Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.10.11.
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: Support for hardware virtualization extensions
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Yann Le Du <ledu@kymasys.com>
  10 */
  11
  12#include <linux/errno.h>
  13#include <linux/err.h>
  14#include <linux/module.h>
  15#include <linux/preempt.h>
  16#include <linux/vmalloc.h>
  17#include <asm/cacheflush.h>
  18#include <asm/cacheops.h>
  19#include <asm/cmpxchg.h>
  20#include <asm/fpu.h>
  21#include <asm/hazards.h>
  22#include <asm/inst.h>
  23#include <asm/mmu_context.h>
  24#include <asm/r4kcache.h>
  25#include <asm/time.h>
  26#include <asm/tlb.h>
  27#include <asm/tlbex.h>
  28
  29#include <linux/kvm_host.h>
  30
  31#include "interrupt.h"
  32#ifdef CONFIG_CPU_LOONGSON64
  33#include "loongson_regs.h"
  34#endif
  35
  36#include "trace.h"
  37
  38/* Pointers to last VCPU loaded on each physical CPU */
  39static struct kvm_vcpu *last_vcpu[NR_CPUS];
  40/* Pointers to last VCPU executed on each physical CPU */
  41static struct kvm_vcpu *last_exec_vcpu[NR_CPUS];
  42
  43/*
  44 * Number of guest VTLB entries to use, so we can catch inconsistency between
  45 * CPUs.
  46 */
  47static unsigned int kvm_vz_guest_vtlb_size;
  48
  49static inline long kvm_vz_read_gc0_ebase(void)
  50{
  51	if (sizeof(long) == 8 && cpu_has_ebase_wg)
  52		return read_gc0_ebase_64();
  53	else
  54		return read_gc0_ebase();
  55}
  56
  57static inline void kvm_vz_write_gc0_ebase(long v)
  58{
  59	/*
  60	 * First write with WG=1 to write upper bits, then write again in case
  61	 * WG should be left at 0.
  62	 * write_gc0_ebase_64() is no longer UNDEFINED since R6.
  63	 */
  64	if (sizeof(long) == 8 &&
  65	    (cpu_has_mips64r6 || cpu_has_ebase_wg)) {
  66		write_gc0_ebase_64(v | MIPS_EBASE_WG);
  67		write_gc0_ebase_64(v);
  68	} else {
  69		write_gc0_ebase(v | MIPS_EBASE_WG);
  70		write_gc0_ebase(v);
  71	}
  72}
  73
  74/*
  75 * These Config bits may be writable by the guest:
  76 * Config:	[K23, KU] (!TLB), K0
  77 * Config1:	(none)
  78 * Config2:	[TU, SU] (impl)
  79 * Config3:	ISAOnExc
  80 * Config4:	FTLBPageSize
  81 * Config5:	K, CV, MSAEn, UFE, FRE, SBRI, UFR
  82 */
  83
  84static inline unsigned int kvm_vz_config_guest_wrmask(struct kvm_vcpu *vcpu)
  85{
  86	return CONF_CM_CMASK;
  87}
  88
  89static inline unsigned int kvm_vz_config1_guest_wrmask(struct kvm_vcpu *vcpu)
  90{
  91	return 0;
  92}
  93
  94static inline unsigned int kvm_vz_config2_guest_wrmask(struct kvm_vcpu *vcpu)
  95{
  96	return 0;
  97}
  98
  99static inline unsigned int kvm_vz_config3_guest_wrmask(struct kvm_vcpu *vcpu)
 100{
 101	return MIPS_CONF3_ISA_OE;
 102}
 103
 104static inline unsigned int kvm_vz_config4_guest_wrmask(struct kvm_vcpu *vcpu)
 105{
 106	/* no need to be exact */
 107	return MIPS_CONF4_VFTLBPAGESIZE;
 108}
 109
 110static inline unsigned int kvm_vz_config5_guest_wrmask(struct kvm_vcpu *vcpu)
 111{
 112	unsigned int mask = MIPS_CONF5_K | MIPS_CONF5_CV | MIPS_CONF5_SBRI;
 113
 114	/* Permit MSAEn changes if MSA supported and enabled */
 115	if (kvm_mips_guest_has_msa(&vcpu->arch))
 116		mask |= MIPS_CONF5_MSAEN;
 117
 118	/*
 119	 * Permit guest FPU mode changes if FPU is enabled and the relevant
 120	 * feature exists according to FIR register.
