Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * kexec.c - kexec system call core code.
   3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/capability.h>
  12#include <linux/mm.h>
  13#include <linux/file.h>
  14#include <linux/slab.h>
  15#include <linux/fs.h>
  16#include <linux/kexec.h>
  17#include <linux/mutex.h>
  18#include <linux/list.h>
  19#include <linux/highmem.h>
  20#include <linux/syscalls.h>
  21#include <linux/reboot.h>
  22#include <linux/ioport.h>
  23#include <linux/hardirq.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/utsname.h>
  27#include <linux/numa.h>
  28#include <linux/suspend.h>
  29#include <linux/device.h>
  30#include <linux/freezer.h>
 
  31#include <linux/pm.h>
  32#include <linux/cpu.h>
  33#include <linux/uaccess.h>
  34#include <linux/io.h>
  35#include <linux/console.h>
  36#include <linux/vmalloc.h>
  37#include <linux/swap.h>
  38#include <linux/syscore_ops.h>
  39#include <linux/compiler.h>
  40#include <linux/hugetlb.h>
 
 
  41
  42#include <asm/page.h>
  43#include <asm/sections.h>
  44
  45#include <crypto/hash.h>
  46#include <crypto/sha.h>
  47#include "kexec_internal.h"
  48
  49DEFINE_MUTEX(kexec_mutex);
  50
  51/* Per cpu memory for storing cpu states in case of system crash. */
  52note_buf_t __percpu *crash_notes;
  53
  54/* vmcoreinfo stuff */
  55static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES];
  56u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4];
  57size_t vmcoreinfo_size;
  58size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data);
  59
  60/* Flag to indicate we are going to kexec a new kernel */
  61bool kexec_in_progress = false;
  62
  63
  64/* Location of the reserved area for the crash kernel */
  65struct resource crashk_res = {
  66	.name  = "Crash kernel",
  67	.start = 0,
  68	.end   = 0,
  69	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  70	.desc  = IORES_DESC_CRASH_KERNEL
  71};
  72struct resource crashk_low_res = {
  73	.name  = "Crash kernel",
  74	.start = 0,
  75	.end   = 0,
  76	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  77	.desc  = IORES_DESC_CRASH_KERNEL
  78};
  79
  80int kexec_should_crash(struct task_struct *p)
  81{
  82	/*
  83	 * If crash_kexec_post_notifiers is enabled, don't run
  84	 * crash_kexec() here yet, which must be run after panic
  85	 * notifiers in panic().
  86	 */
  87	if (crash_kexec_post_notifiers)
  88		return 0;
  89	/*
  90	 * There are 4 panic() calls in do_exit() path, each of which
  91	 * corresponds to each of these 4 conditions.
  92	 */
  93	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  94		return 1;
  95	return 0;
  96}
  97
  98int kexec_crash_loaded(void)
  99{
 100	return !!kexec_crash_image;
 101}
 102EXPORT_SYMBOL_GPL(kexec_crash_loaded);
 103
 104/*
 105 * When kexec transitions to the new kernel there is a one-to-one
 106 * mapping between physical and virtual addresses.  On processors
 107 * where you can disable the MMU this is trivial, and easy.  For
 108 * others it is still a simple predictable page table to setup.
 109 *
 110 * In that environment kexec copies the new kernel to its final
 111 * resting place.  This means I can only support memory whose
 112 * physical address can fit in an unsigned long.  In particular
 113 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 114 * If the assembly stub has more restrictive requirements
 115 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 116 * defined more restrictively in <asm/kexec.h>.
 117 *
 118 * The code for the transition from the current kernel to the
 119 * the new kernel is placed in the control_code_buffer, whose size
 120 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 121 * page of memory is necessary, but some architectures require more.
 122 * Because this memory must be identity mapped in the transition from
 123 * virtual to physical addresses it must live in the range
 124 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 125 * modifiable.
 126 *
 127 * The assembly stub in the control code buffer is passed a linked list
 128 * of descriptor pages detailing the source pages of the new kernel,
 129 * and the destination addresses of those source pages.  As this data
 130 * structure is not used in the context of the current OS, it must
 131 * be self-contained.
 132 *
 133 * The code has been made to work with highmem pages and will use a
 134 * destination page in its final resting place (if it happens
 135 * to allocate it).  The end product of this is that most of the
 136 * physical address space, and most of RAM can be used.
 137 *
 138 * Future directions include:
 139 *  - allocating a page table with the control code buffer identity
 140 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 141 *    reliable.
 142 */
 143
 144/*
 145 * KIMAGE_NO_DEST is an impossible destination address..., for
 146 * allocating pages whose destination address we do not care about.
 147 */
 148#define KIMAGE_NO_DEST (-1UL)
 149#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 150
 151static struct page *kimage_alloc_page(struct kimage *image,
 152				       gfp_t gfp_mask,
 153				       unsigned long dest);
 154
 155int sanity_check_segment_list(struct kimage *image)
 156{
 157	int i;
 158	unsigned long nr_segments = image->nr_segments;
 159	unsigned long total_pages = 0;
 
 160
 161	/*
 162	 * Verify we have good destination addresses.  The caller is
 163	 * responsible for making certain we don't attempt to load
 164	 * the new image into invalid or reserved areas of RAM.  This
 165	 * just verifies it is an address we can use.
 166	 *
 167	 * Since the kernel does everything in page size chunks ensure
 168	 * the destination addresses are page aligned.  Too many
 169	 * special cases crop of when we don't do this.  The most
 170	 * insidious is getting overlapping destination addresses
 171	 * simply because addresses are changed to page size
 172	 * granularity.
 173	 */
 174	for (i = 0; i < nr_segments; i++) {
 175		unsigned long mstart, mend;
 176
 177		mstart = image->segment[i].mem;
 178		mend   = mstart + image->segment[i].memsz;
 179		if (mstart > mend)
 180			return -EADDRNOTAVAIL;
 181		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 182			return -EADDRNOTAVAIL;
 183		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 184			return -EADDRNOTAVAIL;
 185	}
 186
 187	/* Verify our destination addresses do not overlap.
 188	 * If we alloed overlapping destination addresses
 189	 * through very weird things can happen with no
 190	 * easy explanation as one segment stops on another.
 191	 */
 192	for (i = 0; i < nr_segments; i++) {
 193		unsigned long mstart, mend;
 194		unsigned long j;
 195
 196		mstart = image->segment[i].mem;
 197		mend   = mstart + image->segment[i].memsz;
 198		for (j = 0; j < i; j++) {
 199			unsigned long pstart, pend;
 200
 201			pstart = image->segment[j].mem;
 202			pend   = pstart + image->segment[j].memsz;
 203			/* Do the segments overlap ? */
 204			if ((mend > pstart) && (mstart < pend))
 205				return -EINVAL;
 206		}
 207	}
 208
 209	/* Ensure our buffer sizes are strictly less than
 210	 * our memory sizes.  This should always be the case,
 211	 * and it is easier to check up front than to be surprised
 212	 * later on.
 213	 */
 214	for (i = 0; i < nr_segments; i++) {
 215		if (image->segment[i].bufsz > image->segment[i].memsz)
 216			return -EINVAL;
 217	}
 218
 219	/*
 220	 * Verify that no more than half of memory will be consumed. If the
 221	 * request from userspace is too large, a large amount of time will be
 222	 * wasted allocating pages, which can cause a soft lockup.
 223	 */
 224	for (i = 0; i < nr_segments; i++) {
 225		if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
 226			return -EINVAL;
 227
 228		total_pages += PAGE_COUNT(image->segment[i].memsz);
 229	}
 230
 231	if (total_pages > totalram_pages / 2)
 232		return -EINVAL;
 233
 234	/*
 235	 * Verify we have good destination addresses.  Normally
 236	 * the caller is responsible for making certain we don't
 237	 * attempt to load the new image into invalid or reserved
 238	 * areas of RAM.  But crash kernels are preloaded into a
 239	 * reserved area of ram.  We must ensure the addresses
 240	 * are in the reserved area otherwise preloading the
 241	 * kernel could corrupt things.
 242	 */
 243
 244	if (image->type == KEXEC_TYPE_CRASH) {
 245		for (i = 0; i < nr_segments; i++) {
 246			unsigned long mstart, mend;
 247
 248			mstart = image->segment[i].mem;
 249			mend = mstart + image->segment[i].memsz - 1;
 250			/* Ensure we are within the crash kernel limits */
 251			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 252			    (mend > phys_to_boot_phys(crashk_res.end)))
 253				return -EADDRNOTAVAIL;
 254		}
 255	}
 256
 257	return 0;
 258}
 259
 260struct kimage *do_kimage_alloc_init(void)
 261{
 262	struct kimage *image;
 263
 264	/* Allocate a controlling structure */
 265	image = kzalloc(sizeof(*image), GFP_KERNEL);
 266	if (!image)
 267		return NULL;
 268
 269	image->head = 0;
 270	image->entry = &image->head;
 271	image->last_entry = &image->head;
 272	image->control_page = ~0; /* By default this does not apply */
 273	image->type = KEXEC_TYPE_DEFAULT;
 274
 275	/* Initialize the list of control pages */
 276	INIT_LIST_HEAD(&image->control_pages);
 277
 278	/* Initialize the list of destination pages */
 279	INIT_LIST_HEAD(&image->dest_pages);
 280
 281	/* Initialize the list of unusable pages */
 282	INIT_LIST_HEAD(&image->unusable_pages);
 283
 284	return image;
 285}
 286
 287int kimage_is_destination_range(struct kimage *image,
 288					unsigned long start,
 289					unsigned long end)
 290{
 291	unsigned long i;
 292
 293	for (i = 0; i < image->nr_segments; i++) {
 294		unsigned long mstart, mend;
 295
 296		mstart = image->segment[i].mem;
 297		mend = mstart + image->segment[i].memsz;
 298		if ((end > mstart) && (start < mend))
 299			return 1;
 300	}
 301
 302	return 0;
 303}
 304
 305static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 306{
 307	struct page *pages;
 308
 309	pages = alloc_pages(gfp_mask, order);
 
 
 310	if (pages) {
 311		unsigned int count, i;
 312
 313		pages->mapping = NULL;
 314		set_page_private(pages, order);
 315		count = 1 << order;
 316		for (i = 0; i < count; i++)
 317			SetPageReserved(pages + i);
 
 
 
 
 
 
 
 318	}
 319
 320	return pages;
 321}
 322
 323static void kimage_free_pages(struct page *page)
 324{
 325	unsigned int order, count, i;
 326
 327	order = page_private(page);
 328	count = 1 << order;
 
 
 
