Loading...
1/*
2 * BPF Jit compiler for s390.
3 *
4 * Minimum build requirements:
5 *
6 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
7 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
8 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
9 * - PACK_STACK
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18#define KMSG_COMPONENT "bpf_jit"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/netdevice.h>
22#include <linux/filter.h>
23#include <linux/init.h>
24#include <linux/bpf.h>
25#include <asm/cacheflush.h>
26#include <asm/dis.h>
27#include "bpf_jit.h"
28
29int bpf_jit_enable __read_mostly;
30
31struct bpf_jit {
32 u32 seen; /* Flags to remember seen eBPF instructions */
33 u32 seen_reg[16]; /* Array to remember which registers are used */
34 u32 *addrs; /* Array with relative instruction addresses */
35 u8 *prg_buf; /* Start of program */
36 int size; /* Size of program and literal pool */
37 int size_prg; /* Size of program */
38 int prg; /* Current position in program */
39 int lit_start; /* Start of literal pool */
40 int lit; /* Current position in literal pool */
41 int base_ip; /* Base address for literal pool */
42 int ret0_ip; /* Address of return 0 */
43 int exit_ip; /* Address of exit */
44 int tail_call_start; /* Tail call start offset */
45 int labels[1]; /* Labels for local jumps */
46};
47
48#define BPF_SIZE_MAX 0xffff /* Max size for program (16 bit branches) */
49
50#define SEEN_SKB 1 /* skb access */
51#define SEEN_MEM 2 /* use mem[] for temporary storage */
52#define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
53#define SEEN_LITERAL 8 /* code uses literals */
54#define SEEN_FUNC 16 /* calls C functions */
55#define SEEN_TAIL_CALL 32 /* code uses tail calls */
56#define SEEN_SKB_CHANGE 64 /* code changes skb data */
57#define SEEN_REG_AX 128 /* code uses constant blinding */
58#define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
59
60/*
61 * s390 registers
62 */
63#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
64#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
65#define REG_SKB_DATA (MAX_BPF_JIT_REG + 2) /* SKB data register */
66#define REG_L (MAX_BPF_JIT_REG + 3) /* Literal pool register */
67#define REG_15 (MAX_BPF_JIT_REG + 4) /* Register 15 */
68#define REG_0 REG_W0 /* Register 0 */
69#define REG_1 REG_W1 /* Register 1 */
70#define REG_2 BPF_REG_1 /* Register 2 */
71#define REG_14 BPF_REG_0 /* Register 14 */
72
73/*
74 * Mapping of BPF registers to s390 registers
75 */
76static const int reg2hex[] = {
77 /* Return code */
78 [BPF_REG_0] = 14,
79 /* Function parameters */
80 [BPF_REG_1] = 2,
81 [BPF_REG_2] = 3,
82 [BPF_REG_3] = 4,
83 [BPF_REG_4] = 5,
84 [BPF_REG_5] = 6,
85 /* Call saved registers */
86 [BPF_REG_6] = 7,
87 [BPF_REG_7] = 8,
88 [BPF_REG_8] = 9,
89 [BPF_REG_9] = 10,
90 /* BPF stack pointer */
91 [BPF_REG_FP] = 13,
92 /* Register for blinding (shared with REG_SKB_DATA) */
93 [BPF_REG_AX] = 12,
94 /* SKB data pointer */
95 [REG_SKB_DATA] = 12,
96 /* Work registers for s390x backend */
97 [REG_W0] = 0,
98 [REG_W1] = 1,
99 [REG_L] = 11,
100 [REG_15] = 15,
101};
102
103static inline u32 reg(u32 dst_reg, u32 src_reg)
104{
105 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
106}
107
108static inline u32 reg_high(u32 reg)
109{
110 return reg2hex[reg] << 4;
111}
112
113static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
114{
115 u32 r1 = reg2hex[b1];
116
117 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
118 jit->seen_reg[r1] = 1;
119}
120
121#define REG_SET_SEEN(b1) \
122({ \
123 reg_set_seen(jit, b1); \
124})
125
126#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
127
128/*
129 * EMIT macros for code generation
130 */
131
132#define _EMIT2(op) \
133({ \
134 if (jit->prg_buf) \
135 *(u16 *) (jit->prg_buf + jit->prg) = op; \
136 jit->prg += 2; \
137})
138
139#define EMIT2(op, b1, b2) \
140({ \
141 _EMIT2(op | reg(b1, b2)); \
142 REG_SET_SEEN(b1); \
143 REG_SET_SEEN(b2); \
144})
145
146#define _EMIT4(op) \
147({ \
148 if (jit->prg_buf) \
149 *(u32 *) (jit->prg_buf + jit->prg) = op; \
150 jit->prg += 4; \
151})
152
153#define EMIT4(op, b1, b2) \
154({ \
155 _EMIT4(op | reg(b1, b2)); \
156 REG_SET_SEEN(b1); \
157 REG_SET_SEEN(b2); \
158})
159
160#define EMIT4_RRF(op, b1, b2, b3) \
161({ \
162 _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
163 REG_SET_SEEN(b1); \
164 REG_SET_SEEN(b2); \
165 REG_SET_SEEN(b3); \
166})
167
168#define _EMIT4_DISP(op, disp) \
169({ \
170 unsigned int __disp = (disp) & 0xfff; \
171 _EMIT4(op | __disp); \
172})
173
174#define EMIT4_DISP(op, b1, b2, disp) \
175({ \
176 _EMIT4_DISP(op | reg_high(b1) << 16 | \
177 reg_high(b2) << 8, disp); \
178 REG_SET_SEEN(b1); \
179 REG_SET_SEEN(b2); \
180})
181
182#define EMIT4_IMM(op, b1, imm) \
183({ \
184 unsigned int __imm = (imm) & 0xffff; \
185 _EMIT4(op | reg_high(b1) << 16 | __imm); \
186 REG_SET_SEEN(b1); \
187})
188
189#define EMIT4_PCREL(op, pcrel) \
190({ \
191 long __pcrel = ((pcrel) >> 1) & 0xffff; \
192 _EMIT4(op | __pcrel); \
193})
194
195#define _EMIT6(op1, op2) \
196({ \
197 if (jit->prg_buf) { \
198 *(u32 *) (jit->prg_buf + jit->prg) = op1; \
199 *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
200 } \
201 jit->prg += 6; \
202})
203
204#define _EMIT6_DISP(op1, op2, disp) \
205({ \
206 unsigned int __disp = (disp) & 0xfff; \
207 _EMIT6(op1 | __disp, op2); \
208})
209
210#define _EMIT6_DISP_LH(op1, op2, disp) \
211({ \
212 u32 _disp = (u32) disp; \
213 unsigned int __disp_h = _disp & 0xff000; \
214 unsigned int __disp_l = _disp & 0x00fff; \
215 _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
216})
217
218#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
219({ \
220 _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
221 reg_high(b3) << 8, op2, disp); \
222 REG_SET_SEEN(b1); \
223 REG_SET_SEEN(b2); \
224 REG_SET_SEEN(b3); \
225})
226
227#define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
228({ \
229 int rel = (jit->labels[label] - jit->prg) >> 1; \
230 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
231 op2 | mask << 12); \
232 REG_SET_SEEN(b1); \
233 REG_SET_SEEN(b2); \
234})
235
236#define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
237({ \
238 int rel = (jit->labels[label] - jit->prg) >> 1; \
239 _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
240 (rel & 0xffff), op2 | (imm & 0xff) << 8); \
241 REG_SET_SEEN(b1); \
242 BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
243})
244
245#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
246({ \
247 /* Branch instruction needs 6 bytes */ \
248 int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
249 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
250 REG_SET_SEEN(b1); \
251 REG_SET_SEEN(b2); \
252})
253
254#define _EMIT6_IMM(op, imm) \
255({ \
256 unsigned int __imm = (imm); \
257 _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
258})
259
260#define EMIT6_IMM(op, b1, imm) \
261({ \
262 _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
263 REG_SET_SEEN(b1); \
264})
265
266#define EMIT_CONST_U32(val) \
267({ \
268 unsigned int ret; \
269 ret = jit->lit - jit->base_ip; \
270 jit->seen |= SEEN_LITERAL; \
271 if (jit->prg_buf) \
272 *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
273 jit->lit += 4; \
274 ret; \
275})
276
277#define EMIT_CONST_U64(val) \
278({ \
279 unsigned int ret; \
280 ret = jit->lit - jit->base_ip; \
281 jit->seen |= SEEN_LITERAL; \
282 if (jit->prg_buf) \
283 *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
284 jit->lit += 8; \
285 ret; \
286})
287
288#define EMIT_ZERO(b1) \
289({ \
290 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
291 EMIT4(0xb9160000, b1, b1); \
292 REG_SET_SEEN(b1); \
293})
294
295/*
296 * Fill whole space with illegal instructions
297 */
298static void jit_fill_hole(void *area, unsigned int size)
299{
300 memset(area, 0, size);
301}
302
303/*
304 * Save registers from "rs" (register start) to "re" (register end) on stack
305 */
306static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
307{
308 u32 off = STK_OFF_R6 + (rs - 6) * 8;
309
310 if (rs == re)
311 /* stg %rs,off(%r15) */
312 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
313 else
314 /* stmg %rs,%re,off(%r15) */
315 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
316}
317
318/*
319 * Restore registers from "rs" (register start) to "re" (register end) on stack
320 */
321static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
322{
323 u32 off = STK_OFF_R6 + (rs - 6) * 8;
324
325 if (jit->seen & SEEN_STACK)
326 off += STK_OFF;
327
328 if (rs == re)
329 /* lg %rs,off(%r15) */
330 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
331 else
332 /* lmg %rs,%re,off(%r15) */
333 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
334}
335
336/*
337 * Return first seen register (from start)
338 */
339static int get_start(struct bpf_jit *jit, int start)
340{
341 int i;
342
343 for (i = start; i <= 15; i++) {
344 if (jit->seen_reg[i])
345 return i;
346 }
347 return 0;
348}
349
350/*
351 * Return last seen register (from start) (gap >= 2)
352 */
353static int get_end(struct bpf_jit *jit, int start)
354{
355 int i;
356
357 for (i = start; i < 15; i++) {
358 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
359 return i - 1;
360 }
361 return jit->seen_reg[15] ? 15 : 14;
362}
363
364#define REGS_SAVE 1
365#define REGS_RESTORE 0
366/*
367 * Save and restore clobbered registers (6-15) on stack.
368 * We save/restore registers in chunks with gap >= 2 registers.
369 */
370static void save_restore_regs(struct bpf_jit *jit, int op)
371{
372
373 int re = 6, rs;
374
375 do {
376 rs = get_start(jit, re);
377 if (!rs)
378 break;
379 re = get_end(jit, rs + 1);
380 if (op == REGS_SAVE)
381 save_regs(jit, rs, re);
382 else
383 restore_regs(jit, rs, re);
384 re++;
385 } while (re <= 15);
386}
387
388/*
389 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
390 * we store the SKB header length on the stack and the SKB data
391 * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
392 */
393static void emit_load_skb_data_hlen(struct bpf_jit *jit)
394{
395 /* Header length: llgf %w1,<len>(%b1) */
396 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
397 offsetof(struct sk_buff, len));
398 /* s %w1,<data_len>(%b1) */
399 EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
400 offsetof(struct sk_buff, data_len));
401 /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
402 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
403 if (!(jit->seen & SEEN_REG_AX))
404 /* lg %skb_data,data_off(%b1) */
405 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
406 BPF_REG_1, offsetof(struct sk_buff, data));
407}
408
409/*
410 * Emit function prologue
411 *
412 * Save registers and create stack frame if necessary.
413 * See stack frame layout desription in "bpf_jit.h"!
