Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * BPF Jit compiler for s390.
   3 *
   4 * Minimum build requirements:
   5 *
   6 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   7 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   8 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
   9 *  - PACK_STACK
  10 *  - 64BIT
  11 *
  12 * Copyright IBM Corp. 2012,2015
  13 *
  14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16 */
  17
  18#define KMSG_COMPONENT "bpf_jit"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/netdevice.h>
  22#include <linux/filter.h>
  23#include <linux/init.h>
  24#include <linux/bpf.h>
 
 
  25#include <asm/cacheflush.h>
  26#include <asm/dis.h>
 
 
 
  27#include "bpf_jit.h"
  28
  29int bpf_jit_enable __read_mostly;
  30
  31struct bpf_jit {
  32	u32 seen;		/* Flags to remember seen eBPF instructions */
  33	u32 seen_reg[16];	/* Array to remember which registers are used */
  34	u32 *addrs;		/* Array with relative instruction addresses */
  35	u8 *prg_buf;		/* Start of program */
  36	int size;		/* Size of program and literal pool */
  37	int size_prg;		/* Size of program */
  38	int prg;		/* Current position in program */
  39	int lit_start;		/* Start of literal pool */
  40	int lit;		/* Current position in literal pool */
 
 
  41	int base_ip;		/* Base address for literal pool */
  42	int ret0_ip;		/* Address of return 0 */
  43	int exit_ip;		/* Address of exit */
 
 
  44	int tail_call_start;	/* Tail call start offset */
  45	int labels[1];		/* Labels for local jumps */
  46};
  47
  48#define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
  49
  50#define SEEN_SKB	1	/* skb access */
  51#define SEEN_MEM	2	/* use mem[] for temporary storage */
  52#define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
  53#define SEEN_LITERAL	8	/* code uses literals */
  54#define SEEN_FUNC	16	/* calls C functions */
  55#define SEEN_TAIL_CALL	32	/* code uses tail calls */
  56#define SEEN_SKB_CHANGE	64	/* code changes skb data */
  57#define SEEN_REG_AX	128	/* code uses constant blinding */
  58#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  59
  60/*
  61 * s390 registers
  62 */
  63#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  64#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  65#define REG_SKB_DATA	(MAX_BPF_JIT_REG + 2)	/* SKB data register */
  66#define REG_L		(MAX_BPF_JIT_REG + 3)	/* Literal pool register */
  67#define REG_15		(MAX_BPF_JIT_REG + 4)	/* Register 15 */
  68#define REG_0		REG_W0			/* Register 0 */
  69#define REG_1		REG_W1			/* Register 1 */
  70#define REG_2		BPF_REG_1		/* Register 2 */
  71#define REG_14		BPF_REG_0		/* Register 14 */
  72
  73/*
  74 * Mapping of BPF registers to s390 registers
  75 */
  76static const int reg2hex[] = {
  77	/* Return code */
  78	[BPF_REG_0]	= 14,
  79	/* Function parameters */
  80	[BPF_REG_1]	= 2,
  81	[BPF_REG_2]	= 3,
  82	[BPF_REG_3]	= 4,
  83	[BPF_REG_4]	= 5,
  84	[BPF_REG_5]	= 6,
  85	/* Call saved registers */
  86	[BPF_REG_6]	= 7,
  87	[BPF_REG_7]	= 8,
  88	[BPF_REG_8]	= 9,
  89	[BPF_REG_9]	= 10,
  90	/* BPF stack pointer */
  91	[BPF_REG_FP]	= 13,
  92	/* Register for blinding (shared with REG_SKB_DATA) */
  93	[BPF_REG_AX]	= 12,
  94	/* SKB data pointer */
  95	[REG_SKB_DATA]	= 12,
  96	/* Work registers for s390x backend */
  97	[REG_W0]	= 0,
  98	[REG_W1]	= 1,
  99	[REG_L]		= 11,
 100	[REG_15]	= 15,
 101};
 102
 103static inline u32 reg(u32 dst_reg, u32 src_reg)
 104{
 105	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 106}
 107
 108static inline u32 reg_high(u32 reg)
 109{
 110	return reg2hex[reg] << 4;
 111}
 112
 113static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 114{
 115	u32 r1 = reg2hex[b1];
 116
 117	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
 118		jit->seen_reg[r1] = 1;
 119}
 120
 121#define REG_SET_SEEN(b1)					\
 122({								\
 123	reg_set_seen(jit, b1);					\
 124})
 125
 126#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 127
 128/*
 129 * EMIT macros for code generation
 130 */
 131
 132#define _EMIT2(op)						\
 133({								\
 134	if (jit->prg_buf)					\
 135		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
 136	jit->prg += 2;						\
 137})
 138
 139#define EMIT2(op, b1, b2)					\
 140({								\
 141	_EMIT2(op | reg(b1, b2));				\
 142	REG_SET_SEEN(b1);					\
 143	REG_SET_SEEN(b2);					\
 144})
 145
 146#define _EMIT4(op)						\
 147({								\
 148	if (jit->prg_buf)					\
 149		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
 150	jit->prg += 4;						\
 151})
 152
 153#define EMIT4(op, b1, b2)					\
 154({								\
 155	_EMIT4(op | reg(b1, b2));				\
 156	REG_SET_SEEN(b1);					\
 157	REG_SET_SEEN(b2);					\
 158})
 159
 160#define EMIT4_RRF(op, b1, b2, b3)				\
 161({								\
 162	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
 163	REG_SET_SEEN(b1);					\
 164	REG_SET_SEEN(b2);					\
 165	REG_SET_SEEN(b3);					\
 166})
 167
 168#define _EMIT4_DISP(op, disp)					\
 169({								\
 170	unsigned int __disp = (disp) & 0xfff;			\
 171	_EMIT4(op | __disp);					\
 172})
 173
 174#define EMIT4_DISP(op, b1, b2, disp)				\
 175({								\
 176	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
 177		    reg_high(b2) << 8, disp);			\
 178	REG_SET_SEEN(b1);					\
 179	REG_SET_SEEN(b2);					\
 180})
 181
 182#define EMIT4_IMM(op, b1, imm)					\
 183({								\
 184	unsigned int __imm = (imm) & 0xffff;			\
 185	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
 186	REG_SET_SEEN(b1);					\
 187})
 188
 189#define EMIT4_PCREL(op, pcrel)					\
 190({								\
 191	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 192	_EMIT4(op | __pcrel);					\
 
 
 
 
 
 
 193})
 194
 195#define _EMIT6(op1, op2)					\
 196({								\
 197	if (jit->prg_buf) {					\
 198		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
 199		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
 200	}							\
 201	jit->prg += 6;						\
 202})
 203
 204#define _EMIT6_DISP(op1, op2, disp)				\
 205({								\
 206	unsigned int __disp = (disp) & 0xfff;			\
 207	_EMIT6(op1 | __disp, op2);				\
 208})
 209
 210#define _EMIT6_DISP_LH(op1, op2, disp)				\
 211({								\
 212	u32 _disp = (u32) disp;					\
 213	unsigned int __disp_h = _disp & 0xff000;		\
 214	unsigned int __disp_l = _disp & 0x00fff;		\
 215	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
 216})
 217
 218#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 219({								\
 220	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
 221		       reg_high(b3) << 8, op2, disp);		\
 222	REG_SET_SEEN(b1);					\
 223	REG_SET_SEEN(b2);					\
 224	REG_SET_SEEN(b3);					\
 225})
 226
 227#define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
 228({								\
 229	int rel = (jit->labels[label] - jit->prg) >> 1;		\
 230	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
 231	       op2 | mask << 12);				\
 232	REG_SET_SEEN(b1);					\
 233	REG_SET_SEEN(b2);					\
 234})
 235
 236#define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
 237({								\
 238	int rel = (jit->labels[label] - jit->prg) >> 1;		\
 239	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
 240		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
 241	REG_SET_SEEN(b1);					\
 242	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
 243})
 244
 245#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 246({								\
 247	/* Branch instruction needs 6 bytes */			\
 248	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
 249	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
 250	REG_SET_SEEN(b1);					\
 251	REG_SET_SEEN(b2);					\
 252})
 253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254#define _EMIT6_IMM(op, imm)					\
 255({								\
 256	unsigned int __imm = (imm);				\
 257	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
 258})
 259
 260#define EMIT6_IMM(op, b1, imm)					\
 261({								\
 262	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
 263	REG_SET_SEEN(b1);					\
 264})
 265
 266#define EMIT_CONST_U32(val)					\
 267({								\
 268	unsigned int ret;					\
 269	ret = jit->lit - jit->base_ip;				\
 270	jit->seen |= SEEN_LITERAL;				\
 271	if (jit->prg_buf)					\
 272		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
 273	jit->lit += 4;						\
 274	ret;							\
 275})
 276
 277#define EMIT_CONST_U64(val)					\
 278({								\
 279	unsigned int ret;					\
 280	ret = jit->lit - jit->base_ip;				\
 281	jit->seen |= SEEN_LITERAL;				\
 
 
 
 
 
 
 
 282	if (jit->prg_buf)					\
 283		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
 284	jit->lit += 8;						\
 285	ret;							\
 286})
 287
 
 
 
 
 
 
 288#define EMIT_ZERO(b1)						\
 289({								\
 290	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
 291	EMIT4(0xb9160000, b1, b1);				\
 292	REG_SET_SEEN(b1);					\
 
 
 293})
 294
 295/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296 * Fill whole space with illegal instructions
 297 */
 298static void jit_fill_hole(void *area, unsigned int size)
 299{
 300	memset(area, 0, size);
 301}
 302
 303/*
 304 * Save registers from "rs" (register start) to "re" (register end) on stack
 305 */
 306static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 307{
 308	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 309
 310	if (rs == re)
 311		/* stg %rs,off(%r15) */
 312		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 313	else
 314		/* stmg %rs,%re,off(%r15) */
 315		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 316}
 317
 318/*
 319 * Restore registers from "rs" (register start) to "re" (register end) on stack
 320 */
 321static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
 322{
 323	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 324
 325	if (jit->seen & SEEN_STACK)
 326		off += STK_OFF;
 327
 328	if (rs == re)
 329		/* lg %rs,off(%r15) */
 330		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 331	else
 332		/* lmg %rs,%re,off(%r15) */
 333		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 334}
 335
 336/*
 337 * Return first seen register (from start)
 338 */
 339static int get_start(struct bpf_jit *jit, int start)
 340{
 341	int i;
 342
 343	for (i = start; i <= 15; i++) {
 344		if (jit->seen_reg[i])
 345			return i;
 346	}
 347	return 0;
 348}
 349
 350/*
 351 * Return last seen register (from start) (gap >= 2)
 352 */
 353static int get_end(struct bpf_jit *jit, int start)
 354{
 355	int i;
 356
 357	for (i = start; i < 15; i++) {
 358		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 359			return i - 1;
 360	}
 361	return jit->seen_reg[15] ? 15 : 14;
 362}
 363
 364#define REGS_SAVE	1
 365#define REGS_RESTORE	0
 366/*
 367 * Save and restore clobbered registers (6-15) on stack.
 368 * We save/restore registers in chunks with gap >= 2 registers.
 369 */
 370static void save_restore_regs(struct bpf_jit *jit, int op)
 371{
 372
 373	int re = 6, rs;
 374
 
 
 
 
 
 
 
 
 
 375	do {
 376		rs = get_start(jit, re);
 377		if (!rs)
 378			break;
 379		re = get_end(jit, rs + 1);
 380		if (op == REGS_SAVE)
 381			save_regs(jit, rs, re);
 382		else
 383			restore_regs(jit, rs, re);
 384		re++;
 385	} while (re <= 15);
 386}
 387
 388/*
 389 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
 390 * we store the SKB header length on the stack and the SKB data
 391 * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
 392 */
 393static void emit_load_skb_data_hlen(struct bpf_jit *jit)
 394{
 395	/* Header length: llgf %w1,<len>(%b1) */
 396	EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
 397		      offsetof(struct sk_buff, len));
 398	/* s %w1,<data_len>(%b1) */
 399	EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
 400		   offsetof(struct sk_buff, data_len));
 401	/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
 402	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
 403	if (!(jit->seen & SEEN_REG_AX))
 404		/* lg %skb_data,data_off(%b1) */
 405		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
 406			      BPF_REG_1, offsetof(struct sk_buff, data));
 407}
 408
 409/*
 410 * Emit function prologue
 411 *
 412 * Save registers and create stack frame if necessary.
 413 * See stack frame layout desription in "bpf_jit.h"!
 414 */
 415static void bpf_jit_prologue(struct bpf_jit *jit)
 416{
 417	if (jit->seen & SEEN_TAIL_CALL) {
 418		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 419		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 420	} else {
 421		/* j tail_call_start: NOP if no tail calls are used */
 422		EMIT4_PCREL(0xa7f40000, 6);
 423		_EMIT2(0);
 
