Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * message.c - synchronous message handling
   3 *
   4 * Released under the GPLv2 only.
   5 * SPDX-License-Identifier: GPL-2.0
   6 */
   7
 
   8#include <linux/pci.h>	/* for scatterlist macros */
   9#include <linux/usb.h>
  10#include <linux/module.h>
  11#include <linux/slab.h>
  12#include <linux/mm.h>
  13#include <linux/timer.h>
  14#include <linux/ctype.h>
  15#include <linux/nls.h>
  16#include <linux/device.h>
  17#include <linux/scatterlist.h>
  18#include <linux/usb/cdc.h>
  19#include <linux/usb/quirks.h>
  20#include <linux/usb/hcd.h>	/* for usbcore internals */
 
  21#include <asm/byteorder.h>
  22
  23#include "usb.h"
  24
  25static void cancel_async_set_config(struct usb_device *udev);
  26
  27struct api_context {
  28	struct completion	done;
  29	int			status;
  30};
  31
  32static void usb_api_blocking_completion(struct urb *urb)
  33{
  34	struct api_context *ctx = urb->context;
  35
  36	ctx->status = urb->status;
  37	complete(&ctx->done);
  38}
  39
  40
  41/*
  42 * Starts urb and waits for completion or timeout. Note that this call
  43 * is NOT interruptible. Many device driver i/o requests should be
  44 * interruptible and therefore these drivers should implement their
  45 * own interruptible routines.
  46 */
  47static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  48{
  49	struct api_context ctx;
  50	unsigned long expire;
  51	int retval;
  52
  53	init_completion(&ctx.done);
  54	urb->context = &ctx;
  55	urb->actual_length = 0;
  56	retval = usb_submit_urb(urb, GFP_NOIO);
  57	if (unlikely(retval))
  58		goto out;
  59
  60	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  61	if (!wait_for_completion_timeout(&ctx.done, expire)) {
  62		usb_kill_urb(urb);
  63		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  64
  65		dev_dbg(&urb->dev->dev,
  66			"%s timed out on ep%d%s len=%u/%u\n",
  67			current->comm,
  68			usb_endpoint_num(&urb->ep->desc),
  69			usb_urb_dir_in(urb) ? "in" : "out",
  70			urb->actual_length,
  71			urb->transfer_buffer_length);
  72	} else
  73		retval = ctx.status;
  74out:
  75	if (actual_length)
  76		*actual_length = urb->actual_length;
  77
  78	usb_free_urb(urb);
  79	return retval;
  80}
  81
  82/*-------------------------------------------------------------------*/
  83/* returns status (negative) or length (positive) */
  84static int usb_internal_control_msg(struct usb_device *usb_dev,
  85				    unsigned int pipe,
  86				    struct usb_ctrlrequest *cmd,
  87				    void *data, int len, int timeout)
  88{
  89	struct urb *urb;
  90	int retv;
  91	int length;
  92
  93	urb = usb_alloc_urb(0, GFP_NOIO);
  94	if (!urb)
  95		return -ENOMEM;
  96
  97	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  98			     len, usb_api_blocking_completion, NULL);
  99
 100	retv = usb_start_wait_urb(urb, timeout, &length);
 101	if (retv < 0)
 102		return retv;
 103	else
 104		return length;
 105}
 106
 107/**
 108 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 109 * @dev: pointer to the usb device to send the message to
 110 * @pipe: endpoint "pipe" to send the message to
 111 * @request: USB message request value
 112 * @requesttype: USB message request type value
 113 * @value: USB message value
 114 * @index: USB message index value
 115 * @data: pointer to the data to send
 116 * @size: length in bytes of the data to send
 117 * @timeout: time in msecs to wait for the message to complete before timing
 118 *	out (if 0 the wait is forever)
 119 *
 120 * Context: !in_interrupt ()
 121 *
 122 * This function sends a simple control message to a specified endpoint and
 123 * waits for the message to complete, or timeout.
 124 *
 125 * Don't use this function from within an interrupt context, like a bottom half
 126 * handler.  If you need an asynchronous message, or need to send a message
 127 * from within interrupt context, use usb_submit_urb().
 128 * If a thread in your driver uses this call, make sure your disconnect()
 129 * method can wait for it to complete.  Since you don't have a handle on the
 130 * URB used, you can't cancel the request.
 131 *
 132 * Return: If successful, the number of bytes transferred. Otherwise, a negative
 133 * error number.
 134 */
 135int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 136		    __u8 requesttype, __u16 value, __u16 index, void *data,
 137		    __u16 size, int timeout)
 138{
 139	struct usb_ctrlrequest *dr;
 140	int ret;
 141
 142	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 143	if (!dr)
 144		return -ENOMEM;
 145
 146	dr->bRequestType = requesttype;
 147	dr->bRequest = request;
 148	dr->wValue = cpu_to_le16(value);
 149	dr->wIndex = cpu_to_le16(index);
 150	dr->wLength = cpu_to_le16(size);
 151
 152	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 153
 
 
 
 
 154	kfree(dr);
 155
 156	return ret;
 157}
 158EXPORT_SYMBOL_GPL(usb_control_msg);
 159
 160/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 161 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 162 * @usb_dev: pointer to the usb device to send the message to
 163 * @pipe: endpoint "pipe" to send the message to
 164 * @data: pointer to the data to send
 165 * @len: length in bytes of the data to send
 166 * @actual_length: pointer to a location to put the actual length transferred
 167 *	in bytes
 168 * @timeout: time in msecs to wait for the message to complete before
 169 *	timing out (if 0 the wait is forever)
 170 *
 171 * Context: !in_interrupt ()
 172 *
 173 * This function sends a simple interrupt message to a specified endpoint and
 174 * waits for the message to complete, or timeout.
 175 *
 176 * Don't use this function from within an interrupt context, like a bottom half
 177 * handler.  If you need an asynchronous message, or need to send a message
 178 * from within interrupt context, use usb_submit_urb() If a thread in your
 179 * driver uses this call, make sure your disconnect() method can wait for it to
 180 * complete.  Since you don't have a handle on the URB used, you can't cancel
 181 * the request.
 182 *
 183 * Return:
 184 * If successful, 0. Otherwise a negative error number. The number of actual
 185 * bytes transferred will be stored in the @actual_length parameter.
 186 */
 187int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 188		      void *data, int len, int *actual_length, int timeout)
 189{
 190	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 191}
 192EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 193
 194/**
 195 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 196 * @usb_dev: pointer to the usb device to send the message to
 197 * @pipe: endpoint "pipe" to send the message to
 198 * @data: pointer to the data to send
 199 * @len: length in bytes of the data to send
 200 * @actual_length: pointer to a location to put the actual length transferred
 201 *	in bytes
 202 * @timeout: time in msecs to wait for the message to complete before
 203 *	timing out (if 0 the wait is forever)
 204 *
 205 * Context: !in_interrupt ()
 206 *
 207 * This function sends a simple bulk message to a specified endpoint
 208 * and waits for the message to complete, or timeout.
 209 *
 210 * Don't use this function from within an interrupt context, like a bottom half
 211 * handler.  If you need an asynchronous message, or need to send a message
 212 * from within interrupt context, use usb_submit_urb() If a thread in your
 213 * driver uses this call, make sure your disconnect() method can wait for it to
 214 * complete.  Since you don't have a handle on the URB used, you can't cancel
 215 * the request.
 216 *
 217 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 218 * users are forced to abuse this routine by using it to submit URBs for
 219 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 220 * (with the default interval) if the target is an interrupt endpoint.
 221 *
 222 * Return:
 223 * If successful, 0. Otherwise a negative error number. The number of actual
 224 * bytes transferred will be stored in the @actual_length parameter.
 225 *
 226 */
 227int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 228		 void *data, int len, int *actual_length, int timeout)
 229{
 230	struct urb *urb;
 231	struct usb_host_endpoint *ep;
 232
 233	ep = usb_pipe_endpoint(usb_dev, pipe);
 234	if (!ep || len < 0)
 235		return -EINVAL;
 236
 237	urb = usb_alloc_urb(0, GFP_KERNEL);
 238	if (!urb)
 239		return -ENOMEM;
 240
 241	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 242			USB_ENDPOINT_XFER_INT) {
 243		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 244		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 245				usb_api_blocking_completion, NULL,
 246				ep->desc.bInterval);
 247	} else
 248		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 249				usb_api_blocking_completion, NULL);
 250
 251	return usb_start_wait_urb(urb, timeout, actual_length);
 252}
 253EXPORT_SYMBOL_GPL(usb_bulk_msg);
 254
 255/*-------------------------------------------------------------------*/
 256
 257static void sg_clean(struct usb_sg_request *io)
 258{
 259	if (io->urbs) {
 260		while (io->entries--)
 261			usb_free_urb(io->urbs[io->entries]);
 262		kfree(io->urbs);
 263		io->urbs = NULL;
 264	}
 265	io->dev = NULL;
 266}
 267
 268static void sg_complete(struct urb *urb)
 269{
 
 270	struct usb_sg_request *io = urb->context;
 271	int status = urb->status;
 272
 273	spin_lock(&io->lock);
 274
 275	/* In 2.5 we require hcds' endpoint queues not to progress after fault
 276	 * reports, until the completion callback (this!) returns.  That lets
 277	 * device driver code (like this routine) unlink queued urbs first,
 278	 * if it needs to, since the HC won't work on them at all.  So it's
 279	 * not possible for page N+1 to overwrite page N, and so on.
 280	 *
 281	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 282	 * complete before the HCD can get requests away from hardware,
 283	 * though never during cleanup after a hard fault.
 284	 */
 285	if (io->status
 286			&& (io->status != -ECONNRESET
 287				|| status != -ECONNRESET)
 288			&& urb->actual_length) {
 289		dev_err(io->dev->bus->controller,
 290			"dev %s ep%d%s scatterlist error %d/%d\n",
 291			io->dev->devpath,
 292			usb_endpoint_num(&urb->ep->desc),
 293			usb_urb_dir_in(urb) ? "in" : "out",
 294			status, io->status);
 295		/* BUG (); */
 296	}
 297
 298	if (io->status == 0 && status && status != -ECONNRESET) {
 299		int i, found, retval;
 300
 301		io->status = status;
 302
 303		/* the previous urbs, and this one, completed already.
 304		 * unlink pending urbs so they won't rx/tx bad data.
 305		 * careful: unlink can sometimes be synchronous...
 306		 */
 307		spin_unlock(&io->lock);
 308		for (i = 0, found = 0; i < io->entries; i++) {
 309			if (!io->urbs[i])
 310				continue;
 311			if (found) {
 312				usb_block_urb(io->urbs[i]);
 313				retval = usb_unlink_urb(io->urbs[i]);
 314				if (retval != -EINPROGRESS &&
 315				    retval != -ENODEV &&
 316				    retval != -EBUSY &&
 317				    retval != -EIDRM)
 318					dev_err(&io->dev->dev,
 319						"%s, unlink --> %d\n",
 320						__func__, retval);
 321			} else if (urb == io->urbs[i])
 322				found = 1;
 323		}
 324		spin_lock(&io->lock);
 325	}
 326
 327	/* on the last completion, signal usb_sg_wait() */
 328	io->bytes += urb->actual_length;
 329	io->count--;
 330	if (!io->count)
 331		complete(&io->complete);
 332
 333	spin_unlock(&io->lock);
 334}
 335
 336
 337/**
 338 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 339 * @io: request block being initialized.  until usb_sg_wait() returns,
 340 *	treat this as a pointer to an opaque block of memory,
 341 * @dev: the usb device that will send or receive the data
 342 * @pipe: endpoint "pipe" used to transfer the data
 343 * @period: polling rate for interrupt endpoints, in frames or
 344 * 	(for high speed endpoints) microframes; ignored for bulk
 345 * @sg: scatterlist entries
 346 * @nents: how many entries in the scatterlist
 347 * @length: how many bytes to send from the scatterlist, or zero to
 348 * 	send every byte identified in the list.
 349 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 350 *
 351 * This initializes a scatter/gather request, allocating resources such as
 352 * I/O mappings and urb memory (except maybe memory used by USB controller
 353 * drivers).
 354 *
 355 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 356 * complete (or to be canceled) and then cleans up all resources allocated by
 357 * usb_sg_init().
 358 *
 359 * The request may be canceled with usb_sg_cancel(), either before or after
 360 * usb_sg_wait() is called.
 361 *
 362 * Return: Zero for success, else a negative errno value.
 363 */
 364int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 365		unsigned pipe, unsigned	period, struct scatterlist *sg,
 366		int nents, size_t length, gfp_t mem_flags)
 367{
 368	int i;
 369	int urb_flags;
 370	int use_sg;
 371
 372	if (!io || !dev || !sg
 373			|| usb_pipecontrol(pipe)
 374			|| usb_pipeisoc(pipe)
 375			|| nents <= 0)
 376		return -EINVAL;
 377
 378	spin_lock_init(&io->lock);
 379	io->dev = dev;
 380	io->pipe = pipe;
 381
 382	if (dev->bus->sg_tablesize > 0) {
 383		use_sg = true;
 384		io->entries = 1;
 385	} else {
 386		use_sg = false;
 387		io->entries = nents;
 388	}
 389
 390	/* initialize all the urbs we'll use */
 391	io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
 392	if (!io->urbs)
 393		goto nomem;
 394
 395	urb_flags = URB_NO_INTERRUPT;
 396	if (usb_pipein(pipe))
 397		urb_flags |= URB_SHORT_NOT_OK;
 398
 399	for_each_sg(sg, sg, io->entries, i) {
 400		struct urb *urb;
 401		unsigned len;
 402
 403		urb = usb_alloc_urb(0, mem_flags);
 404		if (!urb) {
 405			io->entries = i;
 406			goto nomem;
 407		}
 408		io->urbs[i] = urb;
 409
 410		urb->dev = NULL;
 411		urb->pipe = pipe;
 412		urb->interval = period;
 413		urb->transfer_flags = urb_flags;
 414		urb->complete = sg_complete;
 415		urb->context = io;
 416		urb->sg = sg;
 417
 418		if (use_sg) {
 419			/* There is no single transfer buffer */
 420			urb->transfer_buffer = NULL;
 421			urb->num_sgs = nents;
 422
 423			/* A length of zero means transfer the whole sg list */
 424			len = length;
 425			if (len == 0) {
 426				struct scatterlist	*sg2;
 427				int			j;
 428
 429				for_each_sg(sg, sg2, nents, j)
 430					len += sg2->length;
 431			}
 432		} else {
 433			/*
 434			 * Some systems can't use DMA; they use PIO instead.
 435			 * For their sakes, transfer_buffer is set whenever
 436			 * possible.
 437			 */
 438			if (!PageHighMem(sg_page(sg)))
 439				urb->transfer_buffer = sg_virt(sg);
 440			else
 441				urb->transfer_buffer = NULL;
 442
 443			len = sg->length;
 444			if (length) {
 445				len = min_t(size_t, len, length);
 446				length -= len;
 447				if (length == 0)
 448					io->entries = i + 1;
 449			}
 450		}
 451		urb->transfer_buffer_length = len;
 452	}
 453	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 454
 455	/* transaction state */
 456	io->count = io->entries;
 457	io->status = 0;
 458	io->bytes = 0;
 459	init_completion(&io->complete);
 460	return 0;
 461
 462nomem:
 463	sg_clean(io);
 464	return -ENOMEM;
 465}
 466EXPORT_SYMBOL_GPL(usb_sg_init);
 467
 468/**
 469 * usb_sg_wait - synchronously execute scatter/gather request
 470 * @io: request block handle, as initialized with usb_sg_init().
 471 * 	some fields become accessible when this call returns.
 472 * Context: !in_interrupt ()
 
 473 *
 474 * This function blocks until the specified I/O operation completes.  It
 475 * leverages the grouping of the related I/O requests to get good transfer
 476 * rates, by queueing the requests.  At higher speeds, such queuing can
 477 * significantly improve USB throughput.
 478 *
 479 * There are three kinds of completion for this function.
 
 480 * (1) success, where io->status is zero.  The number of io->bytes
 481 *     transferred is as requested.
 482 * (2) error, where io->status is a negative errno value.  The number
 483 *     of io->bytes transferred before the error is usually less
 484 *     than requested, and can be nonzero.
 485 * (3) cancellation, a type of error with status -ECONNRESET that
 486 *     is initiated by usb_sg_cancel().
 487 *
 488 * When this function returns, all memory allocated through usb_sg_init() or
 489 * this call will have been freed.  The request block parameter may still be
 490 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 491 * reinitialized and then reused.
 492 *
 493 * Data Transfer Rates:
 494 *
 495 * Bulk transfers are valid for full or high speed endpoints.
 496 * The best full speed data rate is 19 packets of 64 bytes each
 497 * per frame, or 1216 bytes per millisecond.
 498 * The best high speed data rate is 13 packets of 512 bytes each
 499 * per microframe, or 52 KBytes per millisecond.
 500 *
 501 * The reason to use interrupt transfers through this API would most likely
 502 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 503 * could be transferred.  That capability is less useful for low or full
 504 * speed interrupt endpoints, which allow at most one packet per millisecond,
 505 * of at most 8 or 64 bytes (respectively).
 506 *
 507 * It is not necessary to call this function to reserve bandwidth for devices
 508 * under an xHCI host controller, as the bandwidth is reserved when the
 509 * configuration or interface alt setting is selected.
 510 */
 511void usb_sg_wait(struct usb_sg_request *io)
 512{
 513	int i;
 514	int entries = io->entries;
 515
 516	/* queue the urbs.  */
 517	spin_lock_irq(&io->lock);
 518	i = 0;
 519	while (i < entries && !io->status) {
 520		int retval;
 521
 522		io->urbs[i]->dev = io->dev;
 523		spin_unlock_irq(&io->lock);
 524
 525		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
 526
 527		switch (retval) {
 528			/* maybe we retrying will recover */
 529		case -ENXIO:	/* hc didn't queue this one */
 530		case -EAGAIN:
 531		case -ENOMEM:
 532			retval = 0;
 533			yield();
 534			break;
 535
 536			/* no error? continue immediately.
 537			 *
 538			 * NOTE: to work better with UHCI (4K I/O buffer may
 539			 * need 3K of TDs) it may be good to limit how many
 540			 * URBs are queued at once; N milliseconds?
 541			 */
 542		case 0:
 543			++i;
 544			cpu_relax();
 545			break;
 546
 547			/* fail any uncompleted urbs */
 548		default:
 549			io->urbs[i]->status = retval;
 550			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 551				__func__, retval);
 552			usb_sg_cancel(io);
 553		}
 554		spin_lock_irq(&io->lock);
 555		if (retval && (io->status == 0 || io->status == -ECONNRESET))
 556			io->status = retval;
 557	}
 558	io->count -= entries - i;
 559	if (io->count == 0)
 560		complete(&io->complete);
 561	spin_unlock_irq(&io->lock);
 562
 563	/* OK, yes, this could be packaged as non-blocking.
 564	 * So could the submit loop above ... but it's easier to
 565	 * solve neither problem than to solve both!
 566	 */
 567	wait_for_completion(&io->complete);
 568
 569	sg_clean(io);
 570}
 571EXPORT_SYMBOL_GPL(usb_sg_wait);
 572
 573/**
 574 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 575 * @io: request block, initialized with usb_sg_init()
 576 *
 577 * This stops a request after it has been started by usb_sg_wait().
 578 * It can also prevents one initialized by usb_sg_init() from starting,
 579 * so that call just frees resources allocated to the request.
 580 */
 581void usb_sg_cancel(struct usb_sg_request *io)
 582{
 583	unsigned long flags;
 584	int i, retval;
 585
 586	spin_lock_irqsave(&io->lock, flags);
 587	if (io->status) {
 588		spin_unlock_irqrestore(&io->lock, flags);
 589		return;
 590	}
 591	/* shut everything down */
 592	io->status = -ECONNRESET;
 
