Loading...
1/*
2 * linux/kernel/irq/manage.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006 Thomas Gleixner
6 *
7 * This file contains driver APIs to the irq subsystem.
8 */
9
10#define pr_fmt(fmt) "genirq: " fmt
11
12#include <linux/irq.h>
13#include <linux/kthread.h>
14#include <linux/module.h>
15#include <linux/random.h>
16#include <linux/interrupt.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/task_work.h>
21
22#include "internals.h"
23
24#ifdef CONFIG_IRQ_FORCED_THREADING
25__read_mostly bool force_irqthreads;
26
27static int __init setup_forced_irqthreads(char *arg)
28{
29 force_irqthreads = true;
30 return 0;
31}
32early_param("threadirqs", setup_forced_irqthreads);
33#endif
34
35static void __synchronize_hardirq(struct irq_desc *desc)
36{
37 bool inprogress;
38
39 do {
40 unsigned long flags;
41
42 /*
43 * Wait until we're out of the critical section. This might
44 * give the wrong answer due to the lack of memory barriers.
45 */
46 while (irqd_irq_inprogress(&desc->irq_data))
47 cpu_relax();
48
49 /* Ok, that indicated we're done: double-check carefully. */
50 raw_spin_lock_irqsave(&desc->lock, flags);
51 inprogress = irqd_irq_inprogress(&desc->irq_data);
52 raw_spin_unlock_irqrestore(&desc->lock, flags);
53
54 /* Oops, that failed? */
55 } while (inprogress);
56}
57
58/**
59 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
60 * @irq: interrupt number to wait for
61 *
62 * This function waits for any pending hard IRQ handlers for this
63 * interrupt to complete before returning. If you use this
64 * function while holding a resource the IRQ handler may need you
65 * will deadlock. It does not take associated threaded handlers
66 * into account.
67 *
68 * Do not use this for shutdown scenarios where you must be sure
69 * that all parts (hardirq and threaded handler) have completed.
70 *
71 * Returns: false if a threaded handler is active.
72 *
73 * This function may be called - with care - from IRQ context.
74 */
75bool synchronize_hardirq(unsigned int irq)
76{
77 struct irq_desc *desc = irq_to_desc(irq);
78
79 if (desc) {
80 __synchronize_hardirq(desc);
81 return !atomic_read(&desc->threads_active);
82 }
83
84 return true;
85}
86EXPORT_SYMBOL(synchronize_hardirq);
87
88/**
89 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
90 * @irq: interrupt number to wait for
91 *
92 * This function waits for any pending IRQ handlers for this interrupt
93 * to complete before returning. If you use this function while
94 * holding a resource the IRQ handler may need you will deadlock.
95 *
96 * This function may be called - with care - from IRQ context.
97 */
98void synchronize_irq(unsigned int irq)
99{
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc);
104 /*
105 * We made sure that no hardirq handler is
106 * running. Now verify that no threaded handlers are
107 * active.
108 */
109 wait_event(desc->wait_for_threads,
110 !atomic_read(&desc->threads_active));
111 }
112}
113EXPORT_SYMBOL(synchronize_irq);
114
115#ifdef CONFIG_SMP
116cpumask_var_t irq_default_affinity;
117
118static bool __irq_can_set_affinity(struct irq_desc *desc)
119{
120 if (!desc || !irqd_can_balance(&desc->irq_data) ||
121 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
122 return false;
123 return true;
124}
125
126/**
127 * irq_can_set_affinity - Check if the affinity of a given irq can be set
128 * @irq: Interrupt to check
129 *
130 */
131int irq_can_set_affinity(unsigned int irq)
132{
133 return __irq_can_set_affinity(irq_to_desc(irq));
134}
135
136/**
137 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
138 * @irq: Interrupt to check
139 *
140 * Like irq_can_set_affinity() above, but additionally checks for the
141 * AFFINITY_MANAGED flag.
142 */
143bool irq_can_set_affinity_usr(unsigned int irq)
144{
145 struct irq_desc *desc = irq_to_desc(irq);
146
147 return __irq_can_set_affinity(desc) &&
148 !irqd_affinity_is_managed(&desc->irq_data);
149}
150
151/**
152 * irq_set_thread_affinity - Notify irq threads to adjust affinity
153 * @desc: irq descriptor which has affitnity changed
154 *
155 * We just set IRQTF_AFFINITY and delegate the affinity setting
156 * to the interrupt thread itself. We can not call
157 * set_cpus_allowed_ptr() here as we hold desc->lock and this
158 * code can be called from hard interrupt context.
159 */
160void irq_set_thread_affinity(struct irq_desc *desc)
161{
162 struct irqaction *action;
163
164 for_each_action_of_desc(desc, action)
165 if (action->thread)
166 set_bit(IRQTF_AFFINITY, &action->thread_flags);
167}
168
169#ifdef CONFIG_GENERIC_PENDING_IRQ
170static inline bool irq_can_move_pcntxt(struct irq_data *data)
171{
172 return irqd_can_move_in_process_context(data);
173}
174static inline bool irq_move_pending(struct irq_data *data)
175{
176 return irqd_is_setaffinity_pending(data);
177}
178static inline void
179irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
180{
181 cpumask_copy(desc->pending_mask, mask);
182}
183static inline void
184irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
185{
186 cpumask_copy(mask, desc->pending_mask);
187}
188#else
189static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
190static inline bool irq_move_pending(struct irq_data *data) { return false; }
191static inline void
192irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
193static inline void
194irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
195#endif
196
197int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
198 bool force)
199{
200 struct irq_desc *desc = irq_data_to_desc(data);
201 struct irq_chip *chip = irq_data_get_irq_chip(data);
202 int ret;
203
204 ret = chip->irq_set_affinity(data, mask, force);
205 switch (ret) {
206 case IRQ_SET_MASK_OK:
207 case IRQ_SET_MASK_OK_DONE:
208 cpumask_copy(desc->irq_common_data.affinity, mask);
209 case IRQ_SET_MASK_OK_NOCOPY:
210 irq_set_thread_affinity(desc);
211 ret = 0;
212 }
213
214 return ret;
215}
216
217int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
218 bool force)
219{
220 struct irq_chip *chip = irq_data_get_irq_chip(data);
221 struct irq_desc *desc = irq_data_to_desc(data);
222 int ret = 0;
223
224 if (!chip || !chip->irq_set_affinity)
225 return -EINVAL;
226
227 if (irq_can_move_pcntxt(data)) {
228 ret = irq_do_set_affinity(data, mask, force);
229 } else {
230 irqd_set_move_pending(data);
231 irq_copy_pending(desc, mask);
232 }
233
234 if (desc->affinity_notify) {
235 kref_get(&desc->affinity_notify->kref);
236 schedule_work(&desc->affinity_notify->work);
237 }
238 irqd_set(data, IRQD_AFFINITY_SET);
239
240 return ret;
241}
242
243int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
244{
245 struct irq_desc *desc = irq_to_desc(irq);
246 unsigned long flags;
247 int ret;
248
249 if (!desc)
250 return -EINVAL;
251
252 raw_spin_lock_irqsave(&desc->lock, flags);
253 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
254 raw_spin_unlock_irqrestore(&desc->lock, flags);
255 return ret;
256}
257
258int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
259{
260 unsigned long flags;
261 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
262
263 if (!desc)
264 return -EINVAL;
265 desc->affinity_hint = m;
266 irq_put_desc_unlock(desc, flags);
267 /* set the initial affinity to prevent every interrupt being on CPU0 */
268 if (m)
269 __irq_set_affinity(irq, m, false);
270 return 0;
271}
272EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
273
274static void irq_affinity_notify(struct work_struct *work)
275{
276 struct irq_affinity_notify *notify =
277 container_of(work, struct irq_affinity_notify, work);
278 struct irq_desc *desc = irq_to_desc(notify->irq);
279 cpumask_var_t cpumask;
280 unsigned long flags;
281
282 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
283 goto out;
284
285 raw_spin_lock_irqsave(&desc->lock, flags);
286 if (irq_move_pending(&desc->irq_data))
287 irq_get_pending(cpumask, desc);
288 else
289 cpumask_copy(cpumask, desc->irq_common_data.affinity);
290 raw_spin_unlock_irqrestore(&desc->lock, flags);
291
292 notify->notify(notify, cpumask);
293
294 free_cpumask_var(cpumask);
295out:
296 kref_put(¬ify->kref, notify->release);
297}
298
299/**
300 * irq_set_affinity_notifier - control notification of IRQ affinity changes
301 * @irq: Interrupt for which to enable/disable notification
302 * @notify: Context for notification, or %NULL to disable
303 * notification. Function pointers must be initialised;
304 * the other fields will be initialised by this function.
305 *
306 * Must be called in process context. Notification may only be enabled
307 * after the IRQ is allocated and must be disabled before the IRQ is
308 * freed using free_irq().
309 */
310int
311irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
312{
313 struct irq_desc *desc = irq_to_desc(irq);
314 struct irq_affinity_notify *old_notify;
315 unsigned long flags;
316
317 /* The release function is promised process context */
318 might_sleep();
319
320 if (!desc)
321 return -EINVAL;
322
323 /* Complete initialisation of *notify */
324 if (notify) {
325 notify->irq = irq;
326 kref_init(¬ify->kref);
327 INIT_WORK(¬ify->work, irq_affinity_notify);
328 }
329
330 raw_spin_lock_irqsave(&desc->lock, flags);
331 old_notify = desc->affinity_notify;
332 desc->affinity_notify = notify;
333 raw_spin_unlock_irqrestore(&desc->lock, flags);
334
335 if (old_notify)
336 kref_put(&old_notify->kref, old_notify->release);
337
338 return 0;
339}
340EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
341
342#ifndef CONFIG_AUTO_IRQ_AFFINITY
343/*
344 * Generic version of the affinity autoselector.
345 */
346static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
347{
348 struct cpumask *set = irq_default_affinity;
349 int node = irq_desc_get_node(desc);
350
351 /* Excludes PER_CPU and NO_BALANCE interrupts */
352 if (!__irq_can_set_affinity(desc))
353 return 0;
354
355 /*
356 * Preserve the managed affinity setting and an userspace affinity
357 * setup, but make sure that one of the targets is online.
358 */
359 if (irqd_affinity_is_managed(&desc->irq_data) ||
360 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
361 if (cpumask_intersects(desc->irq_common_data.affinity,
362 cpu_online_mask))
363 set = desc->irq_common_data.affinity;
364 else
365 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
366 }
367
368 cpumask_and(mask, cpu_online_mask, set);
369 if (node != NUMA_NO_NODE) {
370 const struct cpumask *nodemask = cpumask_of_node(node);
371
372 /* make sure at least one of the cpus in nodemask is online */
373 if (cpumask_intersects(mask, nodemask))
374 cpumask_and(mask, mask, nodemask);
375 }
376 irq_do_set_affinity(&desc->irq_data, mask, false);
377 return 0;
378}
379#else
380/* Wrapper for ALPHA specific affinity selector magic */
381static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
382{
383 return irq_select_affinity(irq_desc_get_irq(d));
384}
385#endif
386
387/*
388 * Called when affinity is set via /proc/irq
389 */
390int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
391{
392 struct irq_desc *desc = irq_to_desc(irq);
393 unsigned long flags;
394 int ret;
395
396 raw_spin_lock_irqsave(&desc->lock, flags);
397 ret = setup_affinity(desc, mask);
398 raw_spin_unlock_irqrestore(&desc->lock, flags);
399 return ret;
400}
401
402#else
403static inline int
404setup_affinity(struct irq_desc *desc, struct cpumask *mask)
405{
406 return 0;
407}
408#endif
409
410/**
411 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
412 * @irq: interrupt number to set affinity
413 * @vcpu_info: vCPU specific data
414 *
415 * This function uses the vCPU specific data to set the vCPU
416 * affinity for an irq. The vCPU specific data is passed from
417 * outside, such as KVM. One example code path is as below:
418 * KVM -> IOMMU -> irq_set_vcpu_affinity().
419 */
420int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
421{
422 unsigned long flags;
423 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
424 struct irq_data *data;
425 struct irq_chip *chip;
426 int ret = -ENOSYS;
427
428 if (!desc)
429 return -EINVAL;
430
431 data = irq_desc_get_irq_data(desc);
432 chip = irq_data_get_irq_chip(data);
433 if (chip && chip->irq_set_vcpu_affinity)
434 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
435 irq_put_desc_unlock(desc, flags);
436
437 return ret;
438}
439EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
440
441void __disable_irq(struct irq_desc *desc)
442{
443 if (!desc->depth++)
444 irq_disable(desc);
445}
446
447static int __disable_irq_nosync(unsigned int irq)
448{
449 unsigned long flags;
450 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
451
452 if (!desc)
453 return -EINVAL;
454 __disable_irq(desc);
455 irq_put_desc_busunlock(desc, flags);
456 return 0;
457}
458
459/**
460 * disable_irq_nosync - disable an irq without waiting
461 * @irq: Interrupt to disable
462 *
463 * Disable the selected interrupt line. Disables and Enables are
464 * nested.
465 * Unlike disable_irq(), this function does not ensure existing
466 * instances of the IRQ handler have completed before returning.
467 *
468 * This function may be called from IRQ context.
469 */
470void disable_irq_nosync(unsigned int irq)
471{
472 __disable_irq_nosync(irq);
473}
474EXPORT_SYMBOL(disable_irq_nosync);
475
476/**
477 * disable_irq - disable an irq and wait for completion
478 * @irq: Interrupt to disable
479 *
480 * Disable the selected interrupt line. Enables and Disables are
481 * nested.
482 * This function waits for any pending IRQ handlers for this interrupt
483 * to complete before returning. If you use this function while
484 * holding a resource the IRQ handler may need you will deadlock.
485 *
486 * This function may be called - with care - from IRQ context.
487 */
488void disable_irq(unsigned int irq)
489{
490 if (!__disable_irq_nosync(irq))
491 synchronize_irq(irq);
492}
493EXPORT_SYMBOL(disable_irq);
494
495/**
496 * disable_hardirq - disables an irq and waits for hardirq completion
497 * @irq: Interrupt to disable
498 *
499 * Disable the selected interrupt line. Enables and Disables are
500 * nested.
501 * This function waits for any pending hard IRQ handlers for this
502 * interrupt to complete before returning. If you use this function while
503 * holding a resource the hard IRQ handler may need you will deadlock.
504 *
505 * When used to optimistically disable an interrupt from atomic context
506 * the return value must be checked.
507 *
508 * Returns: false if a threaded handler is active.
509 *
510 * This function may be called - with care - from IRQ context.
511 */
512bool disable_hardirq(unsigned int irq)
513{
514 if (!__disable_irq_nosync(irq))
515 return synchronize_hardirq(irq);
516
517 return false;
518}
519EXPORT_SYMBOL_GPL(disable_hardirq);
520
521void __enable_irq(struct irq_desc *desc)
522{
523 switch (desc->depth) {
524 case 0:
525 err_out:
526 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
527 irq_desc_get_irq(desc));
528 break;
529 case 1: {
530 if (desc->istate & IRQS_SUSPENDED)
531 goto err_out;
532 /* Prevent probing on this irq: */
533 irq_settings_set_noprobe(desc);
534 irq_enable(desc);
535 check_irq_resend(desc);
536 /* fall-through */
537 }
538 default:
539 desc->depth--;
540 }
541}
542
543/**
544 * enable_irq - enable handling of an irq
545 * @irq: Interrupt to enable
546 *
547 * Undoes the effect of one call to disable_irq(). If this
548 * matches the last disable, processing of interrupts on this
549 * IRQ line is re-enabled.
550 *
551 * This function may be called from IRQ context only when
552 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
553 */
554void enable_irq(unsigned int irq)
555{
556 unsigned long flags;
557 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
558
559 if (!desc)
560 return;
561 if (WARN(!desc->irq_data.chip,
562 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
563 goto out;
564
565 __enable_irq(desc);
566out:
567 irq_put_desc_busunlock(desc, flags);
568}
569EXPORT_SYMBOL(enable_irq);
570
571static int set_irq_wake_real(unsigned int irq, unsigned int on)
572{
573 struct irq_desc *desc = irq_to_desc(irq);
574 int ret = -ENXIO;
575
576 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
577 return 0;
578
579 if (desc->irq_data.chip->irq_set_wake)
580 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
581
582 return ret;
583}
584
585/**
586 * irq_set_irq_wake - control irq power management wakeup
587 * @irq: interrupt to control
588 * @on: enable/disable power management wakeup
589 *
590 * Enable/disable power management wakeup mode, which is
591 * disabled by default. Enables and disables must match,
592 * just as they match for non-wakeup mode support.
593 *
594 * Wakeup mode lets this IRQ wake the system from sleep
595 * states like "suspend to RAM".
596 */
597int irq_set_irq_wake(unsigned int irq, unsigned int on)
598{
599 unsigned long flags;
600 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
601 int ret = 0;
602
603 if (!desc)
604 return -EINVAL;
605
606 /* wakeup-capable irqs can be shared between drivers that
607 * don't need to have the same sleep mode behaviors.
608 */
609 if (on) {
610 if (desc->wake_depth++ == 0) {
611 ret = set_irq_wake_real(irq, on);
612 if (ret)
613 desc->wake_depth = 0;
614 else
615 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
616 }
617 } else {
618 if (desc->wake_depth == 0) {
619 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
620 } else if (--desc->wake_depth == 0) {
621 ret = set_irq_wake_real(irq, on);
622 if (ret)
623 desc->wake_depth = 1;
624 else
625 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
626 }
627 }
628 irq_put_desc_busunlock(desc, flags);
629 return ret;
630}
631EXPORT_SYMBOL(irq_set_irq_wake);
632
633/*
634 * Internal function that tells the architecture code whether a
635 * particular irq has been exclusively allocated or is available
636 * for driver use.
637 */
638int can_request_irq(unsigned int irq, unsigned long irqflags)
639{
640 unsigned long flags;
641 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
642 int canrequest = 0;
643
644 if (!desc)
645 return 0;
646
647 if (irq_settings_can_request(desc)) {
648 if (!desc->action ||
649 irqflags & desc->action->flags & IRQF_SHARED)
650 canrequest = 1;
651 }
652 irq_put_desc_unlock(desc, flags);
653 return canrequest;
654}
655
656int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
657{
658 struct irq_chip *chip = desc->irq_data.chip;
659 int ret, unmask = 0;
660
661 if (!chip || !chip->irq_set_type) {
662 /*
663 * IRQF_TRIGGER_* but the PIC does not support multiple
664 * flow-types?