 121	 */
 122	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
 123		if (cpu_has_ufr)
 124			mask |= MIPS_CONF5_UFR;
 125		if (cpu_has_fre)
 126			mask |= MIPS_CONF5_FRE | MIPS_CONF5_UFE;
 127	}
 128
 129	return mask;
 130}
 131
 132static inline unsigned int kvm_vz_config6_guest_wrmask(struct kvm_vcpu *vcpu)
 133{
 134	return LOONGSON_CONF6_INTIMER | LOONGSON_CONF6_EXTIMER;
 135}
 136
 137/*
 138 * VZ optionally allows these additional Config bits to be written by root:
 139 * Config:	M, [MT]
 140 * Config1:	M, [MMUSize-1, C2, MD, PC, WR, CA], FP
 141 * Config2:	M
 142 * Config3:	M, MSAP, [BPG], ULRI, [DSP2P, DSPP], CTXTC, [ITL, LPA, VEIC,
 143 *		VInt, SP, CDMM, MT, SM, TL]
 144 * Config4:	M, [VTLBSizeExt, MMUSizeExt]
 145 * Config5:	MRP
 146 */
 147
 148static inline unsigned int kvm_vz_config_user_wrmask(struct kvm_vcpu *vcpu)
 149{
 150	return kvm_vz_config_guest_wrmask(vcpu) | MIPS_CONF_M;
 151}
 152
 153static inline unsigned int kvm_vz_config1_user_wrmask(struct kvm_vcpu *vcpu)
 154{
 155	unsigned int mask = kvm_vz_config1_guest_wrmask(vcpu) | MIPS_CONF_M;
 156
 157	/* Permit FPU to be present if FPU is supported */
 158	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
 159		mask |= MIPS_CONF1_FP;
 160
 161	return mask;
 162}
 163
 164static inline unsigned int kvm_vz_config2_user_wrmask(struct kvm_vcpu *vcpu)
 165{
 166	return kvm_vz_config2_guest_wrmask(vcpu) | MIPS_CONF_M;
 167}
 168
 169static inline unsigned int kvm_vz_config3_user_wrmask(struct kvm_vcpu *vcpu)
 170{
 171	unsigned int mask = kvm_vz_config3_guest_wrmask(vcpu) | MIPS_CONF_M |
 172		MIPS_CONF3_ULRI | MIPS_CONF3_CTXTC;
 173
 174	/* Permit MSA to be present if MSA is supported */
 175	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 176		mask |= MIPS_CONF3_MSA;
 177
 178	return mask;
 179}
 180
 181static inline unsigned int kvm_vz_config4_user_wrmask(struct kvm_vcpu *vcpu)
 182{
 183	return kvm_vz_config4_guest_wrmask(vcpu) | MIPS_CONF_M;
 184}
 185
 186static inline unsigned int kvm_vz_config5_user_wrmask(struct kvm_vcpu *vcpu)
 187{
 188	return kvm_vz_config5_guest_wrmask(vcpu) | MIPS_CONF5_MRP;
 189}
 190
 191static inline unsigned int kvm_vz_config6_user_wrmask(struct kvm_vcpu *vcpu)
 192{
 193	return kvm_vz_config6_guest_wrmask(vcpu) |
 194		LOONGSON_CONF6_SFBEN | LOONGSON_CONF6_FTLBDIS;
 195}
 196
 197static gpa_t kvm_vz_gva_to_gpa_cb(gva_t gva)
 198{
 199	/* VZ guest has already converted gva to gpa */
 200	return gva;
 201}
 202
 203static void kvm_vz_queue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 204{
 205	set_bit(priority, &vcpu->arch.pending_exceptions);
 206	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 207}
 208
 209static void kvm_vz_dequeue_irq(struct kvm_vcpu *vcpu, unsigned int priority)
 210{
 211	clear_bit(priority, &vcpu->arch.pending_exceptions);
 212	set_bit(priority, &vcpu->arch.pending_exceptions_clr);
 213}
 214
 215static void kvm_vz_queue_timer_int_cb(struct kvm_vcpu *vcpu)
 216{
 217	/*
 218	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 219	 * cp0 accesses
 220	 */
 221	kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 222}
 223
 224static void kvm_vz_dequeue_timer_int_cb(struct kvm_vcpu *vcpu)
 225{
 226	/*
 227	 * timer expiry is asynchronous to vcpu execution therefore defer guest
 228	 * cp0 accesses
 229	 */
 230	kvm_vz_dequeue_irq(vcpu, MIPS_EXC_INT_TIMER);
 231}
 232
 233static void kvm_vz_queue_io_int_cb(struct kvm_vcpu *vcpu,
 234				   struct kvm_mips_interrupt *irq)
 235{
 236	int intr = (int)irq->irq;
 237
 238	/*
 239	 * interrupts are asynchronous to vcpu execution therefore defer guest
 240	 * cp0 accesses
 241	 */
 242	kvm_vz_queue_irq(vcpu, kvm_irq_to_priority(intr));
 243}
 244
 245static void kvm_vz_dequeue_io_int_cb(struct kvm_vcpu *vcpu,
 246				     struct kvm_mips_interrupt *irq)
 247{
 248	int intr = (int)irq->irq;
 249
 250	/*
 251	 * interrupts are asynchronous to vcpu execution therefore defer guest
 252	 * cp0 accesses
 253	 */
 254	kvm_vz_dequeue_irq(vcpu, kvm_irq_to_priority(-intr));
 255}
 256
 257static int kvm_vz_irq_deliver_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 258				 u32 cause)
 259{
 260	u32 irq = (priority < MIPS_EXC_MAX) ?