 593	spin_unlock_irqrestore(&io->lock, flags);
 594
 595	for (i = io->entries - 1; i >= 0; --i) {
 596		usb_block_urb(io->urbs[i]);
 597
 598		retval = usb_unlink_urb(io->urbs[i]);
 599		if (retval != -EINPROGRESS
 600		    && retval != -ENODEV
 601		    && retval != -EBUSY
 602		    && retval != -EIDRM)
 603			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 604				 __func__, retval);
 605	}
 
 
 
 
 
 
 606}
 607EXPORT_SYMBOL_GPL(usb_sg_cancel);
 608
 609/*-------------------------------------------------------------------*/
 610
 611/**
 612 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 613 * @dev: the device whose descriptor is being retrieved
 614 * @type: the descriptor type (USB_DT_*)
 615 * @index: the number of the descriptor
 616 * @buf: where to put the descriptor
 617 * @size: how big is "buf"?
 618 * Context: !in_interrupt ()
 
 619 *
 620 * Gets a USB descriptor.  Convenience functions exist to simplify
 621 * getting some types of descriptors.  Use
 622 * usb_get_string() or usb_string() for USB_DT_STRING.
 623 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 624 * are part of the device structure.
 625 * In addition to a number of USB-standard descriptors, some
 626 * devices also use class-specific or vendor-specific descriptors.
 627 *
 628 * This call is synchronous, and may not be used in an interrupt context.
 629 *
 630 * Return: The number of bytes received on success, or else the status code
 631 * returned by the underlying usb_control_msg() call.
 632 */
 633int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 634		       unsigned char index, void *buf, int size)
 635{
 636	int i;
 637	int result;
 638
 
 
 
 639	memset(buf, 0, size);	/* Make sure we parse really received data */
 640
 641	for (i = 0; i < 3; ++i) {
 642		/* retry on length 0 or error; some devices are flakey */
 643		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 644				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 645				(type << 8) + index, 0, buf, size,
 646				USB_CTRL_GET_TIMEOUT);
 647		if (result <= 0 && result != -ETIMEDOUT)
 648			continue;
 649		if (result > 1 && ((u8 *)buf)[1] != type) {
 650			result = -ENODATA;
 651			continue;
 652		}
 653		break;
 654	}
 655	return result;
 656}
 657EXPORT_SYMBOL_GPL(usb_get_descriptor);
 658
 659/**
 660 * usb_get_string - gets a string descriptor
 661 * @dev: the device whose string descriptor is being retrieved
 662 * @langid: code for language chosen (from string descriptor zero)
 663 * @index: the number of the descriptor
 664 * @buf: where to put the string
 665 * @size: how big is "buf"?
 666 * Context: !in_interrupt ()
 
 667 *
 668 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 669 * in little-endian byte order).
 670 * The usb_string() function will often be a convenient way to turn
 671 * these strings into kernel-printable form.
 672 *
 673 * Strings may be referenced in device, configuration, interface, or other
 674 * descriptors, and could also be used in vendor-specific ways.
 675 *
 676 * This call is synchronous, and may not be used in an interrupt context.
 677 *
 678 * Return: The number of bytes received on success, or else the status code
 679 * returned by the underlying usb_control_msg() call.
 680 */
 681static int usb_get_string(struct usb_device *dev, unsigned short langid,
 682			  unsigned char index, void *buf, int size)
 683{
 684	int i;
 685	int result;
 686
 
 
 
 687	for (i = 0; i < 3; ++i) {
 688		/* retry on length 0 or stall; some devices are flakey */
 689		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 690			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 691			(USB_DT_STRING << 8) + index, langid, buf, size,
 692			USB_CTRL_GET_TIMEOUT);
 693		if (result == 0 || result == -EPIPE)
 694			continue;
 695		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 696			result = -ENODATA;
 697			continue;
 698		}
 699		break;
 700	}
 701	return result;
 702}
 703
 704static void usb_try_string_workarounds(unsigned char *buf, int *length)
 705{
 706	int newlength, oldlength = *length;
 707
 708	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 709		if (!isprint(buf[newlength]) || buf[newlength + 1])
 710			break;
 711
 712	if (newlength > 2) {
 713		buf[0] = newlength;
 714		*length = newlength;
 715	}
 716}
 717
 718static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 719			  unsigned int index, unsigned char *buf)
 720{
 721	int rc;
 722
 723	/* Try to read the string descriptor by asking for the maximum
 724	 * possible number of bytes */
 725	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 726		rc = -EIO;
 727	else
 728		rc = usb_get_string(dev, langid, index, buf, 255);
 729
 730	/* If that failed try to read the descriptor length, then
 731	 * ask for just that many bytes */
 732	if (rc < 2) {
 733		rc = usb_get_string(dev, langid, index, buf, 2);
 734		if (rc == 2)
 735			rc = usb_get_string(dev, langid, index, buf, buf[0]);
 736	}
 737
 738	if (rc >= 2) {
 739		if (!buf[0] && !buf[1])
 740			usb_try_string_workarounds(buf, &rc);
 741
 742		/* There might be extra junk at the end of the descriptor */
 743		if (buf[0] < rc)
 744			rc = buf[0];
 745
 746		rc = rc - (rc & 1); /* force a multiple of two */
 747	}
 748
 749	if (rc < 2)
 750		rc = (rc < 0 ? rc : -EINVAL);
 751
 752	return rc;
 753}
 754
 755static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 756{
 757	int err;
 758
 759	if (dev->have_langid)
 760		return 0;
 761
 762	if (dev->string_langid < 0)
 763		return -EPIPE;
 764
 765	err = usb_string_sub(dev, 0, 0, tbuf);
 766
 767	/* If the string was reported but is malformed, default to english
 768	 * (0x0409) */
 769	if (err == -ENODATA || (err > 0 && err < 4)) {
 770		dev->string_langid = 0x0409;
 771		dev->have_langid = 1;
 772		dev_err(&dev->dev,
 773			"language id specifier not provided by device, defaulting to English\n");
 774		return 0;
 775	}
 776
 777	/* In case of all other errors, we assume the device is not able to
 778	 * deal with strings at all. Set string_langid to -1 in order to
 779	 * prevent any string to be retrieved from the device */
 780	if (err < 0) {
 781		dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
 782					err);
 783		dev->string_langid = -1;
 784		return -EPIPE;
 785	}
 786
 787	/* always use the first langid listed */
 788	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 789	dev->have_langid = 1;
 790	dev_dbg(&dev->dev, "default language 0x%04x\n",
 791				dev->string_langid);
 792	return 0;
 793}
 794
 795/**
 796 * usb_string - returns UTF-8 version of a string descriptor
 797 * @dev: the device whose string descriptor is being retrieved
 798 * @index: the number of the descriptor
 799 * @buf: where to put the string
 800 * @size: how big is "buf"?
 801 * Context: !in_interrupt ()
 
 802 *
 803 * This converts the UTF-16LE encoded strings returned by devices, from
 804 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 805 * that are more usable in most kernel contexts.  Note that this function
 806 * chooses strings in the first language supported by the device.
 807 *
 808 * This call is synchronous, and may not be used in an interrupt context.
 809 *
 810 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
 811 */
 812int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 813{
 814	unsigned char *tbuf;
 815	int err;
 816
 817	if (dev->state == USB_STATE_SUSPENDED)
 818		return -EHOSTUNREACH;
 819	if (size <= 0 || !buf || !index)
 820		return -EINVAL;
 821	buf[0] = 0;
 
 
 822	tbuf = kmalloc(256, GFP_NOIO);
 823	if (!tbuf)
 824		return -ENOMEM;
 825
 826	err = usb_get_langid(dev, tbuf);
 827	if (err < 0)
 828		goto errout;
 829
 830	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 831	if (err < 0)
 832		goto errout;
 833
 834	size--;		/* leave room for trailing NULL char in output buffer */
 835	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 836			UTF16_LITTLE_ENDIAN, buf, size);
 837	buf[err] = 0;
 838
 839	if (tbuf[1] != USB_DT_STRING)
 840		dev_dbg(&dev->dev,
 841			"wrong descriptor type %02x for string %d (\"%s\")\n",
 842			tbuf[1], index, buf);
 843
 844 errout:
 845	kfree(tbuf);
 846	return err;
 847}
 848EXPORT_SYMBOL_GPL(usb_string);
 849
 850/* one UTF-8-encoded 16-bit character has at most three bytes */
 851#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 852
 853/**
 854 * usb_cache_string - read a string descriptor and cache it for later use
 855 * @udev: the device whose string descriptor is being read
 856 * @index: the descriptor index
 857 *
 858 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
 859 * or %NULL if the index is 0 or the string could not be read.
 860 */
 861char *usb_cache_string(struct usb_device *udev, int index)
 862{
 863	char *buf;
 864	char *smallbuf = NULL;
 865	int len;
 866
 867	if (index <= 0)
 868		return NULL;
 869
 870	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 871	if (buf) {
 872		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 873		if (len > 0) {
 874			smallbuf = kmalloc(++len, GFP_NOIO);
 875			if (!smallbuf)
 876				return buf;
 877			memcpy(smallbuf, buf, len);
 878		}
 879		kfree(buf);
 880	}
 881	return smallbuf;
 882}
 883
 884/*
 885 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 886 * @dev: the device whose device descriptor is being updated
 887 * @size: how much of the descriptor to read
 888 * Context: !in_interrupt ()
 
 889 *
 890 * Updates the copy of the device descriptor stored in the device structure,
 891 * which dedicates space for this purpose.
 892 *
 893 * Not exported, only for use by the core.  If drivers really want to read
 894 * the device descriptor directly, they can call usb_get_descriptor() with
 895 * type = USB_DT_DEVICE and index = 0.
 896 *
 897 * This call is synchronous, and may not be used in an interrupt context.
 898 *
 899 * Return: The number of bytes received on success, or else the status code
 900 * returned by the underlying usb_control_msg() call.
 901 */
 902int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 903{
 904	struct usb_device_descriptor *desc;
 905	int ret;
 906
 907	if (size > sizeof(*desc))
 908		return -EINVAL;
 909	desc = kmalloc(sizeof(*desc), GFP_NOIO);
 910	if (!desc)
 911		return -ENOMEM;
 912
 913	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 914	if (ret >= 0)
 915		memcpy(&dev->descriptor, desc, size);
 916	kfree(desc);
 917	return ret;
 918}
 919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920/**
 921 * usb_get_status - issues a GET_STATUS call
 922 * @dev: the device whose status is being checked
 923 * @type: USB_RECIP_*; for device, interface, or endpoint
 
 924 * @target: zero (for device), else interface or endpoint number
 925 * @data: pointer to two bytes of bitmap data
 926 * Context: !in_interrupt ()
 
 927 *
 928 * Returns device, interface, or endpoint status.  Normally only of
 929 * interest to see if the device is self powered, or has enabled the
 930 * remote wakeup facility; or whether a bulk or interrupt endpoint
 931 * is halted ("stalled").
 932 *
 933 * Bits in these status bitmaps are set using the SET_FEATURE request,
 934 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 935 * function should be used to clear halt ("stall") status.
 936 *
 937 * This call is synchronous, and may not be used in an interrupt context.
 938 *
 939 * Returns 0 and the status value in *@data (in host byte order) on success,
 940 * or else the status code from the underlying usb_control_msg() call.
 941 */
 942int usb_get_status(struct usb_device *dev, int type, int target, void *data)
 
 943{
 944	int ret;
 945	__le16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
 
 946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 947	if (!status)
 948		return -ENOMEM;
 949
 950	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 951		USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
 952		sizeof(*status), USB_CTRL_GET_TIMEOUT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953
 954	if (ret == 2) {
 955		*(u16 *) data = le16_to_cpu(*status);
 956		ret = 0;
 957	} else if (ret >= 0) {
 
 958		ret = -EIO;
 959	}
 
 960	kfree(status);
 961	return ret;
 962}
 963EXPORT_SYMBOL_GPL(usb_get_status);
 964
 965/**
 966 * usb_clear_halt - tells device to clear endpoint halt/stall condition
 967 * @dev: device whose endpoint is halted
 968 * @pipe: endpoint "pipe" being cleared
 969 * Context: !in_interrupt ()
 
 970 *
 971 * This is used to clear halt conditions for bulk and interrupt endpoints,
 972 * as reported by URB completion status.  Endpoints that are halted are
 973 * sometimes referred to as being "stalled".  Such endpoints are unable
 974 * to transmit or receive data until the halt status is cleared.  Any URBs
 975 * queued for such an endpoint should normally be unlinked by the driver
 976 * before clearing the halt condition, as described in sections 5.7.5
 977 * and 5.8.5 of the USB 2.0 spec.
 978 *
 979 * Note that control and isochronous endpoints don't halt, although control
 980 * endpoints report "protocol stall" (for unsupported requests) using the
 981 * same status code used to report a true stall.
 982 *
 983 * This call is synchronous, and may not be used in an interrupt context.
 984 *
 985 * Return: Zero on success, or else the status code returned by the
 986 * underlying usb_control_msg() call.
 987 */
 988int usb_clear_halt(struct usb_device *dev, int pipe)
 989{
 990	int result;
 991	int endp = usb_pipeendpoint(pipe);
 992
 993	if (usb_pipein(pipe))
 994		endp |= USB_DIR_IN;
 995
 996	/* we don't care if it wasn't halted first. in fact some devices
 997	 * (like some ibmcam model 1 units) seem to expect hosts to make
 998	 * this request for iso endpoints, which can't halt!
 999	 */
1000	result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1001		USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1002		USB_ENDPOINT_HALT, endp, NULL, 0,
1003		USB_CTRL_SET_TIMEOUT);
1004
1005	/* don't un-halt or force to DATA0 except on success */
1006	if (result < 0)
1007		return result;
1008
1009	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1010	 * the clear "took", so some devices could lock up if you check...
1011	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1012	 *
1013	 * NOTE:  make sure the logic here doesn't diverge much from
1014	 * the copy in usb-storage, for as long as we need two copies.
1015	 */
1016
1017	usb_reset_endpoint(dev, endp);
1018
1019	return 0;
1020}
1021EXPORT_SYMBOL_GPL(usb_clear_halt);
1022
1023static int create_intf_ep_devs(struct usb_interface *intf)
1024{
1025	struct usb_device *udev = interface_to_usbdev(intf);
1026	struct usb_host_interface *alt = intf->cur_altsetting;
1027	int i;
1028
1029	if (intf->ep_devs_created || intf->unregistering)
1030		return 0;
1031
1032	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1033		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1034	intf->ep_devs_created = 1;
1035	return 0;
1036}
1037
1038static void remove_intf_ep_devs(struct usb_interface *intf)
1039{
1040	struct usb_host_interface *alt = intf->cur_altsetting;
1041	int i;
1042
1043	if (!intf->ep_devs_created)
1044		return;
1045
1046	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1047		usb_remove_ep_devs(&alt->endpoint[i]);
1048	intf->ep_devs_created = 0;
1049}
1050
1051/**
1052 * usb_disable_endpoint -- Disable an endpoint by address
1053 * @dev: the device whose endpoint is being disabled
1054 * @epaddr: the endpoint's address.  Endpoint number for output,
1055 *	endpoint number + USB_DIR_IN for input
1056 * @reset_hardware: flag to erase any endpoint state stored in the
1057 *	controller hardware
1058 *
1059 * Disables the endpoint for URB submission and nukes all pending URBs.
1060 * If @reset_hardware is set then also deallocates hcd/hardware state
1061 * for the endpoint.
1062 */
1063void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1064		bool reset_hardware)
1065{
1066	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1067	struct usb_host_endpoint *ep;
1068
1069	if (!dev)
1070		return;
1071
1072	if (usb_endpoint_out(epaddr)) {
1073		ep = dev->ep_out[epnum];
1074		if (reset_hardware)
1075			dev->ep_out[epnum] = NULL;
1076	} else {
1077		ep = dev->ep_in[epnum];
1078		if (reset_hardware)
1079			dev->ep_in[epnum] = NULL;
1080	}
1081	if (ep) {
1082		ep->enabled = 0;
1083		usb_hcd_flush_endpoint(dev, ep);
1084		if (reset_hardware)
1085			usb_hcd_disable_endpoint(dev, ep);
1086	}
1087}
1088
1089/**
1090 * usb_reset_endpoint - Reset an endpoint's state.
1091 * @dev: the device whose endpoint is to be reset
1092 * @epaddr: the endpoint's address.  Endpoint number for output,
1093 *	endpoint number + USB_DIR_IN for input
1094 *
1095 * Resets any host-side endpoint state such as the toggle bit,
1096 * sequence number or current window.
1097 */
1098void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1099{
1100	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1101	struct usb_host_endpoint *ep;
1102
1103	if (usb_endpoint_out(epaddr))
1104		ep = dev->ep_out[epnum];
1105	else
1106		ep = dev->ep_in[epnum];
1107	if (ep)
1108		usb_hcd_reset_endpoint(dev, ep);
1109}
1110EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1111
1112
1113/**
1114 * usb_disable_interface -- Disable all endpoints for an interface
1115 * @dev: the device whose interface is being disabled
1116 * @intf: pointer to the interface descriptor
1117 * @reset_hardware: flag to erase any endpoint state stored in the
1118 *	controller hardware
1119 *
1120 * Disables all the endpoints for the interface's current altsetting.
1121 */
1122void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1123		bool reset_hardware)
1124{
1125	struct usb_host_interface *alt = intf->cur_altsetting;
1126	int i;
1127
1128	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1129		usb_disable_endpoint(dev,
1130				alt->endpoint[i].desc.bEndpointAddress,
1131				reset_hardware);
1132	}
1133}
1134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1135/**
1136 * usb_disable_device - Disable all the endpoints for a USB device
1137 * @dev: the device whose endpoints are being disabled
1138 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1139 *
1140 * Disables all the device's endpoints, potentially including endpoint 0.
1141 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1142 * pending urbs) and usbcore state for the interfaces, so that usbcore
1143 * must usb_set_configuration() before any interfaces could be used.
1144 */
1145void usb_disable_device(struct usb_device *dev, int skip_ep0)
1146{
1147	int i;
1148	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1149
1150	/* getting rid of interfaces will disconnect
1151	 * any drivers bound to them (a key side effect)
1152	 */
1153	if (dev->actconfig) {
1154		/*
1155		 * FIXME: In order to avoid self-deadlock involving the
1156		 * bandwidth_mutex, we have to mark all the interfaces
1157		 * before unregistering any of them.
1158		 */
1159		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1160			dev->actconfig->interface[i]->unregistering = 1;
1161
1162		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1163			struct usb_interface	*interface;
1164
1165			/* remove this interface if it has been registered */
1166			interface = dev->actconfig->interface[i];
1167			if (!device_is_registered(&interface->dev))
1168				continue;
1169			dev_dbg(&dev->dev, "unregistering interface %s\n",
1170				dev_name(&interface->dev));
1171			remove_intf_ep_devs(interface);
1172			device_del(&interface->dev);
1173		}
1174
1175		/* Now that the interfaces are unbound, nobody should
1176		 * try to access them.
1177		 */
1178		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1179			put_device(&dev->actconfig->interface[i]->dev);
1180			dev->actconfig->interface[i] = NULL;
1181		}
1182
1183		if (dev->usb2_hw_lpm_enabled == 1)
1184			usb_set_usb2_hardware_lpm(dev, 0);
1185		usb_unlocked_disable_lpm(dev);
1186		usb_disable_ltm(dev);
1187
1188		dev->actconfig = NULL;
1189		if (dev->state == USB_STATE_CONFIGURED)
1190			usb_set_device_state(dev, USB_STATE_ADDRESS);
1191	}
1192
1193	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1194		skip_ep0 ? "non-ep0" : "all");
1195	if (hcd->driver->check_bandwidth) {
1196		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1197		for (i = skip_ep0; i < 16; ++i) {
1198			usb_disable_endpoint(dev, i, false);
1199			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1200		}
1201		/* Remove endpoints from the host controller internal state */
1202		mutex_lock(hcd->bandwidth_mutex);
1203		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1204		mutex_unlock(hcd->bandwidth_mutex);
1205		/* Second pass: remove endpoint pointers */
1206	}
1207	for (i = skip_ep0; i < 16; ++i) {
1208		usb_disable_endpoint(dev, i, true);
1209		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1210	}
1211}
1212
1213/**
1214 * usb_enable_endpoint - Enable an endpoint for USB communications
1215 * @dev: the device whose interface is being enabled
1216 * @ep: the endpoint
1217 * @reset_ep: flag to reset the endpoint state
1218 *
1219 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1220 * For control endpoints, both the input and output sides are handled.
1221 */
1222void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1223		bool reset_ep)
1224{
1225	int epnum = usb_endpoint_num(&ep->desc);
1226	int is_out = usb_endpoint_dir_out(&ep->desc);
1227	int is_control = usb_endpoint_xfer_control(&ep->desc);
1228
1229	if (reset_ep)
1230		usb_hcd_reset_endpoint(dev, ep);
1231	if (is_out || is_control)
1232		dev->ep_out[epnum] = ep;
1233	if (!is_out || is_control)
1234		dev->ep_in[epnum] = ep;
1235	ep->enabled = 1;
1236}
1237
1238/**
1239 * usb_enable_interface - Enable all the endpoints for an interface
1240 * @dev: the device whose interface is being enabled
1241 * @intf: pointer to the interface descriptor
1242 * @reset_eps: flag to reset the endpoints' state
1243 *
1244 * Enables all the endpoints for the interface's current altsetting.
1245 */
1246void usb_enable_interface(struct usb_device *dev,
1247		struct usb_interface *intf, bool reset_eps)
1248{
1249	struct usb_host_interface *alt = intf->cur_altsetting;
1250	int i;
1251
1252	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1254}
1255
1256/**
1257 * usb_set_interface - Makes a particular alternate setting be current
1258 * @dev: the device whose interface is being updated
1259 * @interface: the interface being updated
1260 * @alternate: the setting being chosen.
1261 * Context: !in_interrupt ()
 
