Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/pr.h>
 
 
 
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
  52
  53static void do_deferred_remove(struct work_struct *w);
  54
  55static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  56
  57static struct workqueue_struct *deferred_remove_workqueue;
  58
 
 
 
 
 
 
 
 
 
  59/*
  60 * One of these is allocated per bio.
  61 */
  62struct dm_io {
  63	struct mapped_device *md;
  64	int error;
  65	atomic_t io_count;
  66	struct bio *bio;
  67	unsigned long start_time;
  68	spinlock_t endio_lock;
  69	struct dm_stats_aux stats_aux;
  70};
  71
  72#define MINOR_ALLOCED ((void *)-1)
 
 
  73
  74/*
  75 * Bits for the md->flags field.
  76 */
  77#define DMF_BLOCK_IO_FOR_SUSPEND 0
  78#define DMF_SUSPENDED 1
  79#define DMF_FROZEN 2
  80#define DMF_FREEING 3
  81#define DMF_DELETING 4
  82#define DMF_NOFLUSH_SUSPENDING 5
  83#define DMF_DEFERRED_REMOVE 6
  84#define DMF_SUSPENDED_INTERNALLY 7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85
  86#define DM_NUMA_NODE NUMA_NO_NODE
  87static int dm_numa_node = DM_NUMA_NODE;
  88
 
 
 
 
 
 
 
 
 
 
  89/*
  90 * For mempools pre-allocation at the table loading time.
  91 */
  92struct dm_md_mempools {
  93	mempool_t *io_pool;
  94	mempool_t *rq_pool;
  95	struct bio_set *bs;
  96};
  97
  98struct table_device {
  99	struct list_head list;
 100	atomic_t count;
 101	struct dm_dev dm_dev;
 102};
 103
 104static struct kmem_cache *_io_cache;
 105static struct kmem_cache *_rq_tio_cache;
 106static struct kmem_cache *_rq_cache;
 107
 108/*
 109 * Bio-based DM's mempools' reserved IOs set by the user.
 110 */
 111#define RESERVED_BIO_BASED_IOS		16
 112static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 113
 114static int __dm_get_module_param_int(int *module_param, int min, int max)
 115{
 116	int param = ACCESS_ONCE(*module_param);
 117	int modified_param = 0;
 118	bool modified = true;
 119
 120	if (param < min)
 121		modified_param = min;
 122	else if (param > max)
 123		modified_param = max;
 124	else
 125		modified = false;
 126
 127	if (modified) {
 128		(void)cmpxchg(module_param, param, modified_param);
 129		param = modified_param;
 130	}
 131
 132	return param;
 133}
 134
 135unsigned __dm_get_module_param(unsigned *module_param,
 136			       unsigned def, unsigned max)
 137{
 138	unsigned param = ACCESS_ONCE(*module_param);
 139	unsigned modified_param = 0;
 140
 141	if (!param)
 142		modified_param = def;
 143	else if (param > max)
 144		modified_param = max;
 145
 146	if (modified_param) {
 147		(void)cmpxchg(module_param, param, modified_param);
 148		param = modified_param;
 149	}
 150
 151	return param;
 152}
 153
 154unsigned dm_get_reserved_bio_based_ios(void)
 155{
 156	return __dm_get_module_param(&reserved_bio_based_ios,
 157				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 158}
 159EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 160
 161static unsigned dm_get_numa_node(void)
 162{
 163	return __dm_get_module_param_int(&dm_numa_node,
 164					 DM_NUMA_NODE, num_online_nodes() - 1);
 165}
 166
 167static int __init local_init(void)
 168{
 169	int r = -ENOMEM;
 170
 171	/* allocate a slab for the dm_ios */
 172	_io_cache = KMEM_CACHE(dm_io, 0);
 173	if (!_io_cache)
 174		return r;
 175
 176	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 177	if (!_rq_tio_cache)
 178		goto out_free_io_cache;
 179
 180	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 181				      __alignof__(struct request), 0, NULL);
 182	if (!_rq_cache)
 183		goto out_free_rq_tio_cache;
 184
 185	r = dm_uevent_init();
 186	if (r)
 187		goto out_free_rq_cache;
 188
 189	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 190	if (!deferred_remove_workqueue) {
 191		r = -ENOMEM;
 192		goto out_uevent_exit;
 193	}
 194
 195	_major = major;
 196	r = register_blkdev(_major, _name);
 197	if (r < 0)
 198		goto out_free_workqueue;
 199
 200	if (!_major)
 201		_major = r;
 202
 203	return 0;
 204
 205out_free_workqueue:
 206	destroy_workqueue(deferred_remove_workqueue);
 207out_uevent_exit:
 208	dm_uevent_exit();
 209out_free_rq_cache:
 210	kmem_cache_destroy(_rq_cache);
 211out_free_rq_tio_cache:
 212	kmem_cache_destroy(_rq_tio_cache);
 213out_free_io_cache:
 214	kmem_cache_destroy(_io_cache);
 215
 216	return r;
 217}
 218
 219static void local_exit(void)
 220{
 221	flush_scheduled_work();
 222	destroy_workqueue(deferred_remove_workqueue);
 223
 224	kmem_cache_destroy(_rq_cache);
 225	kmem_cache_destroy(_rq_tio_cache);
 226	kmem_cache_destroy(_io_cache);
 227	unregister_blkdev(_major, _name);
 228	dm_uevent_exit();
 229
 230	_major = 0;
 231
 232	DMINFO("cleaned up");
 233}
 234
 235static int (*_inits[])(void) __initdata = {
 236	local_init,
 237	dm_target_init,
 238	dm_linear_init,
 239	dm_stripe_init,
 240	dm_io_init,
 241	dm_kcopyd_init,
 242	dm_interface_init,
 243	dm_statistics_init,
 244};
 245
 246static void (*_exits[])(void) = {
 247	local_exit,
 248	dm_target_exit,
 249	dm_linear_exit,
 250	dm_stripe_exit,
 251	dm_io_exit,
 252	dm_kcopyd_exit,
 253	dm_interface_exit,
 254	dm_statistics_exit,
 255};
 256
 257static int __init dm_init(void)
 258{
 259	const int count = ARRAY_SIZE(_inits);
 260
 261	int r, i;
 262
 263	for (i = 0; i < count; i++) {
 264		r = _inits[i]();
 265		if (r)
 266			goto bad;
 267	}
 268
 269	return 0;
 270
 271      bad:
 272	while (i--)
 273		_exits[i]();
 274
 275	return r;
 276}
 277
 278static void __exit dm_exit(void)
 279{
 280	int i = ARRAY_SIZE(_exits);
 281
 282	while (i--)
 283		_exits[i]();
 284
 285	/*
 286	 * Should be empty by this point.
 287	 */
 288	idr_destroy(&_minor_idr);
 289}
 290
 291/*
 292 * Block device functions
 293 */
 294int dm_deleting_md(struct mapped_device *md)
 295{
 296	return test_bit(DMF_DELETING, &md->flags);
 297}
 298
 299static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 300{
 301	struct mapped_device *md;
 302
 303	spin_lock(&_minor_lock);
 304
 305	md = bdev->bd_disk->private_data;
 306	if (!md)
 307		goto out;
 308
 309	if (test_bit(DMF_FREEING, &md->flags) ||
 310	    dm_deleting_md(md)) {
 311		md = NULL;
 312		goto out;
 313	}
 314
 315	dm_get(md);
 316	atomic_inc(&md->open_count);
 317out:
 318	spin_unlock(&_minor_lock);
 319
 320	return md ? 0 : -ENXIO;
 321}
 322
 323static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 324{
 325	struct mapped_device *md;
 326
 327	spin_lock(&_minor_lock);
 328
 329	md = disk->private_data;
 330	if (WARN_ON(!md))
 331		goto out;
 332
 333	if (atomic_dec_and_test(&md->open_count) &&
 334	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 335		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 336
 337	dm_put(md);
 338out:
 339	spin_unlock(&_minor_lock);
 340}
 341
 342int dm_open_count(struct mapped_device *md)
 343{
 344	return atomic_read(&md->open_count);
 345}
 346
 347/*
 348 * Guarantees nothing is using the device before it's deleted.
 349 */
 350int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 351{
 352	int r = 0;
 353
 354	spin_lock(&_minor_lock);
 355
 356	if (dm_open_count(md)) {
 357		r = -EBUSY;
 358		if (mark_deferred)
 359			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 360	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 361		r = -EEXIST;
 362	else
 363		set_bit(DMF_DELETING, &md->flags);
 364
 365	spin_unlock(&_minor_lock);
 366
 367	return r;
 368}
 369
 370int dm_cancel_deferred_remove(struct mapped_device *md)
 371{
 372	int r = 0;
 373
 374	spin_lock(&_minor_lock);
 375
 376	if (test_bit(DMF_DELETING, &md->flags))
 377		r = -EBUSY;
 378	else
 379		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 380
 381	spin_unlock(&_minor_lock);
 382
 383	return r;
 384}
 385
 386static void do_deferred_remove(struct work_struct *w)
 387{
 388	dm_deferred_remove();
 389}
 390
 391sector_t dm_get_size(struct mapped_device *md)
 392{
 393	return get_capacity(md->disk);
 394}
 395
 396struct request_queue *dm_get_md_queue(struct mapped_device *md)
 397{
 398	return md->queue;
 399}
 400
 401struct dm_stats *dm_get_stats(struct mapped_device *md)
 402{
 403	return &md->stats;
 404}
 405
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 414				  struct block_device **bdev,
 415				  fmode_t *mode)
 416{
 417	struct dm_target *tgt;
 418	struct dm_table *map;
 419	int srcu_idx, r;
 420
 421retry:
 422	r = -ENOTTY;
 423	map = dm_get_live_table(md, &srcu_idx);
 424	if (!map || !dm_table_get_size(map))
 425		goto out;
 426
 427	/* We only support devices that have a single target */
 428	if (dm_table_get_num_targets(map) != 1)
 429		goto out;
 430
 431	tgt = dm_table_get_target(map, 0);
 432	if (!tgt->type->prepare_ioctl)
 433		goto out;
 434
 435	if (dm_suspended_md(md)) {
 436		r = -EAGAIN;
 437		goto out;
 438	}
 439
 440	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 441	if (r < 0)
 442		goto out;
 443
 444	bdgrab(*bdev);
 445	dm_put_live_table(md, srcu_idx);
 446	return r;
 447
 448out:
 449	dm_put_live_table(md, srcu_idx);
 450	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 
 451		msleep(10);
 452		goto retry;
 453	}
 
 454	return r;
 455}
 456
 
 
 
 
 
 457static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 458			unsigned int cmd, unsigned long arg)
 459{
 460	struct mapped_device *md = bdev->bd_disk->private_data;
 461	int r;
 462
 463	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 464	if (r < 0)
 465		return r;
 466
 467	if (r > 0) {
 468		/*
 469		 * Target determined this ioctl is being issued against
 470		 * a logical partition of the parent bdev; so extra
 471		 * validation is needed.
 472		 */
 473		r = scsi_verify_blk_ioctl(NULL, cmd);
 474		if (r)
 
 
 
 475			goto out;
 
 476	}
 477
 478	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 479out:
 480	bdput(bdev);
 481	return r;
 482}
 483
 484static struct dm_io *alloc_io(struct mapped_device *md)
 485{
 486	return mempool_alloc(md->io_pool, GFP_NOIO);
 487}
 488
 489static void free_io(struct mapped_device *md, struct dm_io *io)
 490{
 491	mempool_free(io, md->io_pool);
 492}
 493
 494static void free_tio(struct dm_target_io *tio)
 495{
 496	bio_put(&tio->clone);
 497}
 498
 499int md_in_flight(struct mapped_device *md)
 500{
 501	return atomic_read(&md->pending[READ]) +
 502	       atomic_read(&md->pending[WRITE]);
 503}
 
 504
 505static void start_io_acct(struct dm_io *io)
 506{
 507	struct mapped_device *md = io->md;
 508	struct bio *bio = io->bio;
 509	int cpu;
 510	int rw = bio_data_dir(bio);
 511
 512	io->start_time = jiffies;
 513
 514	cpu = part_stat_lock();
 515	part_round_stats(cpu, &dm_disk(md)->part0);
 516	part_stat_unlock();
 517	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 518		atomic_inc_return(&md->pending[rw]));
 519
 
 520	if (unlikely(dm_stats_used(&md->stats)))
 521		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 522				    bio->bi_iter.bi_sector, bio_sectors(bio),
 523				    false, 0, &io->stats_aux);
 524}
 525
 526static void end_io_acct(struct dm_io *io)
 
 527{
 528	struct mapped_device *md = io->md;
 529	struct bio *bio = io->bio;
 530	unsigned long duration = jiffies - io->start_time;
 531	int pending;
 532	int rw = bio_data_dir(bio);
 533
 534	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 535
 536	if (unlikely(dm_stats_used(&md->stats)))
 537		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 538				    bio->bi_iter.bi_sector, bio_sectors(bio),
 539				    true, duration, &io->stats_aux);
 540
 541	/*
 542	 * After this is decremented the bio must not be touched if it is
 543	 * a flush.
 544	 */
 545	pending = atomic_dec_return(&md->pending[rw]);
 546	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 547	pending += atomic_read(&md->pending[rw^0x1]);
 548
 549	/* nudge anyone waiting on suspend queue */
 550	if (!pending)
 551		wake_up(&md->wait);
 552}
 553
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 554/*
 555 * Add the bio to the list of deferred io.
 556 */
 557static void queue_io(struct mapped_device *md, struct bio *bio)
 558{
 559	unsigned long flags;
 560
 561	spin_lock_irqsave(&md->deferred_lock, flags);
 562	bio_list_add(&md->deferred, bio);
 563	spin_unlock_irqrestore(&md->deferred_lock, flags);
 564	queue_work(md->wq, &md->work);
 565}
 566
 567/*
 568 * Everyone (including functions in this file), should use this
 569 * function to access the md->map field, and make sure they call
 570 * dm_put_live_table() when finished.
 571 */
 572struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 573{
 574	*srcu_idx = srcu_read_lock(&md->io_barrier);
 575
 576	return srcu_dereference(md->map, &md->io_barrier);
 577}
 578
 579void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 580{
 581	srcu_read_unlock(&md->io_barrier, srcu_idx);
 582}
 583
 584void dm_sync_table(struct mapped_device *md)
 585{
 586	synchronize_srcu(&md->io_barrier);
 587	synchronize_rcu_expedited();
 588}
 589
 590/*
 591 * A fast alternative to dm_get_live_table/dm_put_live_table.
 592 * The caller must not block between these two functions.
 593 */
 594static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 595{
 596	rcu_read_lock();
 597	return rcu_dereference(md->map);
 598}
 599
 600static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 601{
 602	rcu_read_unlock();
 603}
 604
 
 
 605/*
 606 * Open a table device so we can use it as a map destination.
 607 */
 608static int open_table_device(struct table_device *td, dev_t dev,
 609			     struct mapped_device *md)
 610{
 611	static char *_claim_ptr = "I belong to device-mapper";
 612	struct block_device *bdev;
 613
 614	int r;
 615
 616	BUG_ON(td->dm_dev.bdev);
 617
 618	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 619	if (IS_ERR(bdev))
 620		return PTR_ERR(bdev);
 621
 622	r = bd_link_disk_holder(bdev, dm_disk(md));
 623	if (r) {
 624		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 625		return r;
 626	}
 627
 628	td->dm_dev.bdev = bdev;
 
 629	return 0;
 630}
 631
 632/*
 633 * Close a table device that we've been using.
 634 */
 635static void close_table_device(struct table_device *td, struct mapped_device *md)
 636{
 637	if (!td->dm_dev.bdev)
 638		return;
 639
 640	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 641	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 
 642	td->dm_dev.bdev = NULL;
 
 643}
 644
 645static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 646					      fmode_t mode) {
 
 647	struct table_device *td;
 648
 649	list_for_each_entry(td, l, list)
 650		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 651			return td;
 652
 653	return NULL;
 654}
 655
 656int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 657			struct dm_dev **result) {
 
 658	int r;
 659	struct table_device *td;
 660
 661	mutex_lock(&md->table_devices_lock);
 662	td = find_table_device(&md->table_devices, dev, mode);
 663	if (!td) {
 664		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 665		if (!td) {
 666			mutex_unlock(&md->table_devices_lock);
 667			return -ENOMEM;
 668		}
 669
 670		td->dm_dev.mode = mode;
 671		td->dm_dev.bdev = NULL;
 672
 673		if ((r = open_table_device(td, dev, md))) {
 674			mutex_unlock(&md->table_devices_lock);
 675			kfree(td);
 676			return r;
 677		}
 678
 679		format_dev_t(td->dm_dev.name, dev);
 680
 681		atomic_set(&td->count, 0);
 682		list_add(&td->list, &md->table_devices);
 
 
 683	}
 684	atomic_inc(&td->count);
 685	mutex_unlock(&md->table_devices_lock);
 686
 687	*result = &td->dm_dev;
 688	return 0;
 689}
 690EXPORT_SYMBOL_GPL(dm_get_table_device);
 691
 692void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 693{
 694	struct table_device *td = container_of(d, struct table_device, dm_dev);
 695
 696	mutex_lock(&md->table_devices_lock);
 697	if (atomic_dec_and_test(&td->count)) {
 698		close_table_device(td, md);
 699		list_del(&td->list);
 700		kfree(td);
 701	}
 702	mutex_unlock(&md->table_devices_lock);
 703}
 704EXPORT_SYMBOL(dm_put_table_device);
 705
 706static void free_table_devices(struct list_head *devices)
 707{
 708	struct list_head *tmp, *next;
 709
 710	list_for_each_safe(tmp, next, devices) {
 711		struct table_device *td = list_entry(tmp, struct table_device, list);
 712
 713		DMWARN("dm_destroy: %s still exists with %d references",
 714		       td->dm_dev.name, atomic_read(&td->count));
 715		kfree(td);
 716	}
 717}
 718
 719/*
 720 * Get the geometry associated with a dm device
 721 */
 722int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 723{
 724	*geo = md->geometry;
 725
 726	return 0;
 727}
 728
 729/*
 730 * Set the geometry of a device.
 731 */
 732int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 733{
 734	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 735
 736	if (geo->start > sz) {
 737		DMWARN("Start sector is beyond the geometry limits.");
 738		return -EINVAL;
 739	}
 740
 741	md->geometry = *geo;
 742
 743	return 0;
 744}
 745
 746/*-----------------------------------------------------------------
 747 * CRUD START:
 748 *   A more elegant soln is in the works that uses the queue
 749 *   merge fn, unfortunately there are a couple of changes to
 750 *   the block layer that I want to make for this.  So in the
 751 *   interests of getting something for people to use I give
 752 *   you this clearly demarcated crap.
 753 *---------------------------------------------------------------*/
 754
 755static int __noflush_suspending(struct mapped_device *md)
 756{
 757	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 758}
 759
 760/*
 761 * Decrements the number of outstanding ios that a bio has been
 762 * cloned into, completing the original io if necc.
 763 */
 764static void dec_pending(struct dm_io *io, int error)
 765{
 766	unsigned long flags;
 767	int io_error;
 768	struct bio *bio;
 769	struct mapped_device *md = io->md;
 
 
 770
 771	/* Push-back supersedes any I/O errors */
 772	if (unlikely(error)) {
 773		spin_lock_irqsave(&io->endio_lock, flags);
 774		if (!(io->error > 0 && __noflush_suspending(md)))
 775			io->error = error;
 776		spin_unlock_irqrestore(&io->endio_lock, flags);
 777	}
 778
 779	if (atomic_dec_and_test(&io->io_count)) {
 780		if (io->error == DM_ENDIO_REQUEUE) {
 
 781			/*
 782			 * Target requested pushing back the I/O.
 783			 */
 784			spin_lock_irqsave(&md->deferred_lock, flags);
 785			if (__noflush_suspending(md))
 786				bio_list_add_head(&md->deferred, io->bio);
 787			else
 788				/* noflush suspend was interrupted. */
 789				io->error = -EIO;
 
 
 
 
 
 
 790			spin_unlock_irqrestore(&md->deferred_lock, flags);
 791		}
 792
 793		io_error = io->error;
 794		bio = io->bio;
 795		end_io_acct(io);
 796		free_io(md, io);
 
 797
 798		if (io_error == DM_ENDIO_REQUEUE)
 799			return;
 800
 801		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 802			/*
 803			 * Preflush done for flush with data, reissue
 804			 * without REQ_PREFLUSH.
 805			 */
 806			bio->bi_opf &= ~REQ_PREFLUSH;
 807			queue_io(md, bio);
 808		} else {
 809			/* done with normal IO or empty flush */
 810			trace_block_bio_complete(md->queue, bio, io_error);
 811			bio->bi_error = io_error;
 812			bio_endio(bio);
 813		}
 814	}
 815}
 816
 
 
 
 
 
 
 
 
 
 817void disable_write_same(struct mapped_device *md)
 818{
 819	struct queue_limits *limits = dm_get_queue_limits(md);
 820
 821	/* device doesn't really support WRITE SAME, disable it */
 822	limits->max_write_same_sectors = 0;
 823}
 824
 
 
 
 
 
 
 
 
 
 
 
 
 
 825static void clone_endio(struct bio *bio)
 826{
 827	int error = bio->bi_error;
 828	int r = error;
 829	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 830	struct dm_io *io = tio->io;
 831	struct mapped_device *md = tio->io->md;
 832	dm_endio_fn endio = tio->ti->type->end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	if (endio) {
 835		r = endio(tio->ti, bio, error);
 836		if (r < 0 || r == DM_ENDIO_REQUEUE)
 
 837			/*
 838			 * error and requeue request are handled
 839			 * in dec_pending().
 