 261		kvm_priority_to_irq[priority] : 0;
 262
 263	switch (priority) {
 264	case MIPS_EXC_INT_TIMER:
 265		set_gc0_cause(C_TI);
 266		break;
 267
 268	case MIPS_EXC_INT_IO_1:
 269	case MIPS_EXC_INT_IO_2:
 270	case MIPS_EXC_INT_IPI_1:
 271	case MIPS_EXC_INT_IPI_2:
 272		if (cpu_has_guestctl2)
 273			set_c0_guestctl2(irq);
 274		else
 275			set_gc0_cause(irq);
 276		break;
 277
 278	default:
 279		break;
 280	}
 281
 282	clear_bit(priority, &vcpu->arch.pending_exceptions);
 283	return 1;
 284}
 285
 286static int kvm_vz_irq_clear_cb(struct kvm_vcpu *vcpu, unsigned int priority,
 287			       u32 cause)
 288{
 289	u32 irq = (priority < MIPS_EXC_MAX) ?
 290		kvm_priority_to_irq[priority] : 0;
 291
 292	switch (priority) {
 293	case MIPS_EXC_INT_TIMER:
 294		/*
 295		 * Explicitly clear irq associated with Cause.IP[IPTI]
 296		 * if GuestCtl2 virtual interrupt register not
 297		 * supported or if not using GuestCtl2 Hardware Clear.
 298		 */
 299		if (cpu_has_guestctl2) {
 300			if (!(read_c0_guestctl2() & (irq << 14)))
 301				clear_c0_guestctl2(irq);
 302		} else {
 303			clear_gc0_cause(irq);
 304		}
 305		break;
 306
 307	case MIPS_EXC_INT_IO_1:
 308	case MIPS_EXC_INT_IO_2:
 309	case MIPS_EXC_INT_IPI_1:
 310	case MIPS_EXC_INT_IPI_2:
 311		/* Clear GuestCtl2.VIP irq if not using Hardware Clear */
 312		if (cpu_has_guestctl2) {
 313			if (!(read_c0_guestctl2() & (irq << 14)))
 314				clear_c0_guestctl2(irq);
 315		} else {
 316			clear_gc0_cause(irq);
 317		}
 318		break;
 319
 320	default:
 321		break;
 322	}
 323
 324	clear_bit(priority, &vcpu->arch.pending_exceptions_clr);
 325	return 1;
 326}
 327
 328/*
 329 * VZ guest timer handling.
 330 */
 331
 332/**
 333 * kvm_vz_should_use_htimer() - Find whether to use the VZ hard guest timer.
 334 * @vcpu:	Virtual CPU.
 335 *
 336 * Returns:	true if the VZ GTOffset & real guest CP0_Count should be used
 337 *		instead of software emulation of guest timer.
 338 *		false otherwise.
 339 */
 340static bool kvm_vz_should_use_htimer(struct kvm_vcpu *vcpu)
 341{
 342	if (kvm_mips_count_disabled(vcpu))
 343		return false;
 344
 345	/* Chosen frequency must match real frequency */
 346	if (mips_hpt_frequency != vcpu->arch.count_hz)
 347		return false;
 348
 349	/* We don't support a CP0_GTOffset with fewer bits than CP0_Count */
 350	if (current_cpu_data.gtoffset_mask != 0xffffffff)
 351		return false;
 352
 353	return true;
 354}
 355
 356/**
 357 * _kvm_vz_restore_stimer() - Restore soft timer state.
 358 * @vcpu:	Virtual CPU.
 359 * @compare:	CP0_Compare register value, restored by caller.
 360 * @cause:	CP0_Cause register to restore.
 361 *
 362 * Restore VZ state relating to the soft timer. The hard timer can be enabled
 363 * later.
 364 */
 365static void _kvm_vz_restore_stimer(struct kvm_vcpu *vcpu, u32 compare,
 366				   u32 cause)
 367{
 368	/*
 369	 * Avoid spurious counter interrupts by setting Guest CP0_Count to just
 370	 * after Guest CP0_Compare.
 371	 */
 372	write_c0_gtoffset(compare - read_c0_count());
 373
 374	back_to_back_c0_hazard();
 375	write_gc0_cause(cause);
 376}
 377
 378/**
 379 * _kvm_vz_restore_htimer() - Restore hard timer state.
 380 * @vcpu:	Virtual CPU.
 381 * @compare:	CP0_Compare register value, restored by caller.
 382 * @cause:	CP0_Cause register to restore.
 383 *
 384 * Restore hard timer Guest.Count & Guest.Cause taking care to preserve the
 385 * value of Guest.CP0_Cause.TI while restoring Guest.CP0_Cause.
 386 */
 387static void _kvm_vz_restore_htimer(struct kvm_vcpu *vcpu,
 388				   u32 compare, u32 cause)
 389{
 390	u32 start_count, after_count;
 391	ktime_t freeze_time;
 392	unsigned long flags;
 393
 394	/*
 395	 * Freeze the soft-timer and sync the guest CP0_Count with it. We do
 396	 * this with interrupts disabled to avoid latency.
 397	 */
 398	local_irq_save(flags);
 399	freeze_time = kvm_mips_freeze_hrtimer(vcpu, &start_count);
 400	write_c0_gtoffset(start_count - read_c0_count());
 401	local_irq_restore(flags);
 402
 403	/* restore guest CP0_Cause, as TI may already be set */
 404	back_to_back_c0_hazard();
 405	write_gc0_cause(cause);
 406
 407	/*
 408	 * The above sequence isn't atomic and would result in lost timer
 409	 * interrupts if we're not careful. Detect if a timer interrupt is due
 410	 * and assert it.