1262 *
1263 * This is used to enable data transfers on interfaces that may not
1264 * be enabled by default.  Not all devices support such configurability.
1265 * Only the driver bound to an interface may change its setting.
1266 *
1267 * Within any given configuration, each interface may have several
1268 * alternative settings.  These are often used to control levels of
1269 * bandwidth consumption.  For example, the default setting for a high
1270 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1271 * while interrupt transfers of up to 3KBytes per microframe are legal.
1272 * Also, isochronous endpoints may never be part of an
1273 * interface's default setting.  To access such bandwidth, alternate
1274 * interface settings must be made current.
1275 *
1276 * Note that in the Linux USB subsystem, bandwidth associated with
1277 * an endpoint in a given alternate setting is not reserved until an URB
1278 * is submitted that needs that bandwidth.  Some other operating systems
1279 * allocate bandwidth early, when a configuration is chosen.
1280 *
 
 
 
 
 
1281 * This call is synchronous, and may not be used in an interrupt context.
1282 * Also, drivers must not change altsettings while urbs are scheduled for
1283 * endpoints in that interface; all such urbs must first be completed
1284 * (perhaps forced by unlinking).
1285 *
1286 * Return: Zero on success, or else the status code returned by the
1287 * underlying usb_control_msg() call.
1288 */
1289int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1290{
1291	struct usb_interface *iface;
1292	struct usb_host_interface *alt;
1293	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1294	int i, ret, manual = 0;
1295	unsigned int epaddr;
1296	unsigned int pipe;
1297
1298	if (dev->state == USB_STATE_SUSPENDED)
1299		return -EHOSTUNREACH;
1300
1301	iface = usb_ifnum_to_if(dev, interface);
1302	if (!iface) {
1303		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1304			interface);
1305		return -EINVAL;
1306	}
1307	if (iface->unregistering)
1308		return -ENODEV;
1309
1310	alt = usb_altnum_to_altsetting(iface, alternate);
1311	if (!alt) {
1312		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1313			 alternate);
1314		return -EINVAL;
1315	}
 
 
 
 
 
 
1316
1317	/* Make sure we have enough bandwidth for this alternate interface.
1318	 * Remove the current alt setting and add the new alt setting.
1319	 */
1320	mutex_lock(hcd->bandwidth_mutex);
1321	/* Disable LPM, and re-enable it once the new alt setting is installed,
1322	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1323	 */
1324	if (usb_disable_lpm(dev)) {
1325		dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1326		mutex_unlock(hcd->bandwidth_mutex);
1327		return -ENOMEM;
1328	}
1329	/* Changing alt-setting also frees any allocated streams */
1330	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1331		iface->cur_altsetting->endpoint[i].streams = 0;
1332
1333	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1334	if (ret < 0) {
1335		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1336				alternate);
1337		usb_enable_lpm(dev);
1338		mutex_unlock(hcd->bandwidth_mutex);
1339		return ret;
1340	}
1341
1342	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1343		ret = -EPIPE;
1344	else
1345		ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1346				   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1347				   alternate, interface, NULL, 0, 5000);
 
 
1348
1349	/* 9.4.10 says devices don't need this and are free to STALL the
1350	 * request if the interface only has one alternate setting.
1351	 */
1352	if (ret == -EPIPE && iface->num_altsetting == 1) {
1353		dev_dbg(&dev->dev,
1354			"manual set_interface for iface %d, alt %d\n",
1355			interface, alternate);
1356		manual = 1;
1357	} else if (ret < 0) {
1358		/* Re-instate the old alt setting */
1359		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1360		usb_enable_lpm(dev);
1361		mutex_unlock(hcd->bandwidth_mutex);
1362		return ret;
1363	}
1364	mutex_unlock(hcd->bandwidth_mutex);
1365
1366	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1367	 * when they implement async or easily-killable versions of this or
1368	 * other "should-be-internal" functions (like clear_halt).
1369	 * should hcd+usbcore postprocess control requests?
1370	 */
1371
1372	/* prevent submissions using previous endpoint settings */
1373	if (iface->cur_altsetting != alt) {
1374		remove_intf_ep_devs(iface);
1375		usb_remove_sysfs_intf_files(iface);
1376	}
1377	usb_disable_interface(dev, iface, true);
1378
1379	iface->cur_altsetting = alt;
1380
1381	/* Now that the interface is installed, re-enable LPM. */
1382	usb_unlocked_enable_lpm(dev);
1383
1384	/* If the interface only has one altsetting and the device didn't
1385	 * accept the request, we attempt to carry out the equivalent action
1386	 * by manually clearing the HALT feature for each endpoint in the
1387	 * new altsetting.
1388	 */
1389	if (manual) {
1390		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1391			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1392			pipe = __create_pipe(dev,
1393					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1394					(usb_endpoint_out(epaddr) ?
1395					USB_DIR_OUT : USB_DIR_IN);
1396
1397			usb_clear_halt(dev, pipe);
1398		}
1399	}
1400
1401	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1402	 *
1403	 * Note:
1404	 * Despite EP0 is always present in all interfaces/AS, the list of
1405	 * endpoints from the descriptor does not contain EP0. Due to its
1406	 * omnipresence one might expect EP0 being considered "affected" by
1407	 * any SetInterface request and hence assume toggles need to be reset.
1408	 * However, EP0 toggles are re-synced for every individual transfer
1409	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1410	 * (Likewise, EP0 never "halts" on well designed devices.)
1411	 */
1412	usb_enable_interface(dev, iface, true);
1413	if (device_is_registered(&iface->dev)) {
1414		usb_create_sysfs_intf_files(iface);
1415		create_intf_ep_devs(iface);
1416	}
1417	return 0;
1418}
1419EXPORT_SYMBOL_GPL(usb_set_interface);
1420
1421/**
1422 * usb_reset_configuration - lightweight device reset
1423 * @dev: the device whose configuration is being reset
1424 *
1425 * This issues a standard SET_CONFIGURATION request to the device using
1426 * the current configuration.  The effect is to reset most USB-related
1427 * state in the device, including interface altsettings (reset to zero),
1428 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1429 * endpoints).  Other usbcore state is unchanged, including bindings of
1430 * usb device drivers to interfaces.
1431 *
1432 * Because this affects multiple interfaces, avoid using this with composite
1433 * (multi-interface) devices.  Instead, the driver for each interface may
1434 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1435 * some devices don't support the SET_INTERFACE request, and others won't
1436 * reset all the interface state (notably endpoint state).  Resetting the whole
1437 * configuration would affect other drivers' interfaces.
1438 *
1439 * The caller must own the device lock.
1440 *
1441 * Return: Zero on success, else a negative error code.
 
 
 
1442 */
1443int usb_reset_configuration(struct usb_device *dev)
1444{
1445	int			i, retval;
1446	struct usb_host_config	*config;
1447	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1448
1449	if (dev->state == USB_STATE_SUSPENDED)
1450		return -EHOSTUNREACH;
1451
1452	/* caller must have locked the device and must own
1453	 * the usb bus readlock (so driver bindings are stable);
1454	 * calls during probe() are fine
1455	 */
1456
1457	for (i = 1; i < 16; ++i) {
1458		usb_disable_endpoint(dev, i, true);
1459		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1460	}
1461
1462	config = dev->actconfig;
1463	retval = 0;
1464	mutex_lock(hcd->bandwidth_mutex);
1465	/* Disable LPM, and re-enable it once the configuration is reset, so
1466	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1467	 */
1468	if (usb_disable_lpm(dev)) {
1469		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1470		mutex_unlock(hcd->bandwidth_mutex);
1471		return -ENOMEM;
1472	}
1473	/* Make sure we have enough bandwidth for each alternate setting 0 */
1474	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1475		struct usb_interface *intf = config->interface[i];
1476		struct usb_host_interface *alt;
1477
1478		alt = usb_altnum_to_altsetting(intf, 0);
1479		if (!alt)
1480			alt = &intf->altsetting[0];
1481		if (alt != intf->cur_altsetting)
1482			retval = usb_hcd_alloc_bandwidth(dev, NULL,
1483					intf->cur_altsetting, alt);
1484		if (retval < 0)
1485			break;
1486	}
1487	/* If not, reinstate the old alternate settings */
1488	if (retval < 0) {
1489reset_old_alts:
1490		for (i--; i >= 0; i--) {
1491			struct usb_interface *intf = config->interface[i];
1492			struct usb_host_interface *alt;
1493
1494			alt = usb_altnum_to_altsetting(intf, 0);
1495			if (!alt)
1496				alt = &intf->altsetting[0];
1497			if (alt != intf->cur_altsetting)
1498				usb_hcd_alloc_bandwidth(dev, NULL,
1499						alt, intf->cur_altsetting);
1500		}
1501		usb_enable_lpm(dev);
1502		mutex_unlock(hcd->bandwidth_mutex);
1503		return retval;
1504	}
1505	retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1506			USB_REQ_SET_CONFIGURATION, 0,
1507			config->desc.bConfigurationValue, 0,
1508			NULL, 0, USB_CTRL_SET_TIMEOUT);
1509	if (retval < 0)
1510		goto reset_old_alts;
 
 
 
 
1511	mutex_unlock(hcd->bandwidth_mutex);
1512
1513	/* re-init hc/hcd interface/endpoint state */
1514	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1515		struct usb_interface *intf = config->interface[i];
1516		struct usb_host_interface *alt;
1517
1518		alt = usb_altnum_to_altsetting(intf, 0);
1519
1520		/* No altsetting 0?  We'll assume the first altsetting.
1521		 * We could use a GetInterface call, but if a device is
1522		 * so non-compliant that it doesn't have altsetting 0
1523		 * then I wouldn't trust its reply anyway.
1524		 */
1525		if (!alt)
1526			alt = &intf->altsetting[0];
1527
1528		if (alt != intf->cur_altsetting) {
1529			remove_intf_ep_devs(intf);
1530			usb_remove_sysfs_intf_files(intf);
1531		}
1532		intf->cur_altsetting = alt;
1533		usb_enable_interface(dev, intf, true);
1534		if (device_is_registered(&intf->dev)) {
1535			usb_create_sysfs_intf_files(intf);
1536			create_intf_ep_devs(intf);
1537		}
1538	}
1539	/* Now that the interfaces are installed, re-enable LPM. */
1540	usb_unlocked_enable_lpm(dev);
1541	return 0;
1542}
1543EXPORT_SYMBOL_GPL(usb_reset_configuration);
1544
1545static void usb_release_interface(struct device *dev)
1546{
1547	struct usb_interface *intf = to_usb_interface(dev);
1548	struct usb_interface_cache *intfc =
1549			altsetting_to_usb_interface_cache(intf->altsetting);
1550
1551	kref_put(&intfc->ref, usb_release_interface_cache);
1552	usb_put_dev(interface_to_usbdev(intf));
 
1553	kfree(intf);
1554}
1555
1556/*
1557 * usb_deauthorize_interface - deauthorize an USB interface
1558 *
1559 * @intf: USB interface structure
1560 */
1561void usb_deauthorize_interface(struct usb_interface *intf)
1562{
1563	struct device *dev = &intf->dev;
1564
1565	device_lock(dev->parent);
1566
1567	if (intf->authorized) {
1568		device_lock(dev);
1569		intf->authorized = 0;
1570		device_unlock(dev);
1571
1572		usb_forced_unbind_intf(intf);
1573	}
1574
1575	device_unlock(dev->parent);
1576}
1577
1578/*
1579 * usb_authorize_interface - authorize an USB interface
1580 *
1581 * @intf: USB interface structure
1582 */
1583void usb_authorize_interface(struct usb_interface *intf)
1584{
1585	struct device *dev = &intf->dev;
1586
1587	if (!intf->authorized) {
1588		device_lock(dev);
1589		intf->authorized = 1; /* authorize interface */
1590		device_unlock(dev);
1591	}
1592}
1593
1594static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1595{
1596	struct usb_device *usb_dev;
1597	struct usb_interface *intf;
1598	struct usb_host_interface *alt;
1599
1600	intf = to_usb_interface(dev);
1601	usb_dev = interface_to_usbdev(intf);
1602	alt = intf->cur_altsetting;
1603
1604	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1605		   alt->desc.bInterfaceClass,
1606		   alt->desc.bInterfaceSubClass,
1607		   alt->desc.bInterfaceProtocol))
1608		return -ENOMEM;
1609
1610	if (add_uevent_var(env,
1611		   "MODALIAS=usb:"
1612		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1613		   le16_to_cpu(usb_dev->descriptor.idVendor),
1614		   le16_to_cpu(usb_dev->descriptor.idProduct),
1615		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1616		   usb_dev->descriptor.bDeviceClass,
1617		   usb_dev->descriptor.bDeviceSubClass,
1618		   usb_dev->descriptor.bDeviceProtocol,
1619		   alt->desc.bInterfaceClass,
1620		   alt->desc.bInterfaceSubClass,
1621		   alt->desc.bInterfaceProtocol,
1622		   alt->desc.bInterfaceNumber))
1623		return -ENOMEM;
1624
1625	return 0;
1626}
1627
1628struct device_type usb_if_device_type = {
1629	.name =		"usb_interface",
1630	.release =	usb_release_interface,
1631	.uevent =	usb_if_uevent,
1632};
1633
1634static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1635						struct usb_host_config *config,
1636						u8 inum)
1637{
1638	struct usb_interface_assoc_descriptor *retval = NULL;
1639	struct usb_interface_assoc_descriptor *intf_assoc;
1640	int first_intf;
1641	int last_intf;
1642	int i;
1643
1644	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1645		intf_assoc = config->intf_assoc[i];
1646		if (intf_assoc->bInterfaceCount == 0)
1647			continue;
1648
1649		first_intf = intf_assoc->bFirstInterface;
1650		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1651		if (inum >= first_intf && inum <= last_intf) {
1652			if (!retval)
1653				retval = intf_assoc;
1654			else
1655				dev_err(&dev->dev, "Interface #%d referenced"
1656					" by multiple IADs\n", inum);
1657		}
1658	}
1659
1660	return retval;
1661}
1662
1663
1664/*
1665 * Internal function to queue a device reset
1666 * See usb_queue_reset_device() for more details
1667 */
1668static void __usb_queue_reset_device(struct work_struct *ws)
1669{
1670	int rc;
1671	struct usb_interface *iface =
1672		container_of(ws, struct usb_interface, reset_ws);
1673	struct usb_device *udev = interface_to_usbdev(iface);
1674
1675	rc = usb_lock_device_for_reset(udev, iface);
1676	if (rc >= 0) {
1677		usb_reset_device(udev);
1678		usb_unlock_device(udev);
1679	}
1680	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1681}
1682
1683
1684/*
1685 * usb_set_configuration - Makes a particular device setting be current
1686 * @dev: the device whose configuration is being updated
1687 * @configuration: the configuration being chosen.
1688 * Context: !in_interrupt(), caller owns the device lock
 
1689 *
1690 * This is used to enable non-default device modes.  Not all devices
1691 * use this kind of configurability; many devices only have one
1692 * configuration.
1693 *
1694 * @configuration is the value of the configuration to be installed.
1695 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1696 * must be non-zero; a value of zero indicates that the device in
1697 * unconfigured.  However some devices erroneously use 0 as one of their
1698 * configuration values.  To help manage such devices, this routine will
1699 * accept @configuration = -1 as indicating the device should be put in
1700 * an unconfigured state.
1701 *
1702 * USB device configurations may affect Linux interoperability,
1703 * power consumption and the functionality available.  For example,
1704 * the default configuration is limited to using 100mA of bus power,
1705 * so that when certain device functionality requires more power,
1706 * and the device is bus powered, that functionality should be in some
1707 * non-default device configuration.  Other device modes may also be
1708 * reflected as configuration options, such as whether two ISDN
1709 * channels are available independently; and choosing between open
1710 * standard device protocols (like CDC) or proprietary ones.
1711 *
1712 * Note that a non-authorized device (dev->authorized == 0) will only
1713 * be put in unconfigured mode.
1714 *
1715 * Note that USB has an additional level of device configurability,
1716 * associated with interfaces.  That configurability is accessed using
1717 * usb_set_interface().
1718 *
1719 * This call is synchronous. The calling context must be able to sleep,
1720 * must own the device lock, and must not hold the driver model's USB
1721 * bus mutex; usb interface driver probe() methods cannot use this routine.
1722 *
1723 * Returns zero on success, or else the status code returned by the
1724 * underlying call that failed.  On successful completion, each interface
1725 * in the original device configuration has been destroyed, and each one
1726 * in the new configuration has been probed by all relevant usb device
1727 * drivers currently known to the kernel.
1728 */
1729int usb_set_configuration(struct usb_device *dev, int configuration)
1730{
1731	int i, ret;
1732	struct usb_host_config *cp = NULL;
1733	struct usb_interface **new_interfaces = NULL;
1734	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1735	int n, nintf;
1736
1737	if (dev->authorized == 0 || configuration == -1)
1738		configuration = 0;
1739	else {
1740		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1741			if (dev->config[i].desc.bConfigurationValue ==
1742					configuration) {
1743				cp = &dev->config[i];
1744				break;
1745			}
1746		}
1747	}
1748	if ((!cp && configuration != 0))
1749		return -EINVAL;
1750
1751	/* The USB spec says configuration 0 means unconfigured.
1752	 * But if a device includes a configuration numbered 0,
1753	 * we will accept it as a correctly configured state.
1754	 * Use -1 if you really want to unconfigure the device.
1755	 */
1756	if (cp && configuration == 0)
1757		dev_warn(&dev->dev, "config 0 descriptor??\n");
1758
1759	/* Allocate memory for new interfaces before doing anything else,
1760	 * so that if we run out then nothing will have changed. */
1761	n = nintf = 0;
1762	if (cp) {
1763		nintf = cp->desc.bNumInterfaces;
1764		new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1765				GFP_NOIO);
1766		if (!new_interfaces)
1767			return -ENOMEM;
1768
1769		for (; n < nintf; ++n) {
1770			new_interfaces[n] = kzalloc(
1771					sizeof(struct usb_interface),
1772					GFP_NOIO);
1773			if (!new_interfaces[n]) {
1774				ret = -ENOMEM;
1775free_interfaces:
1776				while (--n >= 0)
1777					kfree(new_interfaces[n]);
1778				kfree(new_interfaces);
1779				return ret;
1780			}
1781		}
1782
1783		i = dev->bus_mA - usb_get_max_power(dev, cp);
1784		if (i < 0)
1785			dev_warn(&dev->dev, "new config #%d exceeds power "
1786					"limit by %dmA\n",
1787					configuration, -i);
1788	}
1789
1790	/* Wake up the device so we can send it the Set-Config request */
1791	ret = usb_autoresume_device(dev);
1792	if (ret)
1793		goto free_interfaces;
1794
1795	/* if it's already configured, clear out old state first.
1796	 * getting rid of old interfaces means unbinding their drivers.
1797	 */
1798	if (dev->state != USB_STATE_ADDRESS)
1799		usb_disable_device(dev, 1);	/* Skip ep0 */
1800
1801	/* Get rid of pending async Set-Config requests for this device */
1802	cancel_async_set_config(dev);
1803
1804	/* Make sure we have bandwidth (and available HCD resources) for this
1805	 * configuration.  Remove endpoints from the schedule if we're dropping
1806	 * this configuration to set configuration 0.  After this point, the
1807	 * host controller will not allow submissions to dropped endpoints.  If
1808	 * this call fails, the device state is unchanged.
1809	 */
1810	mutex_lock(hcd->bandwidth_mutex);
1811	/* Disable LPM, and re-enable it once the new configuration is
1812	 * installed, so that the xHCI driver can recalculate the U1/U2
1813	 * timeouts.
1814	 */
1815	if (dev->actconfig && usb_disable_lpm(dev)) {
1816		dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1817		mutex_unlock(hcd->bandwidth_mutex);
1818		ret = -ENOMEM;
1819		goto free_interfaces;
1820	}
1821	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1822	if (ret < 0) {
1823		if (dev->actconfig)
1824			usb_enable_lpm(dev);
1825		mutex_unlock(hcd->bandwidth_mutex);
1826		usb_autosuspend_device(dev);
1827		goto free_interfaces;
1828	}
1829
1830	/*
1831	 * Initialize the new interface structures and the
1832	 * hc/hcd/usbcore interface/endpoint state.
1833	 */
1834	for (i = 0; i < nintf; ++i) {
1835		struct usb_interface_cache *intfc;
1836		struct usb_interface *intf;
1837		struct usb_host_interface *alt;
 
