Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 * Copyright (C) 2008 Oracle.  All rights reserved.
  3 *
  4 * This program is free software; you can redistribute it and/or
  5 * modify it under the terms of the GNU General Public
  6 * License v2 as published by the Free Software Foundation.
  7 *
  8 * This program is distributed in the hope that it will be useful,
  9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 11 * General Public License for more details.
 12 *
 13 * You should have received a copy of the GNU General Public
 14 * License along with this program; if not, write to the
 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
 16 * Boston, MA 021110-1307, USA.
 17 */
 
 18#include <linux/sched.h>
 19#include <linux/pagemap.h>
 20#include <linux/spinlock.h>
 21#include <linux/page-flags.h>
 22#include <asm/bug.h>
 
 23#include "ctree.h"
 24#include "extent_io.h"
 25#include "locking.h"
 26
 27static void btrfs_assert_tree_read_locked(struct extent_buffer *eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28
 29/*
 30 * if we currently have a spinning reader or writer lock
 31 * (indicated by the rw flag) this will bump the count
 32 * of blocking holders and drop the spinlock.
 
 
 
 33 */
 34void btrfs_set_lock_blocking_rw(struct extent_buffer *eb, int rw)
 35{
 36	/*
 37	 * no lock is required.  The lock owner may change if
 38	 * we have a read lock, but it won't change to or away
 39	 * from us.  If we have the write lock, we are the owner
 40	 * and it'll never change.
 41	 */
 42	if (eb->lock_nested && current->pid == eb->lock_owner)
 43		return;
 44	if (rw == BTRFS_WRITE_LOCK) {
 45		if (atomic_read(&eb->blocking_writers) == 0) {
 46			WARN_ON(atomic_read(&eb->spinning_writers) != 1);
 47			atomic_dec(&eb->spinning_writers);
 48			btrfs_assert_tree_locked(eb);
 49			atomic_inc(&eb->blocking_writers);
 50			write_unlock(&eb->lock);
 51		}
 52	} else if (rw == BTRFS_READ_LOCK) {
 53		btrfs_assert_tree_read_locked(eb);
 54		atomic_inc(&eb->blocking_readers);
 55		WARN_ON(atomic_read(&eb->spinning_readers) == 0);
 56		atomic_dec(&eb->spinning_readers);
 57		read_unlock(&eb->lock);
 58	}
 59}
 60
 61/*
 62 * if we currently have a blocking lock, take the spinlock
 63 * and drop our blocking count
 
 64 */
 65void btrfs_clear_lock_blocking_rw(struct extent_buffer *eb, int rw)
 66{
 67	/*
 68	 * no lock is required.  The lock owner may change if
 69	 * we have a read lock, but it won't change to or away
 70	 * from us.  If we have the write lock, we are the owner
 71	 * and it'll never change.
 72	 */
 73	if (eb->lock_nested && current->pid == eb->lock_owner)
 74		return;
 75
 76	if (rw == BTRFS_WRITE_LOCK_BLOCKING) {
 77		BUG_ON(atomic_read(&eb->blocking_writers) != 1);
 78		write_lock(&eb->lock);
 79		WARN_ON(atomic_read(&eb->spinning_writers));
 80		atomic_inc(&eb->spinning_writers);
 81		/*
 82		 * atomic_dec_and_test implies a barrier for waitqueue_active
 83		 */
 84		if (atomic_dec_and_test(&eb->blocking_writers) &&
 85		    waitqueue_active(&eb->write_lock_wq))
 86			wake_up(&eb->write_lock_wq);
 87	} else if (rw == BTRFS_READ_LOCK_BLOCKING) {
 88		BUG_ON(atomic_read(&eb->blocking_readers) == 0);
 89		read_lock(&eb->lock);
 90		atomic_inc(&eb->spinning_readers);
 91		/*
 92		 * atomic_dec_and_test implies a barrier for waitqueue_active
 93		 */
 94		if (atomic_dec_and_test(&eb->blocking_readers) &&
 95		    waitqueue_active(&eb->read_lock_wq))
 96			wake_up(&eb->read_lock_wq);
 97	}
 
 98}
 99
100/*
101 * take a spinning read lock.  This will wait for any blocking
102 * writers
 