 
 424	}
 425	/* Tail calls have to skip above initialization */
 426	jit->tail_call_start = jit->prg;
 427	/* Save registers */
 428	save_restore_regs(jit, REGS_SAVE);
 429	/* Setup literal pool */
 430	if (jit->seen & SEEN_LITERAL) {
 431		/* basr %r13,0 */
 432		EMIT2(0x0d00, REG_L, REG_0);
 433		jit->base_ip = jit->prg;
 
 
 
 
 
 
 
 434	}
 435	/* Setup stack and backchain */
 436	if (jit->seen & SEEN_STACK) {
 437		if (jit->seen & SEEN_FUNC)
 438			/* lgr %w1,%r15 (backchain) */
 439			EMIT4(0xb9040000, REG_W1, REG_15);
 440		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 441		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 442		/* aghi %r15,-STK_OFF */
 443		EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
 444		if (jit->seen & SEEN_FUNC)
 445			/* stg %w1,152(%r15) (backchain) */
 446			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 447				      REG_15, 152);
 448	}
 449	if (jit->seen & SEEN_SKB)
 450		emit_load_skb_data_hlen(jit);
 451	if (jit->seen & SEEN_SKB_CHANGE)
 452		/* stg %b1,ST_OFF_SKBP(%r0,%r15) */
 453		EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
 454			      STK_OFF_SKBP);
 455}
 456
 457/*
 458 * Function epilogue
 459 */
 460static void bpf_jit_epilogue(struct bpf_jit *jit)
 461{
 462	/* Return 0 */
 463	if (jit->seen & SEEN_RET0) {
 464		jit->ret0_ip = jit->prg;
 465		/* lghi %b0,0 */
 466		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
 467	}
 468	jit->exit_ip = jit->prg;
 469	/* Load exit code: lgr %r2,%b0 */
 470	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 471	/* Restore registers */
 472	save_restore_regs(jit, REGS_RESTORE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 473	/* br %r14 */
 474	_EMIT2(0x07fe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475}
 476
 477/*
 478 * Compile one eBPF instruction into s390x code
 479 *
 480 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 481 * stack space for the large switch statement.
 482 */
 483static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
 
 484{
 485	struct bpf_insn *insn = &fp->insnsi[i];
 486	int jmp_off, last, insn_count = 1;
 487	unsigned int func_addr, mask;
 488	u32 dst_reg = insn->dst_reg;
 489	u32 src_reg = insn->src_reg;
 
 490	u32 *addrs = jit->addrs;
 491	s32 imm = insn->imm;
 492	s16 off = insn->off;
 
 
 
 
 
 
 
 
 493
 494	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
 495		jit->seen |= SEEN_REG_AX;
 496	switch (insn->code) {
 497	/*
 498	 * BPF_MOV
 499	 */
 500	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 501		/* llgfr %dst,%src */
 502		EMIT4(0xb9160000, dst_reg, src_reg);
 
 
 503		break;
 504	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 505		/* lgr %dst,%src */
 506		EMIT4(0xb9040000, dst_reg, src_reg);
 507		break;
 508	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 509		/* llilf %dst,imm */
 510		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 
 
 511		break;
 512	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 513		/* lgfi %dst,imm */
 514		EMIT6_IMM(0xc0010000, dst_reg, imm);
 515		break;
 516	/*
 517	 * BPF_LD 64
 518	 */
 519	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 520	{
 521		/* 16 byte instruction that uses two 'struct bpf_insn' */
 522		u64 imm64;
 523
 524		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 525		/* lg %dst,<d(imm)>(%l) */
 526		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
 527			      EMIT_CONST_U64(imm64));
 528		insn_count = 2;
 529		break;
 530	}
 531	/*
 532	 * BPF_ADD
 533	 */
 534	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 535		/* ar %dst,%src */
 536		EMIT2(0x1a00, dst_reg, src_reg);
 537		EMIT_ZERO(dst_reg);
 538		break;
 539	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 540		/* agr %dst,%src */
 541		EMIT4(0xb9080000, dst_reg, src_reg);
 542		break;
 543	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 544		if (!imm)
 545			break;
 546		/* alfi %dst,imm */
 547		EMIT6_IMM(0xc20b0000, dst_reg, imm);
 548		EMIT_ZERO(dst_reg);
 549		break;
 550	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 551		if (!imm)
 552			break;
 553		/* agfi %dst,imm */
 554		EMIT6_IMM(0xc2080000, dst_reg, imm);
 555		break;
 556	/*
 557	 * BPF_SUB
 558	 */
 559	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 560		/* sr %dst,%src */
 561		EMIT2(0x1b00, dst_reg, src_reg);
 562		EMIT_ZERO(dst_reg);
 563		break;
 564	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 565		/* sgr %dst,%src */
 566		EMIT4(0xb9090000, dst_reg, src_reg);
 567		break;
 568	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 569		if (!imm)
 570			break;
 571		/* alfi %dst,-imm */
 572		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 573		EMIT_ZERO(dst_reg);
 574		break;
 575	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 576		if (!imm)
 577			break;
 578		/* agfi %dst,-imm */
 579		EMIT6_IMM(0xc2080000, dst_reg, -imm);
 
 
 
 
 
 580		break;
 581	/*
 582	 * BPF_MUL
 583	 */
 584	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 585		/* msr %dst,%src */
 586		EMIT4(0xb2520000, dst_reg, src_reg);
 587		EMIT_ZERO(dst_reg);
 588		break;
 589	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 590		/* msgr %dst,%src */
 591		EMIT4(0xb90c0000, dst_reg, src_reg);
 592		break;
 593	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 594		if (imm == 1)
 595			break;
 596		/* msfi %r5,imm */
 597		EMIT6_IMM(0xc2010000, dst_reg, imm);
 598		EMIT_ZERO(dst_reg);
 599		break;
 600	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 601		if (imm == 1)
 602			break;
 603		/* msgfi %dst,imm */
 604		EMIT6_IMM(0xc2000000, dst_reg, imm);
 605		break;
 606	/*
 607	 * BPF_DIV / BPF_MOD
 608	 */
 609	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 610	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 611	{
 612		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 613
 614		jit->seen |= SEEN_RET0;
 615		/* ltr %src,%src (if src == 0 goto fail) */
 616		EMIT2(0x1200, src_reg, src_reg);
 617		/* jz <ret0> */
 618		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
 619		/* lhi %w0,0 */
 620		EMIT4_IMM(0xa7080000, REG_W0, 0);
 621		/* lr %w1,%dst */
 622		EMIT2(0x1800, REG_W1, dst_reg);
 623		/* dlr %w0,%src */
 624		EMIT4(0xb9970000, REG_W0, src_reg);
 625		/* llgfr %dst,%rc */
 626		EMIT4(0xb9160000, dst_reg, rc_reg);
 
 
 627		break;
 628	}
 629	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 630	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 631	{
 632		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 633
 634		jit->seen |= SEEN_RET0;
 635		/* ltgr %src,%src (if src == 0 goto fail) */
 636		EMIT4(0xb9020000, src_reg, src_reg);
 637		/* jz <ret0> */
 638		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
 639		/* lghi %w0,0 */
 640		EMIT4_IMM(0xa7090000, REG_W0, 0);
 641		/* lgr %w1,%dst */
 642		EMIT4(0xb9040000, REG_W1, dst_reg);
 643		/* dlgr %w0,%dst */
 644		EMIT4(0xb9870000, REG_W0, src_reg);
 645		/* lgr %dst,%rc */
 646		EMIT4(0xb9040000, dst_reg, rc_reg);
 647		break;
 648	}
 649	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 650	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 651	{
 652		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 653
 654		if (imm == 1) {
 655			if (BPF_OP(insn->code) == BPF_MOD)
 656				/* lhgi %dst,0 */
 657				EMIT4_IMM(0xa7090000, dst_reg, 0);
 
 
 658			break;
 659		}
 660		/* lhi %w0,0 */
 661		EMIT4_IMM(0xa7080000, REG_W0, 0);
 662		/* lr %w1,%dst */
 663		EMIT2(0x1800, REG_W1, dst_reg);
 664		/* dl %w0,<d(imm)>(%l) */
 665		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 666			      EMIT_CONST_U32(imm));
 
 
 
 
 
 
 
 
 
 667		/* llgfr %dst,%rc */
 668		EMIT4(0xb9160000, dst_reg, rc_reg);
 
 
 669		break;
 670	}
 671	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 672	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 673	{
 674		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 675
 676		if (imm == 1) {
 677			if (BPF_OP(insn->code) == BPF_MOD)
 678				/* lhgi %dst,0 */
 679				EMIT4_IMM(0xa7090000, dst_reg, 0);
 680			break;
 681		}
 682		/* lghi %w0,0 */
 683		EMIT4_IMM(0xa7090000, REG_W0, 0);
 684		/* lgr %w1,%dst */
 685		EMIT4(0xb9040000, REG_W1, dst_reg);
 686		/* dlg %w0,<d(imm)>(%l) */
 687		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 688			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 689		/* lgr %dst,%rc */
 690		EMIT4(0xb9040000, dst_reg, rc_reg);
 691		break;
 692	}
 693	/*
 694	 * BPF_AND
 695	 */
 696	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 697		/* nr %dst,%src */
 698		EMIT2(0x1400, dst_reg, src_reg);
 699		EMIT_ZERO(dst_reg);
 700		break;
 701	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 702		/* ngr %dst,%src */
 703		EMIT4(0xb9800000, dst_reg, src_reg);
 704		break;
 705	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 706		/* nilf %dst,imm */
 707		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 708		EMIT_ZERO(dst_reg);
 709		break;
 710	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 711		/* ng %dst,<d(imm)>(%l) */
 712		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
 713			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 714		break;
 715	/*
 716	 * BPF_OR
 717	 */
 718	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 719		/* or %dst,%src */
 720		EMIT2(0x1600, dst_reg, src_reg);
 721		EMIT_ZERO(dst_reg);
 722		break;
 723	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 724		/* ogr %dst,%src */
 725		EMIT4(0xb9810000, dst_reg, src_reg);
 726		break;
 727	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 728		/* oilf %dst,imm */
 729		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 730		EMIT_ZERO(dst_reg);
 731		break;
 732	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 733		/* og %dst,<d(imm)>(%l) */
 734		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
 735			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 736		break;
 737	/*
 738	 * BPF_XOR
 739	 */
 740	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 741		/* xr %dst,%src */
 742		EMIT2(0x1700, dst_reg, src_reg);
 743		EMIT_ZERO(dst_reg);
 744		break;
 745	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
 746		/* xgr %dst,%src */
 747		EMIT4(0xb9820000, dst_reg, src_reg);
 748		break;
 749	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
 750		if (!imm)
 751			break;
 752		/* xilf %dst,imm */
 753		EMIT6_IMM(0xc0070000, dst_reg, imm);
 754		EMIT_ZERO(dst_reg);
 755		break;
 756	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
 757		/* xg %dst,<d(imm)>(%l) */
 758		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
 759			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 760		break;
 761	/*
 762	 * BPF_LSH
 763	 */
 764	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
 765		/* sll %dst,0(%src) */
 766		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
 767		EMIT_ZERO(dst_reg);
 768		break;
 769	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
 770		/* sllg %dst,%dst,0(%src) */
 771		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
 772		break;
 773	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
 774		if (imm == 0)
 775			break;
 776		/* sll %dst,imm(%r0) */
 777		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
 778		EMIT_ZERO(dst_reg);
 779		break;
 780	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
 781		if (imm == 0)
 782			break;
 783		/* sllg %dst,%dst,imm(%r0) */
 784		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
 785		break;
 786	/*
 787	 * BPF_RSH
 788	 */
 789	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
 790		/* srl %dst,0(%src) */
 791		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
 792		EMIT_ZERO(dst_reg);
 793		break;
 794	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
 795		/* srlg %dst,%dst,0(%src) */
 796		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
 797		break;
 798	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
 799		if (imm == 0)
 800			break;
 801		/* srl %dst,imm(%r0) */
 802		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
 803		EMIT_ZERO(dst_reg);
 804		break;
 805	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
 806		if (imm == 0)
 807			break;
 808		/* srlg %dst,%dst,imm(%r0) */
 809		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
 810		break;
 811	/*
 812	 * BPF_ARSH
 813	 */
 
 
 
 
 
 814	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
 815		/* srag %dst,%dst,0(%src) */
 816		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
 817		break;
 
 
 
 
 
 
 
