Loading...
1/* include/asm-generic/tlb.h
2 *
3 * Generic TLB shootdown code
4 *
5 * Copyright 2001 Red Hat, Inc.
6 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
7 *
8 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15#ifndef _ASM_GENERIC__TLB_H
16#define _ASM_GENERIC__TLB_H
17
18#include <linux/swap.h>
19#include <asm/pgalloc.h>
20#include <asm/tlbflush.h>
21
22#ifdef CONFIG_HAVE_RCU_TABLE_FREE
23/*
24 * Semi RCU freeing of the page directories.
25 *
26 * This is needed by some architectures to implement software pagetable walkers.
27 *
28 * gup_fast() and other software pagetable walkers do a lockless page-table
29 * walk and therefore needs some synchronization with the freeing of the page
30 * directories. The chosen means to accomplish that is by disabling IRQs over
31 * the walk.
32 *
33 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
34 * since we unlink the page, flush TLBs, free the page. Since the disabling of
35 * IRQs delays the completion of the TLB flush we can never observe an already
36 * freed page.
37 *
38 * Architectures that do not have this (PPC) need to delay the freeing by some
39 * other means, this is that means.
40 *
41 * What we do is batch the freed directory pages (tables) and RCU free them.
42 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
43 * holds off grace periods.
44 *
45 * However, in order to batch these pages we need to allocate storage, this
46 * allocation is deep inside the MM code and can thus easily fail on memory
47 * pressure. To guarantee progress we fall back to single table freeing, see
48 * the implementation of tlb_remove_table_one().
49 *
50 */
51struct mmu_table_batch {
52 struct rcu_head rcu;
53 unsigned int nr;
54 void *tables[0];
55};
56
57#define MAX_TABLE_BATCH \
58 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
59
60extern void tlb_table_flush(struct mmu_gather *tlb);
61extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
62
63#endif
64
65/*
66 * If we can't allocate a page to make a big batch of page pointers
67 * to work on, then just handle a few from the on-stack structure.
68 */
69#define MMU_GATHER_BUNDLE 8
70
71struct mmu_gather_batch {
72 struct mmu_gather_batch *next;
73 unsigned int nr;
74 unsigned int max;
75 struct page *pages[0];
76};
77
78#define MAX_GATHER_BATCH \
79 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
80
81/*
82 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
83 * lockups for non-preemptible kernels on huge machines when a lot of memory
84 * is zapped during unmapping.
85 * 10K pages freed at once should be safe even without a preemption point.
86 */
87#define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
88
89/* struct mmu_gather is an opaque type used by the mm code for passing around
90 * any data needed by arch specific code for tlb_remove_page.
91 */
92struct mmu_gather {
93 struct mm_struct *mm;
94#ifdef CONFIG_HAVE_RCU_TABLE_FREE
95 struct mmu_table_batch *batch;
96#endif
97 unsigned long start;
98 unsigned long end;
99 /* we are in the middle of an operation to clear
100 * a full mm and can make some optimizations */
101 unsigned int fullmm : 1,
102 /* we have performed an operation which
103 * requires a complete flush of the tlb */
104 need_flush_all : 1;
105
106 struct mmu_gather_batch *active;
107 struct mmu_gather_batch local;
108 struct page *__pages[MMU_GATHER_BUNDLE];
109 unsigned int batch_count;
110 int page_size;
111};
112
113#define HAVE_GENERIC_MMU_GATHER
114
115void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end);
116void tlb_flush_mmu(struct mmu_gather *tlb);
117void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start,
118 unsigned long end);
119extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
120 int page_size);
121
122static inline void __tlb_adjust_range(struct mmu_gather *tlb,
123 unsigned long address,
124 unsigned int range_size)
125{
126 tlb->start = min(tlb->start, address);
127 tlb->end = max(tlb->end, address + range_size);
128}
129
130static inline void __tlb_reset_range(struct mmu_gather *tlb)
131{
132 if (tlb->fullmm) {
133 tlb->start = tlb->end = ~0;
134 } else {
135 tlb->start = TASK_SIZE;
136 tlb->end = 0;
137 }
138}
139
140static inline void tlb_remove_page_size(struct mmu_gather *tlb,
141 struct page *page, int page_size)
142{
143 if (__tlb_remove_page_size(tlb, page, page_size))
144 tlb_flush_mmu(tlb);
145}
146
147static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
148{
149 return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
150}
151
152/* tlb_remove_page
153 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
154 * required.