103 */
104void btrfs_tree_read_lock(struct extent_buffer *eb)
105{
106again:
107	BUG_ON(!atomic_read(&eb->blocking_writers) &&
108	       current->pid == eb->lock_owner);
109
110	read_lock(&eb->lock);
111	if (atomic_read(&eb->blocking_writers) &&
112	    current->pid == eb->lock_owner) {
113		/*
114		 * This extent is already write-locked by our thread. We allow
115		 * an additional read lock to be added because it's for the same
116		 * thread. btrfs_find_all_roots() depends on this as it may be
117		 * called on a partly (write-)locked tree.
118		 */
119		BUG_ON(eb->lock_nested);
120		eb->lock_nested = 1;
121		read_unlock(&eb->lock);
122		return;
123	}
124	if (atomic_read(&eb->blocking_writers)) {
125		read_unlock(&eb->lock);
126		wait_event(eb->write_lock_wq,
127			   atomic_read(&eb->blocking_writers) == 0);
128		goto again;
129	}
130	atomic_inc(&eb->read_locks);
131	atomic_inc(&eb->spinning_readers);
132}
133
134/*
135 * take a spinning read lock.
136 * returns 1 if we get the read lock and 0 if we don't
137 * this won't wait for blocking writers
138 */
139int btrfs_tree_read_lock_atomic(struct extent_buffer *eb)
140{
141	if (atomic_read(&eb->blocking_writers))
142		return 0;
143
144	read_lock(&eb->lock);
145	if (atomic_read(&eb->blocking_writers)) {
146		read_unlock(&eb->lock);
147		return 0;
148	}
149	atomic_inc(&eb->read_locks);
150	atomic_inc(&eb->spinning_readers);
151	return 1;
152}
153
154/*
155 * returns 1 if we get the read lock and 0 if we don't
156 * this won't wait for blocking writers
 
 
 
157 */
158int btrfs_try_tree_read_lock(struct extent_buffer *eb)
 
159{
160	if (atomic_read(&eb->blocking_writers))
161		return 0;
162
163	if (!read_trylock(&eb->lock))
164		return 0;
165
166	if (atomic_read(&eb->blocking_writers)) {
167		read_unlock(&eb->lock);
168		return 0;
169	}
170	atomic_inc(&eb->read_locks);
171	atomic_inc(&eb->spinning_readers);
172	return 1;
 
173}
174
175/*
176 * returns 1 if we get the read lock and 0 if we don't
177 * this won't wait for blocking writers or readers
178 */
179int btrfs_try_tree_write_lock(struct extent_buffer *eb)
180{
181	if (atomic_read(&eb->blocking_writers) ||
182	    atomic_read(&eb->blocking_readers))
183		return 0;
184
185	write_lock(&eb->lock);
186	if (atomic_read(&eb->blocking_writers) ||
187	    atomic_read(&eb->blocking_readers)) {
188		write_unlock(&eb->lock);
189		return 0;
190	}
191	atomic_inc(&eb->write_locks);
192	atomic_inc(&eb->spinning_writers);
193	eb->lock_owner = current->pid;
194	return 1;
195}
196
197/*
198 * drop a spinning read lock
 
 
 
 
 
 
199 */
200void btrfs_tree_read_unlock(struct extent_buffer *eb)
201{
202	/*
203	 * if we're nested, we have the write lock.  No new locking
204	 * is needed as long as we are the lock owner.
205	 * The write unlock will do a barrier for us, and the lock_nested
206	 * field only matters to the lock owner.
207	 */
208	if (eb->lock_nested && current->pid == eb->lock_owner) {
209		eb->lock_nested = 0;
210		return;
 
 
 
 
 
 
 
 
211	}
212	btrfs_assert_tree_read_locked(eb);
213	WARN_ON(atomic_read(&eb->spinning_readers) == 0);
214	atomic_dec(&eb->spinning_readers);
215	atomic_dec(&eb->read_locks);
216	read_unlock(&eb->lock);
217}
218
219/*
220 * drop a blocking read lock
 
 
 