 818	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
 819		if (imm == 0)
 820			break;
 821		/* srag %dst,%dst,imm(%r0) */
 822		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
 823		break;
 824	/*
 825	 * BPF_NEG
 826	 */
 827	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
 828		/* lcr %dst,%dst */
 829		EMIT2(0x1300, dst_reg, dst_reg);
 830		EMIT_ZERO(dst_reg);
 831		break;
 832	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
 833		/* lcgr %dst,%dst */
 834		EMIT4(0xb9130000, dst_reg, dst_reg);
 835		break;
 836	/*
 837	 * BPF_FROM_BE/LE
 838	 */
 839	case BPF_ALU | BPF_END | BPF_FROM_BE:
 840		/* s390 is big endian, therefore only clear high order bytes */
 841		switch (imm) {
 842		case 16: /* dst = (u16) cpu_to_be16(dst) */
 843			/* llghr %dst,%dst */
 844			EMIT4(0xb9850000, dst_reg, dst_reg);
 
 
 845			break;
 846		case 32: /* dst = (u32) cpu_to_be32(dst) */
 847			/* llgfr %dst,%dst */
 848			EMIT4(0xb9160000, dst_reg, dst_reg);
 
 849			break;
 850		case 64: /* dst = (u64) cpu_to_be64(dst) */
 851			break;
 852		}
 853		break;
 854	case BPF_ALU | BPF_END | BPF_FROM_LE:
 855		switch (imm) {
 856		case 16: /* dst = (u16) cpu_to_le16(dst) */
 857			/* lrvr %dst,%dst */
 858			EMIT4(0xb91f0000, dst_reg, dst_reg);
 859			/* srl %dst,16(%r0) */
 860			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
 861			/* llghr %dst,%dst */
 862			EMIT4(0xb9850000, dst_reg, dst_reg);
 
 
 863			break;
 864		case 32: /* dst = (u32) cpu_to_le32(dst) */
 865			/* lrvr %dst,%dst */
 866			EMIT4(0xb91f0000, dst_reg, dst_reg);
 867			/* llgfr %dst,%dst */
 868			EMIT4(0xb9160000, dst_reg, dst_reg);
 
 869			break;
 870		case 64: /* dst = (u64) cpu_to_le64(dst) */
 871			/* lrvgr %dst,%dst */
 872			EMIT4(0xb90f0000, dst_reg, dst_reg);
 873			break;
 874		}
 875		break;
 876	/*
 
 
 
 
 
 877	 * BPF_ST(X)
 878	 */
 879	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
 880		/* stcy %src,off(%dst) */
 881		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
 882		jit->seen |= SEEN_MEM;
 883		break;
 884	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
 885		/* sthy %src,off(%dst) */
 886		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
 887		jit->seen |= SEEN_MEM;
 888		break;
 889	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
 890		/* sty %src,off(%dst) */
 891		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
 892		jit->seen |= SEEN_MEM;
 893		break;
 894	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
 895		/* stg %src,off(%dst) */
 896		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
 897		jit->seen |= SEEN_MEM;
 898		break;
 899	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
 900		/* lhi %w0,imm */
 901		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
 902		/* stcy %w0,off(dst) */
 903		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
 904		jit->seen |= SEEN_MEM;
 905		break;
 906	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
 907		/* lhi %w0,imm */
 908		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
 909		/* sthy %w0,off(dst) */
 910		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
 911		jit->seen |= SEEN_MEM;
 912		break;
 913	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
 914		/* llilf %w0,imm  */
 915		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
 916		/* sty %w0,off(%dst) */
 917		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
 918		jit->seen |= SEEN_MEM;
 919		break;
 920	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
 921		/* lgfi %w0,imm */
 922		EMIT6_IMM(0xc0010000, REG_W0, imm);
 923		/* stg %w0,off(%dst) */
 924		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
 925		jit->seen |= SEEN_MEM;
 926		break;
 927	/*
 928	 * BPF_STX XADD (atomic_add)
 929	 */
 930	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
 931		/* laal %w0,%src,off(%dst) */
 932		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
 933			      dst_reg, off);
 934		jit->seen |= SEEN_MEM;
 935		break;
 936	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
 937		/* laalg %w0,%src,off(%dst) */
 938		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
 939			      dst_reg, off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940		jit->seen |= SEEN_MEM;
 941		break;
 
 942	/*
 943	 * BPF_LDX
 944	 */
 945	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
 
 946		/* llgc %dst,0(off,%src) */
 947		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
 948		jit->seen |= SEEN_MEM;
 
 
 949		break;
 950	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
 
 951		/* llgh %dst,0(off,%src) */
 952		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
 953		jit->seen |= SEEN_MEM;
 
 
 954		break;
 955	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
 
 956		/* llgf %dst,off(%src) */
 957		jit->seen |= SEEN_MEM;
 958		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
 
 
 959		break;
 960	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
 
 961		/* lg %dst,0(off,%src) */
 962		jit->seen |= SEEN_MEM;
 963		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
 964		break;
 965	/*
 966	 * BPF_JMP / CALL
 967	 */
 968	case BPF_JMP | BPF_CALL:
 969	{
 970		/*
 971		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
 972		 */
 973		const u64 func = (u64)__bpf_call_base + imm;
 
 
 
 
 974
 975		REG_SET_SEEN(BPF_REG_5);
 976		jit->seen |= SEEN_FUNC;
 977		/* lg %w1,<d(imm)>(%l) */
 978		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
 979			      EMIT_CONST_U64(func));
 980		/* basr %r14,%w1 */
 981		EMIT2(0x0d00, REG_14, REG_W1);
 
 
 
 
 982		/* lgr %b0,%r2: load return value into %b0 */
 983		EMIT4(0xb9040000, BPF_REG_0, REG_2);
 984		if (bpf_helper_changes_pkt_data((void *)func)) {
 985			jit->seen |= SEEN_SKB_CHANGE;
 986			/* lg %b1,ST_OFF_SKBP(%r15) */
 987			EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
 988				      REG_15, STK_OFF_SKBP);
 989			emit_load_skb_data_hlen(jit);
 990		}
 991		break;
 992	}
 993	case BPF_JMP | BPF_CALL | BPF_X:
 
 
 994		/*
 995		 * Implicit input:
 996		 *  B1: pointer to ctx
 997		 *  B2: pointer to bpf_array
 998		 *  B3: index in bpf_array
 999		 */
1000		jit->seen |= SEEN_TAIL_CALL;
1001
1002		/*
1003		 * if (index >= array->map.max_entries)
1004		 *         goto out;
1005		 */
1006
1007		/* llgf %w1,map.max_entries(%b2) */
1008		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1009			      offsetof(struct bpf_array, map.max_entries));
1010		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1011		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1012				  REG_W1, 0, 0xa);
 
 
1013
1014		/*
1015		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1016		 *         goto out;
1017		 */
1018
1019		if (jit->seen & SEEN_STACK)
1020			off = STK_OFF_TCCNT + STK_OFF;
1021		else
1022			off = STK_OFF_TCCNT;
1023		/* lhi %w0,1 */
1024		EMIT4_IMM(0xa7080000, REG_W0, 1);
1025		/* laal %w1,%w0,off(%r15) */
1026		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1027		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1028		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1029				      MAX_TAIL_CALL_CNT, 0, 0x2);
 
1030
1031		/*
1032		 * prog = array->ptrs[index];
1033		 * if (prog == NULL)
1034		 *         goto out;
1035		 */
1036
1037		/* sllg %r1,%b3,3: %r1 = index * 8 */
1038		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1039		/* lg %r1,prog(%b2,%r1) */
1040		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
 
 
1041			      REG_1, offsetof(struct bpf_array, ptrs));
1042		/* clgij %r1,0,0x8,label0 */
1043		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
 
1044
1045		/*
1046		 * Restore registers before calling function
1047		 */
1048		save_restore_regs(jit, REGS_RESTORE);
1049
1050		/*
1051		 * goto *(prog->bpf_func + tail_call_start);
1052		 */
1053
1054		/* lg %r1,bpf_func(%r1) */
1055		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1056			      offsetof(struct bpf_prog, bpf_func));
1057		/* bc 0xf,tail_call_start(%r1) */
1058		_EMIT4(0x47f01000 + jit->tail_call_start);
1059		/* out: */
1060		jit->labels[0] = jit->prg;
 
 
 
 
 
 
 
1061		break;
 
1062	case BPF_JMP | BPF_EXIT: /* return b0 */
1063		last = (i == fp->len - 1) ? 1 : 0;
1064		if (last && !(jit->seen & SEEN_RET0))
1065			break;
1066		/* j <exit> */
1067		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
 
 
 
 
1068		break;
1069	/*
1070	 * Branch relative (number of skipped instructions) to offset on
1071	 * condition.
1072	 *
1073	 * Condition code to mask mapping:
1074	 *
1075	 * CC | Description	   | Mask
1076	 * ------------------------------
1077	 * 0  | Operands equal	   |	8
1078	 * 1  | First operand low  |	4
1079	 * 2  | First operand high |	2
1080	 * 3  | Unused		   |	1
1081	 *
1082	 * For s390x relative branches: ip = ip + off_bytes
1083	 * For BPF relative branches:	insn = insn + off_insns + 1
1084	 *
1085	 * For example for s390x with offset 0 we jump to the branch
1086	 * instruction itself (loop) and for BPF with offset 0 we
1087	 * branch to the instruction behind the branch.
1088	 */
1089	case BPF_JMP | BPF_JA: /* if (true) */
1090		mask = 0xf000; /* j */
1091		goto branch_oc;
1092	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
 
1093		mask = 0x2000; /* jh */
1094		goto branch_ks;
 
 
 
 
1095	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
 
1096		mask = 0xa000; /* jhe */
1097		goto branch_ks;
 
 
 
 
1098	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
 
1099		mask = 0x2000; /* jh */
1100		goto branch_ku;
 
 
 
 
1101	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
 
1102		mask = 0xa000; /* jhe */
1103		goto branch_ku;
 
 
 
 
1104	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
 
1105		mask = 0x7000; /* jne */
1106		goto branch_ku;
1107	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
 
1108		mask = 0x8000; /* je */
1109		goto branch_ku;
1110	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
 
1111		mask = 0x7000; /* jnz */
1112		/* lgfi %w1,imm (load sign extend imm) */
1113		EMIT6_IMM(0xc0010000, REG_W1, imm);
1114		/* ngr %w1,%dst */
1115		EMIT4(0xb9800000, REG_W1, dst_reg);
 
 
 
 
 
 
 
1116		goto branch_oc;
1117
1118	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
 
1119		mask = 0x2000; /* jh */
1120		goto branch_xs;
 
 
 
 
1121	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
 
1122		mask = 0xa000; /* jhe */
1123		goto branch_xs;
 
 
 
 
1124	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
 
1125		mask = 0x2000; /* jh */
1126		goto branch_xu;
 
 
 
 
1127	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
 
1128		mask = 0xa000; /* jhe */
1129		goto branch_xu;
 
 
 
 
1130	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
 
1131		mask = 0x7000; /* jne */
1132		goto branch_xu;
1133	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
 
1134		mask = 0x8000; /* je */
1135		goto branch_xu;
1136	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
 
 
 
 
1137		mask = 0x7000; /* jnz */
1138		/* ngrk %w1,%dst,%src */
1139		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
 
1140		goto branch_oc;
1141branch_ks:
1142		/* lgfi %w1,imm (load sign extend imm) */
1143		EMIT6_IMM(0xc0010000, REG_W1, imm);
1144		/* cgrj %dst,%w1,mask,off */
1145		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
 
 
 
 
 
 
 
 
 
 
1146		break;
1147branch_ku:
1148		/* lgfi %w1,imm (load sign extend imm) */
1149		EMIT6_IMM(0xc0010000, REG_W1, imm);
1150		/* clgrj %dst,%w1,mask,off */
1151		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1152		break;
1153branch_xs:
1154		/* cgrj %dst,%src,mask,off */
1155		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156		break;
1157branch_xu:
1158		/* clgrj %dst,%src,mask,off */
1159		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160		break;
1161branch_oc:
1162		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1163		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1164		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
 
 
 
 
 
 
 
1165		break;
1166	/*
1167	 * BPF_LD
1168	 */
1169	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1170	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1171		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1172			func_addr = __pa(sk_load_byte_pos);
1173		else
1174			func_addr = __pa(sk_load_byte);
1175		goto call_fn;
1176	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1177	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1178		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1179			func_addr = __pa(sk_load_half_pos);
1180		else
1181			func_addr = __pa(sk_load_half);
1182		goto call_fn;
1183	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1184	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1185		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1186			func_addr = __pa(sk_load_word_pos);
1187		else
1188			func_addr = __pa(sk_load_word);
1189		goto call_fn;
1190call_fn:
1191		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1192		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1193
 