 329	for (i = 0; i < count; i++)
 330		ClearPageReserved(page + i);
 331	__free_pages(page, order);
 332}
 333
 334void kimage_free_page_list(struct list_head *list)
 335{
 336	struct page *page, *next;
 337
 338	list_for_each_entry_safe(page, next, list, lru) {
 339		list_del(&page->lru);
 340		kimage_free_pages(page);
 341	}
 342}
 343
 344static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 345							unsigned int order)
 346{
 347	/* Control pages are special, they are the intermediaries
 348	 * that are needed while we copy the rest of the pages
 349	 * to their final resting place.  As such they must
 350	 * not conflict with either the destination addresses
 351	 * or memory the kernel is already using.
 352	 *
 353	 * The only case where we really need more than one of
 354	 * these are for architectures where we cannot disable
 355	 * the MMU and must instead generate an identity mapped
 356	 * page table for all of the memory.
 357	 *
 358	 * At worst this runs in O(N) of the image size.
 359	 */
 360	struct list_head extra_pages;
 361	struct page *pages;
 362	unsigned int count;
 363
 364	count = 1 << order;
 365	INIT_LIST_HEAD(&extra_pages);
 366
 367	/* Loop while I can allocate a page and the page allocated
 368	 * is a destination page.
 369	 */
 370	do {
 371		unsigned long pfn, epfn, addr, eaddr;
 372
 373		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 374		if (!pages)
 375			break;
 376		pfn   = page_to_boot_pfn(pages);
 377		epfn  = pfn + count;
 378		addr  = pfn << PAGE_SHIFT;
 379		eaddr = epfn << PAGE_SHIFT;
 380		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 381			      kimage_is_destination_range(image, addr, eaddr)) {
 382			list_add(&pages->lru, &extra_pages);
 383			pages = NULL;
 384		}
 385	} while (!pages);
 386
 387	if (pages) {
 388		/* Remember the allocated page... */
 389		list_add(&pages->lru, &image->control_pages);
 390
 391		/* Because the page is already in it's destination
 392		 * location we will never allocate another page at
 393		 * that address.  Therefore kimage_alloc_pages
 394		 * will not return it (again) and we don't need
 395		 * to give it an entry in image->segment[].
 396		 */
 397	}
 398	/* Deal with the destination pages I have inadvertently allocated.
 399	 *
 400	 * Ideally I would convert multi-page allocations into single
 401	 * page allocations, and add everything to image->dest_pages.
 402	 *
 403	 * For now it is simpler to just free the pages.
 404	 */
 405	kimage_free_page_list(&extra_pages);
 406
 407	return pages;
 408}
 409
 410static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 411						      unsigned int order)
 412{
 413	/* Control pages are special, they are the intermediaries
 414	 * that are needed while we copy the rest of the pages
 415	 * to their final resting place.  As such they must
 416	 * not conflict with either the destination addresses
 417	 * or memory the kernel is already using.
 418	 *
 419	 * Control pages are also the only pags we must allocate
 420	 * when loading a crash kernel.  All of the other pages
 421	 * are specified by the segments and we just memcpy
 422	 * into them directly.
 423	 *
 424	 * The only case where we really need more than one of
 425	 * these are for architectures where we cannot disable
 426	 * the MMU and must instead generate an identity mapped
 427	 * page table for all of the memory.
 428	 *
 429	 * Given the low demand this implements a very simple
 430	 * allocator that finds the first hole of the appropriate
 431	 * size in the reserved memory region, and allocates all
 432	 * of the memory up to and including the hole.
 433	 */
 434	unsigned long hole_start, hole_end, size;
 435	struct page *pages;
 436
 437	pages = NULL;
 438	size = (1 << order) << PAGE_SHIFT;
 439	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 440	hole_end   = hole_start + size - 1;
 441	while (hole_end <= crashk_res.end) {
 442		unsigned long i;
 443
 444		cond_resched();
 445
 446		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 447			break;
 448		/* See if I overlap any of the segments */
 449		for (i = 0; i < image->nr_segments; i++) {
 450			unsigned long mstart, mend;
 451
 452			mstart = image->segment[i].mem;
 453			mend   = mstart + image->segment[i].memsz - 1;
 454			if ((hole_end >= mstart) && (hole_start <= mend)) {
 455				/* Advance the hole to the end of the segment */
 456				hole_start = (mend + (size - 1)) & ~(size - 1);
 457				hole_end   = hole_start + size - 1;
 458				break;
 459			}
 460		}
 461		/* If I don't overlap any segments I have found my hole! */
 462		if (i == image->nr_segments) {
 463			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 464			image->control_page = hole_end;
 465			break;
 466		}
 467	}
 468
 
 
 
 
 469	return pages;
 470}
 471
 472
 473struct page *kimage_alloc_control_pages(struct kimage *image,
 474					 unsigned int order)
 475{
 476	struct page *pages = NULL;
 477
 478	switch (image->type) {
 479	case KEXEC_TYPE_DEFAULT:
 480		pages = kimage_alloc_normal_control_pages(image, order);
 481		break;
 482	case KEXEC_TYPE_CRASH:
 483		pages = kimage_alloc_crash_control_pages(image, order);
 484		break;
 485	}
 486
 487	return pages;
 488}
 489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 491{
 492	if (*image->entry != 0)
 493		image->entry++;
 494
 495	if (image->entry == image->last_entry) {
 496		kimage_entry_t *ind_page;
 497		struct page *page;
 498
 499		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 500		if (!page)
 501			return -ENOMEM;
 502
 503		ind_page = page_address(page);
 504		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 505		image->entry = ind_page;
 506		image->last_entry = ind_page +
 507				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 508	}
 509	*image->entry = entry;
 510	image->entry++;
 511	*image->entry = 0;
 512
 513	return 0;
 514}
 515
 516static int kimage_set_destination(struct kimage *image,
 517				   unsigned long destination)
 518{
 519	int result;
 520
 521	destination &= PAGE_MASK;
 522	result = kimage_add_entry(image, destination | IND_DESTINATION);
 523
 524	return result;
 525}
 526
 527
 528static int kimage_add_page(struct kimage *image, unsigned long page)
 529{
 530	int result;
 531
 532	page &= PAGE_MASK;
 533	result = kimage_add_entry(image, page | IND_SOURCE);
 534
 535	return result;
 536}
 537
 538
 539static void kimage_free_extra_pages(struct kimage *image)
 540{
 541	/* Walk through and free any extra destination pages I may have */
 542	kimage_free_page_list(&image->dest_pages);
 543
 544	/* Walk through and free any unusable pages I have cached */
 545	kimage_free_page_list(&image->unusable_pages);
 546
 547}
 
 
 
 
 
 
 548void kimage_terminate(struct kimage *image)
 549{
 550	if (*image->entry != 0)
 551		image->entry++;
 552
 553	*image->entry = IND_DONE;
 554}
 555
 556#define for_each_kimage_entry(image, ptr, entry) \
 557	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 558		ptr = (entry & IND_INDIRECTION) ? \
 559			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 560
 561static void kimage_free_entry(kimage_entry_t entry)
 562{
 563	struct page *page;
 564
 565	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 566	kimage_free_pages(page);
 567}
 568
 569void kimage_free(struct kimage *image)
 570{
 571	kimage_entry_t *ptr, entry;
 572	kimage_entry_t ind = 0;
 573
 574	if (!image)
 575		return;
 576
 
 
 
 
 
 577	kimage_free_extra_pages(image);
 578	for_each_kimage_entry(image, ptr, entry) {
 579		if (entry & IND_INDIRECTION) {
 580			/* Free the previous indirection page */
 581			if (ind & IND_INDIRECTION)
 582				kimage_free_entry(ind);
 583			/* Save this indirection page until we are
 584			 * done with it.
 585			 */
 586			ind = entry;
 587		} else if (entry & IND_SOURCE)
 588			kimage_free_entry(entry);
 589	}
 590	/* Free the final indirection page */
 591	if (ind & IND_INDIRECTION)
 592		kimage_free_entry(ind);
 593
 594	/* Handle any machine specific cleanup */
 595	machine_kexec_cleanup(image);
 596
 597	/* Free the kexec control pages... */
 598	kimage_free_page_list(&image->control_pages);
 599
 600	/*
 601	 * Free up any temporary buffers allocated. This might hit if
 602	 * error occurred much later after buffer allocation.
 603	 */
 604	if (image->file_mode)
 605		kimage_file_post_load_cleanup(image);
 606
 607	kfree(image);
 608}
 609
 610static kimage_entry_t *kimage_dst_used(struct kimage *image,
 611					unsigned long page)
 612{
 613	kimage_entry_t *ptr, entry;
 614	unsigned long destination = 0;
 615
 616	for_each_kimage_entry(image, ptr, entry) {
 617		if (entry & IND_DESTINATION)
 618			destination = entry & PAGE_MASK;
 619		else if (entry & IND_SOURCE) {
 620			if (page == destination)
 621				return ptr;
 622			destination += PAGE_SIZE;
 623		}
 624	}
 625
 626	return NULL;
 627}
 628
 629static struct page *kimage_alloc_page(struct kimage *image,
 630					gfp_t gfp_mask,
 631					unsigned long destination)
 632{
 633	/*
 634	 * Here we implement safeguards to ensure that a source page
 635	 * is not copied to its destination page before the data on
 636	 * the destination page is no longer useful.
 637	 *
 638	 * To do this we maintain the invariant that a source page is
 639	 * either its own destination page, or it is not a
 640	 * destination page at all.
 641	 *
 642	 * That is slightly stronger than required, but the proof
 643	 * that no problems will not occur is trivial, and the
 644	 * implementation is simply to verify.
 645	 *
 646	 * When allocating all pages normally this algorithm will run
 647	 * in O(N) time, but in the worst case it will run in O(N^2)
 648	 * time.   If the runtime is a problem the data structures can
 649	 * be fixed.
 650	 */
 651	struct page *page;
 652	unsigned long addr;
 653
 654	/*
 655	 * Walk through the list of destination pages, and see if I
 656	 * have a match.
 657	 */
 658	list_for_each_entry(page, &image->dest_pages, lru) {
 659		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 660		if (addr == destination) {
 661			list_del(&page->lru);
 662			return page;
 663		}
 664	}
 665	page = NULL;
 666	while (1) {
 667		kimage_entry_t *old;
 668
 669		/* Allocate a page, if we run out of memory give up */
 670		page = kimage_alloc_pages(gfp_mask, 0);
 671		if (!page)
 672			return NULL;
 673		/* If the page cannot be used file it away */
 674		if (page_to_boot_pfn(page) >
 675				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 676			list_add(&page->lru, &image->unusable_pages);
 677			continue;
 678		}
 679		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 680
 681		/* If it is the destination page we want use it */
 682		if (addr == destination)
 683			break;
 684
 685		/* If the page is not a destination page use it */
 686		if (!kimage_is_destination_range(image, addr,
 687						  addr + PAGE_SIZE))
 688			break;
 689
 690		/*
 691		 * I know that the page is someones destination page.
 692		 * See if there is already a source page for this
 693		 * destination page.  And if so swap the source pages.
 694		 */
 695		old = kimage_dst_used(image, addr);
 696		if (old) {
 697			/* If so move it */
 698			unsigned long old_addr;
 699			struct page *old_page;
 700
 701			old_addr = *old & PAGE_MASK;
 702			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 703			copy_highpage(page, old_page);
 704			*old = addr | (*old & ~PAGE_MASK);
 705
 706			/* The old page I have found cannot be a
 707			 * destination page, so return it if it's
 708			 * gfp_flags honor the ones passed in.
 709			 */
 710			if (!(gfp_mask & __GFP_HIGHMEM) &&
 711			    PageHighMem(old_page)) {
 712				kimage_free_pages(old_page);
 713				continue;
 714			}
 715			addr = old_addr;
 716			page = old_page;
 717			break;
 718		}
 719		/* Place the page on the destination list, to be used later */
 720		list_add(&page->lru, &image->dest_pages);
 721	}
 722
 723	return page;
 724}
 725
 726static int kimage_load_normal_segment(struct kimage *image,
 727					 struct kexec_segment *segment)
 728{
 729	unsigned long maddr;
 730	size_t ubytes, mbytes;
 731	int result;
 732	unsigned char __user *buf = NULL;
 733	unsigned char *kbuf = NULL;
 734
 735	result = 0;
 736	if (image->file_mode)
 737		kbuf = segment->kbuf;
 738	else
 739		buf = segment->buf;
 740	ubytes = segment->bufsz;
 741	mbytes = segment->memsz;
 742	maddr = segment->mem;
 743
 744	result = kimage_set_destination(image, maddr);
 745	if (result < 0)
 746		goto out;
 747
 748	while (mbytes) {
 749		struct page *page;
 750		char *ptr;
 751		size_t uchunk, mchunk;
 752
 753		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 754		if (!page) {
 755			result  = -ENOMEM;
 756			goto out;
 757		}
 758		result = kimage_add_page(image, page_to_boot_pfn(page)
 759								<< PAGE_SHIFT);
 760		if (result < 0)
 761			goto out;
 762
 763		ptr = kmap(page);
 764		/* Start with a clear page */
 765		clear_page(ptr);
 766		ptr += maddr & ~PAGE_MASK;
 767		mchunk = min_t(size_t, mbytes,
 768				PAGE_SIZE - (maddr & ~PAGE_MASK));
 769		uchunk = min(ubytes, mchunk);
 770
 771		/* For file based kexec, source pages are in kernel memory */
 772		if (image->file_mode)
 773			memcpy(ptr, kbuf, uchunk);
 774		else
 775			result = copy_from_user(ptr, buf, uchunk);
 776		kunmap(page);
 777		if (result) {
 778			result = -EFAULT;
 779			goto out;
 780		}
 781		ubytes -= uchunk;
 782		maddr  += mchunk;
 783		if (image->file_mode)
 784			kbuf += mchunk;
 785		else
 786			buf += mchunk;
 787		mbytes -= mchunk;
 