 411	 */
 412	back_to_back_c0_hazard();
 413	after_count = read_gc0_count();
 414	if (after_count - start_count > compare - start_count - 1)
 415		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 416}
 417
 418/**
 419 * kvm_vz_restore_timer() - Restore timer state.
 420 * @vcpu:	Virtual CPU.
 421 *
 422 * Restore soft timer state from saved context.
 423 */
 424static void kvm_vz_restore_timer(struct kvm_vcpu *vcpu)
 425{
 426	struct mips_coproc *cop0 = vcpu->arch.cop0;
 427	u32 cause, compare;
 428
 429	compare = kvm_read_sw_gc0_compare(cop0);
 430	cause = kvm_read_sw_gc0_cause(cop0);
 431
 432	write_gc0_compare(compare);
 433	_kvm_vz_restore_stimer(vcpu, compare, cause);
 434}
 435
 436/**
 437 * kvm_vz_acquire_htimer() - Switch to hard timer state.
 438 * @vcpu:	Virtual CPU.
 439 *
 440 * Restore hard timer state on top of existing soft timer state if possible.
 441 *
 442 * Since hard timer won't remain active over preemption, preemption should be
 443 * disabled by the caller.
 444 */
 445void kvm_vz_acquire_htimer(struct kvm_vcpu *vcpu)
 446{
 447	u32 gctl0;
 448
 449	gctl0 = read_c0_guestctl0();
 450	if (!(gctl0 & MIPS_GCTL0_GT) && kvm_vz_should_use_htimer(vcpu)) {
 451		/* enable guest access to hard timer */
 452		write_c0_guestctl0(gctl0 | MIPS_GCTL0_GT);
 453
 454		_kvm_vz_restore_htimer(vcpu, read_gc0_compare(),
 455				       read_gc0_cause());
 456	}
 457}
 458
 459/**
 460 * _kvm_vz_save_htimer() - Switch to software emulation of guest timer.
 461 * @vcpu:	Virtual CPU.
 462 * @compare:	Pointer to write compare value to.
 463 * @cause:	Pointer to write cause value to.
 464 *
 465 * Save VZ guest timer state and switch to software emulation of guest CP0
 466 * timer. The hard timer must already be in use, so preemption should be
 467 * disabled.
 468 */
 469static void _kvm_vz_save_htimer(struct kvm_vcpu *vcpu,
 470				u32 *out_compare, u32 *out_cause)
 471{
 472	u32 cause, compare, before_count, end_count;
 473	ktime_t before_time;
 474
 475	compare = read_gc0_compare();
 476	*out_compare = compare;
 477
 478	before_time = ktime_get();
 479
 480	/*
 481	 * Record the CP0_Count *prior* to saving CP0_Cause, so we have a time
 482	 * at which no pending timer interrupt is missing.
 483	 */
 484	before_count = read_gc0_count();
 485	back_to_back_c0_hazard();
 486	cause = read_gc0_cause();
 487	*out_cause = cause;
 488
 489	/*
 490	 * Record a final CP0_Count which we will transfer to the soft-timer.
 491	 * This is recorded *after* saving CP0_Cause, so we don't get any timer
 492	 * interrupts from just after the final CP0_Count point.
 493	 */
 494	back_to_back_c0_hazard();
 495	end_count = read_gc0_count();
 496
 497	/*
 498	 * The above sequence isn't atomic, so we could miss a timer interrupt
 499	 * between reading CP0_Cause and end_count. Detect and record any timer
 500	 * interrupt due between before_count and end_count.
 501	 */
 502	if (end_count - before_count > compare - before_count - 1)
 503		kvm_vz_queue_irq(vcpu, MIPS_EXC_INT_TIMER);
 504
 505	/*
 506	 * Restore soft-timer, ignoring a small amount of negative drift due to
 507	 * delay between freeze_hrtimer and setting CP0_GTOffset.
 508	 */
 509	kvm_mips_restore_hrtimer(vcpu, before_time, end_count, -0x10000);
 510}
 511
 512/**
 513 * kvm_vz_save_timer() - Save guest timer state.
 514 * @vcpu:	Virtual CPU.
 515 *
 516 * Save VZ guest timer state and switch to soft guest timer if hard timer was in
 517 * use.
 518 */
 519static void kvm_vz_save_timer(struct kvm_vcpu *vcpu)
 520{
 521	struct mips_coproc *cop0 = vcpu->arch.cop0;
 522	u32 gctl0, compare, cause;
 523
 524	gctl0 = read_c0_guestctl0();
 525	if (gctl0 & MIPS_GCTL0_GT) {
 526		/* disable guest use of hard timer */
 527		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 528
 529		/* save hard timer state */
 530		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 531	} else {
 532		compare = read_gc0_compare();
 533		cause = read_gc0_cause();
 534	}
 535
 536	/* save timer-related state to VCPU context */
 537	kvm_write_sw_gc0_cause(cop0, cause);
 538	kvm_write_sw_gc0_compare(cop0, compare);
 539}
 540
 541/**
 542 * kvm_vz_lose_htimer() - Ensure hard guest timer is not in use.