414 */
415static void bpf_jit_prologue(struct bpf_jit *jit)
416{
417 if (jit->seen & SEEN_TAIL_CALL) {
418 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
419 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
420 } else {
421 /* j tail_call_start: NOP if no tail calls are used */
422 EMIT4_PCREL(0xa7f40000, 6);
423 _EMIT2(0);
424 }
425 /* Tail calls have to skip above initialization */
426 jit->tail_call_start = jit->prg;
427 /* Save registers */
428 save_restore_regs(jit, REGS_SAVE);
429 /* Setup literal pool */
430 if (jit->seen & SEEN_LITERAL) {
431 /* basr %r13,0 */
432 EMIT2(0x0d00, REG_L, REG_0);
433 jit->base_ip = jit->prg;
434 }
435 /* Setup stack and backchain */
436 if (jit->seen & SEEN_STACK) {
437 if (jit->seen & SEEN_FUNC)
438 /* lgr %w1,%r15 (backchain) */
439 EMIT4(0xb9040000, REG_W1, REG_15);
440 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
441 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
442 /* aghi %r15,-STK_OFF */
443 EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
444 if (jit->seen & SEEN_FUNC)
445 /* stg %w1,152(%r15) (backchain) */
446 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
447 REG_15, 152);
448 }
449 if (jit->seen & SEEN_SKB)
450 emit_load_skb_data_hlen(jit);
451 if (jit->seen & SEEN_SKB_CHANGE)
452 /* stg %b1,ST_OFF_SKBP(%r0,%r15) */
453 EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
454 STK_OFF_SKBP);
455}
456
457/*
458 * Function epilogue
459 */
460static void bpf_jit_epilogue(struct bpf_jit *jit)
461{
462 /* Return 0 */
463 if (jit->seen & SEEN_RET0) {
464 jit->ret0_ip = jit->prg;
465 /* lghi %b0,0 */
466 EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
467 }
468 jit->exit_ip = jit->prg;
469 /* Load exit code: lgr %r2,%b0 */
470 EMIT4(0xb9040000, REG_2, BPF_REG_0);
471 /* Restore registers */
472 save_restore_regs(jit, REGS_RESTORE);
473 /* br %r14 */
474 _EMIT2(0x07fe);
475}
476
477/*
478 * Compile one eBPF instruction into s390x code
479 *
480 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
481 * stack space for the large switch statement.
482 */
483static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
484{
485 struct bpf_insn *insn = &fp->insnsi[i];
486 int jmp_off, last, insn_count = 1;
487 unsigned int func_addr, mask;
488 u32 dst_reg = insn->dst_reg;
489 u32 src_reg = insn->src_reg;
490 u32 *addrs = jit->addrs;
491 s32 imm = insn->imm;
492 s16 off = insn->off;
493
494 if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
495 jit->seen |= SEEN_REG_AX;
496 switch (insn->code) {
497 /*
498 * BPF_MOV
499 */
500 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
501 /* llgfr %dst,%src */
502 EMIT4(0xb9160000, dst_reg, src_reg);
503 break;
504 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
505 /* lgr %dst,%src */
506 EMIT4(0xb9040000, dst_reg, src_reg);
507 break;
508 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
509 /* llilf %dst,imm */
510 EMIT6_IMM(0xc00f0000, dst_reg, imm);
511 break;
512 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
513 /* lgfi %dst,imm */
514 EMIT6_IMM(0xc0010000, dst_reg, imm);
515 break;
516 /*
517 * BPF_LD 64
518 */
519 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
520 {
521 /* 16 byte instruction that uses two 'struct bpf_insn' */
522 u64 imm64;
523
524 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
525 /* lg %dst,<d(imm)>(%l) */
526 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
527 EMIT_CONST_U64(imm64));
528 insn_count = 2;
529 break;
530 }
531 /*
532 * BPF_ADD
533 */
534 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
535 /* ar %dst,%src */
536 EMIT2(0x1a00, dst_reg, src_reg);
537 EMIT_ZERO(dst_reg);
538 break;
539 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
540 /* agr %dst,%src */
541 EMIT4(0xb9080000, dst_reg, src_reg);
542 break;
543 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
544 if (!imm)
545 break;
546 /* alfi %dst,imm */
547 EMIT6_IMM(0xc20b0000, dst_reg, imm);
548 EMIT_ZERO(dst_reg);
549 break;
550 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
551 if (!imm)
552 break;
553 /* agfi %dst,imm */
554 EMIT6_IMM(0xc2080000, dst_reg, imm);
555 break;
556 /*
557 * BPF_SUB
558 */
559 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
560 /* sr %dst,%src */
561 EMIT2(0x1b00, dst_reg, src_reg);
562 EMIT_ZERO(dst_reg);
563 break;
564 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
565 /* sgr %dst,%src */
566 EMIT4(0xb9090000, dst_reg, src_reg);
567 break;
568 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
569 if (!imm)
570 break;
571 /* alfi %dst,-imm */
572 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
573 EMIT_ZERO(dst_reg);
574 break;
575 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
576 if (!imm)
577 break;
578 /* agfi %dst,-imm */
579 EMIT6_IMM(0xc2080000, dst_reg, -imm);
580 break;
581 /*
582 * BPF_MUL
583 */
584 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
585 /* msr %dst,%src */
586 EMIT4(0xb2520000, dst_reg, src_reg);
587 EMIT_ZERO(dst_reg);
588 break;
589 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
590 /* msgr %dst,%src */
591 EMIT4(0xb90c0000, dst_reg, src_reg);
592 break;
593 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
594 if (imm == 1)
595 break;
596 /* msfi %r5,imm */
597 EMIT6_IMM(0xc2010000, dst_reg, imm);
598 EMIT_ZERO(dst_reg);
599 break;
600 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
601 if (imm == 1)
602 break;
603 /* msgfi %dst,imm */
604 EMIT6_IMM(0xc2000000, dst_reg, imm);
605 break;
606 /*
607 * BPF_DIV / BPF_MOD
608 */
609 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
610 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
611 {
612 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
613
614 jit->seen |= SEEN_RET0;
615 /* ltr %src,%src (if src == 0 goto fail) */
616 EMIT2(0x1200, src_reg, src_reg);
617 /* jz <ret0> */
618 EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
619 /* lhi %w0,0 */
620 EMIT4_IMM(0xa7080000, REG_W0, 0);
621 /* lr %w1,%dst */
622 EMIT2(0x1800, REG_W1, dst_reg);
623 /* dlr %w0,%src */
624 EMIT4(0xb9970000, REG_W0, src_reg);
625 /* llgfr %dst,%rc */
626 EMIT4(0xb9160000, dst_reg, rc_reg);
627 break;
628 }
629 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
630 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
631 {
632 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
633
634 jit->seen |= SEEN_RET0;
635 /* ltgr %src,%src (if src == 0 goto fail) */
636 EMIT4(0xb9020000, src_reg, src_reg);
637 /* jz <ret0> */
638 EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
639 /* lghi %w0,0 */
640 EMIT4_IMM(0xa7090000, REG_W0, 0);
641 /* lgr %w1,%dst */
642 EMIT4(0xb9040000, REG_W1, dst_reg);
643 /* dlgr %w0,%dst */
644 EMIT4(0xb9870000, REG_W0, src_reg);
645 /* lgr %dst,%rc */
646 EMIT4(0xb9040000, dst_reg, rc_reg);
647 break;
648 }
649 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
650 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
651 {
652 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
653
654 if (imm == 1) {
655 if (BPF_OP(insn->code) == BPF_MOD)
656 /* lhgi %dst,0 */
657 EMIT4_IMM(0xa7090000, dst_reg, 0);
658 break;
659 }
660 /* lhi %w0,0 */
661 EMIT4_IMM(0xa7080000, REG_W0, 0);
662 /* lr %w1,%dst */
663 EMIT2(0x1800, REG_W1, dst_reg);
664 /* dl %w0,<d(imm)>(%l) */
665 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
666 EMIT_CONST_U32(imm));
667 /* llgfr %dst,%rc */
668 EMIT4(0xb9160000, dst_reg, rc_reg);
669 break;
670 }
671 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
672 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
673 {
674 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
675
676 if (imm == 1) {
677 if (BPF_OP(insn->code) == BPF_MOD)
678 /* lhgi %dst,0 */
679 EMIT4_IMM(0xa7090000, dst_reg, 0);
680 break;
681 }
682 /* lghi %w0,0 */
683 EMIT4_IMM(0xa7090000, REG_W0, 0);
684 /* lgr %w1,%dst */
685 EMIT4(0xb9040000, REG_W1, dst_reg);
686 /* dlg %w0,<d(imm)>(%l) */
687 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
688 EMIT_CONST_U64(imm));
689 /* lgr %dst,%rc */
690 EMIT4(0xb9040000, dst_reg, rc_reg);
691 break;
692 }
693 /*
694 * BPF_AND
695 */
696 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
697 /* nr %dst,%src */
698 EMIT2(0x1400, dst_reg, src_reg);
699 EMIT_ZERO(dst_reg);
700 break;
701 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
702 /* ngr %dst,%src */
703 EMIT4(0xb9800000, dst_reg, src_reg);
704 break;
705 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
706 /* nilf %dst,imm */
707 EMIT6_IMM(0xc00b0000, dst_reg, imm);
708 EMIT_ZERO(dst_reg);
709 break;
710 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
711 /* ng %dst,<d(imm)>(%l) */
712 EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
713 EMIT_CONST_U64(imm));
714 break;
715 /*
716 * BPF_OR
717 */
718 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
719 /* or %dst,%src */
720 EMIT2(0x1600, dst_reg, src_reg);
721 EMIT_ZERO(dst_reg);
722 break;
723 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
724 /* ogr %dst,%src */
725 EMIT4(0xb9810000, dst_reg, src_reg);
726 break;
727 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
728 /* oilf %dst,imm */
729 EMIT6_IMM(0xc00d0000, dst_reg, imm);
730 EMIT_ZERO(dst_reg);
731 break;
732 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
733 /* og %dst,<d(imm)>(%l) */
734 EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
735 EMIT_CONST_U64(imm));
736 break;
737 /*
738 * BPF_XOR
739 */
740 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
741 /* xr %dst,%src */
742 EMIT2(0x1700, dst_reg, src_reg);
743 EMIT_ZERO(dst_reg);
744 break;
745 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
746 /* xgr %dst,%src */
747 EMIT4(0xb9820000, dst_reg, src_reg);
748 break;
749 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
750 if (!imm)
751 break;
752 /* xilf %dst,imm */
753 EMIT6_IMM(0xc0070000, dst_reg, imm);
754 EMIT_ZERO(dst_reg);
755 break;
756 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
757 /* xg %dst,<d(imm)>(%l) */
758 EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
759 EMIT_CONST_U64(imm));
760 break;
761 /*
762 * BPF_LSH
763 */
764 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
765 /* sll %dst,0(%src) */
766 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
767 EMIT_ZERO(dst_reg);
768 break;
769 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
770 /* sllg %dst,%dst,0(%src) */
771 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
772 break;
773 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
774 if (imm == 0)
775 break;
776 /* sll %dst,imm(%r0) */
777 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
778 EMIT_ZERO(dst_reg);
779 break;
780 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
781 if (imm == 0)
782 break;
783 /* sllg %dst,%dst,imm(%r0) */
784 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
785 break;
786 /*
787 * BPF_RSH
788 */
789 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
790 /* srl %dst,0(%src) */
791 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
792 EMIT_ZERO(dst_reg);
793 break;
794 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
795 /* srlg %dst,%dst,0(%src) */
796 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
797 break;
798 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
799 if (imm == 0)
800 break;
801 /* srl %dst,imm(%r0) */
802 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
803 EMIT_ZERO(dst_reg);
804 break;
805 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
806 if (imm == 0)
807 break;
808 /* srlg %dst,%dst,imm(%r0) */
809 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
810 break;
811 /*
812 * BPF_ARSH
813 */
814 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
815 /* srag %dst,%dst,0(%src) */
816 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
817 break;
818 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
819 if (imm == 0)
820 break;
821 /* srag %dst,%dst,imm(%r0) */
822 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
823 break;
824 /*
825 * BPF_NEG
826 */
827 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
828 /* lcr %dst,%dst */
829 EMIT2(0x1300, dst_reg, dst_reg);
830 EMIT_ZERO(dst_reg);
831 break;
832 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
833 /* lcgr %dst,%dst */
834 EMIT4(0xb9130000, dst_reg, dst_reg);
835 break;
836 /*
837 * BPF_FROM_BE/LE
838 */
839 case BPF_ALU | BPF_END | BPF_FROM_BE:
840 /* s390 is big endian, therefore only clear high order bytes */
841 switch (imm) {
842 case 16: /* dst = (u16) cpu_to_be16(dst) */
843 /* llghr %dst,%dst */
844 EMIT4(0xb9850000, dst_reg, dst_reg);
845 break;
846 case 32: /* dst = (u32) cpu_to_be32(dst) */
847 /* llgfr %dst,%dst */
848 EMIT4(0xb9160000, dst_reg, dst_reg);
849 break;
850 case 64: /* dst = (u64) cpu_to_be64(dst) */
851 break;
852 }
853 break;
854 case BPF_ALU | BPF_END | BPF_FROM_LE:
855 switch (imm) {
856 case 16: /* dst = (u16) cpu_to_le16(dst) */
857 /* lrvr %dst,%dst */
858 EMIT4(0xb91f0000, dst_reg, dst_reg);
859 /* srl %dst,16(%r0) */
