Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/delay.h>
  30#include <linux/smp.h>
  31#include <linux/security.h>
  32#include <linux/bootmem.h>
  33#include <linux/memblock.h>
  34#include <linux/syscalls.h>
  35#include <linux/kexec.h>
  36#include <linux/kdb.h>
  37#include <linux/ratelimit.h>
  38#include <linux/kmsg_dump.h>
  39#include <linux/syslog.h>
  40#include <linux/cpu.h>
  41#include <linux/notifier.h>
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
  45#include <linux/utsname.h>
  46#include <linux/ctype.h>
  47#include <linux/uio.h>
 
 
 
  48
  49#include <linux/uaccess.h>
  50#include <asm/sections.h>
  51
 
  52#define CREATE_TRACE_POINTS
  53#include <trace/events/printk.h>
  54
 
  55#include "console_cmdline.h"
  56#include "braille.h"
  57#include "internal.h"
  58
  59int console_printk[4] = {
  60	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  61	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  62	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  64};
 
 
 
 
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
  81
 
 
 
 
 
 
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84	.name = "console_lock"
  85};
  86#endif
  87
  88enum devkmsg_log_bits {
  89	__DEVKMSG_LOG_BIT_ON = 0,
  90	__DEVKMSG_LOG_BIT_OFF,
  91	__DEVKMSG_LOG_BIT_LOCK,
  92};
  93
  94enum devkmsg_log_masks {
  95	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
  96	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
  97	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
  98};
  99
 100/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 101#define DEVKMSG_LOG_MASK_DEFAULT	0
 102
 103static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 104
 105static int __control_devkmsg(char *str)
 106{
 
 
 107	if (!str)
 108		return -EINVAL;
 109
 110	if (!strncmp(str, "on", 2)) {
 
 111		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 112		return 2;
 113	} else if (!strncmp(str, "off", 3)) {
 
 
 
 114		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 115		return 3;
 116	} else if (!strncmp(str, "ratelimit", 9)) {
 
 
 
 117		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118		return 9;
 119	}
 
 120	return -EINVAL;
 121}
 122
 123static int __init control_devkmsg(char *str)
 124{
 125	if (__control_devkmsg(str) < 0)
 126		return 1;
 127
 128	/*
 129	 * Set sysctl string accordingly:
 130	 */
 131	if (devkmsg_log == DEVKMSG_LOG_MASK_ON) {
 132		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
 133		strncpy(devkmsg_log_str, "on", 2);
 134	} else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF) {
 135		memset(devkmsg_log_str, 0, DEVKMSG_STR_MAX_SIZE);
 136		strncpy(devkmsg_log_str, "off", 3);
 137	}
 138	/* else "ratelimit" which is set by default. */
 139
 140	/*
 141	 * Sysctl cannot change it anymore. The kernel command line setting of
 142	 * this parameter is to force the setting to be permanent throughout the
 143	 * runtime of the system. This is a precation measure against userspace
 144	 * trying to be a smarta** and attempting to change it up on us.
 145	 */
 146	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 147
 148	return 0;
 149}
 150__setup("printk.devkmsg=", control_devkmsg);
 151
 152char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 153
 154int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 155			      void __user *buffer, size_t *lenp, loff_t *ppos)
 156{
 157	char old_str[DEVKMSG_STR_MAX_SIZE];
 158	unsigned int old;
 159	int err;
 160
 161	if (write) {
 162		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 163			return -EINVAL;
 164
 165		old = devkmsg_log;
 166		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 167	}
 168
 169	err = proc_dostring(table, write, buffer, lenp, ppos);
 170	if (err)
 171		return err;
 172
 173	if (write) {
 174		err = __control_devkmsg(devkmsg_log_str);
 175
 176		/*
 177		 * Do not accept an unknown string OR a known string with
 178		 * trailing crap...
 179		 */
 180		if (err < 0 || (err + 1 != *lenp)) {
 181
 182			/* ... and restore old setting. */
 183			devkmsg_log = old;
 184			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 185
 186			return -EINVAL;
 187		}
 188	}
 189
 190	return 0;
 191}
 192
 193/*
 194 * Number of registered extended console drivers.
 195 *
 196 * If extended consoles are present, in-kernel cont reassembly is disabled
 197 * and each fragment is stored as a separate log entry with proper
 198 * continuation flag so that every emitted message has full metadata.  This
 199 * doesn't change the result for regular consoles or /proc/kmsg.  For
 200 * /dev/kmsg, as long as the reader concatenates messages according to
 201 * consecutive continuation flags, the end result should be the same too.
 202 */
 203static int nr_ext_console_drivers;
 204
 205/*
 206 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 207 * macros instead of functions so that _RET_IP_ contains useful information.
 208 */
 209#define down_console_sem() do { \
 210	down(&console_sem);\
 211	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 212} while (0)
 213
 214static int __down_trylock_console_sem(unsigned long ip)
 215{
 216	if (down_trylock(&console_sem))
 
 
 
 
 
 
 
 
 
 
 
 
 217		return 1;
 218	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 219	return 0;
 220}
 221#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 222
 223#define up_console_sem() do { \
 224	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 225	up(&console_sem);\
 226} while (0)
 
 
 
 
 
 
 
 227
 228/*
 229 * This is used for debugging the mess that is the VT code by
 230 * keeping track if we have the console semaphore held. It's
 231 * definitely not the perfect debug tool (we don't know if _WE_
 232 * hold it and are racing, but it helps tracking those weird code
 233 * paths in the console code where we end up in places I want
 234 * locked without the console sempahore held).
 235 */
 236static int console_locked, console_suspended;
 237
 238/*
 239 * If exclusive_console is non-NULL then only this console is to be printed to.
 240 */
 241static struct console *exclusive_console;
 242
 243/*
 244 *	Array of consoles built from command line options (console=)
 245 */
 246
 247#define MAX_CMDLINECONSOLES 8
 248
 249static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 250
 251static int selected_console = -1;
 252static int preferred_console = -1;
 
 253int console_set_on_cmdline;
 254EXPORT_SYMBOL(console_set_on_cmdline);
 255
 256/* Flag: console code may call schedule() */
 257static int console_may_schedule;
 258
 
 
 
 
 
 
 
 259/*
 260 * The printk log buffer consists of a chain of concatenated variable
 261 * length records. Every record starts with a record header, containing
 262 * the overall length of the record.
 263 *
 264 * The heads to the first and last entry in the buffer, as well as the
 265 * sequence numbers of these entries are maintained when messages are
 266 * stored.
 267 *
 268 * If the heads indicate available messages, the length in the header
 269 * tells the start next message. A length == 0 for the next message
 270 * indicates a wrap-around to the beginning of the buffer.
 271 *
 272 * Every record carries the monotonic timestamp in microseconds, as well as
 273 * the standard userspace syslog level and syslog facility. The usual
 274 * kernel messages use LOG_KERN; userspace-injected messages always carry
 275 * a matching syslog facility, by default LOG_USER. The origin of every
 276 * message can be reliably determined that way.
 277 *
 278 * The human readable log message directly follows the message header. The
 279 * length of the message text is stored in the header, the stored message
 280 * is not terminated.
 281 *
 282 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 283 * to provide userspace with a machine-readable message context.
 
 
 
 
 284 *
 285 * Examples for well-defined, commonly used property names are:
 286 *   DEVICE=b12:8               device identifier
 287 *                                b12:8         block dev_t
 288 *                                c127:3        char dev_t
 289 *                                n8            netdev ifindex
 290 *                                +sound:card0  subsystem:devname
 291 *   SUBSYSTEM=pci              driver-core subsystem name
 292 *
 293 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 294 * follows directly after a '=' character. Every property is terminated by
 295 * a '\0' character. The last property is not terminated.
 296 *
 297 * Example of a message structure:
 298 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 299 *   0008  34 00                        record is 52 bytes long
 300 *   000a        0b 00                  text is 11 bytes long
 301 *   000c              1f 00            dictionary is 23 bytes long
 302 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 303 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 304 *         69 6e 65                     "ine"
 305 *   001b           44 45 56 49 43      "DEVIC"
 306 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 307 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 308 *         67                           "g"
 309 *   0032     00 00 00                  padding to next message header
 310 *
 311 * The 'struct printk_log' buffer header must never be directly exported to
 312 * userspace, it is a kernel-private implementation detail that might
 313 * need to be changed in the future, when the requirements change.
 314 *
 315 * /dev/kmsg exports the structured data in the following line format:
 316 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 317 *
 318 * Users of the export format should ignore possible additional values
 319 * separated by ',', and find the message after the ';' character.
 320 *
 321 * The optional key/value pairs are attached as continuation lines starting
 322 * with a space character and terminated by a newline. All possible
 323 * non-prinatable characters are escaped in the "\xff" notation.
 324 */
 325
 326enum log_flags {
 327	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 328	LOG_NEWLINE	= 2,	/* text ended with a newline */
 329	LOG_PREFIX	= 4,	/* text started with a prefix */
 330	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 331};
 332
 333struct printk_log {
 334	u64 ts_nsec;		/* timestamp in nanoseconds */
 335	u16 len;		/* length of entire record */
 336	u16 text_len;		/* length of text buffer */
 337	u16 dict_len;		/* length of dictionary buffer */
 338	u8 facility;		/* syslog facility */
 339	u8 flags:5;		/* internal record flags */
 340	u8 level:3;		/* syslog level */
 341}
 342#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 343__packed __aligned(4)
 344#endif
 345;
 346
 347/*
 348 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 349 * within the scheduler's rq lock. It must be released before calling
 350 * console_unlock() or anything else that might wake up a process.
 351 */
 352DEFINE_RAW_SPINLOCK(logbuf_lock);
 353
 354#ifdef CONFIG_PRINTK
 355DECLARE_WAIT_QUEUE_HEAD(log_wait);
 
 356/* the next printk record to read by syslog(READ) or /proc/kmsg */
 357static u64 syslog_seq;
 358static u32 syslog_idx;
 359static size_t syslog_partial;
 
 360
 361/* index and sequence number of the first record stored in the buffer */
 362static u64 log_first_seq;
 363static u32 log_first_idx;
 364
 365/* index and sequence number of the next record to store in the buffer */
 366static u64 log_next_seq;
 367static u32 log_next_idx;
 368
 369/* the next printk record to write to the console */
 370static u64 console_seq;
 371static u32 console_idx;
 
 
 
 
 
 
 372
 373/* the next printk record to read after the last 'clear' command */
 374static u64 clear_seq;
 375static u32 clear_idx;
 
 
 
 
 
 
 
 376
 
 
 
 377#define PREFIX_MAX		32
 378#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 
 
 
 
 
 
 379
 380#define LOG_LEVEL(v)		((v) & 0x07)
 381#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 382
 383/* record buffer */
 384#define LOG_ALIGN __alignof__(struct printk_log)
 385#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 386static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 387static char *log_buf = __log_buf;
 388static u32 log_buf_len = __LOG_BUF_LEN;
 389
 390/* Return log buffer address */
 391char *log_buf_addr_get(void)
 392{
 393	return log_buf;
 394}
 
 395
 396/* Return log buffer size */
 397u32 log_buf_len_get(void)
 398{
 399	return log_buf_len;
 400}
 401
 402/* human readable text of the record */
 403static char *log_text(const struct printk_log *msg)
 404{
 405	return (char *)msg + sizeof(struct printk_log);
 406}
 407
 408/* optional key/value pair dictionary attached to the record */
 409static char *log_dict(const struct printk_log *msg)
 410{
 411	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 412}
 413
 414/* get record by index; idx must point to valid msg */
 415static struct printk_log *log_from_idx(u32 idx)
 416{
 417	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 
 
 418
 419	/*
 420	 * A length == 0 record is the end of buffer marker. Wrap around and
 421	 * read the message at the start of the buffer.
 422	 */
 423	if (!msg->len)
 424		return (struct printk_log *)log_buf;
 425	return msg;
 426}
 427
 428/* get next record; idx must point to valid msg */
 429static u32 log_next(u32 idx)
 430{
 431	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 432
 433	/* length == 0 indicates the end of the buffer; wrap */
 434	/*
 435	 * A length == 0 record is the end of buffer marker. Wrap around and
 436	 * read the message at the start of the buffer as *this* one, and
 437	 * return the one after that.
 438	 */
 439	if (!msg->len) {
 440		msg = (struct printk_log *)log_buf;
 441		return msg->len;
 442	}
 443	return idx + msg->len;
 444}
 445
 446/*
 447 * Check whether there is enough free space for the given message.
 448 *
 449 * The same values of first_idx and next_idx mean that the buffer
 450 * is either empty or full.
 451 *
 452 * If the buffer is empty, we must respect the position of the indexes.
 453 * They cannot be reset to the beginning of the buffer.
 454 */
 455static int logbuf_has_space(u32 msg_size, bool empty)
 456{
 457	u32 free;
 
 
 458
 459	if (log_next_idx > log_first_idx || empty)
 460		free = max(log_buf_len - log_next_idx, log_first_idx);
 461	else
 462		free = log_first_idx - log_next_idx;
 
 463
 464	/*
 465	 * We need space also for an empty header that signalizes wrapping
 466	 * of the buffer.
 467	 */
 468	return free >= msg_size + sizeof(struct printk_log);
 469}
 470
 471static int log_make_free_space(u32 msg_size)
 
 472{
 473	while (log_first_seq < log_next_seq &&
 474	       !logbuf_has_space(msg_size, false)) {
 475		/* drop old messages until we have enough contiguous space */
 476		log_first_idx = log_next(log_first_idx);
 477		log_first_seq++;
 478	}
 479
 480	if (clear_seq < log_first_seq) {
 481		clear_seq = log_first_seq;
 482		clear_idx = log_first_idx;
 483	}
 484
 485	/* sequence numbers are equal, so the log buffer is empty */
 486	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 487		return 0;
 488
 489	return -ENOMEM;
 490}
 491
 492/* compute the message size including the padding bytes */
 493static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 494{
 495	u32 size;
 496
 497	size = sizeof(struct printk_log) + text_len + dict_len;
 498	*pad_len = (-size) & (LOG_ALIGN - 1);
 499	size += *pad_len;
 500
 501	return size;
 502}
 503
 504/*
 505 * Define how much of the log buffer we could take at maximum. The value
 506 * must be greater than two. Note that only half of the buffer is available
 507 * when the index points to the middle.
 508 */
 509#define MAX_LOG_TAKE_PART 4
 510static const char trunc_msg[] = "<truncated>";
 511
 512static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 513			u16 *dict_len, u32 *pad_len)
 514{
 515	/*
 516	 * The message should not take the whole buffer. Otherwise, it might
 517	 * get removed too soon.
 518	 */
 519	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 
 520	if (*text_len > max_text_len)
 521		*text_len = max_text_len;
 522	/* enable the warning message */
 523	*trunc_msg_len = strlen(trunc_msg);
 524	/* disable the "dict" completely */
 525	*dict_len = 0;
 526	/* compute the size again, count also the warning message */
 527	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 528}
 529
 530/* insert record into the buffer, discard old ones, update heads */
 531static int log_store(int facility, int level,
 532		     enum log_flags flags, u64 ts_nsec,
 533		     const char *dict, u16 dict_len,
 534		     const char *text, u16 text_len)
 535{
 536	struct printk_log *msg;
 537	u32 size, pad_len;
 538	u16 trunc_msg_len = 0;
 539
 540	/* number of '\0' padding bytes to next message */
 541	size = msg_used_size(text_len, dict_len, &pad_len);
 542
 543	if (log_make_free_space(size)) {
 544		/* truncate the message if it is too long for empty buffer */
 545		size = truncate_msg(&text_len, &trunc_msg_len,
 546				    &dict_len, &pad_len);
 547		/* survive when the log buffer is too small for trunc_msg */
 548		if (log_make_free_space(size))
 549			return 0;
 550	}
 551
 552	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 553		/*
 554		 * This message + an additional empty header does not fit
 555		 * at the end of the buffer. Add an empty header with len == 0
 556		 * to signify a wrap around.
 557		 */
 558		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 559		log_next_idx = 0;
 560	}
 561
 562	/* fill message */
 563	msg = (struct printk_log *)(log_buf + log_next_idx);
 564	memcpy(log_text(msg), text, text_len);
 565	msg->text_len = text_len;
 566	if (trunc_msg_len) {
 567		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 568		msg->text_len += trunc_msg_len;
 569	}
 570	memcpy(log_dict(msg), dict, dict_len);
 571	msg->dict_len = dict_len;
 572	msg->facility = facility;
 573	msg->level = level & 7;
 574	msg->flags = flags & 0x1f;
 575	if (ts_nsec > 0)
 576		msg->ts_nsec = ts_nsec;
 577	else
 578		msg->ts_nsec = local_clock();
 579	memset(log_dict(msg) + dict_len, 0, pad_len);
 580	msg->len = size;
 581
 582	/* insert message */
 583	log_next_idx += msg->len;
 584	log_next_seq++;
 585
 586	return msg->text_len;
 587}
 588
 589int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 590
 591static int syslog_action_restricted(int type)
 592{
 593	if (dmesg_restrict)
 594		return 1;
 595	/*
 596	 * Unless restricted, we allow "read all" and "get buffer size"
 597	 * for everybody.
 598	 */
 599	return type != SYSLOG_ACTION_READ_ALL &&
 600	       type != SYSLOG_ACTION_SIZE_BUFFER;
 601}
 602
 603int check_syslog_permissions(int type, int source)
 604{
 605	/*
 606	 * If this is from /proc/kmsg and we've already opened it, then we've
 607	 * already done the capabilities checks at open time.
 608	 */
 609	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 610		goto ok;
 611
 612	if (syslog_action_restricted(type)) {
 613		if (capable(CAP_SYSLOG))
 614			goto ok;
 615		/*
 616		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 617		 * a warning.
 618		 */
 619		if (capable(CAP_SYS_ADMIN)) {
 620			pr_warn_once("%s (%d): Attempt to access syslog with "
 621				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 622				     "(deprecated).\n",
 623				 current->comm, task_pid_nr(current));
 624			goto ok;
 625		}
 626		return -EPERM;
 627	}
 628ok:
 629	return security_syslog(type);
 630}
 631EXPORT_SYMBOL_GPL(check_syslog_permissions);
 632
 633static void append_char(char **pp, char *e, char c)
 634{
 635	if (*pp < e)
 636		*(*pp)++ = c;
 637}
 638
 639static ssize_t msg_print_ext_header(char *buf, size_t size,
 640				    struct printk_log *msg, u64 seq)
 641{
 642	u64 ts_usec = msg->ts_nsec;
 
 
 
 
 
 
 
 
 
 643
 644	do_div(ts_usec, 1000);
 645
 646	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 647		       (msg->facility << 3) | msg->level, seq, ts_usec,
 648		       msg->flags & LOG_CONT ? 'c' : '-');
 649}
 650
 651static ssize_t msg_print_ext_body(char *buf, size_t size,
 652				  char *dict, size_t dict_len,
 653				  char *text, size_t text_len)
 654{
 655	char *p = buf, *e = buf + size;
 656	size_t i;
 657
 658	/* escape non-printable characters */
 659	for (i = 0; i < text_len; i++) {
 660		unsigned char c = text[i];
 661
 662		if (c < ' ' || c >= 127 || c == '\\')
 663			p += scnprintf(p, e - p, "\\x%02x", c);
 664		else
 665			append_char(&p, e, c);
 666	}
 667	append_char(&p, e, '\n');
 668
 669	if (dict_len) {
 670		bool line = true;
 671
 672		for (i = 0; i < dict_len; i++) {
 673			unsigned char c = dict[i];
 
 
 
 674
 675			if (line) {
 676				append_char(&p, e, ' ');
 677				line = false;
 678			}
 679
 680			if (c == '\0') {
 681				append_char(&p, e, '\n');
 682				line = true;
 683				continue;
 684			}
 685
 686			if (c < ' ' || c >= 127 || c == '\\') {
 687				p += scnprintf(p, e - p, "\\x%02x", c);
 688				continue;
 689			}
 690
 691			append_char(&p, e, c);
 692		}
 693		append_char(&p, e, '\n');
 694	}
 
 695
 696	return p - buf;
 
 
 
 
 
 
 
 
 
 
 697}
 698
 699/* /dev/kmsg - userspace message inject/listen interface */
 700struct devkmsg_user {
 701	u64 seq;
 702	u32 idx;
 703	struct ratelimit_state rs;
 704	struct mutex lock;
 705	char buf[CONSOLE_EXT_LOG_MAX];
 
 
 
 
 706};
 707
 
 
 
 
 
 
 
 
 
 
 
 
 
 708static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 709{
 710	char *buf, *line;
 711	int level = default_message_loglevel;
 712	int facility = 1;	/* LOG_USER */
 713	struct file *file = iocb->ki_filp;
 714	struct devkmsg_user *user = file->private_data;
 715	size_t len = iov_iter_count(from);
 716	ssize_t ret = len;
 717
 718	if (!user || len > LOG_LINE_MAX)
 719		return -EINVAL;
 720
 721	/* Ignore when user logging is disabled. */
 722	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 723		return len;
 724
 725	/* Ratelimit when not explicitly enabled. */
 726	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 727		if (!___ratelimit(&user->rs, current->comm))
 728			return ret;
 729	}
 730
 731	buf = kmalloc(len+1, GFP_KERNEL);
 732	if (buf == NULL)
 733		return -ENOMEM;
 734
 735	buf[len] = '\0';
 736	if (!copy_from_iter_full(buf, len, from)) {
 737		kfree(buf);
 738		return -EFAULT;
 739	}
 740
 741	/*
 742	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 743	 * the decimal value represents 32bit, the lower 3 bit are the log
 744	 * level, the rest are the log facility.
 745	 *
 746	 * If no prefix or no userspace facility is specified, we
 747	 * enforce LOG_USER, to be able to reliably distinguish
 748	 * kernel-generated messages from userspace-injected ones.
 749	 */
 750	line = buf;
 751	if (line[0] == '<') {
 752		char *endp = NULL;
 753		unsigned int u;
 754
 755		u = simple_strtoul(line + 1, &endp, 10);
 756		if (endp && endp[0] == '>') {
 757			level = LOG_LEVEL(u);
 758			if (LOG_FACILITY(u) != 0)
 759				facility = LOG_FACILITY(u);
 760			endp++;
 761			len -= endp - line;
 762			line = endp;
 763		}
 764	}
 765
 766	printk_emit(facility, level, NULL, 0, "%s", line);
 767	kfree(buf);
 768	return ret;
 769}
 770
 771static ssize_t devkmsg_read(struct file *file, char __user *buf,
 772			    size_t count, loff_t *ppos)
 773{
 774	struct devkmsg_user *user = file->private_data;
 775	struct printk_log *msg;
 776	size_t len;
 777	ssize_t ret;
 778
 779	if (!user)
 780		return -EBADF;
 781
 782	ret = mutex_lock_interruptible(&user->lock);
 783	if (ret)
 784		return ret;
 785	raw_spin_lock_irq(&logbuf_lock);
 786	while (user->seq == log_next_seq) {
 
 787		if (file->f_flags & O_NONBLOCK) {
 788			ret = -EAGAIN;
 789			raw_spin_unlock_irq(&logbuf_lock);
 790			goto out;
 791		}
 792
 793		raw_spin_unlock_irq(&logbuf_lock);
 794		ret = wait_event_interruptible(log_wait,
 795					       user->seq != log_next_seq);
 796		if (ret)
 797			goto out;
 798		raw_spin_lock_irq(&logbuf_lock);
 799	}
 800
 801	if (user->seq < log_first_seq) {
 802		/* our last seen message is gone, return error and reset */
 803		user->idx = log_first_idx;
 804		user->seq = log_first_seq;
 805		ret = -EPIPE;
 806		raw_spin_unlock_irq(&logbuf_lock);
 807		goto out;
 808	}
 809
 810	msg = log_from_idx(user->idx);
 811	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 812				   msg, user->seq);
 813	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 814				  log_dict(msg), msg->dict_len,
 815				  log_text(msg), msg->text_len);
 816
 817	user->idx = log_next(user->idx);
 818	user->seq++;
 819	raw_spin_unlock_irq(&logbuf_lock);
 820
 821	if (len > count) {
 822		ret = -EINVAL;
 823		goto out;
 824	}
 825
 826	if (copy_to_user(buf, user->buf, len)) {
 827		ret = -EFAULT;
 828		goto out;
 829	}
 830	ret = len;
 831out:
 832	mutex_unlock(&user->lock);
 833	return ret;
 834}
 835
 
 
 
 
 
 
 
 
 836static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 837{
 838	struct devkmsg_user *user = file->private_data;
 839	loff_t ret = 0;
 840
 841	if (!user)
 842		return -EBADF;
 843	if (offset)
 844		return -ESPIPE;
 845
 846	raw_spin_lock_irq(&logbuf_lock);
 847	switch (whence) {
 848	case SEEK_SET:
 849		/* the first record */
 850		user->idx = log_first_idx;
 851		user->seq = log_first_seq;
 852		break;
 853	case SEEK_DATA:
 854		/*
 855		 * The first record after the last SYSLOG_ACTION_CLEAR,
 856		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 857		 * changes no global state, and does not clear anything.
 858		 */
 859		user->idx = clear_idx;
 860		user->seq = clear_seq;
 861		break;
 862	case SEEK_END:
 863		/* after the last record */
 864		user->idx = log_next_idx;
 865		user->seq = log_next_seq;
 866		break;
 867	default:
 868		ret = -EINVAL;
 869	}
 870	raw_spin_unlock_irq(&logbuf_lock);
 871	return ret;
 872}
 873
 874static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 875{
 876	struct devkmsg_user *user = file->private_data;
 877	int ret = 0;
 
 878
 879	if (!user)
 880		return POLLERR|POLLNVAL;
 881
 882	poll_wait(file, &log_wait, wait);
 883
 884	raw_spin_lock_irq(&logbuf_lock);
 885	if (user->seq < log_next_seq) {
 886		/* return error when data has vanished underneath us */
 887		if (user->seq < log_first_seq)
 888			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 889		else
 890			ret = POLLIN|POLLRDNORM;
 891	}
 892	raw_spin_unlock_irq(&logbuf_lock);
 893
 894	return ret;
 895}
 896
 897static int devkmsg_open(struct inode *inode, struct file *file)
 898{
 899	struct devkmsg_user *user;
 900	int err;
 901
 902	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 903		return -EPERM;
 904
 905	/* write-only does not need any file context */
 906	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 907		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 908					       SYSLOG_FROM_READER);
 909		if (err)
 910			return err;
 911	}
 912
 913	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 914	if (!user)
 915		return -ENOMEM;
 916
 917	ratelimit_default_init(&user->rs);
 918	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 919
 920	mutex_init(&user->lock);
 921
 922	raw_spin_lock_irq(&logbuf_lock);
 923	user->idx = log_first_idx;
 924	user->seq = log_first_seq;
 925	raw_spin_unlock_irq(&logbuf_lock);
 