 
 788	}
 789out:
 790	return result;
 791}
 792
 793static int kimage_load_crash_segment(struct kimage *image,
 794					struct kexec_segment *segment)
 795{
 796	/* For crash dumps kernels we simply copy the data from
 797	 * user space to it's destination.
 798	 * We do things a page at a time for the sake of kmap.
 799	 */
 800	unsigned long maddr;
 801	size_t ubytes, mbytes;
 802	int result;
 803	unsigned char __user *buf = NULL;
 804	unsigned char *kbuf = NULL;
 805
 806	result = 0;
 807	if (image->file_mode)
 808		kbuf = segment->kbuf;
 809	else
 810		buf = segment->buf;
 811	ubytes = segment->bufsz;
 812	mbytes = segment->memsz;
 813	maddr = segment->mem;
 814	while (mbytes) {
 815		struct page *page;
 816		char *ptr;
 817		size_t uchunk, mchunk;
 818
 819		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 820		if (!page) {
 821			result  = -ENOMEM;
 822			goto out;
 823		}
 
 824		ptr = kmap(page);
 825		ptr += maddr & ~PAGE_MASK;
 826		mchunk = min_t(size_t, mbytes,
 827				PAGE_SIZE - (maddr & ~PAGE_MASK));
 828		uchunk = min(ubytes, mchunk);
 829		if (mchunk > uchunk) {
 830			/* Zero the trailing part of the page */
 831			memset(ptr + uchunk, 0, mchunk - uchunk);
 832		}
 833
 834		/* For file based kexec, source pages are in kernel memory */
 835		if (image->file_mode)
 836			memcpy(ptr, kbuf, uchunk);
 837		else
 838			result = copy_from_user(ptr, buf, uchunk);
 839		kexec_flush_icache_page(page);
 840		kunmap(page);
 
 841		if (result) {
 842			result = -EFAULT;
 843			goto out;
 844		}
 845		ubytes -= uchunk;
 846		maddr  += mchunk;
 847		if (image->file_mode)
 848			kbuf += mchunk;
 849		else
 850			buf += mchunk;
 851		mbytes -= mchunk;
 
 
 852	}
 853out:
 854	return result;
 855}
 856
 857int kimage_load_segment(struct kimage *image,
 858				struct kexec_segment *segment)
 859{
 860	int result = -ENOMEM;
 861
 862	switch (image->type) {
 863	case KEXEC_TYPE_DEFAULT:
 864		result = kimage_load_normal_segment(image, segment);
 865		break;
 866	case KEXEC_TYPE_CRASH:
 867		result = kimage_load_crash_segment(image, segment);
 868		break;
 869	}
 870
 871	return result;
 872}
 873
 874struct kimage *kexec_image;
 875struct kimage *kexec_crash_image;
 876int kexec_load_disabled;
 877
 878/*
 879 * No panic_cpu check version of crash_kexec().  This function is called
 880 * only when panic_cpu holds the current CPU number; this is the only CPU
 881 * which processes crash_kexec routines.
 882 */
 883void __crash_kexec(struct pt_regs *regs)
 884{
 885	/* Take the kexec_mutex here to prevent sys_kexec_load
 886	 * running on one cpu from replacing the crash kernel
 887	 * we are using after a panic on a different cpu.
 888	 *
 889	 * If the crash kernel was not located in a fixed area
 890	 * of memory the xchg(&kexec_crash_image) would be
 891	 * sufficient.  But since I reuse the memory...
 892	 */
 893	if (mutex_trylock(&kexec_mutex)) {
 894		if (kexec_crash_image) {
 895			struct pt_regs fixed_regs;
 896
 897			crash_setup_regs(&fixed_regs, regs);
 898			crash_save_vmcoreinfo();
 899			machine_crash_shutdown(&fixed_regs);
 900			machine_kexec(kexec_crash_image);
 901		}
 902		mutex_unlock(&kexec_mutex);
 903	}
 904}
 