155 */
156static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
157{
158 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
159}
160
161#ifndef tlb_remove_check_page_size_change
162#define tlb_remove_check_page_size_change tlb_remove_check_page_size_change
163static inline void tlb_remove_check_page_size_change(struct mmu_gather *tlb,
164 unsigned int page_size)
165{
166 /*
167 * We don't care about page size change, just update
168 * mmu_gather page size here so that debug checks
169 * doesn't throw false warning.
170 */
171#ifdef CONFIG_DEBUG_VM
172 tlb->page_size = page_size;
173#endif
174}
175#endif
176
177/*
178 * In the case of tlb vma handling, we can optimise these away in the
179 * case where we're doing a full MM flush. When we're doing a munmap,
180 * the vmas are adjusted to only cover the region to be torn down.
181 */
182#ifndef tlb_start_vma
183#define tlb_start_vma(tlb, vma) do { } while (0)
184#endif
185
186#define __tlb_end_vma(tlb, vma) \
187 do { \
188 if (!tlb->fullmm && tlb->end) { \
189 tlb_flush(tlb); \
190 __tlb_reset_range(tlb); \
191 } \
192 } while (0)
193
194#ifndef tlb_end_vma
195#define tlb_end_vma __tlb_end_vma
196#endif
197
198#ifndef __tlb_remove_tlb_entry
199#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
200#endif
201
202/**
203 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
204 *
205 * Record the fact that pte's were really unmapped by updating the range,
206 * so we can later optimise away the tlb invalidate. This helps when
207 * userspace is unmapping already-unmapped pages, which happens quite a lot.
208 */
209#define tlb_remove_tlb_entry(tlb, ptep, address) \
210 do { \
211 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
212 __tlb_remove_tlb_entry(tlb, ptep, address); \
213 } while (0)
214
215#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
216 do { \
217 __tlb_adjust_range(tlb, address, huge_page_size(h)); \
218 __tlb_remove_tlb_entry(tlb, ptep, address); \
219 } while (0)
220
221/**
222 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
223 * This is a nop so far, because only x86 needs it.
224 */
225#ifndef __tlb_remove_pmd_tlb_entry
226#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
227#endif
228
229#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
230 do { \
231 __tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE); \
232 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
233 } while (0)
234
235/*
236 * For things like page tables caches (ie caching addresses "inside" the
237 * page tables, like x86 does), for legacy reasons, flushing an
238 * individual page had better flush the page table caches behind it. This
239 * is definitely how x86 works, for example. And if you have an
240 * architected non-legacy page table cache (which I'm not aware of
241 * anybody actually doing), you're going to have some architecturally
242 * explicit flushing for that, likely *separate* from a regular TLB entry
243 * flush, and thus you'd need more than just some range expansion..
244 *
245 * So if we ever find an architecture
246 * that would want something that odd, I think it is up to that
247 * architecture to do its own odd thing, not cause pain for others
248 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
249 *
250 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
251 */
252
253#define pte_free_tlb(tlb, ptep, address) \
254 do { \
255 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
256 __pte_free_tlb(tlb, ptep, address); \
257 } while (0)
258
259#ifndef __ARCH_HAS_4LEVEL_HACK
260#define pud_free_tlb(tlb, pudp, address) \
261 do { \
262 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
263 __pud_free_tlb(tlb, pudp, address); \
264 } while (0)
265#endif
266
267#define pmd_free_tlb(tlb, pmdp, address) \
268 do { \
269 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
270 __pmd_free_tlb(tlb, pmdp, address); \
271 } while (0)
272
273#define tlb_migrate_finish(mm) do {} while (0)
274
275#endif /* _ASM_GENERIC__TLB_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* include/asm-generic/tlb.h
3 *
4 * Generic TLB shootdown code
5 *
6 * Copyright 2001 Red Hat, Inc.