 
 926
 927	file->private_data = user;
 928	return 0;
 929}
 930
 931static int devkmsg_release(struct inode *inode, struct file *file)
 932{
 933	struct devkmsg_user *user = file->private_data;
 934
 935	if (!user)
 936		return 0;
 937
 938	ratelimit_state_exit(&user->rs);
 939
 940	mutex_destroy(&user->lock);
 941	kfree(user);
 942	return 0;
 943}
 944
 945const struct file_operations kmsg_fops = {
 946	.open = devkmsg_open,
 947	.read = devkmsg_read,
 948	.write_iter = devkmsg_write,
 949	.llseek = devkmsg_llseek,
 950	.poll = devkmsg_poll,
 951	.release = devkmsg_release,
 952};
 953
 954#ifdef CONFIG_KEXEC_CORE
 955/*
 956 * This appends the listed symbols to /proc/vmcore
 957 *
 958 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 959 * obtain access to symbols that are otherwise very difficult to locate.  These
 960 * symbols are specifically used so that utilities can access and extract the
 961 * dmesg log from a vmcore file after a crash.
 962 */
 963void log_buf_kexec_setup(void)
 964{
 965	VMCOREINFO_SYMBOL(log_buf);
 966	VMCOREINFO_SYMBOL(log_buf_len);
 967	VMCOREINFO_SYMBOL(log_first_idx);
 968	VMCOREINFO_SYMBOL(clear_idx);
 969	VMCOREINFO_SYMBOL(log_next_idx);
 
 970	/*
 971	 * Export struct printk_log size and field offsets. User space tools can
 972	 * parse it and detect any changes to structure down the line.
 973	 */
 974	VMCOREINFO_STRUCT_SIZE(printk_log);
 975	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 976	VMCOREINFO_OFFSET(printk_log, len);
 977	VMCOREINFO_OFFSET(printk_log, text_len);
 978	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979}
 980#endif
 981
 982/* requested log_buf_len from kernel cmdline */
 983static unsigned long __initdata new_log_buf_len;
 984
 985/* we practice scaling the ring buffer by powers of 2 */
 986static void __init log_buf_len_update(unsigned size)
 987{
 
 
 
 
 
 988	if (size)
 989		size = roundup_pow_of_two(size);
 990	if (size > log_buf_len)
 991		new_log_buf_len = size;
 992}
 993
 994/* save requested log_buf_len since it's too early to process it */
 995static int __init log_buf_len_setup(char *str)
 996{
 997	unsigned size = memparse(str, &str);
 
 
 
 
 
 998
 999	log_buf_len_update(size);
1000
1001	return 0;
1002}
1003early_param("log_buf_len", log_buf_len_setup);
1004
1005#ifdef CONFIG_SMP
1006#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1007
1008static void __init log_buf_add_cpu(void)
1009{
1010	unsigned int cpu_extra;
1011
1012	/*
1013	 * archs should set up cpu_possible_bits properly with
1014	 * set_cpu_possible() after setup_arch() but just in
1015	 * case lets ensure this is valid.
1016	 */
1017	if (num_possible_cpus() == 1)
1018		return;
1019
1020	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1021
1022	/* by default this will only continue through for large > 64 CPUs */
1023	if (cpu_extra <= __LOG_BUF_LEN / 2)
1024		return;
1025
1026	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1027		__LOG_CPU_MAX_BUF_LEN);
1028	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1029		cpu_extra);
1030	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1031
1032	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1033}
1034#else /* !CONFIG_SMP */
1035static inline void log_buf_add_cpu(void) {}
1036#endif /* CONFIG_SMP */
1037
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038void __init setup_log_buf(int early)
1039{
 
 
 
 
 
 
 
1040	unsigned long flags;
1041	char *new_log_buf;
1042	int free;
 
 
 
 
 
 
 
 
 
1043
1044	if (log_buf != __log_buf)
1045		return;
1046
1047	if (!early && !new_log_buf_len)
1048		log_buf_add_cpu();
1049
1050	if (!new_log_buf_len)
1051		return;
1052
1053	if (early) {
1054		new_log_buf =
1055			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
1056	} else {
1057		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
1058							  LOG_ALIGN);
1059	}
1060
 
1061	if (unlikely(!new_log_buf)) {
1062		pr_err("log_buf_len: %ld bytes not available\n",
1063			new_log_buf_len);
1064		return;
1065	}
1066
1067	raw_spin_lock_irqsave(&logbuf_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1068	log_buf_len = new_log_buf_len;
1069	log_buf = new_log_buf;
1070	new_log_buf_len = 0;
1071	free = __LOG_BUF_LEN - log_next_idx;
1072	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1073	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
1074
1075	pr_info("log_buf_len: %d bytes\n", log_buf_len);
1076	pr_info("early log buf free: %d(%d%%)\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1077		free, (free * 100) / __LOG_BUF_LEN);
 
 
 
 
 
 
1078}
1079
1080static bool __read_mostly ignore_loglevel;
1081
1082static int __init ignore_loglevel_setup(char *str)
1083{
1084	ignore_loglevel = true;
1085	pr_info("debug: ignoring loglevel setting.\n");
1086
1087	return 0;
1088}
1089
1090early_param("ignore_loglevel", ignore_loglevel_setup);
1091module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1092MODULE_PARM_DESC(ignore_loglevel,
1093		 "ignore loglevel setting (prints all kernel messages to the console)");
1094
1095static bool suppress_message_printing(int level)
1096{
1097	return (level >= console_loglevel && !ignore_loglevel);
1098}
1099
1100#ifdef CONFIG_BOOT_PRINTK_DELAY
1101
1102static int boot_delay; /* msecs delay after each printk during bootup */
1103static unsigned long long loops_per_msec;	/* based on boot_delay */
1104
1105static int __init boot_delay_setup(char *str)
1106{
1107	unsigned long lpj;
1108
1109	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1110	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1111
1112	get_option(&str, &boot_delay);
1113	if (boot_delay > 10 * 1000)
1114		boot_delay = 0;
1115
1116	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1117		"HZ: %d, loops_per_msec: %llu\n",
1118		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1119	return 0;
1120}
1121early_param("boot_delay", boot_delay_setup);
1122
1123static void boot_delay_msec(int level)
1124{
1125	unsigned long long k;
1126	unsigned long timeout;
1127
1128	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1129		|| suppress_message_printing(level)) {
1130		return;
1131	}
1132
1133	k = (unsigned long long)loops_per_msec * boot_delay;
1134
1135	timeout = jiffies + msecs_to_jiffies(boot_delay);
1136	while (k) {
1137		k--;
1138		cpu_relax();
1139		/*
1140		 * use (volatile) jiffies to prevent
1141		 * compiler reduction; loop termination via jiffies
1142		 * is secondary and may or may not happen.
1143		 */
1144		if (time_after(jiffies, timeout))
1145			break;
1146		touch_nmi_watchdog();
1147	}
1148}
1149#else
1150static inline void boot_delay_msec(int level)
1151{
1152}
1153#endif
1154
1155static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1156module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1157
1158static size_t print_time(u64 ts, char *buf)
1159{
1160	unsigned long rem_nsec;
 
1161
1162	if (!printk_time)
1163		return 0;
 
1164
1165	rem_nsec = do_div(ts, 1000000000);
 
 
1166
1167	if (!buf)
1168		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 
 
1169
1170	return sprintf(buf, "[%5lu.%06lu] ",
1171		       (unsigned long)ts, rem_nsec / 1000);
 
1172}
 
 
 
1173
1174static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
1175{
1176	size_t len = 0;
1177	unsigned int prefix = (msg->facility << 3) | msg->level;
1178
1179	if (syslog) {
1180		if (buf) {
1181			len += sprintf(buf, "<%u>", prefix);
1182		} else {
1183			len += 3;
1184			if (prefix > 999)
1185				len += 3;
1186			else if (prefix > 99)
1187				len += 2;
1188			else if (prefix > 9)
1189				len++;
1190		}
1191	}
1192
1193	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1194	return len;
1195}
1196
1197static size_t msg_print_text(const struct printk_log *msg, bool syslog, char *buf, size_t size)
1198{
1199	const char *text = log_text(msg);
1200	size_t text_size = msg->text_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1201	size_t len = 0;
 
1202
1203	do {
1204		const char *next = memchr(text, '\n', text_size);
1205		size_t text_len;
 
 
 
 
 
1206
 
 
 
 
 
 
 
 
1207		if (next) {
1208			text_len = next - text;
1209			next++;
1210			text_size -= next - text;
1211		} else {
1212			text_len = text_size;
 
 
 
1213		}
1214
1215		if (buf) {
1216			if (print_prefix(msg, syslog, NULL) +
1217			    text_len + 1 >= size - len)
 
 
 
 
1218				break;
1219
1220			len += print_prefix(msg, syslog, buf + len);
1221			memcpy(buf + len, text, text_len);
1222			len += text_len;
1223			buf[len++] = '\n';
1224		} else {
1225			/* SYSLOG_ACTION_* buffer size only calculation */
1226			len += print_prefix(msg, syslog, NULL);
1227			len += text_len;
1228			len++;
1229		}
1230
1231		text = next;
1232	} while (text);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233
1234	return len;
1235}
1236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1237static int syslog_print(char __user *buf, int size)
1238{
 
 
1239	char *text;
1240	struct printk_log *msg;
1241	int len = 0;
1242
1243	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1244	if (!text)
1245		return -ENOMEM;
1246
 
 
1247	while (size > 0) {
1248		size_t n;
1249		size_t skip;
1250
1251		raw_spin_lock_irq(&logbuf_lock);
1252		if (syslog_seq < log_first_seq) {
1253			/* messages are gone, move to first one */
1254			syslog_seq = log_first_seq;
1255			syslog_idx = log_first_idx;
1256			syslog_partial = 0;
1257		}
1258		if (syslog_seq == log_next_seq) {
1259			raw_spin_unlock_irq(&logbuf_lock);
1260			break;
1261		}
 
 
 
 
 
 
 
 
 
 
 
 
1262
1263		skip = syslog_partial;
1264		msg = log_from_idx(syslog_idx);
1265		n = msg_print_text(msg, true, text, LOG_LINE_MAX + PREFIX_MAX);
1266		if (n - syslog_partial <= size) {
1267			/* message fits into buffer, move forward */
1268			syslog_idx = log_next(syslog_idx);
1269			syslog_seq++;
1270			n -= syslog_partial;
1271			syslog_partial = 0;
1272		} else if (!len){
1273			/* partial read(), remember position */
1274			n = size;
1275			syslog_partial += n;
1276		} else
1277			n = 0;
1278		raw_spin_unlock_irq(&logbuf_lock);
 
1279
1280		if (!n)
1281			break;
1282
1283		if (copy_to_user(buf, text + skip, n)) {
1284			if (!len)
1285				len = -EFAULT;
1286			break;
1287		}
1288
1289		len += n;
1290		size -= n;
1291		buf += n;
1292	}
1293
1294	kfree(text);
1295	return len;
1296}
1297
1298static int syslog_print_all(char __user *buf, int size, bool clear)
1299{
 
 
1300	char *text;
1301	int len = 0;
 
 
1302
1303	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1304	if (!text)
1305		return -ENOMEM;
1306
1307	raw_spin_lock_irq(&logbuf_lock);
1308	if (buf) {
1309		u64 next_seq;
1310		u64 seq;
1311		u32 idx;
 
 
 
1312
1313		/*
1314		 * Find first record that fits, including all following records,
1315		 * into the user-provided buffer for this dump.
1316		 */
1317		seq = clear_seq;
1318		idx = clear_idx;
1319		while (seq < log_next_seq) {
1320			struct printk_log *msg = log_from_idx(idx);
1321
1322			len += msg_print_text(msg, true, NULL, 0);
1323			idx = log_next(idx);
1324			seq++;
1325		}
1326
1327		/* move first record forward until length fits into the buffer */
1328		seq = clear_seq;
1329		idx = clear_idx;
1330		while (len > size && seq < log_next_seq) {
1331			struct printk_log *msg = log_from_idx(idx);
1332
1333			len -= msg_print_text(msg, true, NULL, 0);
1334			idx = log_next(idx);
1335			seq++;
1336		}
1337
1338		/* last message fitting into this dump */
1339		next_seq = log_next_seq;
1340
1341		len = 0;
1342		while (len >= 0 && seq < next_seq) {
1343			struct printk_log *msg = log_from_idx(idx);
1344			int textlen;
1345
1346			textlen = msg_print_text(msg, true, text,
1347						 LOG_LINE_MAX + PREFIX_MAX);
1348			if (textlen < 0) {
1349				len = textlen;
1350				break;
1351			}
1352			idx = log_next(idx);
1353			seq++;
1354
1355			raw_spin_unlock_irq(&logbuf_lock);
1356			if (copy_to_user(buf + len, text, textlen))
1357				len = -EFAULT;
1358			else
1359				len += textlen;
1360			raw_spin_lock_irq(&logbuf_lock);
1361
1362			if (seq < log_first_seq) {
1363				/* messages are gone, move to next one */
1364				seq = log_first_seq;
1365				idx = log_first_idx;
1366			}
1367		}
 
 
 
 
 
 
 
 
 
 
1368	}
1369
1370	if (clear) {
1371		clear_seq = log_next_seq;
1372		clear_idx = log_next_idx;
 
1373	}
1374	raw_spin_unlock_irq(&logbuf_lock);
1375
1376	kfree(text);
1377	return len;
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380int do_syslog(int type, char __user *buf, int len, int source)
1381{
 
1382	bool clear = false;
1383	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1384	int error;
1385
1386	error = check_syslog_permissions(type, source);
1387	if (error)
1388		goto out;
1389
1390	switch (type) {
1391	case SYSLOG_ACTION_CLOSE:	/* Close log */
1392		break;
1393	case SYSLOG_ACTION_OPEN:	/* Open log */
1394		break;
1395	case SYSLOG_ACTION_READ:	/* Read from log */
1396		error = -EINVAL;
1397		if (!buf || len < 0)
1398			goto out;
1399		error = 0;
1400		if (!len)
1401			goto out;
1402		if (!access_ok(VERIFY_WRITE, buf, len)) {
1403			error = -EFAULT;
1404			goto out;
1405		}
1406		error = wait_event_interruptible(log_wait,
1407						 syslog_seq != log_next_seq);
1408		if (error)
1409			goto out;
1410		error = syslog_print(buf, len);
1411		break;
1412	/* Read/clear last kernel messages */
1413	case SYSLOG_ACTION_READ_CLEAR:
1414		clear = true;
1415		/* FALL THRU */
1416	/* Read last kernel messages */
1417	case SYSLOG_ACTION_READ_ALL:
1418		error = -EINVAL;
1419		if (!buf || len < 0)
1420			goto out;
1421		error = 0;
1422		if (!len)
1423			goto out;
1424		if (!access_ok(VERIFY_WRITE, buf, len)) {
1425			error = -EFAULT;
1426			goto out;
1427		}
1428		error = syslog_print_all(buf, len, clear);
1429		break;
1430	/* Clear ring buffer */
1431	case SYSLOG_ACTION_CLEAR:
1432		syslog_print_all(NULL, 0, true);
1433		break;
1434	/* Disable logging to console */
1435	case SYSLOG_ACTION_CONSOLE_OFF:
1436		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1437			saved_console_loglevel = console_loglevel;
1438		console_loglevel = minimum_console_loglevel;
1439		break;
1440	/* Enable logging to console */
1441	case SYSLOG_ACTION_CONSOLE_ON:
1442		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1443			console_loglevel = saved_console_loglevel;
1444			saved_console_loglevel = LOGLEVEL_DEFAULT;
1445		}
1446		break;
1447	/* Set level of messages printed to console */
1448	case SYSLOG_ACTION_CONSOLE_LEVEL:
1449		error = -EINVAL;
1450		if (len < 1 || len > 8)
1451			goto out;
1452		if (len < minimum_console_loglevel)
1453			len = minimum_console_loglevel;
1454		console_loglevel = len;
1455		/* Implicitly re-enable logging to console */
1456		saved_console_loglevel = LOGLEVEL_DEFAULT;
1457		error = 0;
1458		break;
1459	/* Number of chars in the log buffer */
1460	case SYSLOG_ACTION_SIZE_UNREAD:
1461		raw_spin_lock_irq(&logbuf_lock);
1462		if (syslog_seq < log_first_seq) {
 
 
 
 
 
 
 
1463			/* messages are gone, move to first one */
1464			syslog_seq = log_first_seq;
1465			syslog_idx = log_first_idx;
1466			syslog_partial = 0;
1467		}
1468		if (source == SYSLOG_FROM_PROC) {
1469			/*
1470			 * Short-cut for poll(/"proc/kmsg") which simply checks
1471			 * for pending data, not the size; return the count of
1472			 * records, not the length.
1473			 */
1474			error = log_next_seq - syslog_seq;
1475		} else {
1476			u64 seq = syslog_seq;
1477			u32 idx = syslog_idx;
1478
1479			error = 0;
1480			while (seq < log_next_seq) {
1481				struct printk_log *msg = log_from_idx(idx);
1482
1483				error += msg_print_text(msg, true, NULL, 0);
1484				idx = log_next(idx);
1485				seq++;
1486			}
1487			error -= syslog_partial;
1488		}
1489		raw_spin_unlock_irq(&logbuf_lock);
 
1490		break;
1491	/* Size of the log buffer */
1492	case SYSLOG_ACTION_SIZE_BUFFER:
1493		error = log_buf_len;
1494		break;
1495	default:
1496		error = -EINVAL;
1497		break;
1498	}
1499out:
1500	return error;
1501}
1502
1503SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1504{
1505	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1506}
1507
1508/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509 * Call the console drivers, asking them to write out
1510 * log_buf[start] to log_buf[end - 1].
1511 * The console_lock must be held.
1512 */
1513static void call_console_drivers(int level,
1514				 const char *ext_text, size_t ext_len,
1515				 const char *text, size_t len)
1516{
 
 
1517	struct console *con;
1518
1519	trace_console_rcuidle(text, len);
1520
1521	if (!console_drivers)
1522		return;
1523
 
 
 
 
 
 
 
1524	for_each_console(con) {
1525		if (exclusive_console && con != exclusive_console)
1526			continue;
1527		if (!(con->flags & CON_ENABLED))
1528			continue;
1529		if (!con->write)
1530			continue;
1531		if (!cpu_online(smp_processor_id()) &&
1532		    !(con->flags & CON_ANYTIME))
1533			continue;
1534		if (con->flags & CON_EXTENDED)
1535			con->write(con, ext_text, ext_len);
1536		else
 
 
1537			con->write(con, text, len);
 
1538	}
1539}
1540
1541/*
1542 * Zap console related locks when oopsing.
1543 * To leave time for slow consoles to print a full oops,
1544 * only zap at most once every 30 seconds.
1545 */
1546static void zap_locks(void)
1547{
1548	static unsigned long oops_timestamp;
1549
1550	if (time_after_eq(jiffies, oops_timestamp) &&
1551	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1552		return;
1553
1554	oops_timestamp = jiffies;
1555
1556	debug_locks_off();
1557	/* If a crash is occurring, make sure we can't deadlock */
1558	raw_spin_lock_init(&logbuf_lock);
1559	/* And make sure that we print immediately */
1560	sema_init(&console_sem, 1);
1561}
1562
1563int printk_delay_msec __read_mostly;
1564
1565static inline void printk_delay(void)
1566{
1567	if (unlikely(printk_delay_msec)) {
1568		int m = printk_delay_msec;
1569
1570		while (m--) {
1571			mdelay(1);
1572			touch_nmi_watchdog();
1573		}
1574	}
1575}
1576
1577/*
1578 * Continuation lines are buffered, and not committed to the record buffer
1579 * until the line is complete, or a race forces it. The line fragments
1580 * though, are printed immediately to the consoles to ensure everything has
1581 * reached the console in case of a kernel crash.
1582 */
1583static struct cont {
1584	char buf[LOG_LINE_MAX];
1585	size_t len;			/* length == 0 means unused buffer */
1586	struct task_struct *owner;	/* task of first print*/
1587	u64 ts_nsec;			/* time of first print */
1588	u8 level;			/* log level of first message */
1589	u8 facility;			/* log facility of first message */
1590	enum log_flags flags;		/* prefix, newline flags */
1591} cont;
1592
1593static void cont_flush(void)
1594{
1595	if (cont.len == 0)
1596		return;
1597
1598	log_store(cont.facility, cont.level, cont.flags, cont.ts_nsec,
1599		  NULL, 0, cont.buf, cont.len);
1600	cont.len = 0;
1601}
1602
1603static bool cont_add(int facility, int level, enum log_flags flags, const char *text, size_t len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604{
1605	/*
1606	 * If ext consoles are present, flush and skip in-kernel
1607	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1608	 * the line gets too long, split it up in separate records.
1609	 */
1610	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1611		cont_flush();
1612		return false;
1613	}
1614
1615	if (!cont.len) {
1616		cont.facility = facility;
1617		cont.level = level;
1618		cont.owner = current;
1619		cont.ts_nsec = local_clock();
1620		cont.flags = flags;
1621	}
1622
1623	memcpy(cont.buf + cont.len, text, len);
1624	cont.len += len;
1625
1626	// The original flags come from the first line,
1627	// but later continuations can add a newline.
1628	if (flags & LOG_NEWLINE) {
1629		cont.flags |= LOG_NEWLINE;
1630		cont_flush();
1631	}
1632
1633	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1634		cont_flush();
 
1635
1636	return true;
1637}
1638
1639static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
 
1640{
1641	/*
1642	 * If an earlier line was buffered, and we're a continuation
1643	 * write from the same process, try to add it to the buffer.
1644	 */
1645	if (cont.len) {
1646		if (cont.owner == current && (lflags & LOG_CONT)) {
1647			if (cont_add(facility, level, lflags, text, text_len))
1648				return text_len;
1649		}
1650		/* Otherwise, make sure it's flushed */
1651		cont_flush();
1652	}
1653
1654	/* Skip empty continuation lines that couldn't be added - they just flush */
1655	if (!text_len && (lflags & LOG_CONT))
1656		return 0;
1657
1658	/* If it doesn't end in a newline, try to buffer the current line */
1659	if (!(lflags & LOG_NEWLINE)) {
1660		if (cont_add(facility, level, lflags, text, text_len))
1661			return text_len;
 
1662	}
1663
1664	/* Store it in the record log */
1665	return log_store(facility, level, lflags, 0, dict, dictlen, text, text_len);
1666}
1667
1668asmlinkage int vprintk_emit(int facility, int level,
1669			    const char *dict, size_t dictlen,
1670			    const char *fmt, va_list args)
 
1671{
1672	static bool recursion_bug;
1673	static char textbuf[LOG_LINE_MAX];
1674	char *text = textbuf;
1675	size_t text_len = 0;
1676	enum log_flags lflags = 0;
1677	unsigned long flags;
1678	int this_cpu;
1679	int printed_len = 0;
1680	int nmi_message_lost;
1681	bool in_sched = false;
1682	/* cpu currently holding logbuf_lock in this function */
1683	static unsigned int logbuf_cpu = UINT_MAX;
1684
1685	if (level == LOGLEVEL_SCHED) {
1686		level = LOGLEVEL_DEFAULT;
1687		in_sched = true;
1688	}
1689
1690	boot_delay_msec(level);
1691	printk_delay();
1692
1693	local_irq_save(flags);
1694	this_cpu = smp_processor_id();
 
 
 
 
 
1695
1696	/*
1697	 * Ouch, printk recursed into itself!
 
 
 
1698	 */
1699	if (unlikely(logbuf_cpu == this_cpu)) {
1700		/*
1701		 * If a crash is occurring during printk() on this CPU,
1702		 * then try to get the crash message out but make sure
1703		 * we can't deadlock. Otherwise just return to avoid the
1704		 * recursion and return - but flag the recursion so that
1705		 * it can be printed at the next appropriate moment:
1706		 */
1707		if (!oops_in_progress && !lockdep_recursing(current)) {
1708			recursion_bug = true;
1709			local_irq_restore(flags);
1710			return 0;
1711		}
1712		zap_locks();
1713	}
1714
1715	lockdep_off();
1716	/* This stops the holder of console_sem just where we want him */
1717	raw_spin_lock(&logbuf_lock);
1718	logbuf_cpu = this_cpu;
1719
1720	if (unlikely(recursion_bug)) {
1721		static const char recursion_msg[] =
1722			"BUG: recent printk recursion!";
1723
1724		recursion_bug = false;
1725		/* emit KERN_CRIT message */
1726		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1727					 NULL, 0, recursion_msg,
1728					 strlen(recursion_msg));
1729	}
1730
1731	nmi_message_lost = get_nmi_message_lost();
1732	if (unlikely(nmi_message_lost)) {
1733		text_len = scnprintf(textbuf, sizeof(textbuf),
1734				     "BAD LUCK: lost %d message(s) from NMI context!",
1735				     nmi_message_lost);
1736		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1737					 NULL, 0, textbuf, text_len);
 
 
 
 
 
 
 
 
 
1738	}
1739
1740	/*
1741	 * The printf needs to come first; we need the syslog
1742	 * prefix which might be passed-in as a parameter.
 