860 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
861 /* llghr %dst,%dst */
862 EMIT4(0xb9850000, dst_reg, dst_reg);
863 break;
864 case 32: /* dst = (u32) cpu_to_le32(dst) */
865 /* lrvr %dst,%dst */
866 EMIT4(0xb91f0000, dst_reg, dst_reg);
867 /* llgfr %dst,%dst */
868 EMIT4(0xb9160000, dst_reg, dst_reg);
869 break;
870 case 64: /* dst = (u64) cpu_to_le64(dst) */
871 /* lrvgr %dst,%dst */
872 EMIT4(0xb90f0000, dst_reg, dst_reg);
873 break;
874 }
875 break;
876 /*
877 * BPF_ST(X)
878 */
879 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
880 /* stcy %src,off(%dst) */
881 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
882 jit->seen |= SEEN_MEM;
883 break;
884 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
885 /* sthy %src,off(%dst) */
886 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
887 jit->seen |= SEEN_MEM;
888 break;
889 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
890 /* sty %src,off(%dst) */
891 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
892 jit->seen |= SEEN_MEM;
893 break;
894 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
895 /* stg %src,off(%dst) */
896 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
897 jit->seen |= SEEN_MEM;
898 break;
899 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
900 /* lhi %w0,imm */
901 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
902 /* stcy %w0,off(dst) */
903 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
904 jit->seen |= SEEN_MEM;
905 break;
906 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
907 /* lhi %w0,imm */
908 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
909 /* sthy %w0,off(dst) */
910 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
911 jit->seen |= SEEN_MEM;
912 break;
913 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
914 /* llilf %w0,imm */
915 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
916 /* sty %w0,off(%dst) */
917 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
918 jit->seen |= SEEN_MEM;
919 break;
920 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
921 /* lgfi %w0,imm */
922 EMIT6_IMM(0xc0010000, REG_W0, imm);
923 /* stg %w0,off(%dst) */
924 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
925 jit->seen |= SEEN_MEM;
926 break;
927 /*
928 * BPF_STX XADD (atomic_add)
929 */
930 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
931 /* laal %w0,%src,off(%dst) */
932 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
933 dst_reg, off);
934 jit->seen |= SEEN_MEM;
935 break;
936 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
937 /* laalg %w0,%src,off(%dst) */
938 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
939 dst_reg, off);
940 jit->seen |= SEEN_MEM;
941 break;
942 /*
943 * BPF_LDX
944 */
945 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
946 /* llgc %dst,0(off,%src) */
947 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
948 jit->seen |= SEEN_MEM;
949 break;
950 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
951 /* llgh %dst,0(off,%src) */
952 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
953 jit->seen |= SEEN_MEM;
954 break;
955 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
956 /* llgf %dst,off(%src) */
957 jit->seen |= SEEN_MEM;
958 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
959 break;
960 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
961 /* lg %dst,0(off,%src) */
962 jit->seen |= SEEN_MEM;
963 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
964 break;
965 /*
966 * BPF_JMP / CALL
967 */
968 case BPF_JMP | BPF_CALL:
969 {
970 /*
971 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
972 */
973 const u64 func = (u64)__bpf_call_base + imm;
974
975 REG_SET_SEEN(BPF_REG_5);
976 jit->seen |= SEEN_FUNC;
977 /* lg %w1,<d(imm)>(%l) */
978 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
979 EMIT_CONST_U64(func));
980 /* basr %r14,%w1 */
981 EMIT2(0x0d00, REG_14, REG_W1);
982 /* lgr %b0,%r2: load return value into %b0 */
983 EMIT4(0xb9040000, BPF_REG_0, REG_2);
984 if (bpf_helper_changes_pkt_data((void *)func)) {
985 jit->seen |= SEEN_SKB_CHANGE;
986 /* lg %b1,ST_OFF_SKBP(%r15) */
987 EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
988 REG_15, STK_OFF_SKBP);
989 emit_load_skb_data_hlen(jit);
990 }
991 break;
992 }
993 case BPF_JMP | BPF_CALL | BPF_X:
994 /*
995 * Implicit input:
996 * B1: pointer to ctx
997 * B2: pointer to bpf_array
998 * B3: index in bpf_array
999 */
1000 jit->seen |= SEEN_TAIL_CALL;
1001
1002 /*
1003 * if (index >= array->map.max_entries)
1004 * goto out;
1005 */
1006
1007 /* llgf %w1,map.max_entries(%b2) */
1008 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1009 offsetof(struct bpf_array, map.max_entries));
1010 /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1011 EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1012 REG_W1, 0, 0xa);
1013
1014 /*
1015 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1016 * goto out;
1017 */
1018
1019 if (jit->seen & SEEN_STACK)
1020 off = STK_OFF_TCCNT + STK_OFF;
1021 else
1022 off = STK_OFF_TCCNT;
1023 /* lhi %w0,1 */
1024 EMIT4_IMM(0xa7080000, REG_W0, 1);
1025 /* laal %w1,%w0,off(%r15) */
1026 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1027 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1028 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1029 MAX_TAIL_CALL_CNT, 0, 0x2);
1030
1031 /*
1032 * prog = array->ptrs[index];
1033 * if (prog == NULL)
1034 * goto out;
1035 */
1036
1037 /* sllg %r1,%b3,3: %r1 = index * 8 */
1038 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1039 /* lg %r1,prog(%b2,%r1) */
1040 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1041 REG_1, offsetof(struct bpf_array, ptrs));
1042 /* clgij %r1,0,0x8,label0 */
1043 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1044
1045 /*
1046 * Restore registers before calling function
1047 */
1048 save_restore_regs(jit, REGS_RESTORE);
1049
1050 /*
1051 * goto *(prog->bpf_func + tail_call_start);
1052 */
1053
1054 /* lg %r1,bpf_func(%r1) */
1055 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1056 offsetof(struct bpf_prog, bpf_func));
1057 /* bc 0xf,tail_call_start(%r1) */
1058 _EMIT4(0x47f01000 + jit->tail_call_start);
1059 /* out: */
1060 jit->labels[0] = jit->prg;
1061 break;
1062 case BPF_JMP | BPF_EXIT: /* return b0 */
1063 last = (i == fp->len - 1) ? 1 : 0;
1064 if (last && !(jit->seen & SEEN_RET0))
1065 break;
1066 /* j <exit> */
1067 EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1068 break;
1069 /*
1070 * Branch relative (number of skipped instructions) to offset on
1071 * condition.
1072 *
1073 * Condition code to mask mapping:
1074 *
1075 * CC | Description | Mask
1076 * ------------------------------
1077 * 0 | Operands equal | 8
1078 * 1 | First operand low | 4
1079 * 2 | First operand high | 2
1080 * 3 | Unused | 1
1081 *
1082 * For s390x relative branches: ip = ip + off_bytes
1083 * For BPF relative branches: insn = insn + off_insns + 1
1084 *
1085 * For example for s390x with offset 0 we jump to the branch
1086 * instruction itself (loop) and for BPF with offset 0 we
1087 * branch to the instruction behind the branch.
1088 */
1089 case BPF_JMP | BPF_JA: /* if (true) */
1090 mask = 0xf000; /* j */
1091 goto branch_oc;
1092 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1093 mask = 0x2000; /* jh */
1094 goto branch_ks;
1095 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1096 mask = 0xa000; /* jhe */
1097 goto branch_ks;
1098 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1099 mask = 0x2000; /* jh */
1100 goto branch_ku;
1101 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1102 mask = 0xa000; /* jhe */
1103 goto branch_ku;
1104 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1105 mask = 0x7000; /* jne */
1106 goto branch_ku;
1107 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1108 mask = 0x8000; /* je */
1109 goto branch_ku;
1110 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1111 mask = 0x7000; /* jnz */
1112 /* lgfi %w1,imm (load sign extend imm) */
1113 EMIT6_IMM(0xc0010000, REG_W1, imm);
1114 /* ngr %w1,%dst */
1115 EMIT4(0xb9800000, REG_W1, dst_reg);
1116 goto branch_oc;
1117
1118 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1119 mask = 0x2000; /* jh */
1120 goto branch_xs;
1121 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1122 mask = 0xa000; /* jhe */
1123 goto branch_xs;
1124 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1125 mask = 0x2000; /* jh */
1126 goto branch_xu;
1127 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1128 mask = 0xa000; /* jhe */
1129 goto branch_xu;
1130 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1131 mask = 0x7000; /* jne */
1132 goto branch_xu;
1133 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1134 mask = 0x8000; /* je */
1135 goto branch_xu;
1136 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1137 mask = 0x7000; /* jnz */
1138 /* ngrk %w1,%dst,%src */
1139 EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1140 goto branch_oc;
1141branch_ks:
1142 /* lgfi %w1,imm (load sign extend imm) */
1143 EMIT6_IMM(0xc0010000, REG_W1, imm);
1144 /* cgrj %dst,%w1,mask,off */
1145 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1146 break;
1147branch_ku:
1148 /* lgfi %w1,imm (load sign extend imm) */
1149 EMIT6_IMM(0xc0010000, REG_W1, imm);
1150 /* clgrj %dst,%w1,mask,off */
1151 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1152 break;
1153branch_xs:
1154 /* cgrj %dst,%src,mask,off */
1155 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1156 break;
1157branch_xu:
1158 /* clgrj %dst,%src,mask,off */
1159 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1160 break;
1161branch_oc:
1162 /* brc mask,jmp_off (branch instruction needs 4 bytes) */
1163 jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1164 EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1165 break;
1166 /*
1167 * BPF_LD
1168 */
1169 case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1170 case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1171 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1172 func_addr = __pa(sk_load_byte_pos);
1173 else
1174 func_addr = __pa(sk_load_byte);
1175 goto call_fn;
1176 case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1177 case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1178 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1179 func_addr = __pa(sk_load_half_pos);
1180 else
1181 func_addr = __pa(sk_load_half);
1182 goto call_fn;
1183 case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1184 case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1185 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1186 func_addr = __pa(sk_load_word_pos);
1187 else
1188 func_addr = __pa(sk_load_word);
1189 goto call_fn;
1190call_fn:
1191 jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1192 REG_SET_SEEN(REG_14); /* Return address of possible func call */
1193
1194 /*
1195 * Implicit input:
1196 * BPF_REG_6 (R7) : skb pointer
1197 * REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
1198 *
1199 * Calculated input:
1200 * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
1201 * BPF_REG_5 (R6) : return address
1202 *
1203 * Output:
1204 * BPF_REG_0 (R14): data read from skb
1205 *
1206 * Scratch registers (BPF_REG_1-5)
1207 */
1208
1209 /* Call function: llilf %w1,func_addr */
1210 EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1211
1212 /* Offset: lgfi %b2,imm */
1213 EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1214 if (BPF_MODE(insn->code) == BPF_IND)
1215 /* agfr %b2,%src (%src is s32 here) */
1216 EMIT4(0xb9180000, BPF_REG_2, src_reg);
1217
1218 /* Reload REG_SKB_DATA if BPF_REG_AX is used */
1219 if (jit->seen & SEEN_REG_AX)
1220 /* lg %skb_data,data_off(%b6) */
1221 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
1222 BPF_REG_6, offsetof(struct sk_buff, data));
1223 /* basr %b5,%w1 (%b5 is call saved) */
1224 EMIT2(0x0d00, BPF_REG_5, REG_W1);
1225
1226 /*
1227 * Note: For fast access we jump directly after the
1228 * jnz instruction from bpf_jit.S
1229 */
1230 /* jnz <ret0> */
1231 EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1232 break;
1233 default: /* too complex, give up */
1234 pr_err("Unknown opcode %02x\n", insn->code);
1235 return -1;
1236 }
1237 return insn_count;
1238}
1239
1240/*
1241 * Compile eBPF program into s390x code
1242 */
1243static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1244{
1245 int i, insn_count;
1246
1247 jit->lit = jit->lit_start;
1248 jit->prg = 0;
1249
1250 bpf_jit_prologue(jit);
1251 for (i = 0; i < fp->len; i += insn_count) {
1252 insn_count = bpf_jit_insn(jit, fp, i);
1253 if (insn_count < 0)
1254 return -1;
1255 jit->addrs[i + 1] = jit->prg; /* Next instruction address */
1256 }
1257 bpf_jit_epilogue(jit);
1258
1259 jit->lit_start = jit->prg;
1260 jit->size = jit->lit;
1261 jit->size_prg = jit->prg;
1262 return 0;
1263}
1264
1265/*
1266 * Classic BPF function stub. BPF programs will be converted into
1267 * eBPF and then bpf_int_jit_compile() will be called.