 840			 */
 841			error = r;
 842		else if (r == DM_ENDIO_INCOMPLETE)
 
 
 
 
 
 
 843			/* The target will handle the io */
 844			return;
 845		else if (r) {
 846			DMWARN("unimplemented target endio return value: %d", r);
 847			BUG();
 848		}
 849	}
 850
 851	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
 852		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
 853		disable_write_same(md);
 
 854
 855	free_tio(tio);
 856	dec_pending(io, error);
 857}
 858
 859/*
 860 * Return maximum size of I/O possible at the supplied sector up to the current
 861 * target boundary.
 862 */
 863static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
 864{
 865	sector_t target_offset = dm_target_offset(ti, sector);
 866
 867	return ti->len - target_offset;
 868}
 869
 870static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 871{
 872	sector_t len = max_io_len_target_boundary(sector, ti);
 873	sector_t offset, max_len;
 
 874
 875	/*
 876	 * Does the target need to split even further?
 
 
 
 
 877	 */
 878	if (ti->max_io_len) {
 879		offset = dm_target_offset(ti, sector);
 880		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 881			max_len = sector_div(offset, ti->max_io_len);
 882		else
 883			max_len = offset & (ti->max_io_len - 1);
 884		max_len = ti->max_io_len - max_len;
 885
 886		if (len > max_len)
 887			len = max_len;
 888	}
 889
 890	return len;
 891}
 892
 893int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 894{
 895	if (len > UINT_MAX) {
 896		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 897		      (unsigned long long)len, UINT_MAX);
 898		ti->error = "Maximum size of target IO is too large";
 899		return -EINVAL;
 900	}
 901
 902	ti->max_io_len = (uint32_t) len;
 903
 904	return 0;
 905}
 906EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 907
 908static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
 909				 void **kaddr, pfn_t *pfn, long size)
 
 910{
 911	struct mapped_device *md = bdev->bd_disk->private_data;
 912	struct dm_table *map;
 913	struct dm_target *ti;
 914	int srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915	long len, ret = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 916
 917	map = dm_get_live_table(md, &srcu_idx);
 918	if (!map)
 919		goto out;
 920
 921	ti = dm_table_find_target(map, sector);
 922	if (!dm_target_is_valid(ti))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923		goto out;
 
 
 
 
 924
 925	len = max_io_len(sector, ti) << SECTOR_SHIFT;
 926	size = min(len, size);
 927
 928	if (ti->type->direct_access)
 929		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
 930out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931	dm_put_live_table(md, srcu_idx);
 932	return min(ret, size);
 
 933}
 934
 935/*
 936 * A target may call dm_accept_partial_bio only from the map routine.  It is
 937 * allowed for all bio types except REQ_PREFLUSH.
 
 938 *
 939 * dm_accept_partial_bio informs the dm that the target only wants to process
 940 * additional n_sectors sectors of the bio and the rest of the data should be
 941 * sent in a next bio.
 942 *
 943 * A diagram that explains the arithmetics:
 944 * +--------------------+---------------+-------+
 945 * |         1          |       2       |   3   |
 946 * +--------------------+---------------+-------+
 947 *
 948 * <-------------- *tio->len_ptr --------------->
 949 *                      <------- bi_size ------->
 950 *                      <-- n_sectors -->
 951 *
 952 * Region 1 was already iterated over with bio_advance or similar function.
 953 *	(it may be empty if the target doesn't use bio_advance)
 954 * Region 2 is the remaining bio size that the target wants to process.
 955 *	(it may be empty if region 1 is non-empty, although there is no reason
 956 *	 to make it empty)
 957 * The target requires that region 3 is to be sent in the next bio.
 958 *
 959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
 960 * the partially processed part (the sum of regions 1+2) must be the same for all
 961 * copies of the bio.
 962 */
 963void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
 964{
 965	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 966	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
 
 967	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
 
 
 968	BUG_ON(bi_size > *tio->len_ptr);
 969	BUG_ON(n_sectors > bi_size);
 
 970	*tio->len_ptr -= bi_size - n_sectors;
 971	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 972}
 973EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
 974
 975/*
 976 * Flush current->bio_list when the target map method blocks.
 977 * This fixes deadlocks in snapshot and possibly in other targets.
 978 */
 979struct dm_offload {
 980	struct blk_plug plug;
 981	struct blk_plug_cb cb;
 982};
 983
 984static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
 985{
 986	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
 987	struct bio_list list;
 988	struct bio *bio;
 989	int i;
 990
 991	INIT_LIST_HEAD(&o->cb.list);
 992
 993	if (unlikely(!current->bio_list))
 994		return;
 995
 996	for (i = 0; i < 2; i++) {
 997		list = current->bio_list[i];
 998		bio_list_init(&current->bio_list[i]);
 999
1000		while ((bio = bio_list_pop(&list))) {
1001			struct bio_set *bs = bio->bi_pool;
1002			if (unlikely(!bs) || bs == fs_bio_set) {
1003				bio_list_add(&current->bio_list[i], bio);
1004				continue;
1005			}
1006
1007			spin_lock(&bs->rescue_lock);
1008			bio_list_add(&bs->rescue_list, bio);
1009			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1010			spin_unlock(&bs->rescue_lock);
1011		}
1012	}
 
 
 
 
 
 
1013}
1014
1015static void dm_offload_start(struct dm_offload *o)
1016{
1017	blk_start_plug(&o->plug);
1018	o->cb.callback = flush_current_bio_list;
1019	list_add(&o->cb.list, &current->plug->cb_list);
1020}
1021
1022static void dm_offload_end(struct dm_offload *o)
1023{
1024	list_del(&o->cb.list);
1025	blk_finish_plug(&o->plug);
1026}
1027
1028static void __map_bio(struct dm_target_io *tio)
1029{
1030	int r;
1031	sector_t sector;
1032	struct dm_offload o;
1033	struct bio *clone = &tio->clone;
 
1034	struct dm_target *ti = tio->ti;
 
1035
1036	clone->bi_end_io = clone_endio;
1037
1038	/*
1039	 * Map the clone.  If r == 0 we don't need to do
1040	 * anything, the target has assumed ownership of
1041	 * this io.
1042	 */
1043	atomic_inc(&tio->io->io_count);
1044	sector = clone->bi_iter.bi_sector;
1045
1046	dm_offload_start(&o);
1047	r = ti->type->map(ti, clone);
1048	dm_offload_end(&o);
1049
1050	if (r == DM_MAPIO_REMAPPED) {
1051		/* the bio has been remapped so dispatch it */
 
1052
1053		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1054				      tio->io->bio->bi_bdev->bd_dev, sector);
 
 
 
 
 
 
 
1055
1056		generic_make_request(clone);
1057	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1058		/* error the io and bail out, or requeue it if needed */
1059		dec_pending(tio->io, r);
 
 
 
 
 
 
 
 
 
1060		free_tio(tio);
1061	} else if (r != DM_MAPIO_SUBMITTED) {
 
 
 
 
 
 
 
 
 
 
1062		DMWARN("unimplemented target map return value: %d", r);
1063		BUG();
1064	}
1065}
1066
1067struct clone_info {
1068	struct mapped_device *md;
1069	struct dm_table *map;
1070	struct bio *bio;
1071	struct dm_io *io;
1072	sector_t sector;
1073	unsigned sector_count;
1074};
1075
1076static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077{
1078	bio->bi_iter.bi_sector = sector;
1079	bio->bi_iter.bi_size = to_bytes(len);
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1086		     sector_t sector, unsigned len)
1087{
1088	struct bio *clone = &tio->clone;
 
1089
1090	__bio_clone_fast(clone, bio);
1091
 
 
 
 
1092	if (bio_integrity(bio)) {
1093		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
 
 
 
 
 
 
 
 
1094		if (r < 0)
1095			return r;
1096	}
1097
1098	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1099	clone->bi_iter.bi_size = to_bytes(len);
1100
1101	if (bio_integrity(bio))
1102		bio_integrity_trim(clone, 0, len);
1103
1104	return 0;
1105}
1106
1107static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108				      struct dm_target *ti,
1109				      unsigned target_bio_nr)
1110{
1111	struct dm_target_io *tio;
1112	struct bio *clone;
1113
1114	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1115	tio = container_of(clone, struct dm_target_io, clone);
1116
1117	tio->io = ci->io;
1118	tio->ti = ti;
1119	tio->target_bio_nr = target_bio_nr;
 
 
1120
1121	return tio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122}
1123
1124static void __clone_and_map_simple_bio(struct clone_info *ci,
1125				       struct dm_target *ti,
1126				       unsigned target_bio_nr, unsigned *len)
1127{
1128	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1129	struct bio *clone = &tio->clone;
1130
1131	tio->len_ptr = len;
1132
1133	__bio_clone_fast(clone, ci->bio);
1134	if (len)
1135		bio_setup_sector(clone, ci->sector, *len);
1136
1137	__map_bio(tio);
1138}
1139
1140static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1141				  unsigned num_bios, unsigned *len)
1142{
1143	unsigned target_bio_nr;
 
 
1144
1145	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1146		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
 
 
 
 
1147}
1148
1149static int __send_empty_flush(struct clone_info *ci)
1150{
1151	unsigned target_nr = 0;
1152	struct dm_target *ti;
 
 
 
 
 
 
 
 
 
 
 
 
 
1153
1154	BUG_ON(bio_has_data(ci->bio));
1155	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1156		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1157
 
1158	return 0;
1159}
1160
1161static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1162				     sector_t sector, unsigned *len)
1163{
1164	struct bio *bio = ci->bio;
1165	struct dm_target_io *tio;
1166	unsigned target_bio_nr;
1167	unsigned num_target_bios = 1;
1168	int r = 0;
1169
1170	/*
1171	 * Does the target want to receive duplicate copies of the bio?
1172	 */
1173	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1174		num_target_bios = ti->num_write_bios(ti, bio);
1175
1176	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1177		tio = alloc_tio(ci, ti, target_bio_nr);
1178		tio->len_ptr = len;
1179		r = clone_bio(tio, bio, sector, *len);
1180		if (r < 0) {
1181			free_tio(tio);
1182			break;
1183		}
1184		__map_bio(tio);
1185	}
 
1186
1187	return r;
1188}
1189
1190typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1191
1192static unsigned get_num_discard_bios(struct dm_target *ti)
1193{
1194	return ti->num_discard_bios;
1195}
1196
1197static unsigned get_num_write_same_bios(struct dm_target *ti)
1198{
1199	return ti->num_write_same_bios;
1200}
1201
1202typedef bool (*is_split_required_fn)(struct dm_target *ti);
1203
1204static bool is_split_required_for_discard(struct dm_target *ti)
1205{
1206	return ti->split_discard_bios;
1207}
1208
1209static int __send_changing_extent_only(struct clone_info *ci,
1210				       get_num_bios_fn get_num_bios,
1211				       is_split_required_fn is_split_required)
1212{
1213	struct dm_target *ti;
1214	unsigned len;
1215	unsigned num_bios;
1216
1217	do {
1218		ti = dm_table_find_target(ci->map, ci->sector);
1219		if (!dm_target_is_valid(ti))
1220			return -EIO;
1221
1222		/*
1223		 * Even though the device advertised support for this type of
1224		 * request, that does not mean every target supports it, and
1225		 * reconfiguration might also have changed that since the
1226		 * check was performed.
1227		 */
1228		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1229		if (!num_bios)
1230			return -EOPNOTSUPP;
1231
1232		if (is_split_required && !is_split_required(ti))
1233			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1234		else
1235			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1236
1237		__send_duplicate_bios(ci, ti, num_bios, &len);
1238
1239		ci->sector += len;
1240	} while (ci->sector_count -= len);
1241
1242	return 0;
1243}
1244
1245static int __send_discard(struct clone_info *ci)
1246{
1247	return __send_changing_extent_only(ci, get_num_discard_bios,
1248					   is_split_required_for_discard);
 
 
 
 
 
 
 
 
 
 
1249}
1250
1251static int __send_write_same(struct clone_info *ci)
 
1252{
1253	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254}
1255
1256/*
1257 * Select the correct strategy for processing a non-flush bio.
1258 */
1259static int __split_and_process_non_flush(struct clone_info *ci)
1260{
1261	struct bio *bio = ci->bio;
1262	struct dm_target *ti;
1263	unsigned len;
1264	int r;
1265
1266	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1267		return __send_discard(ci);
1268	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1269		return __send_write_same(ci);
1270
1271	ti = dm_table_find_target(ci->map, ci->sector);
1272	if (!dm_target_is_valid(ti))
1273		return -EIO;
1274
1275	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
1276
1277	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1278	if (r < 0)
1279		return r;
1280
1281	ci->sector += len;
1282	ci->sector_count -= len;
1283
1284	return 0;
1285}
1286
 
 
 
 
 
 
 
 
 
 
 
1287/*
1288 * Entry point to split a bio into clones and submit them to the targets.
1289 */
1290static void __split_and_process_bio(struct mapped_device *md,
1291				    struct dm_table *map, struct bio *bio)
1292{
1293	struct clone_info ci;
 
1294	int error = 0;
1295
1296	if (unlikely(!map)) {
1297		bio_io_error(bio);
1298		return;
1299	}
1300
1301	ci.map = map;
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_iter.bi_sector;
1310
1311	start_io_acct(ci.io);
1312
1313	if (bio->bi_opf & REQ_PREFLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __send_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
 
 
 
 
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __split_and_process_non_flush(&ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
 
1327}
1328/*-----------------------------------------------------------------
1329 * CRUD END
1330 *---------------------------------------------------------------*/
1331
1332/*
1333 * The request function that just remaps the bio built up by
1334 * dm_merge_bvec.
1335 */
1336static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1337{
1338	int rw = bio_data_dir(bio);
1339	struct mapped_device *md = q->queuedata;
1340	int srcu_idx;
1341	struct dm_table *map;
1342
1343	map = dm_get_live_table(md, &srcu_idx);
 
 
 
 
 
 
1344
1345	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1346
1347	/* if we're suspended, we have to queue this io for later */
1348	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1349		dm_put_live_table(md, srcu_idx);
1350
1351		if (!(bio->bi_opf & REQ_RAHEAD))
1352			queue_io(md, bio);
1353		else
1354			bio_io_error(bio);
1355		return BLK_QC_T_NONE;
 
 
1356	}
1357
1358	__split_and_process_bio(md, map, bio);
1359	dm_put_live_table(md, srcu_idx);
1360	return BLK_QC_T_NONE;
1361}
1362
1363static int dm_any_congested(void *congested_data, int bdi_bits)
1364{
1365	int r = bdi_bits;
1366	struct mapped_device *md = congested_data;
1367	struct dm_table *map;
1368
1369	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1370		if (dm_request_based(md)) {
1371			/*
1372			 * With request-based DM we only need to check the
1373			 * top-level queue for congestion.
1374			 */
1375			r = md->queue->backing_dev_info.wb.state & bdi_bits;
1376		} else {
1377			map = dm_get_live_table_fast(md);
1378			if (map)
1379				r = dm_table_any_congested(map, bdi_bits);
1380			dm_put_live_table_fast(md);
1381		}
1382	}
1383
1384	return r;
 
 
 
1385}
1386
1387/*-----------------------------------------------------------------
1388 * An IDR is used to keep track of allocated minor numbers.
1389 *---------------------------------------------------------------*/
1390static void free_minor(int minor)
1391{
1392	spin_lock(&_minor_lock);
1393	idr_remove(&_minor_idr, minor);
1394	spin_unlock(&_minor_lock);
1395}
1396
1397/*
1398 * See if the device with a specific minor # is free.
1399 */
1400static int specific_minor(int minor)
1401{
1402	int r;
1403
1404	if (minor >= (1 << MINORBITS))
1405		return -EINVAL;
1406
1407	idr_preload(GFP_KERNEL);
1408	spin_lock(&_minor_lock);
1409
1410	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1411
1412	spin_unlock(&_minor_lock);
1413	idr_preload_end();
1414	if (r < 0)
1415		return r == -ENOSPC ? -EBUSY : r;
1416	return 0;
1417}
1418
1419static int next_free_minor(int *minor)
1420{
1421	int r;
1422
1423	idr_preload(GFP_KERNEL);
1424	spin_lock(&_minor_lock);
1425
1426	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1427
1428	spin_unlock(&_minor_lock);
1429	idr_preload_end();
1430	if (r < 0)
1431		return r;
1432	*minor = r;
1433	return 0;
1434}
1435
1436static const struct block_device_operations dm_blk_dops;
 
 
1437
1438static void dm_wq_work(struct work_struct *work);
1439
1440void dm_init_md_queue(struct mapped_device *md)
 
1441{
1442	/*
1443	 * Request-based dm devices cannot be stacked on top of bio-based dm
1444	 * devices.  The type of this dm device may not have been decided yet.
1445	 * The type is decided at the first table loading time.
1446	 * To prevent problematic device stacking, clear the queue flag
1447	 * for request stacking support until then.
1448	 *
1449	 * This queue is new, so no concurrency on the queue_flags.
1450	 */
1451	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1452
1453	/*
1454	 * Initialize data that will only be used by a non-blk-mq DM queue
1455	 * - must do so here (in alloc_dev callchain) before queue is used
1456	 */
1457	md->queue->queuedata = md;
1458	md->queue->backing_dev_info.congested_data = md;
1459}
1460
1461void dm_init_normal_md_queue(struct mapped_device *md)
1462{
1463	md->use_blk_mq = false;
1464	dm_init_md_queue(md);
1465
1466	/*
1467	 * Initialize aspects of queue that aren't relevant for blk-mq
1468	 */
1469	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1470	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1471}
 
1472
1473static void cleanup_mapped_device(struct mapped_device *md)
1474{
1475	if (md->wq)
1476		destroy_workqueue(md->wq);
1477	if (md->kworker_task)
1478		kthread_stop(md->kworker_task);
1479	mempool_destroy(md->io_pool);
1480	mempool_destroy(md->rq_pool);
1481	if (md->bs)
1482		bioset_free(md->bs);
 
 
1483
1484	if (md->disk) {
1485		spin_lock(&_minor_lock);
1486		md->disk->private_data = NULL;
1487		spin_unlock(&_minor_lock);
1488		del_gendisk(md->disk);
1489		put_disk(md->disk);
1490	}
1491
1492	if (md->queue)
1493		blk_cleanup_queue(md->queue);
 
 
 
1494
1495	cleanup_srcu_struct(&md->io_barrier);
1496
1497	if (md->bdev) {
1498		bdput(md->bdev);
1499		md->bdev = NULL;
1500	}
1501
1502	dm_mq_cleanup_mapped_device(md);
 