665 */
666 pr_debug("No set_type function for IRQ %d (%s)\n",
667 irq_desc_get_irq(desc),
668 chip ? (chip->name ? : "unknown") : "unknown");
669 return 0;
670 }
671
672 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
673 if (!irqd_irq_masked(&desc->irq_data))
674 mask_irq(desc);
675 if (!irqd_irq_disabled(&desc->irq_data))
676 unmask = 1;
677 }
678
679 /* Mask all flags except trigger mode */
680 flags &= IRQ_TYPE_SENSE_MASK;
681 ret = chip->irq_set_type(&desc->irq_data, flags);
682
683 switch (ret) {
684 case IRQ_SET_MASK_OK:
685 case IRQ_SET_MASK_OK_DONE:
686 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
687 irqd_set(&desc->irq_data, flags);
688
689 case IRQ_SET_MASK_OK_NOCOPY:
690 flags = irqd_get_trigger_type(&desc->irq_data);
691 irq_settings_set_trigger_mask(desc, flags);
692 irqd_clear(&desc->irq_data, IRQD_LEVEL);
693 irq_settings_clr_level(desc);
694 if (flags & IRQ_TYPE_LEVEL_MASK) {
695 irq_settings_set_level(desc);
696 irqd_set(&desc->irq_data, IRQD_LEVEL);
697 }
698
699 ret = 0;
700 break;
701 default:
702 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
703 flags, irq_desc_get_irq(desc), chip->irq_set_type);
704 }
705 if (unmask)
706 unmask_irq(desc);
707 return ret;
708}
709
710#ifdef CONFIG_HARDIRQS_SW_RESEND
711int irq_set_parent(int irq, int parent_irq)
712{
713 unsigned long flags;
714 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
715
716 if (!desc)
717 return -EINVAL;
718
719 desc->parent_irq = parent_irq;
720
721 irq_put_desc_unlock(desc, flags);
722 return 0;
723}
724EXPORT_SYMBOL_GPL(irq_set_parent);
725#endif
726
727/*
728 * Default primary interrupt handler for threaded interrupts. Is
729 * assigned as primary handler when request_threaded_irq is called
730 * with handler == NULL. Useful for oneshot interrupts.
731 */
732static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
733{
734 return IRQ_WAKE_THREAD;
735}
736
737/*
738 * Primary handler for nested threaded interrupts. Should never be
739 * called.
740 */
741static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
742{
743 WARN(1, "Primary handler called for nested irq %d\n", irq);
744 return IRQ_NONE;
745}
746
747static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
748{
749 WARN(1, "Secondary action handler called for irq %d\n", irq);
750 return IRQ_NONE;
751}
752
753static int irq_wait_for_interrupt(struct irqaction *action)
754{
755 set_current_state(TASK_INTERRUPTIBLE);
756
757 while (!kthread_should_stop()) {
758
759 if (test_and_clear_bit(IRQTF_RUNTHREAD,
760 &action->thread_flags)) {
761 __set_current_state(TASK_RUNNING);
762 return 0;
763 }
764 schedule();
765 set_current_state(TASK_INTERRUPTIBLE);
766 }
767 __set_current_state(TASK_RUNNING);
768 return -1;
769}
770
771/*
772 * Oneshot interrupts keep the irq line masked until the threaded
773 * handler finished. unmask if the interrupt has not been disabled and
774 * is marked MASKED.
775 */
776static void irq_finalize_oneshot(struct irq_desc *desc,
777 struct irqaction *action)
778{
779 if (!(desc->istate & IRQS_ONESHOT) ||
780 action->handler == irq_forced_secondary_handler)
781 return;
782again:
783 chip_bus_lock(desc);
784 raw_spin_lock_irq(&desc->lock);
785
786 /*
787 * Implausible though it may be we need to protect us against
788 * the following scenario:
789 *
790 * The thread is faster done than the hard interrupt handler
791 * on the other CPU. If we unmask the irq line then the
792 * interrupt can come in again and masks the line, leaves due
793 * to IRQS_INPROGRESS and the irq line is masked forever.
794 *
795 * This also serializes the state of shared oneshot handlers
796 * versus "desc->threads_onehsot |= action->thread_mask;" in
797 * irq_wake_thread(). See the comment there which explains the
798 * serialization.
799 */
800 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
801 raw_spin_unlock_irq(&desc->lock);
802 chip_bus_sync_unlock(desc);
803 cpu_relax();
804 goto again;
805 }
806
807 /*
808 * Now check again, whether the thread should run. Otherwise
809 * we would clear the threads_oneshot bit of this thread which
810 * was just set.
811 */
812 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
813 goto out_unlock;
814
815 desc->threads_oneshot &= ~action->thread_mask;
816
817 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
818 irqd_irq_masked(&desc->irq_data))
819 unmask_threaded_irq(desc);
820
821out_unlock:
822 raw_spin_unlock_irq(&desc->lock);
823 chip_bus_sync_unlock(desc);
824}
825
826#ifdef CONFIG_SMP
827/*
828 * Check whether we need to change the affinity of the interrupt thread.
829 */
830static void
831irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
832{
833 cpumask_var_t mask;
834 bool valid = true;
835
836 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
837 return;
838
839 /*
840 * In case we are out of memory we set IRQTF_AFFINITY again and
841 * try again next time
842 */
843 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
844 set_bit(IRQTF_AFFINITY, &action->thread_flags);
845 return;
846 }
847
848 raw_spin_lock_irq(&desc->lock);
849 /*
850 * This code is triggered unconditionally. Check the affinity
851 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
852 */
853 if (desc->irq_common_data.affinity)
854 cpumask_copy(mask, desc->irq_common_data.affinity);
855 else
856 valid = false;
857 raw_spin_unlock_irq(&desc->lock);
858
859 if (valid)
860 set_cpus_allowed_ptr(current, mask);
861 free_cpumask_var(mask);
862}
863#else
864static inline void
865irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
866#endif
867
868/*
869 * Interrupts which are not explicitely requested as threaded
870 * interrupts rely on the implicit bh/preempt disable of the hard irq
871 * context. So we need to disable bh here to avoid deadlocks and other
872 * side effects.
873 */
874static irqreturn_t
875irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
876{
877 irqreturn_t ret;
878
879 local_bh_disable();
880 ret = action->thread_fn(action->irq, action->dev_id);
881 irq_finalize_oneshot(desc, action);
882 local_bh_enable();
883 return ret;
884}
885
886/*
887 * Interrupts explicitly requested as threaded interrupts want to be
888 * preemtible - many of them need to sleep and wait for slow busses to
889 * complete.
890 */
891static irqreturn_t irq_thread_fn(struct irq_desc *desc,
892 struct irqaction *action)
893{
894 irqreturn_t ret;
895
896 ret = action->thread_fn(action->irq, action->dev_id);
897 irq_finalize_oneshot(desc, action);
898 return ret;
899}
900
901static void wake_threads_waitq(struct irq_desc *desc)
902{
903 if (atomic_dec_and_test(&desc->threads_active))
904 wake_up(&desc->wait_for_threads);
905}
906
907static void irq_thread_dtor(struct callback_head *unused)
908{
909 struct task_struct *tsk = current;
910 struct irq_desc *desc;
911 struct irqaction *action;
912
913 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
914 return;
915
916 action = kthread_data(tsk);
917
918 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
919 tsk->comm, tsk->pid, action->irq);
920
921
922 desc = irq_to_desc(action->irq);
923 /*
924 * If IRQTF_RUNTHREAD is set, we need to decrement
925 * desc->threads_active and wake possible waiters.
926 */
927 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
928 wake_threads_waitq(desc);
929
930 /* Prevent a stale desc->threads_oneshot */
931 irq_finalize_oneshot(desc, action);
932}
933
934static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
935{
936 struct irqaction *secondary = action->secondary;
937
938 if (WARN_ON_ONCE(!secondary))
939 return;
940
941 raw_spin_lock_irq(&desc->lock);
942 __irq_wake_thread(desc, secondary);
943 raw_spin_unlock_irq(&desc->lock);
944}
945
946/*
947 * Interrupt handler thread
948 */
949static int irq_thread(void *data)
950{
951 struct callback_head on_exit_work;
952 struct irqaction *action = data;
953 struct irq_desc *desc = irq_to_desc(action->irq);
954 irqreturn_t (*handler_fn)(struct irq_desc *desc,
955 struct irqaction *action);
956
957 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
958 &action->thread_flags))
959 handler_fn = irq_forced_thread_fn;
960 else
961 handler_fn = irq_thread_fn;
962
963 init_task_work(&on_exit_work, irq_thread_dtor);
964 task_work_add(current, &on_exit_work, false);
965
966 irq_thread_check_affinity(desc, action);
967
968 while (!irq_wait_for_interrupt(action)) {
969 irqreturn_t action_ret;
970
971 irq_thread_check_affinity(desc, action);
972
973 action_ret = handler_fn(desc, action);
974 if (action_ret == IRQ_HANDLED)
975 atomic_inc(&desc->threads_handled);
976 if (action_ret == IRQ_WAKE_THREAD)
977 irq_wake_secondary(desc, action);
978
979 wake_threads_waitq(desc);
980 }
981
982 /*
983 * This is the regular exit path. __free_irq() is stopping the
984 * thread via kthread_stop() after calling
985 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
986 * oneshot mask bit can be set. We cannot verify that as we
987 * cannot touch the oneshot mask at this point anymore as
988 * __setup_irq() might have given out currents thread_mask
989 * again.
990 */
991 task_work_cancel(current, irq_thread_dtor);
992 return 0;
993}
994
995/**
996 * irq_wake_thread - wake the irq thread for the action identified by dev_id
997 * @irq: Interrupt line
998 * @dev_id: Device identity for which the thread should be woken
999 *
1000 */
1001void irq_wake_thread(unsigned int irq, void *dev_id)
1002{
1003 struct irq_desc *desc = irq_to_desc(irq);
1004 struct irqaction *action;
1005 unsigned long flags;
1006
1007 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1008 return;
1009
1010 raw_spin_lock_irqsave(&desc->lock, flags);
1011 for_each_action_of_desc(desc, action) {
1012 if (action->dev_id == dev_id) {
1013 if (action->thread)
1014 __irq_wake_thread(desc, action);
1015 break;
1016 }
1017 }
1018 raw_spin_unlock_irqrestore(&desc->lock, flags);
1019}
1020EXPORT_SYMBOL_GPL(irq_wake_thread);
1021
1022static int irq_setup_forced_threading(struct irqaction *new)
1023{
1024 if (!force_irqthreads)
1025 return 0;
1026 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1027 return 0;
1028
1029 new->flags |= IRQF_ONESHOT;
1030
1031 /*
1032 * Handle the case where we have a real primary handler and a
1033 * thread handler. We force thread them as well by creating a
1034 * secondary action.
1035 */
1036 if (new->handler != irq_default_primary_handler && new->thread_fn) {
1037 /* Allocate the secondary action */
1038 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1039 if (!new->secondary)
1040 return -ENOMEM;
1041 new->secondary->handler = irq_forced_secondary_handler;
1042 new->secondary->thread_fn = new->thread_fn;
1043 new->secondary->dev_id = new->dev_id;
1044 new->secondary->irq = new->irq;
1045 new->secondary->name = new->name;
1046 }
1047 /* Deal with the primary handler */
1048 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1049 new->thread_fn = new->handler;
1050 new->handler = irq_default_primary_handler;
1051 return 0;
1052}
1053
1054static int irq_request_resources(struct irq_desc *desc)
1055{
1056 struct irq_data *d = &desc->irq_data;
1057 struct irq_chip *c = d->chip;
1058
1059 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1060}
1061
1062static void irq_release_resources(struct irq_desc *desc)
1063{
1064 struct irq_data *d = &desc->irq_data;
1065 struct irq_chip *c = d->chip;
1066
1067 if (c->irq_release_resources)
1068 c->irq_release_resources(d);
1069}
1070
1071static int
1072setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1073{
1074 struct task_struct *t;
1075 struct sched_param param = {
1076 .sched_priority = MAX_USER_RT_PRIO/2,
1077 };
1078
1079 if (!secondary) {
1080 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1081 new->name);
1082 } else {
1083 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1084 new->name);
1085 param.sched_priority -= 1;
1086 }
1087
1088 if (IS_ERR(t))
1089 return PTR_ERR(t);
1090
1091 sched_setscheduler_nocheck(t, SCHED_FIFO, ¶m);
1092
1093 /*
1094 * We keep the reference to the task struct even if
1095 * the thread dies to avoid that the interrupt code
1096 * references an already freed task_struct.
1097 */
1098 get_task_struct(t);
1099 new->thread = t;
1100 /*
1101 * Tell the thread to set its affinity. This is
1102 * important for shared interrupt handlers as we do
1103 * not invoke setup_affinity() for the secondary
1104 * handlers as everything is already set up. Even for
1105 * interrupts marked with IRQF_NO_BALANCE this is
1106 * correct as we want the thread to move to the cpu(s)
1107 * on which the requesting code placed the interrupt.
1108 */
1109 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1110 return 0;
1111}
1112
1113/*
1114 * Internal function to register an irqaction - typically used to
1115 * allocate special interrupts that are part of the architecture.
1116 */
1117static int
1118__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1119{
1120 struct irqaction *old, **old_ptr;
1121 unsigned long flags, thread_mask = 0;
1122 int ret, nested, shared = 0;
1123 cpumask_var_t mask;
1124
1125 if (!desc)
1126 return -EINVAL;
1127
1128 if (desc->irq_data.chip == &no_irq_chip)
1129 return -ENOSYS;
1130 if (!try_module_get(desc->owner))
1131 return -ENODEV;
1132
1133 new->irq = irq;
1134
1135 /*
1136 * If the trigger type is not specified by the caller,
1137 * then use the default for this interrupt.
1138 */
1139 if (!(new->flags & IRQF_TRIGGER_MASK))
1140 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1141
1142 /*
1143 * Check whether the interrupt nests into another interrupt
1144 * thread.
1145 */
1146 nested = irq_settings_is_nested_thread(desc);
1147 if (nested) {
1148 if (!new->thread_fn) {
1149 ret = -EINVAL;
1150 goto out_mput;
1151 }
1152 /*
1153 * Replace the primary handler which was provided from
1154 * the driver for non nested interrupt handling by the
1155 * dummy function which warns when called.
1156 */
1157 new->handler = irq_nested_primary_handler;
1158 } else {
1159 if (irq_settings_can_thread(desc)) {
1160 ret = irq_setup_forced_threading(new);
1161 if (ret)
1162 goto out_mput;
1163 }
1164 }
1165
1166 /*
1167 * Create a handler thread when a thread function is supplied
1168 * and the interrupt does not nest into another interrupt
1169 * thread.
1170 */
1171 if (new->thread_fn && !nested) {
1172 ret = setup_irq_thread(new, irq, false);
1173 if (ret)
1174 goto out_mput;
1175 if (new->secondary) {
1176 ret = setup_irq_thread(new->secondary, irq, true);
1177 if (ret)
1178 goto out_thread;
1179 }
1180 }
1181
1182 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1183 ret = -ENOMEM;
1184 goto out_thread;
1185 }
1186
1187 /*
1188 * Drivers are often written to work w/o knowledge about the
1189 * underlying irq chip implementation, so a request for a
1190 * threaded irq without a primary hard irq context handler
1191 * requires the ONESHOT flag to be set. Some irq chips like
1192 * MSI based interrupts are per se one shot safe. Check the
1193 * chip flags, so we can avoid the unmask dance at the end of
1194 * the threaded handler for those.
1195 */
1196 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1197 new->flags &= ~IRQF_ONESHOT;
1198
1199 /*
1200 * The following block of code has to be executed atomically
1201 */
1202 raw_spin_lock_irqsave(&desc->lock, flags);
1203 old_ptr = &desc->action;
1204 old = *old_ptr;
1205 if (old) {
1206 /*
1207 * Can't share interrupts unless both agree to and are
1208 * the same type (level, edge, polarity). So both flag
1209 * fields must have IRQF_SHARED set and the bits which
1210 * set the trigger type must match. Also all must
1211 * agree on ONESHOT.
1212 */
1213 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1214 ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1215 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1216 goto mismatch;
1217
1218 /* All handlers must agree on per-cpuness */
1219 if ((old->flags & IRQF_PERCPU) !=
1220 (new->flags & IRQF_PERCPU))
1221 goto mismatch;
1222
1223 /* add new interrupt at end of irq queue */
1224 do {
1225 /*
1226 * Or all existing action->thread_mask bits,
1227 * so we can find the next zero bit for this
1228 * new action.
1229 */
1230 thread_mask |= old->thread_mask;
1231 old_ptr = &old->next;
1232 old = *old_ptr;
1233 } while (old);
1234 shared = 1;
1235 }
1236
1237 /*
1238 * Setup the thread mask for this irqaction for ONESHOT. For
1239 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1240 * conditional in irq_wake_thread().
1241 */
1242 if (new->flags & IRQF_ONESHOT) {
1243 /*
1244 * Unlikely to have 32 resp 64 irqs sharing one line,
1245 * but who knows.
1246 */
1247 if (thread_mask == ~0UL) {
1248 ret = -EBUSY;
1249 goto out_mask;
1250 }
1251 /*
1252 * The thread_mask for the action is or'ed to
1253 * desc->thread_active to indicate that the
1254 * IRQF_ONESHOT thread handler has been woken, but not
1255 * yet finished. The bit is cleared when a thread
1256 * completes. When all threads of a shared interrupt
1257 * line have completed desc->threads_active becomes
1258 * zero and the interrupt line is unmasked. See
1259 * handle.c:irq_wake_thread() for further information.
1260 *
1261 * If no thread is woken by primary (hard irq context)
1262 * interrupt handlers, then desc->threads_active is
1263 * also checked for zero to unmask the irq line in the
1264 * affected hard irq flow handlers
1265 * (handle_[fasteoi|level]_irq).
1266 *
1267 * The new action gets the first zero bit of
1268 * thread_mask assigned. See the loop above which or's
1269 * all existing action->thread_mask bits.
1270 */
1271 new->thread_mask = 1 << ffz(thread_mask);
1272
1273 } else if (new->handler == irq_default_primary_handler &&
1274 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1275 /*
1276 * The interrupt was requested with handler = NULL, so
1277 * we use the default primary handler for it. But it
1278 * does not have the oneshot flag set. In combination
1279 * with level interrupts this is deadly, because the
1280 * default primary handler just wakes the thread, then
1281 * the irq lines is reenabled, but the device still
1282 * has the level irq asserted. Rinse and repeat....
1283 *
1284 * While this works for edge type interrupts, we play
1285 * it safe and reject unconditionally because we can't
1286 * say for sure which type this interrupt really
1287 * has. The type flags are unreliable as the
1288 * underlying chip implementation can override them.