1838
1839		cp->interface[i] = intf = new_interfaces[i];
1840		intfc = cp->intf_cache[i];
1841		intf->altsetting = intfc->altsetting;
1842		intf->num_altsetting = intfc->num_altsetting;
1843		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1844		kref_get(&intfc->ref);
1845
1846		alt = usb_altnum_to_altsetting(intf, 0);
1847
1848		/* No altsetting 0?  We'll assume the first altsetting.
1849		 * We could use a GetInterface call, but if a device is
1850		 * so non-compliant that it doesn't have altsetting 0
1851		 * then I wouldn't trust its reply anyway.
1852		 */
1853		if (!alt)
1854			alt = &intf->altsetting[0];
1855
1856		intf->intf_assoc =
1857			find_iad(dev, cp, alt->desc.bInterfaceNumber);
1858		intf->cur_altsetting = alt;
1859		usb_enable_interface(dev, intf, true);
1860		intf->dev.parent = &dev->dev;
 
 
 
 
 
 
 
1861		intf->dev.driver = NULL;
1862		intf->dev.bus = &usb_bus_type;
1863		intf->dev.type = &usb_if_device_type;
1864		intf->dev.groups = usb_interface_groups;
1865		/*
1866		 * Please refer to usb_alloc_dev() to see why we set
1867		 * dma_mask and dma_pfn_offset.
1868		 */
1869		intf->dev.dma_mask = dev->dev.dma_mask;
1870		intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1871		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1872		intf->minor = -1;
1873		device_initialize(&intf->dev);
1874		pm_runtime_no_callbacks(&intf->dev);
1875		dev_set_name(&intf->dev, "%d-%s:%d.%d",
1876			dev->bus->busnum, dev->devpath,
1877			configuration, alt->desc.bInterfaceNumber);
1878		usb_get_dev(dev);
1879	}
1880	kfree(new_interfaces);
1881
1882	ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1883			      USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1884			      NULL, 0, USB_CTRL_SET_TIMEOUT);
1885	if (ret < 0 && cp) {
1886		/*
1887		 * All the old state is gone, so what else can we do?
1888		 * The device is probably useless now anyway.
1889		 */
1890		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1891		for (i = 0; i < nintf; ++i) {
1892			usb_disable_interface(dev, cp->interface[i], true);
1893			put_device(&cp->interface[i]->dev);
1894			cp->interface[i] = NULL;
1895		}
1896		cp = NULL;
1897	}
1898
1899	dev->actconfig = cp;
1900	mutex_unlock(hcd->bandwidth_mutex);
1901
1902	if (!cp) {
1903		usb_set_device_state(dev, USB_STATE_ADDRESS);
1904
1905		/* Leave LPM disabled while the device is unconfigured. */
1906		usb_autosuspend_device(dev);
1907		return ret;
1908	}
1909	usb_set_device_state(dev, USB_STATE_CONFIGURED);
1910
1911	if (cp->string == NULL &&
1912			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1913		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1914
1915	/* Now that the interfaces are installed, re-enable LPM. */
1916	usb_unlocked_enable_lpm(dev);
1917	/* Enable LTM if it was turned off by usb_disable_device. */
1918	usb_enable_ltm(dev);
1919
1920	/* Now that all the interfaces are set up, register them
1921	 * to trigger binding of drivers to interfaces.  probe()
1922	 * routines may install different altsettings and may
1923	 * claim() any interfaces not yet bound.  Many class drivers
1924	 * need that: CDC, audio, video, etc.
1925	 */
1926	for (i = 0; i < nintf; ++i) {
1927		struct usb_interface *intf = cp->interface[i];
1928
 
 
 
 
 
 
 
1929		dev_dbg(&dev->dev,
1930			"adding %s (config #%d, interface %d)\n",
1931			dev_name(&intf->dev), configuration,
1932			intf->cur_altsetting->desc.bInterfaceNumber);
1933		device_enable_async_suspend(&intf->dev);
1934		ret = device_add(&intf->dev);
1935		if (ret != 0) {
1936			dev_err(&dev->dev, "device_add(%s) --> %d\n",
1937				dev_name(&intf->dev), ret);
1938			continue;
1939		}
1940		create_intf_ep_devs(intf);
1941	}
1942
1943	usb_autosuspend_device(dev);
1944	return 0;
1945}
1946EXPORT_SYMBOL_GPL(usb_set_configuration);
1947
1948static LIST_HEAD(set_config_list);
1949static DEFINE_SPINLOCK(set_config_lock);
1950
1951struct set_config_request {
1952	struct usb_device	*udev;
1953	int			config;
1954	struct work_struct	work;
1955	struct list_head	node;
1956};
1957
1958/* Worker routine for usb_driver_set_configuration() */
1959static void driver_set_config_work(struct work_struct *work)
1960{
1961	struct set_config_request *req =
1962		container_of(work, struct set_config_request, work);
1963	struct usb_device *udev = req->udev;
1964
1965	usb_lock_device(udev);
1966	spin_lock(&set_config_lock);
1967	list_del(&req->node);
1968	spin_unlock(&set_config_lock);
1969
1970	if (req->config >= -1)		/* Is req still valid? */
1971		usb_set_configuration(udev, req->config);
1972	usb_unlock_device(udev);
1973	usb_put_dev(udev);
1974	kfree(req);
1975}
1976
1977/* Cancel pending Set-Config requests for a device whose configuration
1978 * was just changed
1979 */
1980static void cancel_async_set_config(struct usb_device *udev)
1981{
1982	struct set_config_request *req;
1983
1984	spin_lock(&set_config_lock);
1985	list_for_each_entry(req, &set_config_list, node) {
1986		if (req->udev == udev)
1987			req->config = -999;	/* Mark as cancelled */
1988	}
1989	spin_unlock(&set_config_lock);
1990}
1991
1992/**
1993 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1994 * @udev: the device whose configuration is being updated
1995 * @config: the configuration being chosen.
1996 * Context: In process context, must be able to sleep
1997 *
1998 * Device interface drivers are not allowed to change device configurations.
1999 * This is because changing configurations will destroy the interface the
2000 * driver is bound to and create new ones; it would be like a floppy-disk
2001 * driver telling the computer to replace the floppy-disk drive with a
2002 * tape drive!
2003 *
2004 * Still, in certain specialized circumstances the need may arise.  This
2005 * routine gets around the normal restrictions by using a work thread to
2006 * submit the change-config request.
2007 *
2008 * Return: 0 if the request was successfully queued, error code otherwise.
2009 * The caller has no way to know whether the queued request will eventually
2010 * succeed.
2011 */
2012int usb_driver_set_configuration(struct usb_device *udev, int config)
2013{
2014	struct set_config_request *req;
2015
2016	req = kmalloc(sizeof(*req), GFP_KERNEL);
2017	if (!req)
2018		return -ENOMEM;
2019	req->udev = udev;
2020	req->config = config;
2021	INIT_WORK(&req->work, driver_set_config_work);
2022
2023	spin_lock(&set_config_lock);
2024	list_add(&req->node, &set_config_list);
2025	spin_unlock(&set_config_lock);
2026
2027	usb_get_dev(udev);
2028	schedule_work(&req->work);
2029	return 0;
2030}
2031EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2032
2033/**
2034 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2035 * @hdr: the place to put the results of the parsing
2036 * @intf: the interface for which parsing is requested
2037 * @buffer: pointer to the extra headers to be parsed
2038 * @buflen: length of the extra headers
2039 *
2040 * This evaluates the extra headers present in CDC devices which
2041 * bind the interfaces for data and control and provide details
2042 * about the capabilities of the device.
2043 *
2044 * Return: number of descriptors parsed or -EINVAL
2045 * if the header is contradictory beyond salvage
2046 */
2047
2048int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2049				struct usb_interface *intf,
2050				u8 *buffer,
2051				int buflen)
2052{
2053	/* duplicates are ignored */
2054	struct usb_cdc_union_desc *union_header = NULL;
2055
2056	/* duplicates are not tolerated */
2057	struct usb_cdc_header_desc *header = NULL;
2058	struct usb_cdc_ether_desc *ether = NULL;
2059	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2060	struct usb_cdc_mdlm_desc *desc = NULL;
2061
2062	unsigned int elength;
2063	int cnt = 0;
2064
2065	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2066	hdr->phonet_magic_present = false;
2067	while (buflen > 0) {
2068		elength = buffer[0];
2069		if (!elength) {
2070			dev_err(&intf->dev, "skipping garbage byte\n");
2071			elength = 1;
2072			goto next_desc;
2073		}
 
 
 
 
2074		if (buffer[1] != USB_DT_CS_INTERFACE) {
2075			dev_err(&intf->dev, "skipping garbage\n");
2076			goto next_desc;
2077		}
2078
2079		switch (buffer[2]) {
2080		case USB_CDC_UNION_TYPE: /* we've found it */
2081			if (elength < sizeof(struct usb_cdc_union_desc))
2082				goto next_desc;
2083			if (union_header) {
2084				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2085				goto next_desc;
2086			}
2087			union_header = (struct usb_cdc_union_desc *)buffer;
2088			break;
2089		case USB_CDC_COUNTRY_TYPE:
2090			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2091				goto next_desc;
2092			hdr->usb_cdc_country_functional_desc =
2093				(struct usb_cdc_country_functional_desc *)buffer;
2094			break;
2095		case USB_CDC_HEADER_TYPE:
2096			if (elength != sizeof(struct usb_cdc_header_desc))
2097				goto next_desc;
2098			if (header)
2099				return -EINVAL;
2100			header = (struct usb_cdc_header_desc *)buffer;
2101			break;
2102		case USB_CDC_ACM_TYPE:
2103			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2104				goto next_desc;
2105			hdr->usb_cdc_acm_descriptor =
2106				(struct usb_cdc_acm_descriptor *)buffer;
2107			break;
2108		case USB_CDC_ETHERNET_TYPE:
2109			if (elength != sizeof(struct usb_cdc_ether_desc))
2110				goto next_desc;
2111			if (ether)
2112				return -EINVAL;
2113			ether = (struct usb_cdc_ether_desc *)buffer;
2114			break;
2115		case USB_CDC_CALL_MANAGEMENT_TYPE:
2116			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2117				goto next_desc;
2118			hdr->usb_cdc_call_mgmt_descriptor =
2119				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2120			break;
2121		case USB_CDC_DMM_TYPE:
2122			if (elength < sizeof(struct usb_cdc_dmm_desc))
2123				goto next_desc;
2124			hdr->usb_cdc_dmm_desc =
2125				(struct usb_cdc_dmm_desc *)buffer;
2126			break;
2127		case USB_CDC_MDLM_TYPE:
2128			if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2129				goto next_desc;
2130			if (desc)
2131				return -EINVAL;
2132			desc = (struct usb_cdc_mdlm_desc *)buffer;
2133			break;
2134		case USB_CDC_MDLM_DETAIL_TYPE:
2135			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2136				goto next_desc;
2137			if (detail)
2138				return -EINVAL;
2139			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2140			break;
2141		case USB_CDC_NCM_TYPE:
2142			if (elength < sizeof(struct usb_cdc_ncm_desc))
2143				goto next_desc;
2144			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2145			break;
2146		case USB_CDC_MBIM_TYPE:
2147			if (elength < sizeof(struct usb_cdc_mbim_desc))
2148				goto next_desc;
2149
2150			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2151			break;
2152		case USB_CDC_MBIM_EXTENDED_TYPE:
2153			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2154				break;
2155			hdr->usb_cdc_mbim_extended_desc =
2156				(struct usb_cdc_mbim_extended_desc *)buffer;
2157			break;
2158		case CDC_PHONET_MAGIC_NUMBER:
2159			hdr->phonet_magic_present = true;
2160			break;
2161		default:
2162			/*
2163			 * there are LOTS more CDC descriptors that
2164			 * could legitimately be found here.
2165			 */
2166			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2167					buffer[2], elength);
2168			goto next_desc;
2169		}
2170		cnt++;
2171next_desc:
2172		buflen -= elength;
2173		buffer += elength;
2174	}
2175	hdr->usb_cdc_union_desc = union_header;
2176	hdr->usb_cdc_header_desc = header;
2177	hdr->usb_cdc_mdlm_detail_desc = detail;
2178	hdr->usb_cdc_mdlm_desc = desc;
2179	hdr->usb_cdc_ether_desc = ether;
2180	return cnt;
2181}
2182
2183EXPORT_SYMBOL(cdc_parse_cdc_header);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * message.c - synchronous message handling
   4 *
   5 * Released under the GPLv2 only.
 
   6 */
   7
   8#include <linux/acpi.h>
   9#include <linux/pci.h>	/* for scatterlist macros */
  10#include <linux/usb.h>
  11#include <linux/module.h>
  12#include <linux/slab.h>
  13#include <linux/mm.h>
  14#include <linux/timer.h>
  15#include <linux/ctype.h>
  16#include <linux/nls.h>
  17#include <linux/device.h>
  18#include <linux/scatterlist.h>
  19#include <linux/usb/cdc.h>
  20#include <linux/usb/quirks.h>
  21#include <linux/usb/hcd.h>	/* for usbcore internals */
  22#include <linux/usb/of.h>
  23#include <asm/byteorder.h>
  24
  25#include "usb.h"
  26
  27static void cancel_async_set_config(struct usb_device *udev);
  28
  29struct api_context {
  30	struct completion	done;
  31	int			status;
  32};
  33
  34static void usb_api_blocking_completion(struct urb *urb)
  35{
  36	struct api_context *ctx = urb->context;
  37
  38	ctx->status = urb->status;
  39	complete(&ctx->done);
  40}
  41
  42
  43/*
  44 * Starts urb and waits for completion or timeout. Note that this call
  45 * is NOT interruptible. Many device driver i/o requests should be
  46 * interruptible and therefore these drivers should implement their
  47 * own interruptible routines.
  48 */
  49static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  50{
  51	struct api_context ctx;
  52	unsigned long expire;
  53	int retval;
  54
  55	init_completion(&ctx.done);
  56	urb->context = &ctx;
  57	urb->actual_length = 0;
  58	retval = usb_submit_urb(urb, GFP_NOIO);
  59	if (unlikely(retval))
  60		goto out;
  61
  62	expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  63	if (!wait_for_completion_timeout(&ctx.done, expire)) {
  64		usb_kill_urb(urb);
  65		retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  66
  67		dev_dbg(&urb->dev->dev,
  68			"%s timed out on ep%d%s len=%u/%u\n",
  69			current->comm,
  70			usb_endpoint_num(&urb->ep->desc),
  71			usb_urb_dir_in(urb) ? "in" : "out",
  72			urb->actual_length,
  73			urb->transfer_buffer_length);
  74	} else
  75		retval = ctx.status;
  76out:
  77	if (actual_length)
  78		*actual_length = urb->actual_length;
  79
  80	usb_free_urb(urb);
  81	return retval;
  82}
  83
  84/*-------------------------------------------------------------------*/
  85/* returns status (negative) or length (positive) */
  86static int usb_internal_control_msg(struct usb_device *usb_dev,
  87				    unsigned int pipe,
  88				    struct usb_ctrlrequest *cmd,
  89				    void *data, int len, int timeout)
  90{
  91	struct urb *urb;
  92	int retv;
  93	int length;
  94
  95	urb = usb_alloc_urb(0, GFP_NOIO);
  96	if (!urb)
  97		return -ENOMEM;
  98
  99	usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
 100			     len, usb_api_blocking_completion, NULL);
 101
 102	retv = usb_start_wait_urb(urb, timeout, &length);
 103	if (retv < 0)
 104		return retv;
 105	else
 106		return length;
 107}
 108
 109/**
 110 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 111 * @dev: pointer to the usb device to send the message to
 112 * @pipe: endpoint "pipe" to send the message to
 113 * @request: USB message request value
 114 * @requesttype: USB message request type value
 115 * @value: USB message value
 116 * @index: USB message index value
 117 * @data: pointer to the data to send
 118 * @size: length in bytes of the data to send
 119 * @timeout: time in msecs to wait for the message to complete before timing
 120 *	out (if 0 the wait is forever)
 121 *
 122 * Context: task context, might sleep.
 123 *
 124 * This function sends a simple control message to a specified endpoint and
 125 * waits for the message to complete, or timeout.
 126 *
 127 * Don't use this function from within an interrupt context. If you need
 128 * an asynchronous message, or need to send a message from within interrupt
 129 * context, use usb_submit_urb(). If a thread in your driver uses this call,
 130 * make sure your disconnect() method can wait for it to complete. Since you
 131 * don't have a handle on the URB used, you can't cancel the request.
 