1268 */
1269void bpf_jit_compile(struct bpf_prog *fp)
1270{
1271}
1272
1273/*
1274 * Compile eBPF program "fp"
1275 */
1276struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1277{
1278 struct bpf_prog *tmp, *orig_fp = fp;
1279 struct bpf_binary_header *header;
1280 bool tmp_blinded = false;
1281 struct bpf_jit jit;
1282 int pass;
1283
1284 if (!bpf_jit_enable)
1285 return orig_fp;
1286
1287 tmp = bpf_jit_blind_constants(fp);
1288 /*
1289 * If blinding was requested and we failed during blinding,
1290 * we must fall back to the interpreter.
1291 */
1292 if (IS_ERR(tmp))
1293 return orig_fp;
1294 if (tmp != fp) {
1295 tmp_blinded = true;
1296 fp = tmp;
1297 }
1298
1299 memset(&jit, 0, sizeof(jit));
1300 jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1301 if (jit.addrs == NULL) {
1302 fp = orig_fp;
1303 goto out;
1304 }
1305 /*
1306 * Three initial passes:
1307 * - 1/2: Determine clobbered registers
1308 * - 3: Calculate program size and addrs arrray
1309 */
1310 for (pass = 1; pass <= 3; pass++) {
1311 if (bpf_jit_prog(&jit, fp)) {
1312 fp = orig_fp;
1313 goto free_addrs;
1314 }
1315 }
1316 /*
1317 * Final pass: Allocate and generate program
1318 */
1319 if (jit.size >= BPF_SIZE_MAX) {
1320 fp = orig_fp;
1321 goto free_addrs;
1322 }
1323 header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1324 if (!header) {
1325 fp = orig_fp;
1326 goto free_addrs;
1327 }
1328 if (bpf_jit_prog(&jit, fp)) {
1329 fp = orig_fp;
1330 goto free_addrs;
1331 }
1332 if (bpf_jit_enable > 1) {
1333 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1334 if (jit.prg_buf)
1335 print_fn_code(jit.prg_buf, jit.size_prg);
1336 }
1337 if (jit.prg_buf) {
1338 set_memory_ro((unsigned long)header, header->pages);
1339 fp->bpf_func = (void *) jit.prg_buf;
1340 fp->jited = 1;
1341 }
1342free_addrs:
1343 kfree(jit.addrs);
1344out:
1345 if (tmp_blinded)
1346 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1347 tmp : orig_fp);
1348 return fp;
1349}
1350
1351/*
1352 * Free eBPF program
1353 */
1354void bpf_jit_free(struct bpf_prog *fp)
1355{
1356 unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1357 struct bpf_binary_header *header = (void *)addr;
1358
1359 if (!fp->jited)
1360 goto free_filter;
1361
1362 set_memory_rw(addr, header->pages);
1363 bpf_jit_binary_free(header);
1364
1365free_filter:
1366 bpf_prog_unlock_free(fp);
1367}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - PACK_STACK
11 * - 64BIT
12 *
13 * Copyright IBM Corp. 2012,2015
14 *
15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
17 */
18
19#define KMSG_COMPONENT "bpf_jit"
20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22#include <linux/netdevice.h>
23#include <linux/filter.h>
24#include <linux/init.h>
25#include <linux/bpf.h>
26#include <linux/mm.h>
27#include <linux/kernel.h>
28#include <asm/cacheflush.h>
29#include <asm/dis.h>
30#include <asm/facility.h>
31#include <asm/nospec-branch.h>
32#include <asm/set_memory.h>
33#include "bpf_jit.h"
34
35struct bpf_jit {
36 u32 seen; /* Flags to remember seen eBPF instructions */
37 u32 seen_reg[16]; /* Array to remember which registers are used */
38 u32 *addrs; /* Array with relative instruction addresses */
39 u8 *prg_buf; /* Start of program */
40 int size; /* Size of program and literal pool */
41 int size_prg; /* Size of program */
42 int prg; /* Current position in program */
43 int lit32_start; /* Start of 32-bit literal pool */
44 int lit32; /* Current position in 32-bit literal pool */
45 int lit64_start; /* Start of 64-bit literal pool */
46 int lit64; /* Current position in 64-bit literal pool */
47 int base_ip; /* Base address for literal pool */
48 int exit_ip; /* Address of exit */
49 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
50 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
51 int tail_call_start; /* Tail call start offset */
52 int excnt; /* Number of exception table entries */
53};
54
55#define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
56#define SEEN_LITERAL BIT(1) /* code uses literals */
57#define SEEN_FUNC BIT(2) /* calls C functions */
58#define SEEN_TAIL_CALL BIT(3) /* code uses tail calls */
59#define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
60
61/*
62 * s390 registers
63 */
64#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
65#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
66#define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
67#define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
68#define REG_0 REG_W0 /* Register 0 */
69#define REG_1 REG_W1 /* Register 1 */
70#define REG_2 BPF_REG_1 /* Register 2 */
71#define REG_14 BPF_REG_0 /* Register 14 */
72
73/*
74 * Mapping of BPF registers to s390 registers
75 */
76static const int reg2hex[] = {
77 /* Return code */
78 [BPF_REG_0] = 14,
79 /* Function parameters */
80 [BPF_REG_1] = 2,
81 [BPF_REG_2] = 3,
82 [BPF_REG_3] = 4,
83 [BPF_REG_4] = 5,
84 [BPF_REG_5] = 6,
85 /* Call saved registers */
86 [BPF_REG_6] = 7,
87 [BPF_REG_7] = 8,
88 [BPF_REG_8] = 9,
89 [BPF_REG_9] = 10,
90 /* BPF stack pointer */
91 [BPF_REG_FP] = 13,
92 /* Register for blinding */
93 [BPF_REG_AX] = 12,
94 /* Work registers for s390x backend */
95 [REG_W0] = 0,
96 [REG_W1] = 1,
97 [REG_L] = 11,
98 [REG_15] = 15,
99};
100
101static inline u32 reg(u32 dst_reg, u32 src_reg)
102{
103 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104}
105
106static inline u32 reg_high(u32 reg)
107{
108 return reg2hex[reg] << 4;
109}
110
111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112{
113 u32 r1 = reg2hex[b1];
114
115 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
116 jit->seen_reg[r1] = 1;
117}
118
119#define REG_SET_SEEN(b1) \
120({ \
121 reg_set_seen(jit, b1); \
122})
123
124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125
126/*
127 * EMIT macros for code generation
128 */
129
130#define _EMIT2(op) \
131({ \
132 if (jit->prg_buf) \
133 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
134 jit->prg += 2; \
135})
136
137#define EMIT2(op, b1, b2) \
138({ \
139 _EMIT2((op) | reg(b1, b2)); \
140 REG_SET_SEEN(b1); \
141 REG_SET_SEEN(b2); \
142})
143
144#define _EMIT4(op) \
145({ \
146 if (jit->prg_buf) \
147 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
148 jit->prg += 4; \
149})
150
151#define EMIT4(op, b1, b2) \
152({ \
153 _EMIT4((op) | reg(b1, b2)); \
154 REG_SET_SEEN(b1); \
155 REG_SET_SEEN(b2); \
156})
157
158#define EMIT4_RRF(op, b1, b2, b3) \
159({ \
160 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
161 REG_SET_SEEN(b1); \
162 REG_SET_SEEN(b2); \
163 REG_SET_SEEN(b3); \
164})
165
166#define _EMIT4_DISP(op, disp) \
167({ \
168 unsigned int __disp = (disp) & 0xfff; \
169 _EMIT4((op) | __disp); \
170})
171
172#define EMIT4_DISP(op, b1, b2, disp) \
173({ \
174 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
175 reg_high(b2) << 8, (disp)); \
176 REG_SET_SEEN(b1); \
177 REG_SET_SEEN(b2); \
178})
179
180#define EMIT4_IMM(op, b1, imm) \
181({ \
182 unsigned int __imm = (imm) & 0xffff; \
183 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
184 REG_SET_SEEN(b1); \
185})
186
187#define EMIT4_PCREL(op, pcrel) \
188({ \
189 long __pcrel = ((pcrel) >> 1) & 0xffff; \
190 _EMIT4((op) | __pcrel); \
191})
192
193#define EMIT4_PCREL_RIC(op, mask, target) \
194({ \
195 int __rel = ((target) - jit->prg) / 2; \
196 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
197})
198
199#define _EMIT6(op1, op2) \
200({ \
201 if (jit->prg_buf) { \
202 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
203 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
204 } \
205 jit->prg += 6; \
206})
207
208#define _EMIT6_DISP(op1, op2, disp) \
209({ \
210 unsigned int __disp = (disp) & 0xfff; \
211 _EMIT6((op1) | __disp, op2); \
212})
213
214#define _EMIT6_DISP_LH(op1, op2, disp) \
215({ \
216 u32 _disp = (u32) (disp); \
217 unsigned int __disp_h = _disp & 0xff000; \
218 unsigned int __disp_l = _disp & 0x00fff; \
219 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
220})
221
222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
223({ \
224 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
225 reg_high(b3) << 8, op2, disp); \
226 REG_SET_SEEN(b1); \
227 REG_SET_SEEN(b2); \
228 REG_SET_SEEN(b3); \
229})
230
231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
232({ \
233 unsigned int rel = (int)((target) - jit->prg) / 2; \
234 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
235 (op2) | (mask) << 12); \
236 REG_SET_SEEN(b1); \
237 REG_SET_SEEN(b2); \
238})
239
240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
241({ \
242 unsigned int rel = (int)((target) - jit->prg) / 2; \
243 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
244 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
245 REG_SET_SEEN(b1); \
246 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
247})
248
249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
250({ \
251 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
252 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
253 REG_SET_SEEN(b1); \
254 REG_SET_SEEN(b2); \
255})
256
257#define EMIT6_PCREL_RILB(op, b, target) \
258({ \
259 unsigned int rel = (int)((target) - jit->prg) / 2; \
260 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
261 REG_SET_SEEN(b); \
262})
263
264#define EMIT6_PCREL_RIL(op, target) \
265({ \
266 unsigned int rel = (int)((target) - jit->prg) / 2; \
267 _EMIT6((op) | rel >> 16, rel & 0xffff); \
268})
269
270#define EMIT6_PCREL_RILC(op, mask, target) \
271({ \
272 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
273})
274
275#define _EMIT6_IMM(op, imm) \
276({ \
277 unsigned int __imm = (imm); \
278 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
279})
280
281#define EMIT6_IMM(op, b1, imm) \
282({ \
283 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
284 REG_SET_SEEN(b1); \
285})
286
287#define _EMIT_CONST_U32(val) \
288({ \
289 unsigned int ret; \
290 ret = jit->lit32; \
291 if (jit->prg_buf) \
292 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
293 jit->lit32 += 4; \
294 ret; \
295})
296
297#define EMIT_CONST_U32(val) \
298({ \
299 jit->seen |= SEEN_LITERAL; \
300 _EMIT_CONST_U32(val) - jit->base_ip; \
301})
302
303#define _EMIT_CONST_U64(val) \
304({ \
305 unsigned int ret; \
306 ret = jit->lit64; \
307 if (jit->prg_buf) \
308 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
309 jit->lit64 += 8; \
310 ret; \
311})
312
313#define EMIT_CONST_U64(val) \
314({ \
315 jit->seen |= SEEN_LITERAL; \
316 _EMIT_CONST_U64(val) - jit->base_ip; \
317})
318
319#define EMIT_ZERO(b1) \
320({ \
321 if (!fp->aux->verifier_zext) { \
322 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
323 EMIT4(0xb9160000, b1, b1); \
324 REG_SET_SEEN(b1); \
325 } \
326})
327
328/*
329 * Return whether this is the first pass. The first pass is special, since we
330 * don't know any sizes yet, and thus must be conservative.