1289 */
1290 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1291 irq);
1292 ret = -EINVAL;
1293 goto out_mask;
1294 }
1295
1296 if (!shared) {
1297 ret = irq_request_resources(desc);
1298 if (ret) {
1299 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1300 new->name, irq, desc->irq_data.chip->name);
1301 goto out_mask;
1302 }
1303
1304 init_waitqueue_head(&desc->wait_for_threads);
1305
1306 /* Setup the type (level, edge polarity) if configured: */
1307 if (new->flags & IRQF_TRIGGER_MASK) {
1308 ret = __irq_set_trigger(desc,
1309 new->flags & IRQF_TRIGGER_MASK);
1310
1311 if (ret)
1312 goto out_mask;
1313 }
1314
1315 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1316 IRQS_ONESHOT | IRQS_WAITING);
1317 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1318
1319 if (new->flags & IRQF_PERCPU) {
1320 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1321 irq_settings_set_per_cpu(desc);
1322 }
1323
1324 if (new->flags & IRQF_ONESHOT)
1325 desc->istate |= IRQS_ONESHOT;
1326
1327 if (irq_settings_can_autoenable(desc))
1328 irq_startup(desc, true);
1329 else
1330 /* Undo nested disables: */
1331 desc->depth = 1;
1332
1333 /* Exclude IRQ from balancing if requested */
1334 if (new->flags & IRQF_NOBALANCING) {
1335 irq_settings_set_no_balancing(desc);
1336 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1337 }
1338
1339 /* Set default affinity mask once everything is setup */
1340 setup_affinity(desc, mask);
1341
1342 } else if (new->flags & IRQF_TRIGGER_MASK) {
1343 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1344 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1345
1346 if (nmsk != omsk)
1347 /* hope the handler works with current trigger mode */
1348 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1349 irq, omsk, nmsk);
1350 }
1351
1352 *old_ptr = new;
1353
1354 irq_pm_install_action(desc, new);
1355
1356 /* Reset broken irq detection when installing new handler */
1357 desc->irq_count = 0;
1358 desc->irqs_unhandled = 0;
1359
1360 /*
1361 * Check whether we disabled the irq via the spurious handler
1362 * before. Reenable it and give it another chance.
1363 */
1364 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1365 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1366 __enable_irq(desc);
1367 }
1368
1369 raw_spin_unlock_irqrestore(&desc->lock, flags);
1370
1371 /*
1372 * Strictly no need to wake it up, but hung_task complains
1373 * when no hard interrupt wakes the thread up.
1374 */
1375 if (new->thread)
1376 wake_up_process(new->thread);
1377 if (new->secondary)
1378 wake_up_process(new->secondary->thread);
1379
1380 register_irq_proc(irq, desc);
1381 new->dir = NULL;
1382 register_handler_proc(irq, new);
1383 free_cpumask_var(mask);
1384
1385 return 0;
1386
1387mismatch:
1388 if (!(new->flags & IRQF_PROBE_SHARED)) {
1389 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1390 irq, new->flags, new->name, old->flags, old->name);
1391#ifdef CONFIG_DEBUG_SHIRQ
1392 dump_stack();
1393#endif
1394 }
1395 ret = -EBUSY;
1396
1397out_mask:
1398 raw_spin_unlock_irqrestore(&desc->lock, flags);
1399 free_cpumask_var(mask);
1400
1401out_thread:
1402 if (new->thread) {
1403 struct task_struct *t = new->thread;
1404
1405 new->thread = NULL;
1406 kthread_stop(t);
1407 put_task_struct(t);
1408 }
1409 if (new->secondary && new->secondary->thread) {
1410 struct task_struct *t = new->secondary->thread;
1411
1412 new->secondary->thread = NULL;
1413 kthread_stop(t);
1414 put_task_struct(t);
1415 }
1416out_mput:
1417 module_put(desc->owner);
1418 return ret;
1419}
1420
1421/**
1422 * setup_irq - setup an interrupt
1423 * @irq: Interrupt line to setup
1424 * @act: irqaction for the interrupt
1425 *
1426 * Used to statically setup interrupts in the early boot process.
1427 */
1428int setup_irq(unsigned int irq, struct irqaction *act)
1429{
1430 int retval;
1431 struct irq_desc *desc = irq_to_desc(irq);
1432
1433 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1434 return -EINVAL;
1435
1436 retval = irq_chip_pm_get(&desc->irq_data);
1437 if (retval < 0)
1438 return retval;
1439
1440 chip_bus_lock(desc);
1441 retval = __setup_irq(irq, desc, act);
1442 chip_bus_sync_unlock(desc);
1443
1444 if (retval)
1445 irq_chip_pm_put(&desc->irq_data);
1446
1447 return retval;
1448}
1449EXPORT_SYMBOL_GPL(setup_irq);
1450
1451/*
1452 * Internal function to unregister an irqaction - used to free
1453 * regular and special interrupts that are part of the architecture.
1454 */
1455static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1456{
1457 struct irq_desc *desc = irq_to_desc(irq);
1458 struct irqaction *action, **action_ptr;
1459 unsigned long flags;
1460
1461 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1462
1463 if (!desc)
1464 return NULL;
1465
1466 chip_bus_lock(desc);
1467 raw_spin_lock_irqsave(&desc->lock, flags);
1468
1469 /*
1470 * There can be multiple actions per IRQ descriptor, find the right
1471 * one based on the dev_id:
1472 */
1473 action_ptr = &desc->action;
1474 for (;;) {
1475 action = *action_ptr;
1476
1477 if (!action) {
1478 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1479 raw_spin_unlock_irqrestore(&desc->lock, flags);
1480 chip_bus_sync_unlock(desc);
1481 return NULL;
1482 }
1483
1484 if (action->dev_id == dev_id)
1485 break;
1486 action_ptr = &action->next;
1487 }
1488
1489 /* Found it - now remove it from the list of entries: */
1490 *action_ptr = action->next;
1491
1492 irq_pm_remove_action(desc, action);
1493
1494 /* If this was the last handler, shut down the IRQ line: */
1495 if (!desc->action) {
1496 irq_settings_clr_disable_unlazy(desc);
1497 irq_shutdown(desc);
1498 irq_release_resources(desc);
1499 }
1500
1501#ifdef CONFIG_SMP
1502 /* make sure affinity_hint is cleaned up */
1503 if (WARN_ON_ONCE(desc->affinity_hint))
1504 desc->affinity_hint = NULL;
1505#endif
1506
1507 raw_spin_unlock_irqrestore(&desc->lock, flags);
1508 chip_bus_sync_unlock(desc);
1509
1510 unregister_handler_proc(irq, action);
1511
1512 /* Make sure it's not being used on another CPU: */
1513 synchronize_irq(irq);
1514
1515#ifdef CONFIG_DEBUG_SHIRQ
1516 /*
1517 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1518 * event to happen even now it's being freed, so let's make sure that
1519 * is so by doing an extra call to the handler ....
1520 *
1521 * ( We do this after actually deregistering it, to make sure that a
1522 * 'real' IRQ doesn't run in * parallel with our fake. )
1523 */
1524 if (action->flags & IRQF_SHARED) {
1525 local_irq_save(flags);
1526 action->handler(irq, dev_id);
1527 local_irq_restore(flags);
1528 }
1529#endif
1530
1531 if (action->thread) {
1532 kthread_stop(action->thread);
1533 put_task_struct(action->thread);
1534 if (action->secondary && action->secondary->thread) {
1535 kthread_stop(action->secondary->thread);
1536 put_task_struct(action->secondary->thread);
1537 }
1538 }
1539
1540 irq_chip_pm_put(&desc->irq_data);
1541 module_put(desc->owner);
1542 kfree(action->secondary);
1543 return action;
1544}
1545
1546/**
1547 * remove_irq - free an interrupt
1548 * @irq: Interrupt line to free
1549 * @act: irqaction for the interrupt
1550 *
1551 * Used to remove interrupts statically setup by the early boot process.
1552 */
1553void remove_irq(unsigned int irq, struct irqaction *act)
1554{
1555 struct irq_desc *desc = irq_to_desc(irq);
1556
1557 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1558 __free_irq(irq, act->dev_id);
1559}
1560EXPORT_SYMBOL_GPL(remove_irq);
1561
1562/**
1563 * free_irq - free an interrupt allocated with request_irq
1564 * @irq: Interrupt line to free
1565 * @dev_id: Device identity to free
1566 *
1567 * Remove an interrupt handler. The handler is removed and if the
1568 * interrupt line is no longer in use by any driver it is disabled.
1569 * On a shared IRQ the caller must ensure the interrupt is disabled
1570 * on the card it drives before calling this function. The function
1571 * does not return until any executing interrupts for this IRQ
1572 * have completed.
1573 *
1574 * This function must not be called from interrupt context.
1575 */
1576void free_irq(unsigned int irq, void *dev_id)
1577{
1578 struct irq_desc *desc = irq_to_desc(irq);
1579
1580 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1581 return;
1582
1583#ifdef CONFIG_SMP
1584 if (WARN_ON(desc->affinity_notify))
1585 desc->affinity_notify = NULL;
1586#endif
1587
1588 kfree(__free_irq(irq, dev_id));
1589}
1590EXPORT_SYMBOL(free_irq);
1591
1592/**
1593 * request_threaded_irq - allocate an interrupt line
1594 * @irq: Interrupt line to allocate
1595 * @handler: Function to be called when the IRQ occurs.
1596 * Primary handler for threaded interrupts
1597 * If NULL and thread_fn != NULL the default
1598 * primary handler is installed
1599 * @thread_fn: Function called from the irq handler thread
1600 * If NULL, no irq thread is created
1601 * @irqflags: Interrupt type flags
1602 * @devname: An ascii name for the claiming device
1603 * @dev_id: A cookie passed back to the handler function
1604 *
1605 * This call allocates interrupt resources and enables the
1606 * interrupt line and IRQ handling. From the point this
1607 * call is made your handler function may be invoked. Since
1608 * your handler function must clear any interrupt the board
1609 * raises, you must take care both to initialise your hardware
1610 * and to set up the interrupt handler in the right order.
1611 *
1612 * If you want to set up a threaded irq handler for your device
1613 * then you need to supply @handler and @thread_fn. @handler is
1614 * still called in hard interrupt context and has to check
1615 * whether the interrupt originates from the device. If yes it
1616 * needs to disable the interrupt on the device and return
1617 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1618 * @thread_fn. This split handler design is necessary to support
1619 * shared interrupts.
1620 *
1621 * Dev_id must be globally unique. Normally the address of the
1622 * device data structure is used as the cookie. Since the handler
1623 * receives this value it makes sense to use it.
1624 *
1625 * If your interrupt is shared you must pass a non NULL dev_id
1626 * as this is required when freeing the interrupt.
1627 *
1628 * Flags:
1629 *
1630 * IRQF_SHARED Interrupt is shared
1631 * IRQF_TRIGGER_* Specify active edge(s) or level
1632 *
1633 */
1634int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1635 irq_handler_t thread_fn, unsigned long irqflags,
1636 const char *devname, void *dev_id)
1637{
1638 struct irqaction *action;
1639 struct irq_desc *desc;
1640 int retval;
1641
1642 if (irq == IRQ_NOTCONNECTED)
1643 return -ENOTCONN;
1644
1645 /*
1646 * Sanity-check: shared interrupts must pass in a real dev-ID,
1647 * otherwise we'll have trouble later trying to figure out
1648 * which interrupt is which (messes up the interrupt freeing
1649 * logic etc).
1650 *
1651 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1652 * it cannot be set along with IRQF_NO_SUSPEND.
1653 */
1654 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1655 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1656 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1657 return -EINVAL;
1658
1659 desc = irq_to_desc(irq);
1660 if (!desc)
1661 return -EINVAL;
1662
1663 if (!irq_settings_can_request(desc) ||
1664 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1665 return -EINVAL;
1666
1667 if (!handler) {
1668 if (!thread_fn)
1669 return -EINVAL;
1670 handler = irq_default_primary_handler;
1671 }
1672
1673 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1674 if (!action)
1675 return -ENOMEM;
1676
1677 action->handler = handler;
1678 action->thread_fn = thread_fn;
1679 action->flags = irqflags;
1680 action->name = devname;
1681 action->dev_id = dev_id;
1682
1683 retval = irq_chip_pm_get(&desc->irq_data);
1684 if (retval < 0) {
1685 kfree(action);
1686 return retval;
1687 }
1688
1689 chip_bus_lock(desc);
1690 retval = __setup_irq(irq, desc, action);
1691 chip_bus_sync_unlock(desc);
1692
1693 if (retval) {
1694 irq_chip_pm_put(&desc->irq_data);
1695 kfree(action->secondary);
1696 kfree(action);
1697 }
1698
1699#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1700 if (!retval && (irqflags & IRQF_SHARED)) {
1701 /*
1702 * It's a shared IRQ -- the driver ought to be prepared for it
1703 * to happen immediately, so let's make sure....
1704 * We disable the irq to make sure that a 'real' IRQ doesn't
1705 * run in parallel with our fake.
1706 */
1707 unsigned long flags;
1708
1709 disable_irq(irq);
1710 local_irq_save(flags);
1711
1712 handler(irq, dev_id);
1713
1714 local_irq_restore(flags);
1715 enable_irq(irq);
1716 }
1717#endif
1718 return retval;
1719}
1720EXPORT_SYMBOL(request_threaded_irq);
1721
1722/**
1723 * request_any_context_irq - allocate an interrupt line
1724 * @irq: Interrupt line to allocate
1725 * @handler: Function to be called when the IRQ occurs.
1726 * Threaded handler for threaded interrupts.
1727 * @flags: Interrupt type flags
1728 * @name: An ascii name for the claiming device
1729 * @dev_id: A cookie passed back to the handler function
1730 *
1731 * This call allocates interrupt resources and enables the
1732 * interrupt line and IRQ handling. It selects either a
1733 * hardirq or threaded handling method depending on the
1734 * context.
1735 *
1736 * On failure, it returns a negative value. On success,
1737 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1738 */
1739int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1740 unsigned long flags, const char *name, void *dev_id)
1741{
1742 struct irq_desc *desc;
1743 int ret;
1744
1745 if (irq == IRQ_NOTCONNECTED)
1746 return -ENOTCONN;
1747
1748 desc = irq_to_desc(irq);
1749 if (!desc)
1750 return -EINVAL;
1751
1752 if (irq_settings_is_nested_thread(desc)) {
1753 ret = request_threaded_irq(irq, NULL, handler,
1754 flags, name, dev_id);
1755 return !ret ? IRQC_IS_NESTED : ret;
1756 }
1757
1758 ret = request_irq(irq, handler, flags, name, dev_id);
1759 return !ret ? IRQC_IS_HARDIRQ : ret;
1760}
1761EXPORT_SYMBOL_GPL(request_any_context_irq);
1762
1763void enable_percpu_irq(unsigned int irq, unsigned int type)
1764{
1765 unsigned int cpu = smp_processor_id();
1766 unsigned long flags;
1767 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1768
1769 if (!desc)
1770 return;
1771
1772 /*
1773 * If the trigger type is not specified by the caller, then
1774 * use the default for this interrupt.
1775 */
1776 type &= IRQ_TYPE_SENSE_MASK;
1777 if (type == IRQ_TYPE_NONE)
1778 type = irqd_get_trigger_type(&desc->irq_data);
1779
1780 if (type != IRQ_TYPE_NONE) {
1781 int ret;
1782
1783 ret = __irq_set_trigger(desc, type);
1784
1785 if (ret) {
1786 WARN(1, "failed to set type for IRQ%d\n", irq);
1787 goto out;
1788 }
1789 }
1790
1791 irq_percpu_enable(desc, cpu);
1792out:
1793 irq_put_desc_unlock(desc, flags);
1794}
1795EXPORT_SYMBOL_GPL(enable_percpu_irq);
1796
1797/**
1798 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1799 * @irq: Linux irq number to check for
1800 *
1801 * Must be called from a non migratable context. Returns the enable
1802 * state of a per cpu interrupt on the current cpu.
1803 */
1804bool irq_percpu_is_enabled(unsigned int irq)
1805{
1806 unsigned int cpu = smp_processor_id();
1807 struct irq_desc *desc;
1808 unsigned long flags;
1809 bool is_enabled;
1810
1811 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1812 if (!desc)
1813 return false;
1814
1815 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1816 irq_put_desc_unlock(desc, flags);
1817
1818 return is_enabled;
1819}
1820EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1821
1822void disable_percpu_irq(unsigned int irq)
1823{
1824 unsigned int cpu = smp_processor_id();
1825 unsigned long flags;
1826 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1827
1828 if (!desc)
1829 return;
1830
1831 irq_percpu_disable(desc, cpu);
1832 irq_put_desc_unlock(desc, flags);
1833}
1834EXPORT_SYMBOL_GPL(disable_percpu_irq);
1835
1836/*
1837 * Internal function to unregister a percpu irqaction.
1838 */
1839static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1840{
1841 struct irq_desc *desc = irq_to_desc(irq);
1842 struct irqaction *action;
1843 unsigned long flags;
1844
1845 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1846
1847 if (!desc)
1848 return NULL;
1849
1850 raw_spin_lock_irqsave(&desc->lock, flags);
1851
1852 action = desc->action;
1853 if (!action || action->percpu_dev_id != dev_id) {
1854 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1855 goto bad;
1856 }
1857
1858 if (!cpumask_empty(desc->percpu_enabled)) {
1859 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1860 irq, cpumask_first(desc->percpu_enabled));
1861 goto bad;
1862 }
1863
1864 /* Found it - now remove it from the list of entries: */
1865 desc->action = NULL;
1866
1867 raw_spin_unlock_irqrestore(&desc->lock, flags);
1868
1869 unregister_handler_proc(irq, action);
1870
1871 irq_chip_pm_put(&desc->irq_data);
1872 module_put(desc->owner);
1873 return action;
1874
1875bad:
1876 raw_spin_unlock_irqrestore(&desc->lock, flags);
1877 return NULL;
1878}
1879
1880/**
1881 * remove_percpu_irq - free a per-cpu interrupt
1882 * @irq: Interrupt line to free
1883 * @act: irqaction for the interrupt
1884 *
1885 * Used to remove interrupts statically setup by the early boot process.
1886 */
1887void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1888{
1889 struct irq_desc *desc = irq_to_desc(irq);
1890
1891 if (desc && irq_settings_is_per_cpu_devid(desc))
1892 __free_percpu_irq(irq, act->percpu_dev_id);
1893}
1894
1895/**
1896 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
1897 * @irq: Interrupt line to free
1898 * @dev_id: Device identity to free
1899 *
1900 * Remove a percpu interrupt handler. The handler is removed, but
1901 * the interrupt line is not disabled. This must be done on each
1902 * CPU before calling this function. The function does not return
1903 * until any executing interrupts for this IRQ have completed.