 543 * @vcpu:	Virtual CPU.
 544 *
 545 * Transfers the state of the hard guest timer to the soft guest timer, leaving
 546 * guest state intact so it can continue to be used with the soft timer.
 547 */
 548void kvm_vz_lose_htimer(struct kvm_vcpu *vcpu)
 549{
 550	u32 gctl0, compare, cause;
 551
 552	preempt_disable();
 553	gctl0 = read_c0_guestctl0();
 554	if (gctl0 & MIPS_GCTL0_GT) {
 555		/* disable guest use of timer */
 556		write_c0_guestctl0(gctl0 & ~MIPS_GCTL0_GT);
 557
 558		/* switch to soft timer */
 559		_kvm_vz_save_htimer(vcpu, &compare, &cause);
 560
 561		/* leave soft timer in usable state */
 562		_kvm_vz_restore_stimer(vcpu, compare, cause);
 563	}
 564	preempt_enable();
 565}
 566
 567/**
 568 * is_eva_access() - Find whether an instruction is an EVA memory accessor.
 569 * @inst:	32-bit instruction encoding.
 570 *
 571 * Finds whether @inst encodes an EVA memory access instruction, which would
 572 * indicate that emulation of it should access the user mode address space
 573 * instead of the kernel mode address space. This matters for MUSUK segments
 574 * which are TLB mapped for user mode but unmapped for kernel mode.
 575 *
 576 * Returns:	Whether @inst encodes an EVA accessor instruction.
 577 */
 578static bool is_eva_access(union mips_instruction inst)
 579{
 580	if (inst.spec3_format.opcode != spec3_op)
 581		return false;
 582
 583	switch (inst.spec3_format.func) {
 584	case lwle_op:
 585	case lwre_op:
 586	case cachee_op:
 587	case sbe_op:
 588	case she_op:
 589	case sce_op:
 590	case swe_op:
 591	case swle_op:
 592	case swre_op:
 593	case prefe_op:
 594	case lbue_op:
 595	case lhue_op:
 596	case lbe_op:
 597	case lhe_op:
 598	case lle_op:
 599	case lwe_op:
 600		return true;
 601	default:
 602		return false;
 603	}
 604}
 605
 606/**
 607 * is_eva_am_mapped() - Find whether an access mode is mapped.
 608 * @vcpu:	KVM VCPU state.
 609 * @am:		3-bit encoded access mode.
 610 * @eu:		Segment becomes unmapped and uncached when Status.ERL=1.
 611 *
 612 * Decode @am to find whether it encodes a mapped segment for the current VCPU
 613 * state. Where necessary @eu and the actual instruction causing the fault are
 614 * taken into account to make the decision.
 615 *
 616 * Returns:	Whether the VCPU faulted on a TLB mapped address.
 617 */
 618static bool is_eva_am_mapped(struct kvm_vcpu *vcpu, unsigned int am, bool eu)
 619{
 620	u32 am_lookup;
 621	int err;
 622
 623	/*
 624	 * Interpret access control mode. We assume address errors will already
 625	 * have been caught by the guest, leaving us with:
 626	 *      AM      UM  SM  KM  31..24 23..16
 627	 * UK    0 000          Unm   0      0
 628	 * MK    1 001          TLB   1
 629	 * MSK   2 010      TLB TLB   1
 630	 * MUSK  3 011  TLB TLB TLB   1
 631	 * MUSUK 4 100  TLB TLB Unm   0      1
 632	 * USK   5 101      Unm Unm   0      0
 633	 * -     6 110                0      0
 634	 * UUSK  7 111  Unm Unm Unm   0      0
 635	 *
 636	 * We shift a magic value by AM across the sign bit to find if always
 637	 * TLB mapped, and if not shift by 8 again to find if it depends on KM.
 638	 */
 639	am_lookup = 0x70080000 << am;
 640	if ((s32)am_lookup < 0) {
 641		/*
 642		 * MK, MSK, MUSK
 643		 * Always TLB mapped, unless SegCtl.EU && ERL
 644		 */
 645		if (!eu || !(read_gc0_status() & ST0_ERL))
 646			return true;
 647	} else {
 648		am_lookup <<= 8;
 649		if ((s32)am_lookup < 0) {
 650			union mips_instruction inst;
 651			unsigned int status;
 652			u32 *opc;
 653
 654			/*
 655			 * MUSUK
 656			 * TLB mapped if not in kernel mode
 657			 */
 658			status = read_gc0_status();
 659			if (!(status & (ST0_EXL | ST0_ERL)) &&
 660			    (status & ST0_KSU))
 661				return true;
 662			/*
 663			 * EVA access instructions in kernel
 664			 * mode access user address space.
 665			 */
 666			opc = (u32 *)vcpu->arch.pc;
 667			if (vcpu->arch.host_cp0_cause & CAUSEF_BD)
 668				opc += 1;
 669			err = kvm_get_badinstr(opc, vcpu, &inst.word);
 670			if (!err && is_eva_access(inst))
 671				return true;
 672		}
 673	}
 674
 675	return false;
 676}
 677
 678/**
 679 * kvm_vz_gva_to_gpa() - Convert valid GVA to GPA.
 680 * @vcpu:	KVM VCPU state.