1194		/*
1195		 * Implicit input:
1196		 *  BPF_REG_6	 (R7) : skb pointer
1197		 *  REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
1198		 *
1199		 * Calculated input:
1200		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1201		 *  BPF_REG_5	 (R6) : return address
1202		 *
1203		 * Output:
1204		 *  BPF_REG_0	 (R14): data read from skb
1205		 *
1206		 * Scratch registers (BPF_REG_1-5)
1207		 */
 
 
 
 
 
 
 
 
 
 
1208
1209		/* Call function: llilf %w1,func_addr  */
1210		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
 
 
 
 
 
 
 
 
 
 
1211
1212		/* Offset: lgfi %b2,imm */
1213		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1214		if (BPF_MODE(insn->code) == BPF_IND)
1215			/* agfr %b2,%src (%src is s32 here) */
1216			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1217
1218		/* Reload REG_SKB_DATA if BPF_REG_AX is used */
1219		if (jit->seen & SEEN_REG_AX)
1220			/* lg %skb_data,data_off(%b6) */
1221			EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
1222				      BPF_REG_6, offsetof(struct sk_buff, data));
1223		/* basr %b5,%w1 (%b5 is call saved) */
1224		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1225
1226		/*
1227		 * Note: For fast access we jump directly after the
1228		 * jnz instruction from bpf_jit.S
1229		 */
1230		/* jnz <ret0> */
1231		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1232		break;
1233	default: /* too complex, give up */
1234		pr_err("Unknown opcode %02x\n", insn->code);
1235		return -1;
 
1236	}
1237	return insn_count;
 
 
 
1238}
1239
1240/*
1241 * Compile eBPF program into s390x code
1242 */
1243static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
 
1244{
1245	int i, insn_count;
1246
1247	jit->lit = jit->lit_start;
 
1248	jit->prg = 0;
 
1249
1250	bpf_jit_prologue(jit);
 
 
1251	for (i = 0; i < fp->len; i += insn_count) {
1252		insn_count = bpf_jit_insn(jit, fp, i);
1253		if (insn_count < 0)
1254			return -1;
1255		jit->addrs[i + 1] = jit->prg; /* Next instruction address */
 
 
1256	}
1257	bpf_jit_epilogue(jit);
1258
1259	jit->lit_start = jit->prg;
1260	jit->size = jit->lit;
 
 
 
 
 
 
 
1261	jit->size_prg = jit->prg;
 
 
 
 
 
 
1262	return 0;
1263}
1264
1265/*
1266 * Classic BPF function stub. BPF programs will be converted into
1267 * eBPF and then bpf_int_jit_compile() will be called.
1268 */
1269void bpf_jit_compile(struct bpf_prog *fp)
1270{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271}
1272
1273/*
1274 * Compile eBPF program "fp"
1275 */
1276struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1277{
 
1278	struct bpf_prog *tmp, *orig_fp = fp;
1279	struct bpf_binary_header *header;
 
1280	bool tmp_blinded = false;
 
1281	struct bpf_jit jit;
1282	int pass;
1283
1284	if (!bpf_jit_enable)
1285		return orig_fp;
1286
1287	tmp = bpf_jit_blind_constants(fp);
1288	/*
1289	 * If blinding was requested and we failed during blinding,
1290	 * we must fall back to the interpreter.
1291	 */
1292	if (IS_ERR(tmp))
1293		return orig_fp;
1294	if (tmp != fp) {
1295		tmp_blinded = true;
1296		fp = tmp;
1297	}
1298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	memset(&jit, 0, sizeof(jit));
1300	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1301	if (jit.addrs == NULL) {
1302		fp = orig_fp;
1303		goto out;
1304	}
1305	/*
1306	 * Three initial passes:
1307	 *   - 1/2: Determine clobbered registers
1308	 *   - 3:   Calculate program size and addrs arrray
1309	 */
1310	for (pass = 1; pass <= 3; pass++) {
1311		if (bpf_jit_prog(&jit, fp)) {
1312			fp = orig_fp;
1313			goto free_addrs;
1314		}
1315	}
1316	/*
1317	 * Final pass: Allocate and generate program
1318	 */
1319	if (jit.size >= BPF_SIZE_MAX) {
1320		fp = orig_fp;
1321		goto free_addrs;
1322	}
1323	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1324	if (!header) {
1325		fp = orig_fp;
1326		goto free_addrs;
1327	}
1328	if (bpf_jit_prog(&jit, fp)) {
 
 
1329		fp = orig_fp;
1330		goto free_addrs;
1331	}
1332	if (bpf_jit_enable > 1) {
1333		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1334		if (jit.prg_buf)
1335			print_fn_code(jit.prg_buf, jit.size_prg);
1336	}
1337	if (jit.prg_buf) {
1338		set_memory_ro((unsigned long)header, header->pages);
1339		fp->bpf_func = (void *) jit.prg_buf;
1340		fp->jited = 1;
1341	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1342free_addrs:
1343	kfree(jit.addrs);
 
 
 
1344out:
1345	if (tmp_blinded)
1346		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1347					   tmp : orig_fp);
1348	return fp;
1349}
1350
1351/*
1352 * Free eBPF program
1353 */
1354void bpf_jit_free(struct bpf_prog *fp)
1355{
1356	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1357	struct bpf_binary_header *header = (void *)addr;
1358
1359	if (!fp->jited)
1360		goto free_filter;
1361
1362	set_memory_rw(addr, header->pages);
1363	bpf_jit_binary_free(header);
1364
1365free_filter:
1366	bpf_prog_unlock_free(fp);
1367}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * BPF Jit compiler for s390.
   4 *
   5 * Minimum build requirements:
   6 *
   7 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   8 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   9 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  10 *  - PACK_STACK
  11 *  - 64BIT
  12 *
  13 * Copyright IBM Corp. 2012,2015
  14 *
  15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  16 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  17 */
  18
  19#define KMSG_COMPONENT "bpf_jit"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/netdevice.h>
  23#include <linux/filter.h>
  24#include <linux/init.h>
  25#include <linux/bpf.h>
  26#include <linux/mm.h>
  27#include <linux/kernel.h>
  28#include <asm/cacheflush.h>
  29#include <asm/dis.h>
  30#include <asm/facility.h>
  31#include <asm/nospec-branch.h>
  32#include <asm/set_memory.h>
  33#include "bpf_jit.h"
  34
 
 
  35struct bpf_jit {
  36	u32 seen;		/* Flags to remember seen eBPF instructions */
  37	u32 seen_reg[16];	/* Array to remember which registers are used */
  38	u32 *addrs;		/* Array with relative instruction addresses */
  39	u8 *prg_buf;		/* Start of program */
  40	int size;		/* Size of program and literal pool */
  41	int size_prg;		/* Size of program */
  42	int prg;		/* Current position in program */
  43	int lit32_start;	/* Start of 32-bit literal pool */
  44	int lit32;		/* Current position in 32-bit literal pool */
  45	int lit64_start;	/* Start of 64-bit literal pool */
  46	int lit64;		/* Current position in 64-bit literal pool */
  47	int base_ip;		/* Base address for literal pool */
 
  48	int exit_ip;		/* Address of exit */
  49	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
  50	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
  51	int tail_call_start;	/* Tail call start offset */
  52	int excnt;		/* Number of exception table entries */
  53};
  54
  55#define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
  56#define SEEN_LITERAL	BIT(1)		/* code uses literals */
  57#define SEEN_FUNC	BIT(2)		/* calls C functions */
  58#define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
  59#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
 
 
 
 
 
 
  60
  61/*
  62 * s390 registers
  63 */
  64#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  65#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  66#define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
  67#define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
 
  68#define REG_0		REG_W0			/* Register 0 */
  69#define REG_1		REG_W1			/* Register 1 */
  70#define REG_2		BPF_REG_1		/* Register 2 */
  71#define REG_14		BPF_REG_0		/* Register 14 */
  72
  73/*
  74 * Mapping of BPF registers to s390 registers
  75 */
  76static const int reg2hex[] = {
  77	/* Return code */
  78	[BPF_REG_0]	= 14,
  79	/* Function parameters */
  80	[BPF_REG_1]	= 2,
  81	[BPF_REG_2]	= 3,
  82	[BPF_REG_3]	= 4,
  83	[BPF_REG_4]	= 5,
  84	[BPF_REG_5]	= 6,
  85	/* Call saved registers */
  86	[BPF_REG_6]	= 7,
  87	[BPF_REG_7]	= 8,
  88	[BPF_REG_8]	= 9,
  89	[BPF_REG_9]	= 10,
  90	/* BPF stack pointer */
  91	[BPF_REG_FP]	= 13,
  92	/* Register for blinding */
  93	[BPF_REG_AX]	= 12,
 
 
  94	/* Work registers for s390x backend */
  95	[REG_W0]	= 0,
  96	[REG_W1]	= 1,
  97	[REG_L]		= 11,
  98	[REG_15]	= 15,
  99};
 100
 101static inline u32 reg(u32 dst_reg, u32 src_reg)
 102{
 103	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 104}
 105
 106static inline u32 reg_high(u32 reg)
 107{
 108	return reg2hex[reg] << 4;
 109}
 110
 111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 112{
 113	u32 r1 = reg2hex[b1];
 114
 115	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
 116		jit->seen_reg[r1] = 1;
 117}
 118
 119#define REG_SET_SEEN(b1)					\
 120({								\
 121	reg_set_seen(jit, b1);					\
 122})
 123
 124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 125
 126/*
 127 * EMIT macros for code generation
 128 */
 129
 130#define _EMIT2(op)						\
 131({								\
 132	if (jit->prg_buf)					\
 133		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
 134	jit->prg += 2;						\
 135})
 136
 137#define EMIT2(op, b1, b2)					\
 138({								\
 139	_EMIT2((op) | reg(b1, b2));				\
 140	REG_SET_SEEN(b1);					\
 141	REG_SET_SEEN(b2);					\
 142})
 143
 144#define _EMIT4(op)						\
 145({								\
 146	if (jit->prg_buf)					\
 147		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
 148	jit->prg += 4;						\
 149})
 150
 151#define EMIT4(op, b1, b2)					\
 152({								\
 153	_EMIT4((op) | reg(b1, b2));				\
 154	REG_SET_SEEN(b1);					\
 155	REG_SET_SEEN(b2);					\
 156})
 157
 158#define EMIT4_RRF(op, b1, b2, b3)				\
 159({								\
 160	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
 161	REG_SET_SEEN(b1);					\
 162	REG_SET_SEEN(b2);					\
 163	REG_SET_SEEN(b3);					\
 164})
 165
 166#define _EMIT4_DISP(op, disp)					\
 167({								\
 168	unsigned int __disp = (disp) & 0xfff;			\
 169	_EMIT4((op) | __disp);					\
 170})
 171
 172#define EMIT4_DISP(op, b1, b2, disp)				\
 173({								\
 174	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
 175		    reg_high(b2) << 8, (disp));			\
 176	REG_SET_SEEN(b1);					\
 177	REG_SET_SEEN(b2);					\
 178})
 179
 180#define EMIT4_IMM(op, b1, imm)					\
 181({								\
 182	unsigned int __imm = (imm) & 0xffff;			\
 183	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
 184	REG_SET_SEEN(b1);					\
 185})
 186
 187#define EMIT4_PCREL(op, pcrel)					\
 188({								\
 189	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 190	_EMIT4((op) | __pcrel);					\
 191})
 192
 193#define EMIT4_PCREL_RIC(op, mask, target)			\
 194({								\
 195	int __rel = ((target) - jit->prg) / 2;			\
 196	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
 197})
 198
 199#define _EMIT6(op1, op2)					\
 200({								\
 201	if (jit->prg_buf) {					\
 202		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
 203		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
 204	}							\
 205	jit->prg += 6;						\
 206})
 207
 208#define _EMIT6_DISP(op1, op2, disp)				\
 209({								\
 210	unsigned int __disp = (disp) & 0xfff;			\
 211	_EMIT6((op1) | __disp, op2);				\
 212})
 213
 214#define _EMIT6_DISP_LH(op1, op2, disp)				\
 215({								\
 216	u32 _disp = (u32) (disp);				\
 217	unsigned int __disp_h = _disp & 0xff000;		\
 218	unsigned int __disp_l = _disp & 0x00fff;		\
 219	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
 220})
 221
 222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 223({								\
 224	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
 225		       reg_high(b3) << 8, op2, disp);		\
 226	REG_SET_SEEN(b1);					\
 227	REG_SET_SEEN(b2);					\
 228	REG_SET_SEEN(b3);					\
 229})
 230
 231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
 232({								\
 233	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 234	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
 235	       (op2) | (mask) << 12);				\
 236	REG_SET_SEEN(b1);					\
 237	REG_SET_SEEN(b2);					\
 238})
 239
 240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
 241({								\
 242	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 243	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
 244		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
 245	REG_SET_SEEN(b1);					\
 246	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
 247})
 248
 249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 250({								\
 251	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
 252	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
 