1904 *
1905 * This function must not be called from interrupt context.
1906 */
1907void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1908{
1909 struct irq_desc *desc = irq_to_desc(irq);
1910
1911 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1912 return;
1913
1914 chip_bus_lock(desc);
1915 kfree(__free_percpu_irq(irq, dev_id));
1916 chip_bus_sync_unlock(desc);
1917}
1918EXPORT_SYMBOL_GPL(free_percpu_irq);
1919
1920/**
1921 * setup_percpu_irq - setup a per-cpu interrupt
1922 * @irq: Interrupt line to setup
1923 * @act: irqaction for the interrupt
1924 *
1925 * Used to statically setup per-cpu interrupts in the early boot process.
1926 */
1927int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1928{
1929 struct irq_desc *desc = irq_to_desc(irq);
1930 int retval;
1931
1932 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1933 return -EINVAL;
1934
1935 retval = irq_chip_pm_get(&desc->irq_data);
1936 if (retval < 0)
1937 return retval;
1938
1939 chip_bus_lock(desc);
1940 retval = __setup_irq(irq, desc, act);
1941 chip_bus_sync_unlock(desc);
1942
1943 if (retval)
1944 irq_chip_pm_put(&desc->irq_data);
1945
1946 return retval;
1947}
1948
1949/**
1950 * request_percpu_irq - allocate a percpu interrupt line
1951 * @irq: Interrupt line to allocate
1952 * @handler: Function to be called when the IRQ occurs.
1953 * @devname: An ascii name for the claiming device
1954 * @dev_id: A percpu cookie passed back to the handler function
1955 *
1956 * This call allocates interrupt resources and enables the
1957 * interrupt on the local CPU. If the interrupt is supposed to be
1958 * enabled on other CPUs, it has to be done on each CPU using
1959 * enable_percpu_irq().
1960 *
1961 * Dev_id must be globally unique. It is a per-cpu variable, and
1962 * the handler gets called with the interrupted CPU's instance of
1963 * that variable.
1964 */
1965int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1966 const char *devname, void __percpu *dev_id)
1967{
1968 struct irqaction *action;
1969 struct irq_desc *desc;
1970 int retval;
1971
1972 if (!dev_id)
1973 return -EINVAL;
1974
1975 desc = irq_to_desc(irq);
1976 if (!desc || !irq_settings_can_request(desc) ||
1977 !irq_settings_is_per_cpu_devid(desc))
1978 return -EINVAL;
1979
1980 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1981 if (!action)
1982 return -ENOMEM;
1983
1984 action->handler = handler;
1985 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1986 action->name = devname;
1987 action->percpu_dev_id = dev_id;
1988
1989 retval = irq_chip_pm_get(&desc->irq_data);
1990 if (retval < 0) {
1991 kfree(action);
1992 return retval;
1993 }
1994
1995 chip_bus_lock(desc);
1996 retval = __setup_irq(irq, desc, action);
1997 chip_bus_sync_unlock(desc);
1998
1999 if (retval) {
2000 irq_chip_pm_put(&desc->irq_data);
2001 kfree(action);
2002 }
2003
2004 return retval;
2005}
2006EXPORT_SYMBOL_GPL(request_percpu_irq);
2007
2008/**
2009 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2010 * @irq: Interrupt line that is forwarded to a VM
2011 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2012 * @state: a pointer to a boolean where the state is to be storeed
2013 *
2014 * This call snapshots the internal irqchip state of an
2015 * interrupt, returning into @state the bit corresponding to
2016 * stage @which
2017 *
2018 * This function should be called with preemption disabled if the
2019 * interrupt controller has per-cpu registers.
2020 */
2021int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2022 bool *state)
2023{
2024 struct irq_desc *desc;
2025 struct irq_data *data;
2026 struct irq_chip *chip;
2027 unsigned long flags;
2028 int err = -EINVAL;
2029
2030 desc = irq_get_desc_buslock(irq, &flags, 0);
2031 if (!desc)
2032 return err;
2033
2034 data = irq_desc_get_irq_data(desc);
2035
2036 do {
2037 chip = irq_data_get_irq_chip(data);
2038 if (chip->irq_get_irqchip_state)
2039 break;
2040#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2041 data = data->parent_data;
2042#else
2043 data = NULL;
2044#endif
2045 } while (data);
2046
2047 if (data)
2048 err = chip->irq_get_irqchip_state(data, which, state);
2049
2050 irq_put_desc_busunlock(desc, flags);
2051 return err;
2052}
2053EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2054
2055/**
2056 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2057 * @irq: Interrupt line that is forwarded to a VM
2058 * @which: State to be restored (one of IRQCHIP_STATE_*)
2059 * @val: Value corresponding to @which
2060 *
2061 * This call sets the internal irqchip state of an interrupt,
2062 * depending on the value of @which.
2063 *
2064 * This function should be called with preemption disabled if the
2065 * interrupt controller has per-cpu registers.
2066 */
2067int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2068 bool val)
2069{
2070 struct irq_desc *desc;
2071 struct irq_data *data;
2072 struct irq_chip *chip;
2073 unsigned long flags;
2074 int err = -EINVAL;
2075
2076 desc = irq_get_desc_buslock(irq, &flags, 0);
2077 if (!desc)
2078 return err;
2079
2080 data = irq_desc_get_irq_data(desc);
2081
2082 do {
2083 chip = irq_data_get_irq_chip(data);
2084 if (chip->irq_set_irqchip_state)
2085 break;
2086#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2087 data = data->parent_data;
2088#else
2089 data = NULL;
2090#endif
2091 } while (data);
2092
2093 if (data)
2094 err = chip->irq_set_irqchip_state(data, which, val);
2095
2096 irq_put_desc_busunlock(desc, flags);
2097 return err;
2098}
2099EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9#define pr_fmt(fmt) "genirq: " fmt
10
11#include <linux/irq.h>
12#include <linux/kthread.h>
13#include <linux/module.h>
14#include <linux/random.h>
15#include <linux/interrupt.h>
16#include <linux/irqdomain.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/sched/rt.h>
20#include <linux/sched/task.h>
21#include <linux/sched/isolation.h>
22#include <uapi/linux/sched/types.h>
23#include <linux/task_work.h>
24
25#include "internals.h"
26
27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28__read_mostly bool force_irqthreads;
29EXPORT_SYMBOL_GPL(force_irqthreads);
30
31static int __init setup_forced_irqthreads(char *arg)
32{
33 force_irqthreads = true;
34 return 0;
35}
36early_param("threadirqs", setup_forced_irqthreads);
37#endif
38
39static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
40{
41 struct irq_data *irqd = irq_desc_get_irq_data(desc);
42 bool inprogress;
43
44 do {
45 unsigned long flags;
46
47 /*
48 * Wait until we're out of the critical section. This might
49 * give the wrong answer due to the lack of memory barriers.
50 */
51 while (irqd_irq_inprogress(&desc->irq_data))
52 cpu_relax();
53
54 /* Ok, that indicated we're done: double-check carefully. */
55 raw_spin_lock_irqsave(&desc->lock, flags);
56 inprogress = irqd_irq_inprogress(&desc->irq_data);
57
58 /*
59 * If requested and supported, check at the chip whether it
60 * is in flight at the hardware level, i.e. already pending
61 * in a CPU and waiting for service and acknowledge.
62 */
63 if (!inprogress && sync_chip) {
64 /*
65 * Ignore the return code. inprogress is only updated
66 * when the chip supports it.
67 */
68 __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
69 &inprogress);
70 }
71 raw_spin_unlock_irqrestore(&desc->lock, flags);
72
73 /* Oops, that failed? */
74 } while (inprogress);
75}
76
77/**
78 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
79 * @irq: interrupt number to wait for
80 *
81 * This function waits for any pending hard IRQ handlers for this
82 * interrupt to complete before returning. If you use this
83 * function while holding a resource the IRQ handler may need you
84 * will deadlock. It does not take associated threaded handlers
85 * into account.
86 *
87 * Do not use this for shutdown scenarios where you must be sure
88 * that all parts (hardirq and threaded handler) have completed.
89 *
90 * Returns: false if a threaded handler is active.
91 *
92 * This function may be called - with care - from IRQ context.
93 *
94 * It does not check whether there is an interrupt in flight at the
95 * hardware level, but not serviced yet, as this might deadlock when
96 * called with interrupts disabled and the target CPU of the interrupt
97 * is the current CPU.
98 */
99bool synchronize_hardirq(unsigned int irq)
100{
101 struct irq_desc *desc = irq_to_desc(irq);
102
103 if (desc) {
104 __synchronize_hardirq(desc, false);
105 return !atomic_read(&desc->threads_active);
106 }
107
108 return true;
109}
110EXPORT_SYMBOL(synchronize_hardirq);
111
112/**
113 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
114 * @irq: interrupt number to wait for
115 *
116 * This function waits for any pending IRQ handlers for this interrupt
117 * to complete before returning. If you use this function while
118 * holding a resource the IRQ handler may need you will deadlock.
119 *
120 * Can only be called from preemptible code as it might sleep when
121 * an interrupt thread is associated to @irq.
122 *
123 * It optionally makes sure (when the irq chip supports that method)
124 * that the interrupt is not pending in any CPU and waiting for
125 * service.
126 */
127void synchronize_irq(unsigned int irq)
128{
129 struct irq_desc *desc = irq_to_desc(irq);
130
131 if (desc) {
132 __synchronize_hardirq(desc, true);
133 /*
134 * We made sure that no hardirq handler is
135 * running. Now verify that no threaded handlers are
136 * active.
137 */
138 wait_event(desc->wait_for_threads,
139 !atomic_read(&desc->threads_active));
140 }
141}
142EXPORT_SYMBOL(synchronize_irq);
143
144#ifdef CONFIG_SMP
145cpumask_var_t irq_default_affinity;
146
147static bool __irq_can_set_affinity(struct irq_desc *desc)
148{
149 if (!desc || !irqd_can_balance(&desc->irq_data) ||
150 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
151 return false;
152 return true;
153}
154
155/**
156 * irq_can_set_affinity - Check if the affinity of a given irq can be set
157 * @irq: Interrupt to check
158 *
159 */
160int irq_can_set_affinity(unsigned int irq)
161{
162 return __irq_can_set_affinity(irq_to_desc(irq));
163}
164
165/**
166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
167 * @irq: Interrupt to check
168 *
169 * Like irq_can_set_affinity() above, but additionally checks for the
170 * AFFINITY_MANAGED flag.
171 */
172bool irq_can_set_affinity_usr(unsigned int irq)
173{
174 struct irq_desc *desc = irq_to_desc(irq);
175
176 return __irq_can_set_affinity(desc) &&
177 !irqd_affinity_is_managed(&desc->irq_data);
178}
179
180/**
181 * irq_set_thread_affinity - Notify irq threads to adjust affinity
182 * @desc: irq descriptor which has affinity changed
183 *
184 * We just set IRQTF_AFFINITY and delegate the affinity setting
185 * to the interrupt thread itself. We can not call
186 * set_cpus_allowed_ptr() here as we hold desc->lock and this
187 * code can be called from hard interrupt context.
188 */
189void irq_set_thread_affinity(struct irq_desc *desc)
190{
191 struct irqaction *action;
192
193 for_each_action_of_desc(desc, action)
194 if (action->thread)
195 set_bit(IRQTF_AFFINITY, &action->thread_flags);
196}
197
198#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
199static void irq_validate_effective_affinity(struct irq_data *data)
200{
201 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
202 struct irq_chip *chip = irq_data_get_irq_chip(data);
203
204 if (!cpumask_empty(m))
205 return;
206 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
207 chip->name, data->irq);
208}
209
210static inline void irq_init_effective_affinity(struct irq_data *data,
211 const struct cpumask *mask)
212{
213 cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
214}
215#else
216static inline void irq_validate_effective_affinity(struct irq_data *data) { }
217static inline void irq_init_effective_affinity(struct irq_data *data,
218 const struct cpumask *mask) { }
219#endif
220
221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222 bool force)
223{
224 struct irq_desc *desc = irq_data_to_desc(data);
225 struct irq_chip *chip = irq_data_get_irq_chip(data);
226 int ret;
227
228 if (!chip || !chip->irq_set_affinity)
229 return -EINVAL;
230
231 /*
232 * If this is a managed interrupt and housekeeping is enabled on
233 * it check whether the requested affinity mask intersects with
234 * a housekeeping CPU. If so, then remove the isolated CPUs from
235 * the mask and just keep the housekeeping CPU(s). This prevents
236 * the affinity setter from routing the interrupt to an isolated
237 * CPU to avoid that I/O submitted from a housekeeping CPU causes
238 * interrupts on an isolated one.
239 *
240 * If the masks do not intersect or include online CPU(s) then
241 * keep the requested mask. The isolated target CPUs are only
242 * receiving interrupts when the I/O operation was submitted
243 * directly from them.
244 *
245 * If all housekeeping CPUs in the affinity mask are offline, the
246 * interrupt will be migrated by the CPU hotplug code once a
247 * housekeeping CPU which belongs to the affinity mask comes
248 * online.
249 */
250 if (irqd_affinity_is_managed(data) &&
251 housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
252 const struct cpumask *hk_mask, *prog_mask;
253
254 static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
255 static struct cpumask tmp_mask;
256
257 hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
258
259 raw_spin_lock(&tmp_mask_lock);
260 cpumask_and(&tmp_mask, mask, hk_mask);
261 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
262 prog_mask = mask;
263 else
264 prog_mask = &tmp_mask;
265 ret = chip->irq_set_affinity(data, prog_mask, force);
266 raw_spin_unlock(&tmp_mask_lock);
267 } else {
268 ret = chip->irq_set_affinity(data, mask, force);
269 }
270 switch (ret) {
271 case IRQ_SET_MASK_OK:
272 case IRQ_SET_MASK_OK_DONE:
273 cpumask_copy(desc->irq_common_data.affinity, mask);
274 fallthrough;
275 case IRQ_SET_MASK_OK_NOCOPY:
276 irq_validate_effective_affinity(data);
277 irq_set_thread_affinity(desc);
278 ret = 0;
279 }
280
281 return ret;
282}
283
284#ifdef CONFIG_GENERIC_PENDING_IRQ
285static inline int irq_set_affinity_pending(struct irq_data *data,
286 const struct cpumask *dest)
287{
288 struct irq_desc *desc = irq_data_to_desc(data);
289
290 irqd_set_move_pending(data);
291 irq_copy_pending(desc, dest);
292 return 0;
293}
294#else
295static inline int irq_set_affinity_pending(struct irq_data *data,
296 const struct cpumask *dest)
297{
298 return -EBUSY;
299}
300#endif
301
302static int irq_try_set_affinity(struct irq_data *data,
303 const struct cpumask *dest, bool force)
304{
305 int ret = irq_do_set_affinity(data, dest, force);
306
307 /*
308 * In case that the underlying vector management is busy and the
309 * architecture supports the generic pending mechanism then utilize
310 * this to avoid returning an error to user space.
311 */
312 if (ret == -EBUSY && !force)
313 ret = irq_set_affinity_pending(data, dest);
314 return ret;
315}
316
317static bool irq_set_affinity_deactivated(struct irq_data *data,
318 const struct cpumask *mask, bool force)
319{
320 struct irq_desc *desc = irq_data_to_desc(data);
321
322 /*
323 * Handle irq chips which can handle affinity only in activated
324 * state correctly
325 *
326 * If the interrupt is not yet activated, just store the affinity
327 * mask and do not call the chip driver at all. On activation the
328 * driver has to make sure anyway that the interrupt is in a
329 * usable state so startup works.
330 */
331 if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
332 irqd_is_activated(data) || !irqd_affinity_on_activate(data))
333 return false;
334
335 cpumask_copy(desc->irq_common_data.affinity, mask);
336 irq_init_effective_affinity(data, mask);
337 irqd_set(data, IRQD_AFFINITY_SET);
338 return true;
339}
340
341int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
342 bool force)
343{
344 struct irq_chip *chip = irq_data_get_irq_chip(data);
345 struct irq_desc *desc = irq_data_to_desc(data);
346 int ret = 0;
347
348 if (!chip || !chip->irq_set_affinity)
349 return -EINVAL;
350
351 if (irq_set_affinity_deactivated(data, mask, force))
352 return 0;
353
354 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
355 ret = irq_try_set_affinity(data, mask, force);
356 } else {
357 irqd_set_move_pending(data);
358 irq_copy_pending(desc, mask);
359 }
360
361 if (desc->affinity_notify) {
362 kref_get(&desc->affinity_notify->kref);
363 if (!schedule_work(&desc->affinity_notify->work)) {
364 /* Work was already scheduled, drop our extra ref */
365 kref_put(&desc->affinity_notify->kref,
366 desc->affinity_notify->release);
367 }
368 }
369 irqd_set(data, IRQD_AFFINITY_SET);
370
371 return ret;
372}
373
374/**
375 * irq_update_affinity_desc - Update affinity management for an interrupt
376 * @irq: The interrupt number to update
377 * @affinity: Pointer to the affinity descriptor
378 *
379 * This interface can be used to configure the affinity management of
380 * interrupts which have been allocated already.
381 *
382 * There are certain limitations on when it may be used - attempts to use it
383 * for when the kernel is configured for generic IRQ reservation mode (in
384 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
385 * managed/non-managed interrupt accounting. In addition, attempts to use it on
386 * an interrupt which is already started or which has already been configured
387 * as managed will also fail, as these mean invalid init state or double init.
388 */
389int irq_update_affinity_desc(unsigned int irq,
390 struct irq_affinity_desc *affinity)
391{
392 struct irq_desc *desc;
393 unsigned long flags;
394 bool activated;
395 int ret = 0;
396
397 /*
398 * Supporting this with the reservation scheme used by x86 needs
399 * some more thought. Fail it for now.
400 */
401 if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
402 return -EOPNOTSUPP;
403
404 desc = irq_get_desc_buslock(irq, &flags, 0);
405 if (!desc)
406 return -EINVAL;
407
408 /* Requires the interrupt to be shut down */
409 if (irqd_is_started(&desc->irq_data)) {
410 ret = -EBUSY;
411 goto out_unlock;
412 }
413
414 /* Interrupts which are already managed cannot be modified */
415 if (irqd_affinity_is_managed(&desc->irq_data)) {
416 ret = -EBUSY;
417 goto out_unlock;
418 }
419
420 /*
421 * Deactivate the interrupt. That's required to undo
422 * anything an earlier activation has established.