7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 *
9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 */
11#ifndef _ASM_GENERIC__TLB_H
12#define _ASM_GENERIC__TLB_H
13
14#include <linux/mmu_notifier.h>
15#include <linux/swap.h>
16#include <linux/hugetlb_inline.h>
17#include <asm/tlbflush.h>
18#include <asm/cacheflush.h>
19
20/*
21 * Blindly accessing user memory from NMI context can be dangerous
22 * if we're in the middle of switching the current user task or switching
23 * the loaded mm.
24 */
25#ifndef nmi_uaccess_okay
26# define nmi_uaccess_okay() true
27#endif
28
29#ifdef CONFIG_MMU
30
31/*
32 * Generic MMU-gather implementation.
33 *
34 * The mmu_gather data structure is used by the mm code to implement the
35 * correct and efficient ordering of freeing pages and TLB invalidations.
36 *
37 * This correct ordering is:
38 *
39 * 1) unhook page
40 * 2) TLB invalidate page
41 * 3) free page
42 *
43 * That is, we must never free a page before we have ensured there are no live
44 * translations left to it. Otherwise it might be possible to observe (or
45 * worse, change) the page content after it has been reused.
46 *
47 * The mmu_gather API consists of:
48 *
49 * - tlb_gather_mmu() / tlb_gather_mmu_fullmm() / tlb_finish_mmu()
50 *
51 * start and finish a mmu_gather
52 *
53 * Finish in particular will issue a (final) TLB invalidate and free
54 * all (remaining) queued pages.
55 *
56 * - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
57 *
58 * Defaults to flushing at tlb_end_vma() to reset the range; helps when
59 * there's large holes between the VMAs.
60 *
61 * - tlb_remove_table()
62 *
63 * tlb_remove_table() is the basic primitive to free page-table directories
64 * (__p*_free_tlb()). In it's most primitive form it is an alias for
65 * tlb_remove_page() below, for when page directories are pages and have no
66 * additional constraints.
67 *
68 * See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
69 *
70 * - tlb_remove_page() / __tlb_remove_page()
71 * - tlb_remove_page_size() / __tlb_remove_page_size()
72 *
73 * __tlb_remove_page_size() is the basic primitive that queues a page for
74 * freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
75 * boolean indicating if the queue is (now) full and a call to
76 * tlb_flush_mmu() is required.
77 *
78 * tlb_remove_page() and tlb_remove_page_size() imply the call to
79 * tlb_flush_mmu() when required and has no return value.
80 *
81 * - tlb_change_page_size()
82 *
83 * call before __tlb_remove_page*() to set the current page-size; implies a
84 * possible tlb_flush_mmu() call.
85 *
86 * - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
87 *
88 * tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
89 * related state, like the range)
90 *
91 * tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
92 * whatever pages are still batched.
93 *
94 * - mmu_gather::fullmm
95 *
96 * A flag set by tlb_gather_mmu_fullmm() to indicate we're going to free
97 * the entire mm; this allows a number of optimizations.
98 *
99 * - We can ignore tlb_{start,end}_vma(); because we don't
100 * care about ranges. Everything will be shot down.
101 *
102 * - (RISC) architectures that use ASIDs can cycle to a new ASID
103 * and delay the invalidation until ASID space runs out.
104 *
105 * - mmu_gather::need_flush_all
106 *
107 * A flag that can be set by the arch code if it wants to force
108 * flush the entire TLB irrespective of the range. For instance
109 * x86-PAE needs this when changing top-level entries.