221 */
222void btrfs_tree_read_unlock_blocking(struct extent_buffer *eb)
223{
224	/*
225	 * if we're nested, we have the write lock.  No new locking
226	 * is needed as long as we are the lock owner.
227	 * The write unlock will do a barrier for us, and the lock_nested
228	 * field only matters to the lock owner.
229	 */
230	if (eb->lock_nested && current->pid == eb->lock_owner) {
231		eb->lock_nested = 0;
232		return;
233	}
234	btrfs_assert_tree_read_locked(eb);
235	WARN_ON(atomic_read(&eb->blocking_readers) == 0);
236	/*
237	 * atomic_dec_and_test implies a barrier for waitqueue_active
238	 */
239	if (atomic_dec_and_test(&eb->blocking_readers) &&
240	    waitqueue_active(&eb->read_lock_wq))
241		wake_up(&eb->read_lock_wq);
242	atomic_dec(&eb->read_locks);
243}
244
245/*
246 * take a spinning write lock.  This will wait for both
247 * blocking readers or writers
 
 
248 */
249void btrfs_tree_lock(struct extent_buffer *eb)
250{
251	WARN_ON(eb->lock_owner == current->pid);
252again:
253	wait_event(eb->read_lock_wq, atomic_read(&eb->blocking_readers) == 0);
254	wait_event(eb->write_lock_wq, atomic_read(&eb->blocking_writers) == 0);
255	write_lock(&eb->lock);
256	if (atomic_read(&eb->blocking_readers)) {
257		write_unlock(&eb->lock);
258		wait_event(eb->read_lock_wq,
259			   atomic_read(&eb->blocking_readers) == 0);
260		goto again;
261	}
262	if (atomic_read(&eb->blocking_writers)) {
263		write_unlock(&eb->lock);
264		wait_event(eb->write_lock_wq,
265			   atomic_read(&eb->blocking_writers) == 0);
266		goto again;
267	}
268	WARN_ON(atomic_read(&eb->spinning_writers));
269	atomic_inc(&eb->spinning_writers);
270	atomic_inc(&eb->write_locks);
271	eb->lock_owner = current->pid;
272}
273
274/*
275 * drop a spinning or a blocking write lock.
 
 
 
 
 
 
 
 
 
 
276 */
277void btrfs_tree_unlock(struct extent_buffer *eb)
 
278{
279	int blockers = atomic_read(&eb->blocking_writers);
280
281	BUG_ON(blockers > 1);
 
 
282
283	btrfs_assert_tree_locked(eb);
284	eb->lock_owner = 0;
285	atomic_dec(&eb->write_locks);
 
 
 
 
 
 
 
 
286
287	if (blockers) {
288		WARN_ON(atomic_read(&eb->spinning_writers));
289		atomic_dec(&eb->blocking_writers);
290		/*
291		 * Make sure counter is updated before we wake up waiters.
292		 */
293		smp_mb();
294		if (waitqueue_active(&eb->write_lock_wq))
295			wake_up(&eb->write_lock_wq);
296	} else {
297		WARN_ON(atomic_read(&eb->spinning_writers) != 1);
298		atomic_dec(&eb->spinning_writers);
299		write_unlock(&eb->lock);
300	}
 
 
301}
302
303void btrfs_assert_tree_locked(struct extent_buffer *eb)
304{
305	BUG_ON(!atomic_read(&eb->write_locks));
 
 
 