423 */
424 activated = irqd_is_activated(&desc->irq_data);
425 if (activated)
426 irq_domain_deactivate_irq(&desc->irq_data);
427
428 if (affinity->is_managed) {
429 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
430 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
431 }
432
433 cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
434
435 /* Restore the activation state */
436 if (activated)
437 irq_domain_activate_irq(&desc->irq_data, false);
438
439out_unlock:
440 irq_put_desc_busunlock(desc, flags);
441 return ret;
442}
443
444static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
445 bool force)
446{
447 struct irq_desc *desc = irq_to_desc(irq);
448 unsigned long flags;
449 int ret;
450
451 if (!desc)
452 return -EINVAL;
453
454 raw_spin_lock_irqsave(&desc->lock, flags);
455 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
456 raw_spin_unlock_irqrestore(&desc->lock, flags);
457 return ret;
458}
459
460/**
461 * irq_set_affinity - Set the irq affinity of a given irq
462 * @irq: Interrupt to set affinity
463 * @cpumask: cpumask
464 *
465 * Fails if cpumask does not contain an online CPU
466 */
467int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
468{
469 return __irq_set_affinity(irq, cpumask, false);
470}
471EXPORT_SYMBOL_GPL(irq_set_affinity);
472
473/**
474 * irq_force_affinity - Force the irq affinity of a given irq
475 * @irq: Interrupt to set affinity
476 * @cpumask: cpumask
477 *
478 * Same as irq_set_affinity, but without checking the mask against
479 * online cpus.
480 *
481 * Solely for low level cpu hotplug code, where we need to make per
482 * cpu interrupts affine before the cpu becomes online.
483 */
484int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
485{
486 return __irq_set_affinity(irq, cpumask, true);
487}
488EXPORT_SYMBOL_GPL(irq_force_affinity);
489
490int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
491{
492 unsigned long flags;
493 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
494
495 if (!desc)
496 return -EINVAL;
497 desc->affinity_hint = m;
498 irq_put_desc_unlock(desc, flags);
499 /* set the initial affinity to prevent every interrupt being on CPU0 */
500 if (m)
501 __irq_set_affinity(irq, m, false);
502 return 0;
503}
504EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
505
506static void irq_affinity_notify(struct work_struct *work)
507{
508 struct irq_affinity_notify *notify =
509 container_of(work, struct irq_affinity_notify, work);
510 struct irq_desc *desc = irq_to_desc(notify->irq);
511 cpumask_var_t cpumask;
512 unsigned long flags;
513
514 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
515 goto out;
516
517 raw_spin_lock_irqsave(&desc->lock, flags);
518 if (irq_move_pending(&desc->irq_data))
519 irq_get_pending(cpumask, desc);
520 else
521 cpumask_copy(cpumask, desc->irq_common_data.affinity);
522 raw_spin_unlock_irqrestore(&desc->lock, flags);
523
524 notify->notify(notify, cpumask);
525
526 free_cpumask_var(cpumask);
527out:
528 kref_put(¬ify->kref, notify->release);
529}
530
531/**
532 * irq_set_affinity_notifier - control notification of IRQ affinity changes
533 * @irq: Interrupt for which to enable/disable notification
534 * @notify: Context for notification, or %NULL to disable
535 * notification. Function pointers must be initialised;
536 * the other fields will be initialised by this function.
537 *
538 * Must be called in process context. Notification may only be enabled
539 * after the IRQ is allocated and must be disabled before the IRQ is
540 * freed using free_irq().
541 */
542int
543irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
544{
545 struct irq_desc *desc = irq_to_desc(irq);
546 struct irq_affinity_notify *old_notify;
547 unsigned long flags;
548
549 /* The release function is promised process context */
550 might_sleep();
551
552 if (!desc || desc->istate & IRQS_NMI)
553 return -EINVAL;
554
555 /* Complete initialisation of *notify */
556 if (notify) {
557 notify->irq = irq;
558 kref_init(¬ify->kref);
559 INIT_WORK(¬ify->work, irq_affinity_notify);
560 }
561
562 raw_spin_lock_irqsave(&desc->lock, flags);
563 old_notify = desc->affinity_notify;
564 desc->affinity_notify = notify;
565 raw_spin_unlock_irqrestore(&desc->lock, flags);
566
567 if (old_notify) {
568 if (cancel_work_sync(&old_notify->work)) {
569 /* Pending work had a ref, put that one too */
570 kref_put(&old_notify->kref, old_notify->release);
571 }
572 kref_put(&old_notify->kref, old_notify->release);
573 }
574
575 return 0;
576}
577EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
578
579#ifndef CONFIG_AUTO_IRQ_AFFINITY
580/*
581 * Generic version of the affinity autoselector.
582 */
583int irq_setup_affinity(struct irq_desc *desc)
584{
585 struct cpumask *set = irq_default_affinity;
586 int ret, node = irq_desc_get_node(desc);
587 static DEFINE_RAW_SPINLOCK(mask_lock);
588 static struct cpumask mask;
589
590 /* Excludes PER_CPU and NO_BALANCE interrupts */
591 if (!__irq_can_set_affinity(desc))
592 return 0;
593
594 raw_spin_lock(&mask_lock);
595 /*
596 * Preserve the managed affinity setting and a userspace affinity
597 * setup, but make sure that one of the targets is online.
598 */
599 if (irqd_affinity_is_managed(&desc->irq_data) ||
600 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
601 if (cpumask_intersects(desc->irq_common_data.affinity,
602 cpu_online_mask))
603 set = desc->irq_common_data.affinity;
604 else
605 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
606 }
607
608 cpumask_and(&mask, cpu_online_mask, set);
609 if (cpumask_empty(&mask))
610 cpumask_copy(&mask, cpu_online_mask);
611
612 if (node != NUMA_NO_NODE) {
613 const struct cpumask *nodemask = cpumask_of_node(node);
614
615 /* make sure at least one of the cpus in nodemask is online */
616 if (cpumask_intersects(&mask, nodemask))
617 cpumask_and(&mask, &mask, nodemask);
618 }
619 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
620 raw_spin_unlock(&mask_lock);
621 return ret;
622}
623#else
624/* Wrapper for ALPHA specific affinity selector magic */
625int irq_setup_affinity(struct irq_desc *desc)
626{
627 return irq_select_affinity(irq_desc_get_irq(desc));
628}
629#endif /* CONFIG_AUTO_IRQ_AFFINITY */
630#endif /* CONFIG_SMP */
631
632
633/**
634 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
635 * @irq: interrupt number to set affinity
636 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
637 * specific data for percpu_devid interrupts
638 *
639 * This function uses the vCPU specific data to set the vCPU
640 * affinity for an irq. The vCPU specific data is passed from
641 * outside, such as KVM. One example code path is as below:
642 * KVM -> IOMMU -> irq_set_vcpu_affinity().
643 */
644int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
645{
646 unsigned long flags;
647 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
648 struct irq_data *data;
649 struct irq_chip *chip;
650 int ret = -ENOSYS;
651
652 if (!desc)
653 return -EINVAL;
654
655 data = irq_desc_get_irq_data(desc);
656 do {
657 chip = irq_data_get_irq_chip(data);
658 if (chip && chip->irq_set_vcpu_affinity)
659 break;
660#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
661 data = data->parent_data;
662#else
663 data = NULL;
664#endif
665 } while (data);
666
667 if (data)
668 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
669 irq_put_desc_unlock(desc, flags);
670
671 return ret;
672}
673EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
674
675void __disable_irq(struct irq_desc *desc)
676{
677 if (!desc->depth++)
678 irq_disable(desc);
679}
680
681static int __disable_irq_nosync(unsigned int irq)
682{
683 unsigned long flags;
684 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
685
686 if (!desc)
687 return -EINVAL;
688 __disable_irq(desc);
689 irq_put_desc_busunlock(desc, flags);
690 return 0;
691}
692
693/**
694 * disable_irq_nosync - disable an irq without waiting
695 * @irq: Interrupt to disable
696 *
697 * Disable the selected interrupt line. Disables and Enables are
698 * nested.
699 * Unlike disable_irq(), this function does not ensure existing
700 * instances of the IRQ handler have completed before returning.
701 *
702 * This function may be called from IRQ context.
703 */
704void disable_irq_nosync(unsigned int irq)
705{
706 __disable_irq_nosync(irq);
707}
708EXPORT_SYMBOL(disable_irq_nosync);
709
710/**
711 * disable_irq - disable an irq and wait for completion
712 * @irq: Interrupt to disable
713 *
714 * Disable the selected interrupt line. Enables and Disables are
715 * nested.
716 * This function waits for any pending IRQ handlers for this interrupt
717 * to complete before returning. If you use this function while
718 * holding a resource the IRQ handler may need you will deadlock.
719 *
720 * This function may be called - with care - from IRQ context.
721 */
722void disable_irq(unsigned int irq)
723{
724 if (!__disable_irq_nosync(irq))
725 synchronize_irq(irq);
726}
727EXPORT_SYMBOL(disable_irq);
728
729/**
730 * disable_hardirq - disables an irq and waits for hardirq completion
731 * @irq: Interrupt to disable
732 *
733 * Disable the selected interrupt line. Enables and Disables are
734 * nested.
735 * This function waits for any pending hard IRQ handlers for this
736 * interrupt to complete before returning. If you use this function while
737 * holding a resource the hard IRQ handler may need you will deadlock.
738 *
739 * When used to optimistically disable an interrupt from atomic context
740 * the return value must be checked.
741 *
742 * Returns: false if a threaded handler is active.
743 *
744 * This function may be called - with care - from IRQ context.
745 */
746bool disable_hardirq(unsigned int irq)
747{
748 if (!__disable_irq_nosync(irq))
749 return synchronize_hardirq(irq);
750
751 return false;
752}
753EXPORT_SYMBOL_GPL(disable_hardirq);
754
755/**
756 * disable_nmi_nosync - disable an nmi without waiting
757 * @irq: Interrupt to disable
758 *
759 * Disable the selected interrupt line. Disables and enables are
760 * nested.
761 * The interrupt to disable must have been requested through request_nmi.
762 * Unlike disable_nmi(), this function does not ensure existing
763 * instances of the IRQ handler have completed before returning.
764 */
765void disable_nmi_nosync(unsigned int irq)
766{
767 disable_irq_nosync(irq);
768}
769
770void __enable_irq(struct irq_desc *desc)
771{
772 switch (desc->depth) {
773 case 0:
774 err_out:
775 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
776 irq_desc_get_irq(desc));
777 break;
778 case 1: {
779 if (desc->istate & IRQS_SUSPENDED)
780 goto err_out;
781 /* Prevent probing on this irq: */
782 irq_settings_set_noprobe(desc);
783 /*
784 * Call irq_startup() not irq_enable() here because the
785 * interrupt might be marked NOAUTOEN. So irq_startup()
786 * needs to be invoked when it gets enabled the first
787 * time. If it was already started up, then irq_startup()
788 * will invoke irq_enable() under the hood.
789 */
790 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
791 break;
792 }
793 default:
794 desc->depth--;
795 }
796}
797
798/**
799 * enable_irq - enable handling of an irq
800 * @irq: Interrupt to enable
801 *
802 * Undoes the effect of one call to disable_irq(). If this
803 * matches the last disable, processing of interrupts on this
804 * IRQ line is re-enabled.
805 *
806 * This function may be called from IRQ context only when
807 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
808 */
809void enable_irq(unsigned int irq)
810{
811 unsigned long flags;
812 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
813
814 if (!desc)
815 return;
816 if (WARN(!desc->irq_data.chip,
817 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
818 goto out;
819
820 __enable_irq(desc);
821out:
822 irq_put_desc_busunlock(desc, flags);
823}
824EXPORT_SYMBOL(enable_irq);
825
826/**
827 * enable_nmi - enable handling of an nmi
828 * @irq: Interrupt to enable
829 *
830 * The interrupt to enable must have been requested through request_nmi.
831 * Undoes the effect of one call to disable_nmi(). If this
832 * matches the last disable, processing of interrupts on this
833 * IRQ line is re-enabled.
834 */
835void enable_nmi(unsigned int irq)
836{
837 enable_irq(irq);
838}
839
840static int set_irq_wake_real(unsigned int irq, unsigned int on)
841{
842 struct irq_desc *desc = irq_to_desc(irq);
843 int ret = -ENXIO;
844
845 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
846 return 0;
847
848 if (desc->irq_data.chip->irq_set_wake)
849 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
850
851 return ret;
852}
853
854/**
855 * irq_set_irq_wake - control irq power management wakeup
856 * @irq: interrupt to control
857 * @on: enable/disable power management wakeup
858 *
859 * Enable/disable power management wakeup mode, which is
860 * disabled by default. Enables and disables must match,
861 * just as they match for non-wakeup mode support.
862 *
863 * Wakeup mode lets this IRQ wake the system from sleep
864 * states like "suspend to RAM".
865 *
866 * Note: irq enable/disable state is completely orthogonal
867 * to the enable/disable state of irq wake. An irq can be
868 * disabled with disable_irq() and still wake the system as
869 * long as the irq has wake enabled. If this does not hold,
870 * then the underlying irq chip and the related driver need
871 * to be investigated.
872 */
873int irq_set_irq_wake(unsigned int irq, unsigned int on)
874{
875 unsigned long flags;
876 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
877 int ret = 0;
878
879 if (!desc)
880 return -EINVAL;
881
882 /* Don't use NMIs as wake up interrupts please */
883 if (desc->istate & IRQS_NMI) {
884 ret = -EINVAL;
885 goto out_unlock;
886 }
887
888 /* wakeup-capable irqs can be shared between drivers that
889 * don't need to have the same sleep mode behaviors.
890 */
891 if (on) {
892 if (desc->wake_depth++ == 0) {
893 ret = set_irq_wake_real(irq, on);
894 if (ret)
895 desc->wake_depth = 0;
896 else
897 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
898 }
899 } else {
900 if (desc->wake_depth == 0) {
901 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
902 } else if (--desc->wake_depth == 0) {
903 ret = set_irq_wake_real(irq, on);
904 if (ret)
905 desc->wake_depth = 1;
906 else
907 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
908 }
909 }
910
911out_unlock:
912 irq_put_desc_busunlock(desc, flags);
913 return ret;
914}
915EXPORT_SYMBOL(irq_set_irq_wake);
916
917/*
918 * Internal function that tells the architecture code whether a
919 * particular irq has been exclusively allocated or is available
920 * for driver use.
921 */
922int can_request_irq(unsigned int irq, unsigned long irqflags)
923{
924 unsigned long flags;
925 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
926 int canrequest = 0;
927
928 if (!desc)
929 return 0;
930
931 if (irq_settings_can_request(desc)) {
932 if (!desc->action ||
933 irqflags & desc->action->flags & IRQF_SHARED)
934 canrequest = 1;
935 }
936 irq_put_desc_unlock(desc, flags);
937 return canrequest;
938}
939
940int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
941{
942 struct irq_chip *chip = desc->irq_data.chip;
943 int ret, unmask = 0;
944
945 if (!chip || !chip->irq_set_type) {
946 /*
947 * IRQF_TRIGGER_* but the PIC does not support multiple
948 * flow-types?
949 */
950 pr_debug("No set_type function for IRQ %d (%s)\n",
951 irq_desc_get_irq(desc),
952 chip ? (chip->name ? : "unknown") : "unknown");
953 return 0;
954 }
955
956 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
957 if (!irqd_irq_masked(&desc->irq_data))
958 mask_irq(desc);
959 if (!irqd_irq_disabled(&desc->irq_data))
960 unmask = 1;
961 }
962
963 /* Mask all flags except trigger mode */
964 flags &= IRQ_TYPE_SENSE_MASK;
965 ret = chip->irq_set_type(&desc->irq_data, flags);
966
967 switch (ret) {
968 case IRQ_SET_MASK_OK:
969 case IRQ_SET_MASK_OK_DONE:
970 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
971 irqd_set(&desc->irq_data, flags);
972 fallthrough;
973
974 case IRQ_SET_MASK_OK_NOCOPY:
975 flags = irqd_get_trigger_type(&desc->irq_data);
976 irq_settings_set_trigger_mask(desc, flags);
977 irqd_clear(&desc->irq_data, IRQD_LEVEL);
978 irq_settings_clr_level(desc);
979 if (flags & IRQ_TYPE_LEVEL_MASK) {
980 irq_settings_set_level(desc);
981 irqd_set(&desc->irq_data, IRQD_LEVEL);
982 }
983
984 ret = 0;
985 break;
986 default:
987 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
988 flags, irq_desc_get_irq(desc), chip->irq_set_type);
989 }
990 if (unmask)
991 unmask_irq(desc);
992 return ret;
993}
994
995#ifdef CONFIG_HARDIRQS_SW_RESEND
996int irq_set_parent(int irq, int parent_irq)
997{
998 unsigned long flags;
999 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1000
1001 if (!desc)
1002 return -EINVAL;
1003
1004 desc->parent_irq = parent_irq;
1005
1006 irq_put_desc_unlock(desc, flags);
1007 return 0;
1008}
1009EXPORT_SYMBOL_GPL(irq_set_parent);
1010#endif
1011
1012/*
1013 * Default primary interrupt handler for threaded interrupts. Is
1014 * assigned as primary handler when request_threaded_irq is called
1015 * with handler == NULL. Useful for oneshot interrupts.
1016 */
1017static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1018{
1019 return IRQ_WAKE_THREAD;
1020}
1021
1022/*
1023 * Primary handler for nested threaded interrupts. Should never be
1024 * called.
1025 */
1026static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1027{
1028 WARN(1, "Primary handler called for nested irq %d\n", irq);
1029 return IRQ_NONE;
1030}
1031
1032static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1033{
1034 WARN(1, "Secondary action handler called for irq %d\n", irq);
1035 return IRQ_NONE;
1036}
1037
1038static int irq_wait_for_interrupt(struct irqaction *action)
1039{
1040 for (;;) {
1041 set_current_state(TASK_INTERRUPTIBLE);
1042
1043 if (kthread_should_stop()) {
1044 /* may need to run one last time */
1045 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1046 &action->thread_flags)) {
1047 __set_current_state(TASK_RUNNING);
1048 return 0;
1049 }
1050 __set_current_state(TASK_RUNNING);
1051 return -1;
1052 }
1053
1054 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1055 &action->thread_flags)) {
1056 __set_current_state(TASK_RUNNING);
1057 return 0;
1058 }
1059 schedule();
1060 }
1061}
1062
1063/*
1064 * Oneshot interrupts keep the irq line masked until the threaded
1065 * handler finished. unmask if the interrupt has not been disabled and
1066 * is marked MASKED.
