */
2805 if (!upper->checked && need_check) {
2806 need_check = false;
2807 list_add_tail(&edge->list[UPPER],
2808 &cache->pending_edge);
2809 } else {
2810 if (upper->checked)
2811 need_check = true;
2812 INIT_LIST_HEAD(&edge->list[UPPER]);
2813 }
2814 } else {
2815 upper = rb_entry(rb_node, struct btrfs_backref_node,
2816 rb_node);
2817 ASSERT(upper->checked);
2818 INIT_LIST_HEAD(&edge->list[UPPER]);
2819 if (!upper->owner)
2820 upper->owner = btrfs_header_owner(eb);
2821 }
2822 btrfs_backref_link_edge(edge, lower, upper, LINK_LOWER);
2823
2824 if (rb_node) {
2825 btrfs_put_root(root);
2826 break;
2827 }
2828 lower = upper;
2829 upper = NULL;
2830 }
2831out:
2832 btrfs_release_path(path);
2833 return ret;
2834}
2835
2836/*
2837 * Add backref node @cur into @cache.
2838 *
2839 * NOTE: Even if the function returned 0, @cur is not yet cached as its upper
2840 * links aren't yet bi-directional. Needs to finish such links.
2841 * Use btrfs_backref_finish_upper_links() to finish such linkage.
2842 *
2843 * @path: Released path for indirect tree backref lookup
2844 * @iter: Released backref iter for extent tree search
2845 * @node_key: The first key of the tree block
2846 */
2847int btrfs_backref_add_tree_node(struct btrfs_backref_cache *cache,
2848 struct btrfs_path *path,
2849 struct btrfs_backref_iter *iter,
2850 struct btrfs_key *node_key,
2851 struct btrfs_backref_node *cur)
2852{
2853 struct btrfs_fs_info *fs_info = cache->fs_info;
2854 struct btrfs_backref_edge *edge;
2855 struct btrfs_backref_node *exist;
2856 int ret;
2857
2858 ret = btrfs_backref_iter_start(iter, cur->bytenr);
2859 if (ret < 0)
2860 return ret;
2861 /*
2862 * We skip the first btrfs_tree_block_info, as we don't use the key
2863 * stored in it, but fetch it from the tree block
2864 */
2865 if (btrfs_backref_has_tree_block_info(iter)) {
2866 ret = btrfs_backref_iter_next(iter);
2867 if (ret < 0)
2868 goto out;
2869 /* No extra backref? This means the tree block is corrupted */
2870 if (ret > 0) {
2871 ret = -EUCLEAN;
2872 goto out;
2873 }
2874 }
2875 WARN_ON(cur->checked);
2876 if (!list_empty(&cur->upper)) {
2877 /*
2878 * The backref was added previously when processing backref of
2879 * type BTRFS_TREE_BLOCK_REF_KEY
2880 */
2881 ASSERT(list_is_singular(&cur->upper));
2882 edge = list_entry(cur->upper.next, struct btrfs_backref_edge,
2883 list[LOWER]);
2884 ASSERT(list_empty(&edge->list[UPPER]));
2885 exist = edge->node[UPPER];
2886 /*
2887 * Add the upper level block to pending list if we need check
2888 * its backrefs
2889 */
2890 if (!exist->checked)
2891 list_add_tail(&edge->list[UPPER], &cache->pending_edge);
2892 } else {
2893 exist = NULL;
2894 }
2895
2896 for (; ret == 0; ret = btrfs_backref_iter_next(iter)) {
2897 struct extent_buffer *eb;
2898 struct btrfs_key key;
2899 int type;
2900
2901 cond_resched();
2902 eb = btrfs_backref_get_eb(iter);
2903
2904 key.objectid = iter->bytenr;
2905 if (btrfs_backref_iter_is_inline_ref(iter)) {
2906 struct btrfs_extent_inline_ref *iref;
2907
2908 /* Update key for inline backref */
2909 iref = (struct btrfs_extent_inline_ref *)
2910 ((unsigned long)iter->cur_ptr);
2911 type = btrfs_get_extent_inline_ref_type(eb, iref,
2912 BTRFS_REF_TYPE_BLOCK);
2913 if (type == BTRFS_REF_TYPE_INVALID) {
2914 ret = -EUCLEAN;