1743	 */
1744	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
 
 
 
1745
1746	/* mark and strip a trailing newline */
1747	if (text_len && text[text_len-1] == '\n') {
1748		text_len--;
1749		lflags |= LOG_NEWLINE;
1750	}
1751
1752	/* strip kernel syslog prefix and extract log level or control flags */
1753	if (facility == 0) {
1754		int kern_level;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755
1756		while ((kern_level = printk_get_level(text)) != 0) {
1757			switch (kern_level) {
1758			case '0' ... '7':
1759				if (level == LOGLEVEL_DEFAULT)
1760					level = kern_level - '0';
1761				/* fallthrough */
1762			case 'd':	/* KERN_DEFAULT */
1763				lflags |= LOG_PREFIX;
1764				break;
1765			case 'c':	/* KERN_CONT */
1766				lflags |= LOG_CONT;
1767			}
1768
1769			text_len -= 2;
1770			text += 2;
1771		}
1772	}
 
 
 
1773
1774	if (level == LOGLEVEL_DEFAULT)
1775		level = default_message_loglevel;
 
1776
1777	if (dict)
1778		lflags |= LOG_PREFIX|LOG_NEWLINE;
 
 
1779
1780	printed_len += log_output(facility, level, lflags, dict, dictlen, text, text_len);
 
1781
1782	logbuf_cpu = UINT_MAX;
1783	raw_spin_unlock(&logbuf_lock);
1784	lockdep_on();
1785	local_irq_restore(flags);
1786
1787	/* If called from the scheduler, we can not call up(). */
1788	if (!in_sched) {
1789		lockdep_off();
 
 
 
 
 
1790		/*
1791		 * Try to acquire and then immediately release the console
1792		 * semaphore.  The release will print out buffers and wake up
1793		 * /dev/kmsg and syslog() users.
1794		 */
1795		if (console_trylock())
1796			console_unlock();
1797		lockdep_on();
1798	}
1799
 
1800	return printed_len;
1801}
1802EXPORT_SYMBOL(vprintk_emit);
1803
1804asmlinkage int vprintk(const char *fmt, va_list args)
1805{
1806	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1807}
1808EXPORT_SYMBOL(vprintk);
1809
1810asmlinkage int printk_emit(int facility, int level,
1811			   const char *dict, size_t dictlen,
1812			   const char *fmt, ...)
1813{
1814	va_list args;
1815	int r;
1816
1817	va_start(args, fmt);
1818	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1819	va_end(args);
1820
1821	return r;
1822}
1823EXPORT_SYMBOL(printk_emit);
1824
1825int vprintk_default(const char *fmt, va_list args)
1826{
1827	int r;
1828
1829#ifdef CONFIG_KGDB_KDB
1830	/* Allow to pass printk() to kdb but avoid a recursion. */
1831	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
1832		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1833		return r;
1834	}
1835#endif
1836	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1837
1838	return r;
1839}
1840EXPORT_SYMBOL_GPL(vprintk_default);
1841
1842/**
1843 * printk - print a kernel message
1844 * @fmt: format string
1845 *
1846 * This is printk(). It can be called from any context. We want it to work.
1847 *
1848 * We try to grab the console_lock. If we succeed, it's easy - we log the
1849 * output and call the console drivers.  If we fail to get the semaphore, we
1850 * place the output into the log buffer and return. The current holder of
1851 * the console_sem will notice the new output in console_unlock(); and will
1852 * send it to the consoles before releasing the lock.
1853 *
1854 * One effect of this deferred printing is that code which calls printk() and
1855 * then changes console_loglevel may break. This is because console_loglevel
1856 * is inspected when the actual printing occurs.
1857 *
1858 * See also:
1859 * printf(3)
1860 *
1861 * See the vsnprintf() documentation for format string extensions over C99.
1862 */
1863asmlinkage __visible int printk(const char *fmt, ...)
1864{
1865	va_list args;
1866	int r;
1867
1868	va_start(args, fmt);
1869	r = vprintk_func(fmt, args);
1870	va_end(args);
1871
1872	return r;
1873}
1874EXPORT_SYMBOL(printk);
1875
1876#else /* CONFIG_PRINTK */
1877
1878#define LOG_LINE_MAX		0
1879#define PREFIX_MAX		0
 
 
 
1880
1881static u64 syslog_seq;
1882static u32 syslog_idx;
1883static u64 console_seq;
1884static u32 console_idx;
1885static u64 log_first_seq;
1886static u32 log_first_idx;
1887static u64 log_next_seq;
1888static char *log_text(const struct printk_log *msg) { return NULL; }
1889static char *log_dict(const struct printk_log *msg) { return NULL; }
1890static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1891static u32 log_next(u32 idx) { return 0; }
1892static ssize_t msg_print_ext_header(char *buf, size_t size,
1893				    struct printk_log *msg,
1894				    u64 seq) { return 0; }
 
 
1895static ssize_t msg_print_ext_body(char *buf, size_t size,
1896				  char *dict, size_t dict_len,
1897				  char *text, size_t text_len) { return 0; }
1898static void call_console_drivers(int level,
1899				 const char *ext_text, size_t ext_len,
 
1900				 const char *text, size_t len) {}
1901static size_t msg_print_text(const struct printk_log *msg,
1902			     bool syslog, char *buf, size_t size) { return 0; }
1903static bool suppress_message_printing(int level) { return false; }
1904
1905/* Still needs to be defined for users */
1906DEFINE_PER_CPU(printk_func_t, printk_func);
1907
1908#endif /* CONFIG_PRINTK */
1909
1910#ifdef CONFIG_EARLY_PRINTK
1911struct console *early_console;
1912
1913asmlinkage __visible void early_printk(const char *fmt, ...)
1914{
1915	va_list ap;
1916	char buf[512];
1917	int n;
1918
1919	if (!early_console)
1920		return;
1921
1922	va_start(ap, fmt);
1923	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1924	va_end(ap);
1925
1926	early_console->write(early_console, buf, n);
1927}
1928#endif
1929
1930static int __add_preferred_console(char *name, int idx, char *options,
1931				   char *brl_options)
1932{
1933	struct console_cmdline *c;
1934	int i;
1935
1936	/*
1937	 *	See if this tty is not yet registered, and
1938	 *	if we have a slot free.
1939	 */
1940	for (i = 0, c = console_cmdline;
1941	     i < MAX_CMDLINECONSOLES && c->name[0];
1942	     i++, c++) {
1943		if (strcmp(c->name, name) == 0 && c->index == idx) {
1944			if (!brl_options)
1945				selected_console = i;
 
 
1946			return 0;
1947		}
1948	}
1949	if (i == MAX_CMDLINECONSOLES)
1950		return -E2BIG;
1951	if (!brl_options)
1952		selected_console = i;
1953	strlcpy(c->name, name, sizeof(c->name));
1954	c->options = options;
 
1955	braille_set_options(c, brl_options);
1956
1957	c->index = idx;
1958	return 0;
1959}
 
 
 
 
 
 
 
 
 
 
 
1960/*
1961 * Set up a console.  Called via do_early_param() in init/main.c
1962 * for each "console=" parameter in the boot command line.
1963 */
1964static int __init console_setup(char *str)
1965{
1966	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1967	char *s, *options, *brl_options = NULL;
1968	int idx;
1969
 
 
 
 
 
 
 
 
 
 
1970	if (_braille_console_setup(&str, &brl_options))
1971		return 1;
1972
1973	/*
1974	 * Decode str into name, index, options.
1975	 */
1976	if (str[0] >= '0' && str[0] <= '9') {
1977		strcpy(buf, "ttyS");
1978		strncpy(buf + 4, str, sizeof(buf) - 5);
1979	} else {
1980		strncpy(buf, str, sizeof(buf) - 1);
1981	}
1982	buf[sizeof(buf) - 1] = 0;
1983	options = strchr(str, ',');
1984	if (options)
1985		*(options++) = 0;
1986#ifdef __sparc__
1987	if (!strcmp(str, "ttya"))
1988		strcpy(buf, "ttyS0");
1989	if (!strcmp(str, "ttyb"))
1990		strcpy(buf, "ttyS1");
1991#endif
1992	for (s = buf; *s; s++)
1993		if (isdigit(*s) || *s == ',')
1994			break;
1995	idx = simple_strtoul(s, NULL, 10);
1996	*s = 0;
1997
1998	__add_preferred_console(buf, idx, options, brl_options);
1999	console_set_on_cmdline = 1;
2000	return 1;
2001}
2002__setup("console=", console_setup);
2003
2004/**
2005 * add_preferred_console - add a device to the list of preferred consoles.
2006 * @name: device name
2007 * @idx: device index
2008 * @options: options for this console
2009 *
2010 * The last preferred console added will be used for kernel messages
2011 * and stdin/out/err for init.  Normally this is used by console_setup
2012 * above to handle user-supplied console arguments; however it can also
2013 * be used by arch-specific code either to override the user or more
2014 * commonly to provide a default console (ie from PROM variables) when
2015 * the user has not supplied one.
2016 */
2017int add_preferred_console(char *name, int idx, char *options)
2018{
2019	return __add_preferred_console(name, idx, options, NULL);
2020}
2021
2022bool console_suspend_enabled = true;
2023EXPORT_SYMBOL(console_suspend_enabled);
2024
2025static int __init console_suspend_disable(char *str)
2026{
2027	console_suspend_enabled = false;
2028	return 1;
2029}
2030__setup("no_console_suspend", console_suspend_disable);
2031module_param_named(console_suspend, console_suspend_enabled,
2032		bool, S_IRUGO | S_IWUSR);
2033MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2034	" and hibernate operations");
2035
2036/**
2037 * suspend_console - suspend the console subsystem
2038 *
2039 * This disables printk() while we go into suspend states
2040 */
2041void suspend_console(void)
2042{
2043	if (!console_suspend_enabled)
2044		return;
2045	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2046	console_lock();
2047	console_suspended = 1;
2048	up_console_sem();
2049}
2050
2051void resume_console(void)
2052{
2053	if (!console_suspend_enabled)
2054		return;
2055	down_console_sem();
2056	console_suspended = 0;
2057	console_unlock();
2058}
2059
2060/**
2061 * console_cpu_notify - print deferred console messages after CPU hotplug
2062 * @cpu: unused
2063 *
2064 * If printk() is called from a CPU that is not online yet, the messages
2065 * will be spooled but will not show up on the console.  This function is
2066 * called when a new CPU comes online (or fails to come up), and ensures
2067 * that any such output gets printed.
2068 */
2069static int console_cpu_notify(unsigned int cpu)
2070{
2071	if (!cpuhp_tasks_frozen) {
2072		console_lock();
2073		console_unlock();
 
2074	}
2075	return 0;
2076}
2077
2078/**
2079 * console_lock - lock the console system for exclusive use.
2080 *
2081 * Acquires a lock which guarantees that the caller has
2082 * exclusive access to the console system and the console_drivers list.
2083 *
2084 * Can sleep, returns nothing.
2085 */
2086void console_lock(void)
2087{
2088	might_sleep();
2089
2090	down_console_sem();
2091	if (console_suspended)
2092		return;
2093	console_locked = 1;
2094	console_may_schedule = 1;
2095}
2096EXPORT_SYMBOL(console_lock);
2097
2098/**
2099 * console_trylock - try to lock the console system for exclusive use.
2100 *
2101 * Try to acquire a lock which guarantees that the caller has exclusive
2102 * access to the console system and the console_drivers list.
2103 *
2104 * returns 1 on success, and 0 on failure to acquire the lock.
2105 */
2106int console_trylock(void)
2107{
2108	if (down_trylock_console_sem())
2109		return 0;
2110	if (console_suspended) {
2111		up_console_sem();
2112		return 0;
2113	}
2114	console_locked = 1;
2115	/*
2116	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2117	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2118	 * because preempt_disable()/preempt_enable() are just barriers there
2119	 * and preempt_count() is always 0.
2120	 *
2121	 * RCU read sections have a separate preemption counter when
2122	 * PREEMPT_RCU enabled thus we must take extra care and check
2123	 * rcu_preempt_depth(), otherwise RCU read sections modify
2124	 * preempt_count().
2125	 */
2126	console_may_schedule = !oops_in_progress &&
2127			preemptible() &&
2128			!rcu_preempt_depth();
2129	return 1;
2130}
2131EXPORT_SYMBOL(console_trylock);
2132
2133int is_console_locked(void)
2134{
2135	return console_locked;
2136}
 
2137
2138/*
2139 * Check if we have any console that is capable of printing while cpu is
2140 * booting or shutting down. Requires console_sem.
2141 */
2142static int have_callable_console(void)
2143{
2144	struct console *con;
2145
2146	for_each_console(con)
2147		if ((con->flags & CON_ENABLED) &&
2148				(con->flags & CON_ANYTIME))
2149			return 1;
2150
2151	return 0;
2152}
2153
2154/*
2155 * Can we actually use the console at this time on this cpu?
2156 *
2157 * Console drivers may assume that per-cpu resources have been allocated. So
2158 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2159 * call them until this CPU is officially up.
2160 */
2161static inline int can_use_console(void)
2162{
2163	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2164}
2165
2166/**
2167 * console_unlock - unlock the console system
2168 *
2169 * Releases the console_lock which the caller holds on the console system
2170 * and the console driver list.
2171 *
2172 * While the console_lock was held, console output may have been buffered
2173 * by printk().  If this is the case, console_unlock(); emits
2174 * the output prior to releasing the lock.
2175 *
2176 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2177 *
2178 * console_unlock(); may be called from any context.
2179 */
2180void console_unlock(void)
2181{
2182	static char ext_text[CONSOLE_EXT_LOG_MAX];
2183	static char text[LOG_LINE_MAX + PREFIX_MAX];
2184	static u64 seen_seq;
2185	unsigned long flags;
2186	bool wake_klogd = false;
2187	bool do_cond_resched, retry;
 
 
 
2188
2189	if (console_suspended) {
2190		up_console_sem();
2191		return;
2192	}
2193
 
 
2194	/*
2195	 * Console drivers are called under logbuf_lock, so
2196	 * @console_may_schedule should be cleared before; however, we may
2197	 * end up dumping a lot of lines, for example, if called from
2198	 * console registration path, and should invoke cond_resched()
2199	 * between lines if allowable.  Not doing so can cause a very long
2200	 * scheduling stall on a slow console leading to RCU stall and
2201	 * softlockup warnings which exacerbate the issue with more
2202	 * messages practically incapacitating the system.
 
 
 
 
2203	 */
2204	do_cond_resched = console_may_schedule;
 
2205	console_may_schedule = 0;
2206
2207again:
2208	/*
2209	 * We released the console_sem lock, so we need to recheck if
2210	 * cpu is online and (if not) is there at least one CON_ANYTIME
2211	 * console.
2212	 */
2213	if (!can_use_console()) {
2214		console_locked = 0;
2215		up_console_sem();
2216		return;
2217	}
2218
2219	for (;;) {
2220		struct printk_log *msg;
2221		size_t ext_len = 0;
2222		size_t len;
2223		int level;
2224
2225		raw_spin_lock_irqsave(&logbuf_lock, flags);
2226		if (seen_seq != log_next_seq) {
2227			wake_klogd = true;
2228			seen_seq = log_next_seq;
2229		}
2230
2231		if (console_seq < log_first_seq) {
2232			len = sprintf(text, "** %u printk messages dropped ** ",
2233				      (unsigned)(log_first_seq - console_seq));
2234
2235			/* messages are gone, move to first one */
2236			console_seq = log_first_seq;
2237			console_idx = log_first_idx;
2238		} else {
2239			len = 0;
2240		}
2241skip:
2242		if (console_seq == log_next_seq)
2243			break;
2244
2245		msg = log_from_idx(console_idx);
2246		level = msg->level;
2247		if (suppress_message_printing(level)) {
 
 
 
2248			/*
2249			 * Skip record we have buffered and already printed
2250			 * directly to the console when we received it, and
2251			 * record that has level above the console loglevel.
2252			 */
2253			console_idx = log_next(console_idx);
2254			console_seq++;
2255			goto skip;
2256		}
2257
2258		len += msg_print_text(msg, false, text + len, sizeof(text) - len);
 
 
 
 
 
 
 
 
 
2259		if (nr_ext_console_drivers) {
2260			ext_len = msg_print_ext_header(ext_text,
2261						sizeof(ext_text),
2262						msg, console_seq);
2263			ext_len += msg_print_ext_body(ext_text + ext_len,
2264						sizeof(ext_text) - ext_len,
2265						log_dict(msg), msg->dict_len,
2266						log_text(msg), msg->text_len);
2267		}
2268		console_idx = log_next(console_idx);
 
 
 
2269		console_seq++;
2270		raw_spin_unlock(&logbuf_lock);
 
 
 
 
 
 
 
2271
2272		stop_critical_timings();	/* don't trace print latency */
2273		call_console_drivers(level, ext_text, ext_len, text, len);
2274		start_critical_timings();
2275		local_irq_restore(flags);
 
 
 
 
 
 
2276
2277		if (do_cond_resched)
2278			cond_resched();
2279	}
2280	console_locked = 0;
2281
2282	/* Release the exclusive_console once it is used */
2283	if (unlikely(exclusive_console))
2284		exclusive_console = NULL;
2285
2286	raw_spin_unlock(&logbuf_lock);
2287
 
2288	up_console_sem();
2289
2290	/*
2291	 * Someone could have filled up the buffer again, so re-check if there's
2292	 * something to flush. In case we cannot trylock the console_sem again,
2293	 * there's a new owner and the console_unlock() from them will do the
2294	 * flush, no worries.
2295	 */
2296	raw_spin_lock(&logbuf_lock);
2297	retry = console_seq != log_next_seq;
2298	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2299
2300	if (retry && console_trylock())
2301		goto again;
2302
2303	if (wake_klogd)
2304		wake_up_klogd();
2305}
2306EXPORT_SYMBOL(console_unlock);
2307
2308/**
2309 * console_conditional_schedule - yield the CPU if required
2310 *
2311 * If the console code is currently allowed to sleep, and
2312 * if this CPU should yield the CPU to another task, do
2313 * so here.
2314 *
2315 * Must be called within console_lock();.
2316 */
2317void __sched console_conditional_schedule(void)
2318{
2319	if (console_may_schedule)
2320		cond_resched();
2321}
2322EXPORT_SYMBOL(console_conditional_schedule);
2323
2324void console_unblank(void)
2325{
2326	struct console *c;
2327
2328	/*
2329	 * console_unblank can no longer be called in interrupt context unless
2330	 * oops_in_progress is set to 1..
2331	 */
2332	if (oops_in_progress) {
2333		if (down_trylock_console_sem() != 0)
2334			return;
2335	} else
2336		console_lock();
2337
2338	console_locked = 1;
2339	console_may_schedule = 0;
2340	for_each_console(c)
2341		if ((c->flags & CON_ENABLED) && c->unblank)
2342			c->unblank();
2343	console_unlock();
2344}
2345
2346/**
2347 * console_flush_on_panic - flush console content on panic
 
2348 *
2349 * Immediately output all pending messages no matter what.
2350 */
2351void console_flush_on_panic(void)
2352{
2353	/*
2354	 * If someone else is holding the console lock, trylock will fail
2355	 * and may_schedule may be set.  Ignore and proceed to unlock so
2356	 * that messages are flushed out.  As this can be called from any
2357	 * context and we don't want to get preempted while flushing,
2358	 * ensure may_schedule is cleared.
2359	 */
2360	console_trylock();
2361	console_may_schedule = 0;
 
 
 
 
 
 
 
 
2362	console_unlock();
2363}
2364
2365/*
2366 * Return the console tty driver structure and its associated index
2367 */
2368struct tty_driver *console_device(int *index)
2369{
2370	struct console *c;
2371	struct tty_driver *driver = NULL;
2372
2373	console_lock();
2374	for_each_console(c) {
2375		if (!c->device)
2376			continue;
2377		driver = c->device(c, index);
2378		if (driver)
2379			break;
2380	}
2381	console_unlock();
2382	return driver;
2383}
2384
2385/*
2386 * Prevent further output on the passed console device so that (for example)
2387 * serial drivers can disable console output before suspending a port, and can
2388 * re-enable output afterwards.
2389 */
2390void console_stop(struct console *console)
2391{
2392	console_lock();
2393	console->flags &= ~CON_ENABLED;
2394	console_unlock();
2395}
2396EXPORT_SYMBOL(console_stop);
2397
2398void console_start(struct console *console)
2399{
2400	console_lock();
2401	console->flags |= CON_ENABLED;
2402	console_unlock();
2403}
2404EXPORT_SYMBOL(console_start);
2405
2406static int __read_mostly keep_bootcon;
2407
2408static int __init keep_bootcon_setup(char *str)
2409{
2410	keep_bootcon = 1;
2411	pr_info("debug: skip boot console de-registration.\n");
2412
2413	return 0;
2414}
2415
2416early_param("keep_bootcon", keep_bootcon_setup);
2417
2418/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2419 * The console driver calls this routine during kernel initialization
2420 * to register the console printing procedure with printk() and to
2421 * print any messages that were printed by the kernel before the
2422 * console driver was initialized.
2423 *
2424 * This can happen pretty early during the boot process (because of
2425 * early_printk) - sometimes before setup_arch() completes - be careful
2426 * of what kernel features are used - they may not be initialised yet.
2427 *
2428 * There are two types of consoles - bootconsoles (early_printk) and
2429 * "real" consoles (everything which is not a bootconsole) which are
2430 * handled differently.
2431 *  - Any number of bootconsoles can be registered at any time.
2432 *  - As soon as a "real" console is registered, all bootconsoles
2433 *    will be unregistered automatically.
2434 *  - Once a "real" console is registered, any attempt to register a
2435 *    bootconsoles will be rejected
2436 */
2437void register_console(struct console *newcon)
2438{
2439	int i;
2440	unsigned long flags;
2441	struct console *bcon = NULL;
2442	struct console_cmdline *c;
2443
2444	if (console_drivers)
2445		for_each_console(bcon)
2446			if (WARN(bcon == newcon,
2447					"console '%s%d' already registered\n",
2448					bcon->name, bcon->index))
2449				return;
2450
2451	/*
2452	 * before we register a new CON_BOOT console, make sure we don't
2453	 * already have a valid console
2454	 */
2455	if (console_drivers && newcon->flags & CON_BOOT) {
2456		/* find the last or real console */
2457		for_each_console(bcon) {
2458			if (!(bcon->flags & CON_BOOT)) {
2459				pr_info("Too late to register bootconsole %s%d\n",
2460					newcon->name, newcon->index);
2461				return;
2462			}
2463		}
2464	}
2465
2466	if (console_drivers && console_drivers->flags & CON_BOOT)
2467		bcon = console_drivers;
2468
2469	if (preferred_console < 0 || bcon || !console_drivers)
2470		preferred_console = selected_console;
2471
2472	/*
2473	 *	See if we want to use this console driver. If we
2474	 *	didn't select a console we take the first one
2475	 *	that registers here.
2476	 */
2477	if (preferred_console < 0) {
2478		if (newcon->index < 0)
2479			newcon->index = 0;
2480		if (newcon->setup == NULL ||
2481		    newcon->setup(newcon, NULL) == 0) {
2482			newcon->flags |= CON_ENABLED;
2483			if (newcon->device) {
2484				newcon->flags |= CON_CONSDEV;
2485				preferred_console = 0;
2486			}
2487		}
2488	}
2489
2490	/*
2491	 *	See if this console matches one we selected on
2492	 *	the command line.
2493	 */
2494	for (i = 0, c = console_cmdline;
2495	     i < MAX_CMDLINECONSOLES && c->name[0];
2496	     i++, c++) {
2497		if (!newcon->match ||
2498		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2499			/* default matching */
2500			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2501			if (strcmp(c->name, newcon->name) != 0)
2502				continue;
2503			if (newcon->index >= 0 &&
2504			    newcon->index != c->index)
2505				continue;
2506			if (newcon->index < 0)
2507				newcon->index = c->index;
2508
2509			if (_braille_register_console(newcon, c))
2510				return;
2511
2512			if (newcon->setup &&
2513			    newcon->setup(newcon, c->options) != 0)
2514				break;
2515		}
2516
2517		newcon->flags |= CON_ENABLED;
2518		if (i == selected_console) {
2519			newcon->flags |= CON_CONSDEV;
2520			preferred_console = selected_console;
2521		}
2522		break;
2523	}
2524
2525	if (!(newcon->flags & CON_ENABLED))
2526		return;
2527
2528	/*
2529	 * If we have a bootconsole, and are switching to a real console,
2530	 * don't print everything out again, since when the boot console, and
2531	 * the real console are the same physical device, it's annoying to
2532	 * see the beginning boot messages twice
2533	 */
2534	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2535		newcon->flags &= ~CON_PRINTBUFFER;
2536
2537	/*
2538	 *	Put this console in the list - keep the
2539	 *	preferred driver at the head of the list.
2540	 */
2541	console_lock();
2542	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2543		newcon->next = console_drivers;
2544		console_drivers = newcon;
2545		if (newcon->next)
2546			newcon->next->flags &= ~CON_CONSDEV;
 
 
2547	} else {
2548		newcon->next = console_drivers->next;
2549		console_drivers->next = newcon;
2550	}
2551
2552	if (newcon->flags & CON_EXTENDED)
2553		if (!nr_ext_console_drivers++)
2554			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2555
2556	if (newcon->flags & CON_PRINTBUFFER) {
2557		/*
2558		 * console_unlock(); will print out the buffered messages
2559		 * for us.
2560		 */
2561		raw_spin_lock_irqsave(&logbuf_lock, flags);
2562		console_seq = syslog_seq;
2563		console_idx = syslog_idx;
2564		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2565		/*
2566		 * We're about to replay the log buffer.  Only do this to the
2567		 * just-registered console to avoid excessive message spam to
2568		 * the already-registered consoles.
 