1503}
1504
1505/*
1506 * Allocate and initialise a blank device with a given minor.
1507 */
1508static struct mapped_device *alloc_dev(int minor)
1509{
1510	int r, numa_node_id = dm_get_numa_node();
1511	struct mapped_device *md;
1512	void *old_md;
1513
1514	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1515	if (!md) {
1516		DMWARN("unable to allocate device, out of memory.");
1517		return NULL;
1518	}
1519
1520	if (!try_module_get(THIS_MODULE))
1521		goto bad_module_get;
1522
1523	/* get a minor number for the dev */
1524	if (minor == DM_ANY_MINOR)
1525		r = next_free_minor(&minor);
1526	else
1527		r = specific_minor(minor);
1528	if (r < 0)
1529		goto bad_minor;
1530
1531	r = init_srcu_struct(&md->io_barrier);
1532	if (r < 0)
1533		goto bad_io_barrier;
1534
1535	md->numa_node_id = numa_node_id;
1536	md->use_blk_mq = dm_use_blk_mq_default();
1537	md->init_tio_pdu = false;
1538	md->type = DM_TYPE_NONE;
1539	mutex_init(&md->suspend_lock);
1540	mutex_init(&md->type_lock);
1541	mutex_init(&md->table_devices_lock);
1542	spin_lock_init(&md->deferred_lock);
1543	atomic_set(&md->holders, 1);
1544	atomic_set(&md->open_count, 0);
1545	atomic_set(&md->event_nr, 0);
1546	atomic_set(&md->uevent_seq, 0);
1547	INIT_LIST_HEAD(&md->uevent_list);
1548	INIT_LIST_HEAD(&md->table_devices);
1549	spin_lock_init(&md->uevent_lock);
1550
1551	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1552	if (!md->queue)
1553		goto bad;
1554
1555	dm_init_md_queue(md);
1556
1557	md->disk = alloc_disk_node(1, numa_node_id);
1558	if (!md->disk)
1559		goto bad;
 
1560
1561	atomic_set(&md->pending[0], 0);
1562	atomic_set(&md->pending[1], 0);
1563	init_waitqueue_head(&md->wait);
1564	INIT_WORK(&md->work, dm_wq_work);
1565	init_waitqueue_head(&md->eventq);
1566	init_completion(&md->kobj_holder.completion);
1567	md->kworker_task = NULL;
 
 
 
1568
1569	md->disk->major = _major;
1570	md->disk->first_minor = minor;
 
1571	md->disk->fops = &dm_blk_dops;
1572	md->disk->queue = md->queue;
1573	md->disk->private_data = md;
1574	sprintf(md->disk->disk_name, "dm-%d", minor);
1575	add_disk(md->disk);
 
 
 
 
 
 
 
 
1576	format_dev_t(md->name, MKDEV(_major, minor));
1577
1578	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1579	if (!md->wq)
1580		goto bad;
1581
1582	md->bdev = bdget_disk(md->disk, 0);
1583	if (!md->bdev)
1584		goto bad;
1585
1586	bio_init(&md->flush_bio, NULL, 0);
1587	md->flush_bio.bi_bdev = md->bdev;
1588	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1589
1590	dm_stats_init(&md->stats);
1591
1592	/* Populate the mapping, nobody knows we exist yet */
1593	spin_lock(&_minor_lock);
1594	old_md = idr_replace(&_minor_idr, md, minor);
1595	spin_unlock(&_minor_lock);
1596
1597	BUG_ON(old_md != MINOR_ALLOCED);
1598
1599	return md;
1600
1601bad:
1602	cleanup_mapped_device(md);
1603bad_io_barrier:
1604	free_minor(minor);
1605bad_minor:
1606	module_put(THIS_MODULE);
1607bad_module_get:
1608	kfree(md);
1609	return NULL;
1610}
1611
1612static void unlock_fs(struct mapped_device *md);
1613
1614static void free_dev(struct mapped_device *md)
1615{
1616	int minor = MINOR(disk_devt(md->disk));
1617
1618	unlock_fs(md);
1619
1620	cleanup_mapped_device(md);
1621
1622	free_table_devices(&md->table_devices);
1623	dm_stats_cleanup(&md->stats);
1624	free_minor(minor);
1625
1626	module_put(THIS_MODULE);
1627	kfree(md);
1628}
1629
1630static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1631{
1632	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
 
1633
1634	if (md->bs) {
1635		/* The md already has necessary mempools. */
1636		if (dm_table_bio_based(t)) {
1637			/*
1638			 * Reload bioset because front_pad may have changed
1639			 * because a different table was loaded.
1640			 */
1641			bioset_free(md->bs);
1642			md->bs = p->bs;
1643			p->bs = NULL;
1644		}
1645		/*
1646		 * There's no need to reload with request-based dm
1647		 * because the size of front_pad doesn't change.
1648		 * Note for future: If you are to reload bioset,
1649		 * prep-ed requests in the queue may refer
1650		 * to bio from the old bioset, so you must walk
1651		 * through the queue to unprep.
1652		 */
1653		goto out;
1654	}
1655
1656	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1657
1658	md->io_pool = p->io_pool;
1659	p->io_pool = NULL;
1660	md->rq_pool = p->rq_pool;
1661	p->rq_pool = NULL;
1662	md->bs = p->bs;
1663	p->bs = NULL;
1664
 
 
 
 
 
 
1665out:
1666	/* mempool bind completed, no longer need any mempools in the table */
1667	dm_table_free_md_mempools(t);
 
1668}
1669
1670/*
1671 * Bind a table to the device.
1672 */
1673static void event_callback(void *context)
1674{
1675	unsigned long flags;
1676	LIST_HEAD(uevents);
1677	struct mapped_device *md = (struct mapped_device *) context;
1678
1679	spin_lock_irqsave(&md->uevent_lock, flags);
1680	list_splice_init(&md->uevent_list, &uevents);
1681	spin_unlock_irqrestore(&md->uevent_lock, flags);
1682
1683	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1684
1685	atomic_inc(&md->event_nr);
1686	wake_up(&md->eventq);
1687}
1688
1689/*
1690 * Protected by md->suspend_lock obtained by dm_swap_table().
1691 */
1692static void __set_size(struct mapped_device *md, sector_t size)
1693{
1694	set_capacity(md->disk, size);
1695
1696	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1697}
1698
1699/*
1700 * Returns old map, which caller must destroy.
1701 */
1702static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1703			       struct queue_limits *limits)
1704{
1705	struct dm_table *old_map;
1706	struct request_queue *q = md->queue;
 
1707	sector_t size;
 
1708
1709	lockdep_assert_held(&md->suspend_lock);
1710
1711	size = dm_table_get_size(t);
1712
1713	/*
1714	 * Wipe any geometry if the size of the table changed.
1715	 */
1716	if (size != dm_get_size(md))
1717		memset(&md->geometry, 0, sizeof(md->geometry));
1718
1719	__set_size(md, size);
 
 
 
1720
1721	dm_table_event_callback(t, event_callback, md);
1722
1723	/*
1724	 * The queue hasn't been stopped yet, if the old table type wasn't
1725	 * for request-based during suspension.  So stop it to prevent
1726	 * I/O mapping before resume.
1727	 * This must be done before setting the queue restrictions,
1728	 * because request-based dm may be run just after the setting.
1729	 */
1730	if (dm_table_request_based(t)) {
1731		dm_stop_queue(q);
 
 
1732		/*
1733		 * Leverage the fact that request-based DM targets are
1734		 * immutable singletons and establish md->immutable_target
1735		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1736		 */
1737		md->immutable_target = dm_table_get_immutable_target(t);
1738	}
1739
1740	__bind_mempools(md, t);
 
 
 
 
 
 
 
 
 
 
1741
1742	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1743	rcu_assign_pointer(md->map, (void *)t);
1744	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1745
1746	dm_table_set_restrictions(t, q, limits);
1747	if (old_map)
1748		dm_sync_table(md);
1749
 
1750	return old_map;
1751}
1752
1753/*
1754 * Returns unbound table for the caller to free.
1755 */
1756static struct dm_table *__unbind(struct mapped_device *md)
1757{
1758	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759
1760	if (!map)
1761		return NULL;
1762
1763	dm_table_event_callback(map, NULL, NULL);
1764	RCU_INIT_POINTER(md->map, NULL);
1765	dm_sync_table(md);
1766
1767	return map;
1768}
1769
1770/*
1771 * Constructor for a new device.
1772 */
1773int dm_create(int minor, struct mapped_device **result)
1774{
 
1775	struct mapped_device *md;
1776
1777	md = alloc_dev(minor);
1778	if (!md)
1779		return -ENXIO;
1780
1781	dm_sysfs_init(md);
 
 
 
 
1782
1783	*result = md;
1784	return 0;
1785}
1786
1787/*
1788 * Functions to manage md->type.
1789 * All are required to hold md->type_lock.
1790 */
1791void dm_lock_md_type(struct mapped_device *md)
1792{
1793	mutex_lock(&md->type_lock);
1794}
1795
1796void dm_unlock_md_type(struct mapped_device *md)
1797{
1798	mutex_unlock(&md->type_lock);
1799}
1800
1801void dm_set_md_type(struct mapped_device *md, unsigned type)
1802{
1803	BUG_ON(!mutex_is_locked(&md->type_lock));
1804	md->type = type;
1805}
1806
1807unsigned dm_get_md_type(struct mapped_device *md)
1808{
1809	return md->type;
1810}
1811
1812struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1813{
1814	return md->immutable_target_type;
1815}
1816
1817/*
1818 * The queue_limits are only valid as long as you have a reference
1819 * count on 'md'.
1820 */
1821struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1822{
1823	BUG_ON(!atomic_read(&md->holders));
1824	return &md->queue->limits;
1825}
1826EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1827
1828/*
1829 * Setup the DM device's queue based on md's type
1830 */
1831int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1832{
1833	int r;
1834	unsigned type = dm_get_md_type(md);
 
1835
1836	switch (type) {
1837	case DM_TYPE_REQUEST_BASED:
1838		r = dm_old_init_request_queue(md);
1839		if (r) {
1840			DMERR("Cannot initialize queue for request-based mapped device");
1841			return r;
1842		}
1843		break;
1844	case DM_TYPE_MQ_REQUEST_BASED:
1845		r = dm_mq_init_request_queue(md, t);
1846		if (r) {
1847			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1848			return r;
1849		}
1850		break;
1851	case DM_TYPE_BIO_BASED:
1852	case DM_TYPE_DAX_BIO_BASED:
1853		dm_init_normal_md_queue(md);
1854		blk_queue_make_request(md->queue, dm_make_request);
1855		/*
1856		 * DM handles splitting bios as needed.  Free the bio_split bioset
1857		 * since it won't be used (saves 1 process per bio-based DM device).
1858		 */
1859		bioset_free(md->queue->bio_split);
1860		md->queue->bio_split = NULL;
1861
1862		if (type == DM_TYPE_DAX_BIO_BASED)
1863			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1864		break;
1865	}
1866
 
 
 
 
 
 
 
 
 
 
 
1867	return 0;
1868}
1869
1870struct mapped_device *dm_get_md(dev_t dev)
1871{
1872	struct mapped_device *md;
1873	unsigned minor = MINOR(dev);
1874
1875	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1876		return NULL;
1877
1878	spin_lock(&_minor_lock);
1879
1880	md = idr_find(&_minor_idr, minor);
1881	if (md) {
1882		if ((md == MINOR_ALLOCED ||
1883		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1884		     dm_deleting_md(md) ||
1885		     test_bit(DMF_FREEING, &md->flags))) {
1886			md = NULL;
1887			goto out;
1888		}
1889		dm_get(md);
1890	}
1891
1892out:
1893	spin_unlock(&_minor_lock);
1894
1895	return md;
1896}
1897EXPORT_SYMBOL_GPL(dm_get_md);
1898
1899void *dm_get_mdptr(struct mapped_device *md)
1900{
1901	return md->interface_ptr;
1902}
1903
1904void dm_set_mdptr(struct mapped_device *md, void *ptr)
1905{
1906	md->interface_ptr = ptr;
1907}
1908
1909void dm_get(struct mapped_device *md)
1910{
1911	atomic_inc(&md->holders);
1912	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1913}
1914
1915int dm_hold(struct mapped_device *md)
1916{
1917	spin_lock(&_minor_lock);
1918	if (test_bit(DMF_FREEING, &md->flags)) {
1919		spin_unlock(&_minor_lock);
1920		return -EBUSY;
1921	}
1922	dm_get(md);
1923	spin_unlock(&_minor_lock);
1924	return 0;
1925}
1926EXPORT_SYMBOL_GPL(dm_hold);
1927
1928const char *dm_device_name(struct mapped_device *md)
1929{
1930	return md->name;
1931}
1932EXPORT_SYMBOL_GPL(dm_device_name);
1933
1934static void __dm_destroy(struct mapped_device *md, bool wait)
1935{
1936	struct request_queue *q = dm_get_md_queue(md);
1937	struct dm_table *map;
1938	int srcu_idx;
1939
1940	might_sleep();
1941
1942	spin_lock(&_minor_lock);
1943	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1944	set_bit(DMF_FREEING, &md->flags);
1945	spin_unlock(&_minor_lock);
1946
1947	blk_set_queue_dying(q);
1948
1949	if (dm_request_based(md) && md->kworker_task)
1950		kthread_flush_worker(&md->kworker);
1951
1952	/*
1953	 * Take suspend_lock so that presuspend and postsuspend methods
1954	 * do not race with internal suspend.
1955	 */
1956	mutex_lock(&md->suspend_lock);
1957	map = dm_get_live_table(md, &srcu_idx);
1958	if (!dm_suspended_md(md)) {
1959		dm_table_presuspend_targets(map);
 
 
1960		dm_table_postsuspend_targets(map);
1961	}
1962	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1963	dm_put_live_table(md, srcu_idx);
1964	mutex_unlock(&md->suspend_lock);
1965
1966	/*
1967	 * Rare, but there may be I/O requests still going to complete,
1968	 * for example.  Wait for all references to disappear.
1969	 * No one should increment the reference count of the mapped_device,
1970	 * after the mapped_device state becomes DMF_FREEING.
1971	 */
1972	if (wait)
1973		while (atomic_read(&md->holders))
1974			msleep(1);
1975	else if (atomic_read(&md->holders))
1976		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1977		       dm_device_name(md), atomic_read(&md->holders));
1978
1979	dm_sysfs_exit(md);
1980	dm_table_destroy(__unbind(md));
1981	free_dev(md);
1982}
1983
1984void dm_destroy(struct mapped_device *md)
1985{
1986	__dm_destroy(md, true);
1987}
1988
1989void dm_destroy_immediate(struct mapped_device *md)
1990{
1991	__dm_destroy(md, false);
1992}
1993
1994void dm_put(struct mapped_device *md)
1995{
1996	atomic_dec(&md->holders);
1997}
1998EXPORT_SYMBOL_GPL(dm_put);
1999
2000static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001{
2002	int r = 0;
2003	DEFINE_WAIT(wait);
2004
2005	while (1) {
2006		prepare_to_wait(&md->wait, &wait, task_state);
2007
2008		if (!md_in_flight(md))
2009			break;
2010
2011		if (signal_pending_state(task_state, current)) {
2012			r = -EINTR;
2013			break;
2014		}
2015
2016		io_schedule();
2017	}
2018	finish_wait(&md->wait, &wait);
2019
2020	return r;
2021}
2022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2023/*
2024 * Process the deferred bios
2025 */
2026static void dm_wq_work(struct work_struct *work)
2027{
2028	struct mapped_device *md = container_of(work, struct mapped_device,
2029						work);
2030	struct bio *c;
2031	int srcu_idx;
2032	struct dm_table *map;
2033
2034	map = dm_get_live_table(md, &srcu_idx);
2035
2036	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2037		spin_lock_irq(&md->deferred_lock);
2038		c = bio_list_pop(&md->deferred);
2039		spin_unlock_irq(&md->deferred_lock);
2040
2041		if (!c)
2042			break;
2043
2044		if (dm_request_based(md))
2045			generic_make_request(c);
2046		else
2047			__split_and_process_bio(md, map, c);
2048	}
2049
2050	dm_put_live_table(md, srcu_idx);
2051}
2052
2053static void dm_queue_flush(struct mapped_device *md)
2054{
2055	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2056	smp_mb__after_atomic();
2057	queue_work(md->wq, &md->work);
2058}
2059
2060/*
2061 * Swap in a new table, returning the old one for the caller to destroy.
2062 */
2063struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2064{
2065	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2066	struct queue_limits limits;
2067	int r;
2068
2069	mutex_lock(&md->suspend_lock);
2070
2071	/* device must be suspended */
2072	if (!dm_suspended_md(md))
2073		goto out;
2074
2075	/*
2076	 * If the new table has no data devices, retain the existing limits.
2077	 * This helps multipath with queue_if_no_path if all paths disappear,
2078	 * then new I/O is queued based on these limits, and then some paths
2079	 * reappear.
2080	 */
2081	if (dm_table_has_no_data_devices(table)) {
2082		live_map = dm_get_live_table_fast(md);
2083		if (live_map)
2084			limits = md->queue->limits;
2085		dm_put_live_table_fast(md);
2086	}
2087
2088	if (!live_map) {
2089		r = dm_calculate_queue_limits(table, &limits);
2090		if (r) {
2091			map = ERR_PTR(r);
2092			goto out;
2093		}
2094	}
2095
2096	map = __bind(md, table, &limits);
 
2097
2098out:
2099	mutex_unlock(&md->suspend_lock);
2100	return map;
2101}
2102
2103/*
2104 * Functions to lock and unlock any filesystem running on the
2105 * device.
2106 */
2107static int lock_fs(struct mapped_device *md)
2108{
2109	int r;
2110
2111	WARN_ON(md->frozen_sb);
2112
2113	md->frozen_sb = freeze_bdev(md->bdev);
2114	if (IS_ERR(md->frozen_sb)) {
2115		r = PTR_ERR(md->frozen_sb);
2116		md->frozen_sb = NULL;
2117		return r;
2118	}
2119
2120	set_bit(DMF_FROZEN, &md->flags);
2121
2122	return 0;
 
 
 
2123}
2124
2125static void unlock_fs(struct mapped_device *md)
2126{
2127	if (!test_bit(DMF_FROZEN, &md->flags))
2128		return;
2129
2130	thaw_bdev(md->bdev, md->frozen_sb);
2131	md->frozen_sb = NULL;
2132	clear_bit(DMF_FROZEN, &md->flags);
2133}
2134
2135/*
2136 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2137 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2138 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2139 *
2140 * If __dm_suspend returns 0, the device is completely quiescent
2141 * now. There is no request-processing activity. All new requests
2142 * are being added to md->deferred list.
2143 *
2144 * Caller must hold md->suspend_lock
2145 */
2146static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2147			unsigned suspend_flags, long task_state,
2148			int dmf_suspended_flag)
2149{
2150	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2151	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2152	int r;
2153
2154	lockdep_assert_held(&md->suspend_lock);
2155
2156	/*
2157	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2158	 * This flag is cleared before dm_suspend returns.
2159	 */
2160	if (noflush)
2161		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2162
2163	/*
2164	 * This gets reverted if there's an error later and the targets
2165	 * provide the .presuspend_undo hook.
2166	 */
2167	dm_table_presuspend_targets(map);
2168
2169	/*
2170	 * Flush I/O to the device.
2171	 * Any I/O submitted after lock_fs() may not be flushed.
2172	 * noflush takes precedence over do_lockfs.
2173	 * (lock_fs() flushes I/Os and waits for them to complete.)
2174	 */
2175	if (!noflush && do_lockfs) {
2176		r = lock_fs(md);
2177		if (r) {
2178			dm_table_presuspend_undo_targets(map);
2179			return r;
2180		}
2181	}
2182
2183	/*
2184	 * Here we must make sure that no processes are submitting requests
2185	 * to target drivers i.e. no one may be executing
2186	 * __split_and_process_bio. This is called from dm_request and
2187	 * dm_wq_work.
2188	 *
2189	 * To get all processes out of __split_and_process_bio in dm_request,
2190	 * we take the write lock. To prevent any process from reentering
2191	 * __split_and_process_bio from dm_request and quiesce the thread
2192	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2193	 * flush_workqueue(md->wq).
2194	 */
2195	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2196	if (map)
2197		synchronize_srcu(&md->io_barrier);
2198
2199	/*
2200	 * Stop md->queue before flushing md->wq in case request-based
2201	 * dm defers requests to md->wq from md->queue.
2202	 */
2203	if (dm_request_based(md)) {
2204		dm_stop_queue(md->queue);
2205		if (md->kworker_task)
2206			kthread_flush_worker(&md->kworker);
2207	}
2208
2209	flush_workqueue(md->wq);
2210
2211	/*
2212	 * At this point no more requests are entering target request routines.
2213	 * We call dm_wait_for_completion to wait for all existing requests
2214	 * to finish.
2215	 */
2216	r = dm_wait_for_completion(md, task_state);
2217	if (!r)
2218		set_bit(dmf_suspended_flag, &md->flags);
2219
2220	if (noflush)
2221		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2222	if (map)
2223		synchronize_srcu(&md->io_barrier);
2224
2225	/* were we interrupted ? */
2226	if (r < 0) {
2227		dm_queue_flush(md);
2228
2229		if (dm_request_based(md))
2230			dm_start_queue(md->queue);
2231
2232		unlock_fs(md);
2233		dm_table_presuspend_undo_targets(map);
2234		/* pushback list is already flushed, so skip flush */
2235	}
2236
2237	return r;
2238}
2239
2240/*
2241 * We need to be able to change a mapping table under a mounted
2242 * filesystem.  For example we might want to move some data in
2243 * the background.  Before the table can be swapped with
2244 * dm_bind_table, dm_suspend must be called to flush any in
2245 * flight bios and ensure that any further io gets deferred.
2246 */
2247/*
2248 * Suspend mechanism in request-based dm.
2249 *
2250 * 1. Flush all I/Os by lock_fs() if needed.
2251 * 2. Stop dispatching any I/O by stopping the request_queue.
2252 * 3. Wait for all in-flight I/Os to be completed or requeued.
2253 *
2254 * To abort suspend, start the request_queue.
2255 */
2256int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2257{
2258	struct dm_table *map = NULL;
2259	int r = 0;
2260
2261retry:
2262	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2263
2264	if (dm_suspended_md(md)) {
2265		r = -EINVAL;
2266		goto out_unlock;
2267	}
2268
2269	if (dm_suspended_internally_md(md)) {
2270		/* already internally suspended, wait for internal resume */
2271		mutex_unlock(&md->suspend_lock);
2272		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2273		if (r)
2274			return r;
2275		goto retry;
2276	}
2277
2278	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2279
2280	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2281	if (r)
2282		goto out_unlock;
2283
 