1067 */
1068static void irq_finalize_oneshot(struct irq_desc *desc,
1069 struct irqaction *action)
1070{
1071 if (!(desc->istate & IRQS_ONESHOT) ||
1072 action->handler == irq_forced_secondary_handler)
1073 return;
1074again:
1075 chip_bus_lock(desc);
1076 raw_spin_lock_irq(&desc->lock);
1077
1078 /*
1079 * Implausible though it may be we need to protect us against
1080 * the following scenario:
1081 *
1082 * The thread is faster done than the hard interrupt handler
1083 * on the other CPU. If we unmask the irq line then the
1084 * interrupt can come in again and masks the line, leaves due
1085 * to IRQS_INPROGRESS and the irq line is masked forever.
1086 *
1087 * This also serializes the state of shared oneshot handlers
1088 * versus "desc->threads_oneshot |= action->thread_mask;" in
1089 * irq_wake_thread(). See the comment there which explains the
1090 * serialization.
1091 */
1092 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1093 raw_spin_unlock_irq(&desc->lock);
1094 chip_bus_sync_unlock(desc);
1095 cpu_relax();
1096 goto again;
1097 }
1098
1099 /*
1100 * Now check again, whether the thread should run. Otherwise
1101 * we would clear the threads_oneshot bit of this thread which
1102 * was just set.
1103 */
1104 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1105 goto out_unlock;
1106
1107 desc->threads_oneshot &= ~action->thread_mask;
1108
1109 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1110 irqd_irq_masked(&desc->irq_data))
1111 unmask_threaded_irq(desc);
1112
1113out_unlock:
1114 raw_spin_unlock_irq(&desc->lock);
1115 chip_bus_sync_unlock(desc);
1116}
1117
1118#ifdef CONFIG_SMP
1119/*
1120 * Check whether we need to change the affinity of the interrupt thread.
1121 */
1122static void
1123irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1124{
1125 cpumask_var_t mask;
1126 bool valid = true;
1127
1128 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1129 return;
1130
1131 /*
1132 * In case we are out of memory we set IRQTF_AFFINITY again and
1133 * try again next time
1134 */
1135 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1136 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1137 return;
1138 }
1139
1140 raw_spin_lock_irq(&desc->lock);
1141 /*
1142 * This code is triggered unconditionally. Check the affinity
1143 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1144 */
1145 if (cpumask_available(desc->irq_common_data.affinity)) {
1146 const struct cpumask *m;
1147
1148 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1149 cpumask_copy(mask, m);
1150 } else {
1151 valid = false;
1152 }
1153 raw_spin_unlock_irq(&desc->lock);
1154
1155 if (valid)
1156 set_cpus_allowed_ptr(current, mask);
1157 free_cpumask_var(mask);
1158}
1159#else
1160static inline void
1161irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1162#endif
1163
1164/*
1165 * Interrupts which are not explicitly requested as threaded
1166 * interrupts rely on the implicit bh/preempt disable of the hard irq
1167 * context. So we need to disable bh here to avoid deadlocks and other
1168 * side effects.
1169 */
1170static irqreturn_t
1171irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1172{
1173 irqreturn_t ret;
1174
1175 local_bh_disable();
1176 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1177 local_irq_disable();
1178 ret = action->thread_fn(action->irq, action->dev_id);
1179 if (ret == IRQ_HANDLED)
1180 atomic_inc(&desc->threads_handled);
1181
1182 irq_finalize_oneshot(desc, action);
1183 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1184 local_irq_enable();
1185 local_bh_enable();
1186 return ret;
1187}
1188
1189/*
1190 * Interrupts explicitly requested as threaded interrupts want to be
1191 * preemptible - many of them need to sleep and wait for slow busses to
1192 * complete.
1193 */
1194static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1195 struct irqaction *action)
1196{
1197 irqreturn_t ret;
1198
1199 ret = action->thread_fn(action->irq, action->dev_id);
1200 if (ret == IRQ_HANDLED)
1201 atomic_inc(&desc->threads_handled);
1202
1203 irq_finalize_oneshot(desc, action);
1204 return ret;
1205}
1206
1207static void wake_threads_waitq(struct irq_desc *desc)
1208{
1209 if (atomic_dec_and_test(&desc->threads_active))
1210 wake_up(&desc->wait_for_threads);
1211}
1212
1213static void irq_thread_dtor(struct callback_head *unused)
1214{
1215 struct task_struct *tsk = current;
1216 struct irq_desc *desc;
1217 struct irqaction *action;
1218
1219 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1220 return;
1221
1222 action = kthread_data(tsk);
1223
1224 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1225 tsk->comm, tsk->pid, action->irq);
1226
1227
1228 desc = irq_to_desc(action->irq);
1229 /*
1230 * If IRQTF_RUNTHREAD is set, we need to decrement
1231 * desc->threads_active and wake possible waiters.
1232 */
1233 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1234 wake_threads_waitq(desc);
1235
1236 /* Prevent a stale desc->threads_oneshot */
1237 irq_finalize_oneshot(desc, action);
1238}
1239
1240static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1241{
1242 struct irqaction *secondary = action->secondary;
1243
1244 if (WARN_ON_ONCE(!secondary))
1245 return;
1246
1247 raw_spin_lock_irq(&desc->lock);
1248 __irq_wake_thread(desc, secondary);
1249 raw_spin_unlock_irq(&desc->lock);
1250}
1251
1252/*
1253 * Interrupt handler thread
1254 */
1255static int irq_thread(void *data)
1256{
1257 struct callback_head on_exit_work;
1258 struct irqaction *action = data;
1259 struct irq_desc *desc = irq_to_desc(action->irq);
1260 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1261 struct irqaction *action);
1262
1263 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1264 &action->thread_flags))
1265 handler_fn = irq_forced_thread_fn;
1266 else
1267 handler_fn = irq_thread_fn;
1268
1269 init_task_work(&on_exit_work, irq_thread_dtor);
1270 task_work_add(current, &on_exit_work, TWA_NONE);
1271
1272 irq_thread_check_affinity(desc, action);
1273
1274 while (!irq_wait_for_interrupt(action)) {
1275 irqreturn_t action_ret;
1276
1277 irq_thread_check_affinity(desc, action);
1278
1279 action_ret = handler_fn(desc, action);
1280 if (action_ret == IRQ_WAKE_THREAD)
1281 irq_wake_secondary(desc, action);
1282
1283 wake_threads_waitq(desc);
1284 }
1285
1286 /*
1287 * This is the regular exit path. __free_irq() is stopping the
1288 * thread via kthread_stop() after calling
1289 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1290 * oneshot mask bit can be set.
1291 */
1292 task_work_cancel(current, irq_thread_dtor);
1293 return 0;
1294}
1295
1296/**
1297 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1298 * @irq: Interrupt line
1299 * @dev_id: Device identity for which the thread should be woken
1300 *
1301 */
1302void irq_wake_thread(unsigned int irq, void *dev_id)
1303{
1304 struct irq_desc *desc = irq_to_desc(irq);
1305 struct irqaction *action;
1306 unsigned long flags;
1307
1308 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1309 return;
1310
1311 raw_spin_lock_irqsave(&desc->lock, flags);
1312 for_each_action_of_desc(desc, action) {
1313 if (action->dev_id == dev_id) {
1314 if (action->thread)
1315 __irq_wake_thread(desc, action);
1316 break;
1317 }
1318 }
1319 raw_spin_unlock_irqrestore(&desc->lock, flags);
1320}
1321EXPORT_SYMBOL_GPL(irq_wake_thread);
1322
1323static int irq_setup_forced_threading(struct irqaction *new)
1324{
1325 if (!force_irqthreads)
1326 return 0;
1327 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1328 return 0;
1329
1330 /*
1331 * No further action required for interrupts which are requested as
1332 * threaded interrupts already
1333 */
1334 if (new->handler == irq_default_primary_handler)
1335 return 0;
1336
1337 new->flags |= IRQF_ONESHOT;
1338
1339 /*
1340 * Handle the case where we have a real primary handler and a
1341 * thread handler. We force thread them as well by creating a
1342 * secondary action.
1343 */
1344 if (new->handler && new->thread_fn) {
1345 /* Allocate the secondary action */
1346 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1347 if (!new->secondary)
1348 return -ENOMEM;
1349 new->secondary->handler = irq_forced_secondary_handler;
1350 new->secondary->thread_fn = new->thread_fn;
1351 new->secondary->dev_id = new->dev_id;
1352 new->secondary->irq = new->irq;
1353 new->secondary->name = new->name;
1354 }
1355 /* Deal with the primary handler */
1356 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1357 new->thread_fn = new->handler;
1358 new->handler = irq_default_primary_handler;
1359 return 0;
1360}
1361
1362static int irq_request_resources(struct irq_desc *desc)
1363{
1364 struct irq_data *d = &desc->irq_data;
1365 struct irq_chip *c = d->chip;
1366
1367 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1368}
1369
1370static void irq_release_resources(struct irq_desc *desc)
1371{
1372 struct irq_data *d = &desc->irq_data;
1373 struct irq_chip *c = d->chip;
1374
1375 if (c->irq_release_resources)
1376 c->irq_release_resources(d);
1377}
1378
1379static bool irq_supports_nmi(struct irq_desc *desc)
1380{
1381 struct irq_data *d = irq_desc_get_irq_data(desc);
1382
1383#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1384 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1385 if (d->parent_data)
1386 return false;
1387#endif
1388 /* Don't support NMIs for chips behind a slow bus */
1389 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1390 return false;
1391
1392 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1393}
1394
1395static int irq_nmi_setup(struct irq_desc *desc)
1396{
1397 struct irq_data *d = irq_desc_get_irq_data(desc);
1398 struct irq_chip *c = d->chip;
1399
1400 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1401}
1402
1403static void irq_nmi_teardown(struct irq_desc *desc)
1404{
1405 struct irq_data *d = irq_desc_get_irq_data(desc);
1406 struct irq_chip *c = d->chip;
1407
1408 if (c->irq_nmi_teardown)
1409 c->irq_nmi_teardown(d);
1410}
1411
1412static int
1413setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1414{
1415 struct task_struct *t;
1416
1417 if (!secondary) {
1418 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1419 new->name);
1420 } else {
1421 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1422 new->name);
1423 }
1424
1425 if (IS_ERR(t))
1426 return PTR_ERR(t);
1427
1428 sched_set_fifo(t);
1429
1430 /*
1431 * We keep the reference to the task struct even if
1432 * the thread dies to avoid that the interrupt code
1433 * references an already freed task_struct.
1434 */
1435 new->thread = get_task_struct(t);
1436 /*
1437 * Tell the thread to set its affinity. This is
1438 * important for shared interrupt handlers as we do
1439 * not invoke setup_affinity() for the secondary
1440 * handlers as everything is already set up. Even for
1441 * interrupts marked with IRQF_NO_BALANCE this is
1442 * correct as we want the thread to move to the cpu(s)
1443 * on which the requesting code placed the interrupt.
1444 */
1445 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1446 return 0;
1447}
1448
1449/*
1450 * Internal function to register an irqaction - typically used to
1451 * allocate special interrupts that are part of the architecture.
1452 *
1453 * Locking rules:
1454 *
1455 * desc->request_mutex Provides serialization against a concurrent free_irq()
1456 * chip_bus_lock Provides serialization for slow bus operations
1457 * desc->lock Provides serialization against hard interrupts
1458 *
1459 * chip_bus_lock and desc->lock are sufficient for all other management and
1460 * interrupt related functions. desc->request_mutex solely serializes
1461 * request/free_irq().
1462 */
1463static int
1464__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1465{
1466 struct irqaction *old, **old_ptr;
1467 unsigned long flags, thread_mask = 0;
1468 int ret, nested, shared = 0;
1469
1470 if (!desc)
1471 return -EINVAL;
1472
1473 if (desc->irq_data.chip == &no_irq_chip)
1474 return -ENOSYS;
1475 if (!try_module_get(desc->owner))
1476 return -ENODEV;
1477
1478 new->irq = irq;
1479
1480 /*
1481 * If the trigger type is not specified by the caller,
1482 * then use the default for this interrupt.
1483 */
1484 if (!(new->flags & IRQF_TRIGGER_MASK))
1485 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1486
1487 /*
1488 * Check whether the interrupt nests into another interrupt
1489 * thread.
1490 */
1491 nested = irq_settings_is_nested_thread(desc);
1492 if (nested) {
1493 if (!new->thread_fn) {
1494 ret = -EINVAL;
1495 goto out_mput;
1496 }
1497 /*
1498 * Replace the primary handler which was provided from
1499 * the driver for non nested interrupt handling by the
1500 * dummy function which warns when called.
1501 */
1502 new->handler = irq_nested_primary_handler;
1503 } else {
1504 if (irq_settings_can_thread(desc)) {
1505 ret = irq_setup_forced_threading(new);
1506 if (ret)
1507 goto out_mput;
1508 }
1509 }
1510
1511 /*
1512 * Create a handler thread when a thread function is supplied
1513 * and the interrupt does not nest into another interrupt
1514 * thread.
1515 */
1516 if (new->thread_fn && !nested) {
1517 ret = setup_irq_thread(new, irq, false);
1518 if (ret)
1519 goto out_mput;
1520 if (new->secondary) {
1521 ret = setup_irq_thread(new->secondary, irq, true);
1522 if (ret)
1523 goto out_thread;
1524 }
1525 }
1526
1527 /*
1528 * Drivers are often written to work w/o knowledge about the
1529 * underlying irq chip implementation, so a request for a
1530 * threaded irq without a primary hard irq context handler
1531 * requires the ONESHOT flag to be set. Some irq chips like
1532 * MSI based interrupts are per se one shot safe. Check the
1533 * chip flags, so we can avoid the unmask dance at the end of
1534 * the threaded handler for those.
1535 */
1536 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1537 new->flags &= ~IRQF_ONESHOT;
1538
1539 /*
1540 * Protects against a concurrent __free_irq() call which might wait
1541 * for synchronize_hardirq() to complete without holding the optional
1542 * chip bus lock and desc->lock. Also protects against handing out
1543 * a recycled oneshot thread_mask bit while it's still in use by
1544 * its previous owner.
1545 */
1546 mutex_lock(&desc->request_mutex);
1547
1548 /*
1549 * Acquire bus lock as the irq_request_resources() callback below
1550 * might rely on the serialization or the magic power management
1551 * functions which are abusing the irq_bus_lock() callback,
1552 */
1553 chip_bus_lock(desc);
1554
1555 /* First installed action requests resources. */
1556 if (!desc->action) {
1557 ret = irq_request_resources(desc);
1558 if (ret) {
1559 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1560 new->name, irq, desc->irq_data.chip->name);
1561 goto out_bus_unlock;
1562 }
1563 }
1564
1565 /*
1566 * The following block of code has to be executed atomically
1567 * protected against a concurrent interrupt and any of the other
1568 * management calls which are not serialized via
1569 * desc->request_mutex or the optional bus lock.
1570 */
1571 raw_spin_lock_irqsave(&desc->lock, flags);
1572 old_ptr = &desc->action;
1573 old = *old_ptr;
1574 if (old) {
1575 /*
1576 * Can't share interrupts unless both agree to and are
1577 * the same type (level, edge, polarity). So both flag
1578 * fields must have IRQF_SHARED set and the bits which
1579 * set the trigger type must match. Also all must
1580 * agree on ONESHOT.
1581 * Interrupt lines used for NMIs cannot be shared.
1582 */
1583 unsigned int oldtype;
1584
1585 if (desc->istate & IRQS_NMI) {
1586 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1587 new->name, irq, desc->irq_data.chip->name);
1588 ret = -EINVAL;
1589 goto out_unlock;
1590 }
1591
1592 /*
1593 * If nobody did set the configuration before, inherit
1594 * the one provided by the requester.
1595 */
1596 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1597 oldtype = irqd_get_trigger_type(&desc->irq_data);
1598 } else {
1599 oldtype = new->flags & IRQF_TRIGGER_MASK;
1600 irqd_set_trigger_type(&desc->irq_data, oldtype);
1601 }
1602
1603 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1604 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1605 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1606 goto mismatch;
1607
1608 /* All handlers must agree on per-cpuness */
1609 if ((old->flags & IRQF_PERCPU) !=
1610 (new->flags & IRQF_PERCPU))
1611 goto mismatch;
1612
1613 /* add new interrupt at end of irq queue */
1614 do {
1615 /*
1616 * Or all existing action->thread_mask bits,
1617 * so we can find the next zero bit for this
1618 * new action.
1619 */
1620 thread_mask |= old->thread_mask;
1621 old_ptr = &old->next;
1622 old = *old_ptr;
1623 } while (old);
1624 shared = 1;
1625 }
1626
1627 /*
1628 * Setup the thread mask for this irqaction for ONESHOT. For
1629 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1630 * conditional in irq_wake_thread().
1631 */
1632 if (new->flags & IRQF_ONESHOT) {
1633 /*
1634 * Unlikely to have 32 resp 64 irqs sharing one line,
1635 * but who knows.
1636 */
1637 if (thread_mask == ~0UL) {
1638 ret = -EBUSY;
1639 goto out_unlock;
1640 }
1641 /*
1642 * The thread_mask for the action is or'ed to
1643 * desc->thread_active to indicate that the
1644 * IRQF_ONESHOT thread handler has been woken, but not
1645 * yet finished. The bit is cleared when a thread
1646 * completes. When all threads of a shared interrupt
1647 * line have completed desc->threads_active becomes
1648 * zero and the interrupt line is unmasked. See
1649 * handle.c:irq_wake_thread() for further information.
1650 *
1651 * If no thread is woken by primary (hard irq context)
1652 * interrupt handlers, then desc->threads_active is
1653 * also checked for zero to unmask the irq line in the
1654 * affected hard irq flow handlers
1655 * (handle_[fasteoi|level]_irq).
1656 *
1657 * The new action gets the first zero bit of
1658 * thread_mask assigned. See the loop above which or's
1659 * all existing action->thread_mask bits.
1660 */
1661 new->thread_mask = 1UL << ffz(thread_mask);
1662
1663 } else if (new->handler == irq_default_primary_handler &&
1664 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1665 /*
1666 * The interrupt was requested with handler = NULL, so
1667 * we use the default primary handler for it. But it
1668 * does not have the oneshot flag set. In combination
1669 * with level interrupts this is deadly, because the
1670 * default primary handler just wakes the thread, then
1671 * the irq lines is reenabled, but the device still
1672 * has the level irq asserted. Rinse and repeat....
1673 *
1674 * While this works for edge type interrupts, we play
1675 * it safe and reject unconditionally because we can't
1676 * say for sure which type this interrupt really
1677 * has. The type flags are unreliable as the
1678 * underlying chip implementation can override them.