331 */
332static bool is_first_pass(struct bpf_jit *jit)
333{
334 return jit->size == 0;
335}
336
337/*
338 * Return whether this is the code generation pass. The code generation pass is
339 * special, since we should change as little as possible.
340 */
341static bool is_codegen_pass(struct bpf_jit *jit)
342{
343 return jit->prg_buf;
344}
345
346/*
347 * Return whether "rel" can be encoded as a short PC-relative offset
348 */
349static bool is_valid_rel(int rel)
350{
351 return rel >= -65536 && rel <= 65534;
352}
353
354/*
355 * Return whether "off" can be reached using a short PC-relative offset
356 */
357static bool can_use_rel(struct bpf_jit *jit, int off)
358{
359 return is_valid_rel(off - jit->prg);
360}
361
362/*
363 * Return whether given displacement can be encoded using
364 * Long-Displacement Facility
365 */
366static bool is_valid_ldisp(int disp)
367{
368 return disp >= -524288 && disp <= 524287;
369}
370
371/*
372 * Return whether the next 32-bit literal pool entry can be referenced using
373 * Long-Displacement Facility
374 */
375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
376{
377 return is_valid_ldisp(jit->lit32 - jit->base_ip);
378}
379
380/*
381 * Return whether the next 64-bit literal pool entry can be referenced using
382 * Long-Displacement Facility
383 */
384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
385{
386 return is_valid_ldisp(jit->lit64 - jit->base_ip);
387}
388
389/*
390 * Fill whole space with illegal instructions
391 */
392static void jit_fill_hole(void *area, unsigned int size)
393{
394 memset(area, 0, size);
395}
396
397/*
398 * Save registers from "rs" (register start) to "re" (register end) on stack
399 */
400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
401{
402 u32 off = STK_OFF_R6 + (rs - 6) * 8;
403
404 if (rs == re)
405 /* stg %rs,off(%r15) */
406 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
407 else
408 /* stmg %rs,%re,off(%r15) */
409 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
410}
411
412/*
413 * Restore registers from "rs" (register start) to "re" (register end) on stack
414 */
415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
416{
417 u32 off = STK_OFF_R6 + (rs - 6) * 8;
418
419 if (jit->seen & SEEN_STACK)
420 off += STK_OFF + stack_depth;
421
422 if (rs == re)
423 /* lg %rs,off(%r15) */
424 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
425 else
426 /* lmg %rs,%re,off(%r15) */
427 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
428}
429
430/*
431 * Return first seen register (from start)
432 */
433static int get_start(struct bpf_jit *jit, int start)
434{
435 int i;
436
437 for (i = start; i <= 15; i++) {
438 if (jit->seen_reg[i])
439 return i;
440 }
441 return 0;
442}
443
444/*
445 * Return last seen register (from start) (gap >= 2)
446 */
447static int get_end(struct bpf_jit *jit, int start)
448{
449 int i;
450
451 for (i = start; i < 15; i++) {
452 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
453 return i - 1;
454 }
455 return jit->seen_reg[15] ? 15 : 14;
456}
457
458#define REGS_SAVE 1
459#define REGS_RESTORE 0
460/*
461 * Save and restore clobbered registers (6-15) on stack.
462 * We save/restore registers in chunks with gap >= 2 registers.
463 */
464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
465{
466 const int last = 15, save_restore_size = 6;
467 int re = 6, rs;
468
469 if (is_first_pass(jit)) {
470 /*
471 * We don't know yet which registers are used. Reserve space
472 * conservatively.
473 */
474 jit->prg += (last - re + 1) * save_restore_size;
475 return;
476 }
477
478 do {
479 rs = get_start(jit, re);
480 if (!rs)
481 break;
482 re = get_end(jit, rs + 1);
483 if (op == REGS_SAVE)
484 save_regs(jit, rs, re);
485 else
486 restore_regs(jit, rs, re, stack_depth);
487 re++;
488 } while (re <= last);
489}
490
491static void bpf_skip(struct bpf_jit *jit, int size)
492{
493 if (size >= 6 && !is_valid_rel(size)) {
494 /* brcl 0xf,size */
495 EMIT6_PCREL_RIL(0xc0f4000000, size);
496 size -= 6;
497 } else if (size >= 4 && is_valid_rel(size)) {
498 /* brc 0xf,size */
499 EMIT4_PCREL(0xa7f40000, size);
500 size -= 4;
501 }
502 while (size >= 2) {
503 /* bcr 0,%0 */
504 _EMIT2(0x0700);
505 size -= 2;
506 }
507}
508
509/*
510 * Emit function prologue
511 *
512 * Save registers and create stack frame if necessary.
513 * See stack frame layout desription in "bpf_jit.h"!
514 */
515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
516{
517 if (jit->seen & SEEN_TAIL_CALL) {
518 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
519 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
520 } else {
521 /*
522 * There are no tail calls. Insert nops in order to have
523 * tail_call_start at a predictable offset.
524 */
525 bpf_skip(jit, 6);
526 }
527 /* Tail calls have to skip above initialization */
528 jit->tail_call_start = jit->prg;
529 /* Save registers */
530 save_restore_regs(jit, REGS_SAVE, stack_depth);
531 /* Setup literal pool */
532 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
533 if (!is_first_pass(jit) &&
534 is_valid_ldisp(jit->size - (jit->prg + 2))) {
535 /* basr %l,0 */
536 EMIT2(0x0d00, REG_L, REG_0);
537 jit->base_ip = jit->prg;
538 } else {
539 /* larl %l,lit32_start */
540 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
541 jit->base_ip = jit->lit32_start;
542 }
543 }
544 /* Setup stack and backchain */
545 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
546 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
547 /* lgr %w1,%r15 (backchain) */
548 EMIT4(0xb9040000, REG_W1, REG_15);
549 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
550 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
551 /* aghi %r15,-STK_OFF */
552 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
553 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
554 /* stg %w1,152(%r15) (backchain) */
555 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
556 REG_15, 152);
557 }
558}
559
560/*
561 * Function epilogue
562 */
563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
564{
565 jit->exit_ip = jit->prg;
566 /* Load exit code: lgr %r2,%b0 */
567 EMIT4(0xb9040000, REG_2, BPF_REG_0);
568 /* Restore registers */
569 save_restore_regs(jit, REGS_RESTORE, stack_depth);
570 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
571 jit->r14_thunk_ip = jit->prg;
572 /* Generate __s390_indirect_jump_r14 thunk */
573 if (test_facility(35)) {
574 /* exrl %r0,.+10 */
575 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
576 } else {
577 /* larl %r1,.+14 */
578 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
579 /* ex 0,0(%r1) */
580 EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
581 }
582 /* j . */
583 EMIT4_PCREL(0xa7f40000, 0);
584 }
585 /* br %r14 */
586 _EMIT2(0x07fe);
587
588 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
589 (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
590 jit->r1_thunk_ip = jit->prg;
591 /* Generate __s390_indirect_jump_r1 thunk */
592 if (test_facility(35)) {
593 /* exrl %r0,.+10 */
594 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
595 /* j . */
596 EMIT4_PCREL(0xa7f40000, 0);
597 /* br %r1 */
598 _EMIT2(0x07f1);
599 } else {
600 /* ex 0,S390_lowcore.br_r1_tampoline */
601 EMIT4_DISP(0x44000000, REG_0, REG_0,
602 offsetof(struct lowcore, br_r1_trampoline));
603 /* j . */
604 EMIT4_PCREL(0xa7f40000, 0);
605 }
606 }
607}
608
609static int get_probe_mem_regno(const u8 *insn)
610{
611 /*
612 * insn must point to llgc, llgh, llgf or lg, which have destination
613 * register at the same position.
614 */
615 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
616 return -1;
617 if (insn[5] != 0x90 && /* llgc */
618 insn[5] != 0x91 && /* llgh */
619 insn[5] != 0x16 && /* llgf */
620 insn[5] != 0x04) /* lg */
621 return -1;
622 return insn[1] >> 4;
623}
624
625static bool ex_handler_bpf(const struct exception_table_entry *x,
626 struct pt_regs *regs)
627{
628 int regno;
629 u8 *insn;
630
631 regs->psw.addr = extable_fixup(x);
632 insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
633 regno = get_probe_mem_regno(insn);
634 if (WARN_ON_ONCE(regno < 0))
635 /* JIT bug - unexpected instruction. */
636 return false;
637 regs->gprs[regno] = 0;
638 return true;
639}
640
641static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
642 int probe_prg, int nop_prg)
643{
644 struct exception_table_entry *ex;
645 s64 delta;
646 u8 *insn;
647 int prg;
648 int i;
649
650 if (!fp->aux->extable)
651 /* Do nothing during early JIT passes. */
652 return 0;
653 insn = jit->prg_buf + probe_prg;
654 if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
655 /* JIT bug - unexpected probe instruction. */
656 return -1;
657 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
658 /* JIT bug - gap between probe and nop instructions. */
659 return -1;
660 for (i = 0; i < 2; i++) {
661 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
662 /* Verifier bug - not enough entries. */
663 return -1;
664 ex = &fp->aux->extable[jit->excnt];
665 /* Add extable entries for probe and nop instructions. */
666 prg = i == 0 ? probe_prg : nop_prg;
667 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
668 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
669 /* JIT bug - code and extable must be close. */
670 return -1;
671 ex->insn = delta;
672 /*
673 * Always land on the nop. Note that extable infrastructure
674 * ignores fixup field, it is handled by ex_handler_bpf().
675 */
676 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
677 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
678 /* JIT bug - landing pad and extable must be close. */
679 return -1;
680 ex->fixup = delta;
681 ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
682 jit->excnt++;
683 }
684 return 0;
685}
686
687/*
688 * Compile one eBPF instruction into s390x code
689 *
690 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
691 * stack space for the large switch statement.