2284	dm_table_postsuspend_targets(map);
 
2285
2286out_unlock:
2287	mutex_unlock(&md->suspend_lock);
2288	return r;
2289}
2290
2291static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2292{
2293	if (map) {
2294		int r = dm_table_resume_targets(map);
2295		if (r)
2296			return r;
2297	}
2298
2299	dm_queue_flush(md);
2300
2301	/*
2302	 * Flushing deferred I/Os must be done after targets are resumed
2303	 * so that mapping of targets can work correctly.
2304	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2305	 */
2306	if (dm_request_based(md))
2307		dm_start_queue(md->queue);
2308
2309	unlock_fs(md);
2310
2311	return 0;
2312}
2313
2314int dm_resume(struct mapped_device *md)
2315{
2316	int r;
2317	struct dm_table *map = NULL;
2318
2319retry:
2320	r = -EINVAL;
2321	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2322
2323	if (!dm_suspended_md(md))
2324		goto out;
2325
2326	if (dm_suspended_internally_md(md)) {
2327		/* already internally suspended, wait for internal resume */
2328		mutex_unlock(&md->suspend_lock);
2329		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2330		if (r)
2331			return r;
2332		goto retry;
2333	}
2334
2335	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2336	if (!map || !dm_table_get_size(map))
2337		goto out;
2338
2339	r = __dm_resume(md, map);
2340	if (r)
2341		goto out;
2342
2343	clear_bit(DMF_SUSPENDED, &md->flags);
2344out:
2345	mutex_unlock(&md->suspend_lock);
2346
2347	return r;
2348}
2349
2350/*
2351 * Internal suspend/resume works like userspace-driven suspend. It waits
2352 * until all bios finish and prevents issuing new bios to the target drivers.
2353 * It may be used only from the kernel.
2354 */
2355
2356static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2357{
2358	struct dm_table *map = NULL;
2359
 
 
2360	if (md->internal_suspend_count++)
2361		return; /* nested internal suspend */
2362
2363	if (dm_suspended_md(md)) {
2364		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2365		return; /* nest suspend */
2366	}
2367
2368	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2369
2370	/*
2371	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2372	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2373	 * would require changing .presuspend to return an error -- avoid this
2374	 * until there is a need for more elaborate variants of internal suspend.
2375	 */
2376	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2377			    DMF_SUSPENDED_INTERNALLY);
2378
 
2379	dm_table_postsuspend_targets(map);
 
2380}
2381
2382static void __dm_internal_resume(struct mapped_device *md)
2383{
2384	BUG_ON(!md->internal_suspend_count);
2385
2386	if (--md->internal_suspend_count)
2387		return; /* resume from nested internal suspend */
2388
2389	if (dm_suspended_md(md))
2390		goto done; /* resume from nested suspend */
2391
2392	/*
2393	 * NOTE: existing callers don't need to call dm_table_resume_targets
2394	 * (which may fail -- so best to avoid it for now by passing NULL map)
2395	 */
2396	(void) __dm_resume(md, NULL);
2397
2398done:
2399	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2400	smp_mb__after_atomic();
2401	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2402}
2403
2404void dm_internal_suspend_noflush(struct mapped_device *md)
2405{
2406	mutex_lock(&md->suspend_lock);
2407	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2408	mutex_unlock(&md->suspend_lock);
2409}
2410EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2411
2412void dm_internal_resume(struct mapped_device *md)
2413{
2414	mutex_lock(&md->suspend_lock);
2415	__dm_internal_resume(md);
2416	mutex_unlock(&md->suspend_lock);
2417}
2418EXPORT_SYMBOL_GPL(dm_internal_resume);
2419
2420/*
2421 * Fast variants of internal suspend/resume hold md->suspend_lock,
2422 * which prevents interaction with userspace-driven suspend.
2423 */
2424
2425void dm_internal_suspend_fast(struct mapped_device *md)
2426{
2427	mutex_lock(&md->suspend_lock);
2428	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2429		return;
2430
2431	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432	synchronize_srcu(&md->io_barrier);
2433	flush_workqueue(md->wq);
2434	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2435}
2436EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2437
2438void dm_internal_resume_fast(struct mapped_device *md)
2439{
2440	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441		goto done;
2442
2443	dm_queue_flush(md);
2444
2445done:
2446	mutex_unlock(&md->suspend_lock);
2447}
2448EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2449
2450/*-----------------------------------------------------------------
2451 * Event notification.
2452 *---------------------------------------------------------------*/
2453int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2454		       unsigned cookie)
2455{
 
 
2456	char udev_cookie[DM_COOKIE_LENGTH];
2457	char *envp[] = { udev_cookie, NULL };
2458
 
 
2459	if (!cookie)
2460		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2461	else {
2462		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2463			 DM_COOKIE_ENV_VAR_NAME, cookie);
2464		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465					  action, envp);
2466	}
 
 
 
 
2467}
2468
2469uint32_t dm_next_uevent_seq(struct mapped_device *md)
2470{
2471	return atomic_add_return(1, &md->uevent_seq);
2472}
2473
2474uint32_t dm_get_event_nr(struct mapped_device *md)
2475{
2476	return atomic_read(&md->event_nr);
2477}
2478
2479int dm_wait_event(struct mapped_device *md, int event_nr)
2480{
2481	return wait_event_interruptible(md->eventq,
2482			(event_nr != atomic_read(&md->event_nr)));
2483}
2484
2485void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2486{
2487	unsigned long flags;
2488
2489	spin_lock_irqsave(&md->uevent_lock, flags);
2490	list_add(elist, &md->uevent_list);
2491	spin_unlock_irqrestore(&md->uevent_lock, flags);
2492}
2493
2494/*
2495 * The gendisk is only valid as long as you have a reference
2496 * count on 'md'.
2497 */
2498struct gendisk *dm_disk(struct mapped_device *md)
2499{
2500	return md->disk;
2501}
2502EXPORT_SYMBOL_GPL(dm_disk);
2503
2504struct kobject *dm_kobject(struct mapped_device *md)
2505{
2506	return &md->kobj_holder.kobj;
2507}
2508
2509struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2510{
2511	struct mapped_device *md;
2512
2513	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2514
2515	if (test_bit(DMF_FREEING, &md->flags) ||
2516	    dm_deleting_md(md))
2517		return NULL;
2518
 
2519	dm_get(md);
 
 
 
2520	return md;
2521}
2522
2523int dm_suspended_md(struct mapped_device *md)
2524{
2525	return test_bit(DMF_SUSPENDED, &md->flags);
2526}
2527
 
 
 
 
 
2528int dm_suspended_internally_md(struct mapped_device *md)
2529{
2530	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2531}
2532
2533int dm_test_deferred_remove_flag(struct mapped_device *md)
2534{
2535	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2536}
2537
2538int dm_suspended(struct dm_target *ti)
2539{
2540	return dm_suspended_md(dm_table_get_md(ti->table));
2541}
2542EXPORT_SYMBOL_GPL(dm_suspended);
2543
 
 
 
 
 
 
2544int dm_noflush_suspending(struct dm_target *ti)
2545{
2546	return __noflush_suspending(dm_table_get_md(ti->table));
2547}
2548EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2549
2550struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2551					    unsigned integrity, unsigned per_io_data_size)
 
2552{
2553	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2554	struct kmem_cache *cachep = NULL;
2555	unsigned int pool_size = 0;
2556	unsigned int front_pad;
 
2557
2558	if (!pools)
2559		return NULL;
2560
2561	switch (type) {
2562	case DM_TYPE_BIO_BASED:
2563	case DM_TYPE_DAX_BIO_BASED:
2564		cachep = _io_cache;
2565		pool_size = dm_get_reserved_bio_based_ios();
2566		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
 
 
 
 
 
2567		break;
2568	case DM_TYPE_REQUEST_BASED:
2569		cachep = _rq_tio_cache;
2570		pool_size = dm_get_reserved_rq_based_ios();
2571		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2572		if (!pools->rq_pool)
2573			goto out;
2574		/* fall through to setup remaining rq-based pools */
2575	case DM_TYPE_MQ_REQUEST_BASED:
2576		if (!pool_size)
2577			pool_size = dm_get_reserved_rq_based_ios();
2578		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2579		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2580		break;
2581	default:
2582		BUG();
2583	}
2584
2585	if (cachep) {
2586		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2587		if (!pools->io_pool)
2588			goto out;
2589	}
2590
2591	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2592	if (!pools->bs)
2593		goto out;
2594
2595	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2596		goto out;
2597
2598	return pools;
2599
2600out:
2601	dm_free_md_mempools(pools);
2602
2603	return NULL;
2604}
2605
2606void dm_free_md_mempools(struct dm_md_mempools *pools)
2607{
2608	if (!pools)
2609		return;
2610
2611	mempool_destroy(pools->io_pool);
2612	mempool_destroy(pools->rq_pool);
2613
2614	if (pools->bs)
2615		bioset_free(pools->bs);
2616
2617	kfree(pools);
2618}
2619
2620struct dm_pr {
2621	u64	old_key;
2622	u64	new_key;
2623	u32	flags;
2624	bool	fail_early;
2625};
2626
2627static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2628		      void *data)
2629{
2630	struct mapped_device *md = bdev->bd_disk->private_data;
2631	struct dm_table *table;
2632	struct dm_target *ti;
2633	int ret = -ENOTTY, srcu_idx;
2634
2635	table = dm_get_live_table(md, &srcu_idx);
2636	if (!table || !dm_table_get_size(table))
2637		goto out;
2638
2639	/* We only support devices that have a single target */
2640	if (dm_table_get_num_targets(table) != 1)
2641		goto out;
2642	ti = dm_table_get_target(table, 0);
2643
2644	ret = -EINVAL;
2645	if (!ti->type->iterate_devices)
2646		goto out;
2647
2648	ret = ti->type->iterate_devices(ti, fn, data);
2649out:
2650	dm_put_live_table(md, srcu_idx);
2651	return ret;
2652}
2653
2654/*
2655 * For register / unregister we need to manually call out to every path.
2656 */
2657static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2658			    sector_t start, sector_t len, void *data)
2659{
2660	struct dm_pr *pr = data;
2661	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2662
2663	if (!ops || !ops->pr_register)
2664		return -EOPNOTSUPP;
2665	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2666}
2667
2668static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2669			  u32 flags)
2670{
2671	struct dm_pr pr = {
2672		.old_key	= old_key,
2673		.new_key	= new_key,
2674		.flags		= flags,
2675		.fail_early	= true,
2676	};
2677	int ret;
2678
2679	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2680	if (ret && new_key) {
2681		/* unregister all paths if we failed to register any path */
2682		pr.old_key = new_key;
2683		pr.new_key = 0;
2684		pr.flags = 0;
2685		pr.fail_early = false;
2686		dm_call_pr(bdev, __dm_pr_register, &pr);
2687	}
2688
2689	return ret;
2690}
2691
2692static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2693			 u32 flags)
2694{
2695	struct mapped_device *md = bdev->bd_disk->private_data;
2696	const struct pr_ops *ops;
2697	fmode_t mode;
2698	int r;
2699
2700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2701	if (r < 0)
2702		return r;
2703
2704	ops = bdev->bd_disk->fops->pr_ops;
2705	if (ops && ops->pr_reserve)
2706		r = ops->pr_reserve(bdev, key, type, flags);
2707	else
2708		r = -EOPNOTSUPP;
2709
2710	bdput(bdev);
2711	return r;
2712}
2713
2714static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2715{
2716	struct mapped_device *md = bdev->bd_disk->private_data;
2717	const struct pr_ops *ops;
2718	fmode_t mode;
2719	int r;
2720
2721	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2722	if (r < 0)
2723		return r;
2724
2725	ops = bdev->bd_disk->fops->pr_ops;
2726	if (ops && ops->pr_release)
2727		r = ops->pr_release(bdev, key, type);
2728	else
2729		r = -EOPNOTSUPP;
2730
2731	bdput(bdev);
2732	return r;
2733}
2734
2735static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2736			 enum pr_type type, bool abort)
2737{
2738	struct mapped_device *md = bdev->bd_disk->private_data;
2739	const struct pr_ops *ops;
2740	fmode_t mode;
2741	int r;
2742
2743	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2744	if (r < 0)
2745		return r;
2746
2747	ops = bdev->bd_disk->fops->pr_ops;
2748	if (ops && ops->pr_preempt)
2749		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2750	else
2751		r = -EOPNOTSUPP;
2752
2753	bdput(bdev);
2754	return r;
2755}
2756
2757static int dm_pr_clear(struct block_device *bdev, u64 key)
2758{
2759	struct mapped_device *md = bdev->bd_disk->private_data;
2760	const struct pr_ops *ops;
2761	fmode_t mode;
2762	int r;
2763
2764	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2765	if (r < 0)
2766		return r;
2767
2768	ops = bdev->bd_disk->fops->pr_ops;
2769	if (ops && ops->pr_clear)
2770		r = ops->pr_clear(bdev, key);
2771	else
2772		r = -EOPNOTSUPP;
2773
2774	bdput(bdev);
2775	return r;
2776}
2777
2778static const struct pr_ops dm_pr_ops = {
2779	.pr_register	= dm_pr_register,
2780	.pr_reserve	= dm_pr_reserve,
2781	.pr_release	= dm_pr_release,
2782	.pr_preempt	= dm_pr_preempt,
2783	.pr_clear	= dm_pr_clear,
2784};
2785
2786static const struct block_device_operations dm_blk_dops = {
 
2787	.open = dm_blk_open,
2788	.release = dm_blk_close,
2789	.ioctl = dm_blk_ioctl,
2790	.direct_access = dm_blk_direct_access,
2791	.getgeo = dm_blk_getgeo,
 
2792	.pr_ops = &dm_pr_ops,
2793	.owner = THIS_MODULE
2794};
2795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2796/*
2797 * module hooks
2798 */
2799module_init(dm_init);
2800module_exit(dm_exit);
2801
2802module_param(major, uint, 0);
2803MODULE_PARM_DESC(major, "The major number of the device mapper");
2804
2805module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2806MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2807
2808module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2809MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 
 
 
2810
2811MODULE_DESCRIPTION(DM_NAME " driver");
2812MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2813MODULE_LICENSE("GPL");
v5.14.15
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/mm.h>
  16#include <linux/sched/signal.h>
  17#include <linux/blkpg.h>
  18#include <linux/bio.h>
  19#include <linux/mempool.h>
  20#include <linux/dax.h>
  21#include <linux/slab.h>
  22#include <linux/idr.h>
  23#include <linux/uio.h>
  24#include <linux/hdreg.h>
  25#include <linux/delay.h>
  26#include <linux/wait.h>
  27#include <linux/pr.h>
  28#include <linux/refcount.h>
  29#include <linux/part_stat.h>
  30#include <linux/blk-crypto.h>
  31#include <linux/keyslot-manager.h>
  32
  33#define DM_MSG_PREFIX "core"
  34
 
 
 
 
 
 
 
 
 
 
  35/*
  36 * Cookies are numeric values sent with CHANGE and REMOVE
  37 * uevents while resuming, removing or renaming the device.
  38 */
  39#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  40#define DM_COOKIE_LENGTH 24
  41
  42static const char *_name = DM_NAME;
  43
  44static unsigned int major = 0;
  45static unsigned int _major = 0;
  46
  47static DEFINE_IDR(_minor_idr);
  48
  49static DEFINE_SPINLOCK(_minor_lock);
  50
  51static void do_deferred_remove(struct work_struct *w);
  52
  53static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  54
  55static struct workqueue_struct *deferred_remove_workqueue;
  56
  57atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  58DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  59
  60void dm_issue_global_event(void)
  61{
  62	atomic_inc(&dm_global_event_nr);
  63	wake_up(&dm_global_eventq);
  64}
  65
  66/*
  67 * One of these is allocated (on-stack) per original bio.
  68 */
  69struct clone_info {
  70	struct dm_table *map;
 
 
  71	struct bio *bio;
  72	struct dm_io *io;
  73	sector_t sector;
  74	unsigned sector_count;
  75};
  76
  77#define DM_TARGET_IO_BIO_OFFSET (offsetof(struct dm_target_io, clone))
  78#define DM_IO_BIO_OFFSET \
  79	(offsetof(struct dm_target_io, clone) + offsetof(struct dm_io, tio))
  80
  81void *dm_per_bio_data(struct bio *bio, size_t data_size)
  82{
  83	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
  84	if (!tio->inside_dm_io)
  85		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
  86	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
  87}
  88EXPORT_SYMBOL_GPL(dm_per_bio_data);
  89
  90struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
  91{
  92	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
  93	if (io->magic == DM_IO_MAGIC)
  94		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
  95	BUG_ON(io->magic != DM_TIO_MAGIC);
  96	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
  97}
  98EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
  99
 100unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 101{
 102	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 103}
 104EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 105
 106#define MINOR_ALLOCED ((void *)-1)
 107
 108#define DM_NUMA_NODE NUMA_NO_NODE
 109static int dm_numa_node = DM_NUMA_NODE;
 110
 111#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 112static int swap_bios = DEFAULT_SWAP_BIOS;
 113static int get_swap_bios(void)
 114{
 115	int latch = READ_ONCE(swap_bios);
 116	if (unlikely(latch <= 0))
 117		latch = DEFAULT_SWAP_BIOS;
 118	return latch;
 119}
 120
 121/*
 122 * For mempools pre-allocation at the table loading time.
 123 */
 124struct dm_md_mempools {
 125	struct bio_set bs;
 126	struct bio_set io_bs;
 
 127};
 128
 129struct table_device {
 130	struct list_head list;
 131	refcount_t count;
 132	struct dm_dev dm_dev;
 133};
 134
 
 
 
 
 135/*
 136 * Bio-based DM's mempools' reserved IOs set by the user.
 137 */
 138#define RESERVED_BIO_BASED_IOS		16
 139static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 140
 141static int __dm_get_module_param_int(int *module_param, int min, int max)
 142{
 143	int param = READ_ONCE(*module_param);
 144	int modified_param = 0;
 145	bool modified = true;
 146
 147	if (param < min)
 148		modified_param = min;
 149	else if (param > max)
 150		modified_param = max;
 151	else
 152		modified = false;
 153
 154	if (modified) {
 155		(void)cmpxchg(module_param, param, modified_param);
 156		param = modified_param;
 157	}
 158
 159	return param;
 160}
 161
 162unsigned __dm_get_module_param(unsigned *module_param,
 163			       unsigned def, unsigned max)
 164{
 165	unsigned param = READ_ONCE(*module_param);
 166	unsigned modified_param = 0;
 167
 168	if (!param)
 169		modified_param = def;
 170	else if (param > max)
 171		modified_param = max;
 172
 173	if (modified_param) {
 174		(void)cmpxchg(module_param, param, modified_param);
 175		param = modified_param;
 176	}
 177
 178	return param;
 179}
 180
 181unsigned dm_get_reserved_bio_based_ios(void)
 182{
 183	return __dm_get_module_param(&reserved_bio_based_ios,
 184				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 185}
 186EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 187
 188static unsigned dm_get_numa_node(void)
 189{
 190	return __dm_get_module_param_int(&dm_numa_node,
 191					 DM_NUMA_NODE, num_online_nodes() - 1);
 192}
 193
 194static int __init local_init(void)
 195{
 196	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197
 198	r = dm_uevent_init();
 199	if (r)
 200		return r;
 201
 202	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 203	if (!deferred_remove_workqueue) {
 204		r = -ENOMEM;
 205		goto out_uevent_exit;
 206	}
 207
 208	_major = major;
 209	r = register_blkdev(_major, _name);
 210	if (r < 0)
 211		goto out_free_workqueue;
 212
 213	if (!_major)
 214		_major = r;
 215
 216	return 0;
 217
 218out_free_workqueue:
 219	destroy_workqueue(deferred_remove_workqueue);
 220out_uevent_exit:
 221	dm_uevent_exit();
 