110 *
111 * And allows the architecture to provide and implement tlb_flush():
112 *
113 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
114 * use of:
115 *
116 * - mmu_gather::start / mmu_gather::end
117 *
118 * which provides the range that needs to be flushed to cover the pages to
119 * be freed.
120 *
121 * - mmu_gather::freed_tables
122 *
123 * set when we freed page table pages
124 *
125 * - tlb_get_unmap_shift() / tlb_get_unmap_size()
126 *
127 * returns the smallest TLB entry size unmapped in this range.
128 *
129 * If an architecture does not provide tlb_flush() a default implementation
130 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
131 * specified, in which case we'll default to flush_tlb_mm().
132 *
133 * Additionally there are a few opt-in features:
134 *
135 * MMU_GATHER_PAGE_SIZE
136 *
137 * This ensures we call tlb_flush() every time tlb_change_page_size() actually
138 * changes the size and provides mmu_gather::page_size to tlb_flush().
139 *
140 * This might be useful if your architecture has size specific TLB
141 * invalidation instructions.
142 *
143 * MMU_GATHER_TABLE_FREE
144 *
145 * This provides tlb_remove_table(), to be used instead of tlb_remove_page()
146 * for page directores (__p*_free_tlb()).
147 *
148 * Useful if your architecture has non-page page directories.
149 *
150 * When used, an architecture is expected to provide __tlb_remove_table()
151 * which does the actual freeing of these pages.
152 *
153 * MMU_GATHER_RCU_TABLE_FREE
154 *
155 * Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
156 * comment below).
157 *
158 * Useful if your architecture doesn't use IPIs for remote TLB invalidates
159 * and therefore doesn't naturally serialize with software page-table walkers.
160 *
161 * MMU_GATHER_NO_RANGE
162 *
163 * Use this if your architecture lacks an efficient flush_tlb_range().
164 *
165 * MMU_GATHER_NO_GATHER
166 *
167 * If the option is set the mmu_gather will not track individual pages for
168 * delayed page free anymore. A platform that enables the option needs to
169 * provide its own implementation of the __tlb_remove_page_size() function to
170 * free pages.
171 *
172 * This is useful if your architecture already flushes TLB entries in the
173 * various ptep_get_and_clear() functions.
174 */
175
176#ifdef CONFIG_MMU_GATHER_TABLE_FREE
177
178struct mmu_table_batch {
179#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
180 struct rcu_head rcu;
181#endif
182 unsigned int nr;
183 void *tables[0];
184};
185
186#define MAX_TABLE_BATCH \
187 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
188
189extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
190
191#else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
192
193/*
194 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
195 * page directories and we can use the normal page batching to free them.
196 */
197#define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
198
199#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
200
201#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
202/*
203 * This allows an architecture that does not use the linux page-tables for
204 * hardware to skip the TLBI when freeing page tables.
205 */
206#ifndef tlb_needs_table_invalidate
207#define tlb_needs_table_invalidate() (true)
208#endif
209
210#else
211
212#ifdef tlb_needs_table_invalidate
213#error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
214#endif
215
216#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
217
218
219#ifndef CONFIG_MMU_GATHER_NO_GATHER
220/*
221 * If we can't allocate a page to make a big batch of page pointers
222 * to work on, then just handle a few from the on-stack structure.
223 */
224#define MMU_GATHER_BUNDLE 8
225
226struct mmu_gather_batch {
227 struct mmu_gather_batch *next;
228 unsigned int nr;
229 unsigned int max;
230 struct page *pages[0];
231};
232
233#define MAX_GATHER_BATCH \
234 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
235
236/*
237 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
238 * lockups for non-preemptible kernels on huge machines when a lot of memory
239 * is zapped during unmapping.
240 * 10K pages freed at once should be safe even without a preemption point.