 
 
 
2569		 */
2570		exclusive_console = newcon;
 
 
 
 
 
 
2571	}
2572	console_unlock();
2573	console_sysfs_notify();
2574
2575	/*
2576	 * By unregistering the bootconsoles after we enable the real console
2577	 * we get the "console xxx enabled" message on all the consoles -
2578	 * boot consoles, real consoles, etc - this is to ensure that end
2579	 * users know there might be something in the kernel's log buffer that
2580	 * went to the bootconsole (that they do not see on the real console)
2581	 */
2582	pr_info("%sconsole [%s%d] enabled\n",
2583		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2584		newcon->name, newcon->index);
2585	if (bcon &&
2586	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2587	    !keep_bootcon) {
2588		/* We need to iterate through all boot consoles, to make
2589		 * sure we print everything out, before we unregister them.
2590		 */
2591		for_each_console(bcon)
2592			if (bcon->flags & CON_BOOT)
2593				unregister_console(bcon);
2594	}
2595}
2596EXPORT_SYMBOL(register_console);
2597
2598int unregister_console(struct console *console)
2599{
2600        struct console *a, *b;
2601	int res;
2602
2603	pr_info("%sconsole [%s%d] disabled\n",
2604		(console->flags & CON_BOOT) ? "boot" : "" ,
2605		console->name, console->index);
2606
2607	res = _braille_unregister_console(console);
2608	if (res)
2609		return res;
 
 
2610
2611	res = 1;
2612	console_lock();
2613	if (console_drivers == console) {
2614		console_drivers=console->next;
2615		res = 0;
2616	} else if (console_drivers) {
2617		for (a=console_drivers->next, b=console_drivers ;
2618		     a; b=a, a=b->next) {
2619			if (a == console) {
2620				b->next = a->next;
2621				res = 0;
2622				break;
2623			}
2624		}
2625	}
2626
2627	if (!res && (console->flags & CON_EXTENDED))
 
 
 
2628		nr_ext_console_drivers--;
2629
2630	/*
2631	 * If this isn't the last console and it has CON_CONSDEV set, we
2632	 * need to set it on the next preferred console.
2633	 */
2634	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2635		console_drivers->flags |= CON_CONSDEV;
2636
2637	console->flags &= ~CON_ENABLED;
2638	console_unlock();
2639	console_sysfs_notify();
 
 
 
 
 
 
 
 
 
 
2640	return res;
2641}
2642EXPORT_SYMBOL(unregister_console);
2643
2644/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645 * Some boot consoles access data that is in the init section and which will
2646 * be discarded after the initcalls have been run. To make sure that no code
2647 * will access this data, unregister the boot consoles in a late initcall.
2648 *
2649 * If for some reason, such as deferred probe or the driver being a loadable
2650 * module, the real console hasn't registered yet at this point, there will
2651 * be a brief interval in which no messages are logged to the console, which
2652 * makes it difficult to diagnose problems that occur during this time.
2653 *
2654 * To mitigate this problem somewhat, only unregister consoles whose memory
2655 * intersects with the init section. Note that code exists elsewhere to get
2656 * rid of the boot console as soon as the proper console shows up, so there
2657 * won't be side-effects from postponing the removal.
2658 */
2659static int __init printk_late_init(void)
2660{
2661	struct console *con;
2662	int ret;
2663
2664	for_each_console(con) {
2665		if (!keep_bootcon && con->flags & CON_BOOT) {
 
 
 
 
 
 
 
 
 
2666			/*
2667			 * Make sure to unregister boot consoles whose data
2668			 * resides in the init section before the init section
2669			 * is discarded. Boot consoles whose data will stick
2670			 * around will automatically be unregistered when the
2671			 * proper console replaces them.
2672			 */
2673			if (init_section_intersects(con, sizeof(*con)))
2674				unregister_console(con);
 
2675		}
2676	}
2677	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2678					console_cpu_notify);
2679	WARN_ON(ret < 0);
2680	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2681					console_cpu_notify, NULL);
2682	WARN_ON(ret < 0);
2683	return 0;
2684}
2685late_initcall(printk_late_init);
2686
2687#if defined CONFIG_PRINTK
2688/*
2689 * Delayed printk version, for scheduler-internal messages:
2690 */
2691#define PRINTK_PENDING_WAKEUP	0x01
2692#define PRINTK_PENDING_OUTPUT	0x02
2693
2694static DEFINE_PER_CPU(int, printk_pending);
2695
2696static void wake_up_klogd_work_func(struct irq_work *irq_work)
2697{
2698	int pending = __this_cpu_xchg(printk_pending, 0);
2699
2700	if (pending & PRINTK_PENDING_OUTPUT) {
2701		/* If trylock fails, someone else is doing the printing */
2702		if (console_trylock())
2703			console_unlock();
2704	}
2705
2706	if (pending & PRINTK_PENDING_WAKEUP)
2707		wake_up_interruptible(&log_wait);
2708}
2709
2710static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2711	.func = wake_up_klogd_work_func,
2712	.flags = IRQ_WORK_LAZY,
2713};
2714
2715void wake_up_klogd(void)
2716{
 
 
 
2717	preempt_disable();
2718	if (waitqueue_active(&log_wait)) {
2719		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2720		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2721	}
2722	preempt_enable();
2723}
2724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725int printk_deferred(const char *fmt, ...)
2726{
2727	va_list args;
2728	int r;
2729
2730	preempt_disable();
2731	va_start(args, fmt);
2732	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2733	va_end(args);
2734
2735	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2736	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2737	preempt_enable();
2738
2739	return r;
2740}
2741
2742/*
2743 * printk rate limiting, lifted from the networking subsystem.
2744 *
2745 * This enforces a rate limit: not more than 10 kernel messages
2746 * every 5s to make a denial-of-service attack impossible.
2747 */
2748DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2749
2750int __printk_ratelimit(const char *func)
2751{
2752	return ___ratelimit(&printk_ratelimit_state, func);
2753}
2754EXPORT_SYMBOL(__printk_ratelimit);
2755
2756/**
2757 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2758 * @caller_jiffies: pointer to caller's state
2759 * @interval_msecs: minimum interval between prints
2760 *
2761 * printk_timed_ratelimit() returns true if more than @interval_msecs
2762 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2763 * returned true.
2764 */
2765bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2766			unsigned int interval_msecs)
2767{
2768	unsigned long elapsed = jiffies - *caller_jiffies;
2769
2770	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2771		return false;
2772
2773	*caller_jiffies = jiffies;
2774	return true;
2775}
2776EXPORT_SYMBOL(printk_timed_ratelimit);
2777
2778static DEFINE_SPINLOCK(dump_list_lock);
2779static LIST_HEAD(dump_list);
2780
2781/**
2782 * kmsg_dump_register - register a kernel log dumper.
2783 * @dumper: pointer to the kmsg_dumper structure
2784 *
2785 * Adds a kernel log dumper to the system. The dump callback in the
2786 * structure will be called when the kernel oopses or panics and must be
2787 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2788 */
2789int kmsg_dump_register(struct kmsg_dumper *dumper)
2790{
2791	unsigned long flags;
2792	int err = -EBUSY;
2793
2794	/* The dump callback needs to be set */
2795	if (!dumper->dump)
2796		return -EINVAL;
2797
2798	spin_lock_irqsave(&dump_list_lock, flags);
2799	/* Don't allow registering multiple times */
2800	if (!dumper->registered) {
2801		dumper->registered = 1;
2802		list_add_tail_rcu(&dumper->list, &dump_list);
2803		err = 0;
2804	}
2805	spin_unlock_irqrestore(&dump_list_lock, flags);
2806
2807	return err;
2808}
2809EXPORT_SYMBOL_GPL(kmsg_dump_register);
2810
2811/**
2812 * kmsg_dump_unregister - unregister a kmsg dumper.
2813 * @dumper: pointer to the kmsg_dumper structure
2814 *
2815 * Removes a dump device from the system. Returns zero on success and
2816 * %-EINVAL otherwise.
2817 */
2818int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2819{
2820	unsigned long flags;
2821	int err = -EINVAL;
2822
2823	spin_lock_irqsave(&dump_list_lock, flags);
2824	if (dumper->registered) {
2825		dumper->registered = 0;
2826		list_del_rcu(&dumper->list);
2827		err = 0;
2828	}
2829	spin_unlock_irqrestore(&dump_list_lock, flags);
2830	synchronize_rcu();
2831
2832	return err;
2833}
2834EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2835
2836static bool always_kmsg_dump;
2837module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2839/**
2840 * kmsg_dump - dump kernel log to kernel message dumpers.
2841 * @reason: the reason (oops, panic etc) for dumping
2842 *
2843 * Call each of the registered dumper's dump() callback, which can
2844 * retrieve the kmsg records with kmsg_dump_get_line() or
2845 * kmsg_dump_get_buffer().
2846 */
2847void kmsg_dump(enum kmsg_dump_reason reason)
2848{
2849	struct kmsg_dumper *dumper;
2850	unsigned long flags;
2851
2852	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2853		return;
2854
2855	rcu_read_lock();
2856	list_for_each_entry_rcu(dumper, &dump_list, list) {
2857		if (dumper->max_reason && reason > dumper->max_reason)
2858			continue;
2859
2860		/* initialize iterator with data about the stored records */
2861		dumper->active = true;
2862
2863		raw_spin_lock_irqsave(&logbuf_lock, flags);
2864		dumper->cur_seq = clear_seq;
2865		dumper->cur_idx = clear_idx;
2866		dumper->next_seq = log_next_seq;
2867		dumper->next_idx = log_next_idx;
2868		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
 
 
 
2869
2870		/* invoke dumper which will iterate over records */
2871		dumper->dump(dumper, reason);
2872
2873		/* reset iterator */
2874		dumper->active = false;
2875	}
2876	rcu_read_unlock();
2877}
2878
2879/**
2880 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2881 * @dumper: registered kmsg dumper
2882 * @syslog: include the "<4>" prefixes
2883 * @line: buffer to copy the line to
2884 * @size: maximum size of the buffer
2885 * @len: length of line placed into buffer
2886 *
2887 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2888 * record, and copy one record into the provided buffer.
2889 *
2890 * Consecutive calls will return the next available record moving
2891 * towards the end of the buffer with the youngest messages.
2892 *
2893 * A return value of FALSE indicates that there are no more records to
2894 * read.
2895 *
2896 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2897 */
2898bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2899			       char *line, size_t size, size_t *len)
2900{
2901	struct printk_log *msg;
 
 
 
 
2902	size_t l = 0;
2903	bool ret = false;
2904
2905	if (!dumper->active)
2906		goto out;
2907
2908	if (dumper->cur_seq < log_first_seq) {
2909		/* messages are gone, move to first available one */
2910		dumper->cur_seq = log_first_seq;
2911		dumper->cur_idx = log_first_idx;
2912	}
2913
2914	/* last entry */
2915	if (dumper->cur_seq >= log_next_seq)
2916		goto out;
 
 
 
 
 
 
 
 
 
2917
2918	msg = log_from_idx(dumper->cur_idx);
2919	l = msg_print_text(msg, syslog, line, size);
2920
2921	dumper->cur_idx = log_next(dumper->cur_idx);
2922	dumper->cur_seq++;
2923	ret = true;
2924out:
 
2925	if (len)
2926		*len = l;
2927	return ret;
2928}
2929
2930/**
2931 * kmsg_dump_get_line - retrieve one kmsg log line
2932 * @dumper: registered kmsg dumper
2933 * @syslog: include the "<4>" prefixes
2934 * @line: buffer to copy the line to
2935 * @size: maximum size of the buffer
2936 * @len: length of line placed into buffer
2937 *
2938 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2939 * record, and copy one record into the provided buffer.
2940 *
2941 * Consecutive calls will return the next available record moving
2942 * towards the end of the buffer with the youngest messages.
2943 *
2944 * A return value of FALSE indicates that there are no more records to
2945 * read.
2946 */
2947bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2948			char *line, size_t size, size_t *len)
2949{
2950	unsigned long flags;
2951	bool ret;
2952
2953	raw_spin_lock_irqsave(&logbuf_lock, flags);
2954	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2955	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2956
2957	return ret;
2958}
2959EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2960
2961/**
2962 * kmsg_dump_get_buffer - copy kmsg log lines
2963 * @dumper: registered kmsg dumper
2964 * @syslog: include the "<4>" prefixes
2965 * @buf: buffer to copy the line to
2966 * @size: maximum size of the buffer
2967 * @len: length of line placed into buffer
2968 *
2969 * Start at the end of the kmsg buffer and fill the provided buffer
2970 * with as many of the the *youngest* kmsg records that fit into it.
2971 * If the buffer is large enough, all available kmsg records will be
2972 * copied with a single call.
2973 *
2974 * Consecutive calls will fill the buffer with the next block of
2975 * available older records, not including the earlier retrieved ones.
2976 *
2977 * A return value of FALSE indicates that there are no more records to
2978 * read.
2979 */
2980bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
2981			  char *buf, size_t size, size_t *len)
2982{
 
 
 
2983	unsigned long flags;
2984	u64 seq;
2985	u32 idx;
2986	u64 next_seq;
2987	u32 next_idx;
2988	size_t l = 0;
2989	bool ret = false;
 
2990
2991	if (!dumper->active)
2992		goto out;
2993
2994	raw_spin_lock_irqsave(&logbuf_lock, flags);
2995	if (dumper->cur_seq < log_first_seq) {
2996		/* messages are gone, move to first available one */
2997		dumper->cur_seq = log_first_seq;
2998		dumper->cur_idx = log_first_idx;
 
 
 
 
2999	}
3000
3001	/* last entry */
3002	if (dumper->cur_seq >= dumper->next_seq) {
3003		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3004		goto out;
3005	}
3006
3007	/* calculate length of entire buffer */
3008	seq = dumper->cur_seq;
3009	idx = dumper->cur_idx;
3010	while (seq < dumper->next_seq) {
3011		struct printk_log *msg = log_from_idx(idx);
3012
3013		l += msg_print_text(msg, true, NULL, 0);
3014		idx = log_next(idx);
3015		seq++;
3016	}
3017
3018	/* move first record forward until length fits into the buffer */
3019	seq = dumper->cur_seq;
3020	idx = dumper->cur_idx;
3021	while (l > size && seq < dumper->next_seq) {
3022		struct printk_log *msg = log_from_idx(idx);
3023
3024		l -= msg_print_text(msg, true, NULL, 0);
3025		idx = log_next(idx);
3026		seq++;
3027	}
3028
3029	/* last message in next interation */
3030	next_seq = seq;
3031	next_idx = idx;
 
3032
3033	l = 0;
3034	while (seq < dumper->next_seq) {
3035		struct printk_log *msg = log_from_idx(idx);
3036
3037		l += msg_print_text(msg, syslog, buf + l, size - l);
3038		idx = log_next(idx);
3039		seq++;
3040	}
3041
3042	dumper->next_seq = next_seq;
3043	dumper->next_idx = next_idx;
3044	ret = true;
3045	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3046out:
3047	if (len)
3048		*len = l;
3049	return ret;
3050}
3051EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3052
3053/**
3054 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3055 * @dumper: registered kmsg dumper
3056 *
3057 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3058 * kmsg_dump_get_buffer() can be called again and used multiple
3059 * times within the same dumper.dump() callback.
3060 *
3061 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3062 */
3063void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3064{
3065	dumper->cur_seq = clear_seq;
3066	dumper->cur_idx = clear_idx;
3067	dumper->next_seq = log_next_seq;
3068	dumper->next_idx = log_next_idx;
3069}
3070
3071/**
3072 * kmsg_dump_rewind - reset the interator
3073 * @dumper: registered kmsg dumper
3074 *
3075 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3076 * kmsg_dump_get_buffer() can be called again and used multiple
3077 * times within the same dumper.dump() callback.
3078 */
3079void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3080{
3081	unsigned long flags;
3082
3083	raw_spin_lock_irqsave(&logbuf_lock, flags);
3084	kmsg_dump_rewind_nolock(dumper);
3085	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
3086}
3087EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3088
3089static char dump_stack_arch_desc_str[128];
 
 
 
 
3090
3091/**
3092 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3093 * @fmt: printf-style format string
3094 * @...: arguments for the format string
3095 *
3096 * The configured string will be printed right after utsname during task
3097 * dumps.  Usually used to add arch-specific system identifiers.  If an
3098 * arch wants to make use of such an ID string, it should initialize this
3099 * as soon as possible during boot.
3100 */
3101void __init dump_stack_set_arch_desc(const char *fmt, ...)
3102{
3103	va_list args;
3104
3105	va_start(args, fmt);
3106	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3107		  fmt, args);
3108	va_end(args);
3109}
 
3110
3111/**
3112 * dump_stack_print_info - print generic debug info for dump_stack()
3113 * @log_lvl: log level
 
 
 
 
3114 *
3115 * Arch-specific dump_stack() implementations can use this function to
3116 * print out the same debug information as the generic dump_stack().
3117 */
3118void dump_stack_print_info(const char *log_lvl)
3119{
3120	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3121	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3122	       print_tainted(), init_utsname()->release,
3123	       (int)strcspn(init_utsname()->version, " "),
3124	       init_utsname()->version);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3125
3126	if (dump_stack_arch_desc_str[0] != '\0')
3127		printk("%sHardware name: %s\n",
3128		       log_lvl, dump_stack_arch_desc_str);
 
 
3129
3130	print_worker_info(log_lvl, current);
3131}
 
3132
3133/**
3134 * show_regs_print_info - print generic debug info for show_regs()
3135 * @log_lvl: log level
3136 *
3137 * show_regs() implementations can use this function to print out generic
3138 * debug information.
 
3139 */
3140void show_regs_print_info(const char *log_lvl)
3141{
3142	dump_stack_print_info(log_lvl);
 
 
 
3143
3144	printk("%stask: %p task.stack: %p\n",
3145	       log_lvl, current, task_stack_page(current));
3146}
 
3147
3148#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
 
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
 
  42#include <linux/rculist.h>
  43#include <linux/poll.h>
  44#include <linux/irq_work.h>
 
  45#include <linux/ctype.h>
  46#include <linux/uio.h>
  47#include <linux/sched/clock.h>
  48#include <linux/sched/debug.h>
  49#include <linux/sched/task_stack.h>
  50
  51#include <linux/uaccess.h>
  52#include <asm/sections.h>
  53
  54#include <trace/events/initcall.h>
  55#define CREATE_TRACE_POINTS
  56#include <trace/events/printk.h>
  57
  58#include "printk_ringbuffer.h"
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
  73
  74/*
  75 * Low level drivers may need that to know if they can schedule in
  76 * their unblank() callback or not. So let's export it.
  77 */
  78int oops_in_progress;
  79EXPORT_SYMBOL(oops_in_progress);
  80
  81/*
  82 * console_sem protects the console_drivers list, and also
  83 * provides serialisation for access to the entire console
  84 * driver system.
  85 */
  86static DEFINE_SEMAPHORE(console_sem);
  87struct console *console_drivers;
  88EXPORT_SYMBOL_GPL(console_drivers);
  89
  90/*
  91 * System may need to suppress printk message under certain
  92 * circumstances, like after kernel panic happens.
  93 */
  94int __read_mostly suppress_printk;
  95
  96#ifdef CONFIG_LOCKDEP
  97static struct lockdep_map console_lock_dep_map = {
  98	.name = "console_lock"
  99};
 100#endif
 101
 102enum devkmsg_log_bits {
 103	__DEVKMSG_LOG_BIT_ON = 0,
 104	__DEVKMSG_LOG_BIT_OFF,
 105	__DEVKMSG_LOG_BIT_LOCK,
 106};
 107
 108enum devkmsg_log_masks {
 109	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 110	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 111	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 112};
 113
 114/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 115#define DEVKMSG_LOG_MASK_DEFAULT	0
 116
 117static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118
 119static int __control_devkmsg(char *str)
 120{
 121	size_t len;
 122
 123	if (!str)
 124		return -EINVAL;
 125
 126	len = str_has_prefix(str, "on");
 127	if (len) {
 128		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 129		return len;
 130	}
 131
 132	len = str_has_prefix(str, "off");
 133	if (len) {
 134		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 135		return len;
 136	}
 137
 138	len = str_has_prefix(str, "ratelimit");
 139	if (len) {
 140		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141		return len;
 142	}
 143
 144	return -EINVAL;
 145}
 146
 147static int __init control_devkmsg(char *str)
 148{
 149	if (__control_devkmsg(str) < 0)
 150		return 1;
 151
 152	/*
 153	 * Set sysctl string accordingly:
 154	 */
 155	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 156		strcpy(devkmsg_log_str, "on");
 157	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 158		strcpy(devkmsg_log_str, "off");
 
 
 
 159	/* else "ratelimit" which is set by default. */
 160
 161	/*
 162	 * Sysctl cannot change it anymore. The kernel command line setting of
 163	 * this parameter is to force the setting to be permanent throughout the
 164	 * runtime of the system. This is a precation measure against userspace
 165	 * trying to be a smarta** and attempting to change it up on us.
 166	 */
 167	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 168
 169	return 0;
 170}
 171__setup("printk.devkmsg=", control_devkmsg);
 172
 173char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 174
 175int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 176			      void *buffer, size_t *lenp, loff_t *ppos)
 177{
 178	char old_str[DEVKMSG_STR_MAX_SIZE];
 179	unsigned int old;
 180	int err;
 181
 182	if (write) {
 183		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 184			return -EINVAL;
 185
 186		old = devkmsg_log;
 187		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 188	}
 189
 190	err = proc_dostring(table, write, buffer, lenp, ppos);
 191	if (err)
 192		return err;
 193
 194	if (write) {
 195		err = __control_devkmsg(devkmsg_log_str);
 196
 197		/*
 198		 * Do not accept an unknown string OR a known string with
 199		 * trailing crap...
 200		 */
 201		if (err < 0 || (err + 1 != *lenp)) {
 202
 203			/* ... and restore old setting. */
 204			devkmsg_log = old;
 205			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 206
 207			return -EINVAL;
 208		}
 209	}
 210
 211	return 0;
 212}
 213
 214/* Number of registered extended console drivers. */
 
 
 
 
 
 
 
 
 
 215static int nr_ext_console_drivers;
 216
 217/*
 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 219 * macros instead of functions so that _RET_IP_ contains useful information.
 220 */
 221#define down_console_sem() do { \
 222	down(&console_sem);\
 223	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 224} while (0)
 225
 226static int __down_trylock_console_sem(unsigned long ip)
 227{
 228	int lock_failed;
 229	unsigned long flags;
 230
 231	/*
 232	 * Here and in __up_console_sem() we need to be in safe mode,
 233	 * because spindump/WARN/etc from under console ->lock will
 234	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 235	 */
 236	printk_safe_enter_irqsave(flags);
 237	lock_failed = down_trylock(&console_sem);
 238	printk_safe_exit_irqrestore(flags);
 239
 240	if (lock_failed)
 241		return 1;
 242	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 243	return 0;
 244}
 245#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 246
 247static void __up_console_sem(unsigned long ip)
 248{
 249	unsigned long flags;
 250
 251	mutex_release(&console_lock_dep_map, ip);
 252
 253	printk_safe_enter_irqsave(flags);
 254	up(&console_sem);
 255	printk_safe_exit_irqrestore(flags);
 256}
 257#define up_console_sem() __up_console_sem(_RET_IP_)
 258
 259/*
 260 * This is used for debugging the mess that is the VT code by
 261 * keeping track if we have the console semaphore held. It's
 262 * definitely not the perfect debug tool (we don't know if _WE_
 263 * hold it and are racing, but it helps tracking those weird code
 264 * paths in the console code where we end up in places I want
 265 * locked without the console semaphore held).
 266 */
 267static int console_locked, console_suspended;
 268
 269/*
 270 * If exclusive_console is non-NULL then only this console is to be printed to.
 271 */
 272static struct console *exclusive_console;
 273
 274/*
 275 *	Array of consoles built from command line options (console=)
 276 */
 277
 278#define MAX_CMDLINECONSOLES 8
 279
 280static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 281
 
 282static int preferred_console = -1;
 283static bool has_preferred_console;
 284int console_set_on_cmdline;
 285EXPORT_SYMBOL(console_set_on_cmdline);
 286
 287/* Flag: console code may call schedule() */
 288static int console_may_schedule;
 289
 290enum con_msg_format_flags {
 291	MSG_FORMAT_DEFAULT	= 0,
 292	MSG_FORMAT_SYSLOG	= (1 << 0),
 293};
 294
 295static int console_msg_format = MSG_FORMAT_DEFAULT;
 296
 297/*
 298 * The printk log buffer consists of a sequenced collection of records, each
 299 * containing variable length message text. Every record also contains its
 300 * own meta-data (@info).
 301 *
 302 * Every record meta-data carries the timestamp in microseconds, as well as
 303 * the standard userspace syslog level and syslog facility. The usual kernel
 304 * messages use LOG_KERN; userspace-injected messages always carry a matching
 305 * syslog facility, by default LOG_USER. The origin of every message can be
 306 * reliably determined that way.
 