 
 
 
 
 
 222
 223	return r;
 224}
 225
 226static void local_exit(void)
 227{
 228	flush_scheduled_work();
 229	destroy_workqueue(deferred_remove_workqueue);
 230
 
 
 
 231	unregister_blkdev(_major, _name);
 232	dm_uevent_exit();
 233
 234	_major = 0;
 235
 236	DMINFO("cleaned up");
 237}
 238
 239static int (*_inits[])(void) __initdata = {
 240	local_init,
 241	dm_target_init,
 242	dm_linear_init,
 243	dm_stripe_init,
 244	dm_io_init,
 245	dm_kcopyd_init,
 246	dm_interface_init,
 247	dm_statistics_init,
 248};
 249
 250static void (*_exits[])(void) = {
 251	local_exit,
 252	dm_target_exit,
 253	dm_linear_exit,
 254	dm_stripe_exit,
 255	dm_io_exit,
 256	dm_kcopyd_exit,
 257	dm_interface_exit,
 258	dm_statistics_exit,
 259};
 260
 261static int __init dm_init(void)
 262{
 263	const int count = ARRAY_SIZE(_inits);
 264
 265	int r, i;
 266
 267	for (i = 0; i < count; i++) {
 268		r = _inits[i]();
 269		if (r)
 270			goto bad;
 271	}
 272
 273	return 0;
 274
 275      bad:
 276	while (i--)
 277		_exits[i]();
 278
 279	return r;
 280}
 281
 282static void __exit dm_exit(void)
 283{
 284	int i = ARRAY_SIZE(_exits);
 285
 286	while (i--)
 287		_exits[i]();
 288
 289	/*
 290	 * Should be empty by this point.
 291	 */
 292	idr_destroy(&_minor_idr);
 293}
 294
 295/*
 296 * Block device functions
 297 */
 298int dm_deleting_md(struct mapped_device *md)
 299{
 300	return test_bit(DMF_DELETING, &md->flags);
 301}
 302
 303static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 304{
 305	struct mapped_device *md;
 306
 307	spin_lock(&_minor_lock);
 308
 309	md = bdev->bd_disk->private_data;
 310	if (!md)
 311		goto out;
 312
 313	if (test_bit(DMF_FREEING, &md->flags) ||
 314	    dm_deleting_md(md)) {
 315		md = NULL;
 316		goto out;
 317	}
 318
 319	dm_get(md);
 320	atomic_inc(&md->open_count);
 321out:
 322	spin_unlock(&_minor_lock);
 323
 324	return md ? 0 : -ENXIO;
 325}
 326
 327static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 328{
 329	struct mapped_device *md;
 330
 331	spin_lock(&_minor_lock);
 332
 333	md = disk->private_data;
 334	if (WARN_ON(!md))
 335		goto out;
 336
 337	if (atomic_dec_and_test(&md->open_count) &&
 338	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 339		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 340
 341	dm_put(md);
 342out:
 343	spin_unlock(&_minor_lock);
 344}
 345
 346int dm_open_count(struct mapped_device *md)
 347{
 348	return atomic_read(&md->open_count);
 349}
 350
 351/*
 352 * Guarantees nothing is using the device before it's deleted.
 353 */
 354int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 355{
 356	int r = 0;
 357
 358	spin_lock(&_minor_lock);
 359
 360	if (dm_open_count(md)) {
 361		r = -EBUSY;
 362		if (mark_deferred)
 363			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 364	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 365		r = -EEXIST;
 366	else
 367		set_bit(DMF_DELETING, &md->flags);
 368
 369	spin_unlock(&_minor_lock);
 370
 371	return r;
 372}
 373
 374int dm_cancel_deferred_remove(struct mapped_device *md)
 375{
 376	int r = 0;
 377
 378	spin_lock(&_minor_lock);
 379
 380	if (test_bit(DMF_DELETING, &md->flags))
 381		r = -EBUSY;
 382	else
 383		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 384
 385	spin_unlock(&_minor_lock);
 386
 387	return r;
 388}
 389
 390static void do_deferred_remove(struct work_struct *w)
 391{
 392	dm_deferred_remove();
 393}
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 396{
 397	struct mapped_device *md = bdev->bd_disk->private_data;
 398
 399	return dm_get_geometry(md, geo);
 400}
 401
 402static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 403			    struct block_device **bdev)
 
 404{
 405	struct dm_target *tgt;
 406	struct dm_table *map;
 407	int r;
 408
 409retry:
 410	r = -ENOTTY;
 411	map = dm_get_live_table(md, srcu_idx);
 412	if (!map || !dm_table_get_size(map))
 413		return r;
 414
 415	/* We only support devices that have a single target */
 416	if (dm_table_get_num_targets(map) != 1)
 417		return r;
 418
 419	tgt = dm_table_get_target(map, 0);
 420	if (!tgt->type->prepare_ioctl)
 421		return r;
 
 
 
 
 
 
 
 
 
 422
 423	if (dm_suspended_md(md))
 424		return -EAGAIN;
 
 425
 426	r = tgt->type->prepare_ioctl(tgt, bdev);
 
 427	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 428		dm_put_live_table(md, *srcu_idx);
 429		msleep(10);
 430		goto retry;
 431	}
 432
 433	return r;
 434}
 435
 436static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 437{
 438	dm_put_live_table(md, srcu_idx);
 439}
 440
 441static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 442			unsigned int cmd, unsigned long arg)
 443{
 444	struct mapped_device *md = bdev->bd_disk->private_data;
 445	int r, srcu_idx;
 446
 447	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 448	if (r < 0)
 449		goto out;
 450
 451	if (r > 0) {
 452		/*
 453		 * Target determined this ioctl is being issued against a
 454		 * subset of the parent bdev; require extra privileges.
 
 455		 */
 456		if (!capable(CAP_SYS_RAWIO)) {
 457			DMDEBUG_LIMIT(
 458	"%s: sending ioctl %x to DM device without required privilege.",
 459				current->comm, cmd);
 460			r = -ENOIOCTLCMD;
 461			goto out;
 462		}
 463	}
 464
 465	if (!bdev->bd_disk->fops->ioctl)
 466		r = -ENOTTY;
 467	else
 468		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 469out:
 470	dm_unprepare_ioctl(md, srcu_idx);
 471	return r;
 472}
 473
 474u64 dm_start_time_ns_from_clone(struct bio *bio)
 475{
 476	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 477	struct dm_io *io = tio->io;
 
 
 
 
 
 
 
 
 
 
 478
 479	return jiffies_to_nsecs(io->start_time);
 
 
 
 480}
 481EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 482
 483static void start_io_acct(struct dm_io *io)
 484{
 485	struct mapped_device *md = io->md;
 486	struct bio *bio = io->orig_bio;
 
 
 
 
 
 
 
 
 
 
 487
 488	io->start_time = bio_start_io_acct(bio);
 489	if (unlikely(dm_stats_used(&md->stats)))
 490		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 491				    bio->bi_iter.bi_sector, bio_sectors(bio),
 492				    false, 0, &io->stats_aux);
 493}
 494
 495static void end_io_acct(struct mapped_device *md, struct bio *bio,
 496			unsigned long start_time, struct dm_stats_aux *stats_aux)
 497{
 498	unsigned long duration = jiffies - start_time;
 
 
 
 
 499
 500	bio_end_io_acct(bio, start_time);
 501
 502	if (unlikely(dm_stats_used(&md->stats)))
 503		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 504				    bio->bi_iter.bi_sector, bio_sectors(bio),
 505				    true, duration, stats_aux);
 
 
 
 
 
 
 
 
 506
 507	/* nudge anyone waiting on suspend queue */
 508	if (unlikely(wq_has_sleeper(&md->wait)))
 509		wake_up(&md->wait);
 510}
 511
 512static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 513{
 514	struct dm_io *io;
 515	struct dm_target_io *tio;
 516	struct bio *clone;
 517
 518	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 519	if (!clone)
 520		return NULL;
 521
 522	tio = container_of(clone, struct dm_target_io, clone);
 523	tio->inside_dm_io = true;
 524	tio->io = NULL;
 525
 526	io = container_of(tio, struct dm_io, tio);
 527	io->magic = DM_IO_MAGIC;
 528	io->status = 0;
 529	atomic_set(&io->io_count, 1);
 530	io->orig_bio = bio;
 531	io->md = md;
 532	spin_lock_init(&io->endio_lock);
 533
 534	start_io_acct(io);
 535
 536	return io;
 537}
 538
 539static void free_io(struct mapped_device *md, struct dm_io *io)
 540{
 541	bio_put(&io->tio.clone);
 542}
 543
 544static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 545				      unsigned target_bio_nr, gfp_t gfp_mask)
 546{
 547	struct dm_target_io *tio;
 548
 549	if (!ci->io->tio.io) {
 550		/* the dm_target_io embedded in ci->io is available */
 551		tio = &ci->io->tio;
 552	} else {
 553		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 554		if (!clone)
 555			return NULL;
 556
 557		tio = container_of(clone, struct dm_target_io, clone);
 558		tio->inside_dm_io = false;
 559	}
 560
 561	tio->magic = DM_TIO_MAGIC;
 562	tio->io = ci->io;
 563	tio->ti = ti;
 564	tio->target_bio_nr = target_bio_nr;
 565
 566	return tio;
 567}
 568
 569static void free_tio(struct dm_target_io *tio)
 570{
 571	if (tio->inside_dm_io)
 572		return;
 573	bio_put(&tio->clone);
 574}
 575
 576/*
 577 * Add the bio to the list of deferred io.
 578 */
 579static void queue_io(struct mapped_device *md, struct bio *bio)
 580{
 581	unsigned long flags;
 582
 583	spin_lock_irqsave(&md->deferred_lock, flags);
 584	bio_list_add(&md->deferred, bio);
 585	spin_unlock_irqrestore(&md->deferred_lock, flags);
 586	queue_work(md->wq, &md->work);
 587}
 588
 589/*
 590 * Everyone (including functions in this file), should use this
 591 * function to access the md->map field, and make sure they call
 592 * dm_put_live_table() when finished.
 593 */
 594struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 595{
 596	*srcu_idx = srcu_read_lock(&md->io_barrier);
 597
 598	return srcu_dereference(md->map, &md->io_barrier);
 599}
 600
 601void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 602{
 603	srcu_read_unlock(&md->io_barrier, srcu_idx);
 604}
 605
 606void dm_sync_table(struct mapped_device *md)
 607{
 608	synchronize_srcu(&md->io_barrier);
 609	synchronize_rcu_expedited();
 610}
 611
 612/*
 613 * A fast alternative to dm_get_live_table/dm_put_live_table.
 614 * The caller must not block between these two functions.
 615 */
 616static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 617{
 618	rcu_read_lock();
 619	return rcu_dereference(md->map);
 620}
 621
 622static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 623{
 624	rcu_read_unlock();
 625}
 626
 627static char *_dm_claim_ptr = "I belong to device-mapper";
 628
 629/*
 630 * Open a table device so we can use it as a map destination.
 631 */
 632static int open_table_device(struct table_device *td, dev_t dev,
 633			     struct mapped_device *md)
 634{
 
 635	struct block_device *bdev;
 636
 637	int r;
 638
 639	BUG_ON(td->dm_dev.bdev);
 640
 641	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 642	if (IS_ERR(bdev))
 643		return PTR_ERR(bdev);
 644
 645	r = bd_link_disk_holder(bdev, dm_disk(md));
 646	if (r) {
 647		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 648		return r;
 649	}
 650
 651	td->dm_dev.bdev = bdev;
 652	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 653	return 0;
 654}
 655
 656/*
 657 * Close a table device that we've been using.
 658 */
 659static void close_table_device(struct table_device *td, struct mapped_device *md)
 660{
 661	if (!td->dm_dev.bdev)
 662		return;
 663
 664	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 665	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 666	put_dax(td->dm_dev.dax_dev);
 667	td->dm_dev.bdev = NULL;
 668	td->dm_dev.dax_dev = NULL;
 669}
 670
 671static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 672					      fmode_t mode)
 673{
 674	struct table_device *td;
 675
 676	list_for_each_entry(td, l, list)
 677		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 678			return td;
 679
 680	return NULL;
 681}
 682
 683int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 684			struct dm_dev **result)
 685{
 686	int r;
 687	struct table_device *td;
 688
 689	mutex_lock(&md->table_devices_lock);
 690	td = find_table_device(&md->table_devices, dev, mode);
 691	if (!td) {
 692		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 693		if (!td) {
 694			mutex_unlock(&md->table_devices_lock);
 695			return -ENOMEM;
 696		}
 697
 698		td->dm_dev.mode = mode;
 699		td->dm_dev.bdev = NULL;
 700
 701		if ((r = open_table_device(td, dev, md))) {
 702			mutex_unlock(&md->table_devices_lock);
 703			kfree(td);
 704			return r;
 705		}
 706
 707		format_dev_t(td->dm_dev.name, dev);
 708
 709		refcount_set(&td->count, 1);
 710		list_add(&td->list, &md->table_devices);
 711	} else {
 712		refcount_inc(&td->count);
 713	}
 
 714	mutex_unlock(&md->table_devices_lock);
 715
 716	*result = &td->dm_dev;
 717	return 0;
 718}
 
 719
 720void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 721{
 722	struct table_device *td = container_of(d, struct table_device, dm_dev);
 723
 724	mutex_lock(&md->table_devices_lock);
 725	if (refcount_dec_and_test(&td->count)) {
 726		close_table_device(td, md);
 727		list_del(&td->list);
 728		kfree(td);
 729	}
 730	mutex_unlock(&md->table_devices_lock);
 731}
 
 732
 733static void free_table_devices(struct list_head *devices)
 734{
 735	struct list_head *tmp, *next;
 736
 737	list_for_each_safe(tmp, next, devices) {
 738		struct table_device *td = list_entry(tmp, struct table_device, list);
 739
 740		DMWARN("dm_destroy: %s still exists with %d references",
 741		       td->dm_dev.name, refcount_read(&td->count));
 742		kfree(td);
 743	}
 744}
 745
 746/*
 747 * Get the geometry associated with a dm device
 748 */
 749int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 750{
 751	*geo = md->geometry;
 752
 753	return 0;
 754}
 755
 756/*
 757 * Set the geometry of a device.
 758 */
 759int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 760{
 761	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 762
 763	if (geo->start > sz) {
 764		DMWARN("Start sector is beyond the geometry limits.");
 765		return -EINVAL;
 766	}
 767
 768	md->geometry = *geo;
 769
 770	return 0;
 771}
 772
 
 
 
 
 
 
 
 
 
 773static int __noflush_suspending(struct mapped_device *md)
 774{
 775	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 776}
 777
 778/*
 779 * Decrements the number of outstanding ios that a bio has been
 780 * cloned into, completing the original io if necc.
 781 */
 782void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
 783{
 784	unsigned long flags;
 785	blk_status_t io_error;
 786	struct bio *bio;
 787	struct mapped_device *md = io->md;
 788	unsigned long start_time = 0;
 789	struct dm_stats_aux stats_aux;
 790
 791	/* Push-back supersedes any I/O errors */
 792	if (unlikely(error)) {
 793		spin_lock_irqsave(&io->endio_lock, flags);
 794		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 795			io->status = error;
 796		spin_unlock_irqrestore(&io->endio_lock, flags);
 797	}
 798
 799	if (atomic_dec_and_test(&io->io_count)) {
 800		bio = io->orig_bio;
 801		if (io->status == BLK_STS_DM_REQUEUE) {
 802			/*
 803			 * Target requested pushing back the I/O.
 804			 */
 805			spin_lock_irqsave(&md->deferred_lock, flags);
 806			if (__noflush_suspending(md) &&
 807			    !WARN_ON_ONCE(dm_is_zone_write(md, bio))) {
 808				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 809				bio_list_add_head(&md->deferred, bio);
 810			} else {
 811				/*
 812				 * noflush suspend was interrupted or this is
 813				 * a write to a zoned target.
 814				 */
 815				io->status = BLK_STS_IOERR;
 816			}
 817			spin_unlock_irqrestore(&md->deferred_lock, flags);
 818		}
 819
 820		io_error = io->status;
 821		start_time = io->start_time;
 822		stats_aux = io->stats_aux;
 823		free_io(md, io);
 824		end_io_acct(md, bio, start_time, &stats_aux);
 825
 826		if (io_error == BLK_STS_DM_REQUEUE)
 827			return;
 828
 829		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 830			/*
 831			 * Preflush done for flush with data, reissue
 832			 * without REQ_PREFLUSH.
 833			 */
 834			bio->bi_opf &= ~REQ_PREFLUSH;
 835			queue_io(md, bio);
 836		} else {
 837			/* done with normal IO or empty flush */
 838			if (io_error)
 839				bio->bi_status = io_error;
 840			bio_endio(bio);
 841		}
 842	}
 843}
 844
 845void disable_discard(struct mapped_device *md)
 846{
 847	struct queue_limits *limits = dm_get_queue_limits(md);
 848
 849	/* device doesn't really support DISCARD, disable it */
 850	limits->max_discard_sectors = 0;
 851	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 852}
 853
 854void disable_write_same(struct mapped_device *md)
 855{
 856	struct queue_limits *limits = dm_get_queue_limits(md);
 857
 858	/* device doesn't really support WRITE SAME, disable it */
 859	limits->max_write_same_sectors = 0;
 860}
 861
 862void disable_write_zeroes(struct mapped_device *md)
 863{
 864	struct queue_limits *limits = dm_get_queue_limits(md);
 865
 866	/* device doesn't really support WRITE ZEROES, disable it */
 867	limits->max_write_zeroes_sectors = 0;
 868}
 869
 870static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
 871{
 872	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 873}
 874
 875static void clone_endio(struct bio *bio)
 876{
 877	blk_status_t error = bio->bi_status;
 
 878	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 879	struct dm_io *io = tio->io;
 880	struct mapped_device *md = tio->io->md;
 881	dm_endio_fn endio = tio->ti->type->end_io;
 882	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
 883
 884	if (unlikely(error == BLK_STS_TARGET)) {
 885		if (bio_op(bio) == REQ_OP_DISCARD &&
 886		    !q->limits.max_discard_sectors)
 887			disable_discard(md);
 888		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 889			 !q->limits.max_write_same_sectors)
 890			disable_write_same(md);
 891		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 892			 !q->limits.max_write_zeroes_sectors)
 893			disable_write_zeroes(md);
 894	}
 895
 896	if (blk_queue_is_zoned(q))
 897		dm_zone_endio(io, bio);
 898
 899	if (endio) {
 900		int r = endio(tio->ti, bio, &error);
 901		switch (r) {
 902		case DM_ENDIO_REQUEUE:
 903			/*
 904			 * Requeuing writes to a sequential zone of a zoned
 905			 * target will break the sequential write pattern:
 906			 * fail such IO.
 907			 */
 908			if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
 909				error = BLK_STS_IOERR;
 910			else
 911				error = BLK_STS_DM_REQUEUE;
 912			fallthrough;
 913		case DM_ENDIO_DONE:
 914			break;
 915		case DM_ENDIO_INCOMPLETE:
 916			/* The target will handle the io */
 917			return;
 918		default:
 919			DMWARN("unimplemented target endio return value: %d", r);
 920			BUG();
 921		}
 922	}
 923
 924	if (unlikely(swap_bios_limit(tio->ti, bio))) {
 925		struct mapped_device *md = io->md;
 926		up(&md->swap_bios_semaphore);
 927	}
 928
 929	free_tio(tio);
 930	dm_io_dec_pending(io, error);
 931}
 932
 933/*
 934 * Return maximum size of I/O possible at the supplied sector up to the current
 935 * target boundary.
 936 */
 937static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
 938						  sector_t target_offset)
 939{
 