 132 *
 133 * Return: If successful, the number of bytes transferred. Otherwise, a negative
 134 * error number.
 135 */
 136int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 137		    __u8 requesttype, __u16 value, __u16 index, void *data,
 138		    __u16 size, int timeout)
 139{
 140	struct usb_ctrlrequest *dr;
 141	int ret;
 142
 143	dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 144	if (!dr)
 145		return -ENOMEM;
 146
 147	dr->bRequestType = requesttype;
 148	dr->bRequest = request;
 149	dr->wValue = cpu_to_le16(value);
 150	dr->wIndex = cpu_to_le16(index);
 151	dr->wLength = cpu_to_le16(size);
 152
 153	ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 154
 155	/* Linger a bit, prior to the next control message. */
 156	if (dev->quirks & USB_QUIRK_DELAY_CTRL_MSG)
 157		msleep(200);
 158
 159	kfree(dr);
 160
 161	return ret;
 162}
 163EXPORT_SYMBOL_GPL(usb_control_msg);
 164
 165/**
 166 * usb_control_msg_send - Builds a control "send" message, sends it off and waits for completion
 167 * @dev: pointer to the usb device to send the message to
 168 * @endpoint: endpoint to send the message to
 169 * @request: USB message request value
 170 * @requesttype: USB message request type value
 171 * @value: USB message value
 172 * @index: USB message index value
 173 * @driver_data: pointer to the data to send
 174 * @size: length in bytes of the data to send
 175 * @timeout: time in msecs to wait for the message to complete before timing
 176 *	out (if 0 the wait is forever)
 177 * @memflags: the flags for memory allocation for buffers
 178 *
 179 * Context: !in_interrupt ()
 180 *
 181 * This function sends a control message to a specified endpoint that is not
 182 * expected to fill in a response (i.e. a "send message") and waits for the
 183 * message to complete, or timeout.
 184 *
 185 * Do not use this function from within an interrupt context. If you need
 186 * an asynchronous message, or need to send a message from within interrupt
 187 * context, use usb_submit_urb(). If a thread in your driver uses this call,
 188 * make sure your disconnect() method can wait for it to complete. Since you
 189 * don't have a handle on the URB used, you can't cancel the request.
 190 *
 191 * The data pointer can be made to a reference on the stack, or anywhere else,
 192 * as it will not be modified at all.  This does not have the restriction that
 193 * usb_control_msg() has where the data pointer must be to dynamically allocated
 194 * memory (i.e. memory that can be successfully DMAed to a device).
 195 *
 196 * Return: If successful, 0 is returned, Otherwise, a negative error number.
 197 */
 198int usb_control_msg_send(struct usb_device *dev, __u8 endpoint, __u8 request,
 199			 __u8 requesttype, __u16 value, __u16 index,
 200			 const void *driver_data, __u16 size, int timeout,
 201			 gfp_t memflags)
 202{
 203	unsigned int pipe = usb_sndctrlpipe(dev, endpoint);
 204	int ret;
 205	u8 *data = NULL;
 206
 207	if (size) {
 208		data = kmemdup(driver_data, size, memflags);
 209		if (!data)
 210			return -ENOMEM;
 211	}
 212
 213	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
 214			      data, size, timeout);
 215	kfree(data);
 216
 217	if (ret < 0)
 218		return ret;
 219
 220	return 0;
 221}
 222EXPORT_SYMBOL_GPL(usb_control_msg_send);
 223
 224/**
 225 * usb_control_msg_recv - Builds a control "receive" message, sends it off and waits for completion
 226 * @dev: pointer to the usb device to send the message to
 227 * @endpoint: endpoint to send the message to
 228 * @request: USB message request value
 229 * @requesttype: USB message request type value
 230 * @value: USB message value
 231 * @index: USB message index value
 232 * @driver_data: pointer to the data to be filled in by the message
 233 * @size: length in bytes of the data to be received
 234 * @timeout: time in msecs to wait for the message to complete before timing
 235 *	out (if 0 the wait is forever)
 236 * @memflags: the flags for memory allocation for buffers
 237 *
 238 * Context: !in_interrupt ()
 239 *
 240 * This function sends a control message to a specified endpoint that is
 241 * expected to fill in a response (i.e. a "receive message") and waits for the
 242 * message to complete, or timeout.
 243 *
 244 * Do not use this function from within an interrupt context. If you need
 245 * an asynchronous message, or need to send a message from within interrupt
 246 * context, use usb_submit_urb(). If a thread in your driver uses this call,
 247 * make sure your disconnect() method can wait for it to complete. Since you
 248 * don't have a handle on the URB used, you can't cancel the request.
 249 *
 250 * The data pointer can be made to a reference on the stack, or anywhere else
 251 * that can be successfully written to.  This function does not have the
 252 * restriction that usb_control_msg() has where the data pointer must be to
 253 * dynamically allocated memory (i.e. memory that can be successfully DMAed to a
 254 * device).
 255 *
 256 * The "whole" message must be properly received from the device in order for
 257 * this function to be successful.  If a device returns less than the expected
 258 * amount of data, then the function will fail.  Do not use this for messages
 259 * where a variable amount of data might be returned.
 260 *
 261 * Return: If successful, 0 is returned, Otherwise, a negative error number.
 262 */
 263int usb_control_msg_recv(struct usb_device *dev, __u8 endpoint, __u8 request,
 264			 __u8 requesttype, __u16 value, __u16 index,
 265			 void *driver_data, __u16 size, int timeout,
 266			 gfp_t memflags)
 267{
 268	unsigned int pipe = usb_rcvctrlpipe(dev, endpoint);
 269	int ret;
 270	u8 *data;
 271
 272	if (!size || !driver_data)
 273		return -EINVAL;
 274
 275	data = kmalloc(size, memflags);
 276	if (!data)
 277		return -ENOMEM;
 278
 279	ret = usb_control_msg(dev, pipe, request, requesttype, value, index,
 280			      data, size, timeout);
 281
 282	if (ret < 0)
 283		goto exit;
 284
 285	if (ret == size) {
 286		memcpy(driver_data, data, size);
 287		ret = 0;
 288	} else {
 289		ret = -EREMOTEIO;
 290	}
 291
 292exit:
 293	kfree(data);
 294	return ret;
 295}
 296EXPORT_SYMBOL_GPL(usb_control_msg_recv);
 297
 298/**
 299 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 300 * @usb_dev: pointer to the usb device to send the message to
 301 * @pipe: endpoint "pipe" to send the message to
 302 * @data: pointer to the data to send
 303 * @len: length in bytes of the data to send
 304 * @actual_length: pointer to a location to put the actual length transferred
 305 *	in bytes
 306 * @timeout: time in msecs to wait for the message to complete before
 307 *	timing out (if 0 the wait is forever)
 308 *
 309 * Context: task context, might sleep.
 310 *
 311 * This function sends a simple interrupt message to a specified endpoint and
 312 * waits for the message to complete, or timeout.
 313 *
 314 * Don't use this function from within an interrupt context. If you need
 315 * an asynchronous message, or need to send a message from within interrupt
 316 * context, use usb_submit_urb() If a thread in your driver uses this call,
 317 * make sure your disconnect() method can wait for it to complete. Since you
 318 * don't have a handle on the URB used, you can't cancel the request.
 
 319 *
 320 * Return:
 321 * If successful, 0. Otherwise a negative error number. The number of actual
 322 * bytes transferred will be stored in the @actual_length parameter.
 323 */
 324int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 325		      void *data, int len, int *actual_length, int timeout)
 326{
 327	return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 328}
 329EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 330
 331/**
 332 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 333 * @usb_dev: pointer to the usb device to send the message to
 334 * @pipe: endpoint "pipe" to send the message to
 335 * @data: pointer to the data to send
 336 * @len: length in bytes of the data to send
 337 * @actual_length: pointer to a location to put the actual length transferred
 338 *	in bytes
 339 * @timeout: time in msecs to wait for the message to complete before
 340 *	timing out (if 0 the wait is forever)
 341 *
 342 * Context: task context, might sleep.
 343 *
 344 * This function sends a simple bulk message to a specified endpoint
 345 * and waits for the message to complete, or timeout.
 346 *
 347 * Don't use this function from within an interrupt context. If you need
 348 * an asynchronous message, or need to send a message from within interrupt
 349 * context, use usb_submit_urb() If a thread in your driver uses this call,
 350 * make sure your disconnect() method can wait for it to complete. Since you
 351 * don't have a handle on the URB used, you can't cancel the request.
 