 
306}
307
308static void btrfs_assert_tree_read_locked(struct extent_buffer *eb)
309{
310	BUG_ON(!atomic_read(&eb->read_locks));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
311}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2008 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#include <linux/sched.h>
  7#include <linux/pagemap.h>
  8#include <linux/spinlock.h>
  9#include <linux/page-flags.h>
 10#include <asm/bug.h>
 11#include "misc.h"
 12#include "ctree.h"
 13#include "extent_io.h"
 14#include "locking.h"
 15
 16/*
 17 * Extent buffer locking
 18 * =====================
 19 *
 20 * We use a rw_semaphore for tree locking, and the semantics are exactly the
 21 * same:
 22 *
 23 * - reader/writer exclusion
 24 * - writer/writer exclusion
 25 * - reader/reader sharing
 26 * - try-lock semantics for readers and writers
 27 *
 28 * The rwsem implementation does opportunistic spinning which reduces number of
 29 * times the locking task needs to sleep.
 30 */
 31
 32/*
 33 * __btrfs_tree_read_lock - lock extent buffer for read
 34 * @eb:		the eb to be locked
 35 * @nest:	the nesting level to be used for lockdep
 36 *
 37 * This takes the read lock on the extent buffer, using the specified nesting
 38 * level for lockdep purposes.
 39 */
 40void __btrfs_tree_read_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
 41{
 42	u64 start_ns = 0;
 43
 44	if (trace_btrfs_tree_read_lock_enabled())
 45		start_ns = ktime_get_ns();
 46
 47	down_read_nested(&eb->lock, nest);
 48	eb->lock_owner = current->pid;
 49	trace_btrfs_tree_read_lock(eb, start_ns);
 50}
 51
 52void btrfs_tree_read_lock(struct extent_buffer *eb)
 53{
 54	__btrfs_tree_read_lock(eb, BTRFS_NESTING_NORMAL);
 
 
 
 
 
 
 
 
 
 
 55}
 56
 57/*
 58 * Try-lock for read.
 59 *
 60 * Return 1 if the rwlock has been taken, 0 otherwise
 61 */
 62int btrfs_try_tree_read_lock(struct extent_buffer *eb)
 63{
 64	if (down_read_trylock(&eb->lock)) {
 65		eb->lock_owner = current->pid;
 66		trace_btrfs_try_tree_read_lock(eb);
 67		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68	}
 69	return 0;
 70}
 71
 72/*
 73 * Try-lock for write.
 74 *
 75 * Return 1 if the rwlock has been taken, 0 otherwise
 76 */
 77int btrfs_try_tree_write_lock(struct extent_buffer *eb)
 78{
 79	if (down_write_trylock(&eb->lock)) {
 80		eb->lock_owner = current->pid;
 81		trace_btrfs_try_tree_write_lock(eb);
 82		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 83	}
 84	return 0;
 
 
 
 
 
 
 
 85}
 86
 87/*
 88 * Release read lock.
 
 
 89 */
 90void btrfs_tree_read_unlock(struct extent_buffer *eb)
 91{
 92	trace_btrfs_tree_read_unlock(eb);
 93	eb->lock_owner = 0;
 94	up_read(&eb->lock);
 
 
 
 
 
 
 
 
 95}
 96
 97/*
 98 * __btrfs_tree_lock - lock eb for write
 99 * @eb:		the eb to lock
100 * @nest:	the nesting to use for the lock
101 *
102 * Returns with the eb->lock write locked.
103 */
104void __btrfs_tree_lock(struct extent_buffer *eb, enum btrfs_lock_nesting nest)
105	__acquires(&eb->lock)
106{
107	u64 start_ns = 0;
 
108
109	if (trace_btrfs_tree_lock_enabled())
110		start_ns = ktime_get_ns();
111
112	down_write_nested(&eb->lock, nest);
113	eb->lock_owner = current->pid;
114	trace_btrfs_tree_lock(eb, start_ns);
115}
116
117void btrfs_tree_lock(struct extent_buffer *eb)
118{
119	__btrfs_tree_lock(eb, BTRFS_NESTING_NORMAL);
120}
121
122/*
123 * Release the write lock.
 
124 */
125void btrfs_tree_unlock(struct extent_buffer *eb)
126{
127	trace_btrfs_tree_unlock(eb);
128	eb->lock_owner = 0;
129	up_write(&eb->lock);
 
 
 
 
 
 
 
 
 
 
 
130}
131
132/*
133 * This releases any locks held in the path starting at level and going all the
134 * way up to the root.
135 *
136 * btrfs_search_slot will keep the lock held on higher nodes in a few corner
137 * cases, such as COW of the block at slot zero in the node.  This ignores
138 * those rules, and it should only be called when there are no more updates to
139 * be done higher up in the tree.
140 */
141void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
142{
143	int i;
144
145	if (path->keep_locks)
 
 
 
 
 
146		return;
147
148	for (i = level; i < BTRFS_MAX_LEVEL; i++) {
149		if (!path->nodes[i])
150			continue;
151		if (!path->locks[i])
152			continue;
153		btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
154		path->locks[i] = 0;
155	}
 