 
 940	return ti->len - target_offset;
 941}
 942
 943static sector_t max_io_len(struct dm_target *ti, sector_t sector)
 944{
 945	sector_t target_offset = dm_target_offset(ti, sector);
 946	sector_t len = max_io_len_target_boundary(ti, target_offset);
 947	sector_t max_len;
 948
 949	/*
 950	 * Does the target need to split IO even further?
 951	 * - varied (per target) IO splitting is a tenet of DM; this
 952	 *   explains why stacked chunk_sectors based splitting via
 953	 *   blk_max_size_offset() isn't possible here. So pass in
 954	 *   ti->max_io_len to override stacked chunk_sectors.
 955	 */
 956	if (ti->max_io_len) {
 957		max_len = blk_max_size_offset(ti->table->md->queue,
 958					      target_offset, ti->max_io_len);
 
 
 
 
 
 959		if (len > max_len)
 960			len = max_len;
 961	}
 962
 963	return len;
 964}
 965
 966int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 967{
 968	if (len > UINT_MAX) {
 969		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 970		      (unsigned long long)len, UINT_MAX);
 971		ti->error = "Maximum size of target IO is too large";
 972		return -EINVAL;
 973	}
 974
 975	ti->max_io_len = (uint32_t) len;
 976
 977	return 0;
 978}
 979EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 980
 981static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
 982						sector_t sector, int *srcu_idx)
 983	__acquires(md->io_barrier)
 984{
 
 985	struct dm_table *map;
 986	struct dm_target *ti;
 987
 988	map = dm_get_live_table(md, srcu_idx);
 989	if (!map)
 990		return NULL;
 991
 992	ti = dm_table_find_target(map, sector);
 993	if (!ti)
 994		return NULL;
 995
 996	return ti;
 997}
 998
 999static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1000				 long nr_pages, void **kaddr, pfn_t *pfn)
1001{
1002	struct mapped_device *md = dax_get_private(dax_dev);
1003	sector_t sector = pgoff * PAGE_SECTORS;
1004	struct dm_target *ti;
1005	long len, ret = -EIO;
1006	int srcu_idx;
1007
1008	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1009
1010	if (!ti)
1011		goto out;
1012	if (!ti->type->direct_access)
1013		goto out;
1014	len = max_io_len(ti, sector) / PAGE_SECTORS;
1015	if (len < 1)
1016		goto out;
1017	nr_pages = min(len, nr_pages);
1018	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1019
1020 out:
1021	dm_put_live_table(md, srcu_idx);
1022
1023	return ret;
1024}
1025
1026static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1027		int blocksize, sector_t start, sector_t len)
1028{
1029	struct mapped_device *md = dax_get_private(dax_dev);
1030	struct dm_table *map;
1031	bool ret = false;
1032	int srcu_idx;
1033
1034	map = dm_get_live_table(md, &srcu_idx);
1035	if (!map)
1036		goto out;
1037
1038	ret = dm_table_supports_dax(map, device_not_dax_capable, &blocksize);
1039
1040out:
1041	dm_put_live_table(md, srcu_idx);
1042
1043	return ret;
1044}
1045
1046static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1047				    void *addr, size_t bytes, struct iov_iter *i)
1048{
1049	struct mapped_device *md = dax_get_private(dax_dev);
1050	sector_t sector = pgoff * PAGE_SECTORS;
1051	struct dm_target *ti;
1052	long ret = 0;
1053	int srcu_idx;
1054
1055	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1056
1057	if (!ti)
1058		goto out;
1059	if (!ti->type->dax_copy_from_iter) {
1060		ret = copy_from_iter(addr, bytes, i);
1061		goto out;
1062	}
1063	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1064 out:
1065	dm_put_live_table(md, srcu_idx);
1066
1067	return ret;
1068}
1069
1070static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1071		void *addr, size_t bytes, struct iov_iter *i)
1072{
1073	struct mapped_device *md = dax_get_private(dax_dev);
1074	sector_t sector = pgoff * PAGE_SECTORS;
1075	struct dm_target *ti;
1076	long ret = 0;
1077	int srcu_idx;
1078
1079	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1080
1081	if (!ti)
1082		goto out;
1083	if (!ti->type->dax_copy_to_iter) {
1084		ret = copy_to_iter(addr, bytes, i);
1085		goto out;
1086	}
1087	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1088 out:
1089	dm_put_live_table(md, srcu_idx);
1090
1091	return ret;
1092}
1093
1094static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1095				  size_t nr_pages)
1096{
1097	struct mapped_device *md = dax_get_private(dax_dev);
1098	sector_t sector = pgoff * PAGE_SECTORS;
1099	struct dm_target *ti;
1100	int ret = -EIO;
1101	int srcu_idx;
1102
1103	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1104
1105	if (!ti)
1106		goto out;
1107	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1108		/*
1109		 * ->zero_page_range() is mandatory dax operation. If we are
1110		 *  here, something is wrong.
1111		 */
1112		goto out;
1113	}
1114	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1115 out:
1116	dm_put_live_table(md, srcu_idx);
1117
1118	return ret;
1119}
1120
1121/*
1122 * A target may call dm_accept_partial_bio only from the map routine.  It is
1123 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1124 * operations and REQ_OP_ZONE_APPEND (zone append writes).
1125 *
1126 * dm_accept_partial_bio informs the dm that the target only wants to process
1127 * additional n_sectors sectors of the bio and the rest of the data should be
1128 * sent in a next bio.
1129 *
1130 * A diagram that explains the arithmetics:
1131 * +--------------------+---------------+-------+
1132 * |         1          |       2       |   3   |
1133 * +--------------------+---------------+-------+
1134 *
1135 * <-------------- *tio->len_ptr --------------->
1136 *                      <------- bi_size ------->
1137 *                      <-- n_sectors -->
1138 *
1139 * Region 1 was already iterated over with bio_advance or similar function.
1140 *	(it may be empty if the target doesn't use bio_advance)
1141 * Region 2 is the remaining bio size that the target wants to process.
1142 *	(it may be empty if region 1 is non-empty, although there is no reason
1143 *	 to make it empty)
1144 * The target requires that region 3 is to be sent in the next bio.
1145 *
1146 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1147 * the partially processed part (the sum of regions 1+2) must be the same for all
1148 * copies of the bio.
1149 */
1150void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1151{
1152	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1153	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1154
1155	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1156	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1157	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1158	BUG_ON(bi_size > *tio->len_ptr);
1159	BUG_ON(n_sectors > bi_size);
1160
1161	*tio->len_ptr -= bi_size - n_sectors;
1162	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1163}
1164EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1165
1166static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
 
 
 
 
 
 
 
 
 
1167{
1168	mutex_lock(&md->swap_bios_lock);
1169	while (latch < md->swap_bios) {
1170		cond_resched();
1171		down(&md->swap_bios_semaphore);
1172		md->swap_bios--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1173	}
1174	while (latch > md->swap_bios) {
1175		cond_resched();
1176		up(&md->swap_bios_semaphore);
1177		md->swap_bios++;
1178	}
1179	mutex_unlock(&md->swap_bios_lock);
1180}
1181
1182static blk_qc_t __map_bio(struct dm_target_io *tio)
 
 
 
 
 
 
 
 
 
 
 
 
 
1183{
1184	int r;
1185	sector_t sector;
 
1186	struct bio *clone = &tio->clone;
1187	struct dm_io *io = tio->io;
1188	struct dm_target *ti = tio->ti;
1189	blk_qc_t ret = BLK_QC_T_NONE;
1190
1191	clone->bi_end_io = clone_endio;
1192
1193	/*
1194	 * Map the clone.  If r == 0 we don't need to do
1195	 * anything, the target has assumed ownership of
1196	 * this io.
1197	 */
1198	dm_io_inc_pending(io);
1199	sector = clone->bi_iter.bi_sector;
1200
1201	if (unlikely(swap_bios_limit(ti, clone))) {
1202		struct mapped_device *md = io->md;
1203		int latch = get_swap_bios();
1204		if (unlikely(latch != md->swap_bios))
1205			__set_swap_bios_limit(md, latch);
1206		down(&md->swap_bios_semaphore);
1207	}
1208
1209	/*
1210	 * Check if the IO needs a special mapping due to zone append emulation
1211	 * on zoned target. In this case, dm_zone_map_bio() calls the target
1212	 * map operation.
1213	 */
1214	if (dm_emulate_zone_append(io->md))
1215		r = dm_zone_map_bio(tio);
1216	else
1217		r = ti->type->map(ti, clone);
1218
1219	switch (r) {
1220	case DM_MAPIO_SUBMITTED:
1221		break;
1222	case DM_MAPIO_REMAPPED:
1223		/* the bio has been remapped so dispatch it */
1224		trace_block_bio_remap(clone, bio_dev(io->orig_bio), sector);
1225		ret = submit_bio_noacct(clone);
1226		break;
1227	case DM_MAPIO_KILL:
1228		if (unlikely(swap_bios_limit(ti, clone))) {
1229			struct mapped_device *md = io->md;
1230			up(&md->swap_bios_semaphore);
1231		}
1232		free_tio(tio);
1233		dm_io_dec_pending(io, BLK_STS_IOERR);
1234		break;
1235	case DM_MAPIO_REQUEUE:
1236		if (unlikely(swap_bios_limit(ti, clone))) {
1237			struct mapped_device *md = io->md;
1238			up(&md->swap_bios_semaphore);
1239		}
1240		free_tio(tio);
1241		dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1242		break;
1243	default:
1244		DMWARN("unimplemented target map return value: %d", r);
1245		BUG();
1246	}
 
1247
1248	return ret;
1249}
 
 
 
 
 
 
1250
1251static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1252{
1253	bio->bi_iter.bi_sector = sector;
1254	bio->bi_iter.bi_size = to_bytes(len);
1255}
1256
1257/*
1258 * Creates a bio that consists of range of complete bvecs.
1259 */
1260static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1261		     sector_t sector, unsigned len)
1262{
1263	struct bio *clone = &tio->clone;
1264	int r;
1265
1266	__bio_clone_fast(clone, bio);
1267
1268	r = bio_crypt_clone(clone, bio, GFP_NOIO);
1269	if (r < 0)
1270		return r;
1271
1272	if (bio_integrity(bio)) {
1273		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1274			     !dm_target_passes_integrity(tio->ti->type))) {
1275			DMWARN("%s: the target %s doesn't support integrity data.",
1276				dm_device_name(tio->io->md),
1277				tio->ti->type->name);
1278			return -EIO;
1279		}
1280
1281		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1282		if (r < 0)
1283			return r;
1284	}
1285
1286	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1287	clone->bi_iter.bi_size = to_bytes(len);
1288
1289	if (bio_integrity(bio))
1290		bio_integrity_trim(clone);
1291
1292	return 0;
1293}
1294
1295static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1296				struct dm_target *ti, unsigned num_bios)
 
1297{
1298	struct dm_target_io *tio;
1299	int try;
1300
1301	if (!num_bios)
1302		return;
1303
1304	if (num_bios == 1) {
1305		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1306		bio_list_add(blist, &tio->clone);
1307		return;
1308	}
1309
1310	for (try = 0; try < 2; try++) {
1311		int bio_nr;
1312		struct bio *bio;
1313
1314		if (try)
1315			mutex_lock(&ci->io->md->table_devices_lock);
1316		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1317			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1318			if (!tio)
1319				break;
1320
1321			bio_list_add(blist, &tio->clone);
1322		}
1323		if (try)
1324			mutex_unlock(&ci->io->md->table_devices_lock);
1325		if (bio_nr == num_bios)
1326			return;
1327
1328		while ((bio = bio_list_pop(blist))) {
1329			tio = container_of(bio, struct dm_target_io, clone);
1330			free_tio(tio);
1331		}
1332	}
1333}
1334
1335static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1336					   struct dm_target_io *tio, unsigned *len)
 
1337{
 
1338	struct bio *clone = &tio->clone;
1339
1340	tio->len_ptr = len;
1341
1342	__bio_clone_fast(clone, ci->bio);
1343	if (len)
1344		bio_setup_sector(clone, ci->sector, *len);
1345
1346	return __map_bio(tio);
1347}
1348
1349static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1350				  unsigned num_bios, unsigned *len)
1351{
1352	struct bio_list blist = BIO_EMPTY_LIST;
1353	struct bio *bio;
1354	struct dm_target_io *tio;
1355
1356	alloc_multiple_bios(&blist, ci, ti, num_bios);
1357
1358	while ((bio = bio_list_pop(&blist))) {
1359		tio = container_of(bio, struct dm_target_io, clone);
1360		(void) __clone_and_map_simple_bio(ci, tio, len);
1361	}
1362}
1363
1364static int __send_empty_flush(struct clone_info *ci)
1365{
1366	unsigned target_nr = 0;
1367	struct dm_target *ti;
1368	struct bio flush_bio;
1369
1370	/*
1371	 * Use an on-stack bio for this, it's safe since we don't
1372	 * need to reference it after submit. It's just used as
1373	 * the basis for the clone(s).
1374	 */
1375	bio_init(&flush_bio, NULL, 0);
1376	flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1377	bio_set_dev(&flush_bio, ci->io->md->disk->part0);
1378
1379	ci->bio = &flush_bio;
1380	ci->sector_count = 0;
1381
1382	BUG_ON(bio_has_data(ci->bio));
1383	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1384		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1385
1386	bio_uninit(ci->bio);
1387	return 0;
1388}
1389
1390static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1391				    sector_t sector, unsigned *len)
1392{
1393	struct bio *bio = ci->bio;
1394	struct dm_target_io *tio;
1395	int r;
 
 
 
 
 
 
 
 
1396
1397	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1398	tio->len_ptr = len;
1399	r = clone_bio(tio, bio, sector, *len);
1400	if (r < 0) {
1401		free_tio(tio);
1402		return r;
 
 
 
1403	}
1404	(void) __map_bio(tio);
1405
1406	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407}
1408
1409static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1410				       unsigned num_bios)
 
1411{
 
1412	unsigned len;
 
1413
1414	/*
1415	 * Even though the device advertised support for this type of
1416	 * request, that does not mean every target supports it, and
1417	 * reconfiguration might also have changed that since the
1418	 * check was performed.
1419	 */
1420	if (!num_bios)
1421		return -EOPNOTSUPP;
 
 
 
 
 
 
1422
1423	len = min_t(sector_t, ci->sector_count,
1424		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
 
 
1425
1426	__send_duplicate_bios(ci, ti, num_bios, &len);
1427
1428	ci->sector += len;
1429	ci->sector_count -= len;
1430
1431	return 0;
1432}
1433
1434static bool is_abnormal_io(struct bio *bio)
1435{
1436	bool r = false;
1437
1438	switch (bio_op(bio)) {
1439	case REQ_OP_DISCARD:
1440	case REQ_OP_SECURE_ERASE:
1441	case REQ_OP_WRITE_SAME:
1442	case REQ_OP_WRITE_ZEROES:
1443		r = true;
1444		break;
1445	}
1446
1447	return r;
1448}
1449
1450static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1451				  int *result)
1452{
1453	struct bio *bio = ci->bio;
1454	unsigned num_bios = 0;
1455
1456	switch (bio_op(bio)) {
1457	case REQ_OP_DISCARD:
1458		num_bios = ti->num_discard_bios;
1459		break;
1460	case REQ_OP_SECURE_ERASE:
1461		num_bios = ti->num_secure_erase_bios;
1462		break;
1463	case REQ_OP_WRITE_SAME:
1464		num_bios = ti->num_write_same_bios;
1465		break;
1466	case REQ_OP_WRITE_ZEROES:
1467		num_bios = ti->num_write_zeroes_bios;
1468		break;
1469	default:
1470		return false;
1471	}
1472
1473	*result = __send_changing_extent_only(ci, ti, num_bios);
1474	return true;
1475}
1476
1477/*
1478 * Select the correct strategy for processing a non-flush bio.
1479 */
1480static int __split_and_process_non_flush(struct clone_info *ci)
1481{
 
1482	struct dm_target *ti;
1483	unsigned len;
1484	int r;
1485
 
 
 
 
 
1486	ti = dm_table_find_target(ci->map, ci->sector);
1487	if (!ti)
1488		return -EIO;
1489
1490	if (__process_abnormal_io(ci, ti, &r))
1491		return r;
1492
1493	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1494
1495	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1496	if (r < 0)
1497		return r;
1498
1499	ci->sector += len;
1500	ci->sector_count -= len;
1501
1502	return 0;
1503}
1504
1505static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1506			    struct dm_table *map, struct bio *bio)
1507{
1508	ci->map = map;
1509	ci->io = alloc_io(md, bio);
1510	ci->sector = bio->bi_iter.bi_sector;
1511}
1512
1513#define __dm_part_stat_sub(part, field, subnd)	\
1514	(part_stat_get(part, field) -= (subnd))
1515
1516/*
1517 * Entry point to split a bio into clones and submit them to the targets.
1518 */
1519static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1520					struct dm_table *map, struct bio *bio)
1521{
1522	struct clone_info ci;
1523	blk_qc_t ret = BLK_QC_T_NONE;
1524	int error = 0;
1525
1526	init_clone_info(&ci, md, map, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1527
1528	if (bio->bi_opf & REQ_PREFLUSH) {
 
 
1529		error = __send_empty_flush(&ci);
1530		/* dm_io_dec_pending submits any data associated with flush */
1531	} else if (op_is_zone_mgmt(bio_op(bio))) {
1532		ci.bio = bio;
1533		ci.sector_count = 0;
1534		error = __split_and_process_non_flush(&ci);
1535	} else {
1536		ci.bio = bio;
1537		ci.sector_count = bio_sectors(bio);
1538		error = __split_and_process_non_flush(&ci);
1539		if (ci.sector_count && !error) {
1540			/*
1541			 * Remainder must be passed to submit_bio_noacct()
1542			 * so that it gets handled *after* bios already submitted
1543			 * have been completely processed.
1544			 * We take a clone of the original to store in
1545			 * ci.io->orig_bio to be used by end_io_acct() and
1546			 * for dec_pending to use for completion handling.
1547			 */
1548			struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1549						  GFP_NOIO, &md->queue->bio_split);
1550			ci.io->orig_bio = b;
1551
1552			/*
1553			 * Adjust IO stats for each split, otherwise upon queue
1554			 * reentry there will be redundant IO accounting.
1555			 * NOTE: this is a stop-gap fix, a proper fix involves
1556			 * significant refactoring of DM core's bio splitting
1557			 * (by eliminating DM's splitting and just using bio_split)
1558			 */
1559			part_stat_lock();
1560			__dm_part_stat_sub(dm_disk(md)->part0,
1561					   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1562			part_stat_unlock();
1563
1564			bio_chain(b, bio);
1565			trace_block_split(b, bio->bi_iter.bi_sector);
1566			ret = submit_bio_noacct(bio);
1567		}
1568	}
1569
1570	/* drop the extra reference count */
1571	dm_io_dec_pending(ci.io, errno_to_blk_status(error));
1572	return ret;
1573}
 
 
 
1574
1575static blk_qc_t dm_submit_bio(struct bio *bio)
 
 
 
 
1576{
1577	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1578	blk_qc_t ret = BLK_QC_T_NONE;
1579	int srcu_idx;
1580	struct dm_table *map;
1581
1582	map = dm_get_live_table(md, &srcu_idx);
1583	if (unlikely(!map)) {
1584		DMERR_LIMIT("%s: mapping table unavailable, erroring io",
1585			    dm_device_name(md));
1586		bio_io_error(bio);
1587		goto out;
1588	}
1589
1590	/* If suspended, queue this IO for later */
 
 
1591	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1592		if (bio->bi_opf & REQ_NOWAIT)
1593			bio_wouldblock_error(bio);
1594		else if (bio->bi_opf & REQ_RAHEAD)
 