 253	REG_SET_SEEN(b1);					\
 254	REG_SET_SEEN(b2);					\
 255})
 256
 257#define EMIT6_PCREL_RILB(op, b, target)				\
 258({								\
 259	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 260	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
 261	REG_SET_SEEN(b);					\
 262})
 263
 264#define EMIT6_PCREL_RIL(op, target)				\
 265({								\
 266	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 267	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
 268})
 269
 270#define EMIT6_PCREL_RILC(op, mask, target)			\
 271({								\
 272	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
 273})
 274
 275#define _EMIT6_IMM(op, imm)					\
 276({								\
 277	unsigned int __imm = (imm);				\
 278	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
 279})
 280
 281#define EMIT6_IMM(op, b1, imm)					\
 282({								\
 283	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
 284	REG_SET_SEEN(b1);					\
 285})
 286
 287#define _EMIT_CONST_U32(val)					\
 288({								\
 289	unsigned int ret;					\
 290	ret = jit->lit32;					\
 
 291	if (jit->prg_buf)					\
 292		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
 293	jit->lit32 += 4;					\
 294	ret;							\
 295})
 296
 297#define EMIT_CONST_U32(val)					\
 298({								\
 
 
 299	jit->seen |= SEEN_LITERAL;				\
 300	_EMIT_CONST_U32(val) - jit->base_ip;			\
 301})
 302
 303#define _EMIT_CONST_U64(val)					\
 304({								\
 305	unsigned int ret;					\
 306	ret = jit->lit64;					\
 307	if (jit->prg_buf)					\
 308		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
 309	jit->lit64 += 8;					\
 310	ret;							\
 311})
 312
 313#define EMIT_CONST_U64(val)					\
 314({								\
 315	jit->seen |= SEEN_LITERAL;				\
 316	_EMIT_CONST_U64(val) - jit->base_ip;			\
 317})
 318
 319#define EMIT_ZERO(b1)						\
 320({								\
 321	if (!fp->aux->verifier_zext) {				\
 322		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
 323		EMIT4(0xb9160000, b1, b1);			\
 324		REG_SET_SEEN(b1);				\
 325	}							\
 326})
 327
 328/*
 329 * Return whether this is the first pass. The first pass is special, since we
 330 * don't know any sizes yet, and thus must be conservative.
 331 */
 332static bool is_first_pass(struct bpf_jit *jit)
 333{
 334	return jit->size == 0;
 335}
 336
 337/*
 338 * Return whether this is the code generation pass. The code generation pass is
 339 * special, since we should change as little as possible.
 340 */
 341static bool is_codegen_pass(struct bpf_jit *jit)
 342{
 343	return jit->prg_buf;
 344}
 345
 346/*
 347 * Return whether "rel" can be encoded as a short PC-relative offset
 348 */
 349static bool is_valid_rel(int rel)
 350{
 351	return rel >= -65536 && rel <= 65534;
 352}
 353
 354/*
 355 * Return whether "off" can be reached using a short PC-relative offset
 356 */
 357static bool can_use_rel(struct bpf_jit *jit, int off)
 358{
 359	return is_valid_rel(off - jit->prg);
 360}
 361
 362/*
 363 * Return whether given displacement can be encoded using
 364 * Long-Displacement Facility
 365 */
 366static bool is_valid_ldisp(int disp)
 367{
 368	return disp >= -524288 && disp <= 524287;
 369}
 370
 371/*
 372 * Return whether the next 32-bit literal pool entry can be referenced using
 373 * Long-Displacement Facility
 374 */
 375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
 376{
 377	return is_valid_ldisp(jit->lit32 - jit->base_ip);
 378}
 379
 380/*
 381 * Return whether the next 64-bit literal pool entry can be referenced using
 382 * Long-Displacement Facility
 383 */
 384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
 385{
 386	return is_valid_ldisp(jit->lit64 - jit->base_ip);
 387}
 388
 389/*
 390 * Fill whole space with illegal instructions
 391 */
 392static void jit_fill_hole(void *area, unsigned int size)
 393{
 394	memset(area, 0, size);
 395}
 396
 397/*
 398 * Save registers from "rs" (register start) to "re" (register end) on stack
 399 */
 400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 401{
 402	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 403
 404	if (rs == re)
 405		/* stg %rs,off(%r15) */
 406		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 407	else
 408		/* stmg %rs,%re,off(%r15) */
 409		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 410}
 411
 412/*
 413 * Restore registers from "rs" (register start) to "re" (register end) on stack
 414 */
 415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
 416{
 417	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 418
 419	if (jit->seen & SEEN_STACK)
 420		off += STK_OFF + stack_depth;
 421
 422	if (rs == re)
 423		/* lg %rs,off(%r15) */
 424		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 425	else
 426		/* lmg %rs,%re,off(%r15) */
 427		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 428}
 429
 430/*
 431 * Return first seen register (from start)
 432 */
 433static int get_start(struct bpf_jit *jit, int start)
 434{
 435	int i;
 436
 437	for (i = start; i <= 15; i++) {
 438		if (jit->seen_reg[i])
 439			return i;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Return last seen register (from start) (gap >= 2)
 446 */
 447static int get_end(struct bpf_jit *jit, int start)
 448{
 449	int i;
 450
 451	for (i = start; i < 15; i++) {
 452		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 453			return i - 1;
 454	}
 455	return jit->seen_reg[15] ? 15 : 14;
 456}
 457
 458#define REGS_SAVE	1
 459#define REGS_RESTORE	0
 460/*
 461 * Save and restore clobbered registers (6-15) on stack.
 462 * We save/restore registers in chunks with gap >= 2 registers.
 463 */
 464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
 465{
 466	const int last = 15, save_restore_size = 6;
 467	int re = 6, rs;
 468
 469	if (is_first_pass(jit)) {
 470		/*
 471		 * We don't know yet which registers are used. Reserve space
 472		 * conservatively.
 473		 */
 474		jit->prg += (last - re + 1) * save_restore_size;
 475		return;
 476	}
 477
 478	do {
 479		rs = get_start(jit, re);
 480		if (!rs)
 481			break;
 482		re = get_end(jit, rs + 1);
 483		if (op == REGS_SAVE)
 484			save_regs(jit, rs, re);
 485		else
 486			restore_regs(jit, rs, re, stack_depth);
 487		re++;
 488	} while (re <= last);
 489}
 490
 491static void bpf_skip(struct bpf_jit *jit, int size)
 492{
 493	if (size >= 6 && !is_valid_rel(size)) {
 494		/* brcl 0xf,size */
 495		EMIT6_PCREL_RIL(0xc0f4000000, size);
 496		size -= 6;
 497	} else if (size >= 4 && is_valid_rel(size)) {
 498		/* brc 0xf,size */
 499		EMIT4_PCREL(0xa7f40000, size);
 500		size -= 4;
 501	}
 502	while (size >= 2) {
 503		/* bcr 0,%0 */
 504		_EMIT2(0x0700);
 505		size -= 2;
 506	}
 
 
 
 507}
 508
 509/*
 510 * Emit function prologue
 511 *
 512 * Save registers and create stack frame if necessary.
 513 * See stack frame layout desription in "bpf_jit.h"!
 514 */
 515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
 516{
 517	if (jit->seen & SEEN_TAIL_CALL) {
 518		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 519		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 520	} else {
 521		/*
 522		 * There are no tail calls. Insert nops in order to have
 523		 * tail_call_start at a predictable offset.
 524		 */
 525		bpf_skip(jit, 6);
 526	}
 527	/* Tail calls have to skip above initialization */
 528	jit->tail_call_start = jit->prg;
 529	/* Save registers */
 530	save_restore_regs(jit, REGS_SAVE, stack_depth);
 531	/* Setup literal pool */
 532	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
 533		if (!is_first_pass(jit) &&
 534		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
 535			/* basr %l,0 */
 536			EMIT2(0x0d00, REG_L, REG_0);
 537			jit->base_ip = jit->prg;
 538		} else {
 539			/* larl %l,lit32_start */
 540			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
 541			jit->base_ip = jit->lit32_start;
 542		}
 543	}
 544	/* Setup stack and backchain */
 545	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
 546		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 547			/* lgr %w1,%r15 (backchain) */
 548			EMIT4(0xb9040000, REG_W1, REG_15);
 549		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 550		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 551		/* aghi %r15,-STK_OFF */
 552		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
 553		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 554			/* stg %w1,152(%r15) (backchain) */
 555			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 556				      REG_15, 152);
 557	}
 
 
 
 
 
 
 558}
 559
 560/*
 561 * Function epilogue
 562 */
 563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
 564{
 
 
 
 
 
 
 565	jit->exit_ip = jit->prg;
 566	/* Load exit code: lgr %r2,%b0 */
 567	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 568	/* Restore registers */
 569	save_restore_regs(jit, REGS_RESTORE, stack_depth);
 570	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
 571		jit->r14_thunk_ip = jit->prg;
 572		/* Generate __s390_indirect_jump_r14 thunk */
 573		if (test_facility(35)) {
 574			/* exrl %r0,.+10 */
 575			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 576		} else {
 577			/* larl %r1,.+14 */
 578			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
 579			/* ex 0,0(%r1) */
 580			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
 581		}
 582		/* j . */
 583		EMIT4_PCREL(0xa7f40000, 0);
 584	}
 585	/* br %r14 */
 586	_EMIT2(0x07fe);
 587
 588	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
 589	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
 590		jit->r1_thunk_ip = jit->prg;
 591		/* Generate __s390_indirect_jump_r1 thunk */
 592		if (test_facility(35)) {
 593			/* exrl %r0,.+10 */
 594			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 595			/* j . */
 596			EMIT4_PCREL(0xa7f40000, 0);
 597			/* br %r1 */
 598			_EMIT2(0x07f1);
 599		} else {
 600			/* ex 0,S390_lowcore.br_r1_tampoline */
 601			EMIT4_DISP(0x44000000, REG_0, REG_0,
 602				   offsetof(struct lowcore, br_r1_trampoline));
 603			/* j . */
 604			EMIT4_PCREL(0xa7f40000, 0);
 605		}
 606	}
 607}
 608
 609static int get_probe_mem_regno(const u8 *insn)
 610{
 611	/*
 612	 * insn must point to llgc, llgh, llgf or lg, which have destination
 613	 * register at the same position.
 614	 */
 615	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
 616		return -1;
 617	if (insn[5] != 0x90 && /* llgc */
 618	    insn[5] != 0x91 && /* llgh */
 619	    insn[5] != 0x16 && /* llgf */
 620	    insn[5] != 0x04) /* lg */
 621		return -1;
 622	return insn[1] >> 4;
 623}
 624
 625static bool ex_handler_bpf(const struct exception_table_entry *x,
 626			   struct pt_regs *regs)
 627{
 628	int regno;
 629	u8 *insn;
 630
 631	regs->psw.addr = extable_fixup(x);
 632	insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
 633	regno = get_probe_mem_regno(insn);
 634	if (WARN_ON_ONCE(regno < 0))
 635		/* JIT bug - unexpected instruction. */
 636		return false;
 637	regs->gprs[regno] = 0;
 638	return true;
 639}
 640
 641static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
 642			     int probe_prg, int nop_prg)
 643{
 644	struct exception_table_entry *ex;
 645	s64 delta;
 646	u8 *insn;
 647	int prg;
 648	int i;
 649
 650	if (!fp->aux->extable)
 651		/* Do nothing during early JIT passes. */
 652		return 0;
 653	insn = jit->prg_buf + probe_prg;
 654	if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
 655		/* JIT bug - unexpected probe instruction. */
 656		return -1;
 657	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
 658		/* JIT bug - gap between probe and nop instructions. */
 659		return -1;
 660	for (i = 0; i < 2; i++) {
 661		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
 662			/* Verifier bug - not enough entries. */
 663			return -1;
 664		ex = &fp->aux->extable[jit->excnt];
 665		/* Add extable entries for probe and nop instructions. */
 666		prg = i == 0 ? probe_prg : nop_prg;
 667		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
 668		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 669			/* JIT bug - code and extable must be close. */
 670			return -1;
 671		ex->insn = delta;
 672		/*
 673		 * Always land on the nop. Note that extable infrastructure
 674		 * ignores fixup field, it is handled by ex_handler_bpf().
 675		 */
 676		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
 677		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 678			/* JIT bug - landing pad and extable must be close. */
 679			return -1;
 680		ex->fixup = delta;
 681		ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
 682		jit->excnt++;
 683	}
 684	return 0;
 685}
 686
 687/*
 688 * Compile one eBPF instruction into s390x code
 689 *
 690 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 691 * stack space for the large switch statement.
 692 */
 693static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
 694				 int i, bool extra_pass, u32 stack_depth)
 695{
 696	struct bpf_insn *insn = &fp->insnsi[i];
 