241 */
242#define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
243
244extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
245 int page_size);
246#endif
247
248/*
249 * struct mmu_gather is an opaque type used by the mm code for passing around
250 * any data needed by arch specific code for tlb_remove_page.
251 */
252struct mmu_gather {
253 struct mm_struct *mm;
254
255#ifdef CONFIG_MMU_GATHER_TABLE_FREE
256 struct mmu_table_batch *batch;
257#endif
258
259 unsigned long start;
260 unsigned long end;
261 /*
262 * we are in the middle of an operation to clear
263 * a full mm and can make some optimizations
264 */
265 unsigned int fullmm : 1;
266
267 /*
268 * we have performed an operation which
269 * requires a complete flush of the tlb
270 */
271 unsigned int need_flush_all : 1;
272
273 /*
274 * we have removed page directories
275 */
276 unsigned int freed_tables : 1;
277
278 /*
279 * at which levels have we cleared entries?
280 */
281 unsigned int cleared_ptes : 1;
282 unsigned int cleared_pmds : 1;
283 unsigned int cleared_puds : 1;
284 unsigned int cleared_p4ds : 1;
285
286 /*
287 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
288 */
289 unsigned int vma_exec : 1;
290 unsigned int vma_huge : 1;
291
292 unsigned int batch_count;
293
294#ifndef CONFIG_MMU_GATHER_NO_GATHER
295 struct mmu_gather_batch *active;
296 struct mmu_gather_batch local;
297 struct page *__pages[MMU_GATHER_BUNDLE];
298
299#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
300 unsigned int page_size;
301#endif
302#endif
303};
304
305void tlb_flush_mmu(struct mmu_gather *tlb);
306
307static inline void __tlb_adjust_range(struct mmu_gather *tlb,
308 unsigned long address,
309 unsigned int range_size)
310{
311 tlb->start = min(tlb->start, address);
312 tlb->end = max(tlb->end, address + range_size);
313}
314
315static inline void __tlb_reset_range(struct mmu_gather *tlb)
316{
317 if (tlb->fullmm) {
318 tlb->start = tlb->end = ~0;
319 } else {
320 tlb->start = TASK_SIZE;
321 tlb->end = 0;
322 }
323 tlb->freed_tables = 0;
324 tlb->cleared_ptes = 0;
325 tlb->cleared_pmds = 0;
326 tlb->cleared_puds = 0;
327 tlb->cleared_p4ds = 0;
328 /*
329 * Do not reset mmu_gather::vma_* fields here, we do not
330 * call into tlb_start_vma() again to set them if there is an
331 * intermediate flush.
332 */
333}
334
335#ifdef CONFIG_MMU_GATHER_NO_RANGE
336
337#if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
338#error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
339#endif
340
341/*
342 * When an architecture does not have efficient means of range flushing TLBs
343 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
344 * range small. We equally don't have to worry about page granularity or other
345 * things.
346 *
347 * All we need to do is issue a full flush for any !0 range.
348 */
349static inline void tlb_flush(struct mmu_gather *tlb)
350{
351 if (tlb->end)
352 flush_tlb_mm(tlb->mm);
353}
354
355static inline void
356tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
357
358#define tlb_end_vma tlb_end_vma
359static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
360
361#else /* CONFIG_MMU_GATHER_NO_RANGE */
362
363#ifndef tlb_flush
364
365#if defined(tlb_start_vma) || defined(tlb_end_vma)
366#error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
367#endif
368
369/*
370 * When an architecture does not provide its own tlb_flush() implementation
371 * but does have a reasonably efficient flush_vma_range() implementation
372 * use that.