2915 goto out;
2916 }
2917 key.type = type;
2918 key.offset = btrfs_extent_inline_ref_offset(eb, iref);
2919 } else {
2920 key.type = iter->cur_key.type;
2921 key.offset = iter->cur_key.offset;
2922 }
2923
2924 /*
2925 * Parent node found and matches current inline ref, no need to
2926 * rebuild this node for this inline ref
2927 */
2928 if (exist &&
2929 ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
2930 exist->owner == key.offset) ||
2931 (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
2932 exist->bytenr == key.offset))) {
2933 exist = NULL;
2934 continue;
2935 }
2936
2937 /* SHARED_BLOCK_REF means key.offset is the parent bytenr */
2938 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
2939 ret = handle_direct_tree_backref(cache, &key, cur);
2940 if (ret < 0)
2941 goto out;
2942 continue;
2943 } else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
2944 ret = -EINVAL;
2945 btrfs_print_v0_err(fs_info);
2946 btrfs_handle_fs_error(fs_info, ret, NULL);
2947 goto out;
2948 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
2949 continue;
2950 }
2951
2952 /*
2953 * key.type == BTRFS_TREE_BLOCK_REF_KEY, inline ref offset
2954 * means the root objectid. We need to search the tree to get
2955 * its parent bytenr.
2956 */
2957 ret = handle_indirect_tree_backref(cache, path, &key, node_key,
2958 cur);
2959 if (ret < 0)
2960 goto out;
2961 }
2962 ret = 0;
2963 cur->checked = 1;
2964 WARN_ON(exist);
2965out:
2966 btrfs_backref_iter_release(iter);
2967 return ret;
2968}
2969
2970/*
2971 * Finish the upwards linkage created by btrfs_backref_add_tree_node()
2972 */
2973int btrfs_backref_finish_upper_links(struct btrfs_backref_cache *cache,
2974 struct btrfs_backref_node *start)
2975{
2976 struct list_head *useless_node = &cache->useless_node;
2977 struct btrfs_backref_edge *edge;
2978 struct rb_node *rb_node;
2979 LIST_HEAD(pending_edge);
2980
2981 ASSERT(start->checked);
2982
2983 /* Insert this node to cache if it's not COW-only */
2984 if (!start->cowonly) {
2985 rb_node = rb_simple_insert(&cache->rb_root, start->bytenr,
2986 &start->rb_node);
2987 if (rb_node)
2988 btrfs_backref_panic(cache->fs_info, start->bytenr,
2989 -EEXIST);
2990 list_add_tail(&start->lower, &cache->leaves);
2991 }
2992
2993 /*
2994 * Use breadth first search to iterate all related edges.
2995 *
2996 * The starting points are all the edges of this node
2997 */
2998 list_for_each_entry(edge, &start->upper, list[LOWER])
2999 list_add_tail(&edge->list[UPPER], &pending_edge);
3000
3001 while (!list_empty(&pending_edge)) {
3002 struct btrfs_backref_node *upper;
3003 struct btrfs_backref_node *lower;
3004
3005 edge = list_first_entry(&pending_edge,
3006 struct btrfs_backref_edge, list[UPPER]);
3007 list_del_init(&edge->list[UPPER]);
3008 upper = edge->node[UPPER];
3009 lower = edge->node[LOWER];
3010
3011 /* Parent is detached, no need to keep any edges */
3012 if (upper->detached) {
3013 list_del(&edge->list[LOWER]);
3014 btrfs_backref_free_edge(cache, edge);
3015
3016 /* Lower node is orphan, queue for cleanup */
3017 if (list_empty(&lower->upper))
3018 list_add(&lower->list, useless_node);
3019 continue;
3020 }
3021
3022 /*
3023 * All new nodes added in current build_backref_tree() haven't
3024 * been linked to the cache rb tree.