 
 697	u32 dst_reg = insn->dst_reg;
 698	u32 src_reg = insn->src_reg;
 699	int last, insn_count = 1;
 700	u32 *addrs = jit->addrs;
 701	s32 imm = insn->imm;
 702	s16 off = insn->off;
 703	int probe_prg = -1;
 704	unsigned int mask;
 705	int nop_prg;
 706	int err;
 707
 708	if (BPF_CLASS(insn->code) == BPF_LDX &&
 709	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
 710		probe_prg = jit->prg;
 711
 
 
 712	switch (insn->code) {
 713	/*
 714	 * BPF_MOV
 715	 */
 716	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 717		/* llgfr %dst,%src */
 718		EMIT4(0xb9160000, dst_reg, src_reg);
 719		if (insn_is_zext(&insn[1]))
 720			insn_count = 2;
 721		break;
 722	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 723		/* lgr %dst,%src */
 724		EMIT4(0xb9040000, dst_reg, src_reg);
 725		break;
 726	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 727		/* llilf %dst,imm */
 728		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 729		if (insn_is_zext(&insn[1]))
 730			insn_count = 2;
 731		break;
 732	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 733		/* lgfi %dst,imm */
 734		EMIT6_IMM(0xc0010000, dst_reg, imm);
 735		break;
 736	/*
 737	 * BPF_LD 64
 738	 */
 739	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 740	{
 741		/* 16 byte instruction that uses two 'struct bpf_insn' */
 742		u64 imm64;
 743
 744		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 745		/* lgrl %dst,imm */
 746		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
 
 747		insn_count = 2;
 748		break;
 749	}
 750	/*
 751	 * BPF_ADD
 752	 */
 753	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 754		/* ar %dst,%src */
 755		EMIT2(0x1a00, dst_reg, src_reg);
 756		EMIT_ZERO(dst_reg);
 757		break;
 758	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 759		/* agr %dst,%src */
 760		EMIT4(0xb9080000, dst_reg, src_reg);
 761		break;
 762	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 763		if (imm != 0) {
 764			/* alfi %dst,imm */
 765			EMIT6_IMM(0xc20b0000, dst_reg, imm);
 766		}
 767		EMIT_ZERO(dst_reg);
 768		break;
 769	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 770		if (!imm)
 771			break;
 772		/* agfi %dst,imm */
 773		EMIT6_IMM(0xc2080000, dst_reg, imm);
 774		break;
 775	/*
 776	 * BPF_SUB
 777	 */
 778	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 779		/* sr %dst,%src */
 780		EMIT2(0x1b00, dst_reg, src_reg);
 781		EMIT_ZERO(dst_reg);
 782		break;
 783	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 784		/* sgr %dst,%src */
 785		EMIT4(0xb9090000, dst_reg, src_reg);
 786		break;
 787	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 788		if (imm != 0) {
 789			/* alfi %dst,-imm */
 790			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 791		}
 792		EMIT_ZERO(dst_reg);
 793		break;
 794	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 795		if (!imm)
 796			break;
 797		if (imm == -0x80000000) {
 798			/* algfi %dst,0x80000000 */
 799			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
 800		} else {
 801			/* agfi %dst,-imm */
 802			EMIT6_IMM(0xc2080000, dst_reg, -imm);
 803		}
 804		break;
 805	/*
 806	 * BPF_MUL
 807	 */
 808	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 809		/* msr %dst,%src */
 810		EMIT4(0xb2520000, dst_reg, src_reg);
 811		EMIT_ZERO(dst_reg);
 812		break;
 813	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 814		/* msgr %dst,%src */
 815		EMIT4(0xb90c0000, dst_reg, src_reg);
 816		break;
 817	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 818		if (imm != 1) {
 819			/* msfi %r5,imm */
 820			EMIT6_IMM(0xc2010000, dst_reg, imm);
 821		}
 822		EMIT_ZERO(dst_reg);
 823		break;
 824	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 825		if (imm == 1)
 826			break;
 827		/* msgfi %dst,imm */
 828		EMIT6_IMM(0xc2000000, dst_reg, imm);
 829		break;
 830	/*
 831	 * BPF_DIV / BPF_MOD
 832	 */
 833	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 834	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 835	{
 836		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 837
 
 
 
 
 
 838		/* lhi %w0,0 */
 839		EMIT4_IMM(0xa7080000, REG_W0, 0);
 840		/* lr %w1,%dst */
 841		EMIT2(0x1800, REG_W1, dst_reg);
 842		/* dlr %w0,%src */
 843		EMIT4(0xb9970000, REG_W0, src_reg);
 844		/* llgfr %dst,%rc */
 845		EMIT4(0xb9160000, dst_reg, rc_reg);
 846		if (insn_is_zext(&insn[1]))
 847			insn_count = 2;
 848		break;
 849	}
 850	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 851	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 852	{
 853		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 854
 
 
 
 
 