 905
 906void crash_kexec(struct pt_regs *regs)
 907{
 908	int old_cpu, this_cpu;
 909
 910	/*
 911	 * Only one CPU is allowed to execute the crash_kexec() code as with
 912	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 913	 * may stop each other.  To exclude them, we use panic_cpu here too.
 914	 */
 915	this_cpu = raw_smp_processor_id();
 916	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 917	if (old_cpu == PANIC_CPU_INVALID) {
 918		/* This is the 1st CPU which comes here, so go ahead. */
 919		printk_nmi_flush_on_panic();
 920		__crash_kexec(regs);
 921
 922		/*
 923		 * Reset panic_cpu to allow another panic()/crash_kexec()
 924		 * call.
 925		 */
 926		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 927	}
 928}
 929
 930size_t crash_get_memory_size(void)
 931{
 932	size_t size = 0;
 933
 934	mutex_lock(&kexec_mutex);
 935	if (crashk_res.end != crashk_res.start)
 936		size = resource_size(&crashk_res);
 937	mutex_unlock(&kexec_mutex);
 938	return size;
 939}
 940
 941void __weak crash_free_reserved_phys_range(unsigned long begin,
 942					   unsigned long end)
 943{
 944	unsigned long addr;
 945
 946	for (addr = begin; addr < end; addr += PAGE_SIZE)
 947		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
 948}
 949
 950int crash_shrink_memory(unsigned long new_size)
 951{
 952	int ret = 0;
 953	unsigned long start, end;
 954	unsigned long old_size;
 955	struct resource *ram_res;
 956
 957	mutex_lock(&kexec_mutex);
 958
 959	if (kexec_crash_image) {
 960		ret = -ENOENT;
 961		goto unlock;
 962	}
 963	start = crashk_res.start;
 964	end = crashk_res.end;
 965	old_size = (end == 0) ? 0 : end - start + 1;
 966	if (new_size >= old_size) {
 967		ret = (new_size == old_size) ? 0 : -EINVAL;
 968		goto unlock;
 969	}
 970
 971	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
 972	if (!ram_res) {
 973		ret = -ENOMEM;
 974		goto unlock;
 975	}
 976
 977	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
 978	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
 979
 980	crash_free_reserved_phys_range(end, crashk_res.end);
 981
 982	if ((start == end) && (crashk_res.parent != NULL))
 983		release_resource(&crashk_res);
 984
 985	ram_res->start = end;
 986	ram_res->end = crashk_res.end;
 987	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
 988	ram_res->name = "System RAM";
 989
 990	crashk_res.end = end - 1;
 991
 992	insert_resource(&iomem_resource, ram_res);
 993
 994unlock:
 995	mutex_unlock(&kexec_mutex);
 996	return ret;
 997}
 998
 999static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data,
1000			    size_t data_len)
1001{
1002	struct elf_note note;
1003
1004	note.n_namesz = strlen(name) + 1;
1005	note.n_descsz = data_len;
1006	note.n_type   = type;
1007	memcpy(buf, &note, sizeof(note));
1008	buf += (sizeof(note) + 3)/4;
1009	memcpy(buf, name, note.n_namesz);
1010	buf += (note.n_namesz + 3)/4;
1011	memcpy(buf, data, note.n_descsz);
1012	buf += (note.n_descsz + 3)/4;
1013
1014	return buf;
1015}
1016
1017static void final_note(u32 *buf)
1018{
1019	struct elf_note note;
1020
1021	note.n_namesz = 0;
1022	note.n_descsz = 0;
1023	note.n_type   = 0;
1024	memcpy(buf, &note, sizeof(note));
1025}
1026
1027void crash_save_cpu(struct pt_regs *regs, int cpu)
1028{
1029	struct elf_prstatus prstatus;
1030	u32 *buf;
1031
1032	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1033		return;
1034
1035	/* Using ELF notes here is opportunistic.
1036	 * I need a well defined structure format
1037	 * for the data I pass, and I need tags
1038	 * on the data to indicate what information I have
1039	 * squirrelled away.  ELF notes happen to provide
1040	 * all of that, so there is no need to invent something new.
1041	 */
1042	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1043	if (!buf)
1044		return;
1045	memset(&prstatus, 0, sizeof(prstatus));
1046	prstatus.pr_pid = current->pid;
1047	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1048	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1049			      &prstatus, sizeof(prstatus));
1050	final_note(buf);
1051}
1052
1053static int __init crash_notes_memory_init(void)
1054{
1055	/* Allocate memory for saving cpu registers. */
1056	size_t size, align;
1057
1058	/*
1059	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1060	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1061	 * pages are also on 2 continuous physical pages. In this case the
1062	 * 2nd part of crash_notes in 2nd page could be lost since only the
1063	 * starting address and size of crash_notes are exported through sysfs.
1064	 * Here round up the size of crash_notes to the nearest power of two
1065	 * and pass it to __alloc_percpu as align value. This can make sure
1066	 * crash_notes is allocated inside one physical page.
1067	 */
1068	size = sizeof(note_buf_t);
1069	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1070
1071	/*
1072	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1073	 * definitely will be in 2 pages with that.
1074	 */
1075	BUILD_BUG_ON(size > PAGE_SIZE);
1076
1077	crash_notes = __alloc_percpu(size, align);
1078	if (!crash_notes) {
1079		pr_warn("Memory allocation for saving cpu register states failed\n");
1080		return -ENOMEM;
1081	}
1082	return 0;
1083}
1084subsys_initcall(crash_notes_memory_init);
1085
1086
1087/*
1088 * parsing the "crashkernel" commandline
1089 *
1090 * this code is intended to be called from architecture specific code
1091 */
1092
1093
1094/*
1095 * This function parses command lines in the format
1096 *
1097 *   crashkernel=ramsize-range:size[,...][@offset]
1098 *
1099 * The function returns 0 on success and -EINVAL on failure.
1100 */
1101static int __init parse_crashkernel_mem(char *cmdline,
1102					unsigned long long system_ram,
1103					unsigned long long *crash_size,
1104					unsigned long long *crash_base)
1105{
1106	char *cur = cmdline, *tmp;
1107
1108	/* for each entry of the comma-separated list */
1109	do {
1110		unsigned long long start, end = ULLONG_MAX, size;
1111
1112		/* get the start of the range */
1113		start = memparse(cur, &tmp);
1114		if (cur == tmp) {
1115			pr_warn("crashkernel: Memory value expected\n");
1116			return -EINVAL;
1117		}
1118		cur = tmp;
1119		if (*cur != '-') {
1120			pr_warn("crashkernel: '-' expected\n");
1121			return -EINVAL;
1122		}
1123		cur++;
1124
1125		/* if no ':' is here, than we read the end */
1126		if (*cur != ':') {
1127			end = memparse(cur, &tmp);
1128			if (cur == tmp) {
1129				pr_warn("crashkernel: Memory value expected\n");
1130				return -EINVAL;
1131			}
1132			cur = tmp;
1133			if (end <= start) {
1134				pr_warn("crashkernel: end <= start\n");
1135				return -EINVAL;
1136			}
1137		}
1138
1139		if (*cur != ':') {
1140			pr_warn("crashkernel: ':' expected\n");
1141			return -EINVAL;
1142		}
1143		cur++;
1144
1145		size = memparse(cur, &tmp);
1146		if (cur == tmp) {
1147			pr_warn("Memory value expected\n");
1148			return -EINVAL;
1149		}
1150		cur = tmp;
1151		if (size >= system_ram) {
1152			pr_warn("crashkernel: invalid size\n");
1153			return -EINVAL;
1154		}
1155
1156		/* match ? */
1157		if (system_ram >= start && system_ram < end) {
1158			*crash_size = size;
1159			break;
1160		}
1161	} while (*cur++ == ',');
1162
1163	if (*crash_size > 0) {
1164		while (*cur && *cur != ' ' && *cur != '@')
1165			cur++;
1166		if (*cur == '@') {
1167			cur++;
1168			*crash_base = memparse(cur, &tmp);
1169			if (cur == tmp) {
1170				pr_warn("Memory value expected after '@'\n");
1171				return -EINVAL;
1172			}
1173		}
1174	}
1175
1176	return 0;
1177}
1178
1179/*
1180 * That function parses "simple" (old) crashkernel command lines like
1181 *
1182 *	crashkernel=size[@offset]
1183 *
1184 * It returns 0 on success and -EINVAL on failure.
1185 */
1186static int __init parse_crashkernel_simple(char *cmdline,
1187					   unsigned long long *crash_size,
1188					   unsigned long long *crash_base)
1189{
1190	char *cur = cmdline;
1191
1192	*crash_size = memparse(cmdline, &cur);
1193	if (cmdline == cur) {
1194		pr_warn("crashkernel: memory value expected\n");
1195		return -EINVAL;
1196	}
1197
1198	if (*cur == '@')
1199		*crash_base = memparse(cur+1, &cur);
1200	else if (*cur != ' ' && *cur != '\0') {
1201		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1202		return -EINVAL;
1203	}
1204
1205	return 0;
1206}
1207
1208#define SUFFIX_HIGH 0
1209#define SUFFIX_LOW  1
1210#define SUFFIX_NULL 2
1211static __initdata char *suffix_tbl[] = {
1212	[SUFFIX_HIGH] = ",high",
1213	[SUFFIX_LOW]  = ",low",
1214	[SUFFIX_NULL] = NULL,
1215};
1216
1217/*
1218 * That function parses "suffix"  crashkernel command lines like
1219 *
1220 *	crashkernel=size,[high|low]
1221 *
1222 * It returns 0 on success and -EINVAL on failure.
1223 */
1224static int __init parse_crashkernel_suffix(char *cmdline,
1225					   unsigned long long	*crash_size,
1226					   const char *suffix)
1227{
1228	char *cur = cmdline;
1229
1230	*crash_size = memparse(cmdline, &cur);
1231	if (cmdline == cur) {
1232		pr_warn("crashkernel: memory value expected\n");
1233		return -EINVAL;
1234	}
1235
1236	/* check with suffix */
1237	if (strncmp(cur, suffix, strlen(suffix))) {
1238		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1239		return -EINVAL;
1240	}
1241	cur += strlen(suffix);
1242	if (*cur != ' ' && *cur != '\0') {
1243		pr_warn("crashkernel: unrecognized char: %c\n", *cur);
1244		return -EINVAL;
1245	}
1246
1247	return 0;
1248}
1249
1250static __init char *get_last_crashkernel(char *cmdline,
1251			     const char *name,
1252			     const char *suffix)
1253{
1254	char *p = cmdline, *ck_cmdline = NULL;
1255
1256	/* find crashkernel and use the last one if there are more */
1257	p = strstr(p, name);
1258	while (p) {
1259		char *end_p = strchr(p, ' ');
1260		char *q;
1261
1262		if (!end_p)
1263			end_p = p + strlen(p);
1264
1265		if (!suffix) {
1266			int i;
1267
1268			/* skip the one with any known suffix */
1269			for (i = 0; suffix_tbl[i]; i++) {
1270				q = end_p - strlen(suffix_tbl[i]);
1271				if (!strncmp(q, suffix_tbl[i],
1272					     strlen(suffix_tbl[i])))
1273					goto next;
1274			}
1275			ck_cmdline = p;
1276		} else {
1277			q = end_p - strlen(suffix);
1278			if (!strncmp(q, suffix, strlen(suffix)))
1279				ck_cmdline = p;
1280		}
1281next:
1282		p = strstr(p+1, name);
1283	}
1284
1285	if (!ck_cmdline)
1286		return NULL;
1287
1288	return ck_cmdline;
1289}
1290
1291static int __init __parse_crashkernel(char *cmdline,
1292			     unsigned long long system_ram,
1293			     unsigned long long *crash_size,
1294			     unsigned long long *crash_base,
1295			     const char *name,
1296			     const char *suffix)
1297{
1298	char	*first_colon, *first_space;
1299	char	*ck_cmdline;
1300
1301	BUG_ON(!crash_size || !crash_base);
1302	*crash_size = 0;
1303	*crash_base = 0;
1304
1305	ck_cmdline = get_last_crashkernel(cmdline, name, suffix);
1306
1307	if (!ck_cmdline)
1308		return -EINVAL;
1309
1310	ck_cmdline += strlen(name);
1311
1312	if (suffix)
1313		return parse_crashkernel_suffix(ck_cmdline, crash_size,
1314				suffix);
1315	/*
1316	 * if the commandline contains a ':', then that's the extended
1317	 * syntax -- if not, it must be the classic syntax
1318	 */
1319	first_colon = strchr(ck_cmdline, ':');
1320	first_space = strchr(ck_cmdline, ' ');
1321	if (first_colon && (!first_space || first_colon < first_space))
1322		return parse_crashkernel_mem(ck_cmdline, system_ram,
1323				crash_size, crash_base);
1324
1325	return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base);
1326}
1327
1328/*
1329 * That function is the entry point for command line parsing and should be
1330 * called from the arch-specific code.
1331 */
1332int __init parse_crashkernel(char *cmdline,
1333			     unsigned long long system_ram,
1334			     unsigned long long *crash_size,
1335			     unsigned long long *crash_base)
1336{
1337	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1338					"crashkernel=", NULL);
1339}
1340
1341int __init parse_crashkernel_high(char *cmdline,
1342			     unsigned long long system_ram,
1343			     unsigned long long *crash_size,
1344			     unsigned long long *crash_base)
1345{
1346	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1347				"crashkernel=", suffix_tbl[SUFFIX_HIGH]);
1348}
1349
1350int __init parse_crashkernel_low(char *cmdline,
1351			     unsigned long long system_ram,
1352			     unsigned long long *crash_size,
1353			     unsigned long long *crash_base)
1354{
1355	return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base,
1356				"crashkernel=", suffix_tbl[SUFFIX_LOW]);
1357}
1358
1359static void update_vmcoreinfo_note(void)
1360{
1361	u32 *buf = vmcoreinfo_note;
1362
1363	if (!vmcoreinfo_size)
1364		return;
1365	buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data,
1366			      vmcoreinfo_size);
1367	final_note(buf);
1368}
1369
1370void crash_save_vmcoreinfo(void)
1371{
1372	vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds());
1373	update_vmcoreinfo_note();
1374}
1375
1376void vmcoreinfo_append_str(const char *fmt, ...)
1377{
1378	va_list args;
1379	char buf[0x50];
1380	size_t r;
1381
1382	va_start(args, fmt);
1383	r = vscnprintf(buf, sizeof(buf), fmt, args);
1384	va_end(args);
1385
1386	r = min(r, vmcoreinfo_max_size - vmcoreinfo_size);
1387
1388	memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r);
1389
1390	vmcoreinfo_size += r;
1391}
1392
1393/*
1394 * provide an empty default implementation here -- architecture
1395 * code may override this
1396 */
1397void __weak arch_crash_save_vmcoreinfo(void)
1398{}
1399
1400phys_addr_t __weak paddr_vmcoreinfo_note(void)
1401{
1402	return __pa((unsigned long)(char *)&vmcoreinfo_note);
1403}
1404
1405static int __init crash_save_vmcoreinfo_init(void)
1406{
1407	VMCOREINFO_OSRELEASE(init_uts_ns.name.release);
1408	VMCOREINFO_PAGESIZE(PAGE_SIZE);
1409
1410	VMCOREINFO_SYMBOL(init_uts_ns);
1411	VMCOREINFO_SYMBOL(node_online_map);
1412#ifdef CONFIG_MMU
1413	VMCOREINFO_SYMBOL(swapper_pg_dir);
1414#endif
1415	VMCOREINFO_SYMBOL(_stext);
1416	VMCOREINFO_SYMBOL(vmap_area_list);
1417
1418#ifndef CONFIG_NEED_MULTIPLE_NODES
1419	VMCOREINFO_SYMBOL(mem_map);
1420	VMCOREINFO_SYMBOL(contig_page_data);
1421#endif
1422#ifdef CONFIG_SPARSEMEM
1423	VMCOREINFO_SYMBOL(mem_section);
1424	VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS);
1425	VMCOREINFO_STRUCT_SIZE(mem_section);
1426	VMCOREINFO_OFFSET(mem_section, section_mem_map);
1427#endif
1428	VMCOREINFO_STRUCT_SIZE(page);
1429	VMCOREINFO_STRUCT_SIZE(pglist_data);
1430	VMCOREINFO_STRUCT_SIZE(zone);
1431	VMCOREINFO_STRUCT_SIZE(free_area);
1432	VMCOREINFO_STRUCT_SIZE(list_head);
1433	VMCOREINFO_SIZE(nodemask_t);
1434	VMCOREINFO_OFFSET(page, flags);
1435	VMCOREINFO_OFFSET(page, _refcount);
1436	VMCOREINFO_OFFSET(page, mapping);
1437	VMCOREINFO_OFFSET(page, lru);
1438	VMCOREINFO_OFFSET(page, _mapcount);
1439	VMCOREINFO_OFFSET(page, private);
1440	VMCOREINFO_OFFSET(page, compound_dtor);
1441	VMCOREINFO_OFFSET(page, compound_order);
1442	VMCOREINFO_OFFSET(page, compound_head);
1443	VMCOREINFO_OFFSET(pglist_data, node_zones);
1444	VMCOREINFO_OFFSET(pglist_data, nr_zones);
1445#ifdef CONFIG_FLAT_NODE_MEM_MAP
1446	VMCOREINFO_OFFSET(pglist_data, node_mem_map);
1447#endif
1448	VMCOREINFO_OFFSET(pglist_data, node_start_pfn);
1449	VMCOREINFO_OFFSET(pglist_data, node_spanned_pages);
1450	VMCOREINFO_OFFSET(pglist_data, node_id);
1451	VMCOREINFO_OFFSET(zone, free_area);
1452	VMCOREINFO_OFFSET(zone, vm_stat);
1453	VMCOREINFO_OFFSET(zone, spanned_pages);
1454	VMCOREINFO_OFFSET(free_area, free_list);
1455	VMCOREINFO_OFFSET(list_head, next);
1456	VMCOREINFO_OFFSET(list_head, prev);
1457	VMCOREINFO_OFFSET(vmap_area, va_start);
1458	VMCOREINFO_OFFSET(vmap_area, list);
1459	VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER);
1460	log_buf_kexec_setup();
1461	VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES);
1462	VMCOREINFO_NUMBER(NR_FREE_PAGES);
1463	VMCOREINFO_NUMBER(PG_lru);
1464	VMCOREINFO_NUMBER(PG_private);
1465	VMCOREINFO_NUMBER(PG_swapcache);
1466	VMCOREINFO_NUMBER(PG_slab);
1467#ifdef CONFIG_MEMORY_FAILURE
1468	VMCOREINFO_NUMBER(PG_hwpoison);
1469#endif
1470	VMCOREINFO_NUMBER(PG_head_mask);
1471	VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE);
1472#ifdef CONFIG_HUGETLB_PAGE
1473	VMCOREINFO_NUMBER(HUGETLB_PAGE_DTOR);
1474#endif
1475
1476	arch_crash_save_vmcoreinfo();
1477	update_vmcoreinfo_note();
1478
1479	return 0;
1480}
1481
1482subsys_initcall(crash_save_vmcoreinfo_init);
1483
1484/*
1485 * Move into place and start executing a preloaded standalone
1486 * executable.  If nothing was preloaded return an error.
1487 */
1488int kernel_kexec(void)
1489{
1490	int error = 0;
1491
1492	if (!mutex_trylock(&kexec_mutex))
1493		return -EBUSY;
1494	if (!kexec_image) {
1495		error = -EINVAL;
1496		goto Unlock;
1497	}
1498
1499#ifdef CONFIG_KEXEC_JUMP
1500	if (kexec_image->preserve_context) {
1501		lock_system_sleep();
1502		pm_prepare_console();
1503		error = freeze_processes();
1504		if (error) {
1505			error = -EBUSY;
1506			goto Restore_console;
1507		}
1508		suspend_console();
1509		error = dpm_suspend_start(PMSG_FREEZE);
1510		if (error)
1511			goto Resume_console;
1512		/* At this point, dpm_suspend_start() has been called,
1513		 * but *not* dpm_suspend_end(). We *must* call
1514		 * dpm_suspend_end() now.  Otherwise, drivers for
1515		 * some devices (e.g. interrupt controllers) become
1516		 * desynchronized with the actual state of the
1517		 * hardware at resume time, and evil weirdness ensues.
1518		 */
1519		error = dpm_suspend_end(PMSG_FREEZE);
1520		if (error)
1521			goto Resume_devices;
1522		error = disable_nonboot_cpus();
1523		if (error)
1524			goto Enable_cpus;
1525		local_irq_disable();
1526		error = syscore_suspend();
1527		if (error)
1528			goto Enable_irqs;
1529	} else
1530#endif
1531	{
1532		kexec_in_progress = true;
1533		kernel_restart_prepare(NULL);
1534		migrate_to_reboot_cpu();
1535
1536		/*
1537		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1538		 * no further code needs to use CPU hotplug (which is true in
1539		 * the reboot case). However, the kexec path depends on using
1540		 * CPU hotplug again; so re-enable it here.
1541		 */
1542		cpu_hotplug_enable();
1543		pr_emerg("Starting new kernel\n");
1544		machine_shutdown();
1545	}
1546
 