 681 * @gva:	Guest virtual address to convert.
 682 * @gpa:	Output guest physical address.
 683 *
 684 * Convert a guest virtual address (GVA) which is valid according to the guest
 685 * context, to a guest physical address (GPA).
 686 *
 687 * Returns:	0 on success.
 688 *		-errno on failure.
 689 */
 690static int kvm_vz_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
 691			     unsigned long *gpa)
 692{
 693	u32 gva32 = gva;
 694	unsigned long segctl;
 695
 696	if ((long)gva == (s32)gva32) {
 697		/* Handle canonical 32-bit virtual address */
 698		if (cpu_guest_has_segments) {
 699			unsigned long mask, pa;
 700
 701			switch (gva32 >> 29) {
 702			case 0:
 703			case 1: /* CFG5 (1GB) */
 704				segctl = read_gc0_segctl2() >> 16;
 705				mask = (unsigned long)0xfc0000000ull;
 706				break;
 707			case 2:
 708			case 3: /* CFG4 (1GB) */
 709				segctl = read_gc0_segctl2();
 710				mask = (unsigned long)0xfc0000000ull;
 711				break;
 712			case 4: /* CFG3 (512MB) */
 713				segctl = read_gc0_segctl1() >> 16;
 714				mask = (unsigned long)0xfe0000000ull;
 715				break;
 716			case 5: /* CFG2 (512MB) */
 717				segctl = read_gc0_segctl1();
 718				mask = (unsigned long)0xfe0000000ull;
 719				break;
 720			case 6: /* CFG1 (512MB) */
 721				segctl = read_gc0_segctl0() >> 16;
 722				mask = (unsigned long)0xfe0000000ull;
 723				break;
 724			case 7: /* CFG0 (512MB) */
 725				segctl = read_gc0_segctl0();
 726				mask = (unsigned long)0xfe0000000ull;
 727				break;
 728			default:
 729				/*
 730				 * GCC 4.9 isn't smart enough to figure out that
 731				 * segctl and mask are always initialised.
 732				 */
 733				unreachable();
 734			}
 735
 736			if (is_eva_am_mapped(vcpu, (segctl >> 4) & 0x7,
 737					     segctl & 0x0008))
 738				goto tlb_mapped;
 739
 740			/* Unmapped, find guest physical address */
 741			pa = (segctl << 20) & mask;
 742			pa |= gva32 & ~mask;
 743			*gpa = pa;
 744			return 0;
 745		} else if ((s32)gva32 < (s32)0xc0000000) {
 746			/* legacy unmapped KSeg0 or KSeg1 */
 747			*gpa = gva32 & 0x1fffffff;
 748			return 0;
 749		}
 750#ifdef CONFIG_64BIT
 751	} else if ((gva & 0xc000000000000000) == 0x8000000000000000) {
 752		/* XKPHYS */
 753		if (cpu_guest_has_segments) {
 754			/*
 755			 * Each of the 8 regions can be overridden by SegCtl2.XR
 756			 * to use SegCtl1.XAM.
 757			 */
 758			segctl = read_gc0_segctl2();
 759			if (segctl & (1ull << (56 + ((gva >> 59) & 0x7)))) {
 760				segctl = read_gc0_segctl1();
 761				if (is_eva_am_mapped(vcpu, (segctl >> 59) & 0x7,
 762						     0))
 763					goto tlb_mapped;
 764			}
 765
 766		}
 767		/*
 768		 * Traditionally fully unmapped.
 769		 * Bits 61:59 specify the CCA, which we can just mask off here.
 770		 * Bits 58:PABITS should be zero, but we shouldn't have got here
 771		 * if it wasn't.
 772		 */
 773		*gpa = gva & 0x07ffffffffffffff;
 774		return 0;
 775#endif
 776	}
 777
 778tlb_mapped:
 779	return kvm_vz_guest_tlb_lookup(vcpu, gva, gpa);
 780}
 781
 782/**
 783 * kvm_vz_badvaddr_to_gpa() - Convert GVA BadVAddr from root exception to GPA.
 784 * @vcpu:	KVM VCPU state.
 785 * @badvaddr:	Root BadVAddr.
 786 * @gpa:	Output guest physical address.
 787 *
 788 * VZ implementations are permitted to report guest virtual addresses (GVA) in
 789 * BadVAddr on a root exception during guest execution, instead of the more
 790 * convenient guest physical addresses (GPA). When we get a GVA, this function
 791 * converts it to a GPA, taking into account guest segmentation and guest TLB
 792 * state.
 793 *
 794 * Returns:	0 on success.
 795 *		-errno on failure.