692 */
693static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
694 int i, bool extra_pass, u32 stack_depth)
695{
696 struct bpf_insn *insn = &fp->insnsi[i];
697 u32 dst_reg = insn->dst_reg;
698 u32 src_reg = insn->src_reg;
699 int last, insn_count = 1;
700 u32 *addrs = jit->addrs;
701 s32 imm = insn->imm;
702 s16 off = insn->off;
703 int probe_prg = -1;
704 unsigned int mask;
705 int nop_prg;
706 int err;
707
708 if (BPF_CLASS(insn->code) == BPF_LDX &&
709 BPF_MODE(insn->code) == BPF_PROBE_MEM)
710 probe_prg = jit->prg;
711
712 switch (insn->code) {
713 /*
714 * BPF_MOV
715 */
716 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
717 /* llgfr %dst,%src */
718 EMIT4(0xb9160000, dst_reg, src_reg);
719 if (insn_is_zext(&insn[1]))
720 insn_count = 2;
721 break;
722 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
723 /* lgr %dst,%src */
724 EMIT4(0xb9040000, dst_reg, src_reg);
725 break;
726 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
727 /* llilf %dst,imm */
728 EMIT6_IMM(0xc00f0000, dst_reg, imm);
729 if (insn_is_zext(&insn[1]))
730 insn_count = 2;
731 break;
732 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
733 /* lgfi %dst,imm */
734 EMIT6_IMM(0xc0010000, dst_reg, imm);
735 break;
736 /*
737 * BPF_LD 64
738 */
739 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
740 {
741 /* 16 byte instruction that uses two 'struct bpf_insn' */
742 u64 imm64;
743
744 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
745 /* lgrl %dst,imm */
746 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
747 insn_count = 2;
748 break;
749 }
750 /*
751 * BPF_ADD
752 */
753 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
754 /* ar %dst,%src */
755 EMIT2(0x1a00, dst_reg, src_reg);
756 EMIT_ZERO(dst_reg);
757 break;
758 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
759 /* agr %dst,%src */
760 EMIT4(0xb9080000, dst_reg, src_reg);
761 break;
762 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
763 if (imm != 0) {
764 /* alfi %dst,imm */
765 EMIT6_IMM(0xc20b0000, dst_reg, imm);
766 }
767 EMIT_ZERO(dst_reg);
768 break;
769 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
770 if (!imm)
771 break;
772 /* agfi %dst,imm */
773 EMIT6_IMM(0xc2080000, dst_reg, imm);
774 break;
775 /*
776 * BPF_SUB
777 */
778 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
779 /* sr %dst,%src */
780 EMIT2(0x1b00, dst_reg, src_reg);
781 EMIT_ZERO(dst_reg);
782 break;
783 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
784 /* sgr %dst,%src */
785 EMIT4(0xb9090000, dst_reg, src_reg);
786 break;
787 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
788 if (imm != 0) {
789 /* alfi %dst,-imm */
790 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
791 }
792 EMIT_ZERO(dst_reg);
793 break;
794 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
795 if (!imm)
796 break;
797 if (imm == -0x80000000) {
798 /* algfi %dst,0x80000000 */
799 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
800 } else {
801 /* agfi %dst,-imm */
802 EMIT6_IMM(0xc2080000, dst_reg, -imm);
803 }
804 break;
805 /*
806 * BPF_MUL
807 */
808 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
809 /* msr %dst,%src */
810 EMIT4(0xb2520000, dst_reg, src_reg);
811 EMIT_ZERO(dst_reg);
812 break;
813 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
814 /* msgr %dst,%src */
815 EMIT4(0xb90c0000, dst_reg, src_reg);
816 break;
817 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
818 if (imm != 1) {
819 /* msfi %r5,imm */
820 EMIT6_IMM(0xc2010000, dst_reg, imm);
821 }
822 EMIT_ZERO(dst_reg);
823 break;
824 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
825 if (imm == 1)
826 break;
827 /* msgfi %dst,imm */
828 EMIT6_IMM(0xc2000000, dst_reg, imm);
829 break;
830 /*
831 * BPF_DIV / BPF_MOD
832 */
833 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
834 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
835 {
836 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
837
838 /* lhi %w0,0 */
839 EMIT4_IMM(0xa7080000, REG_W0, 0);
840 /* lr %w1,%dst */
841 EMIT2(0x1800, REG_W1, dst_reg);
842 /* dlr %w0,%src */
843 EMIT4(0xb9970000, REG_W0, src_reg);
844 /* llgfr %dst,%rc */
845 EMIT4(0xb9160000, dst_reg, rc_reg);
846 if (insn_is_zext(&insn[1]))
847 insn_count = 2;
848 break;
849 }
850 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
851 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
852 {
853 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
854
855 /* lghi %w0,0 */
856 EMIT4_IMM(0xa7090000, REG_W0, 0);
857 /* lgr %w1,%dst */
858 EMIT4(0xb9040000, REG_W1, dst_reg);
859 /* dlgr %w0,%dst */
860 EMIT4(0xb9870000, REG_W0, src_reg);
861 /* lgr %dst,%rc */
862 EMIT4(0xb9040000, dst_reg, rc_reg);
863 break;
864 }
865 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
866 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
867 {
868 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
869
870 if (imm == 1) {
871 if (BPF_OP(insn->code) == BPF_MOD)
872 /* lhgi %dst,0 */
873 EMIT4_IMM(0xa7090000, dst_reg, 0);
874 else
875 EMIT_ZERO(dst_reg);
876 break;
877 }
878 /* lhi %w0,0 */
879 EMIT4_IMM(0xa7080000, REG_W0, 0);
880 /* lr %w1,%dst */
881 EMIT2(0x1800, REG_W1, dst_reg);
882 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
883 /* dl %w0,<d(imm)>(%l) */
884 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
885 EMIT_CONST_U32(imm));
886 } else {
887 /* lgfrl %dst,imm */
888 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
889 _EMIT_CONST_U32(imm));
890 jit->seen |= SEEN_LITERAL;
891 /* dlr %w0,%dst */
892 EMIT4(0xb9970000, REG_W0, dst_reg);
893 }
894 /* llgfr %dst,%rc */
895 EMIT4(0xb9160000, dst_reg, rc_reg);
896 if (insn_is_zext(&insn[1]))
897 insn_count = 2;
898 break;
899 }
900 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
901 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
902 {
903 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
904
905 if (imm == 1) {
906 if (BPF_OP(insn->code) == BPF_MOD)
907 /* lhgi %dst,0 */
908 EMIT4_IMM(0xa7090000, dst_reg, 0);
909 break;
910 }
911 /* lghi %w0,0 */
912 EMIT4_IMM(0xa7090000, REG_W0, 0);
913 /* lgr %w1,%dst */
914 EMIT4(0xb9040000, REG_W1, dst_reg);
915 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
916 /* dlg %w0,<d(imm)>(%l) */
917 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
918 EMIT_CONST_U64(imm));
919 } else {
920 /* lgrl %dst,imm */
921 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
922 _EMIT_CONST_U64(imm));
923 jit->seen |= SEEN_LITERAL;
924 /* dlgr %w0,%dst */
925 EMIT4(0xb9870000, REG_W0, dst_reg);
926 }
927 /* lgr %dst,%rc */
928 EMIT4(0xb9040000, dst_reg, rc_reg);
929 break;
930 }
931 /*
932 * BPF_AND
933 */
934 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
935 /* nr %dst,%src */
936 EMIT2(0x1400, dst_reg, src_reg);
937 EMIT_ZERO(dst_reg);
938 break;
939 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
940 /* ngr %dst,%src */
941 EMIT4(0xb9800000, dst_reg, src_reg);
942 break;
943 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
944 /* nilf %dst,imm */
945 EMIT6_IMM(0xc00b0000, dst_reg, imm);
946 EMIT_ZERO(dst_reg);
947 break;
948 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
949 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
950 /* ng %dst,<d(imm)>(%l) */
951 EMIT6_DISP_LH(0xe3000000, 0x0080,
952 dst_reg, REG_0, REG_L,
953 EMIT_CONST_U64(imm));
954 } else {
955 /* lgrl %w0,imm */
956 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
957 _EMIT_CONST_U64(imm));
958 jit->seen |= SEEN_LITERAL;
959 /* ngr %dst,%w0 */
960 EMIT4(0xb9800000, dst_reg, REG_W0);
961 }
962 break;
963 /*
964 * BPF_OR
965 */
966 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
967 /* or %dst,%src */
968 EMIT2(0x1600, dst_reg, src_reg);
969 EMIT_ZERO(dst_reg);
970 break;
971 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
972 /* ogr %dst,%src */
973 EMIT4(0xb9810000, dst_reg, src_reg);
974 break;
975 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
976 /* oilf %dst,imm */
977 EMIT6_IMM(0xc00d0000, dst_reg, imm);
978 EMIT_ZERO(dst_reg);
979 break;
980 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
981 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
982 /* og %dst,<d(imm)>(%l) */
983 EMIT6_DISP_LH(0xe3000000, 0x0081,
984 dst_reg, REG_0, REG_L,
985 EMIT_CONST_U64(imm));
986 } else {
987 /* lgrl %w0,imm */
988 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
989 _EMIT_CONST_U64(imm));
990 jit->seen |= SEEN_LITERAL;
991 /* ogr %dst,%w0 */
992 EMIT4(0xb9810000, dst_reg, REG_W0);
993 }
994 break;
995 /*
996 * BPF_XOR
997 */
998 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
999 /* xr %dst,%src */
1000 EMIT2(0x1700, dst_reg, src_reg);
1001 EMIT_ZERO(dst_reg);
1002 break;
1003 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1004 /* xgr %dst,%src */
1005 EMIT4(0xb9820000, dst_reg, src_reg);
1006 break;
1007 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1008 if (imm != 0) {
1009 /* xilf %dst,imm */
1010 EMIT6_IMM(0xc0070000, dst_reg, imm);
1011 }
1012 EMIT_ZERO(dst_reg);
1013 break;
1014 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1015 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1016 /* xg %dst,<d(imm)>(%l) */
1017 EMIT6_DISP_LH(0xe3000000, 0x0082,
1018 dst_reg, REG_0, REG_L,
1019 EMIT_CONST_U64(imm));
1020 } else {
1021 /* lgrl %w0,imm */
1022 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1023 _EMIT_CONST_U64(imm));
1024 jit->seen |= SEEN_LITERAL;
1025 /* xgr %dst,%w0 */
1026 EMIT4(0xb9820000, dst_reg, REG_W0);
1027 }
1028 break;
1029 /*
1030 * BPF_LSH
1031 */
1032 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1033 /* sll %dst,0(%src) */
1034 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1035 EMIT_ZERO(dst_reg);
1036 break;
1037 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1038 /* sllg %dst,%dst,0(%src) */
1039 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1040 break;
1041 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1042 if (imm != 0) {
1043 /* sll %dst,imm(%r0) */
1044 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1045 }
1046 EMIT_ZERO(dst_reg);
1047 break;
1048 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1049 if (imm == 0)
1050 break;
1051 /* sllg %dst,%dst,imm(%r0) */
1052 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1053 break;
1054 /*
1055 * BPF_RSH
1056 */
1057 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1058 /* srl %dst,0(%src) */
1059 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1060 EMIT_ZERO(dst_reg);
1061 break;
1062 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1063 /* srlg %dst,%dst,0(%src) */
1064 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1065 break;
1066 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1067 if (imm != 0) {
1068 /* srl %dst,imm(%r0) */
1069 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1070 }
1071 EMIT_ZERO(dst_reg);
1072 break;
1073 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1074 if (imm == 0)
1075 break;
1076 /* srlg %dst,%dst,imm(%r0) */
1077 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1078 break;
1079 /*
1080 * BPF_ARSH
1081 */
1082 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1083 /* sra %dst,%dst,0(%src) */
1084 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1085 EMIT_ZERO(dst_reg);
1086 break;
1087 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1088 /* srag %dst,%dst,0(%src) */
1089 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1090 break;