 352 *
 353 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 354 * users are forced to abuse this routine by using it to submit URBs for
 355 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 356 * (with the default interval) if the target is an interrupt endpoint.
 357 *
 358 * Return:
 359 * If successful, 0. Otherwise a negative error number. The number of actual
 360 * bytes transferred will be stored in the @actual_length parameter.
 361 *
 362 */
 363int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 364		 void *data, int len, int *actual_length, int timeout)
 365{
 366	struct urb *urb;
 367	struct usb_host_endpoint *ep;
 368
 369	ep = usb_pipe_endpoint(usb_dev, pipe);
 370	if (!ep || len < 0)
 371		return -EINVAL;
 372
 373	urb = usb_alloc_urb(0, GFP_KERNEL);
 374	if (!urb)
 375		return -ENOMEM;
 376
 377	if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 378			USB_ENDPOINT_XFER_INT) {
 379		pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 380		usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 381				usb_api_blocking_completion, NULL,
 382				ep->desc.bInterval);
 383	} else
 384		usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 385				usb_api_blocking_completion, NULL);
 386
 387	return usb_start_wait_urb(urb, timeout, actual_length);
 388}
 389EXPORT_SYMBOL_GPL(usb_bulk_msg);
 390
 391/*-------------------------------------------------------------------*/
 392
 393static void sg_clean(struct usb_sg_request *io)
 394{
 395	if (io->urbs) {
 396		while (io->entries--)
 397			usb_free_urb(io->urbs[io->entries]);
 398		kfree(io->urbs);
 399		io->urbs = NULL;
 400	}
 401	io->dev = NULL;
 402}
 403
 404static void sg_complete(struct urb *urb)
 405{
 406	unsigned long flags;
 407	struct usb_sg_request *io = urb->context;
 408	int status = urb->status;
 409
 410	spin_lock_irqsave(&io->lock, flags);
 411
 412	/* In 2.5 we require hcds' endpoint queues not to progress after fault
 413	 * reports, until the completion callback (this!) returns.  That lets
 414	 * device driver code (like this routine) unlink queued urbs first,
 415	 * if it needs to, since the HC won't work on them at all.  So it's
 416	 * not possible for page N+1 to overwrite page N, and so on.
 417	 *
 418	 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 419	 * complete before the HCD can get requests away from hardware,
 420	 * though never during cleanup after a hard fault.
 421	 */
 422	if (io->status
 423			&& (io->status != -ECONNRESET
 424				|| status != -ECONNRESET)
 425			&& urb->actual_length) {
 426		dev_err(io->dev->bus->controller,
 427			"dev %s ep%d%s scatterlist error %d/%d\n",
 428			io->dev->devpath,
 429			usb_endpoint_num(&urb->ep->desc),
 430			usb_urb_dir_in(urb) ? "in" : "out",
 431			status, io->status);
 432		/* BUG (); */
 433	}
 434
 435	if (io->status == 0 && status && status != -ECONNRESET) {
 436		int i, found, retval;
 437
 438		io->status = status;
 439
 440		/* the previous urbs, and this one, completed already.
 441		 * unlink pending urbs so they won't rx/tx bad data.
 442		 * careful: unlink can sometimes be synchronous...
 443		 */
 444		spin_unlock_irqrestore(&io->lock, flags);
 445		for (i = 0, found = 0; i < io->entries; i++) {
 446			if (!io->urbs[i])
 447				continue;
 448			if (found) {
 449				usb_block_urb(io->urbs[i]);
 450				retval = usb_unlink_urb(io->urbs[i]);
 451				if (retval != -EINPROGRESS &&
 452				    retval != -ENODEV &&
 453				    retval != -EBUSY &&
 454				    retval != -EIDRM)
 455					dev_err(&io->dev->dev,
 456						"%s, unlink --> %d\n",
 457						__func__, retval);
 458			} else if (urb == io->urbs[i])
 459				found = 1;
 460		}
 461		spin_lock_irqsave(&io->lock, flags);
 462	}
 463
 464	/* on the last completion, signal usb_sg_wait() */
 465	io->bytes += urb->actual_length;
 466	io->count--;
 467	if (!io->count)
 468		complete(&io->complete);
 469
 470	spin_unlock_irqrestore(&io->lock, flags);
 471}
 472
 473
 474/**
 475 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 476 * @io: request block being initialized.  until usb_sg_wait() returns,
 477 *	treat this as a pointer to an opaque block of memory,
 478 * @dev: the usb device that will send or receive the data
 479 * @pipe: endpoint "pipe" used to transfer the data
 480 * @period: polling rate for interrupt endpoints, in frames or
 481 * 	(for high speed endpoints) microframes; ignored for bulk
 482 * @sg: scatterlist entries
 483 * @nents: how many entries in the scatterlist
 484 * @length: how many bytes to send from the scatterlist, or zero to
 485 * 	send every byte identified in the list.
 486 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 487 *
 488 * This initializes a scatter/gather request, allocating resources such as
 489 * I/O mappings and urb memory (except maybe memory used by USB controller
 490 * drivers).
 491 *
 492 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 493 * complete (or to be canceled) and then cleans up all resources allocated by
 494 * usb_sg_init().
 495 *
 496 * The request may be canceled with usb_sg_cancel(), either before or after
 497 * usb_sg_wait() is called.
 498 *
 499 * Return: Zero for success, else a negative errno value.
 500 */
 501int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 502		unsigned pipe, unsigned	period, struct scatterlist *sg,
 503		int nents, size_t length, gfp_t mem_flags)
 504{
 505	int i;
 506	int urb_flags;
 507	int use_sg;
 508
 509	if (!io || !dev || !sg
 510			|| usb_pipecontrol(pipe)
 511			|| usb_pipeisoc(pipe)
 512			|| nents <= 0)
 513		return -EINVAL;
 514
 515	spin_lock_init(&io->lock);
 516	io->dev = dev;
 517	io->pipe = pipe;
 518
 519	if (dev->bus->sg_tablesize > 0) {
 520		use_sg = true;
 521		io->entries = 1;
 522	} else {
 523		use_sg = false;
 524		io->entries = nents;
 525	}
 526
 527	/* initialize all the urbs we'll use */
 528	io->urbs = kmalloc_array(io->entries, sizeof(*io->urbs), mem_flags);
 529	if (!io->urbs)
 530		goto nomem;
 531
 532	urb_flags = URB_NO_INTERRUPT;
 533	if (usb_pipein(pipe))
 534		urb_flags |= URB_SHORT_NOT_OK;
 535
 536	for_each_sg(sg, sg, io->entries, i) {
 537		struct urb *urb;
 538		unsigned len;
 539
 540		urb = usb_alloc_urb(0, mem_flags);
 541		if (!urb) {
 542			io->entries = i;
 543			goto nomem;
 544		}
 545		io->urbs[i] = urb;
 546
 547		urb->dev = NULL;
 548		urb->pipe = pipe;
 549		urb->interval = period;
 550		urb->transfer_flags = urb_flags;
 551		urb->complete = sg_complete;
 552		urb->context = io;
 553		urb->sg = sg;
 554
 555		if (use_sg) {
 556			/* There is no single transfer buffer */
 557			urb->transfer_buffer = NULL;
 558			urb->num_sgs = nents;
 559
 560			/* A length of zero means transfer the whole sg list */
 561			len = length;
 562			if (len == 0) {
 563				struct scatterlist	*sg2;
 564				int			j;
 565
 566				for_each_sg(sg, sg2, nents, j)
 567					len += sg2->length;
 568			}
 569		} else {
 570			/*
 571			 * Some systems can't use DMA; they use PIO instead.
 572			 * For their sakes, transfer_buffer is set whenever
 573			 * possible.
 574			 */
 575			if (!PageHighMem(sg_page(sg)))
 576				urb->transfer_buffer = sg_virt(sg);
 577			else
 578				urb->transfer_buffer = NULL;
 579
 580			len = sg->length;
 581			if (length) {
 582				len = min_t(size_t, len, length);
 583				length -= len;
 584				if (length == 0)
 585					io->entries = i + 1;
 586			}
 587		}
 588		urb->transfer_buffer_length = len;
 589	}
 590	io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 591
 592	/* transaction state */
 593	io->count = io->entries;
 594	io->status = 0;
 595	io->bytes = 0;
 596	init_completion(&io->complete);
 597	return 0;
 598
 599nomem:
 600	sg_clean(io);
 601	return -ENOMEM;
 602}
 603EXPORT_SYMBOL_GPL(usb_sg_init);
 604
 605/**
 606 * usb_sg_wait - synchronously execute scatter/gather request
 607 * @io: request block handle, as initialized with usb_sg_init().
 608 * 	some fields become accessible when this call returns.
 609 *
 610 * Context: task context, might sleep.
 611 *
 612 * This function blocks until the specified I/O operation completes.  It
 613 * leverages the grouping of the related I/O requests to get good transfer
 614 * rates, by queueing the requests.  At higher speeds, such queuing can
 615 * significantly improve USB throughput.
 616 *
 617 * There are three kinds of completion for this function.
 618 *
 619 * (1) success, where io->status is zero.  The number of io->bytes
 620 *     transferred is as requested.
 621 * (2) error, where io->status is a negative errno value.  The number
 622 *     of io->bytes transferred before the error is usually less
 623 *     than requested, and can be nonzero.
 624 * (3) cancellation, a type of error with status -ECONNRESET that
 625 *     is initiated by usb_sg_cancel().
 626 *
 627 * When this function returns, all memory allocated through usb_sg_init() or
 628 * this call will have been freed.  The request block parameter may still be
 629 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 630 * reinitialized and then reused.
 631 *
 632 * Data Transfer Rates:
 633 *
 634 * Bulk transfers are valid for full or high speed endpoints.
 635 * The best full speed data rate is 19 packets of 64 bytes each
 636 * per frame, or 1216 bytes per millisecond.
 637 * The best high speed data rate is 13 packets of 512 bytes each
 638 * per microframe, or 52 KBytes per millisecond.
 639 *
 640 * The reason to use interrupt transfers through this API would most likely
 641 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 642 * could be transferred.  That capability is less useful for low or full
 643 * speed interrupt endpoints, which allow at most one packet per millisecond,
 644 * of at most 8 or 64 bytes (respectively).
 645 *
 646 * It is not necessary to call this function to reserve bandwidth for devices
 647 * under an xHCI host controller, as the bandwidth is reserved when the
 648 * configuration or interface alt setting is selected.
 649 */
 650void usb_sg_wait(struct usb_sg_request *io)
 651{
 652	int i;
 653	int entries = io->entries;
 654
 655	/* queue the urbs.  */
 656	spin_lock_irq(&io->lock);
 657	i = 0;
 658	while (i < entries && !io->status) {
 659		int retval;
 660
 661		io->urbs[i]->dev = io->dev;
 662		spin_unlock_irq(&io->lock);
 663
 664		retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
 665
 666		switch (retval) {
 667			/* maybe we retrying will recover */
 668		case -ENXIO:	/* hc didn't queue this one */
 669		case -EAGAIN:
 670		case -ENOMEM:
 671			retval = 0;
 672			yield();
 673			break;
 674
 675			/* no error? continue immediately.
 676			 *
 677			 * NOTE: to work better with UHCI (4K I/O buffer may
 678			 * need 3K of TDs) it may be good to limit how many
 679			 * URBs are queued at once; N milliseconds?
 680			 */
 681		case 0:
 682			++i;
 683			cpu_relax();
 684			break;
 685
 686			/* fail any uncompleted urbs */
 687		default:
 688			io->urbs[i]->status = retval;
 689			dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 690				__func__, retval);
 691			usb_sg_cancel(io);
 692		}
 693		spin_lock_irq(&io->lock);
 694		if (retval && (io->status == 0 || io->status == -ECONNRESET))
 695			io->status = retval;
 696	}
 697	io->count -= entries - i;
 698	if (io->count == 0)
 699		complete(&io->complete);
 700	spin_unlock_irq(&io->lock);
 701
 702	/* OK, yes, this could be packaged as non-blocking.
 703	 * So could the submit loop above ... but it's easier to
 704	 * solve neither problem than to solve both!
 705	 */
 706	wait_for_completion(&io->complete);
 707
 708	sg_clean(io);
 709}
 710EXPORT_SYMBOL_GPL(usb_sg_wait);
 711
 712/**
 713 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 714 * @io: request block, initialized with usb_sg_init()
 715 *
 716 * This stops a request after it has been started by usb_sg_wait().
 717 * It can also prevents one initialized by usb_sg_init() from starting,
 718 * so that call just frees resources allocated to the request.
 719 */
 720void usb_sg_cancel(struct usb_sg_request *io)
 721{
 722	unsigned long flags;
 723	int i, retval;
 724
 725	spin_lock_irqsave(&io->lock, flags);
 726	if (io->status || io->count == 0) {
 727		spin_unlock_irqrestore(&io->lock, flags);
 728		return;
 729	}
 730	/* shut everything down */
 731	io->status = -ECONNRESET;
 732	io->count++;		/* Keep the request alive until we're done */
 733	spin_unlock_irqrestore(&io->lock, flags);
 734
 735	for (i = io->entries - 1; i >= 0; --i) {
 736		usb_block_urb(io->urbs[i]);
 737
 738		retval = usb_unlink_urb(io->urbs[i]);
 739		if (retval != -EINPROGRESS
 740		    && retval != -ENODEV
 741		    && retval != -EBUSY
 742		    && retval != -EIDRM)
 743			dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 744				 __func__, retval);
 745	}
 746
 747	spin_lock_irqsave(&io->lock, flags);
 748	io->count--;
 749	if (!io->count)
 750		complete(&io->complete);
 751	spin_unlock_irqrestore(&io->lock, flags);
 752}
 753EXPORT_SYMBOL_GPL(usb_sg_cancel);
 754
 755/*-------------------------------------------------------------------*/
 756
 757/**
 758 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 759 * @dev: the device whose descriptor is being retrieved
 760 * @type: the descriptor type (USB_DT_*)
 761 * @index: the number of the descriptor
 762 * @buf: where to put the descriptor
 763 * @size: how big is "buf"?
 764 *
 765 * Context: task context, might sleep.
 766 *
 767 * Gets a USB descriptor.  Convenience functions exist to simplify
 768 * getting some types of descriptors.  Use
 769 * usb_get_string() or usb_string() for USB_DT_STRING.
 770 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 771 * are part of the device structure.
 772 * In addition to a number of USB-standard descriptors, some
 773 * devices also use class-specific or vendor-specific descriptors.
 774 *
 775 * This call is synchronous, and may not be used in an interrupt context.
 776 *
 777 * Return: The number of bytes received on success, or else the status code
 778 * returned by the underlying usb_control_msg() call.
 779 */
 780int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 781		       unsigned char index, void *buf, int size)
 782{
 783	int i;
 784	int result;
 785
 786	if (size <= 0)		/* No point in asking for no data */
 787		return -EINVAL;
 788
 789	memset(buf, 0, size);	/* Make sure we parse really received data */
 790
 791	for (i = 0; i < 3; ++i) {
 792		/* retry on length 0 or error; some devices are flakey */
 793		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 794				USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 795				(type << 8) + index, 0, buf, size,
 796				USB_CTRL_GET_TIMEOUT);
 797		if (result <= 0 && result != -ETIMEDOUT)
 798			continue;
 799		if (result > 1 && ((u8 *)buf)[1] != type) {
 800			result = -ENODATA;
 801			continue;
 802		}
 803		break;
 804	}
 805	return result;
 806}
 807EXPORT_SYMBOL_GPL(usb_get_descriptor);
 808
 809/**
 810 * usb_get_string - gets a string descriptor
 811 * @dev: the device whose string descriptor is being retrieved
 812 * @langid: code for language chosen (from string descriptor zero)
 813 * @index: the number of the descriptor
 814 * @buf: where to put the string
 815 * @size: how big is "buf"?
 816 *
 817 * Context: task context, might sleep.
 818 *
 819 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 820 * in little-endian byte order).
 821 * The usb_string() function will often be a convenient way to turn
 822 * these strings into kernel-printable form.
 823 *
 824 * Strings may be referenced in device, configuration, interface, or other
 825 * descriptors, and could also be used in vendor-specific ways.
 826 *
 827 * This call is synchronous, and may not be used in an interrupt context.
 828 *
 829 * Return: The number of bytes received on success, or else the status code
 830 * returned by the underlying usb_control_msg() call.
 831 */
 832static int usb_get_string(struct usb_device *dev, unsigned short langid,
 833			  unsigned char index, void *buf, int size)
 834{
 835	int i;
 836	int result;
 837
 838	if (size <= 0)		/* No point in asking for no data */
 839		return -EINVAL;
 840
 841	for (i = 0; i < 3; ++i) {
 842		/* retry on length 0 or stall; some devices are flakey */
 843		result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 844			USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 845			(USB_DT_STRING << 8) + index, langid, buf, size,
 846			USB_CTRL_GET_TIMEOUT);
 847		if (result == 0 || result == -EPIPE)
 848			continue;
 849		if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 850			result = -ENODATA;
 851			continue;
 852		}
 853		break;
 854	}
 855	return result;
 856}
 857
 858static void usb_try_string_workarounds(unsigned char *buf, int *length)
 859{
 860	int newlength, oldlength = *length;
 861
 862	for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 863		if (!isprint(buf[newlength]) || buf[newlength + 1])
 864			break;
 865
 866	if (newlength > 2) {
 867		buf[0] = newlength;
 868		*length = newlength;
 869	}
 870}
 871
 872static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 873			  unsigned int index, unsigned char *buf)
 874{
 875	int rc;
 876
 877	/* Try to read the string descriptor by asking for the maximum
 878	 * possible number of bytes */
 879	if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 880		rc = -EIO;
 881	else
 882		rc = usb_get_string(dev, langid, index, buf, 255);
 883
 884	/* If that failed try to read the descriptor length, then
 885	 * ask for just that many bytes */
 886	if (rc < 2) {
 887		rc = usb_get_string(dev, langid, index, buf, 2);
 888		if (rc == 2)
 889			rc = usb_get_string(dev, langid, index, buf, buf[0]);
 890	}
 891
 892	if (rc >= 2) {
 893		if (!buf[0] && !buf[1])
 894			usb_try_string_workarounds(buf, &rc);
 895
 896		/* There might be extra junk at the end of the descriptor */
 897		if (buf[0] < rc)
 898			rc = buf[0];
 899
 900		rc = rc - (rc & 1); /* force a multiple of two */
 901	}
 902
 903	if (rc < 2)
 904		rc = (rc < 0 ? rc : -EINVAL);
 905
 906	return rc;
 907}
 908
 909static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 910{
 911	int err;
 912
 913	if (dev->have_langid)
 914		return 0;
 915
 916	if (dev->string_langid < 0)
 917		return -EPIPE;
 918
 919	err = usb_string_sub(dev, 0, 0, tbuf);
 920
 921	/* If the string was reported but is malformed, default to english
 922	 * (0x0409) */
 923	if (err == -ENODATA || (err > 0 && err < 4)) {
 924		dev->string_langid = 0x0409;
 925		dev->have_langid = 1;
 926		dev_err(&dev->dev,
 927			"language id specifier not provided by device, defaulting to English\n");
 928		return 0;
 929	}
 930
 931	/* In case of all other errors, we assume the device is not able to
 932	 * deal with strings at all. Set string_langid to -1 in order to
 933	 * prevent any string to be retrieved from the device */
 934	if (err < 0) {
 935		dev_info(&dev->dev, "string descriptor 0 read error: %d\n",
 936					err);
 937		dev->string_langid = -1;
 938		return -EPIPE;
 939	}
 940
 941	/* always use the first langid listed */
 942	dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 943	dev->have_langid = 1;
 944	dev_dbg(&dev->dev, "default language 0x%04x\n",
 945				dev->string_langid);
 946	return 0;
 947}
 948
 949/**
 950 * usb_string - returns UTF-8 version of a string descriptor
 951 * @dev: the device whose string descriptor is being retrieved
 952 * @index: the number of the descriptor
 953 * @buf: where to put the string
 954 * @size: how big is "buf"?
 955 *
 956 * Context: task context, might sleep.
 957 *
 958 * This converts the UTF-16LE encoded strings returned by devices, from
 959 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 960 * that are more usable in most kernel contexts.  Note that this function
 961 * chooses strings in the first language supported by the device.
 962 *
 963 * This call is synchronous, and may not be used in an interrupt context.
 964 *
 965 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
 966 */
 967int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 968{
 969	unsigned char *tbuf;
 970	int err;
 971
 972	if (dev->state == USB_STATE_SUSPENDED)
 973		return -EHOSTUNREACH;
 974	if (size <= 0 || !buf)
 975		return -EINVAL;
 976	buf[0] = 0;
 977	if (index <= 0 || index >= 256)
 978		return -EINVAL;
 979	tbuf = kmalloc(256, GFP_NOIO);
 980	if (!tbuf)
 981		return -ENOMEM;
 982
 983	err = usb_get_langid(dev, tbuf);
 984	if (err < 0)
 985		goto errout;
 986
 987	err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 988	if (err < 0)
 989		goto errout;
 990
 991	size--;		/* leave room for trailing NULL char in output buffer */
 992	err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 993			UTF16_LITTLE_ENDIAN, buf, size);
 994	buf[err] = 0;
 995
 996	if (tbuf[1] != USB_DT_STRING)
 997		dev_dbg(&dev->dev,
 998			"wrong descriptor type %02x for string %d (\"%s\")\n",
 999			tbuf[1], index, buf);
1000
1001 errout:
1002	kfree(tbuf);
1003	return err;
1004}
1005EXPORT_SYMBOL_GPL(usb_string);
1006
1007/* one UTF-8-encoded 16-bit character has at most three bytes */
1008#define MAX_USB_STRING_SIZE (127 * 3 + 1)
1009
1010/**
1011 * usb_cache_string - read a string descriptor and cache it for later use
1012 * @udev: the device whose string descriptor is being read
1013 * @index: the descriptor index
1014 *
1015 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
1016 * or %NULL if the index is 0 or the string could not be read.
1017 */
1018char *usb_cache_string(struct usb_device *udev, int index)
1019{
1020	char *buf;
1021	char *smallbuf = NULL;
1022	int len;
1023
1024	if (index <= 0)
1025		return NULL;
1026
1027	buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
1028	if (buf) {
1029		len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
1030		if (len > 0) {
1031			smallbuf = kmalloc(++len, GFP_NOIO);
1032			if (!smallbuf)
1033				return buf;
1034			memcpy(smallbuf, buf, len);
1035		}
1036		kfree(buf);
1037	}
1038	return smallbuf;
1039}
1040
1041/*
1042 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
1043 * @dev: the device whose device descriptor is being updated
1044 * @size: how much of the descriptor to read
1045 *
1046 * Context: task context, might sleep.
1047 *
1048 * Updates the copy of the device descriptor stored in the device structure,
1049 * which dedicates space for this purpose.
1050 *
1051 * Not exported, only for use by the core.  If drivers really want to read
1052 * the device descriptor directly, they can call usb_get_descriptor() with
1053 * type = USB_DT_DEVICE and index = 0.
1054 *
1055 * This call is synchronous, and may not be used in an interrupt context.
1056 *
1057 * Return: The number of bytes received on success, or else the status code
1058 * returned by the underlying usb_control_msg() call.
1059 */
1060int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
1061{
1062	struct usb_device_descriptor *desc;
1063	int ret;
1064
1065	if (size > sizeof(*desc))
1066		return -EINVAL;
1067	desc = kmalloc(sizeof(*desc), GFP_NOIO);
1068	if (!desc)
1069		return -ENOMEM;
1070
1071	ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
1072	if (ret >= 0)
1073		memcpy(&dev->descriptor, desc, size);
1074	kfree(desc);
1075	return ret;
1076}
1077
1078/*
1079 * usb_set_isoch_delay - informs the device of the packet transmit delay
1080 * @dev: the device whose delay is to be informed
1081 * Context: task context, might sleep
1082 *
1083 * Since this is an optional request, we don't bother if it fails.
1084 */
1085int usb_set_isoch_delay(struct usb_device *dev)
1086{
1087	/* skip hub devices */
1088	if (dev->descriptor.bDeviceClass == USB_CLASS_HUB)
1089		return 0;
1090
1091	/* skip non-SS/non-SSP devices */
1092	if (dev->speed < USB_SPEED_SUPER)
1093		return 0;
1094
1095	return usb_control_msg_send(dev, 0,
1096			USB_REQ_SET_ISOCH_DELAY,
1097			USB_DIR_OUT | USB_TYPE_STANDARD | USB_RECIP_DEVICE,
1098			dev->hub_delay, 0, NULL, 0,
1099			USB_CTRL_SET_TIMEOUT,
1100			GFP_NOIO);
1101}
1102
1103/**
1104 * usb_get_status - issues a GET_STATUS call
1105 * @dev: the device whose status is being checked
1106 * @recip: USB_RECIP_*; for device, interface, or endpoint
1107 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
1108 * @target: zero (for device), else interface or endpoint number
1109 * @data: pointer to two bytes of bitmap data
1110 *
1111 * Context: task context, might sleep.
1112 *
1113 * Returns device, interface, or endpoint status.  Normally only of
1114 * interest to see if the device is self powered, or has enabled the
1115 * remote wakeup facility; or whether a bulk or interrupt endpoint
1116 * is halted ("stalled").
1117 *
1118 * Bits in these status bitmaps are set using the SET_FEATURE request,
1119 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
1120 * function should be used to clear halt ("stall") status.
1121 *
1122 * This call is synchronous, and may not be used in an interrupt context.
1123 *
1124 * Returns 0 and the status value in *@data (in host byte order) on success,
1125 * or else the status code from the underlying usb_control_msg() call.
1126 */
1127int usb_get_status(struct usb_device *dev, int recip, int type, int target,
1128		void *data)
1129{
1130	int ret;
1131	void *status;
1132	int length;
1133
1134	switch (type) {
1135	case USB_STATUS_TYPE_STANDARD:
1136		length = 2;
1137		break;
1138	case USB_STATUS_TYPE_PTM:
1139		if (recip != USB_RECIP_DEVICE)
1140			return -EINVAL;
1141
1142		length = 4;
1143		break;
1144	default:
1145		return -EINVAL;
1146	}
1147
1148	status =  kmalloc(length, GFP_KERNEL);
1149	if (!status)
1150		return -ENOMEM;
1151
1152	ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
1153		USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
1154		target, status, length, USB_CTRL_GET_TIMEOUT);
1155
1156	switch (ret) {
1157	case 4:
1158		if (type != USB_STATUS_TYPE_PTM) {
1159			ret = -EIO;
1160			break;
1161		}
1162
1163		*(u32 *) data = le32_to_cpu(*(__le32 *) status);
1164		ret = 0;
1165		break;
1166	case 2:
1167		if (type != USB_STATUS_TYPE_STANDARD) {
1168			ret = -EIO;
1169			break;
1170		}
1171
1172		*(u16 *) data = le16_to_cpu(*(__le16 *) status);
 
1173		ret = 0;
1174		break;
1175	default:
1176		ret = -EIO;
1177	}
1178
1179	kfree(status);
1180	return ret;
1181}
1182EXPORT_SYMBOL_GPL(usb_get_status);
1183
1184/**
1185 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1186 * @dev: device whose endpoint is halted
1187 * @pipe: endpoint "pipe" being cleared
1188 *
1189 * Context: task context, might sleep.
1190 *
1191 * This is used to clear halt conditions for bulk and interrupt endpoints,
1192 * as reported by URB completion status.  Endpoints that are halted are
1193 * sometimes referred to as being "stalled".  Such endpoints are unable
1194 * to transmit or receive data until the halt status is cleared.  Any URBs
1195 * queued for such an endpoint should normally be unlinked by the driver
1196 * before clearing the halt condition, as described in sections 5.7.5
1197 * and 5.8.5 of the USB 2.0 spec.
1198 *
1199 * Note that control and isochronous endpoints don't halt, although control
1200 * endpoints report "protocol stall" (for unsupported requests) using the
1201 * same status code used to report a true stall.
1202 *
1203 * This call is synchronous, and may not be used in an interrupt context.
1204 *
1205 * Return: Zero on success, or else the status code returned by the
1206 * underlying usb_control_msg() call.
1207 */
1208int usb_clear_halt(struct usb_device *dev, int pipe)
1209{
1210	int result;
1211	int endp = usb_pipeendpoint(pipe);
1212
1213	if (usb_pipein(pipe))
1214		endp |= USB_DIR_IN;
1215
1216	/* we don't care if it wasn't halted first. in fact some devices
1217	 * (like some ibmcam model 1 units) seem to expect hosts to make
1218	 * this request for iso endpoints, which can't halt!
1219	 */
1220	result = usb_control_msg_send(dev, 0,
1221				      USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1222				      USB_ENDPOINT_HALT, endp, NULL, 0,
1223				      USB_CTRL_SET_TIMEOUT, GFP_NOIO);
1224
1225	/* don't un-halt or force to DATA0 except on success */
1226	if (result)
1227		return result;
1228
1229	/* NOTE:  seems like Microsoft and Apple don't bother verifying
1230	 * the clear "took", so some devices could lock up if you check...
1231	 * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1232	 *
1233	 * NOTE:  make sure the logic here doesn't diverge much from
1234	 * the copy in usb-storage, for as long as we need two copies.
1235	 */
1236
1237	usb_reset_endpoint(dev, endp);
1238
1239	return 0;
1240}
1241EXPORT_SYMBOL_GPL(usb_clear_halt);
1242
1243static int create_intf_ep_devs(struct usb_interface *intf)
1244{
1245	struct usb_device *udev = interface_to_usbdev(intf);
1246	struct usb_host_interface *alt = intf->cur_altsetting;
1247	int i;
1248
1249	if (intf->ep_devs_created || intf->unregistering)
1250		return 0;
1251
1252	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1253		(void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1254	intf->ep_devs_created = 1;
1255	return 0;
1256}
1257
1258static void remove_intf_ep_devs(struct usb_interface *intf)
1259{
1260	struct usb_host_interface *alt = intf->cur_altsetting;
1261	int i;
1262
1263	if (!intf->ep_devs_created)
1264		return;
1265
1266	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1267		usb_remove_ep_devs(&alt->endpoint[i]);
1268	intf->ep_devs_created = 0;
1269}
1270
1271/**
1272 * usb_disable_endpoint -- Disable an endpoint by address
1273 * @dev: the device whose endpoint is being disabled
1274 * @epaddr: the endpoint's address.  Endpoint number for output,
1275 *	endpoint number + USB_DIR_IN for input
1276 * @reset_hardware: flag to erase any endpoint state stored in the
1277 *	controller hardware
1278 *
1279 * Disables the endpoint for URB submission and nukes all pending URBs.
1280 * If @reset_hardware is set then also deallocates hcd/hardware state
1281 * for the endpoint.
1282 */
1283void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1284		bool reset_hardware)
1285{
1286	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1287	struct usb_host_endpoint *ep;
1288
1289	if (!dev)
1290		return;
1291
1292	if (usb_endpoint_out(epaddr)) {
1293		ep = dev->ep_out[epnum];
1294		if (reset_hardware && epnum != 0)
1295			dev->ep_out[epnum] = NULL;
1296	} else {
1297		ep = dev->ep_in[epnum];
1298		if (reset_hardware && epnum != 0)
1299			dev->ep_in[epnum] = NULL;
1300	}
1301	if (ep) {
1302		ep->enabled = 0;
1303		usb_hcd_flush_endpoint(dev, ep);
1304		if (reset_hardware)
1305			usb_hcd_disable_endpoint(dev, ep);
1306	}
1307}
1308
1309/**
1310 * usb_reset_endpoint - Reset an endpoint's state.
1311 * @dev: the device whose endpoint is to be reset
1312 * @epaddr: the endpoint's address.  Endpoint number for output,
1313 *	endpoint number + USB_DIR_IN for input
1314 *
1315 * Resets any host-side endpoint state such as the toggle bit,
1316 * sequence number or current window.
1317 */
1318void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1319{
1320	unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1321	struct usb_host_endpoint *ep;
1322
1323	if (usb_endpoint_out(epaddr))
1324		ep = dev->ep_out[epnum];
1325	else
1326		ep = dev->ep_in[epnum];
1327	if (ep)
1328		usb_hcd_reset_endpoint(dev, ep);
1329}
1330EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1331
1332
1333/**
1334 * usb_disable_interface -- Disable all endpoints for an interface
1335 * @dev: the device whose interface is being disabled
1336 * @intf: pointer to the interface descriptor
1337 * @reset_hardware: flag to erase any endpoint state stored in the
1338 *	controller hardware
1339 *
1340 * Disables all the endpoints for the interface's current altsetting.
1341 */
1342void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1343		bool reset_hardware)
1344{
1345	struct usb_host_interface *alt = intf->cur_altsetting;
1346	int i;
1347
1348	for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1349		usb_disable_endpoint(dev,
1350				alt->endpoint[i].desc.bEndpointAddress,
1351				reset_hardware);
1352	}
1353}
1354
1355/*
1356 * usb_disable_device_endpoints -- Disable all endpoints for a device
1357 * @dev: the device whose endpoints are being disabled
1358 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1359 */
1360static void usb_disable_device_endpoints(struct usb_device *dev, int skip_ep0)
1361{
1362	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1363	int i;
1364
1365	if (hcd->driver->check_bandwidth) {
1366		/* First pass: Cancel URBs, leave endpoint pointers intact. */
1367		for (i = skip_ep0; i < 16; ++i) {
1368			usb_disable_endpoint(dev, i, false);
1369			usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1370		}
1371		/* Remove endpoints from the host controller internal state */
1372		mutex_lock(hcd->bandwidth_mutex);
1373		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1374		mutex_unlock(hcd->bandwidth_mutex);
1375	}
1376	/* Second pass: remove endpoint pointers */
1377	for (i = skip_ep0; i < 16; ++i) {
1378		usb_disable_endpoint(dev, i, true);
1379		usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1380	}
1381}
1382
1383/**
1384 * usb_disable_device - Disable all the endpoints for a USB device
1385 * @dev: the device whose endpoints are being disabled
1386 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1387 *
1388 * Disables all the device's endpoints, potentially including endpoint 0.
1389 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1390 * pending urbs) and usbcore state for the interfaces, so that usbcore
1391 * must usb_set_configuration() before any interfaces could be used.
1392 */
1393void usb_disable_device(struct usb_device *dev, int skip_ep0)
1394{
1395	int i;
 