1547	machine_kexec(kexec_image);
1548
1549#ifdef CONFIG_KEXEC_JUMP
1550	if (kexec_image->preserve_context) {
1551		syscore_resume();
1552 Enable_irqs:
1553		local_irq_enable();
1554 Enable_cpus:
1555		enable_nonboot_cpus();
1556		dpm_resume_start(PMSG_RESTORE);
1557 Resume_devices:
1558		dpm_resume_end(PMSG_RESTORE);
1559 Resume_console:
1560		resume_console();
1561		thaw_processes();
1562 Restore_console:
1563		pm_restore_console();
1564		unlock_system_sleep();
1565	}
1566#endif
1567
1568 Unlock:
1569	mutex_unlock(&kexec_mutex);
1570	return error;
1571}
1572
1573/*
1574 * Protection mechanism for crashkernel reserved memory after
1575 * the kdump kernel is loaded.
1576 *
1577 * Provide an empty default implementation here -- architecture
1578 * code may override this
1579 */
1580void __weak arch_kexec_protect_crashkres(void)
1581{}
1582
1583void __weak arch_kexec_unprotect_crashkres(void)
1584{}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec.c - kexec system call core code.
   4 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
 
 
 
   5 */
   6
   7#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   8
   9#include <linux/capability.h>
  10#include <linux/mm.h>
  11#include <linux/file.h>
  12#include <linux/slab.h>
  13#include <linux/fs.h>
  14#include <linux/kexec.h>
  15#include <linux/mutex.h>
  16#include <linux/list.h>
  17#include <linux/highmem.h>
  18#include <linux/syscalls.h>
  19#include <linux/reboot.h>
  20#include <linux/ioport.h>
  21#include <linux/hardirq.h>
  22#include <linux/elf.h>
  23#include <linux/elfcore.h>
  24#include <linux/utsname.h>
  25#include <linux/numa.h>
  26#include <linux/suspend.h>
  27#include <linux/device.h>
  28#include <linux/freezer.h>
  29#include <linux/panic_notifier.h>
  30#include <linux/pm.h>
  31#include <linux/cpu.h>
  32#include <linux/uaccess.h>
  33#include <linux/io.h>
  34#include <linux/console.h>
  35#include <linux/vmalloc.h>
  36#include <linux/swap.h>
  37#include <linux/syscore_ops.h>
  38#include <linux/compiler.h>
  39#include <linux/hugetlb.h>
  40#include <linux/objtool.h>
  41#include <linux/kmsg_dump.h>
  42
  43#include <asm/page.h>
  44#include <asm/sections.h>
  45
  46#include <crypto/hash.h>
 
  47#include "kexec_internal.h"
  48
  49DEFINE_MUTEX(kexec_mutex);
  50
  51/* Per cpu memory for storing cpu states in case of system crash. */
  52note_buf_t __percpu *crash_notes;
  53
 
 
 
 
 