1091 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1092 if (imm != 0) {
1093 /* sra %dst,imm(%r0) */
1094 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1095 }
1096 EMIT_ZERO(dst_reg);
1097 break;
1098 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1099 if (imm == 0)
1100 break;
1101 /* srag %dst,%dst,imm(%r0) */
1102 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1103 break;
1104 /*
1105 * BPF_NEG
1106 */
1107 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1108 /* lcr %dst,%dst */
1109 EMIT2(0x1300, dst_reg, dst_reg);
1110 EMIT_ZERO(dst_reg);
1111 break;
1112 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1113 /* lcgr %dst,%dst */
1114 EMIT4(0xb9030000, dst_reg, dst_reg);
1115 break;
1116 /*
1117 * BPF_FROM_BE/LE
1118 */
1119 case BPF_ALU | BPF_END | BPF_FROM_BE:
1120 /* s390 is big endian, therefore only clear high order bytes */
1121 switch (imm) {
1122 case 16: /* dst = (u16) cpu_to_be16(dst) */
1123 /* llghr %dst,%dst */
1124 EMIT4(0xb9850000, dst_reg, dst_reg);
1125 if (insn_is_zext(&insn[1]))
1126 insn_count = 2;
1127 break;
1128 case 32: /* dst = (u32) cpu_to_be32(dst) */
1129 if (!fp->aux->verifier_zext)
1130 /* llgfr %dst,%dst */
1131 EMIT4(0xb9160000, dst_reg, dst_reg);
1132 break;
1133 case 64: /* dst = (u64) cpu_to_be64(dst) */
1134 break;
1135 }
1136 break;
1137 case BPF_ALU | BPF_END | BPF_FROM_LE:
1138 switch (imm) {
1139 case 16: /* dst = (u16) cpu_to_le16(dst) */
1140 /* lrvr %dst,%dst */
1141 EMIT4(0xb91f0000, dst_reg, dst_reg);
1142 /* srl %dst,16(%r0) */
1143 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1144 /* llghr %dst,%dst */
1145 EMIT4(0xb9850000, dst_reg, dst_reg);
1146 if (insn_is_zext(&insn[1]))
1147 insn_count = 2;
1148 break;
1149 case 32: /* dst = (u32) cpu_to_le32(dst) */
1150 /* lrvr %dst,%dst */
1151 EMIT4(0xb91f0000, dst_reg, dst_reg);
1152 if (!fp->aux->verifier_zext)
1153 /* llgfr %dst,%dst */
1154 EMIT4(0xb9160000, dst_reg, dst_reg);
1155 break;
1156 case 64: /* dst = (u64) cpu_to_le64(dst) */
1157 /* lrvgr %dst,%dst */
1158 EMIT4(0xb90f0000, dst_reg, dst_reg);
1159 break;
1160 }
1161 break;
1162 /*
1163 * BPF_NOSPEC (speculation barrier)
1164 */
1165 case BPF_ST | BPF_NOSPEC:
1166 break;
1167 /*
1168 * BPF_ST(X)
1169 */
1170 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1171 /* stcy %src,off(%dst) */
1172 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1173 jit->seen |= SEEN_MEM;
1174 break;
1175 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1176 /* sthy %src,off(%dst) */
1177 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1178 jit->seen |= SEEN_MEM;
1179 break;
1180 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1181 /* sty %src,off(%dst) */
1182 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1183 jit->seen |= SEEN_MEM;
1184 break;
1185 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1186 /* stg %src,off(%dst) */
1187 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1188 jit->seen |= SEEN_MEM;
1189 break;
1190 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1191 /* lhi %w0,imm */
1192 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1193 /* stcy %w0,off(dst) */
1194 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1195 jit->seen |= SEEN_MEM;
1196 break;
1197 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1198 /* lhi %w0,imm */
1199 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1200 /* sthy %w0,off(dst) */
1201 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1202 jit->seen |= SEEN_MEM;
1203 break;
1204 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1205 /* llilf %w0,imm */
1206 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1207 /* sty %w0,off(%dst) */
1208 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1209 jit->seen |= SEEN_MEM;
1210 break;
1211 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1212 /* lgfi %w0,imm */
1213 EMIT6_IMM(0xc0010000, REG_W0, imm);
1214 /* stg %w0,off(%dst) */
1215 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1216 jit->seen |= SEEN_MEM;
1217 break;
1218 /*
1219 * BPF_ATOMIC
1220 */
1221 case BPF_STX | BPF_ATOMIC | BPF_DW:
1222 case BPF_STX | BPF_ATOMIC | BPF_W:
1223 {
1224 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1225
1226 switch (insn->imm) {
1227/* {op32|op64} {%w0|%src},%src,off(%dst) */
1228#define EMIT_ATOMIC(op32, op64) do { \
1229 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1230 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1231 src_reg, dst_reg, off); \
1232 if (is32 && (insn->imm & BPF_FETCH)) \
1233 EMIT_ZERO(src_reg); \
1234} while (0)
1235 case BPF_ADD:
1236 case BPF_ADD | BPF_FETCH:
1237 /* {laal|laalg} */
1238 EMIT_ATOMIC(0x00fa, 0x00ea);
1239 break;
1240 case BPF_AND:
1241 case BPF_AND | BPF_FETCH:
1242 /* {lan|lang} */
1243 EMIT_ATOMIC(0x00f4, 0x00e4);
1244 break;
1245 case BPF_OR:
1246 case BPF_OR | BPF_FETCH:
1247 /* {lao|laog} */
1248 EMIT_ATOMIC(0x00f6, 0x00e6);
1249 break;
1250 case BPF_XOR:
1251 case BPF_XOR | BPF_FETCH:
1252 /* {lax|laxg} */
1253 EMIT_ATOMIC(0x00f7, 0x00e7);
1254 break;
1255#undef EMIT_ATOMIC
1256 case BPF_XCHG:
1257 /* {ly|lg} %w0,off(%dst) */
1258 EMIT6_DISP_LH(0xe3000000,
1259 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1260 dst_reg, off);
1261 /* 0: {csy|csg} %w0,%src,off(%dst) */
1262 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1263 REG_W0, src_reg, dst_reg, off);
1264 /* brc 4,0b */
1265 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1266 /* {llgfr|lgr} %src,%w0 */
1267 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1268 if (is32 && insn_is_zext(&insn[1]))
1269 insn_count = 2;
1270 break;
1271 case BPF_CMPXCHG:
1272 /* 0: {csy|csg} %b0,%src,off(%dst) */
1273 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1274 BPF_REG_0, src_reg, dst_reg, off);
1275 break;
1276 default:
1277 pr_err("Unknown atomic operation %02x\n", insn->imm);
1278 return -1;
1279 }
1280
1281 jit->seen |= SEEN_MEM;
1282 break;
1283 }
1284 /*
1285 * BPF_LDX
1286 */
1287 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1288 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1289 /* llgc %dst,0(off,%src) */
1290 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1291 jit->seen |= SEEN_MEM;
1292 if (insn_is_zext(&insn[1]))
1293 insn_count = 2;
1294 break;
1295 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1296 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1297 /* llgh %dst,0(off,%src) */
1298 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1299 jit->seen |= SEEN_MEM;
1300 if (insn_is_zext(&insn[1]))
1301 insn_count = 2;
1302 break;
1303 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1304 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1305 /* llgf %dst,off(%src) */
1306 jit->seen |= SEEN_MEM;
1307 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1308 if (insn_is_zext(&insn[1]))
1309 insn_count = 2;
1310 break;
1311 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1312 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1313 /* lg %dst,0(off,%src) */
1314 jit->seen |= SEEN_MEM;
1315 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1316 break;
1317 /*
1318 * BPF_JMP / CALL
1319 */
1320 case BPF_JMP | BPF_CALL:
1321 {
1322 u64 func;
1323 bool func_addr_fixed;
1324 int ret;
1325
1326 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1327 &func, &func_addr_fixed);
1328 if (ret < 0)
1329 return -1;
1330
1331 REG_SET_SEEN(BPF_REG_5);
1332 jit->seen |= SEEN_FUNC;
1333 /* lgrl %w1,func */
1334 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1335 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1336 /* brasl %r14,__s390_indirect_jump_r1 */
1337 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1338 } else {
1339 /* basr %r14,%w1 */
1340 EMIT2(0x0d00, REG_14, REG_W1);
1341 }
1342 /* lgr %b0,%r2: load return value into %b0 */
1343 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1344 break;
1345 }
1346 case BPF_JMP | BPF_TAIL_CALL: {
1347 int patch_1_clrj, patch_2_clij, patch_3_brc;
1348
1349 /*
1350 * Implicit input:
1351 * B1: pointer to ctx
1352 * B2: pointer to bpf_array
1353 * B3: index in bpf_array
1354 */
1355 jit->seen |= SEEN_TAIL_CALL;
1356
1357 /*
1358 * if (index >= array->map.max_entries)
1359 * goto out;
1360 */
1361
1362 /* llgf %w1,map.max_entries(%b2) */
1363 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1364 offsetof(struct bpf_array, map.max_entries));
1365 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1366 /* clrj %b3,%w1,0xa,out */
1367 patch_1_clrj = jit->prg;
1368 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1369 jit->prg);
1370
1371 /*
1372 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1373 * goto out;
1374 */
1375
1376 if (jit->seen & SEEN_STACK)
1377 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1378 else
1379 off = STK_OFF_TCCNT;
1380 /* lhi %w0,1 */
1381 EMIT4_IMM(0xa7080000, REG_W0, 1);
1382 /* laal %w1,%w0,off(%r15) */
1383 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1384 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */
1385 patch_2_clij = jit->prg;
1386 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT,
1387 2, jit->prg);
1388
1389 /*
1390 * prog = array->ptrs[index];
1391 * if (prog == NULL)
1392 * goto out;
1393 */
1394
1395 /* llgfr %r1,%b3: %r1 = (u32) index */
1396 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1397 /* sllg %r1,%r1,3: %r1 *= 8 */
1398 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1399 /* ltg %r1,prog(%b2,%r1) */
1400 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1401 REG_1, offsetof(struct bpf_array, ptrs));
1402 /* brc 0x8,out */
1403 patch_3_brc = jit->prg;
1404 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1405
1406 /*
1407 * Restore registers before calling function
1408 */
1409 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1410
1411 /*
1412 * goto *(prog->bpf_func + tail_call_start);
1413 */
1414
1415 /* lg %r1,bpf_func(%r1) */
1416 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1417 offsetof(struct bpf_prog, bpf_func));
1418 /* bc 0xf,tail_call_start(%r1) */
1419 _EMIT4(0x47f01000 + jit->tail_call_start);
1420 /* out: */
1421 if (jit->prg_buf) {
1422 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1423 (jit->prg - patch_1_clrj) >> 1;
1424 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1425 (jit->prg - patch_2_clij) >> 1;
1426 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1427 (jit->prg - patch_3_brc) >> 1;
1428 }
1429 break;
1430 }
1431 case BPF_JMP | BPF_EXIT: /* return b0 */
1432 last = (i == fp->len - 1) ? 1 : 0;
1433 if (last)
1434 break;
1435 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1436 /* brc 0xf, <exit> */
1437 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1438 else
1439 /* brcl 0xf, <exit> */
1440 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1441 break;
1442 /*
1443 * Branch relative (number of skipped instructions) to offset on
1444 * condition.
1445 *
1446 * Condition code to mask mapping:
1447 *
1448 * CC | Description | Mask
1449 * ------------------------------
1450 * 0 | Operands equal | 8
1451 * 1 | First operand low | 4
1452 * 2 | First operand high | 2
1453 * 3 | Unused | 1
1454 *
1455 * For s390x relative branches: ip = ip + off_bytes
1456 * For BPF relative branches: insn = insn + off_insns + 1
1457 *
1458 * For example for s390x with offset 0 we jump to the branch
1459 * instruction itself (loop) and for BPF with offset 0 we
1460 * branch to the instruction behind the branch.