 
1595			bio_io_error(bio);
1596		else
1597			queue_io(md, bio);
1598		goto out;
1599	}
1600
1601	/*
1602	 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1603	 * otherwise associated queue_limits won't be imposed.
1604	 */
1605	if (is_abnormal_io(bio))
1606		blk_queue_split(&bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1607
1608	ret = __split_and_process_bio(md, map, bio);
1609out:
1610	dm_put_live_table(md, srcu_idx);
1611	return ret;
1612}
1613
1614/*-----------------------------------------------------------------
1615 * An IDR is used to keep track of allocated minor numbers.
1616 *---------------------------------------------------------------*/
1617static void free_minor(int minor)
1618{
1619	spin_lock(&_minor_lock);
1620	idr_remove(&_minor_idr, minor);
1621	spin_unlock(&_minor_lock);
1622}
1623
1624/*
1625 * See if the device with a specific minor # is free.
1626 */
1627static int specific_minor(int minor)
1628{
1629	int r;
1630
1631	if (minor >= (1 << MINORBITS))
1632		return -EINVAL;
1633
1634	idr_preload(GFP_KERNEL);
1635	spin_lock(&_minor_lock);
1636
1637	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1638
1639	spin_unlock(&_minor_lock);
1640	idr_preload_end();
1641	if (r < 0)
1642		return r == -ENOSPC ? -EBUSY : r;
1643	return 0;
1644}
1645
1646static int next_free_minor(int *minor)
1647{
1648	int r;
1649
1650	idr_preload(GFP_KERNEL);
1651	spin_lock(&_minor_lock);
1652
1653	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1654
1655	spin_unlock(&_minor_lock);
1656	idr_preload_end();
1657	if (r < 0)
1658		return r;
1659	*minor = r;
1660	return 0;
1661}
1662
1663static const struct block_device_operations dm_blk_dops;
1664static const struct block_device_operations dm_rq_blk_dops;
1665static const struct dax_operations dm_dax_ops;
1666
1667static void dm_wq_work(struct work_struct *work);
1668
1669#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1670static void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1671{
1672	dm_destroy_keyslot_manager(q->ksm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1673}
1674
1675#else /* CONFIG_BLK_INLINE_ENCRYPTION */
 
 
 
1676
1677static inline void dm_queue_destroy_keyslot_manager(struct request_queue *q)
1678{
 
 
 
1679}
1680#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1681
1682static void cleanup_mapped_device(struct mapped_device *md)
1683{
1684	if (md->wq)
1685		destroy_workqueue(md->wq);
1686	bioset_exit(&md->bs);
1687	bioset_exit(&md->io_bs);
1688
1689	if (md->dax_dev) {
1690		kill_dax(md->dax_dev);
1691		put_dax(md->dax_dev);
1692		md->dax_dev = NULL;
1693	}
1694
1695	if (md->disk) {
1696		spin_lock(&_minor_lock);
1697		md->disk->private_data = NULL;
1698		spin_unlock(&_minor_lock);
1699		del_gendisk(md->disk);
 
1700	}
1701
1702	if (md->queue)
1703		dm_queue_destroy_keyslot_manager(md->queue);
1704
1705	if (md->disk)
1706		blk_cleanup_disk(md->disk);
1707
1708	cleanup_srcu_struct(&md->io_barrier);
1709
1710	mutex_destroy(&md->suspend_lock);
1711	mutex_destroy(&md->type_lock);
1712	mutex_destroy(&md->table_devices_lock);
1713	mutex_destroy(&md->swap_bios_lock);
1714
1715	dm_mq_cleanup_mapped_device(md);
1716	dm_cleanup_zoned_dev(md);
1717}
1718
1719/*
1720 * Allocate and initialise a blank device with a given minor.
1721 */
1722static struct mapped_device *alloc_dev(int minor)
1723{
1724	int r, numa_node_id = dm_get_numa_node();
1725	struct mapped_device *md;
1726	void *old_md;
1727
1728	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1729	if (!md) {
1730		DMWARN("unable to allocate device, out of memory.");
1731		return NULL;
1732	}
1733
1734	if (!try_module_get(THIS_MODULE))
1735		goto bad_module_get;
1736
1737	/* get a minor number for the dev */
1738	if (minor == DM_ANY_MINOR)
1739		r = next_free_minor(&minor);
1740	else
1741		r = specific_minor(minor);
1742	if (r < 0)
1743		goto bad_minor;
1744
1745	r = init_srcu_struct(&md->io_barrier);
1746	if (r < 0)
1747		goto bad_io_barrier;
1748
1749	md->numa_node_id = numa_node_id;
 
1750	md->init_tio_pdu = false;
1751	md->type = DM_TYPE_NONE;
1752	mutex_init(&md->suspend_lock);
1753	mutex_init(&md->type_lock);
1754	mutex_init(&md->table_devices_lock);
1755	spin_lock_init(&md->deferred_lock);
1756	atomic_set(&md->holders, 1);
1757	atomic_set(&md->open_count, 0);
1758	atomic_set(&md->event_nr, 0);
1759	atomic_set(&md->uevent_seq, 0);
1760	INIT_LIST_HEAD(&md->uevent_list);
1761	INIT_LIST_HEAD(&md->table_devices);
1762	spin_lock_init(&md->uevent_lock);
1763
1764	/*
1765	 * default to bio-based until DM table is loaded and md->type
1766	 * established. If request-based table is loaded: blk-mq will
1767	 * override accordingly.
1768	 */
1769	md->disk = blk_alloc_disk(md->numa_node_id);
 
1770	if (!md->disk)
1771		goto bad;
1772	md->queue = md->disk->queue;
1773
 
 
1774	init_waitqueue_head(&md->wait);
1775	INIT_WORK(&md->work, dm_wq_work);
1776	init_waitqueue_head(&md->eventq);
1777	init_completion(&md->kobj_holder.completion);
1778
1779	md->swap_bios = get_swap_bios();
1780	sema_init(&md->swap_bios_semaphore, md->swap_bios);
1781	mutex_init(&md->swap_bios_lock);
1782
1783	md->disk->major = _major;
1784	md->disk->first_minor = minor;
1785	md->disk->minors = 1;
1786	md->disk->fops = &dm_blk_dops;
1787	md->disk->queue = md->queue;
1788	md->disk->private_data = md;
1789	sprintf(md->disk->disk_name, "dm-%d", minor);
1790
1791	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1792		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1793					&dm_dax_ops, 0);
1794		if (IS_ERR(md->dax_dev))
1795			goto bad;
1796	}
1797
1798	add_disk_no_queue_reg(md->disk);
1799	format_dev_t(md->name, MKDEV(_major, minor));
1800
1801	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1802	if (!md->wq)
1803		goto bad;
1804
 
 
 
 
 
 
 
 
1805	dm_stats_init(&md->stats);
1806
1807	/* Populate the mapping, nobody knows we exist yet */
1808	spin_lock(&_minor_lock);
1809	old_md = idr_replace(&_minor_idr, md, minor);
1810	spin_unlock(&_minor_lock);
1811
1812	BUG_ON(old_md != MINOR_ALLOCED);
1813
1814	return md;
1815
1816bad:
1817	cleanup_mapped_device(md);
1818bad_io_barrier:
1819	free_minor(minor);
1820bad_minor:
1821	module_put(THIS_MODULE);
1822bad_module_get:
1823	kvfree(md);
1824	return NULL;
1825}
1826
1827static void unlock_fs(struct mapped_device *md);
1828
1829static void free_dev(struct mapped_device *md)
1830{
1831	int minor = MINOR(disk_devt(md->disk));
1832
1833	unlock_fs(md);
1834
1835	cleanup_mapped_device(md);
1836
1837	free_table_devices(&md->table_devices);
1838	dm_stats_cleanup(&md->stats);
1839	free_minor(minor);
1840
1841	module_put(THIS_MODULE);
1842	kvfree(md);
1843}
1844
1845static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
1846{
1847	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1848	int ret = 0;
1849
1850	if (dm_table_bio_based(t)) {
1851		/*
1852		 * The md may already have mempools that need changing.
1853		 * If so, reload bioset because front_pad may have changed
1854		 * because a different table was loaded.
1855		 */
1856		bioset_exit(&md->bs);
1857		bioset_exit(&md->io_bs);
1858
1859	} else if (bioset_initialized(&md->bs)) {
 
1860		/*
1861		 * There's no need to reload with request-based dm
1862		 * because the size of front_pad doesn't change.
1863		 * Note for future: If you are to reload bioset,
1864		 * prep-ed requests in the queue may refer
1865		 * to bio from the old bioset, so you must walk
1866		 * through the queue to unprep.
1867		 */
1868		goto out;
1869	}
1870
1871	BUG_ON(!p ||
1872	       bioset_initialized(&md->bs) ||
1873	       bioset_initialized(&md->io_bs));
 
 
 
 
 
1874
1875	ret = bioset_init_from_src(&md->bs, &p->bs);
1876	if (ret)
1877		goto out;
1878	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
1879	if (ret)
1880		bioset_exit(&md->bs);
1881out:
1882	/* mempool bind completed, no longer need any mempools in the table */
1883	dm_table_free_md_mempools(t);
1884	return ret;
1885}
1886
1887/*
1888 * Bind a table to the device.
1889 */
1890static void event_callback(void *context)
1891{
1892	unsigned long flags;
1893	LIST_HEAD(uevents);
1894	struct mapped_device *md = (struct mapped_device *) context;
1895
1896	spin_lock_irqsave(&md->uevent_lock, flags);
1897	list_splice_init(&md->uevent_list, &uevents);
1898	spin_unlock_irqrestore(&md->uevent_lock, flags);
1899
1900	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1901
1902	atomic_inc(&md->event_nr);
1903	wake_up(&md->eventq);
1904	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
1905}
1906
1907/*
1908 * Returns old map, which caller must destroy.
1909 */
1910static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1911			       struct queue_limits *limits)
1912{
1913	struct dm_table *old_map;
1914	struct request_queue *q = md->queue;
1915	bool request_based = dm_table_request_based(t);
1916	sector_t size;
1917	int ret;
1918
1919	lockdep_assert_held(&md->suspend_lock);
1920
1921	size = dm_table_get_size(t);
1922
1923	/*
1924	 * Wipe any geometry if the size of the table changed.
1925	 */
1926	if (size != dm_get_size(md))
1927		memset(&md->geometry, 0, sizeof(md->geometry));
1928
1929	if (!get_capacity(md->disk))
1930		set_capacity(md->disk, size);
1931	else
1932		set_capacity_and_notify(md->disk, size);
1933
1934	dm_table_event_callback(t, event_callback, md);
1935
1936	/*
1937	 * The queue hasn't been stopped yet, if the old table type wasn't
1938	 * for request-based during suspension.  So stop it to prevent
1939	 * I/O mapping before resume.
1940	 * This must be done before setting the queue restrictions,
1941	 * because request-based dm may be run just after the setting.
1942	 */
1943	if (request_based)
1944		dm_stop_queue(q);
1945
1946	if (request_based) {
1947		/*
1948		 * Leverage the fact that request-based DM targets are
1949		 * immutable singletons - used to optimize dm_mq_queue_rq.
 
1950		 */
1951		md->immutable_target = dm_table_get_immutable_target(t);
1952	}
1953
1954	ret = __bind_mempools(md, t);
1955	if (ret) {
1956		old_map = ERR_PTR(ret);
1957		goto out;
1958	}
1959
1960	ret = dm_table_set_restrictions(t, q, limits);
1961	if (ret) {
1962		old_map = ERR_PTR(ret);
1963		goto out;
1964	}
1965
1966	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1967	rcu_assign_pointer(md->map, (void *)t);
1968	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1969
 
1970	if (old_map)
1971		dm_sync_table(md);
1972
1973out:
1974	return old_map;
1975}
1976
1977/*
1978 * Returns unbound table for the caller to free.
1979 */
1980static struct dm_table *__unbind(struct mapped_device *md)
1981{
1982	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1983
1984	if (!map)
1985		return NULL;
1986
1987	dm_table_event_callback(map, NULL, NULL);
1988	RCU_INIT_POINTER(md->map, NULL);
1989	dm_sync_table(md);
1990
1991	return map;
1992}
1993
1994/*
1995 * Constructor for a new device.
1996 */
1997int dm_create(int minor, struct mapped_device **result)
1998{
1999	int r;
2000	struct mapped_device *md;
2001
2002	md = alloc_dev(minor);
2003	if (!md)
2004		return -ENXIO;
2005
2006	r = dm_sysfs_init(md);
2007	if (r) {
2008		free_dev(md);
2009		return r;
2010	}
2011
2012	*result = md;
2013	return 0;
2014}
2015
2016/*
2017 * Functions to manage md->type.
2018 * All are required to hold md->type_lock.
2019 */
2020void dm_lock_md_type(struct mapped_device *md)
2021{
2022	mutex_lock(&md->type_lock);
2023}
2024
2025void dm_unlock_md_type(struct mapped_device *md)
2026{
2027	mutex_unlock(&md->type_lock);
2028}
2029
2030void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2031{
2032	BUG_ON(!mutex_is_locked(&md->type_lock));
2033	md->type = type;
2034}
2035
2036enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2037{
2038	return md->type;
2039}
2040
2041struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2042{
2043	return md->immutable_target_type;
2044}
2045
2046/*
2047 * The queue_limits are only valid as long as you have a reference
2048 * count on 'md'.
2049 */
2050struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2051{
2052	BUG_ON(!atomic_read(&md->holders));
2053	return &md->queue->limits;
2054}
2055EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2056
2057/*
2058 * Setup the DM device's queue based on md's type
2059 */
2060int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2061{
2062	int r;
2063	struct queue_limits limits;
2064	enum dm_queue_mode type = dm_get_md_type(md);
2065
2066	switch (type) {
2067	case DM_TYPE_REQUEST_BASED:
2068		md->disk->fops = &dm_rq_blk_dops;
 
 
 
 
 
 
2069		r = dm_mq_init_request_queue(md, t);
2070		if (r) {
2071			DMERR("Cannot initialize queue for request-based dm mapped device");
2072			return r;
2073		}
2074		break;
2075	case DM_TYPE_BIO_BASED:
2076	case DM_TYPE_DAX_BIO_BASED:
2077		break;
2078	case DM_TYPE_NONE:
2079		WARN_ON_ONCE(true);
 
 
 
 
 
 
 
 
2080		break;
2081	}
2082
2083	r = dm_calculate_queue_limits(t, &limits);
2084	if (r) {
2085		DMERR("Cannot calculate initial queue limits");
2086		return r;
2087	}
2088	r = dm_table_set_restrictions(t, md->queue, &limits);
2089	if (r)
2090		return r;
2091
2092	blk_register_queue(md->disk);
2093
2094	return 0;
2095}
2096
2097struct mapped_device *dm_get_md(dev_t dev)
2098{
2099	struct mapped_device *md;
2100	unsigned minor = MINOR(dev);
2101
2102	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2103		return NULL;
2104
2105	spin_lock(&_minor_lock);
2106
2107	md = idr_find(&_minor_idr, minor);
2108	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2109	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2110		md = NULL;
2111		goto out;
 
 
 
 
 
2112	}
2113	dm_get(md);
2114out:
2115	spin_unlock(&_minor_lock);
2116
2117	return md;
2118}
2119EXPORT_SYMBOL_GPL(dm_get_md);
2120
2121void *dm_get_mdptr(struct mapped_device *md)
2122{
2123	return md->interface_ptr;
2124}
2125
2126void dm_set_mdptr(struct mapped_device *md, void *ptr)
2127{
2128	md->interface_ptr = ptr;
2129}
2130
2131void dm_get(struct mapped_device *md)
2132{
2133	atomic_inc(&md->holders);
2134	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2135}
2136
2137int dm_hold(struct mapped_device *md)
2138{
2139	spin_lock(&_minor_lock);
2140	if (test_bit(DMF_FREEING, &md->flags)) {
2141		spin_unlock(&_minor_lock);
2142		return -EBUSY;
2143	}
2144	dm_get(md);
2145	spin_unlock(&_minor_lock);
2146	return 0;
2147}
2148EXPORT_SYMBOL_GPL(dm_hold);
2149
2150const char *dm_device_name(struct mapped_device *md)
2151{
2152	return md->name;
2153}
2154EXPORT_SYMBOL_GPL(dm_device_name);
2155
2156static void __dm_destroy(struct mapped_device *md, bool wait)
2157{
 
2158	struct dm_table *map;
2159	int srcu_idx;
2160
2161	might_sleep();
2162
2163	spin_lock(&_minor_lock);
2164	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2165	set_bit(DMF_FREEING, &md->flags);
2166	spin_unlock(&_minor_lock);
2167
2168	blk_set_queue_dying(md->queue);
 
 
 
2169
2170	/*
2171	 * Take suspend_lock so that presuspend and postsuspend methods
2172	 * do not race with internal suspend.
2173	 */
2174	mutex_lock(&md->suspend_lock);
2175	map = dm_get_live_table(md, &srcu_idx);
2176	if (!dm_suspended_md(md)) {
2177		dm_table_presuspend_targets(map);
2178		set_bit(DMF_SUSPENDED, &md->flags);
2179		set_bit(DMF_POST_SUSPENDING, &md->flags);
2180		dm_table_postsuspend_targets(map);
2181	}
2182	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2183	dm_put_live_table(md, srcu_idx);
2184	mutex_unlock(&md->suspend_lock);
2185
2186	/*
2187	 * Rare, but there may be I/O requests still going to complete,
2188	 * for example.  Wait for all references to disappear.
2189	 * No one should increment the reference count of the mapped_device,
2190	 * after the mapped_device state becomes DMF_FREEING.
2191	 */
2192	if (wait)
2193		while (atomic_read(&md->holders))
2194			msleep(1);
2195	else if (atomic_read(&md->holders))
2196		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2197		       dm_device_name(md), atomic_read(&md->holders));
2198
2199	dm_sysfs_exit(md);
2200	dm_table_destroy(__unbind(md));
2201	free_dev(md);
2202}
2203
2204void dm_destroy(struct mapped_device *md)
2205{
2206	__dm_destroy(md, true);
2207}
2208
2209void dm_destroy_immediate(struct mapped_device *md)
2210{
2211	__dm_destroy(md, false);
2212}
2213
2214void dm_put(struct mapped_device *md)
2215{
2216	atomic_dec(&md->holders);
2217}
2218EXPORT_SYMBOL_GPL(dm_put);
2219
2220static bool md_in_flight_bios(struct mapped_device *md)
2221{
2222	int cpu;
2223	struct block_device *part = dm_disk(md)->part0;
2224	long sum = 0;
2225
2226	for_each_possible_cpu(cpu) {
2227		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2228		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2229	}
2230
2231	return sum != 0;
2232}
2233
2234static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2235{
2236	int r = 0;
2237	DEFINE_WAIT(wait);
2238
2239	while (true) {
2240		prepare_to_wait(&md->wait, &wait, task_state);
2241
2242		if (!md_in_flight_bios(md))
2243			break;
2244
2245		if (signal_pending_state(task_state, current)) {
2246			r = -EINTR;
2247			break;
2248		}
2249
2250		io_schedule();
2251	}
2252	finish_wait(&md->wait, &wait);
2253
2254	return r;
2255}
2256
2257static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2258{
2259	int r = 0;
2260
2261	if (!queue_is_mq(md->queue))
2262		return dm_wait_for_bios_completion(md, task_state);
2263
2264	while (true) {
2265		if (!blk_mq_queue_inflight(md->queue))
2266			break;
2267
2268		if (signal_pending_state(task_state, current)) {
2269			r = -EINTR;
2270			break;
2271		}
2272
2273		msleep(5);
2274	}
2275
2276	return r;
2277}
2278
2279/*
2280 * Process the deferred bios
2281 */
2282static void dm_wq_work(struct work_struct *work)
2283{
2284	struct mapped_device *md = container_of(work, struct mapped_device, work);
2285	struct bio *bio;
 
 
 
 
 
2286
2287	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2288		spin_lock_irq(&md->deferred_lock);
2289		bio = bio_list_pop(&md->deferred);
2290		spin_unlock_irq(&md->deferred_lock);
2291
2292		if (!bio)
2293			break;
2294
2295		submit_bio_noacct(bio);
 
 
 
2296	}
 
 
2297}
2298
2299static void dm_queue_flush(struct mapped_device *md)
2300{
2301	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2302	smp_mb__after_atomic();
2303	queue_work(md->wq, &md->work);
2304}
2305
2306/*
2307 * Swap in a new table, returning the old one for the caller to destroy.
2308 */
2309struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2310{
2311	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2312	struct queue_limits limits;
2313	int r;
2314
2315	mutex_lock(&md->suspend_lock);
2316
2317	/* device must be suspended */
2318	if (!dm_suspended_md(md))
2319		goto out;
2320
2321	/*
2322	 * If the new table has no data devices, retain the existing limits.
2323	 * This helps multipath with queue_if_no_path if all paths disappear,
2324	 * then new I/O is queued based on these limits, and then some paths
2325	 * reappear.
2326	 */
2327	if (dm_table_has_no_data_devices(table)) {
2328		live_map = dm_get_live_table_fast(md);
2329		if (live_map)
2330			limits = md->queue->limits;
2331		dm_put_live_table_fast(md);
2332	}
2333
2334	if (!live_map) {
2335		r = dm_calculate_queue_limits(table, &limits);
2336		if (r) {
2337			map = ERR_PTR(r);
2338			goto out;
2339		}
2340	}
2341
2342	map = __bind(md, table, &limits);
2343	dm_issue_global_event();
2344
2345out:
2346	mutex_unlock(&md->suspend_lock);
2347	return map;
2348}
2349
2350/*
2351 * Functions to lock and unlock any filesystem running on the
2352 * device.
2353 */
2354static int lock_fs(struct mapped_device *md)
2355{
2356	int r;
2357
2358	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
 
 
 
 
 
 
 
 
 
2359
2360	r = freeze_bdev(md->disk->part0);
2361	if (!r)
2362		set_bit(DMF_FROZEN, &md->flags);
2363	return r;
2364}
2365
2366static void unlock_fs(struct mapped_device *md)
2367{
2368	if (!test_bit(DMF_FROZEN, &md->flags))
2369		return;
2370	thaw_bdev(md->disk->part0);
 
 
2371	clear_bit(DMF_FROZEN, &md->flags);
2372}
2373
2374/*
2375 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2376 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2377 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2378 *
2379 * If __dm_suspend returns 0, the device is completely quiescent
2380 * now. There is no request-processing activity. All new requests
2381 * are being added to md->deferred list.
 