 
 
 
 
156}
157
158/*
159 * Loop around taking references on and locking the root node of the tree until
160 * we end up with a lock on the root node.
161 *
162 * Return: root extent buffer with write lock held
163 */
164struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
165{
166	struct extent_buffer *eb;
167
168	while (1) {
169		eb = btrfs_root_node(root);
170		btrfs_tree_lock(eb);
171		if (eb == root->node)
172			break;
173		btrfs_tree_unlock(eb);
174		free_extent_buffer(eb);
175	}
176	return eb;
 
 
 
 
 
 
 
 
177}
178
179/*
180 * Loop around taking references on and locking the root node of the tree until
181 * we end up with a lock on the root node.
182 *
183 * Return: root extent buffer with read lock held
184 */
185struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
186{
187	struct extent_buffer *eb;
188
189	while (1) {
190		eb = btrfs_root_node(root);
191		btrfs_tree_read_lock(eb);
192		if (eb == root->node)
193			break;
194		btrfs_tree_read_unlock(eb);
195		free_extent_buffer(eb);
 
 
 
 
 
 
 
196	}
197	return eb;
 
 
 
198}
199
200/*
201 * DREW locks
202 * ==========
203 *
204 * DREW stands for double-reader-writer-exclusion lock. It's used in situation
205 * where you want to provide A-B exclusion but not AA or BB.
206 *
207 * Currently implementation gives more priority to reader. If a reader and a
208 * writer both race to acquire their respective sides of the lock the writer
209 * would yield its lock as soon as it detects a concurrent reader. Additionally
210 * if there are pending readers no new writers would be allowed to come in and
211 * acquire the lock.
212 */
213
214int btrfs_drew_lock_init(struct btrfs_drew_lock *lock)
215{
216	int ret;
217
218	ret = percpu_counter_init(&lock->writers, 0, GFP_KERNEL);
219	if (ret)
220		return ret;
221
222	atomic_set(&lock->readers, 0);
223	init_waitqueue_head(&lock->pending_readers);
224	init_waitqueue_head(&lock->pending_writers);
225
226	return 0;
227}
228
229void btrfs_drew_lock_destroy(struct btrfs_drew_lock *lock)
230{
231	percpu_counter_destroy(&lock->writers);
232}
233
234/* Return true if acquisition is successful, false otherwise */
235bool btrfs_drew_try_write_lock(struct btrfs_drew_lock *lock)
236{
237	if (atomic_read(&lock->readers))
238		return false;
239
240	percpu_counter_inc(&lock->writers);
241
242	/* Ensure writers count is updated before we check for pending readers */
243	smp_mb();
244	if (atomic_read(&lock->readers)) {
245		btrfs_drew_write_unlock(lock);
246		return false;
247	}
248
249	return true;
250}
251
252void btrfs_drew_write_lock(struct btrfs_drew_lock *lock)
253{
254	while (true) {
255		if (btrfs_drew_try_write_lock(lock))
256			return;
257		wait_event(lock->pending_writers, !atomic_read(&lock->readers));
258	}
259}
260
261void btrfs_drew_write_unlock(struct btrfs_drew_lock *lock)
262{
263	percpu_counter_dec(&lock->writers);
264	cond_wake_up(&lock->pending_readers);
265}
266
267void btrfs_drew_read_lock(struct btrfs_drew_lock *lock)
268{
269	atomic_inc(&lock->readers);
270
271	/*
272	 * Ensure the pending reader count is perceieved BEFORE this reader
273	 * goes to sleep in case of active writers. This guarantees new writers
274	 * won't be allowed and that the current reader will be woken up when
275	 * the last active writer finishes its jobs.
276	 */
277	smp_mb__after_atomic();
278
279	wait_event(lock->pending_readers,
280		   percpu_counter_sum(&lock->writers) == 0);
281}
282
283void btrfs_drew_read_unlock(struct btrfs_drew_lock *lock)
284{
285	/*
286	 * atomic_dec_and_test implies a full barrier, so woken up writers
287	 * are guaranteed to see the decrement
288	 */
289	if (atomic_dec_and_test(&lock->readers))
290		wake_up(&lock->pending_writers);
291}