1396
1397	/* getting rid of interfaces will disconnect
1398	 * any drivers bound to them (a key side effect)
1399	 */
1400	if (dev->actconfig) {
1401		/*
1402		 * FIXME: In order to avoid self-deadlock involving the
1403		 * bandwidth_mutex, we have to mark all the interfaces
1404		 * before unregistering any of them.
1405		 */
1406		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1407			dev->actconfig->interface[i]->unregistering = 1;
1408
1409		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1410			struct usb_interface	*interface;
1411
1412			/* remove this interface if it has been registered */
1413			interface = dev->actconfig->interface[i];
1414			if (!device_is_registered(&interface->dev))
1415				continue;
1416			dev_dbg(&dev->dev, "unregistering interface %s\n",
1417				dev_name(&interface->dev));
1418			remove_intf_ep_devs(interface);
1419			device_del(&interface->dev);
1420		}
1421
1422		/* Now that the interfaces are unbound, nobody should
1423		 * try to access them.
1424		 */
1425		for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1426			put_device(&dev->actconfig->interface[i]->dev);
1427			dev->actconfig->interface[i] = NULL;
1428		}
1429
1430		usb_disable_usb2_hardware_lpm(dev);
 
1431		usb_unlocked_disable_lpm(dev);
1432		usb_disable_ltm(dev);
1433
1434		dev->actconfig = NULL;
1435		if (dev->state == USB_STATE_CONFIGURED)
1436			usb_set_device_state(dev, USB_STATE_ADDRESS);
1437	}
1438
1439	dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1440		skip_ep0 ? "non-ep0" : "all");
1441
1442	usb_disable_device_endpoints(dev, skip_ep0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1443}
1444
1445/**
1446 * usb_enable_endpoint - Enable an endpoint for USB communications
1447 * @dev: the device whose interface is being enabled
1448 * @ep: the endpoint
1449 * @reset_ep: flag to reset the endpoint state
1450 *
1451 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1452 * For control endpoints, both the input and output sides are handled.
1453 */
1454void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1455		bool reset_ep)
1456{
1457	int epnum = usb_endpoint_num(&ep->desc);
1458	int is_out = usb_endpoint_dir_out(&ep->desc);
1459	int is_control = usb_endpoint_xfer_control(&ep->desc);
1460
1461	if (reset_ep)
1462		usb_hcd_reset_endpoint(dev, ep);
1463	if (is_out || is_control)
1464		dev->ep_out[epnum] = ep;
1465	if (!is_out || is_control)
1466		dev->ep_in[epnum] = ep;
1467	ep->enabled = 1;
1468}
1469
1470/**
1471 * usb_enable_interface - Enable all the endpoints for an interface
1472 * @dev: the device whose interface is being enabled
1473 * @intf: pointer to the interface descriptor
1474 * @reset_eps: flag to reset the endpoints' state
1475 *
1476 * Enables all the endpoints for the interface's current altsetting.
1477 */
1478void usb_enable_interface(struct usb_device *dev,
1479		struct usb_interface *intf, bool reset_eps)
1480{
1481	struct usb_host_interface *alt = intf->cur_altsetting;
1482	int i;
1483
1484	for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1485		usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1486}
1487
1488/**
1489 * usb_set_interface - Makes a particular alternate setting be current
1490 * @dev: the device whose interface is being updated
1491 * @interface: the interface being updated
1492 * @alternate: the setting being chosen.
1493 *
1494 * Context: task context, might sleep.
1495 *
1496 * This is used to enable data transfers on interfaces that may not
1497 * be enabled by default.  Not all devices support such configurability.
1498 * Only the driver bound to an interface may change its setting.
1499 *
1500 * Within any given configuration, each interface may have several
1501 * alternative settings.  These are often used to control levels of
1502 * bandwidth consumption.  For example, the default setting for a high
1503 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1504 * while interrupt transfers of up to 3KBytes per microframe are legal.
1505 * Also, isochronous endpoints may never be part of an
1506 * interface's default setting.  To access such bandwidth, alternate
1507 * interface settings must be made current.
1508 *
1509 * Note that in the Linux USB subsystem, bandwidth associated with
1510 * an endpoint in a given alternate setting is not reserved until an URB
1511 * is submitted that needs that bandwidth.  Some other operating systems
1512 * allocate bandwidth early, when a configuration is chosen.
1513 *
1514 * xHCI reserves bandwidth and configures the alternate setting in
1515 * usb_hcd_alloc_bandwidth(). If it fails the original interface altsetting
1516 * may be disabled. Drivers cannot rely on any particular alternate
1517 * setting being in effect after a failure.
1518 *
1519 * This call is synchronous, and may not be used in an interrupt context.
1520 * Also, drivers must not change altsettings while urbs are scheduled for
1521 * endpoints in that interface; all such urbs must first be completed
1522 * (perhaps forced by unlinking).
1523 *
1524 * Return: Zero on success, or else the status code returned by the
1525 * underlying usb_control_msg() call.
1526 */
1527int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1528{
1529	struct usb_interface *iface;
1530	struct usb_host_interface *alt;
1531	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1532	int i, ret, manual = 0;
1533	unsigned int epaddr;
1534	unsigned int pipe;
1535
1536	if (dev->state == USB_STATE_SUSPENDED)
1537		return -EHOSTUNREACH;
1538
1539	iface = usb_ifnum_to_if(dev, interface);
1540	if (!iface) {
1541		dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1542			interface);
1543		return -EINVAL;
1544	}
1545	if (iface->unregistering)
1546		return -ENODEV;
1547
1548	alt = usb_altnum_to_altsetting(iface, alternate);
1549	if (!alt) {
1550		dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1551			 alternate);
1552		return -EINVAL;
1553	}
1554	/*
1555	 * usb3 hosts configure the interface in usb_hcd_alloc_bandwidth,
1556	 * including freeing dropped endpoint ring buffers.
1557	 * Make sure the interface endpoints are flushed before that
1558	 */
1559	usb_disable_interface(dev, iface, false);
1560
1561	/* Make sure we have enough bandwidth for this alternate interface.
1562	 * Remove the current alt setting and add the new alt setting.
1563	 */
1564	mutex_lock(hcd->bandwidth_mutex);
1565	/* Disable LPM, and re-enable it once the new alt setting is installed,
1566	 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1567	 */
1568	if (usb_disable_lpm(dev)) {
1569		dev_err(&iface->dev, "%s Failed to disable LPM\n", __func__);
1570		mutex_unlock(hcd->bandwidth_mutex);
1571		return -ENOMEM;
1572	}
1573	/* Changing alt-setting also frees any allocated streams */
1574	for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1575		iface->cur_altsetting->endpoint[i].streams = 0;
1576
1577	ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1578	if (ret < 0) {
1579		dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1580				alternate);
1581		usb_enable_lpm(dev);
1582		mutex_unlock(hcd->bandwidth_mutex);
1583		return ret;
1584	}
1585
1586	if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1587		ret = -EPIPE;
1588	else
1589		ret = usb_control_msg_send(dev, 0,
1590					   USB_REQ_SET_INTERFACE,
1591					   USB_RECIP_INTERFACE, alternate,
1592					   interface, NULL, 0, 5000,
1593					   GFP_NOIO);
1594
1595	/* 9.4.10 says devices don't need this and are free to STALL the
1596	 * request if the interface only has one alternate setting.
1597	 */
1598	if (ret == -EPIPE && iface->num_altsetting == 1) {
1599		dev_dbg(&dev->dev,
1600			"manual set_interface for iface %d, alt %d\n",
1601			interface, alternate);
1602		manual = 1;
1603	} else if (ret) {
1604		/* Re-instate the old alt setting */
1605		usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1606		usb_enable_lpm(dev);
1607		mutex_unlock(hcd->bandwidth_mutex);
1608		return ret;
1609	}
1610	mutex_unlock(hcd->bandwidth_mutex);
1611
1612	/* FIXME drivers shouldn't need to replicate/bugfix the logic here
1613	 * when they implement async or easily-killable versions of this or
1614	 * other "should-be-internal" functions (like clear_halt).
1615	 * should hcd+usbcore postprocess control requests?
1616	 */
1617
1618	/* prevent submissions using previous endpoint settings */
1619	if (iface->cur_altsetting != alt) {
1620		remove_intf_ep_devs(iface);
1621		usb_remove_sysfs_intf_files(iface);
1622	}
1623	usb_disable_interface(dev, iface, true);
1624
1625	iface->cur_altsetting = alt;
1626
1627	/* Now that the interface is installed, re-enable LPM. */
1628	usb_unlocked_enable_lpm(dev);
1629
1630	/* If the interface only has one altsetting and the device didn't
1631	 * accept the request, we attempt to carry out the equivalent action
1632	 * by manually clearing the HALT feature for each endpoint in the
1633	 * new altsetting.
1634	 */
1635	if (manual) {
1636		for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1637			epaddr = alt->endpoint[i].desc.bEndpointAddress;
1638			pipe = __create_pipe(dev,
1639					USB_ENDPOINT_NUMBER_MASK & epaddr) |
1640					(usb_endpoint_out(epaddr) ?
1641					USB_DIR_OUT : USB_DIR_IN);
1642
1643			usb_clear_halt(dev, pipe);
1644		}
1645	}
1646
1647	/* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1648	 *
1649	 * Note:
1650	 * Despite EP0 is always present in all interfaces/AS, the list of
1651	 * endpoints from the descriptor does not contain EP0. Due to its
1652	 * omnipresence one might expect EP0 being considered "affected" by
1653	 * any SetInterface request and hence assume toggles need to be reset.
1654	 * However, EP0 toggles are re-synced for every individual transfer
1655	 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1656	 * (Likewise, EP0 never "halts" on well designed devices.)
1657	 */
1658	usb_enable_interface(dev, iface, true);
1659	if (device_is_registered(&iface->dev)) {
1660		usb_create_sysfs_intf_files(iface);
1661		create_intf_ep_devs(iface);
1662	}
1663	return 0;
1664}
1665EXPORT_SYMBOL_GPL(usb_set_interface);
1666
1667/**
1668 * usb_reset_configuration - lightweight device reset
1669 * @dev: the device whose configuration is being reset
1670 *
1671 * This issues a standard SET_CONFIGURATION request to the device using
1672 * the current configuration.  The effect is to reset most USB-related
1673 * state in the device, including interface altsettings (reset to zero),
1674 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1675 * endpoints).  Other usbcore state is unchanged, including bindings of
1676 * usb device drivers to interfaces.
1677 *
1678 * Because this affects multiple interfaces, avoid using this with composite
1679 * (multi-interface) devices.  Instead, the driver for each interface may
1680 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1681 * some devices don't support the SET_INTERFACE request, and others won't
1682 * reset all the interface state (notably endpoint state).  Resetting the whole
1683 * configuration would affect other drivers' interfaces.
1684 *
1685 * The caller must own the device lock.
1686 *
1687 * Return: Zero on success, else a negative error code.
1688 *
1689 * If this routine fails the device will probably be in an unusable state
1690 * with endpoints disabled, and interfaces only partially enabled.
1691 */
1692int usb_reset_configuration(struct usb_device *dev)
1693{
1694	int			i, retval;
1695	struct usb_host_config	*config;
1696	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1697
1698	if (dev->state == USB_STATE_SUSPENDED)
1699		return -EHOSTUNREACH;
1700
1701	/* caller must have locked the device and must own
1702	 * the usb bus readlock (so driver bindings are stable);
1703	 * calls during probe() are fine
1704	 */
1705
1706	usb_disable_device_endpoints(dev, 1); /* skip ep0*/
 
 
 
1707
1708	config = dev->actconfig;
1709	retval = 0;
1710	mutex_lock(hcd->bandwidth_mutex);
1711	/* Disable LPM, and re-enable it once the configuration is reset, so
1712	 * that the xHCI driver can recalculate the U1/U2 timeouts.
1713	 */
1714	if (usb_disable_lpm(dev)) {
1715		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
1716		mutex_unlock(hcd->bandwidth_mutex);
1717		return -ENOMEM;
1718	}
 
 
 
 
1719
1720	/* xHCI adds all endpoints in usb_hcd_alloc_bandwidth */
1721	retval = usb_hcd_alloc_bandwidth(dev, config, NULL, NULL);
 
 
 
 
 
 
 