 
  54/* Flag to indicate we are going to kexec a new kernel */
  55bool kexec_in_progress = false;
  56
  57
  58/* Location of the reserved area for the crash kernel */
  59struct resource crashk_res = {
  60	.name  = "Crash kernel",
  61	.start = 0,
  62	.end   = 0,
  63	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  64	.desc  = IORES_DESC_CRASH_KERNEL
  65};
  66struct resource crashk_low_res = {
  67	.name  = "Crash kernel",
  68	.start = 0,
  69	.end   = 0,
  70	.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
  71	.desc  = IORES_DESC_CRASH_KERNEL
  72};
  73
  74int kexec_should_crash(struct task_struct *p)
  75{
  76	/*
  77	 * If crash_kexec_post_notifiers is enabled, don't run
  78	 * crash_kexec() here yet, which must be run after panic
  79	 * notifiers in panic().
  80	 */
  81	if (crash_kexec_post_notifiers)
  82		return 0;
  83	/*
  84	 * There are 4 panic() calls in do_exit() path, each of which
  85	 * corresponds to each of these 4 conditions.
  86	 */
  87	if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
  88		return 1;
  89	return 0;
  90}
  91
  92int kexec_crash_loaded(void)
  93{
  94	return !!kexec_crash_image;
  95}
  96EXPORT_SYMBOL_GPL(kexec_crash_loaded);
  97
  98/*
  99 * When kexec transitions to the new kernel there is a one-to-one
 100 * mapping between physical and virtual addresses.  On processors
 101 * where you can disable the MMU this is trivial, and easy.  For
 102 * others it is still a simple predictable page table to setup.
 103 *
 104 * In that environment kexec copies the new kernel to its final
 105 * resting place.  This means I can only support memory whose
 106 * physical address can fit in an unsigned long.  In particular
 107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
 108 * If the assembly stub has more restrictive requirements
 109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
 110 * defined more restrictively in <asm/kexec.h>.
 111 *
 112 * The code for the transition from the current kernel to the
 113 * new kernel is placed in the control_code_buffer, whose size
 114 * is given by KEXEC_CONTROL_PAGE_SIZE.  In the best case only a single
 115 * page of memory is necessary, but some architectures require more.
 116 * Because this memory must be identity mapped in the transition from
 117 * virtual to physical addresses it must live in the range
 118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
 119 * modifiable.
 120 *
 121 * The assembly stub in the control code buffer is passed a linked list
 122 * of descriptor pages detailing the source pages of the new kernel,
 123 * and the destination addresses of those source pages.  As this data
 124 * structure is not used in the context of the current OS, it must
 125 * be self-contained.
 126 *
 127 * The code has been made to work with highmem pages and will use a
 128 * destination page in its final resting place (if it happens
 129 * to allocate it).  The end product of this is that most of the
 130 * physical address space, and most of RAM can be used.
 131 *
 132 * Future directions include:
 133 *  - allocating a page table with the control code buffer identity
 134 *    mapped, to simplify machine_kexec and make kexec_on_panic more
 135 *    reliable.
 136 */
 137
 138/*
 139 * KIMAGE_NO_DEST is an impossible destination address..., for
 140 * allocating pages whose destination address we do not care about.
 141 */
 142#define KIMAGE_NO_DEST (-1UL)
 143#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
 144
 145static struct page *kimage_alloc_page(struct kimage *image,
 146				       gfp_t gfp_mask,
 147				       unsigned long dest);
 148
 149int sanity_check_segment_list(struct kimage *image)
 150{
 151	int i;
 152	unsigned long nr_segments = image->nr_segments;
 153	unsigned long total_pages = 0;
 154	unsigned long nr_pages = totalram_pages();
 155
 156	/*
 157	 * Verify we have good destination addresses.  The caller is
 158	 * responsible for making certain we don't attempt to load
 159	 * the new image into invalid or reserved areas of RAM.  This
 160	 * just verifies it is an address we can use.
 161	 *
 162	 * Since the kernel does everything in page size chunks ensure
 163	 * the destination addresses are page aligned.  Too many
 164	 * special cases crop of when we don't do this.  The most
 165	 * insidious is getting overlapping destination addresses
 166	 * simply because addresses are changed to page size
 167	 * granularity.
 168	 */
 169	for (i = 0; i < nr_segments; i++) {
 170		unsigned long mstart, mend;
 171
 172		mstart = image->segment[i].mem;
 173		mend   = mstart + image->segment[i].memsz;
 174		if (mstart > mend)
 175			return -EADDRNOTAVAIL;
 176		if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
 177			return -EADDRNOTAVAIL;
 178		if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
 179			return -EADDRNOTAVAIL;
 180	}
 181
 182	/* Verify our destination addresses do not overlap.
 183	 * If we alloed overlapping destination addresses
 184	 * through very weird things can happen with no
 185	 * easy explanation as one segment stops on another.
 186	 */
 187	for (i = 0; i < nr_segments; i++) {
 188		unsigned long mstart, mend;
 189		unsigned long j;
 190
 191		mstart = image->segment[i].mem;
 192		mend   = mstart + image->segment[i].memsz;
 193		for (j = 0; j < i; j++) {
 194			unsigned long pstart, pend;
 195
 196			pstart = image->segment[j].mem;
 197			pend   = pstart + image->segment[j].memsz;
 198			/* Do the segments overlap ? */
 199			if ((mend > pstart) && (mstart < pend))
 200				return -EINVAL;
 201		}
 202	}
 203
 204	/* Ensure our buffer sizes are strictly less than
 205	 * our memory sizes.  This should always be the case,
 206	 * and it is easier to check up front than to be surprised
 207	 * later on.
 208	 */
 209	for (i = 0; i < nr_segments; i++) {
 210		if (image->segment[i].bufsz > image->segment[i].memsz)
 211			return -EINVAL;
 212	}
 213
 214	/*
 215	 * Verify that no more than half of memory will be consumed. If the
 216	 * request from userspace is too large, a large amount of time will be
 217	 * wasted allocating pages, which can cause a soft lockup.
 218	 */
 219	for (i = 0; i < nr_segments; i++) {
 220		if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
 221			return -EINVAL;
 222
 223		total_pages += PAGE_COUNT(image->segment[i].memsz);
 224	}
 225
 226	if (total_pages > nr_pages / 2)
 227		return -EINVAL;
 228
 229	/*
 230	 * Verify we have good destination addresses.  Normally
 231	 * the caller is responsible for making certain we don't
 232	 * attempt to load the new image into invalid or reserved
 233	 * areas of RAM.  But crash kernels are preloaded into a
 234	 * reserved area of ram.  We must ensure the addresses
 235	 * are in the reserved area otherwise preloading the
 236	 * kernel could corrupt things.
 237	 */
 238
 239	if (image->type == KEXEC_TYPE_CRASH) {
 240		for (i = 0; i < nr_segments; i++) {
 241			unsigned long mstart, mend;
 242
 243			mstart = image->segment[i].mem;
 244			mend = mstart + image->segment[i].memsz - 1;
 245			/* Ensure we are within the crash kernel limits */
 246			if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
 247			    (mend > phys_to_boot_phys(crashk_res.end)))
 248				return -EADDRNOTAVAIL;
 249		}
 250	}
 251
 252	return 0;
 253}
 254
 255struct kimage *do_kimage_alloc_init(void)
 256{
 257	struct kimage *image;
 258
 259	/* Allocate a controlling structure */
 260	image = kzalloc(sizeof(*image), GFP_KERNEL);
 261	if (!image)
 262		return NULL;
 263
 264	image->head = 0;
 265	image->entry = &image->head;
 266	image->last_entry = &image->head;
 267	image->control_page = ~0; /* By default this does not apply */
 268	image->type = KEXEC_TYPE_DEFAULT;
 269
 270	/* Initialize the list of control pages */
 271	INIT_LIST_HEAD(&image->control_pages);
 272
 273	/* Initialize the list of destination pages */
 274	INIT_LIST_HEAD(&image->dest_pages);
 275
 276	/* Initialize the list of unusable pages */
 277	INIT_LIST_HEAD(&image->unusable_pages);
 278
 279	return image;
 280}
 281
 282int kimage_is_destination_range(struct kimage *image,
 283					unsigned long start,
 284					unsigned long end)
 285{
 286	unsigned long i;
 287
 288	for (i = 0; i < image->nr_segments; i++) {
 289		unsigned long mstart, mend;
 290
 291		mstart = image->segment[i].mem;
 292		mend = mstart + image->segment[i].memsz;
 293		if ((end > mstart) && (start < mend))
 294			return 1;
 295	}
 296
 297	return 0;
 298}
 299
 300static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
 301{
 302	struct page *pages;
 303
 304	if (fatal_signal_pending(current))
 305		return NULL;
 306	pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
 307	if (pages) {
 308		unsigned int count, i;
 309
 310		pages->mapping = NULL;
 311		set_page_private(pages, order);
 312		count = 1 << order;
 313		for (i = 0; i < count; i++)
 314			SetPageReserved(pages + i);
 315
 316		arch_kexec_post_alloc_pages(page_address(pages), count,
 317					    gfp_mask);
 318
 319		if (gfp_mask & __GFP_ZERO)
 320			for (i = 0; i < count; i++)
 321				clear_highpage(pages + i);
 322	}
 323
 324	return pages;
 325}
 326
 327static void kimage_free_pages(struct page *page)
 328{
 329	unsigned int order, count, i;
 330
 331	order = page_private(page);
 332	count = 1 << order;
 333
 334	arch_kexec_pre_free_pages(page_address(page), count);
 335
 336	for (i = 0; i < count; i++)
 337		ClearPageReserved(page + i);
 338	__free_pages(page, order);
 339}
 340
 341void kimage_free_page_list(struct list_head *list)
 342{
 343	struct page *page, *next;
 344
 345	list_for_each_entry_safe(page, next, list, lru) {
 346		list_del(&page->lru);
 347		kimage_free_pages(page);
 348	}
 349}
 350
 351static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
 352							unsigned int order)
 353{
 354	/* Control pages are special, they are the intermediaries
 355	 * that are needed while we copy the rest of the pages
 356	 * to their final resting place.  As such they must
 357	 * not conflict with either the destination addresses
 358	 * or memory the kernel is already using.
 359	 *
 360	 * The only case where we really need more than one of
 361	 * these are for architectures where we cannot disable
 362	 * the MMU and must instead generate an identity mapped
 363	 * page table for all of the memory.
 364	 *
 365	 * At worst this runs in O(N) of the image size.
 366	 */
 367	struct list_head extra_pages;
 368	struct page *pages;
 369	unsigned int count;
 370
 371	count = 1 << order;
 372	INIT_LIST_HEAD(&extra_pages);
 373
 374	/* Loop while I can allocate a page and the page allocated
 375	 * is a destination page.
 376	 */
 377	do {
 378		unsigned long pfn, epfn, addr, eaddr;
 379
 380		pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
 381		if (!pages)
 382			break;
 383		pfn   = page_to_boot_pfn(pages);
 384		epfn  = pfn + count;
 385		addr  = pfn << PAGE_SHIFT;
 386		eaddr = epfn << PAGE_SHIFT;
 387		if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
 388			      kimage_is_destination_range(image, addr, eaddr)) {
 389			list_add(&pages->lru, &extra_pages);
 390			pages = NULL;
 391		}
 392	} while (!pages);
 393
 394	if (pages) {
 395		/* Remember the allocated page... */
 396		list_add(&pages->lru, &image->control_pages);
 397
 398		/* Because the page is already in it's destination
 399		 * location we will never allocate another page at
 400		 * that address.  Therefore kimage_alloc_pages
 401		 * will not return it (again) and we don't need
 402		 * to give it an entry in image->segment[].
 403		 */
 404	}
 405	/* Deal with the destination pages I have inadvertently allocated.
 406	 *
 407	 * Ideally I would convert multi-page allocations into single
 408	 * page allocations, and add everything to image->dest_pages.
 409	 *
 410	 * For now it is simpler to just free the pages.
 411	 */
 412	kimage_free_page_list(&extra_pages);
 413
 414	return pages;
 415}
 416
 417static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
 418						      unsigned int order)
 419{
 420	/* Control pages are special, they are the intermediaries
 421	 * that are needed while we copy the rest of the pages
 422	 * to their final resting place.  As such they must
 423	 * not conflict with either the destination addresses
 424	 * or memory the kernel is already using.
 425	 *
 426	 * Control pages are also the only pags we must allocate
 427	 * when loading a crash kernel.  All of the other pages
 428	 * are specified by the segments and we just memcpy
 429	 * into them directly.
 430	 *
 431	 * The only case where we really need more than one of
 432	 * these are for architectures where we cannot disable
 433	 * the MMU and must instead generate an identity mapped
 434	 * page table for all of the memory.
 435	 *
 436	 * Given the low demand this implements a very simple
 437	 * allocator that finds the first hole of the appropriate
 438	 * size in the reserved memory region, and allocates all
 439	 * of the memory up to and including the hole.
 440	 */
 441	unsigned long hole_start, hole_end, size;
 442	struct page *pages;
 443
 444	pages = NULL;
 445	size = (1 << order) << PAGE_SHIFT;
 446	hole_start = (image->control_page + (size - 1)) & ~(size - 1);
 447	hole_end   = hole_start + size - 1;
 448	while (hole_end <= crashk_res.end) {
 449		unsigned long i;
 450
 451		cond_resched();
 452
 453		if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
 454			break;
 455		/* See if I overlap any of the segments */
 456		for (i = 0; i < image->nr_segments; i++) {
 457			unsigned long mstart, mend;
 458
 459			mstart = image->segment[i].mem;
 460			mend   = mstart + image->segment[i].memsz - 1;
 461			if ((hole_end >= mstart) && (hole_start <= mend)) {
 462				/* Advance the hole to the end of the segment */
 463				hole_start = (mend + (size - 1)) & ~(size - 1);
 464				hole_end   = hole_start + size - 1;
 465				break;
 466			}
 467		}
 468		/* If I don't overlap any segments I have found my hole! */
 469		if (i == image->nr_segments) {
 470			pages = pfn_to_page(hole_start >> PAGE_SHIFT);
 471			image->control_page = hole_end;
 472			break;
 473		}
 474	}
 475
 476	/* Ensure that these pages are decrypted if SME is enabled. */
 477	if (pages)
 478		arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
 479
 480	return pages;
 481}
 482
 483
 484struct page *kimage_alloc_control_pages(struct kimage *image,
 485					 unsigned int order)
 486{
 487	struct page *pages = NULL;
 488
 489	switch (image->type) {
 490	case KEXEC_TYPE_DEFAULT:
 491		pages = kimage_alloc_normal_control_pages(image, order);
 492		break;
 493	case KEXEC_TYPE_CRASH:
 494		pages = kimage_alloc_crash_control_pages(image, order);
 495		break;
 496	}
 497
 498	return pages;
 499}
 500
 501int kimage_crash_copy_vmcoreinfo(struct kimage *image)
 502{
 503	struct page *vmcoreinfo_page;
 504	void *safecopy;
 505
 506	if (image->type != KEXEC_TYPE_CRASH)
 507		return 0;
 508
 509	/*
 510	 * For kdump, allocate one vmcoreinfo safe copy from the
 511	 * crash memory. as we have arch_kexec_protect_crashkres()
 512	 * after kexec syscall, we naturally protect it from write
 513	 * (even read) access under kernel direct mapping. But on
 514	 * the other hand, we still need to operate it when crash
 515	 * happens to generate vmcoreinfo note, hereby we rely on
 516	 * vmap for this purpose.
 517	 */
 518	vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
 519	if (!vmcoreinfo_page) {
 520		pr_warn("Could not allocate vmcoreinfo buffer\n");
 521		return -ENOMEM;
 522	}
 523	safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
 524	if (!safecopy) {
 525		pr_warn("Could not vmap vmcoreinfo buffer\n");
 526		return -ENOMEM;
 527	}
 528
 529	image->vmcoreinfo_data_copy = safecopy;
 530	crash_update_vmcoreinfo_safecopy(safecopy);
 531
 532	return 0;
 533}
 534
 535static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
 536{
 537	if (*image->entry != 0)
 538		image->entry++;
 539
 540	if (image->entry == image->last_entry) {
 541		kimage_entry_t *ind_page;
 542		struct page *page;
 543
 544		page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
 545		if (!page)
 546			return -ENOMEM;
 547
 548		ind_page = page_address(page);
 549		*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
 550		image->entry = ind_page;
 551		image->last_entry = ind_page +
 552				      ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
 553	}
 554	*image->entry = entry;