1461 */
1462 case BPF_JMP | BPF_JA: /* if (true) */
1463 mask = 0xf000; /* j */
1464 goto branch_oc;
1465 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1466 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1467 mask = 0x2000; /* jh */
1468 goto branch_ks;
1469 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1470 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1471 mask = 0x4000; /* jl */
1472 goto branch_ks;
1473 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1474 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1475 mask = 0xa000; /* jhe */
1476 goto branch_ks;
1477 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1478 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1479 mask = 0xc000; /* jle */
1480 goto branch_ks;
1481 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1482 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1483 mask = 0x2000; /* jh */
1484 goto branch_ku;
1485 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1486 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1487 mask = 0x4000; /* jl */
1488 goto branch_ku;
1489 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1490 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1491 mask = 0xa000; /* jhe */
1492 goto branch_ku;
1493 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1494 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1495 mask = 0xc000; /* jle */
1496 goto branch_ku;
1497 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1498 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1499 mask = 0x7000; /* jne */
1500 goto branch_ku;
1501 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1502 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1503 mask = 0x8000; /* je */
1504 goto branch_ku;
1505 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1506 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1507 mask = 0x7000; /* jnz */
1508 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1509 /* llilf %w1,imm (load zero extend imm) */
1510 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1511 /* nr %w1,%dst */
1512 EMIT2(0x1400, REG_W1, dst_reg);
1513 } else {
1514 /* lgfi %w1,imm (load sign extend imm) */
1515 EMIT6_IMM(0xc0010000, REG_W1, imm);
1516 /* ngr %w1,%dst */
1517 EMIT4(0xb9800000, REG_W1, dst_reg);
1518 }
1519 goto branch_oc;
1520
1521 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1522 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1523 mask = 0x2000; /* jh */
1524 goto branch_xs;
1525 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1526 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1527 mask = 0x4000; /* jl */
1528 goto branch_xs;
1529 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1530 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1531 mask = 0xa000; /* jhe */
1532 goto branch_xs;
1533 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1534 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1535 mask = 0xc000; /* jle */
1536 goto branch_xs;
1537 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1538 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1539 mask = 0x2000; /* jh */
1540 goto branch_xu;
1541 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1542 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1543 mask = 0x4000; /* jl */
1544 goto branch_xu;
1545 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1546 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1547 mask = 0xa000; /* jhe */
1548 goto branch_xu;
1549 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1550 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1551 mask = 0xc000; /* jle */
1552 goto branch_xu;
1553 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1554 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1555 mask = 0x7000; /* jne */
1556 goto branch_xu;
1557 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1558 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1559 mask = 0x8000; /* je */
1560 goto branch_xu;
1561 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1562 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1563 {
1564 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1565
1566 mask = 0x7000; /* jnz */
1567 /* nrk or ngrk %w1,%dst,%src */
1568 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1569 REG_W1, dst_reg, src_reg);
1570 goto branch_oc;
1571branch_ks:
1572 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1573 /* cfi or cgfi %dst,imm */
1574 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1575 dst_reg, imm);
1576 if (!is_first_pass(jit) &&
1577 can_use_rel(jit, addrs[i + off + 1])) {
1578 /* brc mask,off */
1579 EMIT4_PCREL_RIC(0xa7040000,
1580 mask >> 12, addrs[i + off + 1]);
1581 } else {
1582 /* brcl mask,off */
1583 EMIT6_PCREL_RILC(0xc0040000,
1584 mask >> 12, addrs[i + off + 1]);
1585 }
1586 break;
1587branch_ku:
1588 /* lgfi %w1,imm (load sign extend imm) */
1589 src_reg = REG_1;
1590 EMIT6_IMM(0xc0010000, src_reg, imm);
1591 goto branch_xu;
1592branch_xs:
1593 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1594 if (!is_first_pass(jit) &&
1595 can_use_rel(jit, addrs[i + off + 1])) {
1596 /* crj or cgrj %dst,%src,mask,off */
1597 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1598 dst_reg, src_reg, i, off, mask);
1599 } else {
1600 /* cr or cgr %dst,%src */
1601 if (is_jmp32)
1602 EMIT2(0x1900, dst_reg, src_reg);
1603 else
1604 EMIT4(0xb9200000, dst_reg, src_reg);
1605 /* brcl mask,off */
1606 EMIT6_PCREL_RILC(0xc0040000,
1607 mask >> 12, addrs[i + off + 1]);
1608 }
1609 break;
1610branch_xu:
1611 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1612 if (!is_first_pass(jit) &&
1613 can_use_rel(jit, addrs[i + off + 1])) {
1614 /* clrj or clgrj %dst,%src,mask,off */
1615 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1616 dst_reg, src_reg, i, off, mask);
1617 } else {
1618 /* clr or clgr %dst,%src */
1619 if (is_jmp32)
1620 EMIT2(0x1500, dst_reg, src_reg);
1621 else
1622 EMIT4(0xb9210000, dst_reg, src_reg);
1623 /* brcl mask,off */
1624 EMIT6_PCREL_RILC(0xc0040000,
1625 mask >> 12, addrs[i + off + 1]);
1626 }
1627 break;
1628branch_oc:
1629 if (!is_first_pass(jit) &&
1630 can_use_rel(jit, addrs[i + off + 1])) {
1631 /* brc mask,off */
1632 EMIT4_PCREL_RIC(0xa7040000,
1633 mask >> 12, addrs[i + off + 1]);
1634 } else {
1635 /* brcl mask,off */
1636 EMIT6_PCREL_RILC(0xc0040000,
1637 mask >> 12, addrs[i + off + 1]);
1638 }
1639 break;
1640 }
1641 default: /* too complex, give up */
1642 pr_err("Unknown opcode %02x\n", insn->code);
1643 return -1;
1644 }
1645
1646 if (probe_prg != -1) {
1647 /*
1648 * Handlers of certain exceptions leave psw.addr pointing to
1649 * the instruction directly after the failing one. Therefore,
1650 * create two exception table entries and also add a nop in
1651 * case two probing instructions come directly after each
1652 * other.
1653 */
1654 nop_prg = jit->prg;
1655 /* bcr 0,%0 */
1656 _EMIT2(0x0700);
1657 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1658 if (err < 0)
1659 return err;
1660 }
1661
1662 return insn_count;
1663}
1664
1665/*
1666 * Return whether new i-th instruction address does not violate any invariant
1667 */
1668static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1669{
1670 /* On the first pass anything goes */
1671 if (is_first_pass(jit))
1672 return true;
1673
1674 /* The codegen pass must not change anything */
1675 if (is_codegen_pass(jit))
1676 return jit->addrs[i] == jit->prg;
1677
1678 /* Passes in between must not increase code size */
1679 return jit->addrs[i] >= jit->prg;
1680}
1681
1682/*
1683 * Update the address of i-th instruction
1684 */
1685static int bpf_set_addr(struct bpf_jit *jit, int i)
1686{
1687 int delta;
1688
1689 if (is_codegen_pass(jit)) {
1690 delta = jit->prg - jit->addrs[i];
1691 if (delta < 0)
1692 bpf_skip(jit, -delta);
1693 }
1694 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1695 return -1;
1696 jit->addrs[i] = jit->prg;
1697 return 0;
1698}
1699
1700/*
1701 * Compile eBPF program into s390x code
1702 */
1703static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1704 bool extra_pass, u32 stack_depth)
1705{
1706 int i, insn_count, lit32_size, lit64_size;
1707
1708 jit->lit32 = jit->lit32_start;
1709 jit->lit64 = jit->lit64_start;
1710 jit->prg = 0;
1711 jit->excnt = 0;
1712
1713 bpf_jit_prologue(jit, stack_depth);
1714 if (bpf_set_addr(jit, 0) < 0)
1715 return -1;
1716 for (i = 0; i < fp->len; i += insn_count) {
1717 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1718 if (insn_count < 0)
1719 return -1;
1720 /* Next instruction address */
1721 if (bpf_set_addr(jit, i + insn_count) < 0)
1722 return -1;
1723 }
1724 bpf_jit_epilogue(jit, stack_depth);
1725
1726 lit32_size = jit->lit32 - jit->lit32_start;
1727 lit64_size = jit->lit64 - jit->lit64_start;
1728 jit->lit32_start = jit->prg;
1729 if (lit32_size)
1730 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1731 jit->lit64_start = jit->lit32_start + lit32_size;
1732 if (lit64_size)
1733 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1734 jit->size = jit->lit64_start + lit64_size;
1735 jit->size_prg = jit->prg;
1736
1737 if (WARN_ON_ONCE(fp->aux->extable &&
1738 jit->excnt != fp->aux->num_exentries))
1739 /* Verifier bug - too many entries. */
1740 return -1;
1741
1742 return 0;
1743}
1744
1745bool bpf_jit_needs_zext(void)
1746{
1747 return true;
1748}
1749
1750struct s390_jit_data {
1751 struct bpf_binary_header *header;
1752 struct bpf_jit ctx;
1753 int pass;
1754};
1755
1756static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1757 struct bpf_prog *fp)
1758{
1759 struct bpf_binary_header *header;
1760 u32 extable_size;
1761 u32 code_size;
1762
1763 /* We need two entries per insn. */
1764 fp->aux->num_exentries *= 2;
1765
1766 code_size = roundup(jit->size,
1767 __alignof__(struct exception_table_entry));
1768 extable_size = fp->aux->num_exentries *
1769 sizeof(struct exception_table_entry);
1770 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1771 8, jit_fill_hole);
1772 if (!header)
1773 return NULL;
1774 fp->aux->extable = (struct exception_table_entry *)
1775 (jit->prg_buf + code_size);
1776 return header;
1777}
1778
1779/*
1780 * Compile eBPF program "fp"
1781 */
1782struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1783{
1784 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1785 struct bpf_prog *tmp, *orig_fp = fp;
1786 struct bpf_binary_header *header;
1787 struct s390_jit_data *jit_data;
1788 bool tmp_blinded = false;
1789 bool extra_pass = false;
1790 struct bpf_jit jit;
1791 int pass;
1792
1793 if (!fp->jit_requested)
1794 return orig_fp;
1795
1796 tmp = bpf_jit_blind_constants(fp);
1797 /*
1798 * If blinding was requested and we failed during blinding,
1799 * we must fall back to the interpreter.
1800 */
1801 if (IS_ERR(tmp))
1802 return orig_fp;
1803 if (tmp != fp) {
1804 tmp_blinded = true;
1805 fp = tmp;
1806 }
1807
1808 jit_data = fp->aux->jit_data;
1809 if (!jit_data) {
1810 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1811 if (!jit_data) {
1812 fp = orig_fp;
1813 goto out;
1814 }
1815 fp->aux->jit_data = jit_data;
1816 }
1817 if (jit_data->ctx.addrs) {
1818 jit = jit_data->ctx;
1819 header = jit_data->header;
1820 extra_pass = true;
1821 pass = jit_data->pass + 1;
1822 goto skip_init_ctx;
1823 }
1824
1825 memset(&jit, 0, sizeof(jit));
1826 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1827 if (jit.addrs == NULL) {
1828 fp = orig_fp;
1829 goto free_addrs;
1830 }
1831 /*
1832 * Three initial passes:
1833 * - 1/2: Determine clobbered registers
1834 * - 3: Calculate program size and addrs arrray
1835 */
1836 for (pass = 1; pass <= 3; pass++) {
1837 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1838 fp = orig_fp;
1839 goto free_addrs;
1840 }
1841 }
1842 /*
1843 * Final pass: Allocate and generate program
1844 */
1845 header = bpf_jit_alloc(&jit, fp);
1846 if (!header) {
1847 fp = orig_fp;
1848 goto free_addrs;
1849 }
1850skip_init_ctx:
1851 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1852 bpf_jit_binary_free(header);
1853 fp = orig_fp;
1854 goto free_addrs;
1855 }
1856 if (bpf_jit_enable > 1) {
1857 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1858 print_fn_code(jit.prg_buf, jit.size_prg);
1859 }
1860 if (!fp->is_func || extra_pass) {
1861 bpf_jit_binary_lock_ro(header);
1862 } else {
1863 jit_data->header = header;
1864 jit_data->ctx = jit;
1865 jit_data->pass = pass;
1866 }
1867 fp->bpf_func = (void *) jit.prg_buf;
1868 fp->jited = 1;
1869 fp->jited_len = jit.size;
1870
1871 if (!fp->is_func || extra_pass) {
1872 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1873free_addrs:
1874 kvfree(jit.addrs);
1875 kfree(jit_data);
1876 fp->aux->jit_data = NULL;
1877 }
1878out:
1879 if (tmp_blinded)
1880 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1881 tmp : orig_fp);
1882 return fp;
1883}