 
1722	if (retval < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
1723		usb_enable_lpm(dev);
1724		mutex_unlock(hcd->bandwidth_mutex);
1725		return retval;
1726	}
1727	retval = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
1728				      config->desc.bConfigurationValue, 0,
1729				      NULL, 0, USB_CTRL_SET_TIMEOUT,
1730				      GFP_NOIO);
1731	if (retval) {
1732		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1733		usb_enable_lpm(dev);
1734		mutex_unlock(hcd->bandwidth_mutex);
1735		return retval;
1736	}
1737	mutex_unlock(hcd->bandwidth_mutex);
1738
1739	/* re-init hc/hcd interface/endpoint state */
1740	for (i = 0; i < config->desc.bNumInterfaces; i++) {
1741		struct usb_interface *intf = config->interface[i];
1742		struct usb_host_interface *alt;
1743
1744		alt = usb_altnum_to_altsetting(intf, 0);
1745
1746		/* No altsetting 0?  We'll assume the first altsetting.
1747		 * We could use a GetInterface call, but if a device is
1748		 * so non-compliant that it doesn't have altsetting 0
1749		 * then I wouldn't trust its reply anyway.
1750		 */
1751		if (!alt)
1752			alt = &intf->altsetting[0];
1753
1754		if (alt != intf->cur_altsetting) {
1755			remove_intf_ep_devs(intf);
1756			usb_remove_sysfs_intf_files(intf);
1757		}
1758		intf->cur_altsetting = alt;
1759		usb_enable_interface(dev, intf, true);
1760		if (device_is_registered(&intf->dev)) {
1761			usb_create_sysfs_intf_files(intf);
1762			create_intf_ep_devs(intf);
1763		}
1764	}
1765	/* Now that the interfaces are installed, re-enable LPM. */
1766	usb_unlocked_enable_lpm(dev);
1767	return 0;
1768}
1769EXPORT_SYMBOL_GPL(usb_reset_configuration);
1770
1771static void usb_release_interface(struct device *dev)
1772{
1773	struct usb_interface *intf = to_usb_interface(dev);
1774	struct usb_interface_cache *intfc =
1775			altsetting_to_usb_interface_cache(intf->altsetting);
1776
1777	kref_put(&intfc->ref, usb_release_interface_cache);
1778	usb_put_dev(interface_to_usbdev(intf));
1779	of_node_put(dev->of_node);
1780	kfree(intf);
1781}
1782
1783/*
1784 * usb_deauthorize_interface - deauthorize an USB interface
1785 *
1786 * @intf: USB interface structure
1787 */
1788void usb_deauthorize_interface(struct usb_interface *intf)
1789{
1790	struct device *dev = &intf->dev;
1791
1792	device_lock(dev->parent);
1793
1794	if (intf->authorized) {
1795		device_lock(dev);
1796		intf->authorized = 0;
1797		device_unlock(dev);
1798
1799		usb_forced_unbind_intf(intf);
1800	}
1801
1802	device_unlock(dev->parent);
1803}
1804
1805/*
1806 * usb_authorize_interface - authorize an USB interface
1807 *
1808 * @intf: USB interface structure
1809 */
1810void usb_authorize_interface(struct usb_interface *intf)
1811{
1812	struct device *dev = &intf->dev;
1813
1814	if (!intf->authorized) {
1815		device_lock(dev);
1816		intf->authorized = 1; /* authorize interface */
1817		device_unlock(dev);
1818	}
1819}
1820
1821static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1822{
1823	struct usb_device *usb_dev;
1824	struct usb_interface *intf;
1825	struct usb_host_interface *alt;
1826
1827	intf = to_usb_interface(dev);
1828	usb_dev = interface_to_usbdev(intf);
1829	alt = intf->cur_altsetting;
1830
1831	if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1832		   alt->desc.bInterfaceClass,
1833		   alt->desc.bInterfaceSubClass,
1834		   alt->desc.bInterfaceProtocol))
1835		return -ENOMEM;
1836
1837	if (add_uevent_var(env,
1838		   "MODALIAS=usb:"
1839		   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1840		   le16_to_cpu(usb_dev->descriptor.idVendor),
1841		   le16_to_cpu(usb_dev->descriptor.idProduct),
1842		   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1843		   usb_dev->descriptor.bDeviceClass,
1844		   usb_dev->descriptor.bDeviceSubClass,
1845		   usb_dev->descriptor.bDeviceProtocol,
1846		   alt->desc.bInterfaceClass,
1847		   alt->desc.bInterfaceSubClass,
1848		   alt->desc.bInterfaceProtocol,
1849		   alt->desc.bInterfaceNumber))
1850		return -ENOMEM;
1851
1852	return 0;
1853}
1854
1855struct device_type usb_if_device_type = {
1856	.name =		"usb_interface",
1857	.release =	usb_release_interface,
1858	.uevent =	usb_if_uevent,
1859};
1860
1861static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1862						struct usb_host_config *config,
1863						u8 inum)
1864{
1865	struct usb_interface_assoc_descriptor *retval = NULL;
1866	struct usb_interface_assoc_descriptor *intf_assoc;
1867	int first_intf;
1868	int last_intf;
1869	int i;
1870
1871	for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1872		intf_assoc = config->intf_assoc[i];
1873		if (intf_assoc->bInterfaceCount == 0)
1874			continue;
1875
1876		first_intf = intf_assoc->bFirstInterface;
1877		last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1878		if (inum >= first_intf && inum <= last_intf) {
1879			if (!retval)
1880				retval = intf_assoc;
1881			else
1882				dev_err(&dev->dev, "Interface #%d referenced"
1883					" by multiple IADs\n", inum);
1884		}
1885	}
1886
1887	return retval;
1888}
1889
1890
1891/*
1892 * Internal function to queue a device reset
1893 * See usb_queue_reset_device() for more details
1894 */
1895static void __usb_queue_reset_device(struct work_struct *ws)
1896{
1897	int rc;
1898	struct usb_interface *iface =
1899		container_of(ws, struct usb_interface, reset_ws);
1900	struct usb_device *udev = interface_to_usbdev(iface);
1901
1902	rc = usb_lock_device_for_reset(udev, iface);
1903	if (rc >= 0) {
1904		usb_reset_device(udev);
1905		usb_unlock_device(udev);
1906	}
1907	usb_put_intf(iface);	/* Undo _get_ in usb_queue_reset_device() */
1908}
1909
1910
1911/*
1912 * usb_set_configuration - Makes a particular device setting be current
1913 * @dev: the device whose configuration is being updated
1914 * @configuration: the configuration being chosen.
1915 *
1916 * Context: task context, might sleep. Caller holds device lock.
1917 *
1918 * This is used to enable non-default device modes.  Not all devices
1919 * use this kind of configurability; many devices only have one
1920 * configuration.
1921 *
1922 * @configuration is the value of the configuration to be installed.
1923 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1924 * must be non-zero; a value of zero indicates that the device in
1925 * unconfigured.  However some devices erroneously use 0 as one of their
1926 * configuration values.  To help manage such devices, this routine will
1927 * accept @configuration = -1 as indicating the device should be put in
1928 * an unconfigured state.
1929 *
1930 * USB device configurations may affect Linux interoperability,
1931 * power consumption and the functionality available.  For example,
1932 * the default configuration is limited to using 100mA of bus power,
1933 * so that when certain device functionality requires more power,
1934 * and the device is bus powered, that functionality should be in some
1935 * non-default device configuration.  Other device modes may also be
1936 * reflected as configuration options, such as whether two ISDN
1937 * channels are available independently; and choosing between open
1938 * standard device protocols (like CDC) or proprietary ones.
1939 *
1940 * Note that a non-authorized device (dev->authorized == 0) will only
1941 * be put in unconfigured mode.
1942 *
1943 * Note that USB has an additional level of device configurability,
1944 * associated with interfaces.  That configurability is accessed using
1945 * usb_set_interface().
1946 *
1947 * This call is synchronous. The calling context must be able to sleep,
1948 * must own the device lock, and must not hold the driver model's USB
1949 * bus mutex; usb interface driver probe() methods cannot use this routine.
1950 *
1951 * Returns zero on success, or else the status code returned by the
1952 * underlying call that failed.  On successful completion, each interface
1953 * in the original device configuration has been destroyed, and each one
1954 * in the new configuration has been probed by all relevant usb device
1955 * drivers currently known to the kernel.
1956 */
1957int usb_set_configuration(struct usb_device *dev, int configuration)
1958{
1959	int i, ret;
1960	struct usb_host_config *cp = NULL;
1961	struct usb_interface **new_interfaces = NULL;
1962	struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1963	int n, nintf;
1964
1965	if (dev->authorized == 0 || configuration == -1)
1966		configuration = 0;
1967	else {
1968		for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1969			if (dev->config[i].desc.bConfigurationValue ==
1970					configuration) {
1971				cp = &dev->config[i];
1972				break;
1973			}
1974		}
1975	}
1976	if ((!cp && configuration != 0))
1977		return -EINVAL;
1978
1979	/* The USB spec says configuration 0 means unconfigured.
1980	 * But if a device includes a configuration numbered 0,
1981	 * we will accept it as a correctly configured state.
1982	 * Use -1 if you really want to unconfigure the device.
1983	 */
1984	if (cp && configuration == 0)
1985		dev_warn(&dev->dev, "config 0 descriptor??\n");
1986
1987	/* Allocate memory for new interfaces before doing anything else,
1988	 * so that if we run out then nothing will have changed. */
1989	n = nintf = 0;
1990	if (cp) {
1991		nintf = cp->desc.bNumInterfaces;
1992		new_interfaces = kmalloc_array(nintf, sizeof(*new_interfaces),
1993					       GFP_NOIO);
1994		if (!new_interfaces)
1995			return -ENOMEM;
1996
1997		for (; n < nintf; ++n) {
1998			new_interfaces[n] = kzalloc(
1999					sizeof(struct usb_interface),
2000					GFP_NOIO);
2001			if (!new_interfaces[n]) {
2002				ret = -ENOMEM;
2003free_interfaces:
2004				while (--n >= 0)
2005					kfree(new_interfaces[n]);
2006				kfree(new_interfaces);
2007				return ret;
2008			}
2009		}
2010
2011		i = dev->bus_mA - usb_get_max_power(dev, cp);
2012		if (i < 0)
2013			dev_warn(&dev->dev, "new config #%d exceeds power "
2014					"limit by %dmA\n",
2015					configuration, -i);
2016	}
2017
2018	/* Wake up the device so we can send it the Set-Config request */
2019	ret = usb_autoresume_device(dev);
2020	if (ret)
2021		goto free_interfaces;
2022
2023	/* if it's already configured, clear out old state first.
2024	 * getting rid of old interfaces means unbinding their drivers.
2025	 */
2026	if (dev->state != USB_STATE_ADDRESS)
2027		usb_disable_device(dev, 1);	/* Skip ep0 */
2028
2029	/* Get rid of pending async Set-Config requests for this device */
2030	cancel_async_set_config(dev);
2031
2032	/* Make sure we have bandwidth (and available HCD resources) for this
2033	 * configuration.  Remove endpoints from the schedule if we're dropping
2034	 * this configuration to set configuration 0.  After this point, the
2035	 * host controller will not allow submissions to dropped endpoints.  If
2036	 * this call fails, the device state is unchanged.
2037	 */
2038	mutex_lock(hcd->bandwidth_mutex);
2039	/* Disable LPM, and re-enable it once the new configuration is
2040	 * installed, so that the xHCI driver can recalculate the U1/U2
2041	 * timeouts.
2042	 */
2043	if (dev->actconfig && usb_disable_lpm(dev)) {
2044		dev_err(&dev->dev, "%s Failed to disable LPM\n", __func__);
2045		mutex_unlock(hcd->bandwidth_mutex);
2046		ret = -ENOMEM;
2047		goto free_interfaces;
2048	}
2049	ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
2050	if (ret < 0) {
2051		if (dev->actconfig)
2052			usb_enable_lpm(dev);
2053		mutex_unlock(hcd->bandwidth_mutex);
2054		usb_autosuspend_device(dev);
2055		goto free_interfaces;
2056	}
2057
2058	/*
2059	 * Initialize the new interface structures and the
2060	 * hc/hcd/usbcore interface/endpoint state.
2061	 */
2062	for (i = 0; i < nintf; ++i) {
2063		struct usb_interface_cache *intfc;
2064		struct usb_interface *intf;
2065		struct usb_host_interface *alt;
2066		u8 ifnum;
2067
2068		cp->interface[i] = intf = new_interfaces[i];
2069		intfc = cp->intf_cache[i];
2070		intf->altsetting = intfc->altsetting;
2071		intf->num_altsetting = intfc->num_altsetting;
2072		intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
2073		kref_get(&intfc->ref);
2074
2075		alt = usb_altnum_to_altsetting(intf, 0);
2076
2077		/* No altsetting 0?  We'll assume the first altsetting.
2078		 * We could use a GetInterface call, but if a device is
2079		 * so non-compliant that it doesn't have altsetting 0
2080		 * then I wouldn't trust its reply anyway.
2081		 */
2082		if (!alt)
2083			alt = &intf->altsetting[0];
2084
2085		ifnum = alt->desc.bInterfaceNumber;
2086		intf->intf_assoc = find_iad(dev, cp, ifnum);
2087		intf->cur_altsetting = alt;
2088		usb_enable_interface(dev, intf, true);
2089		intf->dev.parent = &dev->dev;
2090		if (usb_of_has_combined_node(dev)) {
2091			device_set_of_node_from_dev(&intf->dev, &dev->dev);
2092		} else {
2093			intf->dev.of_node = usb_of_get_interface_node(dev,
2094					configuration, ifnum);
2095		}
2096		ACPI_COMPANION_SET(&intf->dev, ACPI_COMPANION(&dev->dev));
2097		intf->dev.driver = NULL;
2098		intf->dev.bus = &usb_bus_type;
2099		intf->dev.type = &usb_if_device_type;
2100		intf->dev.groups = usb_interface_groups;
 
 
 
 
 
 
2101		INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
2102		intf->minor = -1;
2103		device_initialize(&intf->dev);
2104		pm_runtime_no_callbacks(&intf->dev);
2105		dev_set_name(&intf->dev, "%d-%s:%d.%d", dev->bus->busnum,
2106				dev->devpath, configuration, ifnum);
 
2107		usb_get_dev(dev);
2108	}
2109	kfree(new_interfaces);
2110
2111	ret = usb_control_msg_send(dev, 0, USB_REQ_SET_CONFIGURATION, 0,
2112				   configuration, 0, NULL, 0,
2113				   USB_CTRL_SET_TIMEOUT, GFP_NOIO);
2114	if (ret && cp) {
2115		/*
2116		 * All the old state is gone, so what else can we do?
2117		 * The device is probably useless now anyway.
2118		 */
2119		usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
2120		for (i = 0; i < nintf; ++i) {
2121			usb_disable_interface(dev, cp->interface[i], true);
2122			put_device(&cp->interface[i]->dev);
2123			cp->interface[i] = NULL;
2124		}
2125		cp = NULL;
2126	}
2127
2128	dev->actconfig = cp;
2129	mutex_unlock(hcd->bandwidth_mutex);
2130
2131	if (!cp) {
2132		usb_set_device_state(dev, USB_STATE_ADDRESS);
2133
2134		/* Leave LPM disabled while the device is unconfigured. */
2135		usb_autosuspend_device(dev);
2136		return ret;
2137	}
2138	usb_set_device_state(dev, USB_STATE_CONFIGURED);
2139
2140	if (cp->string == NULL &&
2141			!(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
2142		cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
2143
2144	/* Now that the interfaces are installed, re-enable LPM. */
2145	usb_unlocked_enable_lpm(dev);
2146	/* Enable LTM if it was turned off by usb_disable_device. */
2147	usb_enable_ltm(dev);
2148
2149	/* Now that all the interfaces are set up, register them
2150	 * to trigger binding of drivers to interfaces.  probe()
2151	 * routines may install different altsettings and may
2152	 * claim() any interfaces not yet bound.  Many class drivers
2153	 * need that: CDC, audio, video, etc.
2154	 */
2155	for (i = 0; i < nintf; ++i) {
2156		struct usb_interface *intf = cp->interface[i];
2157
2158		if (intf->dev.of_node &&
2159		    !of_device_is_available(intf->dev.of_node)) {
2160			dev_info(&dev->dev, "skipping disabled interface %d\n",
2161				 intf->cur_altsetting->desc.bInterfaceNumber);
2162			continue;
2163		}
2164
2165		dev_dbg(&dev->dev,
2166			"adding %s (config #%d, interface %d)\n",
2167			dev_name(&intf->dev), configuration,
2168			intf->cur_altsetting->desc.bInterfaceNumber);
2169		device_enable_async_suspend(&intf->dev);
2170		ret = device_add(&intf->dev);
2171		if (ret != 0) {
2172			dev_err(&dev->dev, "device_add(%s) --> %d\n",
2173				dev_name(&intf->dev), ret);
2174			continue;
2175		}
2176		create_intf_ep_devs(intf);
2177	}
2178
2179	usb_autosuspend_device(dev);
2180	return 0;
2181}
2182EXPORT_SYMBOL_GPL(usb_set_configuration);
2183
2184static LIST_HEAD(set_config_list);
2185static DEFINE_SPINLOCK(set_config_lock);
2186
2187struct set_config_request {
2188	struct usb_device	*udev;
2189	int			config;
2190	struct work_struct	work;
2191	struct list_head	node;
2192};
2193
2194/* Worker routine for usb_driver_set_configuration() */
2195static void driver_set_config_work(struct work_struct *work)
2196{
2197	struct set_config_request *req =
2198		container_of(work, struct set_config_request, work);
2199	struct usb_device *udev = req->udev;
2200
2201	usb_lock_device(udev);
2202	spin_lock(&set_config_lock);
2203	list_del(&req->node);
2204	spin_unlock(&set_config_lock);
2205
2206	if (req->config >= -1)		/* Is req still valid? */
2207		usb_set_configuration(udev, req->config);
2208	usb_unlock_device(udev);
2209	usb_put_dev(udev);
2210	kfree(req);
2211}
2212
2213/* Cancel pending Set-Config requests for a device whose configuration
2214 * was just changed
2215 */
2216static void cancel_async_set_config(struct usb_device *udev)
2217{
2218	struct set_config_request *req;
2219
2220	spin_lock(&set_config_lock);
2221	list_for_each_entry(req, &set_config_list, node) {
2222		if (req->udev == udev)
2223			req->config = -999;	/* Mark as cancelled */
2224	}
2225	spin_unlock(&set_config_lock);
2226}
2227
2228/**
2229 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2230 * @udev: the device whose configuration is being updated
2231 * @config: the configuration being chosen.
2232 * Context: In process context, must be able to sleep
2233 *
2234 * Device interface drivers are not allowed to change device configurations.
2235 * This is because changing configurations will destroy the interface the
2236 * driver is bound to and create new ones; it would be like a floppy-disk
2237 * driver telling the computer to replace the floppy-disk drive with a
2238 * tape drive!
2239 *
2240 * Still, in certain specialized circumstances the need may arise.  This
2241 * routine gets around the normal restrictions by using a work thread to
2242 * submit the change-config request.
2243 *
2244 * Return: 0 if the request was successfully queued, error code otherwise.
2245 * The caller has no way to know whether the queued request will eventually
2246 * succeed.
2247 */
2248int usb_driver_set_configuration(struct usb_device *udev, int config)
2249{
2250	struct set_config_request *req;
2251
2252	req = kmalloc(sizeof(*req), GFP_KERNEL);
2253	if (!req)
2254		return -ENOMEM;
2255	req->udev = udev;
2256	req->config = config;
2257	INIT_WORK(&req->work, driver_set_config_work);
2258
2259	spin_lock(&set_config_lock);
2260	list_add(&req->node, &set_config_list);
2261	spin_unlock(&set_config_lock);
2262
2263	usb_get_dev(udev);
2264	schedule_work(&req->work);
2265	return 0;
2266}
2267EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2268
2269/**
2270 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2271 * @hdr: the place to put the results of the parsing
2272 * @intf: the interface for which parsing is requested
2273 * @buffer: pointer to the extra headers to be parsed
2274 * @buflen: length of the extra headers
2275 *
2276 * This evaluates the extra headers present in CDC devices which
2277 * bind the interfaces for data and control and provide details
2278 * about the capabilities of the device.
2279 *
2280 * Return: number of descriptors parsed or -EINVAL
2281 * if the header is contradictory beyond salvage
2282 */
2283
2284int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2285				struct usb_interface *intf,
2286				u8 *buffer,
2287				int buflen)
2288{
2289	/* duplicates are ignored */
2290	struct usb_cdc_union_desc *union_header = NULL;
2291
2292	/* duplicates are not tolerated */
2293	struct usb_cdc_header_desc *header = NULL;
2294	struct usb_cdc_ether_desc *ether = NULL;
2295	struct usb_cdc_mdlm_detail_desc *detail = NULL;
2296	struct usb_cdc_mdlm_desc *desc = NULL;
2297
2298	unsigned int elength;
2299	int cnt = 0;
2300
2301	memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2302	hdr->phonet_magic_present = false;
2303	while (buflen > 0) {
2304		elength = buffer[0];
2305		if (!elength) {
2306			dev_err(&intf->dev, "skipping garbage byte\n");
2307			elength = 1;
2308			goto next_desc;
2309		}
2310		if ((buflen < elength) || (elength < 3)) {
2311			dev_err(&intf->dev, "invalid descriptor buffer length\n");
2312			break;
2313		}
2314		if (buffer[1] != USB_DT_CS_INTERFACE) {
2315			dev_err(&intf->dev, "skipping garbage\n");
2316			goto next_desc;
2317		}
2318
2319		switch (buffer[2]) {
2320		case USB_CDC_UNION_TYPE: /* we've found it */
2321			if (elength < sizeof(struct usb_cdc_union_desc))
2322				goto next_desc;
2323			if (union_header) {
2324				dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2325				goto next_desc;
2326			}
2327			union_header = (struct usb_cdc_union_desc *)buffer;
2328			break;
2329		case USB_CDC_COUNTRY_TYPE:
2330			if (elength < sizeof(struct usb_cdc_country_functional_desc))
2331				goto next_desc;
2332			hdr->usb_cdc_country_functional_desc =
2333				(struct usb_cdc_country_functional_desc *)buffer;
2334			break;
2335		case USB_CDC_HEADER_TYPE:
2336			if (elength != sizeof(struct usb_cdc_header_desc))
2337				goto next_desc;
2338			if (header)
2339				return -EINVAL;
2340			header = (struct usb_cdc_header_desc *)buffer;
2341			break;
2342		case USB_CDC_ACM_TYPE:
2343			if (elength < sizeof(struct usb_cdc_acm_descriptor))
2344				goto next_desc;
2345			hdr->usb_cdc_acm_descriptor =
2346				(struct usb_cdc_acm_descriptor *)buffer;
2347			break;
2348		case USB_CDC_ETHERNET_TYPE:
2349			if (elength != sizeof(struct usb_cdc_ether_desc))
2350				goto next_desc;
2351			if (ether)
2352				return -EINVAL;
2353			ether = (struct usb_cdc_ether_desc *)buffer;
2354			break;
2355		case USB_CDC_CALL_MANAGEMENT_TYPE:
2356			if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2357				goto next_desc;
2358			hdr->usb_cdc_call_mgmt_descriptor =
2359				(struct usb_cdc_call_mgmt_descriptor *)buffer;
2360			break;
2361		case USB_CDC_DMM_TYPE:
2362			if (elength < sizeof(struct usb_cdc_dmm_desc))
2363				goto next_desc;
2364			hdr->usb_cdc_dmm_desc =
2365				(struct usb_cdc_dmm_desc *)buffer;
2366			break;
2367		case USB_CDC_MDLM_TYPE:
2368			if (elength < sizeof(struct usb_cdc_mdlm_desc))
2369				goto next_desc;
2370			if (desc)
2371				return -EINVAL;
2372			desc = (struct usb_cdc_mdlm_desc *)buffer;
2373			break;
2374		case USB_CDC_MDLM_DETAIL_TYPE:
2375			if (elength < sizeof(struct usb_cdc_mdlm_detail_desc))
2376				goto next_desc;
2377			if (detail)
2378				return -EINVAL;
2379			detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2380			break;
2381		case USB_CDC_NCM_TYPE:
2382			if (elength < sizeof(struct usb_cdc_ncm_desc))
2383				goto next_desc;
2384			hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2385			break;
2386		case USB_CDC_MBIM_TYPE:
2387			if (elength < sizeof(struct usb_cdc_mbim_desc))
2388				goto next_desc;
2389
2390			hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2391			break;
2392		case USB_CDC_MBIM_EXTENDED_TYPE:
2393			if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2394				break;
2395			hdr->usb_cdc_mbim_extended_desc =
2396				(struct usb_cdc_mbim_extended_desc *)buffer;
2397			break;
2398		case CDC_PHONET_MAGIC_NUMBER:
2399			hdr->phonet_magic_present = true;
2400			break;
2401		default:
2402			/*
2403			 * there are LOTS more CDC descriptors that
2404			 * could legitimately be found here.
2405			 */
2406			dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2407					buffer[2], elength);
2408			goto next_desc;
2409		}
2410		cnt++;
2411next_desc:
2412		buflen -= elength;
2413		buffer += elength;
2414	}
2415	hdr->usb_cdc_union_desc = union_header;
2416	hdr->usb_cdc_header_desc = header;
2417	hdr->usb_cdc_mdlm_detail_desc = detail;
2418	hdr->usb_cdc_mdlm_desc = desc;
2419	hdr->usb_cdc_ether_desc = ether;
2420	return cnt;
2421}
2422
2423EXPORT_SYMBOL(cdc_parse_cdc_header);