 
 
 
 
 
 
 
 
 
 
 
 307 *
 308 * The human readable log message of a record is available in @text, the
 309 * length of the message text in @text_len. The stored message is not
 310 * terminated.
 311 *
 312 * Optionally, a record can carry a dictionary of properties (key/value
 313 * pairs), to provide userspace with a machine-readable message context.
 314 *
 315 * Examples for well-defined, commonly used property names are:
 316 *   DEVICE=b12:8               device identifier
 317 *                                b12:8         block dev_t
 318 *                                c127:3        char dev_t
 319 *                                n8            netdev ifindex
 320 *                                +sound:card0  subsystem:devname
 321 *   SUBSYSTEM=pci              driver-core subsystem name
 322 *
 323 * Valid characters in property names are [a-zA-Z0-9.-_]. Property names
 324 * and values are terminated by a '\0' character.
 325 *
 326 * Example of record values:
 327 *   record.text_buf                = "it's a line" (unterminated)
 328 *   record.info.seq                = 56
 329 *   record.info.ts_nsec            = 36863
 330 *   record.info.text_len           = 11
 331 *   record.info.facility           = 0 (LOG_KERN)
 332 *   record.info.flags              = 0
 333 *   record.info.level              = 3 (LOG_ERR)
 334 *   record.info.caller_id          = 299 (task 299)
 335 *   record.info.dev_info.subsystem = "pci" (terminated)
 336 *   record.info.dev_info.device    = "+pci:0000:00:01.0" (terminated)
 
 
 
 337 *
 338 * The 'struct printk_info' buffer must never be directly exported to
 339 * userspace, it is a kernel-private implementation detail that might
 340 * need to be changed in the future, when the requirements change.
 341 *
 342 * /dev/kmsg exports the structured data in the following line format:
 343 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 344 *
 345 * Users of the export format should ignore possible additional values
 346 * separated by ',', and find the message after the ';' character.
 347 *
 348 * The optional key/value pairs are attached as continuation lines starting
 349 * with a space character and terminated by a newline. All possible
 350 * non-prinatable characters are escaped in the "\xff" notation.
 351 */
 352
 353enum log_flags {
 
 354	LOG_NEWLINE	= 2,	/* text ended with a newline */
 
 355	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 356};
 357
 358/* syslog_lock protects syslog_* variables and write access to clear_seq. */
 359static DEFINE_RAW_SPINLOCK(syslog_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360
 361#ifdef CONFIG_PRINTK
 362DECLARE_WAIT_QUEUE_HEAD(log_wait);
 363/* All 3 protected by @syslog_lock. */
 364/* the next printk record to read by syslog(READ) or /proc/kmsg */
 365static u64 syslog_seq;
 
 366static size_t syslog_partial;
 367static bool syslog_time;
 368
 369/* All 3 protected by @console_sem. */
 
 
 
 
 
 
 
 370/* the next printk record to write to the console */
 371static u64 console_seq;
 372static u64 exclusive_console_stop_seq;
 373static unsigned long console_dropped;
 374
 375struct latched_seq {
 376	seqcount_latch_t	latch;
 377	u64			val[2];
 378};
 379
 380/*
 381 * The next printk record to read after the last 'clear' command. There are
 382 * two copies (updated with seqcount_latch) so that reads can locklessly
 383 * access a valid value. Writers are synchronized by @syslog_lock.
 384 */
 385static struct latched_seq clear_seq = {
 386	.latch		= SEQCNT_LATCH_ZERO(clear_seq.latch),
 387	.val[0]		= 0,
 388	.val[1]		= 0,
 389};
 390
 391#ifdef CONFIG_PRINTK_CALLER
 392#define PREFIX_MAX		48
 393#else
 394#define PREFIX_MAX		32
 395#endif
 396
 397/* the maximum size of a formatted record (i.e. with prefix added per line) */
 398#define CONSOLE_LOG_MAX		1024
 399
 400/* the maximum size allowed to be reserved for a record */
 401#define LOG_LINE_MAX		(CONSOLE_LOG_MAX - PREFIX_MAX)
 402
 403#define LOG_LEVEL(v)		((v) & 0x07)
 404#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 405
 406/* record buffer */
 407#define LOG_ALIGN __alignof__(unsigned long)
 408#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 409#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 410static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 411static char *log_buf = __log_buf;
 412static u32 log_buf_len = __LOG_BUF_LEN;
 413
 414/*
 415 * Define the average message size. This only affects the number of
 416 * descriptors that will be available. Underestimating is better than
 417 * overestimating (too many available descriptors is better than not enough).
 418 */
 419#define PRB_AVGBITS 5	/* 32 character average length */
 420
 421#if CONFIG_LOG_BUF_SHIFT <= PRB_AVGBITS
 422#error CONFIG_LOG_BUF_SHIFT value too small.
 423#endif
 424_DEFINE_PRINTKRB(printk_rb_static, CONFIG_LOG_BUF_SHIFT - PRB_AVGBITS,
 425		 PRB_AVGBITS, &__log_buf[0]);
 426
 427static struct printk_ringbuffer printk_rb_dynamic;
 
 
 
 
 428
 429static struct printk_ringbuffer *prb = &printk_rb_static;
 
 
 
 
 430
 431/*
 432 * We cannot access per-CPU data (e.g. per-CPU flush irq_work) before
 433 * per_cpu_areas are initialised. This variable is set to true when
 434 * it's safe to access per-CPU data.
 435 */
 436static bool __printk_percpu_data_ready __read_mostly;
 437
 438bool printk_percpu_data_ready(void)
 439{
 440	return __printk_percpu_data_ready;
 
 
 
 
 441}
 442
 443/* Must be called under syslog_lock. */
 444static void latched_seq_write(struct latched_seq *ls, u64 val)
 445{
 446	raw_write_seqcount_latch(&ls->latch);
 447	ls->val[0] = val;
 448	raw_write_seqcount_latch(&ls->latch);
 449	ls->val[1] = val;
 
 
 
 
 
 
 
 
 
 450}
 451
 452/* Can be called from any context. */
 453static u64 latched_seq_read_nolock(struct latched_seq *ls)
 
 
 
 
 
 
 
 
 454{
 455	unsigned int seq;
 456	unsigned int idx;
 457	u64 val;
 458
 459	do {
 460		seq = raw_read_seqcount_latch(&ls->latch);
 461		idx = seq & 0x1;
 462		val = ls->val[idx];
 463	} while (read_seqcount_latch_retry(&ls->latch, seq));
 464
 465	return val;
 
 
 
 
 466}
 467
 468/* Return log buffer address */
 469char *log_buf_addr_get(void)
 470{
 471	return log_buf;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472}
 473
 474/* Return log buffer size */
 475u32 log_buf_len_get(void)
 476{
 477	return log_buf_len;
 
 
 
 
 
 
 478}
 479
 480/*
 481 * Define how much of the log buffer we could take at maximum. The value
 482 * must be greater than two. Note that only half of the buffer is available
 483 * when the index points to the middle.
 484 */
 485#define MAX_LOG_TAKE_PART 4
 486static const char trunc_msg[] = "<truncated>";
 487
 488static void truncate_msg(u16 *text_len, u16 *trunc_msg_len)
 
 489{
 490	/*
 491	 * The message should not take the whole buffer. Otherwise, it might
 492	 * get removed too soon.
 493	 */
 494	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 495
 496	if (*text_len > max_text_len)
 497		*text_len = max_text_len;
 
 
 
 
 
 
 
 498
 499	/* enable the warning message (if there is room) */
 500	*trunc_msg_len = strlen(trunc_msg);
 501	if (*text_len >= *trunc_msg_len)
 502		*text_len -= *trunc_msg_len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 503	else
 504		*trunc_msg_len = 0;
 
 
 
 
 
 
 
 
 505}
 506
 507int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 508
 509static int syslog_action_restricted(int type)
 510{
 511	if (dmesg_restrict)
 512		return 1;
 513	/*
 514	 * Unless restricted, we allow "read all" and "get buffer size"
 515	 * for everybody.
 516	 */
 517	return type != SYSLOG_ACTION_READ_ALL &&
 518	       type != SYSLOG_ACTION_SIZE_BUFFER;
 519}
 520
 521static int check_syslog_permissions(int type, int source)
 522{
 523	/*
 524	 * If this is from /proc/kmsg and we've already opened it, then we've
 525	 * already done the capabilities checks at open time.
 526	 */
 527	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 528		goto ok;
 529
 530	if (syslog_action_restricted(type)) {
 531		if (capable(CAP_SYSLOG))
 532			goto ok;
 533		/*
 534		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 535		 * a warning.
 536		 */
 537		if (capable(CAP_SYS_ADMIN)) {
 538			pr_warn_once("%s (%d): Attempt to access syslog with "
 539				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 540				     "(deprecated).\n",
 541				 current->comm, task_pid_nr(current));
 542			goto ok;
 543		}
 544		return -EPERM;
 545	}
 546ok:
 547	return security_syslog(type);
 548}
 
 549
 550static void append_char(char **pp, char *e, char c)
 551{
 552	if (*pp < e)
 553		*(*pp)++ = c;
 554}
 555
 556static ssize_t info_print_ext_header(char *buf, size_t size,
 557				     struct printk_info *info)
 558{
 559	u64 ts_usec = info->ts_nsec;
 560	char caller[20];
 561#ifdef CONFIG_PRINTK_CALLER
 562	u32 id = info->caller_id;
 563
 564	snprintf(caller, sizeof(caller), ",caller=%c%u",
 565		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 566#else
 567	caller[0] = '\0';
 568#endif
 569
 570	do_div(ts_usec, 1000);
 571
 572	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 573			 (info->facility << 3) | info->level, info->seq,
 574			 ts_usec, info->flags & LOG_CONT ? 'c' : '-', caller);
 575}
 576
 577static ssize_t msg_add_ext_text(char *buf, size_t size,
 578				const char *text, size_t text_len,
 579				unsigned char endc)
 580{
 581	char *p = buf, *e = buf + size;
 582	size_t i;
 583
 584	/* escape non-printable characters */
 585	for (i = 0; i < text_len; i++) {
 586		unsigned char c = text[i];
 587
 588		if (c < ' ' || c >= 127 || c == '\\')
 589			p += scnprintf(p, e - p, "\\x%02x", c);
 590		else
 591			append_char(&p, e, c);
 592	}
 593	append_char(&p, e, endc);
 594
 595	return p - buf;
 596}
 597
 598static ssize_t msg_add_dict_text(char *buf, size_t size,
 599				 const char *key, const char *val)
 600{
 601	size_t val_len = strlen(val);
 602	ssize_t len;
 603
 604	if (!val_len)
 605		return 0;
 
 
 606
 607	len = msg_add_ext_text(buf, size, "", 0, ' ');	/* dict prefix */
 608	len += msg_add_ext_text(buf + len, size - len, key, strlen(key), '=');
 609	len += msg_add_ext_text(buf + len, size - len, val, val_len, '\n');
 
 
 610
 611	return len;
 612}
 
 
 613
 614static ssize_t msg_print_ext_body(char *buf, size_t size,
 615				  char *text, size_t text_len,
 616				  struct dev_printk_info *dev_info)
 617{
 618	ssize_t len;
 619
 620	len = msg_add_ext_text(buf, size, text, text_len, '\n');
 621
 622	if (!dev_info)
 623		goto out;
 624
 625	len += msg_add_dict_text(buf + len, size - len, "SUBSYSTEM",
 626				 dev_info->subsystem);
 627	len += msg_add_dict_text(buf + len, size - len, "DEVICE",
 628				 dev_info->device);
 629out:
 630	return len;
 631}
 632
 633/* /dev/kmsg - userspace message inject/listen interface */
 634struct devkmsg_user {
 635	atomic64_t seq;
 
 636	struct ratelimit_state rs;
 637	struct mutex lock;
 638	char buf[CONSOLE_EXT_LOG_MAX];
 639
 640	struct printk_info info;
 641	char text_buf[CONSOLE_EXT_LOG_MAX];
 642	struct printk_record record;
 643};
 644
 645static __printf(3, 4) __cold
 646int devkmsg_emit(int facility, int level, const char *fmt, ...)
 647{
 648	va_list args;
 649	int r;
 650
 651	va_start(args, fmt);
 652	r = vprintk_emit(facility, level, NULL, fmt, args);
 653	va_end(args);
 654
 655	return r;
 656}
 657
 658static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 659{
 660	char *buf, *line;
 661	int level = default_message_loglevel;
 662	int facility = 1;	/* LOG_USER */
 663	struct file *file = iocb->ki_filp;
 664	struct devkmsg_user *user = file->private_data;
 665	size_t len = iov_iter_count(from);
 666	ssize_t ret = len;
 667
 668	if (!user || len > LOG_LINE_MAX)
 669		return -EINVAL;
 670
 671	/* Ignore when user logging is disabled. */
 672	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 673		return len;
 674
 675	/* Ratelimit when not explicitly enabled. */
 676	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 677		if (!___ratelimit(&user->rs, current->comm))
 678			return ret;
 679	}
 680
 681	buf = kmalloc(len+1, GFP_KERNEL);
 682	if (buf == NULL)
 683		return -ENOMEM;
 684
 685	buf[len] = '\0';
 686	if (!copy_from_iter_full(buf, len, from)) {
 687		kfree(buf);
 688		return -EFAULT;
 689	}
 690
 691	/*
 692	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 693	 * the decimal value represents 32bit, the lower 3 bit are the log
 694	 * level, the rest are the log facility.
 695	 *
 696	 * If no prefix or no userspace facility is specified, we
 697	 * enforce LOG_USER, to be able to reliably distinguish
 698	 * kernel-generated messages from userspace-injected ones.
 699	 */
 700	line = buf;
 701	if (line[0] == '<') {
 702		char *endp = NULL;
 703		unsigned int u;
 704
 705		u = simple_strtoul(line + 1, &endp, 10);
 706		if (endp && endp[0] == '>') {
 707			level = LOG_LEVEL(u);
 708			if (LOG_FACILITY(u) != 0)
 709				facility = LOG_FACILITY(u);
 710			endp++;
 
 711			line = endp;
 712		}
 713	}
 714
 715	devkmsg_emit(facility, level, "%s", line);
 716	kfree(buf);
 717	return ret;
 718}
 719
 720static ssize_t devkmsg_read(struct file *file, char __user *buf,
 721			    size_t count, loff_t *ppos)
 722{
 723	struct devkmsg_user *user = file->private_data;
 724	struct printk_record *r = &user->record;
 725	size_t len;
 726	ssize_t ret;
 727
 728	if (!user)
 729		return -EBADF;
 730
 731	ret = mutex_lock_interruptible(&user->lock);
 732	if (ret)
 733		return ret;
 734
 735	printk_safe_enter_irq();
 736	if (!prb_read_valid(prb, atomic64_read(&user->seq), r)) {
 737		if (file->f_flags & O_NONBLOCK) {
 738			ret = -EAGAIN;
 739			printk_safe_exit_irq();
 740			goto out;
 741		}
 742
 743		printk_safe_exit_irq();
 744		ret = wait_event_interruptible(log_wait,
 745				prb_read_valid(prb, atomic64_read(&user->seq), r));
 746		if (ret)
 747			goto out;
 748		printk_safe_enter_irq();
 749	}
 750
 751	if (r->info->seq != atomic64_read(&user->seq)) {
 752		/* our last seen message is gone, return error and reset */
 753		atomic64_set(&user->seq, r->info->seq);
 
 754		ret = -EPIPE;
 755		printk_safe_exit_irq();
 756		goto out;
 757	}
 758
 759	len = info_print_ext_header(user->buf, sizeof(user->buf), r->info);
 
 
 760	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 761				  &r->text_buf[0], r->info->text_len,
 762				  &r->info->dev_info);
 763
 764	atomic64_set(&user->seq, r->info->seq + 1);
 765	printk_safe_exit_irq();
 
 766
 767	if (len > count) {
 768		ret = -EINVAL;
 769		goto out;
 770	}
 771
 772	if (copy_to_user(buf, user->buf, len)) {
 773		ret = -EFAULT;
 774		goto out;
 775	}
 776	ret = len;
 777out:
 778	mutex_unlock(&user->lock);
 779	return ret;
 780}
 781
 782/*
 783 * Be careful when modifying this function!!!
 784 *
 785 * Only few operations are supported because the device works only with the
 786 * entire variable length messages (records). Non-standard values are
 787 * returned in the other cases and has been this way for quite some time.
 788 * User space applications might depend on this behavior.
 789 */
 790static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 791{
 792	struct devkmsg_user *user = file->private_data;
 793	loff_t ret = 0;
 794
 795	if (!user)
 796		return -EBADF;
 797	if (offset)
 798		return -ESPIPE;
 799
 800	printk_safe_enter_irq();
 801	switch (whence) {
 802	case SEEK_SET:
 803		/* the first record */
 804		atomic64_set(&user->seq, prb_first_valid_seq(prb));
 
 805		break;
 806	case SEEK_DATA:
 807		/*
 808		 * The first record after the last SYSLOG_ACTION_CLEAR,
 809		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 810		 * changes no global state, and does not clear anything.
 811		 */
 812		atomic64_set(&user->seq, latched_seq_read_nolock(&clear_seq));
 
 813		break;
 814	case SEEK_END:
 815		/* after the last record */
 816		atomic64_set(&user->seq, prb_next_seq(prb));
 
 817		break;
 818	default:
 819		ret = -EINVAL;
 820	}
 821	printk_safe_exit_irq();
 822	return ret;
 823}
 824
 825static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 826{
 827	struct devkmsg_user *user = file->private_data;
 828	struct printk_info info;
 829	__poll_t ret = 0;
 830
 831	if (!user)
 832		return EPOLLERR|EPOLLNVAL;
 833
 834	poll_wait(file, &log_wait, wait);
 835
 836	printk_safe_enter_irq();
 837	if (prb_read_valid_info(prb, atomic64_read(&user->seq), &info, NULL)) {
 838		/* return error when data has vanished underneath us */
 839		if (info.seq != atomic64_read(&user->seq))
 840			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 841		else
 842			ret = EPOLLIN|EPOLLRDNORM;
 843	}
 844	printk_safe_exit_irq();
 845
 846	return ret;
 847}
 848
 849static int devkmsg_open(struct inode *inode, struct file *file)
 850{
 851	struct devkmsg_user *user;
 852	int err;
 853
 854	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 855		return -EPERM;
 856
 857	/* write-only does not need any file context */
 858	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
 859		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 860					       SYSLOG_FROM_READER);
 861		if (err)
 862			return err;
 863	}
 864
 865	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 866	if (!user)
 867		return -ENOMEM;
 868
 869	ratelimit_default_init(&user->rs);
 870	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
 871
 872	mutex_init(&user->lock);
 873
 874	prb_rec_init_rd(&user->record, &user->info,
 875			&user->text_buf[0], sizeof(user->text_buf));
 876
 877	printk_safe_enter_irq();
 878	atomic64_set(&user->seq, prb_first_valid_seq(prb));
 879	printk_safe_exit_irq();
 880
 881	file->private_data = user;
 882	return 0;
 883}
 884
 885static int devkmsg_release(struct inode *inode, struct file *file)
 886{
 887	struct devkmsg_user *user = file->private_data;
 888
 889	if (!user)
 890		return 0;
 891
 892	ratelimit_state_exit(&user->rs);
 893
 894	mutex_destroy(&user->lock);
 895	kfree(user);
 896	return 0;
 897}
 898
 899const struct file_operations kmsg_fops = {
 900	.open = devkmsg_open,
 901	.read = devkmsg_read,
 902	.write_iter = devkmsg_write,
 903	.llseek = devkmsg_llseek,
 904	.poll = devkmsg_poll,
 905	.release = devkmsg_release,
 906};
 907
 908#ifdef CONFIG_CRASH_CORE
 909/*
 910 * This appends the listed symbols to /proc/vmcore
 911 *
 912 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 913 * obtain access to symbols that are otherwise very difficult to locate.  These
 914 * symbols are specifically used so that utilities can access and extract the
 915 * dmesg log from a vmcore file after a crash.
 916 */
 917void log_buf_vmcoreinfo_setup(void)
 918{
 919	struct dev_printk_info *dev_info = NULL;
 920
 921	VMCOREINFO_SYMBOL(prb);
 922	VMCOREINFO_SYMBOL(printk_rb_static);
 923	VMCOREINFO_SYMBOL(clear_seq);
 924
 925	/*
 926	 * Export struct size and field offsets. User space tools can
 927	 * parse it and detect any changes to structure down the line.
 928	 */
 929
 930	VMCOREINFO_STRUCT_SIZE(printk_ringbuffer);
 931	VMCOREINFO_OFFSET(printk_ringbuffer, desc_ring);
 932	VMCOREINFO_OFFSET(printk_ringbuffer, text_data_ring);
 933	VMCOREINFO_OFFSET(printk_ringbuffer, fail);
 934
 935	VMCOREINFO_STRUCT_SIZE(prb_desc_ring);
 936	VMCOREINFO_OFFSET(prb_desc_ring, count_bits);
 937	VMCOREINFO_OFFSET(prb_desc_ring, descs);
 938	VMCOREINFO_OFFSET(prb_desc_ring, infos);
 939	VMCOREINFO_OFFSET(prb_desc_ring, head_id);
 940	VMCOREINFO_OFFSET(prb_desc_ring, tail_id);
 941
 942	VMCOREINFO_STRUCT_SIZE(prb_desc);
 943	VMCOREINFO_OFFSET(prb_desc, state_var);
 944	VMCOREINFO_OFFSET(prb_desc, text_blk_lpos);
 945
 946	VMCOREINFO_STRUCT_SIZE(prb_data_blk_lpos);
 947	VMCOREINFO_OFFSET(prb_data_blk_lpos, begin);
 948	VMCOREINFO_OFFSET(prb_data_blk_lpos, next);
 949
 950	VMCOREINFO_STRUCT_SIZE(printk_info);
 951	VMCOREINFO_OFFSET(printk_info, seq);
 952	VMCOREINFO_OFFSET(printk_info, ts_nsec);
 953	VMCOREINFO_OFFSET(printk_info, text_len);
 954	VMCOREINFO_OFFSET(printk_info, caller_id);
 955	VMCOREINFO_OFFSET(printk_info, dev_info);
 956
 957	VMCOREINFO_STRUCT_SIZE(dev_printk_info);
 958	VMCOREINFO_OFFSET(dev_printk_info, subsystem);
 959	VMCOREINFO_LENGTH(printk_info_subsystem, sizeof(dev_info->subsystem));
 960	VMCOREINFO_OFFSET(dev_printk_info, device);
 961	VMCOREINFO_LENGTH(printk_info_device, sizeof(dev_info->device));
 962
 963	VMCOREINFO_STRUCT_SIZE(prb_data_ring);
 964	VMCOREINFO_OFFSET(prb_data_ring, size_bits);
 965	VMCOREINFO_OFFSET(prb_data_ring, data);
 966	VMCOREINFO_OFFSET(prb_data_ring, head_lpos);
 967	VMCOREINFO_OFFSET(prb_data_ring, tail_lpos);
 968
 969	VMCOREINFO_SIZE(atomic_long_t);
 970	VMCOREINFO_TYPE_OFFSET(atomic_long_t, counter);
 971
 972	VMCOREINFO_STRUCT_SIZE(latched_seq);
 973	VMCOREINFO_OFFSET(latched_seq, val);
 974}
 975#endif
 976
 977/* requested log_buf_len from kernel cmdline */
 978static unsigned long __initdata new_log_buf_len;
 979
 980/* we practice scaling the ring buffer by powers of 2 */
 981static void __init log_buf_len_update(u64 size)
 982{
 983	if (size > (u64)LOG_BUF_LEN_MAX) {
 984		size = (u64)LOG_BUF_LEN_MAX;
 985		pr_err("log_buf over 2G is not supported.\n");
 986	}
 987
 988	if (size)
 989		size = roundup_pow_of_two(size);
 990	if (size > log_buf_len)
 991		new_log_buf_len = (unsigned long)size;
 992}
 993
 994/* save requested log_buf_len since it's too early to process it */
 995static int __init log_buf_len_setup(char *str)
 996{
 997	u64 size;
 998
 999	if (!str)
1000		return -EINVAL;
1001
1002	size = memparse(str, &str);
1003
1004	log_buf_len_update(size);
1005
1006	return 0;
1007}
1008early_param("log_buf_len", log_buf_len_setup);
1009
1010#ifdef CONFIG_SMP
1011#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1012
1013static void __init log_buf_add_cpu(void)
1014{
1015	unsigned int cpu_extra;
1016
1017	/*
1018	 * archs should set up cpu_possible_bits properly with
1019	 * set_cpu_possible() after setup_arch() but just in
1020	 * case lets ensure this is valid.
1021	 */
1022	if (num_possible_cpus() == 1)
1023		return;
1024
1025	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1026
1027	/* by default this will only continue through for large > 64 CPUs */
1028	if (cpu_extra <= __LOG_BUF_LEN / 2)
1029		return;
1030
1031	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1032		__LOG_CPU_MAX_BUF_LEN);
1033	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1034		cpu_extra);
1035	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1036
1037	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1038}
1039#else /* !CONFIG_SMP */
1040static inline void log_buf_add_cpu(void) {}
1041#endif /* CONFIG_SMP */
1042
1043static void __init set_percpu_data_ready(void)
1044{
1045	printk_safe_init();
1046	/* Make sure we set this flag only after printk_safe() init is done */
1047	barrier();
1048	__printk_percpu_data_ready = true;
1049}
1050
1051static unsigned int __init add_to_rb(struct printk_ringbuffer *rb,
1052				     struct printk_record *r)
1053{
1054	struct prb_reserved_entry e;
1055	struct printk_record dest_r;
1056
1057	prb_rec_init_wr(&dest_r, r->info->text_len);
1058
1059	if (!prb_reserve(&e, rb, &dest_r))
1060		return 0;
1061
1062	memcpy(&dest_r.text_buf[0], &r->text_buf[0], r->info->text_len);
1063	dest_r.info->text_len = r->info->text_len;
1064	dest_r.info->facility = r->info->facility;
1065	dest_r.info->level = r->info->level;
1066	dest_r.info->flags = r->info->flags;
1067	dest_r.info->ts_nsec = r->info->ts_nsec;
1068	dest_r.info->caller_id = r->info->caller_id;
1069	memcpy(&dest_r.info->dev_info, &r->info->dev_info, sizeof(dest_r.info->dev_info));
1070
1071	prb_final_commit(&e);
1072
1073	return prb_record_text_space(&e);
1074}
1075
1076static char setup_text_buf[LOG_LINE_MAX] __initdata;
1077
1078void __init setup_log_buf(int early)
1079{
1080	struct printk_info *new_infos;
1081	unsigned int new_descs_count;
1082	struct prb_desc *new_descs;
1083	struct printk_info info;
1084	struct printk_record r;
1085	size_t new_descs_size;
1086	size_t new_infos_size;
1087	unsigned long flags;
1088	char *new_log_buf;
1089	unsigned int free;
1090	u64 seq;
1091
1092	/*
1093	 * Some archs call setup_log_buf() multiple times - first is very
1094	 * early, e.g. from setup_arch(), and second - when percpu_areas
1095	 * are initialised.
1096	 */
1097	if (!early)
1098		set_percpu_data_ready();
1099
1100	if (log_buf != __log_buf)
1101		return;
1102
1103	if (!early && !new_log_buf_len)
1104		log_buf_add_cpu();
1105
1106	if (!new_log_buf_len)
1107		return;
1108
1109	new_descs_count = new_log_buf_len >> PRB_AVGBITS;
1110	if (new_descs_count == 0) {
1111		pr_err("new_log_buf_len: %lu too small\n", new_log_buf_len);
1112		return;
 
 
1113	}
1114
1115	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
1116	if (unlikely(!new_log_buf)) {
1117		pr_err("log_buf_len: %lu text bytes not available\n",
1118		       new_log_buf_len);
1119		return;
1120	}
1121
1122	new_descs_size = new_descs_count * sizeof(struct prb_desc);
1123	new_descs = memblock_alloc(new_descs_size, LOG_ALIGN);
1124	if (unlikely(!new_descs)) {
1125		pr_err("log_buf_len: %zu desc bytes not available\n",
1126		       new_descs_size);
1127		goto err_free_log_buf;
1128	}
1129
1130	new_infos_size = new_descs_count * sizeof(struct printk_info);
1131	new_infos = memblock_alloc(new_infos_size, LOG_ALIGN);
1132	if (unlikely(!new_infos)) {
1133		pr_err("log_buf_len: %zu info bytes not available\n",
1134		       new_infos_size);
1135		goto err_free_descs;
1136	}
1137
1138	prb_rec_init_rd(&r, &info, &setup_text_buf[0], sizeof(setup_text_buf));
1139
1140	prb_init(&printk_rb_dynamic,
1141		 new_log_buf, ilog2(new_log_buf_len),
1142		 new_descs, ilog2(new_descs_count),
1143		 new_infos);
1144
1145	printk_safe_enter_irqsave(flags);
1146
1147	log_buf_len = new_log_buf_len;
1148	log_buf = new_log_buf;
1149	new_log_buf_len = 0;
 
 
 