 855		/* lghi %w0,0 */
 856		EMIT4_IMM(0xa7090000, REG_W0, 0);
 857		/* lgr %w1,%dst */
 858		EMIT4(0xb9040000, REG_W1, dst_reg);
 859		/* dlgr %w0,%dst */
 860		EMIT4(0xb9870000, REG_W0, src_reg);
 861		/* lgr %dst,%rc */
 862		EMIT4(0xb9040000, dst_reg, rc_reg);
 863		break;
 864	}
 865	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 866	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 867	{
 868		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 869
 870		if (imm == 1) {
 871			if (BPF_OP(insn->code) == BPF_MOD)
 872				/* lhgi %dst,0 */
 873				EMIT4_IMM(0xa7090000, dst_reg, 0);
 874			else
 875				EMIT_ZERO(dst_reg);
 876			break;
 877		}
 878		/* lhi %w0,0 */
 879		EMIT4_IMM(0xa7080000, REG_W0, 0);
 880		/* lr %w1,%dst */
 881		EMIT2(0x1800, REG_W1, dst_reg);
 882		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
 883			/* dl %w0,<d(imm)>(%l) */
 884			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 885				      EMIT_CONST_U32(imm));
 886		} else {
 887			/* lgfrl %dst,imm */
 888			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
 889					 _EMIT_CONST_U32(imm));
 890			jit->seen |= SEEN_LITERAL;
 891			/* dlr %w0,%dst */
 892			EMIT4(0xb9970000, REG_W0, dst_reg);
 893		}
 894		/* llgfr %dst,%rc */
 895		EMIT4(0xb9160000, dst_reg, rc_reg);
 896		if (insn_is_zext(&insn[1]))
 897			insn_count = 2;
 898		break;
 899	}
 900	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 901	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 902	{
 903		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 904
 905		if (imm == 1) {
 906			if (BPF_OP(insn->code) == BPF_MOD)
 907				/* lhgi %dst,0 */
 908				EMIT4_IMM(0xa7090000, dst_reg, 0);
 909			break;
 910		}
 911		/* lghi %w0,0 */
 912		EMIT4_IMM(0xa7090000, REG_W0, 0);
 913		/* lgr %w1,%dst */
 914		EMIT4(0xb9040000, REG_W1, dst_reg);
 915		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 916			/* dlg %w0,<d(imm)>(%l) */
 917			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 918				      EMIT_CONST_U64(imm));
 919		} else {
 920			/* lgrl %dst,imm */
 921			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
 922					 _EMIT_CONST_U64(imm));
 923			jit->seen |= SEEN_LITERAL;
 924			/* dlgr %w0,%dst */
 925			EMIT4(0xb9870000, REG_W0, dst_reg);
 926		}
 927		/* lgr %dst,%rc */
 928		EMIT4(0xb9040000, dst_reg, rc_reg);
 929		break;
 930	}
 931	/*
 932	 * BPF_AND
 933	 */
 934	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 935		/* nr %dst,%src */
 936		EMIT2(0x1400, dst_reg, src_reg);
 937		EMIT_ZERO(dst_reg);
 938		break;
 939	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 940		/* ngr %dst,%src */
 941		EMIT4(0xb9800000, dst_reg, src_reg);
 942		break;
 943	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 944		/* nilf %dst,imm */
 945		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 946		EMIT_ZERO(dst_reg);
 947		break;
 948	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 949		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 950			/* ng %dst,<d(imm)>(%l) */
 951			EMIT6_DISP_LH(0xe3000000, 0x0080,
 952				      dst_reg, REG_0, REG_L,
 953				      EMIT_CONST_U64(imm));
 954		} else {
 955			/* lgrl %w0,imm */
 956			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 957					 _EMIT_CONST_U64(imm));
 958			jit->seen |= SEEN_LITERAL;
 959			/* ngr %dst,%w0 */
 960			EMIT4(0xb9800000, dst_reg, REG_W0);
 961		}
 962		break;
 963	/*
 964	 * BPF_OR
 965	 */
 966	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 967		/* or %dst,%src */
 968		EMIT2(0x1600, dst_reg, src_reg);
 969		EMIT_ZERO(dst_reg);
 970		break;
 971	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 972		/* ogr %dst,%src */
 973		EMIT4(0xb9810000, dst_reg, src_reg);
 974		break;
 975	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 976		/* oilf %dst,imm */
 977		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 978		EMIT_ZERO(dst_reg);
 979		break;
 980	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 981		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 982			/* og %dst,<d(imm)>(%l) */
 983			EMIT6_DISP_LH(0xe3000000, 0x0081,
 984				      dst_reg, REG_0, REG_L,
 985				      EMIT_CONST_U64(imm));
 986		} else {
 987			/* lgrl %w0,imm */
 988			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 989					 _EMIT_CONST_U64(imm));
 990			jit->seen |= SEEN_LITERAL;
 991			/* ogr %dst,%w0 */
 992			EMIT4(0xb9810000, dst_reg, REG_W0);
 993		}
 994		break;
 995	/*
 996	 * BPF_XOR
 997	 */
 998	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 999		/* xr %dst,%src */
1000		EMIT2(0x1700, dst_reg, src_reg);
1001		EMIT_ZERO(dst_reg);
1002		break;
1003	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1004		/* xgr %dst,%src */
1005		EMIT4(0xb9820000, dst_reg, src_reg);
1006		break;
1007	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1008		if (imm != 0) {
1009			/* xilf %dst,imm */
1010			EMIT6_IMM(0xc0070000, dst_reg, imm);
1011		}
1012		EMIT_ZERO(dst_reg);
1013		break;
1014	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1015		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1016			/* xg %dst,<d(imm)>(%l) */
1017			EMIT6_DISP_LH(0xe3000000, 0x0082,
1018				      dst_reg, REG_0, REG_L,
1019				      EMIT_CONST_U64(imm));
1020		} else {
1021			/* lgrl %w0,imm */
1022			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1023					 _EMIT_CONST_U64(imm));
1024			jit->seen |= SEEN_LITERAL;
1025			/* xgr %dst,%w0 */
1026			EMIT4(0xb9820000, dst_reg, REG_W0);
1027		}
1028		break;
1029	/*
1030	 * BPF_LSH
1031	 */
1032	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1033		/* sll %dst,0(%src) */
1034		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1035		EMIT_ZERO(dst_reg);
1036		break;
1037	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1038		/* sllg %dst,%dst,0(%src) */
1039		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1040		break;
1041	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1042		if (imm != 0) {
1043			/* sll %dst,imm(%r0) */
1044			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1045		}
1046		EMIT_ZERO(dst_reg);
1047		break;
1048	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1049		if (imm == 0)
1050			break;
1051		/* sllg %dst,%dst,imm(%r0) */
1052		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1053		break;
1054	/*
1055	 * BPF_RSH
1056	 */
1057	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1058		/* srl %dst,0(%src) */
1059		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1060		EMIT_ZERO(dst_reg);
1061		break;
1062	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1063		/* srlg %dst,%dst,0(%src) */
1064		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1065		break;
1066	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1067		if (imm != 0) {
1068			/* srl %dst,imm(%r0) */
1069			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1070		}
1071		EMIT_ZERO(dst_reg);
1072		break;
1073	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1074		if (imm == 0)
1075			break;
1076		/* srlg %dst,%dst,imm(%r0) */
1077		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1078		break;
1079	/*
1080	 * BPF_ARSH
1081	 */
1082	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1083		/* sra %dst,%dst,0(%src) */
1084		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1085		EMIT_ZERO(dst_reg);
1086		break;
1087	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1088		/* srag %dst,%dst,0(%src) */
1089		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1090		break;
1091	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1092		if (imm != 0) {
1093			/* sra %dst,imm(%r0) */
1094			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1095		}
1096		EMIT_ZERO(dst_reg);
1097		break;
1098	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1099		if (imm == 0)
1100			break;
1101		/* srag %dst,%dst,imm(%r0) */
1102		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1103		break;
1104	/*
1105	 * BPF_NEG
1106	 */
1107	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1108		/* lcr %dst,%dst */
1109		EMIT2(0x1300, dst_reg, dst_reg);
1110		EMIT_ZERO(dst_reg);
1111		break;
1112	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1113		/* lcgr %dst,%dst */
1114		EMIT4(0xb9030000, dst_reg, dst_reg);
1115		break;
1116	/*
1117	 * BPF_FROM_BE/LE
1118	 */
1119	case BPF_ALU | BPF_END | BPF_FROM_BE:
1120		/* s390 is big endian, therefore only clear high order bytes */
1121		switch (imm) {
1122		case 16: /* dst = (u16) cpu_to_be16(dst) */
1123			/* llghr %dst,%dst */
1124			EMIT4(0xb9850000, dst_reg, dst_reg);
1125			if (insn_is_zext(&insn[1]))
1126				insn_count = 2;
1127			break;
1128		case 32: /* dst = (u32) cpu_to_be32(dst) */
1129			if (!fp->aux->verifier_zext)
1130				/* llgfr %dst,%dst */
1131				EMIT4(0xb9160000, dst_reg, dst_reg);
1132			break;
1133		case 64: /* dst = (u64) cpu_to_be64(dst) */
1134			break;
1135		}
1136		break;
1137	case BPF_ALU | BPF_END | BPF_FROM_LE:
1138		switch (imm) {
1139		case 16: /* dst = (u16) cpu_to_le16(dst) */
1140			/* lrvr %dst,%dst */
1141			EMIT4(0xb91f0000, dst_reg, dst_reg);
1142			/* srl %dst,16(%r0) */
1143			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1144			/* llghr %dst,%dst */
1145			EMIT4(0xb9850000, dst_reg, dst_reg);
1146			if (insn_is_zext(&insn[1]))
1147				insn_count = 2;
1148			break;
1149		case 32: /* dst = (u32) cpu_to_le32(dst) */
1150			/* lrvr %dst,%dst */
1151			EMIT4(0xb91f0000, dst_reg, dst_reg);
1152			if (!fp->aux->verifier_zext)
1153				/* llgfr %dst,%dst */
1154				EMIT4(0xb9160000, dst_reg, dst_reg);
1155			break;
1156		case 64: /* dst = (u64) cpu_to_le64(dst) */
1157			/* lrvgr %dst,%dst */
1158			EMIT4(0xb90f0000, dst_reg, dst_reg);
1159			break;
1160		}
1161		break;
1162	/*
1163	 * BPF_NOSPEC (speculation barrier)
1164	 */
1165	case BPF_ST | BPF_NOSPEC:
1166		break;
1167	/*
1168	 * BPF_ST(X)
1169	 */
1170	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1171		/* stcy %src,off(%dst) */
1172		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1173		jit->seen |= SEEN_MEM;
1174		break;
1175	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1176		/* sthy %src,off(%dst) */
1177		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1178		jit->seen |= SEEN_MEM;
1179		break;
1180	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1181		/* sty %src,off(%dst) */
1182		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1183		jit->seen |= SEEN_MEM;
1184		break;
1185	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1186		/* stg %src,off(%dst) */
1187		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1188		jit->seen |= SEEN_MEM;
1189		break;
1190	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1191		/* lhi %w0,imm */
1192		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1193		/* stcy %w0,off(dst) */
1194		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1195		jit->seen |= SEEN_MEM;
1196		break;
1197	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1198		/* lhi %w0,imm */
1199		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1200		/* sthy %w0,off(dst) */
1201		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1202		jit->seen |= SEEN_MEM;
1203		break;
1204	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1205		/* llilf %w0,imm  */
1206		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1207		/* sty %w0,off(%dst) */
1208		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1209		jit->seen |= SEEN_MEM;
1210		break;
1211	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1212		/* lgfi %w0,imm */
1213		EMIT6_IMM(0xc0010000, REG_W0, imm);
1214		/* stg %w0,off(%dst) */
1215		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1216		jit->seen |= SEEN_MEM;
1217		break;
1218	/*
1219	 * BPF_ATOMIC
1220	 */
1221	case BPF_STX | BPF_ATOMIC | BPF_DW:
1222	case BPF_STX | BPF_ATOMIC | BPF_W:
1223	{
1224		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1225
1226		switch (insn->imm) {
1227/* {op32|op64} {%w0|%src},%src,off(%dst) */
1228#define EMIT_ATOMIC(op32, op64) do {					\
1229	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1230		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1231		      src_reg, dst_reg, off);				\
1232	if (is32 && (insn->imm & BPF_FETCH))				\
1233		EMIT_ZERO(src_reg);					\
1234} while (0)
1235		case BPF_ADD:
1236		case BPF_ADD | BPF_FETCH:
1237			/* {laal|laalg} */
1238			EMIT_ATOMIC(0x00fa, 0x00ea);
1239			break;
1240		case BPF_AND:
1241		case BPF_AND | BPF_FETCH:
1242			/* {lan|lang} */
1243			EMIT_ATOMIC(0x00f4, 0x00e4);
1244			break;
1245		case BPF_OR:
1246		case BPF_OR | BPF_FETCH:
1247			/* {lao|laog} */
1248			EMIT_ATOMIC(0x00f6, 0x00e6);
1249			break;
1250		case BPF_XOR:
1251		case BPF_XOR | BPF_FETCH:
1252			/* {lax|laxg} */
1253			EMIT_ATOMIC(0x00f7, 0x00e7);
1254			break;
1255#undef EMIT_ATOMIC
1256		case BPF_XCHG:
1257			/* {ly|lg} %w0,off(%dst) */
1258			EMIT6_DISP_LH(0xe3000000,
1259				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1260				      dst_reg, off);
1261			/* 0: {csy|csg} %w0,%src,off(%dst) */
1262			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1263				      REG_W0, src_reg, dst_reg, off);
1264			/* brc 4,0b */
1265			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1266			/* {llgfr|lgr} %src,%w0 */
1267			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1268			if (is32 && insn_is_zext(&insn[1]))
1269				insn_count = 2;
1270			break;
1271		case BPF_CMPXCHG:
1272			/* 0: {csy|csg} %b0,%src,off(%dst) */
1273			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1274				      BPF_REG_0, src_reg, dst_reg, off);
1275			break;
1276		default:
1277			pr_err("Unknown atomic operation %02x\n", insn->imm);
1278			return -1;
1279		}
1280
1281		jit->seen |= SEEN_MEM;
1282		break;
1283	}
1284	/*
1285	 * BPF_LDX
1286	 */
1287	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1288	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1289		/* llgc %dst,0(off,%src) */
1290		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1291		jit->seen |= SEEN_MEM;
1292		if (insn_is_zext(&insn[1]))
1293			insn_count = 2;
1294		break;
1295	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1296	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1297		/* llgh %dst,0(off,%src) */
1298		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1299		jit->seen |= SEEN_MEM;
1300		if (insn_is_zext(&insn[1]))
1301			insn_count = 2;
1302		break;
1303	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1304	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1305		/* llgf %dst,off(%src) */
1306		jit->seen |= SEEN_MEM;
1307		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1308		if (insn_is_zext(&insn[1]))
1309			insn_count = 2;
1310		break;
1311	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1312	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1313		/* lg %dst,0(off,%src) */
1314		jit->seen |= SEEN_MEM;
1315		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1316		break;
1317	/*
1318	 * BPF_JMP / CALL
1319	 */
1320	case BPF_JMP | BPF_CALL:
1321	{
1322		u64 func;
1323		bool func_addr_fixed;
1324		int ret;
1325
1326		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1327					    &func, &func_addr_fixed);
1328		if (ret < 0)
1329			return -1;
1330
1331		REG_SET_SEEN(BPF_REG_5);
1332		jit->seen |= SEEN_FUNC;
1333		/* lgrl %w1,func */
1334		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1335		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1336			/* brasl %r14,__s390_indirect_jump_r1 */
1337			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1338		} else {
1339			/* basr %r14,%w1 */
1340			EMIT2(0x0d00, REG_14, REG_W1);
1341		}
1342		/* lgr %b0,%r2: load return value into %b0 */
1343		EMIT4(0xb9040000, BPF_REG_0, REG_2);
 
 
 
 
 
 
 
1344		break;
1345	}
1346	case BPF_JMP | BPF_TAIL_CALL: {
1347		int patch_1_clrj, patch_2_clij, patch_3_brc;
1348
1349		/*
1350		 * Implicit input:
1351		 *  B1: pointer to ctx
1352		 *  B2: pointer to bpf_array
1353		 *  B3: index in bpf_array
1354		 */
1355		jit->seen |= SEEN_TAIL_CALL;
1356
1357		/*
1358		 * if (index >= array->map.max_entries)
1359		 *         goto out;
1360		 */
1361
1362		/* llgf %w1,map.max_entries(%b2) */
1363		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1364			      offsetof(struct bpf_array, map.max_entries));
1365		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1366		/* clrj %b3,%w1,0xa,out */
1367		patch_1_clrj = jit->prg;
1368		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1369				 jit->prg);
1370
1371		/*
1372		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1373		 *         goto out;
1374		 */
1375
1376		if (jit->seen & SEEN_STACK)
1377			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1378		else
1379			off = STK_OFF_TCCNT;
1380		/* lhi %w0,1 */
1381		EMIT4_IMM(0xa7080000, REG_W0, 1);
1382		/* laal %w1,%w0,off(%r15) */
1383		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1384		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */
1385		patch_2_clij = jit->prg;
1386		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT,
1387				 2, jit->prg);
1388
1389		/*
1390		 * prog = array->ptrs[index];
1391		 * if (prog == NULL)
1392		 *         goto out;
1393		 */
1394
1395		/* llgfr %r1,%b3: %r1 = (u32) index */
1396		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1397		/* sllg %r1,%r1,3: %r1 *= 8 */
1398		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1399		/* ltg %r1,prog(%b2,%r1) */
1400		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1401			      REG_1, offsetof(struct bpf_array, ptrs));
1402		/* brc 0x8,out */
1403		patch_3_brc = jit->prg;
1404		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1405
1406		/*
1407		 * Restore registers before calling function
1408		 */
1409		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1410
1411		/*
1412		 * goto *(prog->bpf_func + tail_call_start);
1413		 */
1414
1415		/* lg %r1,bpf_func(%r1) */
1416		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1417			      offsetof(struct bpf_prog, bpf_func));
1418		/* bc 0xf,tail_call_start(%r1) */
1419		_EMIT4(0x47f01000 + jit->tail_call_start);
1420		/* out: */
1421		if (jit->prg_buf) {
1422			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1423				(jit->prg - patch_1_clrj) >> 1;
1424			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1425				(jit->prg - patch_2_clij) >> 1;
1426			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1427				(jit->prg - patch_3_brc) >> 1;
1428		}
1429		break;
1430	}
1431	case BPF_JMP | BPF_EXIT: /* return b0 */
1432		last = (i == fp->len - 1) ? 1 : 0;
1433		if (last)
1434			break;
1435		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1436			/* brc 0xf, <exit> */
1437			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1438		else
1439			/* brcl 0xf, <exit> */
1440			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1441		break;
1442	/*
1443	 * Branch relative (number of skipped instructions) to offset on
1444	 * condition.
1445	 *
1446	 * Condition code to mask mapping:
1447	 *
1448	 * CC | Description	   | Mask
1449	 * ------------------------------
1450	 * 0  | Operands equal	   |	8
1451	 * 1  | First operand low  |	4
1452	 * 2  | First operand high |	2
1453	 * 3  | Unused		   |	1
1454	 *
1455	 * For s390x relative branches: ip = ip + off_bytes
1456	 * For BPF relative branches:	insn = insn + off_insns + 1
1457	 *
1458	 * For example for s390x with offset 0 we jump to the branch
1459	 * instruction itself (loop) and for BPF with offset 0 we
1460	 * branch to the instruction behind the branch.
1461	 */
1462	case BPF_JMP | BPF_JA: /* if (true) */
1463		mask = 0xf000; /* j */
1464		goto branch_oc;
1465	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1466	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1467		mask = 0x2000; /* jh */
1468		goto branch_ks;
1469	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1470	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1471		mask = 0x4000; /* jl */
1472		goto branch_ks;
1473	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1474	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1475		mask = 0xa000; /* jhe */
1476		goto branch_ks;
1477	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1478	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1479		mask = 0xc000; /* jle */
1480		goto branch_ks;
1481	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1482	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1483		mask = 0x2000; /* jh */
1484		goto branch_ku;
1485	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1486	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1487		mask = 0x4000; /* jl */
1488		goto branch_ku;
1489	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1490	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1491		mask = 0xa000; /* jhe */
1492		goto branch_ku;
1493	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1494	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1495		mask = 0xc000; /* jle */
1496		goto branch_ku;
1497	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1498	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1499		mask = 0x7000; /* jne */
1500		goto branch_ku;
1501	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1502	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1503		mask = 0x8000; /* je */
1504		goto branch_ku;
1505	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1506	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1507		mask = 0x7000; /* jnz */
1508		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1509			/* llilf %w1,imm (load zero extend imm) */
1510			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1511			/* nr %w1,%dst */
1512			EMIT2(0x1400, REG_W1, dst_reg);
1513		} else {
1514			/* lgfi %w1,imm (load sign extend imm) */
1515			EMIT6_IMM(0xc0010000, REG_W1, imm);
1516			/* ngr %w1,%dst */
1517			EMIT4(0xb9800000, REG_W1, dst_reg);
1518		}
1519		goto branch_oc;
1520
1521	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1522	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1523		mask = 0x2000; /* jh */
1524		goto branch_xs;
1525	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1526	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1527		mask = 0x4000; /* jl */
1528		goto branch_xs;
1529	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1530	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1531		mask = 0xa000; /* jhe */
1532		goto branch_xs;
1533	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1534	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1535		mask = 0xc000; /* jle */
1536		goto branch_xs;
1537	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1538	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1539		mask = 0x2000; /* jh */
1540		goto branch_xu;
1541	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1542	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1543		mask = 0x4000; /* jl */
1544		goto branch_xu;
1545	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1546	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1547		mask = 0xa000; /* jhe */
1548		goto branch_xu;
1549	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1550	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1551		mask = 0xc000; /* jle */
1552		goto branch_xu;
1553	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1554	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1555		mask = 0x7000; /* jne */
1556		goto branch_xu;
1557	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1558	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1559		mask = 0x8000; /* je */
1560		goto branch_xu;
1561	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1562	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1563	{
1564		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1565
1566		mask = 0x7000; /* jnz */
1567		/* nrk or ngrk %w1,%dst,%src */
1568		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1569			  REG_W1, dst_reg, src_reg);
1570		goto branch_oc;
1571branch_ks:
1572		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1573		/* cfi or cgfi %dst,imm */
1574		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1575			  dst_reg, imm);
1576		if (!is_first_pass(jit) &&
1577		    can_use_rel(jit, addrs[i + off + 1])) {
1578			/* brc mask,off */
1579			EMIT4_PCREL_RIC(0xa7040000,
1580					mask >> 12, addrs[i + off + 1]);
1581		} else {
1582			/* brcl mask,off */
1583			EMIT6_PCREL_RILC(0xc0040000,
1584					 mask >> 12, addrs[i + off + 1]);
1585		}
1586		break;
1587branch_ku:
1588		/* lgfi %w1,imm (load sign extend imm) */
1589		src_reg = REG_1;
1590		EMIT6_IMM(0xc0010000, src_reg, imm);
1591		goto branch_xu;
 