373 */
374static inline void tlb_flush(struct mmu_gather *tlb)
375{
376 if (tlb->fullmm || tlb->need_flush_all) {
377 flush_tlb_mm(tlb->mm);
378 } else if (tlb->end) {
379 struct vm_area_struct vma = {
380 .vm_mm = tlb->mm,
381 .vm_flags = (tlb->vma_exec ? VM_EXEC : 0) |
382 (tlb->vma_huge ? VM_HUGETLB : 0),
383 };
384
385 flush_tlb_range(&vma, tlb->start, tlb->end);
386 }
387}
388
389static inline void
390tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
391{
392 /*
393 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
394 * mips-4k) flush only large pages.
395 *
396 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
397 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
398 * range.
399 *
400 * We rely on tlb_end_vma() to issue a flush, such that when we reset
401 * these values the batch is empty.
402 */
403 tlb->vma_huge = is_vm_hugetlb_page(vma);
404 tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
405}
406
407#else
408
409static inline void
410tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
411
412#endif
413
414#endif /* CONFIG_MMU_GATHER_NO_RANGE */
415
416static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
417{
418 /*
419 * Anything calling __tlb_adjust_range() also sets at least one of
420 * these bits.
421 */
422 if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
423 tlb->cleared_puds || tlb->cleared_p4ds))
424 return;
425
426 tlb_flush(tlb);
427 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
428 __tlb_reset_range(tlb);
429}
430
431static inline void tlb_remove_page_size(struct mmu_gather *tlb,
432 struct page *page, int page_size)
433{
434 if (__tlb_remove_page_size(tlb, page, page_size))
435 tlb_flush_mmu(tlb);
436}
437
438static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
439{
440 return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
441}
442
443/* tlb_remove_page
444 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
445 * required.
446 */
447static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
448{
449 return tlb_remove_page_size(tlb, page, PAGE_SIZE);
450}
451
452static inline void tlb_change_page_size(struct mmu_gather *tlb,
453 unsigned int page_size)
454{
455#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
456 if (tlb->page_size && tlb->page_size != page_size) {
457 if (!tlb->fullmm && !tlb->need_flush_all)
458 tlb_flush_mmu(tlb);
459 }
460
461 tlb->page_size = page_size;
462#endif
463}
464
465static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
466{
467 if (tlb->cleared_ptes)
468 return PAGE_SHIFT;
469 if (tlb->cleared_pmds)
470 return PMD_SHIFT;
471 if (tlb->cleared_puds)
472 return PUD_SHIFT;
473 if (tlb->cleared_p4ds)
474 return P4D_SHIFT;
475
476 return PAGE_SHIFT;
477}
478
479static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
480{
481 return 1UL << tlb_get_unmap_shift(tlb);
482}
483
484/*
485 * In the case of tlb vma handling, we can optimise these away in the
486 * case where we're doing a full MM flush. When we're doing a munmap,
487 * the vmas are adjusted to only cover the region to be torn down.
488 */
489#ifndef tlb_start_vma
490static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
491{
492 if (tlb->fullmm)
493 return;
494
495 tlb_update_vma_flags(tlb, vma);
496 flush_cache_range(vma, vma->vm_start, vma->vm_end);
497}
498#endif
499
500#ifndef tlb_end_vma
501static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
502{
503 if (tlb->fullmm)
504 return;
505
506 /*
507 * Do a TLB flush and reset the range at VMA boundaries; this avoids
508 * the ranges growing with the unused space between consecutive VMAs,
509 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
510 * this.
511 */
512 tlb_flush_mmu_tlbonly(tlb);
513}
514#endif
515
516/*
517 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
518 * and set corresponding cleared_*.
519 */
520static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
521 unsigned long address, unsigned long size)
522{
523 __tlb_adjust_range(tlb, address, size);
524 tlb->cleared_ptes = 1;
525}
526
527static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
528 unsigned long address, unsigned long size)
529{
530 __tlb_adjust_range(tlb, address, size);
531 tlb->cleared_pmds = 1;
532}
533
534static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
535 unsigned long address, unsigned long size)
536{
537 __tlb_adjust_range(tlb, address, size);
538 tlb->cleared_puds = 1;
539}
540
541static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
542 unsigned long address, unsigned long size)
543{
544 __tlb_adjust_range(tlb, address, size);
545 tlb->cleared_p4ds = 1;
546}
547
548#ifndef __tlb_remove_tlb_entry
549#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
550#endif
551
552/**
553 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
554 *
555 * Record the fact that pte's were really unmapped by updating the range,
556 * so we can later optimise away the tlb invalidate. This helps when
557 * userspace is unmapping already-unmapped pages, which happens quite a lot.