1150
1151	free = __LOG_BUF_LEN;
1152	prb_for_each_record(0, &printk_rb_static, seq, &r)
1153		free -= add_to_rb(&printk_rb_dynamic, &r);
1154
1155	/*
1156	 * This is early enough that everything is still running on the
1157	 * boot CPU and interrupts are disabled. So no new messages will
1158	 * appear during the transition to the dynamic buffer.
1159	 */
1160	prb = &printk_rb_dynamic;
1161
1162	printk_safe_exit_irqrestore(flags);
1163
1164	if (seq != prb_next_seq(&printk_rb_static)) {
1165		pr_err("dropped %llu messages\n",
1166		       prb_next_seq(&printk_rb_static) - seq);
1167	}
1168
1169	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1170	pr_info("early log buf free: %u(%u%%)\n",
1171		free, (free * 100) / __LOG_BUF_LEN);
1172	return;
1173
1174err_free_descs:
1175	memblock_free(__pa(new_descs), new_descs_size);
1176err_free_log_buf:
1177	memblock_free(__pa(new_log_buf), new_log_buf_len);
1178}
1179
1180static bool __read_mostly ignore_loglevel;
1181
1182static int __init ignore_loglevel_setup(char *str)
1183{
1184	ignore_loglevel = true;
1185	pr_info("debug: ignoring loglevel setting.\n");
1186
1187	return 0;
1188}
1189
1190early_param("ignore_loglevel", ignore_loglevel_setup);
1191module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1192MODULE_PARM_DESC(ignore_loglevel,
1193		 "ignore loglevel setting (prints all kernel messages to the console)");
1194
1195static bool suppress_message_printing(int level)
1196{
1197	return (level >= console_loglevel && !ignore_loglevel);
1198}
1199
1200#ifdef CONFIG_BOOT_PRINTK_DELAY
1201
1202static int boot_delay; /* msecs delay after each printk during bootup */
1203static unsigned long long loops_per_msec;	/* based on boot_delay */
1204
1205static int __init boot_delay_setup(char *str)
1206{
1207	unsigned long lpj;
1208
1209	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1210	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1211
1212	get_option(&str, &boot_delay);
1213	if (boot_delay > 10 * 1000)
1214		boot_delay = 0;
1215
1216	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1217		"HZ: %d, loops_per_msec: %llu\n",
1218		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1219	return 0;
1220}
1221early_param("boot_delay", boot_delay_setup);
1222
1223static void boot_delay_msec(int level)
1224{
1225	unsigned long long k;
1226	unsigned long timeout;
1227
1228	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1229		|| suppress_message_printing(level)) {
1230		return;
1231	}
1232
1233	k = (unsigned long long)loops_per_msec * boot_delay;
1234
1235	timeout = jiffies + msecs_to_jiffies(boot_delay);
1236	while (k) {
1237		k--;
1238		cpu_relax();
1239		/*
1240		 * use (volatile) jiffies to prevent
1241		 * compiler reduction; loop termination via jiffies
1242		 * is secondary and may or may not happen.
1243		 */
1244		if (time_after(jiffies, timeout))
1245			break;
1246		touch_nmi_watchdog();
1247	}
1248}
1249#else
1250static inline void boot_delay_msec(int level)
1251{
1252}
1253#endif
1254
1255static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1256module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1257
1258static size_t print_syslog(unsigned int level, char *buf)
1259{
1260	return sprintf(buf, "<%u>", level);
1261}
1262
1263static size_t print_time(u64 ts, char *buf)
1264{
1265	unsigned long rem_nsec = do_div(ts, 1000000000);
1266
1267	return sprintf(buf, "[%5lu.%06lu]",
1268		       (unsigned long)ts, rem_nsec / 1000);
1269}
1270
1271#ifdef CONFIG_PRINTK_CALLER
1272static size_t print_caller(u32 id, char *buf)
1273{
1274	char caller[12];
1275
1276	snprintf(caller, sizeof(caller), "%c%u",
1277		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1278	return sprintf(buf, "[%6s]", caller);
1279}
1280#else
1281#define print_caller(id, buf) 0
1282#endif
1283
1284static size_t info_print_prefix(const struct printk_info  *info, bool syslog,
1285				bool time, char *buf)
1286{
1287	size_t len = 0;
 
1288
1289	if (syslog)
1290		len = print_syslog((info->facility << 3) | info->level, buf);
1291
1292	if (time)
1293		len += print_time(info->ts_nsec, buf + len);
1294
1295	len += print_caller(info->caller_id, buf + len);
1296
1297	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1298		buf[len++] = ' ';
1299		buf[len] = '\0';
 
1300	}
1301
 
1302	return len;
1303}
1304
1305/*
1306 * Prepare the record for printing. The text is shifted within the given
1307 * buffer to avoid a need for another one. The following operations are
1308 * done:
1309 *
1310 *   - Add prefix for each line.
1311 *   - Drop truncated lines that no longer fit into the buffer.
1312 *   - Add the trailing newline that has been removed in vprintk_store().
1313 *   - Add a string terminator.
1314 *
1315 * Since the produced string is always terminated, the maximum possible
1316 * return value is @r->text_buf_size - 1;
1317 *
1318 * Return: The length of the updated/prepared text, including the added
1319 * prefixes and the newline. The terminator is not counted. The dropped
1320 * line(s) are not counted.
1321 */
1322static size_t record_print_text(struct printk_record *r, bool syslog,
1323				bool time)
1324{
1325	size_t text_len = r->info->text_len;
1326	size_t buf_size = r->text_buf_size;
1327	char *text = r->text_buf;
1328	char prefix[PREFIX_MAX];
1329	bool truncated = false;
1330	size_t prefix_len;
1331	size_t line_len;
1332	size_t len = 0;
1333	char *next;
1334
1335	/*
1336	 * If the message was truncated because the buffer was not large
1337	 * enough, treat the available text as if it were the full text.
1338	 */
1339	if (text_len > buf_size)
1340		text_len = buf_size;
1341
1342	prefix_len = info_print_prefix(r->info, syslog, time, prefix);
1343
1344	/*
1345	 * @text_len: bytes of unprocessed text
1346	 * @line_len: bytes of current line _without_ newline
1347	 * @text:     pointer to beginning of current line
1348	 * @len:      number of bytes prepared in r->text_buf
1349	 */
1350	for (;;) {
1351		next = memchr(text, '\n', text_len);
1352		if (next) {
1353			line_len = next - text;
 
 
1354		} else {
1355			/* Drop truncated line(s). */
1356			if (truncated)
1357				break;
1358			line_len = text_len;
1359		}
1360
1361		/*
1362		 * Truncate the text if there is not enough space to add the
1363		 * prefix and a trailing newline and a terminator.
1364		 */
1365		if (len + prefix_len + text_len + 1 + 1 > buf_size) {
1366			/* Drop even the current line if no space. */
1367			if (len + prefix_len + line_len + 1 + 1 > buf_size)
1368				break;
1369
1370			text_len = buf_size - len - prefix_len - 1 - 1;
1371			truncated = true;
 
 
 
 
 
 
 
1372		}
1373
1374		memmove(text + prefix_len, text, text_len);
1375		memcpy(text, prefix, prefix_len);
1376
1377		/*
1378		 * Increment the prepared length to include the text and
1379		 * prefix that were just moved+copied. Also increment for the
1380		 * newline at the end of this line. If this is the last line,
1381		 * there is no newline, but it will be added immediately below.
1382		 */
1383		len += prefix_len + line_len + 1;
1384		if (text_len == line_len) {
1385			/*
1386			 * This is the last line. Add the trailing newline
1387			 * removed in vprintk_store().
1388			 */
1389			text[prefix_len + line_len] = '\n';
1390			break;
1391		}
1392
1393		/*
1394		 * Advance beyond the added prefix and the related line with
1395		 * its newline.
1396		 */
1397		text += prefix_len + line_len + 1;
1398
1399		/*
1400		 * The remaining text has only decreased by the line with its
1401		 * newline.
1402		 *
1403		 * Note that @text_len can become zero. It happens when @text
1404		 * ended with a newline (either due to truncation or the
1405		 * original string ending with "\n\n"). The loop is correctly
1406		 * repeated and (if not truncated) an empty line with a prefix
1407		 * will be prepared.
1408		 */
1409		text_len -= line_len + 1;
1410	}
1411
1412	/*
1413	 * If a buffer was provided, it will be terminated. Space for the
1414	 * string terminator is guaranteed to be available. The terminator is
1415	 * not counted in the return value.
1416	 */
1417	if (buf_size > 0)
1418		r->text_buf[len] = 0;
1419
1420	return len;
1421}
1422
1423static size_t get_record_print_text_size(struct printk_info *info,
1424					 unsigned int line_count,
1425					 bool syslog, bool time)
1426{
1427	char prefix[PREFIX_MAX];
1428	size_t prefix_len;
1429
1430	prefix_len = info_print_prefix(info, syslog, time, prefix);
1431
1432	/*
1433	 * Each line will be preceded with a prefix. The intermediate
1434	 * newlines are already within the text, but a final trailing
1435	 * newline will be added.
1436	 */
1437	return ((prefix_len * line_count) + info->text_len + 1);
1438}
1439
1440/*
1441 * Beginning with @start_seq, find the first record where it and all following
1442 * records up to (but not including) @max_seq fit into @size.
1443 *
1444 * @max_seq is simply an upper bound and does not need to exist. If the caller
1445 * does not require an upper bound, -1 can be used for @max_seq.
1446 */
1447static u64 find_first_fitting_seq(u64 start_seq, u64 max_seq, size_t size,
1448				  bool syslog, bool time)
1449{
1450	struct printk_info info;
1451	unsigned int line_count;
1452	size_t len = 0;
1453	u64 seq;
1454
1455	/* Determine the size of the records up to @max_seq. */
1456	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1457		if (info.seq >= max_seq)
1458			break;
1459		len += get_record_print_text_size(&info, line_count, syslog, time);
1460	}
1461
1462	/*
1463	 * Adjust the upper bound for the next loop to avoid subtracting
1464	 * lengths that were never added.
1465	 */
1466	if (seq < max_seq)
1467		max_seq = seq;
1468
1469	/*
1470	 * Move first record forward until length fits into the buffer. Ignore
1471	 * newest messages that were not counted in the above cycle. Messages
1472	 * might appear and get lost in the meantime. This is a best effort
1473	 * that prevents an infinite loop that could occur with a retry.
1474	 */
1475	prb_for_each_info(start_seq, prb, seq, &info, &line_count) {
1476		if (len <= size || info.seq >= max_seq)
1477			break;
1478		len -= get_record_print_text_size(&info, line_count, syslog, time);
1479	}
1480
1481	return seq;
1482}
1483
1484static int syslog_print(char __user *buf, int size)
1485{
1486	struct printk_info info;
1487	struct printk_record r;
1488	char *text;
 
1489	int len = 0;
1490
1491	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1492	if (!text)
1493		return -ENOMEM;
1494
1495	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
1496
1497	while (size > 0) {
1498		size_t n;
1499		size_t skip;
1500
1501		printk_safe_enter_irq();
1502		raw_spin_lock(&syslog_lock);
1503		if (!prb_read_valid(prb, syslog_seq, &r)) {
1504			raw_spin_unlock(&syslog_lock);
1505			printk_safe_exit_irq();
 
 
 
 
1506			break;
1507		}
1508		if (r.info->seq != syslog_seq) {
1509			/* message is gone, move to next valid one */
1510			syslog_seq = r.info->seq;
1511			syslog_partial = 0;
1512		}
1513
1514		/*
1515		 * To keep reading/counting partial line consistent,
1516		 * use printk_time value as of the beginning of a line.
1517		 */
1518		if (!syslog_partial)
1519			syslog_time = printk_time;
1520
1521		skip = syslog_partial;
1522		n = record_print_text(&r, true, syslog_time);
 
1523		if (n - syslog_partial <= size) {
1524			/* message fits into buffer, move forward */
1525			syslog_seq = r.info->seq + 1;
 
1526			n -= syslog_partial;
1527			syslog_partial = 0;
1528		} else if (!len){
1529			/* partial read(), remember position */
1530			n = size;
1531			syslog_partial += n;
1532		} else
1533			n = 0;
1534		raw_spin_unlock(&syslog_lock);
1535		printk_safe_exit_irq();
1536
1537		if (!n)
1538			break;
1539
1540		if (copy_to_user(buf, text + skip, n)) {
1541			if (!len)
1542				len = -EFAULT;
1543			break;
1544		}
1545
1546		len += n;
1547		size -= n;
1548		buf += n;
1549	}
1550
1551	kfree(text);
1552	return len;
1553}
1554
1555static int syslog_print_all(char __user *buf, int size, bool clear)
1556{
1557	struct printk_info info;
1558	struct printk_record r;
1559	char *text;
1560	int len = 0;
1561	u64 seq;
1562	bool time;
1563
1564	text = kmalloc(CONSOLE_LOG_MAX, GFP_KERNEL);
1565	if (!text)
1566		return -ENOMEM;
1567
1568	time = printk_time;
1569	printk_safe_enter_irq();
1570	/*
1571	 * Find first record that fits, including all following records,
1572	 * into the user-provided buffer for this dump.
1573	 */
1574	seq = find_first_fitting_seq(latched_seq_read_nolock(&clear_seq), -1,
1575				     size, true, time);
1576
1577	prb_rec_init_rd(&r, &info, text, CONSOLE_LOG_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578
1579	len = 0;
1580	prb_for_each_record(seq, prb, seq, &r) {
1581		int textlen;
1582
1583		textlen = record_print_text(&r, true, time);
1584
1585		if (len + textlen > size) {
1586			seq--;
1587			break;
 
 
 
1588		}
1589
1590		printk_safe_exit_irq();
1591		if (copy_to_user(buf + len, text, textlen))
1592			len = -EFAULT;
1593		else
1594			len += textlen;
1595		printk_safe_enter_irq();
1596
1597		if (len < 0)
1598			break;
1599	}
1600
1601	if (clear) {
1602		raw_spin_lock(&syslog_lock);
1603		latched_seq_write(&clear_seq, seq);
1604		raw_spin_unlock(&syslog_lock);
1605	}
1606	printk_safe_exit_irq();
1607
1608	kfree(text);
1609	return len;
1610}
1611
1612static void syslog_clear(void)
1613{
1614	printk_safe_enter_irq();
1615	raw_spin_lock(&syslog_lock);
1616	latched_seq_write(&clear_seq, prb_next_seq(prb));
1617	raw_spin_unlock(&syslog_lock);
1618	printk_safe_exit_irq();
1619}
1620
1621/* Return a consistent copy of @syslog_seq. */
1622static u64 read_syslog_seq_irq(void)
1623{
1624	u64 seq;
1625
1626	raw_spin_lock_irq(&syslog_lock);
1627	seq = syslog_seq;
1628	raw_spin_unlock_irq(&syslog_lock);
1629
1630	return seq;
1631}
1632
1633int do_syslog(int type, char __user *buf, int len, int source)
1634{
1635	struct printk_info info;
1636	bool clear = false;
1637	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1638	int error;
1639
1640	error = check_syslog_permissions(type, source);
1641	if (error)
1642		return error;
1643
1644	switch (type) {
1645	case SYSLOG_ACTION_CLOSE:	/* Close log */
1646		break;
1647	case SYSLOG_ACTION_OPEN:	/* Open log */
1648		break;
1649	case SYSLOG_ACTION_READ:	/* Read from log */
 
1650		if (!buf || len < 0)
1651			return -EINVAL;
 
1652		if (!len)
1653			return 0;
1654		if (!access_ok(buf, len))
1655			return -EFAULT;
1656
 
1657		error = wait_event_interruptible(log_wait,
1658				prb_read_valid(prb, read_syslog_seq_irq(), NULL));
1659		if (error)
1660			return error;
1661		error = syslog_print(buf, len);
1662		break;
1663	/* Read/clear last kernel messages */
1664	case SYSLOG_ACTION_READ_CLEAR:
1665		clear = true;
1666		fallthrough;
1667	/* Read last kernel messages */
1668	case SYSLOG_ACTION_READ_ALL:
 
1669		if (!buf || len < 0)
1670			return -EINVAL;
 
1671		if (!len)
1672			return 0;
1673		if (!access_ok(buf, len))
1674			return -EFAULT;
 
 
1675		error = syslog_print_all(buf, len, clear);
1676		break;
1677	/* Clear ring buffer */
1678	case SYSLOG_ACTION_CLEAR:
1679		syslog_clear();
1680		break;
1681	/* Disable logging to console */
1682	case SYSLOG_ACTION_CONSOLE_OFF:
1683		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1684			saved_console_loglevel = console_loglevel;
1685		console_loglevel = minimum_console_loglevel;
1686		break;
1687	/* Enable logging to console */
1688	case SYSLOG_ACTION_CONSOLE_ON:
1689		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1690			console_loglevel = saved_console_loglevel;
1691			saved_console_loglevel = LOGLEVEL_DEFAULT;
1692		}
1693		break;
1694	/* Set level of messages printed to console */
1695	case SYSLOG_ACTION_CONSOLE_LEVEL:
 
1696		if (len < 1 || len > 8)
1697			return -EINVAL;
1698		if (len < minimum_console_loglevel)
1699			len = minimum_console_loglevel;
1700		console_loglevel = len;
1701		/* Implicitly re-enable logging to console */
1702		saved_console_loglevel = LOGLEVEL_DEFAULT;
 
1703		break;
1704	/* Number of chars in the log buffer */
1705	case SYSLOG_ACTION_SIZE_UNREAD:
1706		printk_safe_enter_irq();
1707		raw_spin_lock(&syslog_lock);
1708		if (!prb_read_valid_info(prb, syslog_seq, &info, NULL)) {
1709			/* No unread messages. */
1710			raw_spin_unlock(&syslog_lock);
1711			printk_safe_exit_irq();
1712			return 0;
1713		}
1714		if (info.seq != syslog_seq) {
1715			/* messages are gone, move to first one */
1716			syslog_seq = info.seq;
 
1717			syslog_partial = 0;
1718		}
1719		if (source == SYSLOG_FROM_PROC) {
1720			/*
1721			 * Short-cut for poll(/"proc/kmsg") which simply checks
1722			 * for pending data, not the size; return the count of
1723			 * records, not the length.
1724			 */
1725			error = prb_next_seq(prb) - syslog_seq;
1726		} else {
1727			bool time = syslog_partial ? syslog_time : printk_time;
1728			unsigned int line_count;
1729			u64 seq;
1730
1731			prb_for_each_info(syslog_seq, prb, seq, &info,
1732					  &line_count) {
1733				error += get_record_print_text_size(&info, line_count,
1734								    true, time);
1735				time = printk_time;
 
1736			}
1737			error -= syslog_partial;
1738		}
1739		raw_spin_unlock(&syslog_lock);
1740		printk_safe_exit_irq();
1741		break;
1742	/* Size of the log buffer */
1743	case SYSLOG_ACTION_SIZE_BUFFER:
1744		error = log_buf_len;
1745		break;
1746	default:
1747		error = -EINVAL;
1748		break;
1749	}
1750
1751	return error;
1752}
1753
1754SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1755{
1756	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1757}
1758
1759/*
1760 * Special console_lock variants that help to reduce the risk of soft-lockups.
1761 * They allow to pass console_lock to another printk() call using a busy wait.
1762 */
1763
1764#ifdef CONFIG_LOCKDEP
1765static struct lockdep_map console_owner_dep_map = {
1766	.name = "console_owner"
1767};
1768#endif
1769
1770static DEFINE_RAW_SPINLOCK(console_owner_lock);
1771static struct task_struct *console_owner;
1772static bool console_waiter;
1773
1774/**
1775 * console_lock_spinning_enable - mark beginning of code where another
1776 *	thread might safely busy wait
1777 *
1778 * This basically converts console_lock into a spinlock. This marks
1779 * the section where the console_lock owner can not sleep, because
1780 * there may be a waiter spinning (like a spinlock). Also it must be
1781 * ready to hand over the lock at the end of the section.
1782 */
1783static void console_lock_spinning_enable(void)
1784{
1785	raw_spin_lock(&console_owner_lock);
1786	console_owner = current;
1787	raw_spin_unlock(&console_owner_lock);
1788
1789	/* The waiter may spin on us after setting console_owner */
1790	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1791}
1792
1793/**
1794 * console_lock_spinning_disable_and_check - mark end of code where another
1795 *	thread was able to busy wait and check if there is a waiter
1796 *
1797 * This is called at the end of the section where spinning is allowed.
1798 * It has two functions. First, it is a signal that it is no longer
1799 * safe to start busy waiting for the lock. Second, it checks if
1800 * there is a busy waiter and passes the lock rights to her.
1801 *
1802 * Important: Callers lose the lock if there was a busy waiter.
1803 *	They must not touch items synchronized by console_lock
1804 *	in this case.
1805 *
1806 * Return: 1 if the lock rights were passed, 0 otherwise.
1807 */
1808static int console_lock_spinning_disable_and_check(void)
1809{
1810	int waiter;
1811
1812	raw_spin_lock(&console_owner_lock);
1813	waiter = READ_ONCE(console_waiter);
1814	console_owner = NULL;
1815	raw_spin_unlock(&console_owner_lock);
1816
1817	if (!waiter) {
1818		spin_release(&console_owner_dep_map, _THIS_IP_);
1819		return 0;
1820	}
1821
1822	/* The waiter is now free to continue */
1823	WRITE_ONCE(console_waiter, false);
1824
1825	spin_release(&console_owner_dep_map, _THIS_IP_);
1826
1827	/*
1828	 * Hand off console_lock to waiter. The waiter will perform
1829	 * the up(). After this, the waiter is the console_lock owner.
1830	 */
1831	mutex_release(&console_lock_dep_map, _THIS_IP_);
1832	return 1;
1833}
1834
1835/**
1836 * console_trylock_spinning - try to get console_lock by busy waiting
1837 *
1838 * This allows to busy wait for the console_lock when the current
1839 * owner is running in specially marked sections. It means that
1840 * the current owner is running and cannot reschedule until it
1841 * is ready to lose the lock.
1842 *
1843 * Return: 1 if we got the lock, 0 othrewise
1844 */
1845static int console_trylock_spinning(void)
1846{
1847	struct task_struct *owner = NULL;
1848	bool waiter;
1849	bool spin = false;
1850	unsigned long flags;
1851
1852	if (console_trylock())
1853		return 1;
1854
1855	printk_safe_enter_irqsave(flags);
1856
1857	raw_spin_lock(&console_owner_lock);
1858	owner = READ_ONCE(console_owner);
1859	waiter = READ_ONCE(console_waiter);
1860	if (!waiter && owner && owner != current) {
1861		WRITE_ONCE(console_waiter, true);
1862		spin = true;
1863	}
1864	raw_spin_unlock(&console_owner_lock);
1865
1866	/*
1867	 * If there is an active printk() writing to the
1868	 * consoles, instead of having it write our data too,
1869	 * see if we can offload that load from the active
1870	 * printer, and do some printing ourselves.
1871	 * Go into a spin only if there isn't already a waiter
1872	 * spinning, and there is an active printer, and
1873	 * that active printer isn't us (recursive printk?).
1874	 */
1875	if (!spin) {
1876		printk_safe_exit_irqrestore(flags);
1877		return 0;
1878	}
1879
1880	/* We spin waiting for the owner to release us */
1881	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1882	/* Owner will clear console_waiter on hand off */
1883	while (READ_ONCE(console_waiter))
1884		cpu_relax();
1885	spin_release(&console_owner_dep_map, _THIS_IP_);
1886
1887	printk_safe_exit_irqrestore(flags);
1888	/*
1889	 * The owner passed the console lock to us.
1890	 * Since we did not spin on console lock, annotate
1891	 * this as a trylock. Otherwise lockdep will
1892	 * complain.
1893	 */
1894	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1895
1896	return 1;
1897}
1898
1899/*
1900 * Call the console drivers, asking them to write out
1901 * log_buf[start] to log_buf[end - 1].
1902 * The console_lock must be held.
1903 */
1904static void call_console_drivers(const char *ext_text, size_t ext_len,
 
1905				 const char *text, size_t len)
1906{
1907	static char dropped_text[64];
1908	size_t dropped_len = 0;
1909	struct console *con;
1910
1911	trace_console_rcuidle(text, len);
1912
1913	if (!console_drivers)
1914		return;
1915
1916	if (console_dropped) {
1917		dropped_len = snprintf(dropped_text, sizeof(dropped_text),
1918				       "** %lu printk messages dropped **\n",
1919				       console_dropped);
1920		console_dropped = 0;
1921	}
1922
1923	for_each_console(con) {
1924		if (exclusive_console && con != exclusive_console)
1925			continue;
1926		if (!(con->flags & CON_ENABLED))
1927			continue;
1928		if (!con->write)
1929			continue;
1930		if (!cpu_online(smp_processor_id()) &&
1931		    !(con->flags & CON_ANYTIME))
1932			continue;
1933		if (con->flags & CON_EXTENDED)
1934			con->write(con, ext_text, ext_len);
1935		else {
1936			if (dropped_len)
1937				con->write(con, dropped_text, dropped_len);
1938			con->write(con, text, len);
1939		}
1940	}
1941}
1942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943int printk_delay_msec __read_mostly;
1944
1945static inline void printk_delay(void)
1946{
1947	if (unlikely(printk_delay_msec)) {
1948		int m = printk_delay_msec;
1949
1950		while (m--) {
1951			mdelay(1);
1952			touch_nmi_watchdog();
1953		}
1954	}
1955}
1956
1957static inline u32 printk_caller_id(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1958{
1959	return in_task() ? task_pid_nr(current) :
1960		0x80000000 + raw_smp_processor_id();
 
 
 
 
1961}
1962
1963/**
1964 * parse_prefix - Parse level and control flags.
1965 *
1966 * @text:     The terminated text message.
1967 * @level:    A pointer to the current level value, will be updated.
1968 * @lflags:   A pointer to the current log flags, will be updated.
1969 *
1970 * @level may be NULL if the caller is not interested in the parsed value.
1971 * Otherwise the variable pointed to by @level must be set to
1972 * LOGLEVEL_DEFAULT in order to be updated with the parsed value.
1973 *
1974 * @lflags may be NULL if the caller is not interested in the parsed value.
1975 * Otherwise the variable pointed to by @lflags will be OR'd with the parsed
1976 * value.
1977 *
1978 * Return: The length of the parsed level and control flags.
1979 */
1980static u16 parse_prefix(char *text, int *level, enum log_flags *lflags)
1981{
1982	u16 prefix_len = 0;
1983	int kern_level;
 
 
 
 
 
 
 
1984
1985	while (*text) {
1986		kern_level = printk_get_level(text);
1987		if (!kern_level)
1988			break;
1989
1990		switch (kern_level) {
1991		case '0' ... '7':
1992			if (level && *level == LOGLEVEL_DEFAULT)
1993				*level = kern_level - '0';
1994			break;
1995		case 'c':	/* KERN_CONT */
1996			if (lflags)
1997				*lflags |= LOG_CONT;
1998		}
 
 
 
1999
2000		prefix_len += 2;
2001		text += 2;
2002	}
2003
2004	return prefix_len;
2005}
2006
2007static u16 printk_sprint(char *text, u16 size, int facility, enum log_flags *lflags,
2008			 const char *fmt, va_list args)
2009{
2010	u16 text_len;
2011
2012	text_len = vscnprintf(text, size, fmt, args);
2013
2014	/* Mark and strip a trailing newline. */
2015	if (text_len && text[text_len - 1] == '\n') {
2016		text_len--;
2017		*lflags |= LOG_NEWLINE;
 