1679 */
1680 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1681 new->name, irq);
1682 ret = -EINVAL;
1683 goto out_unlock;
1684 }
1685
1686 if (!shared) {
1687 init_waitqueue_head(&desc->wait_for_threads);
1688
1689 /* Setup the type (level, edge polarity) if configured: */
1690 if (new->flags & IRQF_TRIGGER_MASK) {
1691 ret = __irq_set_trigger(desc,
1692 new->flags & IRQF_TRIGGER_MASK);
1693
1694 if (ret)
1695 goto out_unlock;
1696 }
1697
1698 /*
1699 * Activate the interrupt. That activation must happen
1700 * independently of IRQ_NOAUTOEN. request_irq() can fail
1701 * and the callers are supposed to handle
1702 * that. enable_irq() of an interrupt requested with
1703 * IRQ_NOAUTOEN is not supposed to fail. The activation
1704 * keeps it in shutdown mode, it merily associates
1705 * resources if necessary and if that's not possible it
1706 * fails. Interrupts which are in managed shutdown mode
1707 * will simply ignore that activation request.
1708 */
1709 ret = irq_activate(desc);
1710 if (ret)
1711 goto out_unlock;
1712
1713 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1714 IRQS_ONESHOT | IRQS_WAITING);
1715 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1716
1717 if (new->flags & IRQF_PERCPU) {
1718 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1719 irq_settings_set_per_cpu(desc);
1720 if (new->flags & IRQF_NO_DEBUG)
1721 irq_settings_set_no_debug(desc);
1722 }
1723
1724 if (noirqdebug)
1725 irq_settings_set_no_debug(desc);
1726
1727 if (new->flags & IRQF_ONESHOT)
1728 desc->istate |= IRQS_ONESHOT;
1729
1730 /* Exclude IRQ from balancing if requested */
1731 if (new->flags & IRQF_NOBALANCING) {
1732 irq_settings_set_no_balancing(desc);
1733 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1734 }
1735
1736 if (!(new->flags & IRQF_NO_AUTOEN) &&
1737 irq_settings_can_autoenable(desc)) {
1738 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1739 } else {
1740 /*
1741 * Shared interrupts do not go well with disabling
1742 * auto enable. The sharing interrupt might request
1743 * it while it's still disabled and then wait for
1744 * interrupts forever.
1745 */
1746 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1747 /* Undo nested disables: */
1748 desc->depth = 1;
1749 }
1750
1751 } else if (new->flags & IRQF_TRIGGER_MASK) {
1752 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1753 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1754
1755 if (nmsk != omsk)
1756 /* hope the handler works with current trigger mode */
1757 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1758 irq, omsk, nmsk);
1759 }
1760
1761 *old_ptr = new;
1762
1763 irq_pm_install_action(desc, new);
1764
1765 /* Reset broken irq detection when installing new handler */
1766 desc->irq_count = 0;
1767 desc->irqs_unhandled = 0;
1768
1769 /*
1770 * Check whether we disabled the irq via the spurious handler
1771 * before. Reenable it and give it another chance.
1772 */
1773 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1774 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1775 __enable_irq(desc);
1776 }
1777
1778 raw_spin_unlock_irqrestore(&desc->lock, flags);
1779 chip_bus_sync_unlock(desc);
1780 mutex_unlock(&desc->request_mutex);
1781
1782 irq_setup_timings(desc, new);
1783
1784 /*
1785 * Strictly no need to wake it up, but hung_task complains
1786 * when no hard interrupt wakes the thread up.
1787 */
1788 if (new->thread)
1789 wake_up_process(new->thread);
1790 if (new->secondary)
1791 wake_up_process(new->secondary->thread);
1792
1793 register_irq_proc(irq, desc);
1794 new->dir = NULL;
1795 register_handler_proc(irq, new);
1796 return 0;
1797
1798mismatch:
1799 if (!(new->flags & IRQF_PROBE_SHARED)) {
1800 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1801 irq, new->flags, new->name, old->flags, old->name);
1802#ifdef CONFIG_DEBUG_SHIRQ
1803 dump_stack();
1804#endif
1805 }
1806 ret = -EBUSY;
1807
1808out_unlock:
1809 raw_spin_unlock_irqrestore(&desc->lock, flags);
1810
1811 if (!desc->action)
1812 irq_release_resources(desc);
1813out_bus_unlock:
1814 chip_bus_sync_unlock(desc);
1815 mutex_unlock(&desc->request_mutex);
1816
1817out_thread:
1818 if (new->thread) {
1819 struct task_struct *t = new->thread;
1820
1821 new->thread = NULL;
1822 kthread_stop(t);
1823 put_task_struct(t);
1824 }
1825 if (new->secondary && new->secondary->thread) {
1826 struct task_struct *t = new->secondary->thread;
1827
1828 new->secondary->thread = NULL;
1829 kthread_stop(t);
1830 put_task_struct(t);
1831 }
1832out_mput:
1833 module_put(desc->owner);
1834 return ret;
1835}
1836
1837/*
1838 * Internal function to unregister an irqaction - used to free
1839 * regular and special interrupts that are part of the architecture.
1840 */
1841static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1842{
1843 unsigned irq = desc->irq_data.irq;
1844 struct irqaction *action, **action_ptr;
1845 unsigned long flags;
1846
1847 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1848
1849 mutex_lock(&desc->request_mutex);
1850 chip_bus_lock(desc);
1851 raw_spin_lock_irqsave(&desc->lock, flags);
1852
1853 /*
1854 * There can be multiple actions per IRQ descriptor, find the right
1855 * one based on the dev_id:
1856 */
1857 action_ptr = &desc->action;
1858 for (;;) {
1859 action = *action_ptr;
1860
1861 if (!action) {
1862 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1863 raw_spin_unlock_irqrestore(&desc->lock, flags);
1864 chip_bus_sync_unlock(desc);
1865 mutex_unlock(&desc->request_mutex);
1866 return NULL;
1867 }
1868
1869 if (action->dev_id == dev_id)
1870 break;
1871 action_ptr = &action->next;
1872 }
1873
1874 /* Found it - now remove it from the list of entries: */
1875 *action_ptr = action->next;
1876
1877 irq_pm_remove_action(desc, action);
1878
1879 /* If this was the last handler, shut down the IRQ line: */
1880 if (!desc->action) {
1881 irq_settings_clr_disable_unlazy(desc);
1882 /* Only shutdown. Deactivate after synchronize_hardirq() */
1883 irq_shutdown(desc);
1884 }
1885
1886#ifdef CONFIG_SMP
1887 /* make sure affinity_hint is cleaned up */
1888 if (WARN_ON_ONCE(desc->affinity_hint))
1889 desc->affinity_hint = NULL;
1890#endif
1891
1892 raw_spin_unlock_irqrestore(&desc->lock, flags);
1893 /*
1894 * Drop bus_lock here so the changes which were done in the chip
1895 * callbacks above are synced out to the irq chips which hang
1896 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1897 *
1898 * Aside of that the bus_lock can also be taken from the threaded
1899 * handler in irq_finalize_oneshot() which results in a deadlock
1900 * because kthread_stop() would wait forever for the thread to
1901 * complete, which is blocked on the bus lock.
1902 *
1903 * The still held desc->request_mutex() protects against a
1904 * concurrent request_irq() of this irq so the release of resources
1905 * and timing data is properly serialized.
1906 */
1907 chip_bus_sync_unlock(desc);
1908
1909 unregister_handler_proc(irq, action);
1910
1911 /*
1912 * Make sure it's not being used on another CPU and if the chip
1913 * supports it also make sure that there is no (not yet serviced)
1914 * interrupt in flight at the hardware level.
1915 */
1916 __synchronize_hardirq(desc, true);
1917
1918#ifdef CONFIG_DEBUG_SHIRQ
1919 /*
1920 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1921 * event to happen even now it's being freed, so let's make sure that
1922 * is so by doing an extra call to the handler ....
1923 *
1924 * ( We do this after actually deregistering it, to make sure that a
1925 * 'real' IRQ doesn't run in parallel with our fake. )
1926 */
1927 if (action->flags & IRQF_SHARED) {
1928 local_irq_save(flags);
1929 action->handler(irq, dev_id);
1930 local_irq_restore(flags);
1931 }
1932#endif
1933
1934 /*
1935 * The action has already been removed above, but the thread writes
1936 * its oneshot mask bit when it completes. Though request_mutex is
1937 * held across this which prevents __setup_irq() from handing out
1938 * the same bit to a newly requested action.
1939 */
1940 if (action->thread) {
1941 kthread_stop(action->thread);
1942 put_task_struct(action->thread);
1943 if (action->secondary && action->secondary->thread) {
1944 kthread_stop(action->secondary->thread);
1945 put_task_struct(action->secondary->thread);
1946 }
1947 }
1948
1949 /* Last action releases resources */
1950 if (!desc->action) {
1951 /*
1952 * Reacquire bus lock as irq_release_resources() might
1953 * require it to deallocate resources over the slow bus.
1954 */
1955 chip_bus_lock(desc);
1956 /*
1957 * There is no interrupt on the fly anymore. Deactivate it
1958 * completely.
1959 */
1960 raw_spin_lock_irqsave(&desc->lock, flags);
1961 irq_domain_deactivate_irq(&desc->irq_data);
1962 raw_spin_unlock_irqrestore(&desc->lock, flags);
1963
1964 irq_release_resources(desc);
1965 chip_bus_sync_unlock(desc);
1966 irq_remove_timings(desc);
1967 }
1968
1969 mutex_unlock(&desc->request_mutex);
1970
1971 irq_chip_pm_put(&desc->irq_data);
1972 module_put(desc->owner);
1973 kfree(action->secondary);
1974 return action;
1975}
1976
1977/**
1978 * free_irq - free an interrupt allocated with request_irq
1979 * @irq: Interrupt line to free
1980 * @dev_id: Device identity to free
1981 *
1982 * Remove an interrupt handler. The handler is removed and if the
1983 * interrupt line is no longer in use by any driver it is disabled.
1984 * On a shared IRQ the caller must ensure the interrupt is disabled
1985 * on the card it drives before calling this function. The function
1986 * does not return until any executing interrupts for this IRQ
1987 * have completed.
1988 *
1989 * This function must not be called from interrupt context.
1990 *
1991 * Returns the devname argument passed to request_irq.
1992 */
1993const void *free_irq(unsigned int irq, void *dev_id)
1994{
1995 struct irq_desc *desc = irq_to_desc(irq);
1996 struct irqaction *action;
1997 const char *devname;
1998
1999 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2000 return NULL;
2001
2002#ifdef CONFIG_SMP
2003 if (WARN_ON(desc->affinity_notify))
2004 desc->affinity_notify = NULL;
2005#endif
2006
2007 action = __free_irq(desc, dev_id);
2008
2009 if (!action)
2010 return NULL;
2011
2012 devname = action->name;
2013 kfree(action);
2014 return devname;
2015}
2016EXPORT_SYMBOL(free_irq);
2017
2018/* This function must be called with desc->lock held */
2019static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2020{
2021 const char *devname = NULL;
2022
2023 desc->istate &= ~IRQS_NMI;
2024
2025 if (!WARN_ON(desc->action == NULL)) {
2026 irq_pm_remove_action(desc, desc->action);
2027 devname = desc->action->name;
2028 unregister_handler_proc(irq, desc->action);
2029
2030 kfree(desc->action);
2031 desc->action = NULL;
2032 }
2033
2034 irq_settings_clr_disable_unlazy(desc);
2035 irq_shutdown_and_deactivate(desc);
2036
2037 irq_release_resources(desc);
2038
2039 irq_chip_pm_put(&desc->irq_data);
2040 module_put(desc->owner);
2041
2042 return devname;
2043}
2044
2045const void *free_nmi(unsigned int irq, void *dev_id)
2046{
2047 struct irq_desc *desc = irq_to_desc(irq);
2048 unsigned long flags;
2049 const void *devname;
2050
2051 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2052 return NULL;
2053
2054 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2055 return NULL;
2056
2057 /* NMI still enabled */
2058 if (WARN_ON(desc->depth == 0))
2059 disable_nmi_nosync(irq);
2060
2061 raw_spin_lock_irqsave(&desc->lock, flags);
2062
2063 irq_nmi_teardown(desc);
2064 devname = __cleanup_nmi(irq, desc);
2065
2066 raw_spin_unlock_irqrestore(&desc->lock, flags);
2067
2068 return devname;
2069}
2070
2071/**
2072 * request_threaded_irq - allocate an interrupt line
2073 * @irq: Interrupt line to allocate
2074 * @handler: Function to be called when the IRQ occurs.
2075 * Primary handler for threaded interrupts
2076 * If NULL and thread_fn != NULL the default
2077 * primary handler is installed
2078 * @thread_fn: Function called from the irq handler thread
2079 * If NULL, no irq thread is created
2080 * @irqflags: Interrupt type flags
2081 * @devname: An ascii name for the claiming device
2082 * @dev_id: A cookie passed back to the handler function
2083 *
2084 * This call allocates interrupt resources and enables the
2085 * interrupt line and IRQ handling. From the point this
2086 * call is made your handler function may be invoked. Since
2087 * your handler function must clear any interrupt the board
2088 * raises, you must take care both to initialise your hardware
2089 * and to set up the interrupt handler in the right order.
2090 *
2091 * If you want to set up a threaded irq handler for your device
2092 * then you need to supply @handler and @thread_fn. @handler is
2093 * still called in hard interrupt context and has to check
2094 * whether the interrupt originates from the device. If yes it
2095 * needs to disable the interrupt on the device and return
2096 * IRQ_WAKE_THREAD which will wake up the handler thread and run
2097 * @thread_fn. This split handler design is necessary to support
2098 * shared interrupts.
2099 *
2100 * Dev_id must be globally unique. Normally the address of the
2101 * device data structure is used as the cookie. Since the handler
2102 * receives this value it makes sense to use it.
2103 *
2104 * If your interrupt is shared you must pass a non NULL dev_id
2105 * as this is required when freeing the interrupt.
2106 *
2107 * Flags:
2108 *
2109 * IRQF_SHARED Interrupt is shared
2110 * IRQF_TRIGGER_* Specify active edge(s) or level
2111 *
2112 */
2113int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2114 irq_handler_t thread_fn, unsigned long irqflags,
2115 const char *devname, void *dev_id)
2116{
2117 struct irqaction *action;
2118 struct irq_desc *desc;
2119 int retval;
2120
2121 if (irq == IRQ_NOTCONNECTED)
2122 return -ENOTCONN;
2123
2124 /*
2125 * Sanity-check: shared interrupts must pass in a real dev-ID,
2126 * otherwise we'll have trouble later trying to figure out
2127 * which interrupt is which (messes up the interrupt freeing
2128 * logic etc).
2129 *
2130 * Also shared interrupts do not go well with disabling auto enable.
2131 * The sharing interrupt might request it while it's still disabled
2132 * and then wait for interrupts forever.
2133 *
2134 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2135 * it cannot be set along with IRQF_NO_SUSPEND.
2136 */
2137 if (((irqflags & IRQF_SHARED) && !dev_id) ||
2138 ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2139 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2140 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2141 return -EINVAL;
2142
2143 desc = irq_to_desc(irq);
2144 if (!desc)
2145 return -EINVAL;
2146
2147 if (!irq_settings_can_request(desc) ||
2148 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2149 return -EINVAL;
2150
2151 if (!handler) {
2152 if (!thread_fn)
2153 return -EINVAL;
2154 handler = irq_default_primary_handler;
2155 }
2156
2157 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2158 if (!action)
2159 return -ENOMEM;
2160
2161 action->handler = handler;
2162 action->thread_fn = thread_fn;
2163 action->flags = irqflags;
2164 action->name = devname;
2165 action->dev_id = dev_id;
2166
2167 retval = irq_chip_pm_get(&desc->irq_data);
2168 if (retval < 0) {
2169 kfree(action);
2170 return retval;
2171 }
2172
2173 retval = __setup_irq(irq, desc, action);
2174
2175 if (retval) {
2176 irq_chip_pm_put(&desc->irq_data);
2177 kfree(action->secondary);
2178 kfree(action);
2179 }
2180
2181#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2182 if (!retval && (irqflags & IRQF_SHARED)) {
2183 /*
2184 * It's a shared IRQ -- the driver ought to be prepared for it
2185 * to happen immediately, so let's make sure....
2186 * We disable the irq to make sure that a 'real' IRQ doesn't
2187 * run in parallel with our fake.
2188 */
2189 unsigned long flags;
2190
2191 disable_irq(irq);
2192 local_irq_save(flags);
2193
2194 handler(irq, dev_id);
2195
2196 local_irq_restore(flags);
2197 enable_irq(irq);
2198 }
2199#endif
2200 return retval;
2201}
2202EXPORT_SYMBOL(request_threaded_irq);
2203
2204/**
2205 * request_any_context_irq - allocate an interrupt line
2206 * @irq: Interrupt line to allocate
2207 * @handler: Function to be called when the IRQ occurs.
2208 * Threaded handler for threaded interrupts.
2209 * @flags: Interrupt type flags
2210 * @name: An ascii name for the claiming device
2211 * @dev_id: A cookie passed back to the handler function
2212 *
2213 * This call allocates interrupt resources and enables the
2214 * interrupt line and IRQ handling. It selects either a
2215 * hardirq or threaded handling method depending on the
2216 * context.
2217 *
2218 * On failure, it returns a negative value. On success,
2219 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2220 */
2221int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2222 unsigned long flags, const char *name, void *dev_id)
2223{
2224 struct irq_desc *desc;
2225 int ret;
2226
2227 if (irq == IRQ_NOTCONNECTED)
2228 return -ENOTCONN;
2229
2230 desc = irq_to_desc(irq);
2231 if (!desc)
2232 return -EINVAL;
2233
2234 if (irq_settings_is_nested_thread(desc)) {
2235 ret = request_threaded_irq(irq, NULL, handler,
2236 flags, name, dev_id);
2237 return !ret ? IRQC_IS_NESTED : ret;
2238 }
2239
2240 ret = request_irq(irq, handler, flags, name, dev_id);
2241 return !ret ? IRQC_IS_HARDIRQ : ret;
2242}
2243EXPORT_SYMBOL_GPL(request_any_context_irq);
2244
2245/**
2246 * request_nmi - allocate an interrupt line for NMI delivery
2247 * @irq: Interrupt line to allocate
2248 * @handler: Function to be called when the IRQ occurs.
2249 * Threaded handler for threaded interrupts.
2250 * @irqflags: Interrupt type flags
2251 * @name: An ascii name for the claiming device
2252 * @dev_id: A cookie passed back to the handler function
2253 *
2254 * This call allocates interrupt resources and enables the
2255 * interrupt line and IRQ handling. It sets up the IRQ line
2256 * to be handled as an NMI.
2257 *
2258 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2259 * cannot be threaded.