 796 */
 797static int kvm_vz_badvaddr_to_gpa(struct kvm_vcpu *vcpu, unsigned long badvaddr,
 798				  unsigned long *gpa)
 799{
 800	unsigned int gexccode = (vcpu->arch.host_cp0_guestctl0 &
 801				 MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
 802
 803	/* If BadVAddr is GPA, then all is well in the world */
 804	if (likely(gexccode == MIPS_GCTL0_GEXC_GPA)) {
 805		*gpa = badvaddr;
 806		return 0;
 807	}
 808
 809	/* Otherwise we'd expect it to be GVA ... */
 810	if (WARN(gexccode != MIPS_GCTL0_GEXC_GVA,
 811		 "Unexpected gexccode %#x\n", gexccode))
 812		return -EINVAL;
 813
 814	/* ... and we need to perform the GVA->GPA translation in software */
 815	return kvm_vz_gva_to_gpa(vcpu, badvaddr, gpa);
 816}
 817
 818static int kvm_trap_vz_no_handler(struct kvm_vcpu *vcpu)
 819{
 820	u32 *opc = (u32 *) vcpu->arch.pc;
 821	u32 cause = vcpu->arch.host_cp0_cause;
 822	u32 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 823	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
 824	u32 inst = 0;
 825
 826	/*
 827	 *  Fetch the instruction.
 828	 */
 829	if (cause & CAUSEF_BD)
 830		opc += 1;
 831	kvm_get_badinstr(opc, vcpu, &inst);
 832
 833	kvm_err("Exception Code: %d not handled @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#x\n",
 834		exccode, opc, inst, badvaddr,
 835		read_gc0_status());
 836	kvm_arch_vcpu_dump_regs(vcpu);
 837	vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 838	return RESUME_HOST;
 839}
 840
 841static unsigned long mips_process_maar(unsigned int op, unsigned long val)
 842{
 843	/* Mask off unused bits */
 844	unsigned long mask = 0xfffff000 | MIPS_MAAR_S | MIPS_MAAR_VL;
 845
 846	if (read_gc0_pagegrain() & PG_ELPA)
 847		mask |= 0x00ffffff00000000ull;
 848	if (cpu_guest_has_mvh)
 849		mask |= MIPS_MAAR_VH;
 850
 851	/* Set or clear VH */
 852	if (op == mtc_op) {
 853		/* clear VH */
 854		val &= ~MIPS_MAAR_VH;
 855	} else if (op == dmtc_op) {
 856		/* set VH to match VL */
 857		val &= ~MIPS_MAAR_VH;
 858		if (val & MIPS_MAAR_VL)
 859			val |= MIPS_MAAR_VH;
 860	}
 861
 862	return val & mask;
 863}
 864
 865static void kvm_write_maari(struct kvm_vcpu *vcpu, unsigned long val)
 866{
 867	struct mips_coproc *cop0 = vcpu->arch.cop0;
 868
 869	val &= MIPS_MAARI_INDEX;
 870	if (val == MIPS_MAARI_INDEX)
 871		kvm_write_sw_gc0_maari(cop0, ARRAY_SIZE(vcpu->arch.maar) - 1);
 872	else if (val < ARRAY_SIZE(vcpu->arch.maar))
 873		kvm_write_sw_gc0_maari(cop0, val);
 874}
 875
 876static enum emulation_result kvm_vz_gpsi_cop0(union mips_instruction inst,
 877					      u32 *opc, u32 cause,
 878					      struct kvm_vcpu *vcpu)
 879{
 880	struct mips_coproc *cop0 = vcpu->arch.cop0;
 881	enum emulation_result er = EMULATE_DONE;
 882	u32 rt, rd, sel;
 883	unsigned long curr_pc;
 884	unsigned long val;
 885
 886	/*
 887	 * Update PC and hold onto current PC in case there is
 888	 * an error and we want to rollback the PC
 889	 */
 890	curr_pc = vcpu->arch.pc;
 891	er = update_pc(vcpu, cause);
 892	if (er == EMULATE_FAIL)
 893		return er;
 894
 895	if (inst.co_format.co) {
 896		switch (inst.co_format.func) {
 897		case wait_op:
 898			er = kvm_mips_emul_wait(vcpu);
 899			break;
 900		default:
 901			er = EMULATE_FAIL;
 902		}
 903	} else {
 904		rt = inst.c0r_format.rt;
 905		rd = inst.c0r_format.rd;
 906		sel = inst.c0r_format.sel;
 907
 908		switch (inst.c0r_format.rs) {
 909		case dmfc_op:
 910		case mfc_op:
 911#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 912			cop0->stat[rd][sel]++;
 913#endif
 914			if (rd == MIPS_CP0_COUNT &&
 915			    sel == 0) {			/* Count */
 916				val = kvm_mips_read_count(vcpu);
 917			} else if (rd == MIPS_CP0_COMPARE &&
 918				   sel == 0) {		/* Compare */
 919				val = read_gc0_compare();
 920			} else if (rd == MIPS_CP0_LLADDR &&
 921				   sel == 0) {		/* LLAddr */
 922				if (cpu_guest_has_rw_llb)
 923					val = read_gc0_lladdr() &
 924						MIPS_LLADDR_LLB;
 925				else
 926					val = 0;
 927			} else if (rd == MIPS_CP0_LLADDR &&
 928				   sel == 1 &&		/* MAAR */
 929				   cpu_guest_has_maar &&
 930				   !cpu_guest_has_dyn_maar) {
 931				/* MAARI must be in range */
 932				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
 933						ARRAY_SIZE(vcpu->arch.maar));
 934				val = vcpu->arch.maar[
 935					kvm_read_sw_gc0_maari(cop0)];
 936			} else if ((rd == MIPS_CP0_PRID &&
 937				    (sel == 0 ||	/* PRid */
 938				     sel == 2 ||	/* CDMMBase */
 939				     sel == 3)) ||	/* CMGCRBase */
 940				   (rd == MIPS_CP0_STATUS &&
 941				    (sel == 2 ||	/* SRSCtl */
 942				     sel == 3)) ||	/* SRSMap */
 943				   (rd == MIPS_CP0_CONFIG &&
 944				    (sel == 6 ||	/* Config6 */
 945				     sel == 7)) ||	/* Config7 */
 946				   (rd == MIPS_CP0_LLADDR &&
 947				    (sel == 2) &&	/* MAARI */
 948				    cpu_guest_has_maar &&
 949				    !cpu_guest_has_dyn_maar) ||
 950				   (rd == MIPS_CP0_ERRCTL &&
 951				    (sel == 0))) {	/* ErrCtl */
 952				val = cop0->reg[rd][sel];
 953#ifdef CONFIG_CPU_LOONGSON64
 954			} else if (rd == MIPS_CP0_DIAG &&
 955				   (sel == 0)) {	/* Diag */
 956				val = cop0->reg[rd][sel];
 957#endif
 958			} else {
 959				val = 0;
 960				er = EMULATE_FAIL;
 961			}
 962
 963			if (er != EMULATE_FAIL) {
 964				/* Sign extend */
 965				if (inst.c0r_format.rs == mfc_op)
 966					val = (int)val;
 967				vcpu->arch.gprs[rt] = val;
 968			}
 969
 970			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mfc_op) ?