 
 
2018	}
2019
2020	/* Strip log level and control flags. */
2021	if (facility == 0) {
2022		u16 prefix_len;
2023
2024		prefix_len = parse_prefix(text, NULL, NULL);
2025		if (prefix_len) {
2026			text_len -= prefix_len;
2027			memmove(text, text + prefix_len, text_len);
2028		}
2029	}
2030
2031	return text_len;
 
2032}
2033
2034__printf(4, 0)
2035int vprintk_store(int facility, int level,
2036		  const struct dev_printk_info *dev_info,
2037		  const char *fmt, va_list args)
2038{
2039	const u32 caller_id = printk_caller_id();
2040	struct prb_reserved_entry e;
 
 
2041	enum log_flags lflags = 0;
2042	struct printk_record r;
2043	u16 trunc_msg_len = 0;
2044	char prefix_buf[8];
2045	u16 reserve_size;
2046	va_list args2;
2047	u16 text_len;
2048	u64 ts_nsec;
 
 
 
 
 
 
 
 
2049
2050	/*
2051	 * Since the duration of printk() can vary depending on the message
2052	 * and state of the ringbuffer, grab the timestamp now so that it is
2053	 * close to the call of printk(). This provides a more deterministic
2054	 * timestamp with respect to the caller.
2055	 */
2056	ts_nsec = local_clock();
2057
2058	/*
2059	 * The sprintf needs to come first since the syslog prefix might be
2060	 * passed in as a parameter. An extra byte must be reserved so that
2061	 * later the vscnprintf() into the reserved buffer has room for the
2062	 * terminating '\0', which is not counted by vsnprintf().
2063	 */
2064	va_copy(args2, args);
2065	reserve_size = vsnprintf(&prefix_buf[0], sizeof(prefix_buf), fmt, args2) + 1;
2066	va_end(args2);
 
 
 
 
 
 
 
 
 
 
 
 
2067
2068	if (reserve_size > LOG_LINE_MAX)
2069		reserve_size = LOG_LINE_MAX;
 
 
2070
2071	/* Extract log level or control flags. */
2072	if (facility == 0)
2073		parse_prefix(&prefix_buf[0], &level, &lflags);
2074
2075	if (level == LOGLEVEL_DEFAULT)
2076		level = default_message_loglevel;
2077
2078	if (dev_info)
2079		lflags |= LOG_NEWLINE;
 
2080
2081	if (lflags & LOG_CONT) {
2082		prb_rec_init_wr(&r, reserve_size);
2083		if (prb_reserve_in_last(&e, prb, &r, caller_id, LOG_LINE_MAX)) {
2084			text_len = printk_sprint(&r.text_buf[r.info->text_len], reserve_size,
2085						 facility, &lflags, fmt, args);
2086			r.info->text_len += text_len;
2087
2088			if (lflags & LOG_NEWLINE) {
2089				r.info->flags |= LOG_NEWLINE;
2090				prb_final_commit(&e);
2091			} else {
2092				prb_commit(&e);
2093			}
2094
2095			return text_len;
2096		}
2097	}
2098
2099	/*
2100	 * Explicitly initialize the record before every prb_reserve() call.
2101	 * prb_reserve_in_last() and prb_reserve() purposely invalidate the
2102	 * structure when they fail.
2103	 */
2104	prb_rec_init_wr(&r, reserve_size);
2105	if (!prb_reserve(&e, prb, &r)) {
2106		/* truncate the message if it is too long for empty buffer */
2107		truncate_msg(&reserve_size, &trunc_msg_len);
2108
2109		prb_rec_init_wr(&r, reserve_size + trunc_msg_len);
2110		if (!prb_reserve(&e, prb, &r))
2111			return 0;
 
2112	}
2113
2114	/* fill message */
2115	text_len = printk_sprint(&r.text_buf[0], reserve_size, facility, &lflags, fmt, args);
2116	if (trunc_msg_len)
2117		memcpy(&r.text_buf[text_len], trunc_msg, trunc_msg_len);
2118	r.info->text_len = text_len + trunc_msg_len;
2119	r.info->facility = facility;
2120	r.info->level = level & 7;
2121	r.info->flags = lflags & 0x1f;
2122	r.info->ts_nsec = ts_nsec;
2123	r.info->caller_id = caller_id;
2124	if (dev_info)
2125		memcpy(&r.info->dev_info, dev_info, sizeof(r.info->dev_info));
2126
2127	/* A message without a trailing newline can be continued. */
2128	if (!(lflags & LOG_NEWLINE))
2129		prb_commit(&e);
2130	else
2131		prb_final_commit(&e);
2132
2133	return (text_len + trunc_msg_len);
2134}
 
 
 
 
 
 
 
 
 
 
2135
2136asmlinkage int vprintk_emit(int facility, int level,
2137			    const struct dev_printk_info *dev_info,
2138			    const char *fmt, va_list args)
2139{
2140	int printed_len;
2141	bool in_sched = false;
2142	unsigned long flags;
2143
2144	/* Suppress unimportant messages after panic happens */
2145	if (unlikely(suppress_printk))
2146		return 0;
2147
2148	if (level == LOGLEVEL_SCHED) {
2149		level = LOGLEVEL_DEFAULT;
2150		in_sched = true;
2151	}
2152
2153	boot_delay_msec(level);
2154	printk_delay();
2155
2156	printk_safe_enter_irqsave(flags);
2157	printed_len = vprintk_store(facility, level, dev_info, fmt, args);
2158	printk_safe_exit_irqrestore(flags);
 
2159
2160	/* If called from the scheduler, we can not call up(). */
2161	if (!in_sched) {
2162		/*
2163		 * Disable preemption to avoid being preempted while holding
2164		 * console_sem which would prevent anyone from printing to
2165		 * console
2166		 */
2167		preempt_disable();
2168		/*
2169		 * Try to acquire and then immediately release the console
2170		 * semaphore.  The release will print out buffers and wake up
2171		 * /dev/kmsg and syslog() users.
2172		 */
2173		if (console_trylock_spinning())
2174			console_unlock();
2175		preempt_enable();
2176	}
2177
2178	wake_up_klogd();
2179	return printed_len;
2180}
2181EXPORT_SYMBOL(vprintk_emit);
2182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183int vprintk_default(const char *fmt, va_list args)
2184{
2185	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, fmt, args);
 
 
 
 
 
 
 
 
 
 
 
2186}
2187EXPORT_SYMBOL_GPL(vprintk_default);
2188
2189/**
2190 * printk - print a kernel message
2191 * @fmt: format string
2192 *
2193 * This is printk(). It can be called from any context. We want it to work.
2194 *
2195 * We try to grab the console_lock. If we succeed, it's easy - we log the
2196 * output and call the console drivers.  If we fail to get the semaphore, we
2197 * place the output into the log buffer and return. The current holder of
2198 * the console_sem will notice the new output in console_unlock(); and will
2199 * send it to the consoles before releasing the lock.
2200 *
2201 * One effect of this deferred printing is that code which calls printk() and
2202 * then changes console_loglevel may break. This is because console_loglevel
2203 * is inspected when the actual printing occurs.
2204 *
2205 * See also:
2206 * printf(3)
2207 *
2208 * See the vsnprintf() documentation for format string extensions over C99.
2209 */
2210asmlinkage __visible int printk(const char *fmt, ...)
2211{
2212	va_list args;
2213	int r;
2214
2215	va_start(args, fmt);
2216	r = vprintk(fmt, args);
2217	va_end(args);
2218
2219	return r;
2220}
2221EXPORT_SYMBOL(printk);
2222
2223#else /* CONFIG_PRINTK */
2224
2225#define CONSOLE_LOG_MAX		0
2226#define printk_time		false
2227
2228#define prb_read_valid(rb, seq, r)	false
2229#define prb_first_valid_seq(rb)		0
2230
2231static u64 syslog_seq;
 
2232static u64 console_seq;
2233static u64 exclusive_console_stop_seq;
2234static unsigned long console_dropped;
2235
2236static size_t record_print_text(const struct printk_record *r,
2237				bool syslog, bool time)
2238{
2239	return 0;
2240}
2241static ssize_t info_print_ext_header(char *buf, size_t size,
2242				     struct printk_info *info)
2243{
2244	return 0;
2245}
2246static ssize_t msg_print_ext_body(char *buf, size_t size,
2247				  char *text, size_t text_len,
2248				  struct dev_printk_info *dev_info) { return 0; }
2249static void console_lock_spinning_enable(void) { }
2250static int console_lock_spinning_disable_and_check(void) { return 0; }
2251static void call_console_drivers(const char *ext_text, size_t ext_len,
2252				 const char *text, size_t len) {}
 
 
2253static bool suppress_message_printing(int level) { return false; }
2254
 
 
 
2255#endif /* CONFIG_PRINTK */
2256
2257#ifdef CONFIG_EARLY_PRINTK
2258struct console *early_console;
2259
2260asmlinkage __visible void early_printk(const char *fmt, ...)
2261{
2262	va_list ap;
2263	char buf[512];
2264	int n;
2265
2266	if (!early_console)
2267		return;
2268
2269	va_start(ap, fmt);
2270	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2271	va_end(ap);
2272
2273	early_console->write(early_console, buf, n);
2274}
2275#endif
2276
2277static int __add_preferred_console(char *name, int idx, char *options,
2278				   char *brl_options, bool user_specified)
2279{
2280	struct console_cmdline *c;
2281	int i;
2282
2283	/*
2284	 *	See if this tty is not yet registered, and
2285	 *	if we have a slot free.
2286	 */
2287	for (i = 0, c = console_cmdline;
2288	     i < MAX_CMDLINECONSOLES && c->name[0];
2289	     i++, c++) {
2290		if (strcmp(c->name, name) == 0 && c->index == idx) {
2291			if (!brl_options)
2292				preferred_console = i;
2293			if (user_specified)
2294				c->user_specified = true;
2295			return 0;
2296		}
2297	}
2298	if (i == MAX_CMDLINECONSOLES)
2299		return -E2BIG;
2300	if (!brl_options)
2301		preferred_console = i;
2302	strlcpy(c->name, name, sizeof(c->name));
2303	c->options = options;
2304	c->user_specified = user_specified;
2305	braille_set_options(c, brl_options);
2306
2307	c->index = idx;
2308	return 0;
2309}
2310
2311static int __init console_msg_format_setup(char *str)
2312{
2313	if (!strcmp(str, "syslog"))
2314		console_msg_format = MSG_FORMAT_SYSLOG;
2315	if (!strcmp(str, "default"))
2316		console_msg_format = MSG_FORMAT_DEFAULT;
2317	return 1;
2318}
2319__setup("console_msg_format=", console_msg_format_setup);
2320
2321/*
2322 * Set up a console.  Called via do_early_param() in init/main.c
2323 * for each "console=" parameter in the boot command line.
2324 */
2325static int __init console_setup(char *str)
2326{
2327	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2328	char *s, *options, *brl_options = NULL;
2329	int idx;
2330
2331	/*
2332	 * console="" or console=null have been suggested as a way to
2333	 * disable console output. Use ttynull that has been created
2334	 * for exactly this purpose.
2335	 */
2336	if (str[0] == 0 || strcmp(str, "null") == 0) {
2337		__add_preferred_console("ttynull", 0, NULL, NULL, true);
2338		return 1;
2339	}
2340
2341	if (_braille_console_setup(&str, &brl_options))
2342		return 1;
2343
2344	/*
2345	 * Decode str into name, index, options.
2346	 */
2347	if (str[0] >= '0' && str[0] <= '9') {
2348		strcpy(buf, "ttyS");
2349		strncpy(buf + 4, str, sizeof(buf) - 5);
2350	} else {
2351		strncpy(buf, str, sizeof(buf) - 1);
2352	}
2353	buf[sizeof(buf) - 1] = 0;
2354	options = strchr(str, ',');
2355	if (options)
2356		*(options++) = 0;
2357#ifdef __sparc__
2358	if (!strcmp(str, "ttya"))
2359		strcpy(buf, "ttyS0");
2360	if (!strcmp(str, "ttyb"))
2361		strcpy(buf, "ttyS1");
2362#endif
2363	for (s = buf; *s; s++)
2364		if (isdigit(*s) || *s == ',')
2365			break;
2366	idx = simple_strtoul(s, NULL, 10);
2367	*s = 0;
2368
2369	__add_preferred_console(buf, idx, options, brl_options, true);
2370	console_set_on_cmdline = 1;
2371	return 1;
2372}
2373__setup("console=", console_setup);
2374
2375/**
2376 * add_preferred_console - add a device to the list of preferred consoles.
2377 * @name: device name
2378 * @idx: device index
2379 * @options: options for this console
2380 *
2381 * The last preferred console added will be used for kernel messages
2382 * and stdin/out/err for init.  Normally this is used by console_setup
2383 * above to handle user-supplied console arguments; however it can also
2384 * be used by arch-specific code either to override the user or more
2385 * commonly to provide a default console (ie from PROM variables) when
2386 * the user has not supplied one.
2387 */
2388int add_preferred_console(char *name, int idx, char *options)
2389{
2390	return __add_preferred_console(name, idx, options, NULL, false);
2391}
2392
2393bool console_suspend_enabled = true;
2394EXPORT_SYMBOL(console_suspend_enabled);
2395
2396static int __init console_suspend_disable(char *str)
2397{
2398	console_suspend_enabled = false;
2399	return 1;
2400}
2401__setup("no_console_suspend", console_suspend_disable);
2402module_param_named(console_suspend, console_suspend_enabled,
2403		bool, S_IRUGO | S_IWUSR);
2404MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2405	" and hibernate operations");
2406
2407/**
2408 * suspend_console - suspend the console subsystem
2409 *
2410 * This disables printk() while we go into suspend states
2411 */
2412void suspend_console(void)
2413{
2414	if (!console_suspend_enabled)
2415		return;
2416	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2417	console_lock();
2418	console_suspended = 1;
2419	up_console_sem();
2420}
2421
2422void resume_console(void)
2423{
2424	if (!console_suspend_enabled)
2425		return;
2426	down_console_sem();
2427	console_suspended = 0;
2428	console_unlock();
2429}
2430
2431/**
2432 * console_cpu_notify - print deferred console messages after CPU hotplug
2433 * @cpu: unused
2434 *
2435 * If printk() is called from a CPU that is not online yet, the messages
2436 * will be printed on the console only if there are CON_ANYTIME consoles.
2437 * This function is called when a new CPU comes online (or fails to come
2438 * up) or goes offline.
2439 */
2440static int console_cpu_notify(unsigned int cpu)
2441{
2442	if (!cpuhp_tasks_frozen) {
2443		/* If trylock fails, someone else is doing the printing */
2444		if (console_trylock())
2445			console_unlock();
2446	}
2447	return 0;
2448}
2449
2450/**
2451 * console_lock - lock the console system for exclusive use.
2452 *
2453 * Acquires a lock which guarantees that the caller has
2454 * exclusive access to the console system and the console_drivers list.
2455 *
2456 * Can sleep, returns nothing.
2457 */
2458void console_lock(void)
2459{
2460	might_sleep();
2461
2462	down_console_sem();
2463	if (console_suspended)
2464		return;
2465	console_locked = 1;
2466	console_may_schedule = 1;
2467}
2468EXPORT_SYMBOL(console_lock);
2469
2470/**
2471 * console_trylock - try to lock the console system for exclusive use.
2472 *
2473 * Try to acquire a lock which guarantees that the caller has exclusive
2474 * access to the console system and the console_drivers list.
2475 *
2476 * returns 1 on success, and 0 on failure to acquire the lock.
2477 */
2478int console_trylock(void)
2479{
2480	if (down_trylock_console_sem())
2481		return 0;
2482	if (console_suspended) {
2483		up_console_sem();
2484		return 0;
2485	}
2486	console_locked = 1;
2487	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2488	return 1;
2489}
2490EXPORT_SYMBOL(console_trylock);
2491
2492int is_console_locked(void)
2493{
2494	return console_locked;
2495}
2496EXPORT_SYMBOL(is_console_locked);
2497
2498/*
2499 * Check if we have any console that is capable of printing while cpu is
2500 * booting or shutting down. Requires console_sem.
2501 */
2502static int have_callable_console(void)
2503{
2504	struct console *con;
2505
2506	for_each_console(con)
2507		if ((con->flags & CON_ENABLED) &&
2508				(con->flags & CON_ANYTIME))
2509			return 1;
2510
2511	return 0;
2512}
2513
2514/*
2515 * Can we actually use the console at this time on this cpu?
2516 *
2517 * Console drivers may assume that per-cpu resources have been allocated. So
2518 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2519 * call them until this CPU is officially up.
2520 */
2521static inline int can_use_console(void)
2522{
2523	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2524}
2525
2526/**
2527 * console_unlock - unlock the console system
2528 *
2529 * Releases the console_lock which the caller holds on the console system
2530 * and the console driver list.
2531 *
2532 * While the console_lock was held, console output may have been buffered
2533 * by printk().  If this is the case, console_unlock(); emits
2534 * the output prior to releasing the lock.
2535 *
2536 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2537 *
2538 * console_unlock(); may be called from any context.
2539 */
2540void console_unlock(void)
2541{
2542	static char ext_text[CONSOLE_EXT_LOG_MAX];
2543	static char text[CONSOLE_LOG_MAX];
 
2544	unsigned long flags;
 
2545	bool do_cond_resched, retry;
2546	struct printk_info info;
2547	struct printk_record r;
2548	u64 __maybe_unused next_seq;
2549
2550	if (console_suspended) {
2551		up_console_sem();
2552		return;
2553	}
2554
2555	prb_rec_init_rd(&r, &info, text, sizeof(text));
2556
2557	/*
2558	 * Console drivers are called with interrupts disabled, so
2559	 * @console_may_schedule should be cleared before; however, we may
2560	 * end up dumping a lot of lines, for example, if called from
2561	 * console registration path, and should invoke cond_resched()
2562	 * between lines if allowable.  Not doing so can cause a very long
2563	 * scheduling stall on a slow console leading to RCU stall and
2564	 * softlockup warnings which exacerbate the issue with more
2565	 * messages practically incapacitating the system.
2566	 *
2567	 * console_trylock() is not able to detect the preemptive
2568	 * context reliably. Therefore the value must be stored before
2569	 * and cleared after the "again" goto label.
2570	 */
2571	do_cond_resched = console_may_schedule;
2572again:
2573	console_may_schedule = 0;
2574
 
2575	/*
2576	 * We released the console_sem lock, so we need to recheck if
2577	 * cpu is online and (if not) is there at least one CON_ANYTIME
2578	 * console.
2579	 */
2580	if (!can_use_console()) {
2581		console_locked = 0;
2582		up_console_sem();
2583		return;
2584	}
2585
2586	for (;;) {
 
2587		size_t ext_len = 0;
2588		size_t len;
 
2589
2590		printk_safe_enter_irqsave(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2591skip:
2592		if (!prb_read_valid(prb, console_seq, &r))
2593			break;
2594
2595		if (console_seq != r.info->seq) {
2596			console_dropped += r.info->seq - console_seq;
2597			console_seq = r.info->seq;
2598		}
2599
2600		if (suppress_message_printing(r.info->level)) {
2601			/*
2602			 * Skip record we have buffered and already printed
2603			 * directly to the console when we received it, and
2604			 * record that has level above the console loglevel.
2605			 */
 
2606			console_seq++;
2607			goto skip;
2608		}
2609
2610		/* Output to all consoles once old messages replayed. */
2611		if (unlikely(exclusive_console &&
2612			     console_seq >= exclusive_console_stop_seq)) {
2613			exclusive_console = NULL;
2614		}
2615
2616		/*
2617		 * Handle extended console text first because later
2618		 * record_print_text() will modify the record buffer in-place.
2619		 */
2620		if (nr_ext_console_drivers) {
2621			ext_len = info_print_ext_header(ext_text,
2622						sizeof(ext_text),
2623						r.info);
2624			ext_len += msg_print_ext_body(ext_text + ext_len,
2625						sizeof(ext_text) - ext_len,
2626						&r.text_buf[0],
2627						r.info->text_len,
2628						&r.info->dev_info);
2629		}
2630		len = record_print_text(&r,
2631				console_msg_format & MSG_FORMAT_SYSLOG,
2632				printk_time);
2633		console_seq++;
2634
2635		/*
2636		 * While actively printing out messages, if another printk()
2637		 * were to occur on another CPU, it may wait for this one to
2638		 * finish. This task can not be preempted if there is a
2639		 * waiter waiting to take over.
2640		 */
2641		console_lock_spinning_enable();
2642
2643		stop_critical_timings();	/* don't trace print latency */
2644		call_console_drivers(ext_text, ext_len, text, len);
2645		start_critical_timings();
2646
2647		if (console_lock_spinning_disable_and_check()) {
2648			printk_safe_exit_irqrestore(flags);
2649			return;
2650		}
2651
2652		printk_safe_exit_irqrestore(flags);
2653
2654		if (do_cond_resched)
2655			cond_resched();
2656	}
 
2657
2658	/* Get consistent value of the next-to-be-used sequence number. */
2659	next_seq = console_seq;
 
 
 
2660
2661	console_locked = 0;
2662	up_console_sem();
2663
2664	/*
2665	 * Someone could have filled up the buffer again, so re-check if there's
2666	 * something to flush. In case we cannot trylock the console_sem again,
2667	 * there's a new owner and the console_unlock() from them will do the
2668	 * flush, no worries.
2669	 */
2670	retry = prb_read_valid(prb, next_seq, NULL);
2671	printk_safe_exit_irqrestore(flags);
 
2672
2673	if (retry && console_trylock())
2674		goto again;
 
 
 
2675}
2676EXPORT_SYMBOL(console_unlock);
2677
2678/**
2679 * console_conditional_schedule - yield the CPU if required
2680 *
2681 * If the console code is currently allowed to sleep, and
2682 * if this CPU should yield the CPU to another task, do
2683 * so here.
2684 *
2685 * Must be called within console_lock();.
2686 */
2687void __sched console_conditional_schedule(void)
2688{
2689	if (console_may_schedule)
2690		cond_resched();
2691}
2692EXPORT_SYMBOL(console_conditional_schedule);
2693
2694void console_unblank(void)
2695{
2696	struct console *c;
2697
2698	/*
2699	 * console_unblank can no longer be called in interrupt context unless
2700	 * oops_in_progress is set to 1..
2701	 */
2702	if (oops_in_progress) {
2703		if (down_trylock_console_sem() != 0)
2704			return;
2705	} else
2706		console_lock();
2707
2708	console_locked = 1;
2709	console_may_schedule = 0;
2710	for_each_console(c)
2711		if ((c->flags & CON_ENABLED) && c->unblank)
2712			c->unblank();
2713	console_unlock();
2714}
2715
2716/**
2717 * console_flush_on_panic - flush console content on panic
2718 * @mode: flush all messages in buffer or just the pending ones
2719 *
2720 * Immediately output all pending messages no matter what.
2721 */
2722void console_flush_on_panic(enum con_flush_mode mode)
2723{
2724	/*
2725	 * If someone else is holding the console lock, trylock will fail
2726	 * and may_schedule may be set.  Ignore and proceed to unlock so
2727	 * that messages are flushed out.  As this can be called from any
2728	 * context and we don't want to get preempted while flushing,
2729	 * ensure may_schedule is cleared.
2730	 */
2731	console_trylock();
2732	console_may_schedule = 0;
2733
2734	if (mode == CONSOLE_REPLAY_ALL) {
2735		unsigned long flags;
2736
2737		printk_safe_enter_irqsave(flags);
2738		console_seq = prb_first_valid_seq(prb);
2739		printk_safe_exit_irqrestore(flags);
2740	}
2741	console_unlock();
2742}
2743
2744/*
2745 * Return the console tty driver structure and its associated index
2746 */
2747struct tty_driver *console_device(int *index)
2748{
2749	struct console *c;
2750	struct tty_driver *driver = NULL;
2751
2752	console_lock();
2753	for_each_console(c) {
2754		if (!c->device)
2755			continue;
2756		driver = c->device(c, index);
2757		if (driver)
2758			break;
2759	}
2760	console_unlock();
2761	return driver;
2762}
2763
2764/*
2765 * Prevent further output on the passed console device so that (for example)
2766 * serial drivers can disable console output before suspending a port, and can
2767 * re-enable output afterwards.
2768 */
2769void console_stop(struct console *console)
2770{
2771	console_lock();
2772	console->flags &= ~CON_ENABLED;
2773	console_unlock();
2774}
2775EXPORT_SYMBOL(console_stop);
2776
2777void console_start(struct console *console)
2778{
2779	console_lock();
2780	console->flags |= CON_ENABLED;
2781	console_unlock();
2782}
2783EXPORT_SYMBOL(console_start);
2784
2785static int __read_mostly keep_bootcon;
2786
2787static int __init keep_bootcon_setup(char *str)
2788{
2789	keep_bootcon = 1;
2790	pr_info("debug: skip boot console de-registration.\n");
2791
2792	return 0;
2793}
2794
2795early_param("keep_bootcon", keep_bootcon_setup);
2796
2797/*
2798 * This is called by register_console() to try to match
2799 * the newly registered console with any of the ones selected
2800 * by either the command line or add_preferred_console() and
2801 * setup/enable it.
2802 *
2803 * Care need to be taken with consoles that are statically
2804 * enabled such as netconsole
2805 */
2806static int try_enable_new_console(struct console *newcon, bool user_specified)
2807{
2808	struct console_cmdline *c;
2809	int i, err;
2810
2811	for (i = 0, c = console_cmdline;
2812	     i < MAX_CMDLINECONSOLES && c->name[0];
2813	     i++, c++) {
2814		if (c->user_specified != user_specified)
2815			continue;
2816		if (!newcon->match ||
2817		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2818			/* default matching */
2819			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2820			if (strcmp(c->name, newcon->name) != 0)
2821				continue;
2822			if (newcon->index >= 0 &&
2823			    newcon->index != c->index)
2824				continue;
2825			if (newcon->index < 0)
2826				newcon->index = c->index;
2827
2828			if (_braille_register_console(newcon, c))
2829				return 0;
2830
2831			if (newcon->setup &&
2832			    (err = newcon->setup(newcon, c->options)) != 0)
2833				return err;
2834		}
2835		newcon->flags |= CON_ENABLED;
2836		if (i == preferred_console) {
2837			newcon->flags |= CON_CONSDEV;
2838			has_preferred_console = true;
2839		}
2840		return 0;
2841	}
2842
2843	/*
2844	 * Some consoles, such as pstore and netconsole, can be enabled even
2845	 * without matching. Accept the pre-enabled consoles only when match()
2846	 * and setup() had a chance to be called.
2847	 */
2848	if (newcon->flags & CON_ENABLED && c->user_specified ==	user_specified)
2849		return 0;
2850
2851	return -ENOENT;
2852}
2853
2854/*
2855 * The console driver calls this routine during kernel initialization
2856 * to register the console printing procedure with printk() and to
2857 * print any messages that were printed by the kernel before the
2858 * console driver was initialized.
2859 *
2860 * This can happen pretty early during the boot process (because of
2861 * early_printk) - sometimes before setup_arch() completes - be careful
2862 * of what kernel features are used - they may not be initialised yet.
2863 *
2864 * There are two types of consoles - bootconsoles (early_printk) and
2865 * "real" consoles (everything which is not a bootconsole) which are
2866 * handled differently.
2867 *  - Any number of bootconsoles can be registered at any time.
2868 *  - As soon as a "real" console is registered, all bootconsoles
2869 *    will be unregistered automatically.
2870 *  - Once a "real" console is registered, any attempt to register a
2871 *    bootconsoles will be rejected
2872 */
2873void register_console(struct console *newcon)
2874{
 