2260 *
2261 * Interrupt lines requested for NMI delivering must produce per cpu
2262 * interrupts and have auto enabling setting disabled.
2263 *
2264 * Dev_id must be globally unique. Normally the address of the
2265 * device data structure is used as the cookie. Since the handler
2266 * receives this value it makes sense to use it.
2267 *
2268 * If the interrupt line cannot be used to deliver NMIs, function
2269 * will fail and return a negative value.
2270 */
2271int request_nmi(unsigned int irq, irq_handler_t handler,
2272 unsigned long irqflags, const char *name, void *dev_id)
2273{
2274 struct irqaction *action;
2275 struct irq_desc *desc;
2276 unsigned long flags;
2277 int retval;
2278
2279 if (irq == IRQ_NOTCONNECTED)
2280 return -ENOTCONN;
2281
2282 /* NMI cannot be shared, used for Polling */
2283 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2284 return -EINVAL;
2285
2286 if (!(irqflags & IRQF_PERCPU))
2287 return -EINVAL;
2288
2289 if (!handler)
2290 return -EINVAL;
2291
2292 desc = irq_to_desc(irq);
2293
2294 if (!desc || (irq_settings_can_autoenable(desc) &&
2295 !(irqflags & IRQF_NO_AUTOEN)) ||
2296 !irq_settings_can_request(desc) ||
2297 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2298 !irq_supports_nmi(desc))
2299 return -EINVAL;
2300
2301 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2302 if (!action)
2303 return -ENOMEM;
2304
2305 action->handler = handler;
2306 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2307 action->name = name;
2308 action->dev_id = dev_id;
2309
2310 retval = irq_chip_pm_get(&desc->irq_data);
2311 if (retval < 0)
2312 goto err_out;
2313
2314 retval = __setup_irq(irq, desc, action);
2315 if (retval)
2316 goto err_irq_setup;
2317
2318 raw_spin_lock_irqsave(&desc->lock, flags);
2319
2320 /* Setup NMI state */
2321 desc->istate |= IRQS_NMI;
2322 retval = irq_nmi_setup(desc);
2323 if (retval) {
2324 __cleanup_nmi(irq, desc);
2325 raw_spin_unlock_irqrestore(&desc->lock, flags);
2326 return -EINVAL;
2327 }
2328
2329 raw_spin_unlock_irqrestore(&desc->lock, flags);
2330
2331 return 0;
2332
2333err_irq_setup:
2334 irq_chip_pm_put(&desc->irq_data);
2335err_out:
2336 kfree(action);
2337
2338 return retval;
2339}
2340
2341void enable_percpu_irq(unsigned int irq, unsigned int type)
2342{
2343 unsigned int cpu = smp_processor_id();
2344 unsigned long flags;
2345 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2346
2347 if (!desc)
2348 return;
2349
2350 /*
2351 * If the trigger type is not specified by the caller, then
2352 * use the default for this interrupt.
2353 */
2354 type &= IRQ_TYPE_SENSE_MASK;
2355 if (type == IRQ_TYPE_NONE)
2356 type = irqd_get_trigger_type(&desc->irq_data);
2357
2358 if (type != IRQ_TYPE_NONE) {
2359 int ret;
2360
2361 ret = __irq_set_trigger(desc, type);
2362
2363 if (ret) {
2364 WARN(1, "failed to set type for IRQ%d\n", irq);
2365 goto out;
2366 }
2367 }
2368
2369 irq_percpu_enable(desc, cpu);
2370out:
2371 irq_put_desc_unlock(desc, flags);
2372}
2373EXPORT_SYMBOL_GPL(enable_percpu_irq);
2374
2375void enable_percpu_nmi(unsigned int irq, unsigned int type)
2376{
2377 enable_percpu_irq(irq, type);
2378}
2379
2380/**
2381 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2382 * @irq: Linux irq number to check for
2383 *
2384 * Must be called from a non migratable context. Returns the enable
2385 * state of a per cpu interrupt on the current cpu.
2386 */
2387bool irq_percpu_is_enabled(unsigned int irq)
2388{
2389 unsigned int cpu = smp_processor_id();
2390 struct irq_desc *desc;
2391 unsigned long flags;
2392 bool is_enabled;
2393
2394 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2395 if (!desc)
2396 return false;
2397
2398 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2399 irq_put_desc_unlock(desc, flags);
2400
2401 return is_enabled;
2402}
2403EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2404
2405void disable_percpu_irq(unsigned int irq)
2406{
2407 unsigned int cpu = smp_processor_id();
2408 unsigned long flags;
2409 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2410
2411 if (!desc)
2412 return;
2413
2414 irq_percpu_disable(desc, cpu);
2415 irq_put_desc_unlock(desc, flags);
2416}
2417EXPORT_SYMBOL_GPL(disable_percpu_irq);
2418
2419void disable_percpu_nmi(unsigned int irq)
2420{
2421 disable_percpu_irq(irq);
2422}
2423
2424/*
2425 * Internal function to unregister a percpu irqaction.
2426 */
2427static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2428{
2429 struct irq_desc *desc = irq_to_desc(irq);
2430 struct irqaction *action;
2431 unsigned long flags;
2432
2433 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2434
2435 if (!desc)
2436 return NULL;
2437
2438 raw_spin_lock_irqsave(&desc->lock, flags);
2439
2440 action = desc->action;
2441 if (!action || action->percpu_dev_id != dev_id) {
2442 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2443 goto bad;
2444 }
2445
2446 if (!cpumask_empty(desc->percpu_enabled)) {
2447 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2448 irq, cpumask_first(desc->percpu_enabled));
2449 goto bad;
2450 }
2451
2452 /* Found it - now remove it from the list of entries: */
2453 desc->action = NULL;
2454
2455 desc->istate &= ~IRQS_NMI;
2456
2457 raw_spin_unlock_irqrestore(&desc->lock, flags);
2458
2459 unregister_handler_proc(irq, action);
2460
2461 irq_chip_pm_put(&desc->irq_data);
2462 module_put(desc->owner);
2463 return action;
2464
2465bad:
2466 raw_spin_unlock_irqrestore(&desc->lock, flags);
2467 return NULL;
2468}
2469
2470/**
2471 * remove_percpu_irq - free a per-cpu interrupt
2472 * @irq: Interrupt line to free
2473 * @act: irqaction for the interrupt
2474 *
2475 * Used to remove interrupts statically setup by the early boot process.
2476 */
2477void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2478{
2479 struct irq_desc *desc = irq_to_desc(irq);
2480
2481 if (desc && irq_settings_is_per_cpu_devid(desc))
2482 __free_percpu_irq(irq, act->percpu_dev_id);
2483}
2484
2485/**
2486 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2487 * @irq: Interrupt line to free
2488 * @dev_id: Device identity to free
2489 *
2490 * Remove a percpu interrupt handler. The handler is removed, but
2491 * the interrupt line is not disabled. This must be done on each
2492 * CPU before calling this function. The function does not return
2493 * until any executing interrupts for this IRQ have completed.
2494 *
2495 * This function must not be called from interrupt context.
2496 */
2497void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2498{
2499 struct irq_desc *desc = irq_to_desc(irq);
2500
2501 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2502 return;
2503
2504 chip_bus_lock(desc);
2505 kfree(__free_percpu_irq(irq, dev_id));
2506 chip_bus_sync_unlock(desc);
2507}
2508EXPORT_SYMBOL_GPL(free_percpu_irq);
2509
2510void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2511{
2512 struct irq_desc *desc = irq_to_desc(irq);
2513
2514 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2515 return;
2516
2517 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2518 return;
2519
2520 kfree(__free_percpu_irq(irq, dev_id));
2521}
2522
2523/**
2524 * setup_percpu_irq - setup a per-cpu interrupt
2525 * @irq: Interrupt line to setup
2526 * @act: irqaction for the interrupt
2527 *
2528 * Used to statically setup per-cpu interrupts in the early boot process.
2529 */
2530int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2531{
2532 struct irq_desc *desc = irq_to_desc(irq);
2533 int retval;
2534
2535 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536 return -EINVAL;
2537
2538 retval = irq_chip_pm_get(&desc->irq_data);
2539 if (retval < 0)
2540 return retval;
2541
2542 retval = __setup_irq(irq, desc, act);
2543
2544 if (retval)
2545 irq_chip_pm_put(&desc->irq_data);
2546
2547 return retval;
2548}
2549
2550/**
2551 * __request_percpu_irq - allocate a percpu interrupt line
2552 * @irq: Interrupt line to allocate
2553 * @handler: Function to be called when the IRQ occurs.
2554 * @flags: Interrupt type flags (IRQF_TIMER only)
2555 * @devname: An ascii name for the claiming device
2556 * @dev_id: A percpu cookie passed back to the handler function
2557 *
2558 * This call allocates interrupt resources and enables the
2559 * interrupt on the local CPU. If the interrupt is supposed to be
2560 * enabled on other CPUs, it has to be done on each CPU using
2561 * enable_percpu_irq().
2562 *
2563 * Dev_id must be globally unique. It is a per-cpu variable, and
2564 * the handler gets called with the interrupted CPU's instance of
2565 * that variable.
2566 */
2567int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2568 unsigned long flags, const char *devname,
2569 void __percpu *dev_id)
2570{
2571 struct irqaction *action;
2572 struct irq_desc *desc;
2573 int retval;
2574
2575 if (!dev_id)
2576 return -EINVAL;
2577
2578 desc = irq_to_desc(irq);
2579 if (!desc || !irq_settings_can_request(desc) ||
2580 !irq_settings_is_per_cpu_devid(desc))
2581 return -EINVAL;
2582
2583 if (flags && flags != IRQF_TIMER)
2584 return -EINVAL;
2585
2586 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2587 if (!action)
2588 return -ENOMEM;
2589
2590 action->handler = handler;
2591 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2592 action->name = devname;
2593 action->percpu_dev_id = dev_id;
2594
2595 retval = irq_chip_pm_get(&desc->irq_data);
2596 if (retval < 0) {
2597 kfree(action);
2598 return retval;
2599 }
2600
2601 retval = __setup_irq(irq, desc, action);
2602
2603 if (retval) {
2604 irq_chip_pm_put(&desc->irq_data);
2605 kfree(action);
2606 }
2607
2608 return retval;
2609}
2610EXPORT_SYMBOL_GPL(__request_percpu_irq);
2611
2612/**
2613 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2614 * @irq: Interrupt line to allocate
2615 * @handler: Function to be called when the IRQ occurs.
2616 * @name: An ascii name for the claiming device
2617 * @dev_id: A percpu cookie passed back to the handler function
2618 *
2619 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2620 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2621 * being enabled on the same CPU by using enable_percpu_nmi().
2622 *
2623 * Dev_id must be globally unique. It is a per-cpu variable, and
2624 * the handler gets called with the interrupted CPU's instance of
2625 * that variable.
2626 *
2627 * Interrupt lines requested for NMI delivering should have auto enabling
2628 * setting disabled.
2629 *
2630 * If the interrupt line cannot be used to deliver NMIs, function
2631 * will fail returning a negative value.
2632 */
2633int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2634 const char *name, void __percpu *dev_id)
2635{
2636 struct irqaction *action;
2637 struct irq_desc *desc;
2638 unsigned long flags;
2639 int retval;
2640
2641 if (!handler)
2642 return -EINVAL;
2643
2644 desc = irq_to_desc(irq);
2645
2646 if (!desc || !irq_settings_can_request(desc) ||
2647 !irq_settings_is_per_cpu_devid(desc) ||
2648 irq_settings_can_autoenable(desc) ||
2649 !irq_supports_nmi(desc))
2650 return -EINVAL;
2651
2652 /* The line cannot already be NMI */
2653 if (desc->istate & IRQS_NMI)
2654 return -EINVAL;
2655
2656 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2657 if (!action)
2658 return -ENOMEM;
2659
2660 action->handler = handler;
2661 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2662 | IRQF_NOBALANCING;
2663 action->name = name;
2664 action->percpu_dev_id = dev_id;
2665
2666 retval = irq_chip_pm_get(&desc->irq_data);
2667 if (retval < 0)
2668 goto err_out;
2669
2670 retval = __setup_irq(irq, desc, action);
2671 if (retval)
2672 goto err_irq_setup;
2673
2674 raw_spin_lock_irqsave(&desc->lock, flags);
2675 desc->istate |= IRQS_NMI;
2676 raw_spin_unlock_irqrestore(&desc->lock, flags);
2677
2678 return 0;
2679
2680err_irq_setup:
2681 irq_chip_pm_put(&desc->irq_data);
2682err_out:
2683 kfree(action);
2684
2685 return retval;
2686}
2687
2688/**
2689 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2690 * @irq: Interrupt line to prepare for NMI delivery
2691 *
2692 * This call prepares an interrupt line to deliver NMI on the current CPU,
2693 * before that interrupt line gets enabled with enable_percpu_nmi().
2694 *
2695 * As a CPU local operation, this should be called from non-preemptible
2696 * context.
2697 *
2698 * If the interrupt line cannot be used to deliver NMIs, function
2699 * will fail returning a negative value.
2700 */
2701int prepare_percpu_nmi(unsigned int irq)
2702{
2703 unsigned long flags;
2704 struct irq_desc *desc;
2705 int ret = 0;
2706
2707 WARN_ON(preemptible());
2708
2709 desc = irq_get_desc_lock(irq, &flags,
2710 IRQ_GET_DESC_CHECK_PERCPU);
2711 if (!desc)
2712 return -EINVAL;
2713
2714 if (WARN(!(desc->istate & IRQS_NMI),
2715 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2716 irq)) {
2717 ret = -EINVAL;
2718 goto out;
2719 }
2720
2721 ret = irq_nmi_setup(desc);
2722 if (ret) {
2723 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2724 goto out;
2725 }
2726
2727out:
2728 irq_put_desc_unlock(desc, flags);
2729 return ret;
2730}
2731
2732/**
2733 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2734 * @irq: Interrupt line from which CPU local NMI configuration should be
2735 * removed
2736 *
2737 * This call undoes the setup done by prepare_percpu_nmi().
2738 *
2739 * IRQ line should not be enabled for the current CPU.
2740 *
2741 * As a CPU local operation, this should be called from non-preemptible
2742 * context.
2743 */
2744void teardown_percpu_nmi(unsigned int irq)
2745{
2746 unsigned long flags;
2747 struct irq_desc *desc;
2748
2749 WARN_ON(preemptible());
2750
2751 desc = irq_get_desc_lock(irq, &flags,
2752 IRQ_GET_DESC_CHECK_PERCPU);
2753 if (!desc)
2754 return;
2755
2756 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2757 goto out;
2758
2759 irq_nmi_teardown(desc);
2760out:
2761 irq_put_desc_unlock(desc, flags);
2762}
2763
2764int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2765 bool *state)
2766{
2767 struct irq_chip *chip;
2768 int err = -EINVAL;
2769
2770 do {
2771 chip = irq_data_get_irq_chip(data);
2772 if (WARN_ON_ONCE(!chip))
2773 return -ENODEV;
2774 if (chip->irq_get_irqchip_state)
2775 break;
2776#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2777 data = data->parent_data;
2778#else
2779 data = NULL;
2780#endif
2781 } while (data);
2782
2783 if (data)
2784 err = chip->irq_get_irqchip_state(data, which, state);
2785 return err;
2786}
2787
2788/**
2789 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2790 * @irq: Interrupt line that is forwarded to a VM
2791 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2792 * @state: a pointer to a boolean where the state is to be stored
2793 *
2794 * This call snapshots the internal irqchip state of an
2795 * interrupt, returning into @state the bit corresponding to
2796 * stage @which
2797 *
2798 * This function should be called with preemption disabled if the
2799 * interrupt controller has per-cpu registers.
2800 */
2801int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2802 bool *state)
2803{
2804 struct irq_desc *desc;
2805 struct irq_data *data;
2806 unsigned long flags;
2807 int err = -EINVAL;
2808
2809 desc = irq_get_desc_buslock(irq, &flags, 0);
2810 if (!desc)
2811 return err;
2812
2813 data = irq_desc_get_irq_data(desc);
2814
2815 err = __irq_get_irqchip_state(data, which, state);
2816
2817 irq_put_desc_busunlock(desc, flags);
2818 return err;
2819}
2820EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2821
2822/**
2823 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2824 * @irq: Interrupt line that is forwarded to a VM
2825 * @which: State to be restored (one of IRQCHIP_STATE_*)
2826 * @val: Value corresponding to @which
2827 *
2828 * This call sets the internal irqchip state of an interrupt,
2829 * depending on the value of @which.
2830 *
2831 * This function should be called with preemption disabled if the
2832 * interrupt controller has per-cpu registers.
2833 */
2834int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2835 bool val)
2836{
2837 struct irq_desc *desc;
2838 struct irq_data *data;
2839 struct irq_chip *chip;
2840 unsigned long flags;
2841 int err = -EINVAL;
2842
2843 desc = irq_get_desc_buslock(irq, &flags, 0);
2844 if (!desc)
2845 return err;
2846
2847 data = irq_desc_get_irq_data(desc);
2848
2849 do {
2850 chip = irq_data_get_irq_chip(data);
2851 if (WARN_ON_ONCE(!chip)) {
2852 err = -ENODEV;
2853 goto out_unlock;
2854 }
2855 if (chip->irq_set_irqchip_state)
2856 break;
2857#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2858 data = data->parent_data;
2859#else
2860 data = NULL;
2861#endif
2862 } while (data);
2863
2864 if (data)
2865 err = chip->irq_set_irqchip_state(data, which, val);
2866
2867out_unlock:
2868 irq_put_desc_busunlock(desc, flags);
2869 return err;
2870}
2871EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2872
2873/**
2874 * irq_has_action - Check whether an interrupt is requested
2875 * @irq: The linux irq number
2876 *
2877 * Returns: A snapshot of the current state
2878 */
2879bool irq_has_action(unsigned int irq)
2880{
2881 bool res;
2882
2883 rcu_read_lock();
2884 res = irq_desc_has_action(irq_to_desc(irq));
2885 rcu_read_unlock();
2886 return res;
2887}
2888EXPORT_SYMBOL_GPL(irq_has_action);
2889
2890/**
2891 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2892 * @irq: The linux irq number
2893 * @bitmask: The bitmask to evaluate
2894 *
2895 * Returns: True if one of the bits in @bitmask is set
2896 */
2897bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2898{
2899 struct irq_desc *desc;
2900 bool res = false;
2901
2902 rcu_read_lock();
2903 desc = irq_to_desc(irq);
2904 if (desc)
2905 res = !!(desc->status_use_accessors & bitmask);
2906 rcu_read_unlock();
2907 return res;
2908}
2909EXPORT_SYMBOL_GPL(irq_check_status_bit);