 
2382 */
2383static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2384			unsigned suspend_flags, unsigned int task_state,
2385			int dmf_suspended_flag)
2386{
2387	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2388	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2389	int r;
2390
2391	lockdep_assert_held(&md->suspend_lock);
2392
2393	/*
2394	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2395	 * This flag is cleared before dm_suspend returns.
2396	 */
2397	if (noflush)
2398		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2399	else
2400		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2401
2402	/*
2403	 * This gets reverted if there's an error later and the targets
2404	 * provide the .presuspend_undo hook.
2405	 */
2406	dm_table_presuspend_targets(map);
2407
2408	/*
2409	 * Flush I/O to the device.
2410	 * Any I/O submitted after lock_fs() may not be flushed.
2411	 * noflush takes precedence over do_lockfs.
2412	 * (lock_fs() flushes I/Os and waits for them to complete.)
2413	 */
2414	if (!noflush && do_lockfs) {
2415		r = lock_fs(md);
2416		if (r) {
2417			dm_table_presuspend_undo_targets(map);
2418			return r;
2419		}
2420	}
2421
2422	/*
2423	 * Here we must make sure that no processes are submitting requests
2424	 * to target drivers i.e. no one may be executing
2425	 * __split_and_process_bio from dm_submit_bio.
 
2426	 *
2427	 * To get all processes out of __split_and_process_bio in dm_submit_bio,
2428	 * we take the write lock. To prevent any process from reentering
2429	 * __split_and_process_bio from dm_submit_bio and quiesce the thread
2430	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2431	 * flush_workqueue(md->wq).
2432	 */
2433	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2434	if (map)
2435		synchronize_srcu(&md->io_barrier);
2436
2437	/*
2438	 * Stop md->queue before flushing md->wq in case request-based
2439	 * dm defers requests to md->wq from md->queue.
2440	 */
2441	if (dm_request_based(md))
2442		dm_stop_queue(md->queue);
 
 
 
2443
2444	flush_workqueue(md->wq);
2445
2446	/*
2447	 * At this point no more requests are entering target request routines.
2448	 * We call dm_wait_for_completion to wait for all existing requests
2449	 * to finish.
2450	 */
2451	r = dm_wait_for_completion(md, task_state);
2452	if (!r)
2453		set_bit(dmf_suspended_flag, &md->flags);
2454
2455	if (noflush)
2456		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2457	if (map)
2458		synchronize_srcu(&md->io_barrier);
2459
2460	/* were we interrupted ? */
2461	if (r < 0) {
2462		dm_queue_flush(md);
2463
2464		if (dm_request_based(md))
2465			dm_start_queue(md->queue);
2466
2467		unlock_fs(md);
2468		dm_table_presuspend_undo_targets(map);
2469		/* pushback list is already flushed, so skip flush */
2470	}
2471
2472	return r;
2473}
2474
2475/*
2476 * We need to be able to change a mapping table under a mounted
2477 * filesystem.  For example we might want to move some data in
2478 * the background.  Before the table can be swapped with
2479 * dm_bind_table, dm_suspend must be called to flush any in
2480 * flight bios and ensure that any further io gets deferred.
2481 */
2482/*
2483 * Suspend mechanism in request-based dm.
2484 *
2485 * 1. Flush all I/Os by lock_fs() if needed.
2486 * 2. Stop dispatching any I/O by stopping the request_queue.
2487 * 3. Wait for all in-flight I/Os to be completed or requeued.
2488 *
2489 * To abort suspend, start the request_queue.
2490 */
2491int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2492{
2493	struct dm_table *map = NULL;
2494	int r = 0;
2495
2496retry:
2497	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2498
2499	if (dm_suspended_md(md)) {
2500		r = -EINVAL;
2501		goto out_unlock;
2502	}
2503
2504	if (dm_suspended_internally_md(md)) {
2505		/* already internally suspended, wait for internal resume */
2506		mutex_unlock(&md->suspend_lock);
2507		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2508		if (r)
2509			return r;
2510		goto retry;
2511	}
2512
2513	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2514
2515	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2516	if (r)
2517		goto out_unlock;
2518
2519	set_bit(DMF_POST_SUSPENDING, &md->flags);
2520	dm_table_postsuspend_targets(map);
2521	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2522
2523out_unlock:
2524	mutex_unlock(&md->suspend_lock);
2525	return r;
2526}
2527
2528static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2529{
2530	if (map) {
2531		int r = dm_table_resume_targets(map);
2532		if (r)
2533			return r;
2534	}
2535
2536	dm_queue_flush(md);
2537
2538	/*
2539	 * Flushing deferred I/Os must be done after targets are resumed
2540	 * so that mapping of targets can work correctly.
2541	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2542	 */
2543	if (dm_request_based(md))
2544		dm_start_queue(md->queue);
2545
2546	unlock_fs(md);
2547
2548	return 0;
2549}
2550
2551int dm_resume(struct mapped_device *md)
2552{
2553	int r;
2554	struct dm_table *map = NULL;
2555
2556retry:
2557	r = -EINVAL;
2558	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2559
2560	if (!dm_suspended_md(md))
2561		goto out;
2562
2563	if (dm_suspended_internally_md(md)) {
2564		/* already internally suspended, wait for internal resume */
2565		mutex_unlock(&md->suspend_lock);
2566		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2567		if (r)
2568			return r;
2569		goto retry;
2570	}
2571
2572	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2573	if (!map || !dm_table_get_size(map))
2574		goto out;
2575
2576	r = __dm_resume(md, map);
2577	if (r)
2578		goto out;
2579
2580	clear_bit(DMF_SUSPENDED, &md->flags);
2581out:
2582	mutex_unlock(&md->suspend_lock);
2583
2584	return r;
2585}
2586
2587/*
2588 * Internal suspend/resume works like userspace-driven suspend. It waits
2589 * until all bios finish and prevents issuing new bios to the target drivers.
2590 * It may be used only from the kernel.
2591 */
2592
2593static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2594{
2595	struct dm_table *map = NULL;
2596
2597	lockdep_assert_held(&md->suspend_lock);
2598
2599	if (md->internal_suspend_count++)
2600		return; /* nested internal suspend */
2601
2602	if (dm_suspended_md(md)) {
2603		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2604		return; /* nest suspend */
2605	}
2606
2607	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2608
2609	/*
2610	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2611	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2612	 * would require changing .presuspend to return an error -- avoid this
2613	 * until there is a need for more elaborate variants of internal suspend.
2614	 */
2615	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2616			    DMF_SUSPENDED_INTERNALLY);
2617
2618	set_bit(DMF_POST_SUSPENDING, &md->flags);
2619	dm_table_postsuspend_targets(map);
2620	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2621}
2622
2623static void __dm_internal_resume(struct mapped_device *md)
2624{
2625	BUG_ON(!md->internal_suspend_count);
2626
2627	if (--md->internal_suspend_count)
2628		return; /* resume from nested internal suspend */
2629
2630	if (dm_suspended_md(md))
2631		goto done; /* resume from nested suspend */
2632
2633	/*
2634	 * NOTE: existing callers don't need to call dm_table_resume_targets
2635	 * (which may fail -- so best to avoid it for now by passing NULL map)
2636	 */
2637	(void) __dm_resume(md, NULL);
2638
2639done:
2640	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2641	smp_mb__after_atomic();
2642	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2643}
2644
2645void dm_internal_suspend_noflush(struct mapped_device *md)
2646{
2647	mutex_lock(&md->suspend_lock);
2648	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2649	mutex_unlock(&md->suspend_lock);
2650}
2651EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2652
2653void dm_internal_resume(struct mapped_device *md)
2654{
2655	mutex_lock(&md->suspend_lock);
2656	__dm_internal_resume(md);
2657	mutex_unlock(&md->suspend_lock);
2658}
2659EXPORT_SYMBOL_GPL(dm_internal_resume);
2660
2661/*
2662 * Fast variants of internal suspend/resume hold md->suspend_lock,
2663 * which prevents interaction with userspace-driven suspend.
2664 */
2665
2666void dm_internal_suspend_fast(struct mapped_device *md)
2667{
2668	mutex_lock(&md->suspend_lock);
2669	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2670		return;
2671
2672	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2673	synchronize_srcu(&md->io_barrier);
2674	flush_workqueue(md->wq);
2675	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2676}
2677EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2678
2679void dm_internal_resume_fast(struct mapped_device *md)
2680{
2681	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2682		goto done;
2683
2684	dm_queue_flush(md);
2685
2686done:
2687	mutex_unlock(&md->suspend_lock);
2688}
2689EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2690
2691/*-----------------------------------------------------------------
2692 * Event notification.
2693 *---------------------------------------------------------------*/
2694int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2695		       unsigned cookie)
2696{
2697	int r;
2698	unsigned noio_flag;
2699	char udev_cookie[DM_COOKIE_LENGTH];
2700	char *envp[] = { udev_cookie, NULL };
2701
2702	noio_flag = memalloc_noio_save();
2703
2704	if (!cookie)
2705		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2706	else {
2707		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2708			 DM_COOKIE_ENV_VAR_NAME, cookie);
2709		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2710				       action, envp);
2711	}
2712
2713	memalloc_noio_restore(noio_flag);
2714
2715	return r;
2716}
2717
2718uint32_t dm_next_uevent_seq(struct mapped_device *md)
2719{
2720	return atomic_add_return(1, &md->uevent_seq);
2721}
2722
2723uint32_t dm_get_event_nr(struct mapped_device *md)
2724{
2725	return atomic_read(&md->event_nr);
2726}
2727
2728int dm_wait_event(struct mapped_device *md, int event_nr)
2729{
2730	return wait_event_interruptible(md->eventq,
2731			(event_nr != atomic_read(&md->event_nr)));
2732}
2733
2734void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2735{
2736	unsigned long flags;
2737
2738	spin_lock_irqsave(&md->uevent_lock, flags);
2739	list_add(elist, &md->uevent_list);
2740	spin_unlock_irqrestore(&md->uevent_lock, flags);
2741}
2742
2743/*
2744 * The gendisk is only valid as long as you have a reference
2745 * count on 'md'.
2746 */
2747struct gendisk *dm_disk(struct mapped_device *md)
2748{
2749	return md->disk;
2750}
2751EXPORT_SYMBOL_GPL(dm_disk);
2752
2753struct kobject *dm_kobject(struct mapped_device *md)
2754{
2755	return &md->kobj_holder.kobj;
2756}
2757
2758struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2759{
2760	struct mapped_device *md;
2761
2762	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2763
2764	spin_lock(&_minor_lock);
2765	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2766		md = NULL;
2767		goto out;
2768	}
2769	dm_get(md);
2770out:
2771	spin_unlock(&_minor_lock);
2772
2773	return md;
2774}
2775
2776int dm_suspended_md(struct mapped_device *md)
2777{
2778	return test_bit(DMF_SUSPENDED, &md->flags);
2779}
2780
2781static int dm_post_suspending_md(struct mapped_device *md)
2782{
2783	return test_bit(DMF_POST_SUSPENDING, &md->flags);
2784}
2785
2786int dm_suspended_internally_md(struct mapped_device *md)
2787{
2788	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2789}
2790
2791int dm_test_deferred_remove_flag(struct mapped_device *md)
2792{
2793	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2794}
2795
2796int dm_suspended(struct dm_target *ti)
2797{
2798	return dm_suspended_md(ti->table->md);
2799}
2800EXPORT_SYMBOL_GPL(dm_suspended);
2801
2802int dm_post_suspending(struct dm_target *ti)
2803{
2804	return dm_post_suspending_md(ti->table->md);
2805}
2806EXPORT_SYMBOL_GPL(dm_post_suspending);
2807
2808int dm_noflush_suspending(struct dm_target *ti)
2809{
2810	return __noflush_suspending(ti->table->md);
2811}
2812EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2813
2814struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2815					    unsigned integrity, unsigned per_io_data_size,
2816					    unsigned min_pool_size)
2817{
2818	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
 
2819	unsigned int pool_size = 0;
2820	unsigned int front_pad, io_front_pad;
2821	int ret;
2822
2823	if (!pools)
2824		return NULL;
2825
2826	switch (type) {
2827	case DM_TYPE_BIO_BASED:
2828	case DM_TYPE_DAX_BIO_BASED:
2829		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2830		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + DM_TARGET_IO_BIO_OFFSET;
2831		io_front_pad = roundup(per_io_data_size,  __alignof__(struct dm_io)) + DM_IO_BIO_OFFSET;
2832		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
2833		if (ret)
2834			goto out;
2835		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
2836			goto out;
2837		break;
2838	case DM_TYPE_REQUEST_BASED:
2839		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
 
 
 
 
 
 
 
 
2840		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2841		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2842		break;
2843	default:
2844		BUG();
2845	}
2846
2847	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
2848	if (ret)
 
 
 
 
 
 
2849		goto out;
2850
2851	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
2852		goto out;
2853
2854	return pools;
2855
2856out:
2857	dm_free_md_mempools(pools);
2858
2859	return NULL;
2860}
2861
2862void dm_free_md_mempools(struct dm_md_mempools *pools)
2863{
2864	if (!pools)
2865		return;
2866
2867	bioset_exit(&pools->bs);
2868	bioset_exit(&pools->io_bs);
 
 
 
2869
2870	kfree(pools);
2871}
2872
2873struct dm_pr {
2874	u64	old_key;
2875	u64	new_key;
2876	u32	flags;
2877	bool	fail_early;
2878};
2879
2880static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2881		      void *data)
2882{
2883	struct mapped_device *md = bdev->bd_disk->private_data;
2884	struct dm_table *table;
2885	struct dm_target *ti;
2886	int ret = -ENOTTY, srcu_idx;
2887
2888	table = dm_get_live_table(md, &srcu_idx);
2889	if (!table || !dm_table_get_size(table))
2890		goto out;
2891
2892	/* We only support devices that have a single target */
2893	if (dm_table_get_num_targets(table) != 1)
2894		goto out;
2895	ti = dm_table_get_target(table, 0);
2896
2897	ret = -EINVAL;
2898	if (!ti->type->iterate_devices)
2899		goto out;
2900
2901	ret = ti->type->iterate_devices(ti, fn, data);
2902out:
2903	dm_put_live_table(md, srcu_idx);
2904	return ret;
2905}
2906
2907/*
2908 * For register / unregister we need to manually call out to every path.
2909 */
2910static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2911			    sector_t start, sector_t len, void *data)
2912{
2913	struct dm_pr *pr = data;
2914	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2915
2916	if (!ops || !ops->pr_register)
2917		return -EOPNOTSUPP;
2918	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2919}
2920
2921static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2922			  u32 flags)
2923{
2924	struct dm_pr pr = {
2925		.old_key	= old_key,
2926		.new_key	= new_key,
2927		.flags		= flags,
2928		.fail_early	= true,
2929	};
2930	int ret;
2931
2932	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2933	if (ret && new_key) {
2934		/* unregister all paths if we failed to register any path */
2935		pr.old_key = new_key;
2936		pr.new_key = 0;
2937		pr.flags = 0;
2938		pr.fail_early = false;
2939		dm_call_pr(bdev, __dm_pr_register, &pr);
2940	}
2941
2942	return ret;
2943}
2944
2945static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2946			 u32 flags)
2947{
2948	struct mapped_device *md = bdev->bd_disk->private_data;
2949	const struct pr_ops *ops;
2950	int r, srcu_idx;
 
2951
2952	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2953	if (r < 0)
2954		goto out;
2955
2956	ops = bdev->bd_disk->fops->pr_ops;
2957	if (ops && ops->pr_reserve)
2958		r = ops->pr_reserve(bdev, key, type, flags);
2959	else
2960		r = -EOPNOTSUPP;
2961out:
2962	dm_unprepare_ioctl(md, srcu_idx);
2963	return r;
2964}
2965
2966static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2967{
2968	struct mapped_device *md = bdev->bd_disk->private_data;
2969	const struct pr_ops *ops;
2970	int r, srcu_idx;
 
2971
2972	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2973	if (r < 0)
2974		goto out;
2975
2976	ops = bdev->bd_disk->fops->pr_ops;
2977	if (ops && ops->pr_release)
2978		r = ops->pr_release(bdev, key, type);
2979	else
2980		r = -EOPNOTSUPP;
2981out:
2982	dm_unprepare_ioctl(md, srcu_idx);
2983	return r;
2984}
2985
2986static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2987			 enum pr_type type, bool abort)
2988{
2989	struct mapped_device *md = bdev->bd_disk->private_data;
2990	const struct pr_ops *ops;
2991	int r, srcu_idx;
 
2992
2993	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
2994	if (r < 0)
2995		goto out;
2996
2997	ops = bdev->bd_disk->fops->pr_ops;
2998	if (ops && ops->pr_preempt)
2999		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3000	else
3001		r = -EOPNOTSUPP;
3002out:
3003	dm_unprepare_ioctl(md, srcu_idx);
3004	return r;
3005}
3006
3007static int dm_pr_clear(struct block_device *bdev, u64 key)
3008{
3009	struct mapped_device *md = bdev->bd_disk->private_data;
3010	const struct pr_ops *ops;
3011	int r, srcu_idx;
 
3012
3013	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3014	if (r < 0)
3015		goto out;
3016
3017	ops = bdev->bd_disk->fops->pr_ops;
3018	if (ops && ops->pr_clear)
3019		r = ops->pr_clear(bdev, key);
3020	else
3021		r = -EOPNOTSUPP;
3022out:
3023	dm_unprepare_ioctl(md, srcu_idx);
3024	return r;
3025}
3026
3027static const struct pr_ops dm_pr_ops = {
3028	.pr_register	= dm_pr_register,
3029	.pr_reserve	= dm_pr_reserve,
3030	.pr_release	= dm_pr_release,
3031	.pr_preempt	= dm_pr_preempt,
3032	.pr_clear	= dm_pr_clear,
3033};
3034
3035static const struct block_device_operations dm_blk_dops = {
3036	.submit_bio = dm_submit_bio,
3037	.open = dm_blk_open,
3038	.release = dm_blk_close,
3039	.ioctl = dm_blk_ioctl,
 
3040	.getgeo = dm_blk_getgeo,
3041	.report_zones = dm_blk_report_zones,
3042	.pr_ops = &dm_pr_ops,
3043	.owner = THIS_MODULE
3044};
3045
3046static const struct block_device_operations dm_rq_blk_dops = {
3047	.open = dm_blk_open,
3048	.release = dm_blk_close,
3049	.ioctl = dm_blk_ioctl,
3050	.getgeo = dm_blk_getgeo,
3051	.pr_ops = &dm_pr_ops,
3052	.owner = THIS_MODULE
3053};
3054
3055static const struct dax_operations dm_dax_ops = {
3056	.direct_access = dm_dax_direct_access,
3057	.dax_supported = dm_dax_supported,
3058	.copy_from_iter = dm_dax_copy_from_iter,
3059	.copy_to_iter = dm_dax_copy_to_iter,
3060	.zero_page_range = dm_dax_zero_page_range,
3061};
3062
3063/*
3064 * module hooks
3065 */
3066module_init(dm_init);
3067module_exit(dm_exit);
3068
3069module_param(major, uint, 0);
3070MODULE_PARM_DESC(major, "The major number of the device mapper");
3071
3072module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3073MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3074
3075module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3076MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3077
3078module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3079MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3080
3081MODULE_DESCRIPTION(DM_NAME " driver");
3082MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3083MODULE_LICENSE("GPL");