2875	unsigned long flags;
2876	struct console *bcon = NULL;
2877	int err;
2878
2879	for_each_console(bcon) {
2880		if (WARN(bcon == newcon, "console '%s%d' already registered\n",
2881					 bcon->name, bcon->index))
2882			return;
2883	}
 
2884
2885	/*
2886	 * before we register a new CON_BOOT console, make sure we don't
2887	 * already have a valid console
2888	 */
2889	if (newcon->flags & CON_BOOT) {
 
2890		for_each_console(bcon) {
2891			if (!(bcon->flags & CON_BOOT)) {
2892				pr_info("Too late to register bootconsole %s%d\n",
2893					newcon->name, newcon->index);
2894				return;
2895			}
2896		}
2897	}
2898
2899	if (console_drivers && console_drivers->flags & CON_BOOT)
2900		bcon = console_drivers;
2901
2902	if (!has_preferred_console || bcon || !console_drivers)
2903		has_preferred_console = preferred_console >= 0;
2904
2905	/*
2906	 *	See if we want to use this console driver. If we
2907	 *	didn't select a console we take the first one
2908	 *	that registers here.
2909	 */
2910	if (!has_preferred_console) {
2911		if (newcon->index < 0)
2912			newcon->index = 0;
2913		if (newcon->setup == NULL ||
2914		    newcon->setup(newcon, NULL) == 0) {
2915			newcon->flags |= CON_ENABLED;
2916			if (newcon->device) {
2917				newcon->flags |= CON_CONSDEV;
2918				has_preferred_console = true;
2919			}
2920		}
2921	}
2922
2923	/* See if this console matches one we selected on the command line */
2924	err = try_enable_new_console(newcon, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2925
2926	/* If not, try to match against the platform default(s) */
2927	if (err == -ENOENT)
2928		err = try_enable_new_console(newcon, false);
 
2929
2930	/* printk() messages are not printed to the Braille console. */
2931	if (err || newcon->flags & CON_BRL)
 
 
 
 
 
 
 
2932		return;
2933
2934	/*
2935	 * If we have a bootconsole, and are switching to a real console,
2936	 * don't print everything out again, since when the boot console, and
2937	 * the real console are the same physical device, it's annoying to
2938	 * see the beginning boot messages twice
2939	 */
2940	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2941		newcon->flags &= ~CON_PRINTBUFFER;
2942
2943	/*
2944	 *	Put this console in the list - keep the
2945	 *	preferred driver at the head of the list.
2946	 */
2947	console_lock();
2948	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2949		newcon->next = console_drivers;
2950		console_drivers = newcon;
2951		if (newcon->next)
2952			newcon->next->flags &= ~CON_CONSDEV;
2953		/* Ensure this flag is always set for the head of the list */
2954		newcon->flags |= CON_CONSDEV;
2955	} else {
2956		newcon->next = console_drivers->next;
2957		console_drivers->next = newcon;
2958	}
2959
2960	if (newcon->flags & CON_EXTENDED)
2961		nr_ext_console_drivers++;
 
2962
2963	if (newcon->flags & CON_PRINTBUFFER) {
2964		/*
2965		 * console_unlock(); will print out the buffered messages
2966		 * for us.
2967		 *
 
 
 
 
 
2968		 * We're about to replay the log buffer.  Only do this to the
2969		 * just-registered console to avoid excessive message spam to
2970		 * the already-registered consoles.
2971		 *
2972		 * Set exclusive_console with disabled interrupts to reduce
2973		 * race window with eventual console_flush_on_panic() that
2974		 * ignores console_lock.
2975		 */
2976		exclusive_console = newcon;
2977		exclusive_console_stop_seq = console_seq;
2978
2979		/* Get a consistent copy of @syslog_seq. */
2980		raw_spin_lock_irqsave(&syslog_lock, flags);
2981		console_seq = syslog_seq;
2982		raw_spin_unlock_irqrestore(&syslog_lock, flags);
2983	}
2984	console_unlock();
2985	console_sysfs_notify();
2986
2987	/*
2988	 * By unregistering the bootconsoles after we enable the real console
2989	 * we get the "console xxx enabled" message on all the consoles -
2990	 * boot consoles, real consoles, etc - this is to ensure that end
2991	 * users know there might be something in the kernel's log buffer that
2992	 * went to the bootconsole (that they do not see on the real console)
2993	 */
2994	pr_info("%sconsole [%s%d] enabled\n",
2995		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2996		newcon->name, newcon->index);
2997	if (bcon &&
2998	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2999	    !keep_bootcon) {
3000		/* We need to iterate through all boot consoles, to make
3001		 * sure we print everything out, before we unregister them.
3002		 */
3003		for_each_console(bcon)
3004			if (bcon->flags & CON_BOOT)
3005				unregister_console(bcon);
3006	}
3007}
3008EXPORT_SYMBOL(register_console);
3009
3010int unregister_console(struct console *console)
3011{
3012	struct console *con;
3013	int res;
3014
3015	pr_info("%sconsole [%s%d] disabled\n",
3016		(console->flags & CON_BOOT) ? "boot" : "" ,
3017		console->name, console->index);
3018
3019	res = _braille_unregister_console(console);
3020	if (res < 0)
3021		return res;
3022	if (res > 0)
3023		return 0;
3024
3025	res = -ENODEV;
3026	console_lock();
3027	if (console_drivers == console) {
3028		console_drivers=console->next;
3029		res = 0;
3030	} else {
3031		for_each_console(con) {
3032			if (con->next == console) {
3033				con->next = console->next;
 
3034				res = 0;
3035				break;
3036			}
3037		}
3038	}
3039
3040	if (res)
3041		goto out_disable_unlock;
3042
3043	if (console->flags & CON_EXTENDED)
3044		nr_ext_console_drivers--;
3045
3046	/*
3047	 * If this isn't the last console and it has CON_CONSDEV set, we
3048	 * need to set it on the next preferred console.
3049	 */
3050	if (console_drivers != NULL && console->flags & CON_CONSDEV)
3051		console_drivers->flags |= CON_CONSDEV;
3052
3053	console->flags &= ~CON_ENABLED;
3054	console_unlock();
3055	console_sysfs_notify();
3056
3057	if (console->exit)
3058		res = console->exit(console);
3059
3060	return res;
3061
3062out_disable_unlock:
3063	console->flags &= ~CON_ENABLED;
3064	console_unlock();
3065
3066	return res;
3067}
3068EXPORT_SYMBOL(unregister_console);
3069
3070/*
3071 * Initialize the console device. This is called *early*, so
3072 * we can't necessarily depend on lots of kernel help here.
3073 * Just do some early initializations, and do the complex setup
3074 * later.
3075 */
3076void __init console_init(void)
3077{
3078	int ret;
3079	initcall_t call;
3080	initcall_entry_t *ce;
3081
3082	/* Setup the default TTY line discipline. */
3083	n_tty_init();
3084
3085	/*
3086	 * set up the console device so that later boot sequences can
3087	 * inform about problems etc..
3088	 */
3089	ce = __con_initcall_start;
3090	trace_initcall_level("console");
3091	while (ce < __con_initcall_end) {
3092		call = initcall_from_entry(ce);
3093		trace_initcall_start(call);
3094		ret = call();
3095		trace_initcall_finish(call, ret);
3096		ce++;
3097	}
3098}
3099
3100/*
3101 * Some boot consoles access data that is in the init section and which will
3102 * be discarded after the initcalls have been run. To make sure that no code
3103 * will access this data, unregister the boot consoles in a late initcall.
3104 *
3105 * If for some reason, such as deferred probe or the driver being a loadable
3106 * module, the real console hasn't registered yet at this point, there will
3107 * be a brief interval in which no messages are logged to the console, which
3108 * makes it difficult to diagnose problems that occur during this time.
3109 *
3110 * To mitigate this problem somewhat, only unregister consoles whose memory
3111 * intersects with the init section. Note that all other boot consoles will
3112 * get unregistered when the real preferred console is registered.
 
3113 */
3114static int __init printk_late_init(void)
3115{
3116	struct console *con;
3117	int ret;
3118
3119	for_each_console(con) {
3120		if (!(con->flags & CON_BOOT))
3121			continue;
3122
3123		/* Check addresses that might be used for enabled consoles. */
3124		if (init_section_intersects(con, sizeof(*con)) ||
3125		    init_section_contains(con->write, 0) ||
3126		    init_section_contains(con->read, 0) ||
3127		    init_section_contains(con->device, 0) ||
3128		    init_section_contains(con->unblank, 0) ||
3129		    init_section_contains(con->data, 0)) {
3130			/*
3131			 * Please, consider moving the reported consoles out
3132			 * of the init section.
 
 
 
3133			 */
3134			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
3135				con->name, con->index);
3136			unregister_console(con);
3137		}
3138	}
3139	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
3140					console_cpu_notify);
3141	WARN_ON(ret < 0);
3142	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
3143					console_cpu_notify, NULL);
3144	WARN_ON(ret < 0);
3145	return 0;
3146}
3147late_initcall(printk_late_init);
3148
3149#if defined CONFIG_PRINTK
3150/*
3151 * Delayed printk version, for scheduler-internal messages:
3152 */
3153#define PRINTK_PENDING_WAKEUP	0x01
3154#define PRINTK_PENDING_OUTPUT	0x02
3155
3156static DEFINE_PER_CPU(int, printk_pending);
3157
3158static void wake_up_klogd_work_func(struct irq_work *irq_work)
3159{
3160	int pending = __this_cpu_xchg(printk_pending, 0);
3161
3162	if (pending & PRINTK_PENDING_OUTPUT) {
3163		/* If trylock fails, someone else is doing the printing */
3164		if (console_trylock())
3165			console_unlock();
3166	}
3167
3168	if (pending & PRINTK_PENDING_WAKEUP)
3169		wake_up_interruptible(&log_wait);
3170}
3171
3172static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) =
3173	IRQ_WORK_INIT_LAZY(wake_up_klogd_work_func);
 
 
3174
3175void wake_up_klogd(void)
3176{
3177	if (!printk_percpu_data_ready())
3178		return;
3179
3180	preempt_disable();
3181	if (waitqueue_active(&log_wait)) {
3182		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
3183		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3184	}
3185	preempt_enable();
3186}
3187
3188void defer_console_output(void)
3189{
3190	if (!printk_percpu_data_ready())
3191		return;
3192
3193	preempt_disable();
3194	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
3195	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
3196	preempt_enable();
3197}
3198
3199int vprintk_deferred(const char *fmt, va_list args)
3200{
3201	int r;
3202
3203	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, fmt, args);
3204	defer_console_output();
3205
3206	return r;
3207}
3208
3209int printk_deferred(const char *fmt, ...)
3210{
3211	va_list args;
3212	int r;
3213
 
3214	va_start(args, fmt);
3215	r = vprintk_deferred(fmt, args);
3216	va_end(args);
3217
 
 
 
 
3218	return r;
3219}
3220
3221/*
3222 * printk rate limiting, lifted from the networking subsystem.
3223 *
3224 * This enforces a rate limit: not more than 10 kernel messages
3225 * every 5s to make a denial-of-service attack impossible.
3226 */
3227DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3228
3229int __printk_ratelimit(const char *func)
3230{
3231	return ___ratelimit(&printk_ratelimit_state, func);
3232}
3233EXPORT_SYMBOL(__printk_ratelimit);
3234
3235/**
3236 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3237 * @caller_jiffies: pointer to caller's state
3238 * @interval_msecs: minimum interval between prints
3239 *
3240 * printk_timed_ratelimit() returns true if more than @interval_msecs
3241 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3242 * returned true.
3243 */
3244bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3245			unsigned int interval_msecs)
3246{
3247	unsigned long elapsed = jiffies - *caller_jiffies;
3248
3249	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3250		return false;
3251
3252	*caller_jiffies = jiffies;
3253	return true;
3254}
3255EXPORT_SYMBOL(printk_timed_ratelimit);
3256
3257static DEFINE_SPINLOCK(dump_list_lock);
3258static LIST_HEAD(dump_list);
3259
3260/**
3261 * kmsg_dump_register - register a kernel log dumper.
3262 * @dumper: pointer to the kmsg_dumper structure
3263 *
3264 * Adds a kernel log dumper to the system. The dump callback in the
3265 * structure will be called when the kernel oopses or panics and must be
3266 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3267 */
3268int kmsg_dump_register(struct kmsg_dumper *dumper)
3269{
3270	unsigned long flags;
3271	int err = -EBUSY;
3272
3273	/* The dump callback needs to be set */
3274	if (!dumper->dump)
3275		return -EINVAL;
3276
3277	spin_lock_irqsave(&dump_list_lock, flags);
3278	/* Don't allow registering multiple times */
3279	if (!dumper->registered) {
3280		dumper->registered = 1;
3281		list_add_tail_rcu(&dumper->list, &dump_list);
3282		err = 0;
3283	}
3284	spin_unlock_irqrestore(&dump_list_lock, flags);
3285
3286	return err;
3287}
3288EXPORT_SYMBOL_GPL(kmsg_dump_register);
3289
3290/**
3291 * kmsg_dump_unregister - unregister a kmsg dumper.
3292 * @dumper: pointer to the kmsg_dumper structure
3293 *
3294 * Removes a dump device from the system. Returns zero on success and
3295 * %-EINVAL otherwise.
3296 */
3297int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3298{
3299	unsigned long flags;
3300	int err = -EINVAL;
3301
3302	spin_lock_irqsave(&dump_list_lock, flags);
3303	if (dumper->registered) {
3304		dumper->registered = 0;
3305		list_del_rcu(&dumper->list);
3306		err = 0;
3307	}
3308	spin_unlock_irqrestore(&dump_list_lock, flags);
3309	synchronize_rcu();
3310
3311	return err;
3312}
3313EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3314
3315static bool always_kmsg_dump;
3316module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3317
3318const char *kmsg_dump_reason_str(enum kmsg_dump_reason reason)
3319{
3320	switch (reason) {
3321	case KMSG_DUMP_PANIC:
3322		return "Panic";
3323	case KMSG_DUMP_OOPS:
3324		return "Oops";
3325	case KMSG_DUMP_EMERG:
3326		return "Emergency";
3327	case KMSG_DUMP_SHUTDOWN:
3328		return "Shutdown";
3329	default:
3330		return "Unknown";
3331	}
3332}
3333EXPORT_SYMBOL_GPL(kmsg_dump_reason_str);
3334
3335/**
3336 * kmsg_dump - dump kernel log to kernel message dumpers.
3337 * @reason: the reason (oops, panic etc) for dumping
3338 *
3339 * Call each of the registered dumper's dump() callback, which can
3340 * retrieve the kmsg records with kmsg_dump_get_line() or
3341 * kmsg_dump_get_buffer().
3342 */
3343void kmsg_dump(enum kmsg_dump_reason reason)
3344{
3345	struct kmsg_dumper *dumper;
 
 
 
 
3346
3347	rcu_read_lock();
3348	list_for_each_entry_rcu(dumper, &dump_list, list) {
3349		enum kmsg_dump_reason max_reason = dumper->max_reason;
 
 
 
 
3350
3351		/*
3352		 * If client has not provided a specific max_reason, default
3353		 * to KMSG_DUMP_OOPS, unless always_kmsg_dump was set.
3354		 */
3355		if (max_reason == KMSG_DUMP_UNDEF) {
3356			max_reason = always_kmsg_dump ? KMSG_DUMP_MAX :
3357							KMSG_DUMP_OOPS;
3358		}
3359		if (reason > max_reason)
3360			continue;
3361
3362		/* invoke dumper which will iterate over records */
3363		dumper->dump(dumper, reason);
 
 
 
3364	}
3365	rcu_read_unlock();
3366}
3367
3368/**
3369 * kmsg_dump_get_line - retrieve one kmsg log line
3370 * @iter: kmsg dump iterator
3371 * @syslog: include the "<4>" prefixes
3372 * @line: buffer to copy the line to
3373 * @size: maximum size of the buffer
3374 * @len: length of line placed into buffer
3375 *
3376 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3377 * record, and copy one record into the provided buffer.
3378 *
3379 * Consecutive calls will return the next available record moving
3380 * towards the end of the buffer with the youngest messages.
3381 *
3382 * A return value of FALSE indicates that there are no more records to
3383 * read.
 
 
3384 */
3385bool kmsg_dump_get_line(struct kmsg_dump_iter *iter, bool syslog,
3386			char *line, size_t size, size_t *len)
3387{
3388	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3389	struct printk_info info;
3390	unsigned int line_count;
3391	struct printk_record r;
3392	unsigned long flags;
3393	size_t l = 0;
3394	bool ret = false;
3395
3396	if (iter->cur_seq < min_seq)
3397		iter->cur_seq = min_seq;
3398
3399	printk_safe_enter_irqsave(flags);
3400	prb_rec_init_rd(&r, &info, line, size);
 
 
 
3401
3402	/* Read text or count text lines? */
3403	if (line) {
3404		if (!prb_read_valid(prb, iter->cur_seq, &r))
3405			goto out;
3406		l = record_print_text(&r, syslog, printk_time);
3407	} else {
3408		if (!prb_read_valid_info(prb, iter->cur_seq,
3409					 &info, &line_count)) {
3410			goto out;
3411		}
3412		l = get_record_print_text_size(&info, line_count, syslog,
3413					       printk_time);
3414
3415	}
 
3416
3417	iter->cur_seq = r.info->seq + 1;
 
3418	ret = true;
3419out:
3420	printk_safe_exit_irqrestore(flags);
3421	if (len)
3422		*len = l;
3423	return ret;
3424}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3425EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3426
3427/**
3428 * kmsg_dump_get_buffer - copy kmsg log lines
3429 * @iter: kmsg dump iterator
3430 * @syslog: include the "<4>" prefixes
3431 * @buf: buffer to copy the line to
3432 * @size: maximum size of the buffer
3433 * @len_out: length of line placed into buffer
3434 *
3435 * Start at the end of the kmsg buffer and fill the provided buffer
3436 * with as many of the *youngest* kmsg records that fit into it.
3437 * If the buffer is large enough, all available kmsg records will be
3438 * copied with a single call.
3439 *
3440 * Consecutive calls will fill the buffer with the next block of
3441 * available older records, not including the earlier retrieved ones.
3442 *
3443 * A return value of FALSE indicates that there are no more records to
3444 * read.
3445 */
3446bool kmsg_dump_get_buffer(struct kmsg_dump_iter *iter, bool syslog,
3447			  char *buf, size_t size, size_t *len_out)
3448{
3449	u64 min_seq = latched_seq_read_nolock(&clear_seq);
3450	struct printk_info info;
3451	struct printk_record r;
3452	unsigned long flags;
3453	u64 seq;
 
3454	u64 next_seq;
3455	size_t len = 0;
 
3456	bool ret = false;
3457	bool time = printk_time;
3458
3459	if (!buf || !size)
3460		goto out;
3461
3462	if (iter->cur_seq < min_seq)
3463		iter->cur_seq = min_seq;
3464
3465	printk_safe_enter_irqsave(flags);
3466	if (prb_read_valid_info(prb, iter->cur_seq, &info, NULL)) {
3467		if (info.seq != iter->cur_seq) {
3468			/* messages are gone, move to first available one */
3469			iter->cur_seq = info.seq;
3470		}
3471	}
3472
3473	/* last entry */
3474	if (iter->cur_seq >= iter->next_seq) {
3475		printk_safe_exit_irqrestore(flags);
3476		goto out;
3477	}
3478
3479	/*
3480	 * Find first record that fits, including all following records,
3481	 * into the user-provided buffer for this dump. Pass in size-1
3482	 * because this function (by way of record_print_text()) will
3483	 * not write more than size-1 bytes of text into @buf.
3484	 */
3485	seq = find_first_fitting_seq(iter->cur_seq, iter->next_seq,
3486				     size - 1, syslog, time);
 
 
3487
3488	/*
3489	 * Next kmsg_dump_get_buffer() invocation will dump block of
3490	 * older records stored right before this one.
3491	 */
3492	next_seq = seq;
3493
3494	prb_rec_init_rd(&r, &info, buf, size);
 
 
 
3495
3496	len = 0;
3497	prb_for_each_record(seq, prb, seq, &r) {
3498		if (r.info->seq >= iter->next_seq)
3499			break;
3500
3501		len += record_print_text(&r, syslog, time);
 
 
3502
3503		/* Adjust record to store to remaining buffer space. */
3504		prb_rec_init_rd(&r, &info, buf + len, size - len);
 
3505	}
3506
3507	iter->next_seq = next_seq;
 
3508	ret = true;
3509	printk_safe_exit_irqrestore(flags);
3510out:
3511	if (len_out)
3512		*len_out = len;
3513	return ret;
3514}
3515EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3516
3517/**
3518 * kmsg_dump_rewind - reset the iterator
3519 * @iter: kmsg dump iterator
3520 *
3521 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3522 * kmsg_dump_get_buffer() can be called again and used multiple
3523 * times within the same dumper.dump() callback.
 
 
3524 */
3525void kmsg_dump_rewind(struct kmsg_dump_iter *iter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3526{
3527	unsigned long flags;
3528
3529	printk_safe_enter_irqsave(flags);
3530	iter->cur_seq = latched_seq_read_nolock(&clear_seq);
3531	iter->next_seq = prb_next_seq(prb);
3532	printk_safe_exit_irqrestore(flags);
3533}
3534EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3535
3536#endif
3537
3538#ifdef CONFIG_SMP
3539static atomic_t printk_cpulock_owner = ATOMIC_INIT(-1);
3540static atomic_t printk_cpulock_nested = ATOMIC_INIT(0);
3541
3542/**
3543 * __printk_wait_on_cpu_lock() - Busy wait until the printk cpu-reentrant
3544 *                               spinning lock is not owned by any CPU.
 
3545 *
3546 * Context: Any context.
 
 
 
3547 */
3548void __printk_wait_on_cpu_lock(void)
3549{
3550	do {
3551		cpu_relax();
3552	} while (atomic_read(&printk_cpulock_owner) != -1);
 
 
 
3553}
3554EXPORT_SYMBOL(__printk_wait_on_cpu_lock);
3555
3556/**
3557 * __printk_cpu_trylock() - Try to acquire the printk cpu-reentrant
3558 *                          spinning lock.
3559 *
3560 * If no processor has the lock, the calling processor takes the lock and
3561 * becomes the owner. If the calling processor is already the owner of the
3562 * lock, this function succeeds immediately.
3563 *
3564 * Context: Any context. Expects interrupts to be disabled.
3565 * Return: 1 on success, otherwise 0.
3566 */
3567int __printk_cpu_trylock(void)
3568{
3569	int cpu;
3570	int old;
3571
3572	cpu = smp_processor_id();
3573
3574	/*
3575	 * Guarantee loads and stores from this CPU when it is the lock owner
3576	 * are _not_ visible to the previous lock owner. This pairs with
3577	 * __printk_cpu_unlock:B.
3578	 *
3579	 * Memory barrier involvement:
3580	 *
3581	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B, then
3582	 * __printk_cpu_unlock:A can never read from __printk_cpu_trylock:B.
3583	 *
3584	 * Relies on:
3585	 *
3586	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3587	 * of the previous CPU
3588	 *    matching
3589	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3590	 * of this CPU
3591	 */
3592	old = atomic_cmpxchg_acquire(&printk_cpulock_owner, -1,
3593				     cpu); /* LMM(__printk_cpu_trylock:A) */
3594	if (old == -1) {
3595		/*
3596		 * This CPU is now the owner and begins loading/storing
3597		 * data: LMM(__printk_cpu_trylock:B)
3598		 */
3599		return 1;
3600
3601	} else if (old == cpu) {
3602		/* This CPU is already the owner. */
3603		atomic_inc(&printk_cpulock_nested);
3604		return 1;
3605	}
3606
3607	return 0;
3608}
3609EXPORT_SYMBOL(__printk_cpu_trylock);
3610
3611/**
3612 * __printk_cpu_unlock() - Release the printk cpu-reentrant spinning lock.
 
3613 *
3614 * The calling processor must be the owner of the lock.
3615 *
3616 * Context: Any context. Expects interrupts to be disabled.
3617 */
3618void __printk_cpu_unlock(void)
3619{
3620	if (atomic_read(&printk_cpulock_nested)) {
3621		atomic_dec(&printk_cpulock_nested);
3622		return;
3623	}
3624
3625	/*
3626	 * This CPU is finished loading/storing data:
3627	 * LMM(__printk_cpu_unlock:A)
3628	 */
3629
3630	/*
3631	 * Guarantee loads and stores from this CPU when it was the
3632	 * lock owner are visible to the next lock owner. This pairs
3633	 * with __printk_cpu_trylock:A.
3634	 *
3635	 * Memory barrier involvement:
3636	 *
3637	 * If __printk_cpu_trylock:A reads from __printk_cpu_unlock:B,
3638	 * then __printk_cpu_trylock:B reads from __printk_cpu_unlock:A.
3639	 *
3640	 * Relies on:
3641	 *
3642	 * RELEASE from __printk_cpu_unlock:A to __printk_cpu_unlock:B
3643	 * of this CPU
3644	 *    matching
3645	 * ACQUIRE from __printk_cpu_trylock:A to __printk_cpu_trylock:B
3646	 * of the next CPU
3647	 */
3648	atomic_set_release(&printk_cpulock_owner,
3649			   -1); /* LMM(__printk_cpu_unlock:B) */
3650}
3651EXPORT_SYMBOL(__printk_cpu_unlock);
3652#endif /* CONFIG_SMP */