1592branch_xs:
1593		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1594		if (!is_first_pass(jit) &&
1595		    can_use_rel(jit, addrs[i + off + 1])) {
1596			/* crj or cgrj %dst,%src,mask,off */
1597			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1598				    dst_reg, src_reg, i, off, mask);
1599		} else {
1600			/* cr or cgr %dst,%src */
1601			if (is_jmp32)
1602				EMIT2(0x1900, dst_reg, src_reg);
1603			else
1604				EMIT4(0xb9200000, dst_reg, src_reg);
1605			/* brcl mask,off */
1606			EMIT6_PCREL_RILC(0xc0040000,
1607					 mask >> 12, addrs[i + off + 1]);
1608		}
1609		break;
1610branch_xu:
1611		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1612		if (!is_first_pass(jit) &&
1613		    can_use_rel(jit, addrs[i + off + 1])) {
1614			/* clrj or clgrj %dst,%src,mask,off */
1615			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1616				    dst_reg, src_reg, i, off, mask);
1617		} else {
1618			/* clr or clgr %dst,%src */
1619			if (is_jmp32)
1620				EMIT2(0x1500, dst_reg, src_reg);
1621			else
1622				EMIT4(0xb9210000, dst_reg, src_reg);
1623			/* brcl mask,off */
1624			EMIT6_PCREL_RILC(0xc0040000,
1625					 mask >> 12, addrs[i + off + 1]);
1626		}
1627		break;
1628branch_oc:
1629		if (!is_first_pass(jit) &&
1630		    can_use_rel(jit, addrs[i + off + 1])) {
1631			/* brc mask,off */
1632			EMIT4_PCREL_RIC(0xa7040000,
1633					mask >> 12, addrs[i + off + 1]);
1634		} else {
1635			/* brcl mask,off */
1636			EMIT6_PCREL_RILC(0xc0040000,
1637					 mask >> 12, addrs[i + off + 1]);
1638		}
1639		break;
1640	}
1641	default: /* too complex, give up */
1642		pr_err("Unknown opcode %02x\n", insn->code);
1643		return -1;
1644	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1645
1646	if (probe_prg != -1) {
1647		/*
1648		 * Handlers of certain exceptions leave psw.addr pointing to
1649		 * the instruction directly after the failing one. Therefore,
1650		 * create two exception table entries and also add a nop in
1651		 * case two probing instructions come directly after each
1652		 * other.
 
 
 
 
 
 
 
1653		 */
1654		nop_prg = jit->prg;
1655		/* bcr 0,%0 */
1656		_EMIT2(0x0700);
1657		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1658		if (err < 0)
1659			return err;
1660	}
1661
1662	return insn_count;
1663}
1664
1665/*
1666 * Return whether new i-th instruction address does not violate any invariant
1667 */
1668static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1669{
1670	/* On the first pass anything goes */
1671	if (is_first_pass(jit))
1672		return true;
1673
1674	/* The codegen pass must not change anything */
1675	if (is_codegen_pass(jit))
1676		return jit->addrs[i] == jit->prg;
1677
1678	/* Passes in between must not increase code size */
1679	return jit->addrs[i] >= jit->prg;
1680}
 
 
 
 
 
 
 
 
 
 
1681
1682/*
1683 * Update the address of i-th instruction
1684 */
1685static int bpf_set_addr(struct bpf_jit *jit, int i)
1686{
1687	int delta;
1688
1689	if (is_codegen_pass(jit)) {
1690		delta = jit->prg - jit->addrs[i];
1691		if (delta < 0)
1692			bpf_skip(jit, -delta);
1693	}
1694	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1695		return -1;
1696	jit->addrs[i] = jit->prg;
1697	return 0;
1698}
1699
1700/*
1701 * Compile eBPF program into s390x code
1702 */
1703static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1704			bool extra_pass, u32 stack_depth)
1705{
1706	int i, insn_count, lit32_size, lit64_size;
1707
1708	jit->lit32 = jit->lit32_start;
1709	jit->lit64 = jit->lit64_start;
1710	jit->prg = 0;
1711	jit->excnt = 0;
1712
1713	bpf_jit_prologue(jit, stack_depth);
1714	if (bpf_set_addr(jit, 0) < 0)
1715		return -1;
1716	for (i = 0; i < fp->len; i += insn_count) {
1717		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1718		if (insn_count < 0)
1719			return -1;
1720		/* Next instruction address */
1721		if (bpf_set_addr(jit, i + insn_count) < 0)
1722			return -1;
1723	}
1724	bpf_jit_epilogue(jit, stack_depth);
1725
1726	lit32_size = jit->lit32 - jit->lit32_start;
1727	lit64_size = jit->lit64 - jit->lit64_start;
1728	jit->lit32_start = jit->prg;
1729	if (lit32_size)
1730		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1731	jit->lit64_start = jit->lit32_start + lit32_size;
1732	if (lit64_size)
1733		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1734	jit->size = jit->lit64_start + lit64_size;
1735	jit->size_prg = jit->prg;
1736
1737	if (WARN_ON_ONCE(fp->aux->extable &&
1738			 jit->excnt != fp->aux->num_exentries))
1739		/* Verifier bug - too many entries. */
1740		return -1;
1741
1742	return 0;
1743}
1744
1745bool bpf_jit_needs_zext(void)
 
 
 
 
1746{
1747	return true;
1748}
1749
1750struct s390_jit_data {
1751	struct bpf_binary_header *header;
1752	struct bpf_jit ctx;
1753	int pass;
1754};
1755
1756static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1757					       struct bpf_prog *fp)
1758{
1759	struct bpf_binary_header *header;
1760	u32 extable_size;
1761	u32 code_size;
1762
1763	/* We need two entries per insn. */
1764	fp->aux->num_exentries *= 2;
1765
1766	code_size = roundup(jit->size,
1767			    __alignof__(struct exception_table_entry));
1768	extable_size = fp->aux->num_exentries *
1769		sizeof(struct exception_table_entry);
1770	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1771				      8, jit_fill_hole);
1772	if (!header)
1773		return NULL;
1774	fp->aux->extable = (struct exception_table_entry *)
1775		(jit->prg_buf + code_size);
1776	return header;
1777}
1778
1779/*
1780 * Compile eBPF program "fp"
1781 */
1782struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1783{
1784	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1785	struct bpf_prog *tmp, *orig_fp = fp;
1786	struct bpf_binary_header *header;
1787	struct s390_jit_data *jit_data;
1788	bool tmp_blinded = false;
1789	bool extra_pass = false;
1790	struct bpf_jit jit;
1791	int pass;
1792
1793	if (!fp->jit_requested)
1794		return orig_fp;
1795
1796	tmp = bpf_jit_blind_constants(fp);
1797	/*
1798	 * If blinding was requested and we failed during blinding,
1799	 * we must fall back to the interpreter.
1800	 */
1801	if (IS_ERR(tmp))
1802		return orig_fp;
1803	if (tmp != fp) {
1804		tmp_blinded = true;
1805		fp = tmp;
1806	}
1807
1808	jit_data = fp->aux->jit_data;
1809	if (!jit_data) {
1810		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1811		if (!jit_data) {
1812			fp = orig_fp;
1813			goto out;
1814		}
1815		fp->aux->jit_data = jit_data;
1816	}
1817	if (jit_data->ctx.addrs) {
1818		jit = jit_data->ctx;
1819		header = jit_data->header;
1820		extra_pass = true;
1821		pass = jit_data->pass + 1;
1822		goto skip_init_ctx;
1823	}
1824
1825	memset(&jit, 0, sizeof(jit));
1826	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1827	if (jit.addrs == NULL) {
1828		fp = orig_fp;
1829		goto free_addrs;
1830	}
1831	/*
1832	 * Three initial passes:
1833	 *   - 1/2: Determine clobbered registers
1834	 *   - 3:   Calculate program size and addrs arrray
1835	 */
1836	for (pass = 1; pass <= 3; pass++) {
1837		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1838			fp = orig_fp;
1839			goto free_addrs;
1840		}
1841	}
1842	/*
1843	 * Final pass: Allocate and generate program
1844	 */
1845	header = bpf_jit_alloc(&jit, fp);
 
 
 
 
1846	if (!header) {
1847		fp = orig_fp;
1848		goto free_addrs;
1849	}
1850skip_init_ctx:
1851	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1852		bpf_jit_binary_free(header);
1853		fp = orig_fp;
1854		goto free_addrs;
1855	}
1856	if (bpf_jit_enable > 1) {
1857		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1858		print_fn_code(jit.prg_buf, jit.size_prg);
 
 
 
 
 
 
1859	}
1860	if (!fp->is_func || extra_pass) {
1861		bpf_jit_binary_lock_ro(header);
1862	} else {
1863		jit_data->header = header;
1864		jit_data->ctx = jit;
1865		jit_data->pass = pass;
1866	}
1867	fp->bpf_func = (void *) jit.prg_buf;
1868	fp->jited = 1;
1869	fp->jited_len = jit.size;
1870
1871	if (!fp->is_func || extra_pass) {
1872		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1873free_addrs:
1874		kvfree(jit.addrs);
1875		kfree(jit_data);
1876		fp->aux->jit_data = NULL;
1877	}
1878out:
1879	if (tmp_blinded)
1880		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1881					   tmp : orig_fp);
1882	return fp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1883}