 555	image->entry++;
 556	*image->entry = 0;
 557
 558	return 0;
 559}
 560
 561static int kimage_set_destination(struct kimage *image,
 562				   unsigned long destination)
 563{
 564	int result;
 565
 566	destination &= PAGE_MASK;
 567	result = kimage_add_entry(image, destination | IND_DESTINATION);
 568
 569	return result;
 570}
 571
 572
 573static int kimage_add_page(struct kimage *image, unsigned long page)
 574{
 575	int result;
 576
 577	page &= PAGE_MASK;
 578	result = kimage_add_entry(image, page | IND_SOURCE);
 579
 580	return result;
 581}
 582
 583
 584static void kimage_free_extra_pages(struct kimage *image)
 585{
 586	/* Walk through and free any extra destination pages I may have */
 587	kimage_free_page_list(&image->dest_pages);
 588
 589	/* Walk through and free any unusable pages I have cached */
 590	kimage_free_page_list(&image->unusable_pages);
 591
 592}
 593
 594int __weak machine_kexec_post_load(struct kimage *image)
 595{
 596	return 0;
 597}
 598
 599void kimage_terminate(struct kimage *image)
 600{
 601	if (*image->entry != 0)
 602		image->entry++;
 603
 604	*image->entry = IND_DONE;
 605}
 606
 607#define for_each_kimage_entry(image, ptr, entry) \
 608	for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
 609		ptr = (entry & IND_INDIRECTION) ? \
 610			boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
 611
 612static void kimage_free_entry(kimage_entry_t entry)
 613{
 614	struct page *page;
 615
 616	page = boot_pfn_to_page(entry >> PAGE_SHIFT);
 617	kimage_free_pages(page);
 618}
 619
 620void kimage_free(struct kimage *image)
 621{
 622	kimage_entry_t *ptr, entry;
 623	kimage_entry_t ind = 0;
 624
 625	if (!image)
 626		return;
 627
 628	if (image->vmcoreinfo_data_copy) {
 629		crash_update_vmcoreinfo_safecopy(NULL);
 630		vunmap(image->vmcoreinfo_data_copy);
 631	}
 632
 633	kimage_free_extra_pages(image);
 634	for_each_kimage_entry(image, ptr, entry) {
 635		if (entry & IND_INDIRECTION) {
 636			/* Free the previous indirection page */
 637			if (ind & IND_INDIRECTION)
 638				kimage_free_entry(ind);
 639			/* Save this indirection page until we are
 640			 * done with it.
 641			 */
 642			ind = entry;
 643		} else if (entry & IND_SOURCE)
 644			kimage_free_entry(entry);
 645	}
 646	/* Free the final indirection page */
 647	if (ind & IND_INDIRECTION)
 648		kimage_free_entry(ind);
 649
 650	/* Handle any machine specific cleanup */
 651	machine_kexec_cleanup(image);
 652
 653	/* Free the kexec control pages... */
 654	kimage_free_page_list(&image->control_pages);
 655
 656	/*
 657	 * Free up any temporary buffers allocated. This might hit if
 658	 * error occurred much later after buffer allocation.
 659	 */
 660	if (image->file_mode)
 661		kimage_file_post_load_cleanup(image);
 662
 663	kfree(image);
 664}
 665
 666static kimage_entry_t *kimage_dst_used(struct kimage *image,
 667					unsigned long page)
 668{
 669	kimage_entry_t *ptr, entry;
 670	unsigned long destination = 0;
 671
 672	for_each_kimage_entry(image, ptr, entry) {
 673		if (entry & IND_DESTINATION)
 674			destination = entry & PAGE_MASK;
 675		else if (entry & IND_SOURCE) {
 676			if (page == destination)
 677				return ptr;
 678			destination += PAGE_SIZE;
 679		}
 680	}
 681
 682	return NULL;
 683}
 684
 685static struct page *kimage_alloc_page(struct kimage *image,
 686					gfp_t gfp_mask,
 687					unsigned long destination)
 688{
 689	/*
 690	 * Here we implement safeguards to ensure that a source page
 691	 * is not copied to its destination page before the data on
 692	 * the destination page is no longer useful.
 693	 *
 694	 * To do this we maintain the invariant that a source page is
 695	 * either its own destination page, or it is not a
 696	 * destination page at all.
 697	 *
 698	 * That is slightly stronger than required, but the proof
 699	 * that no problems will not occur is trivial, and the
 700	 * implementation is simply to verify.
 701	 *
 702	 * When allocating all pages normally this algorithm will run
 703	 * in O(N) time, but in the worst case it will run in O(N^2)
 704	 * time.   If the runtime is a problem the data structures can
 705	 * be fixed.
 706	 */
 707	struct page *page;
 708	unsigned long addr;
 709
 710	/*
 711	 * Walk through the list of destination pages, and see if I
 712	 * have a match.
 713	 */
 714	list_for_each_entry(page, &image->dest_pages, lru) {
 715		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 716		if (addr == destination) {
 717			list_del(&page->lru);
 718			return page;
 719		}
 720	}
 721	page = NULL;
 722	while (1) {
 723		kimage_entry_t *old;
 724
 725		/* Allocate a page, if we run out of memory give up */
 726		page = kimage_alloc_pages(gfp_mask, 0);
 727		if (!page)
 728			return NULL;
 729		/* If the page cannot be used file it away */
 730		if (page_to_boot_pfn(page) >
 731				(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
 732			list_add(&page->lru, &image->unusable_pages);
 733			continue;
 734		}
 735		addr = page_to_boot_pfn(page) << PAGE_SHIFT;
 736
 737		/* If it is the destination page we want use it */
 738		if (addr == destination)
 739			break;
 740
 741		/* If the page is not a destination page use it */
 742		if (!kimage_is_destination_range(image, addr,
 743						  addr + PAGE_SIZE))
 744			break;
 745
 746		/*
 747		 * I know that the page is someones destination page.
 748		 * See if there is already a source page for this
 749		 * destination page.  And if so swap the source pages.
 750		 */
 751		old = kimage_dst_used(image, addr);
 752		if (old) {
 753			/* If so move it */
 754			unsigned long old_addr;
 755			struct page *old_page;
 756
 757			old_addr = *old & PAGE_MASK;
 758			old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
 759			copy_highpage(page, old_page);
 760			*old = addr | (*old & ~PAGE_MASK);
 761
 762			/* The old page I have found cannot be a
 763			 * destination page, so return it if it's
 764			 * gfp_flags honor the ones passed in.
 765			 */
 766			if (!(gfp_mask & __GFP_HIGHMEM) &&
 767			    PageHighMem(old_page)) {
 768				kimage_free_pages(old_page);
 769				continue;
 770			}
 771			addr = old_addr;
 772			page = old_page;
 773			break;
 774		}
 775		/* Place the page on the destination list, to be used later */
 776		list_add(&page->lru, &image->dest_pages);
 777	}
 778
 779	return page;
 780}
 781
 782static int kimage_load_normal_segment(struct kimage *image,
 783					 struct kexec_segment *segment)
 784{
 785	unsigned long maddr;
 786	size_t ubytes, mbytes;
 787	int result;
 788	unsigned char __user *buf = NULL;
 789	unsigned char *kbuf = NULL;
 790
 791	result = 0;
 792	if (image->file_mode)
 793		kbuf = segment->kbuf;
 794	else
 795		buf = segment->buf;
 796	ubytes = segment->bufsz;
 797	mbytes = segment->memsz;
 798	maddr = segment->mem;
 799
 800	result = kimage_set_destination(image, maddr);
 801	if (result < 0)
 802		goto out;
 803
 804	while (mbytes) {
 805		struct page *page;
 806		char *ptr;
 807		size_t uchunk, mchunk;
 808
 809		page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
 810		if (!page) {
 811			result  = -ENOMEM;
 812			goto out;
 813		}
 814		result = kimage_add_page(image, page_to_boot_pfn(page)
 815								<< PAGE_SHIFT);
 816		if (result < 0)
 817			goto out;
 818
 819		ptr = kmap(page);
 820		/* Start with a clear page */
 821		clear_page(ptr);
 822		ptr += maddr & ~PAGE_MASK;
 823		mchunk = min_t(size_t, mbytes,
 824				PAGE_SIZE - (maddr & ~PAGE_MASK));
 825		uchunk = min(ubytes, mchunk);
 826
 827		/* For file based kexec, source pages are in kernel memory */
 828		if (image->file_mode)
 829			memcpy(ptr, kbuf, uchunk);
 830		else
 831			result = copy_from_user(ptr, buf, uchunk);
 832		kunmap(page);
 833		if (result) {
 834			result = -EFAULT;
 835			goto out;
 836		}
 837		ubytes -= uchunk;
 838		maddr  += mchunk;
 839		if (image->file_mode)
 840			kbuf += mchunk;
 841		else
 842			buf += mchunk;
 843		mbytes -= mchunk;
 844
 845		cond_resched();
 846	}
 847out:
 848	return result;
 849}
 850
 851static int kimage_load_crash_segment(struct kimage *image,
 852					struct kexec_segment *segment)
 853{
 854	/* For crash dumps kernels we simply copy the data from
 855	 * user space to it's destination.
 856	 * We do things a page at a time for the sake of kmap.
 857	 */
 858	unsigned long maddr;
 859	size_t ubytes, mbytes;
 860	int result;
 861	unsigned char __user *buf = NULL;
 862	unsigned char *kbuf = NULL;
 863
 864	result = 0;
 865	if (image->file_mode)
 866		kbuf = segment->kbuf;
 867	else
 868		buf = segment->buf;
 869	ubytes = segment->bufsz;
 870	mbytes = segment->memsz;
 871	maddr = segment->mem;
 872	while (mbytes) {
 873		struct page *page;
 874		char *ptr;
 875		size_t uchunk, mchunk;
 876
 877		page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
 878		if (!page) {
 879			result  = -ENOMEM;
 880			goto out;
 881		}
 882		arch_kexec_post_alloc_pages(page_address(page), 1, 0);
 883		ptr = kmap(page);
 884		ptr += maddr & ~PAGE_MASK;
 885		mchunk = min_t(size_t, mbytes,
 886				PAGE_SIZE - (maddr & ~PAGE_MASK));
 887		uchunk = min(ubytes, mchunk);
 888		if (mchunk > uchunk) {
 889			/* Zero the trailing part of the page */
 890			memset(ptr + uchunk, 0, mchunk - uchunk);
 891		}
 892
 893		/* For file based kexec, source pages are in kernel memory */
 894		if (image->file_mode)
 895			memcpy(ptr, kbuf, uchunk);
 896		else
 897			result = copy_from_user(ptr, buf, uchunk);
 898		kexec_flush_icache_page(page);
 899		kunmap(page);
 900		arch_kexec_pre_free_pages(page_address(page), 1);
 901		if (result) {
 902			result = -EFAULT;
 903			goto out;
 904		}
 905		ubytes -= uchunk;
 906		maddr  += mchunk;
 907		if (image->file_mode)
 908			kbuf += mchunk;
 909		else
 910			buf += mchunk;
 911		mbytes -= mchunk;
 912
 913		cond_resched();
 914	}
 915out:
 916	return result;
 917}
 918
 919int kimage_load_segment(struct kimage *image,
 920				struct kexec_segment *segment)
 921{
 922	int result = -ENOMEM;
 923
 924	switch (image->type) {
 925	case KEXEC_TYPE_DEFAULT:
 926		result = kimage_load_normal_segment(image, segment);
 927		break;
 928	case KEXEC_TYPE_CRASH:
 929		result = kimage_load_crash_segment(image, segment);
 930		break;
 931	}
 932
 933	return result;
 934}
 935
 936struct kimage *kexec_image;
 937struct kimage *kexec_crash_image;
 938int kexec_load_disabled;
 939
 940/*
 941 * No panic_cpu check version of crash_kexec().  This function is called
 942 * only when panic_cpu holds the current CPU number; this is the only CPU
 943 * which processes crash_kexec routines.
 944 */
 945void __noclone __crash_kexec(struct pt_regs *regs)
 946{
 947	/* Take the kexec_mutex here to prevent sys_kexec_load
 948	 * running on one cpu from replacing the crash kernel
 949	 * we are using after a panic on a different cpu.
 950	 *
 951	 * If the crash kernel was not located in a fixed area
 952	 * of memory the xchg(&kexec_crash_image) would be
 953	 * sufficient.  But since I reuse the memory...
 954	 */
 955	if (mutex_trylock(&kexec_mutex)) {
 956		if (kexec_crash_image) {
 957			struct pt_regs fixed_regs;
 958
 959			crash_setup_regs(&fixed_regs, regs);
 960			crash_save_vmcoreinfo();
 961			machine_crash_shutdown(&fixed_regs);
 962			machine_kexec(kexec_crash_image);
 963		}
 964		mutex_unlock(&kexec_mutex);
 965	}
 966}
 967STACK_FRAME_NON_STANDARD(__crash_kexec);
 968
 969void crash_kexec(struct pt_regs *regs)
 970{
 971	int old_cpu, this_cpu;
 972
 973	/*
 974	 * Only one CPU is allowed to execute the crash_kexec() code as with
 975	 * panic().  Otherwise parallel calls of panic() and crash_kexec()
 976	 * may stop each other.  To exclude them, we use panic_cpu here too.
 977	 */
 978	this_cpu = raw_smp_processor_id();
 979	old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
 980	if (old_cpu == PANIC_CPU_INVALID) {
 981		/* This is the 1st CPU which comes here, so go ahead. */
 982		printk_safe_flush_on_panic();
 983		__crash_kexec(regs);
 984
 985		/*
 986		 * Reset panic_cpu to allow another panic()/crash_kexec()
 987		 * call.
 988		 */
 989		atomic_set(&panic_cpu, PANIC_CPU_INVALID);
 990	}
 991}
 992
 993size_t crash_get_memory_size(void)
 994{
 995	size_t size = 0;
 996
 997	mutex_lock(&kexec_mutex);
 998	if (crashk_res.end != crashk_res.start)
 999		size = resource_size(&crashk_res);
1000	mutex_unlock(&kexec_mutex);
1001	return size;
1002}
1003
1004void __weak crash_free_reserved_phys_range(unsigned long begin,
1005					   unsigned long end)
1006{
1007	unsigned long addr;
1008
1009	for (addr = begin; addr < end; addr += PAGE_SIZE)
1010		free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
1011}
1012
1013int crash_shrink_memory(unsigned long new_size)
1014{
1015	int ret = 0;
1016	unsigned long start, end;
1017	unsigned long old_size;
1018	struct resource *ram_res;
1019
1020	mutex_lock(&kexec_mutex);
1021
1022	if (kexec_crash_image) {
1023		ret = -ENOENT;
1024		goto unlock;
1025	}
1026	start = crashk_res.start;
1027	end = crashk_res.end;
1028	old_size = (end == 0) ? 0 : end - start + 1;
1029	if (new_size >= old_size) {
1030		ret = (new_size == old_size) ? 0 : -EINVAL;
1031		goto unlock;
1032	}
1033
1034	ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
1035	if (!ram_res) {
1036		ret = -ENOMEM;
1037		goto unlock;
1038	}
1039
1040	start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
1041	end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
1042
1043	crash_free_reserved_phys_range(end, crashk_res.end);
1044
1045	if ((start == end) && (crashk_res.parent != NULL))
1046		release_resource(&crashk_res);
1047
1048	ram_res->start = end;
1049	ram_res->end = crashk_res.end;
1050	ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
1051	ram_res->name = "System RAM";
1052
1053	crashk_res.end = end - 1;
1054
1055	insert_resource(&iomem_resource, ram_res);
1056
1057unlock:
1058	mutex_unlock(&kexec_mutex);
1059	return ret;
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062void crash_save_cpu(struct pt_regs *regs, int cpu)
1063{
1064	struct elf_prstatus prstatus;
1065	u32 *buf;
1066
1067	if ((cpu < 0) || (cpu >= nr_cpu_ids))
1068		return;
1069
1070	/* Using ELF notes here is opportunistic.
1071	 * I need a well defined structure format
1072	 * for the data I pass, and I need tags
1073	 * on the data to indicate what information I have
1074	 * squirrelled away.  ELF notes happen to provide
1075	 * all of that, so there is no need to invent something new.
1076	 */
1077	buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1078	if (!buf)
1079		return;
1080	memset(&prstatus, 0, sizeof(prstatus));
1081	prstatus.common.pr_pid = current->pid;
1082	elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1083	buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1084			      &prstatus, sizeof(prstatus));
1085	final_note(buf);
1086}
1087
1088static int __init crash_notes_memory_init(void)
1089{
1090	/* Allocate memory for saving cpu registers. */
1091	size_t size, align;
1092
1093	/*
1094	 * crash_notes could be allocated across 2 vmalloc pages when percpu
1095	 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1096	 * pages are also on 2 continuous physical pages. In this case the
1097	 * 2nd part of crash_notes in 2nd page could be lost since only the
1098	 * starting address and size of crash_notes are exported through sysfs.
1099	 * Here round up the size of crash_notes to the nearest power of two
1100	 * and pass it to __alloc_percpu as align value. This can make sure
1101	 * crash_notes is allocated inside one physical page.
1102	 */
1103	size = sizeof(note_buf_t);
1104	align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1105
1106	/*
1107	 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1108	 * definitely will be in 2 pages with that.
1109	 */
1110	BUILD_BUG_ON(size > PAGE_SIZE);
1111
1112	crash_notes = __alloc_percpu(size, align);
1113	if (!crash_notes) {
1114		pr_warn("Memory allocation for saving cpu register states failed\n");
1115		return -ENOMEM;
1116	}
1117	return 0;
1118}
1119subsys_initcall(crash_notes_memory_init);
1120
1121
1122/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1123 * Move into place and start executing a preloaded standalone
1124 * executable.  If nothing was preloaded return an error.
1125 */
1126int kernel_kexec(void)
1127{
1128	int error = 0;
1129
1130	if (!mutex_trylock(&kexec_mutex))
1131		return -EBUSY;
1132	if (!kexec_image) {
1133		error = -EINVAL;
1134		goto Unlock;
1135	}
1136
1137#ifdef CONFIG_KEXEC_JUMP
1138	if (kexec_image->preserve_context) {
 