558 */
559#define tlb_remove_tlb_entry(tlb, ptep, address) \
560 do { \
561 tlb_flush_pte_range(tlb, address, PAGE_SIZE); \
562 __tlb_remove_tlb_entry(tlb, ptep, address); \
563 } while (0)
564
565#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
566 do { \
567 unsigned long _sz = huge_page_size(h); \
568 if (_sz == PMD_SIZE) \
569 tlb_flush_pmd_range(tlb, address, _sz); \
570 else if (_sz == PUD_SIZE) \
571 tlb_flush_pud_range(tlb, address, _sz); \
572 __tlb_remove_tlb_entry(tlb, ptep, address); \
573 } while (0)
574
575/**
576 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
577 * This is a nop so far, because only x86 needs it.
578 */
579#ifndef __tlb_remove_pmd_tlb_entry
580#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
581#endif
582
583#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
584 do { \
585 tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE); \
586 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
587 } while (0)
588
589/**
590 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
591 * invalidation. This is a nop so far, because only x86 needs it.
592 */
593#ifndef __tlb_remove_pud_tlb_entry
594#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
595#endif
596
597#define tlb_remove_pud_tlb_entry(tlb, pudp, address) \
598 do { \
599 tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE); \
600 __tlb_remove_pud_tlb_entry(tlb, pudp, address); \
601 } while (0)
602
603/*
604 * For things like page tables caches (ie caching addresses "inside" the
605 * page tables, like x86 does), for legacy reasons, flushing an
606 * individual page had better flush the page table caches behind it. This
607 * is definitely how x86 works, for example. And if you have an
608 * architected non-legacy page table cache (which I'm not aware of
609 * anybody actually doing), you're going to have some architecturally
610 * explicit flushing for that, likely *separate* from a regular TLB entry
611 * flush, and thus you'd need more than just some range expansion..
612 *
613 * So if we ever find an architecture
614 * that would want something that odd, I think it is up to that
615 * architecture to do its own odd thing, not cause pain for others
616 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
617 *
618 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
619 */
620
621#ifndef pte_free_tlb
622#define pte_free_tlb(tlb, ptep, address) \
623 do { \
624 tlb_flush_pmd_range(tlb, address, PAGE_SIZE); \
625 tlb->freed_tables = 1; \
626 __pte_free_tlb(tlb, ptep, address); \
627 } while (0)
628#endif
629
630#ifndef pmd_free_tlb
631#define pmd_free_tlb(tlb, pmdp, address) \
632 do { \
633 tlb_flush_pud_range(tlb, address, PAGE_SIZE); \
634 tlb->freed_tables = 1; \
635 __pmd_free_tlb(tlb, pmdp, address); \
636 } while (0)
637#endif
638
639#ifndef pud_free_tlb
640#define pud_free_tlb(tlb, pudp, address) \
641 do { \
642 tlb_flush_p4d_range(tlb, address, PAGE_SIZE); \
643 tlb->freed_tables = 1; \
644 __pud_free_tlb(tlb, pudp, address); \
645 } while (0)
646#endif
647
648#ifndef p4d_free_tlb
649#define p4d_free_tlb(tlb, pudp, address) \
650 do { \
651 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
652 tlb->freed_tables = 1; \
653 __p4d_free_tlb(tlb, pudp, address); \
654 } while (0)
655#endif
656
657#endif /* CONFIG_MMU */
658
659#endif /* _ASM_GENERIC__TLB_H */