3025 * So if we have upper->rb_node populated, this means a cache
3026 * hit. We only need to link the edge, as @upper and all its
3027 * parents have already been linked.
3028 */
3029 if (!RB_EMPTY_NODE(&upper->rb_node)) {
3030 if (upper->lowest) {
3031 list_del_init(&upper->lower);
3032 upper->lowest = 0;
3033 }
3034
3035 list_add_tail(&edge->list[UPPER], &upper->lower);
3036 continue;
3037 }
3038
3039 /* Sanity check, we shouldn't have any unchecked nodes */
3040 if (!upper->checked) {
3041 ASSERT(0);
3042 return -EUCLEAN;
3043 }
3044
3045 /* Sanity check, COW-only node has non-COW-only parent */
3046 if (start->cowonly != upper->cowonly) {
3047 ASSERT(0);
3048 return -EUCLEAN;
3049 }
3050
3051 /* Only cache non-COW-only (subvolume trees) tree blocks */
3052 if (!upper->cowonly) {
3053 rb_node = rb_simple_insert(&cache->rb_root, upper->bytenr,
3054 &upper->rb_node);
3055 if (rb_node) {
3056 btrfs_backref_panic(cache->fs_info,
3057 upper->bytenr, -EEXIST);
3058 return -EUCLEAN;
3059 }
3060 }
3061
3062 list_add_tail(&edge->list[UPPER], &upper->lower);
3063
3064 /*
3065 * Also queue all the parent edges of this uncached node
3066 * to finish the upper linkage
3067 */
3068 list_for_each_entry(edge, &upper->upper, list[LOWER])
3069 list_add_tail(&edge->list[UPPER], &pending_edge);
3070 }
3071 return 0;
3072}
3073
3074void btrfs_backref_error_cleanup(struct btrfs_backref_cache *cache,
3075 struct btrfs_backref_node *node)
3076{
3077 struct btrfs_backref_node *lower;
3078 struct btrfs_backref_node *upper;
3079 struct btrfs_backref_edge *edge;
3080
3081 while (!list_empty(&cache->useless_node)) {
3082 lower = list_first_entry(&cache->useless_node,
3083 struct btrfs_backref_node, list);
3084 list_del_init(&lower->list);
3085 }
3086 while (!list_empty(&cache->pending_edge)) {
3087 edge = list_first_entry(&cache->pending_edge,
3088 struct btrfs_backref_edge, list[UPPER]);
3089 list_del(&edge->list[UPPER]);
3090 list_del(&edge->list[LOWER]);
3091 lower = edge->node[LOWER];
3092 upper = edge->node[UPPER];
3093 btrfs_backref_free_edge(cache, edge);
3094
3095 /*
3096 * Lower is no longer linked to any upper backref nodes and
3097 * isn't in the cache, we can free it ourselves.
3098 */
3099 if (list_empty(&lower->upper) &&
3100 RB_EMPTY_NODE(&lower->rb_node))
3101 list_add(&lower->list, &cache->useless_node);
3102
3103 if (!RB_EMPTY_NODE(&upper->rb_node))
3104 continue;
3105
3106 /* Add this guy's upper edges to the list to process */
3107 list_for_each_entry(edge, &upper->upper, list[LOWER])
3108 list_add_tail(&edge->list[UPPER],
3109 &cache->pending_edge);
3110 if (list_empty(&upper->upper))
3111 list_add(&upper->list, &cache->useless_node);
3112 }
3113
3114 while (!list_empty(&cache->useless_node)) {
3115 lower = list_first_entry(&cache->useless_node,
3116 struct btrfs_backref_node, list);
3117 list_del_init(&lower->list);
3118 if (lower == node)
3119 node = NULL;
3120 btrfs_backref_drop_node(cache, lower);
3121 }
3122
3123 btrfs_backref_cleanup_node(cache, node);
3124 ASSERT(list_empty(&cache->useless_node) &&
3125 list_empty(&cache->pending_edge));
3126}