1139		pm_prepare_console();
1140		error = freeze_processes();
1141		if (error) {
1142			error = -EBUSY;
1143			goto Restore_console;
1144		}
1145		suspend_console();
1146		error = dpm_suspend_start(PMSG_FREEZE);
1147		if (error)
1148			goto Resume_console;
1149		/* At this point, dpm_suspend_start() has been called,
1150		 * but *not* dpm_suspend_end(). We *must* call
1151		 * dpm_suspend_end() now.  Otherwise, drivers for
1152		 * some devices (e.g. interrupt controllers) become
1153		 * desynchronized with the actual state of the
1154		 * hardware at resume time, and evil weirdness ensues.
1155		 */
1156		error = dpm_suspend_end(PMSG_FREEZE);
1157		if (error)
1158			goto Resume_devices;
1159		error = suspend_disable_secondary_cpus();
1160		if (error)
1161			goto Enable_cpus;
1162		local_irq_disable();
1163		error = syscore_suspend();
1164		if (error)
1165			goto Enable_irqs;
1166	} else
1167#endif
1168	{
1169		kexec_in_progress = true;
1170		kernel_restart_prepare("kexec reboot");
1171		migrate_to_reboot_cpu();
1172
1173		/*
1174		 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1175		 * no further code needs to use CPU hotplug (which is true in
1176		 * the reboot case). However, the kexec path depends on using
1177		 * CPU hotplug again; so re-enable it here.
1178		 */
1179		cpu_hotplug_enable();
1180		pr_notice("Starting new kernel\n");
1181		machine_shutdown();
1182	}
1183
1184	kmsg_dump(KMSG_DUMP_SHUTDOWN);
1185	machine_kexec(kexec_image);
1186
1187#ifdef CONFIG_KEXEC_JUMP
1188	if (kexec_image->preserve_context) {
1189		syscore_resume();
1190 Enable_irqs:
1191		local_irq_enable();
1192 Enable_cpus:
1193		suspend_enable_secondary_cpus();
1194		dpm_resume_start(PMSG_RESTORE);
1195 Resume_devices:
1196		dpm_resume_end(PMSG_RESTORE);
1197 Resume_console:
1198		resume_console();
1199		thaw_processes();
1200 Restore_console:
1201		pm_restore_console();
 
1202	}
1203#endif
1204
1205 Unlock:
1206	mutex_unlock(&kexec_mutex);
1207	return error;
1208}
1209
1210/*
1211 * Protection mechanism for crashkernel reserved memory after
1212 * the kdump kernel is loaded.
1213 *
1214 * Provide an empty default implementation here -- architecture
1215 * code may override this
1216 */
1217void __weak arch_kexec_protect_crashkres(void)
1218{}
1219
1220void __weak arch_kexec_unprotect_crashkres(void)
1221{}