 971					KVM_TRACE_MFC0 : KVM_TRACE_DMFC0,
 972				      KVM_TRACE_COP0(rd, sel), val);
 973			break;
 974
 975		case dmtc_op:
 976		case mtc_op:
 977#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
 978			cop0->stat[rd][sel]++;
 979#endif
 980			val = vcpu->arch.gprs[rt];
 981			trace_kvm_hwr(vcpu, (inst.c0r_format.rs == mtc_op) ?
 982					KVM_TRACE_MTC0 : KVM_TRACE_DMTC0,
 983				      KVM_TRACE_COP0(rd, sel), val);
 984
 985			if (rd == MIPS_CP0_COUNT &&
 986			    sel == 0) {			/* Count */
 987				kvm_vz_lose_htimer(vcpu);
 988				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
 989			} else if (rd == MIPS_CP0_COMPARE &&
 990				   sel == 0) {		/* Compare */
 991				kvm_mips_write_compare(vcpu,
 992						       vcpu->arch.gprs[rt],
 993						       true);
 994			} else if (rd == MIPS_CP0_LLADDR &&
 995				   sel == 0) {		/* LLAddr */
 996				/*
 997				 * P5600 generates GPSI on guest MTC0 LLAddr.
 998				 * Only allow the guest to clear LLB.
 999				 */
1000				if (cpu_guest_has_rw_llb &&
1001				    !(val & MIPS_LLADDR_LLB))
1002					write_gc0_lladdr(0);
1003			} else if (rd == MIPS_CP0_LLADDR &&
1004				   sel == 1 &&		/* MAAR */
1005				   cpu_guest_has_maar &&
1006				   !cpu_guest_has_dyn_maar) {
1007				val = mips_process_maar(inst.c0r_format.rs,
1008							val);
1009
1010				/* MAARI must be in range */
1011				BUG_ON(kvm_read_sw_gc0_maari(cop0) >=
1012						ARRAY_SIZE(vcpu->arch.maar));
1013				vcpu->arch.maar[kvm_read_sw_gc0_maari(cop0)] =
1014									val;
1015			} else if (rd == MIPS_CP0_LLADDR &&
1016				   (sel == 2) &&	/* MAARI */
1017				   cpu_guest_has_maar &&
1018				   !cpu_guest_has_dyn_maar) {
1019				kvm_write_maari(vcpu, val);
1020			} else if (rd == MIPS_CP0_CONFIG &&
1021				   (sel == 6)) {
1022				cop0->reg[rd][sel] = (int)val;
1023			} else if (rd == MIPS_CP0_ERRCTL &&
1024				   (sel == 0)) {	/* ErrCtl */
1025				/* ignore the written value */
1026#ifdef CONFIG_CPU_LOONGSON64
1027			} else if (rd == MIPS_CP0_DIAG &&
1028				   (sel == 0)) {	/* Diag */
1029				unsigned long flags;
1030
1031				local_irq_save(flags);
1032				if (val & LOONGSON_DIAG_BTB) {
1033					/* Flush BTB */
1034					set_c0_diag(LOONGSON_DIAG_BTB);
1035				}
1036				if (val & LOONGSON_DIAG_ITLB) {
1037					/* Flush ITLB */
1038					set_c0_diag(LOONGSON_DIAG_ITLB);
1039				}
1040				if (val & LOONGSON_DIAG_DTLB) {
1041					/* Flush DTLB */
1042					set_c0_diag(LOONGSON_DIAG_DTLB);
1043				}
1044				if (val & LOONGSON_DIAG_VTLB) {
1045					/* Flush VTLB */
1046					kvm_loongson_clear_guest_vtlb();
1047				}
1048				if (val & LOONGSON_DIAG_FTLB) {
1049					/* Flush FTLB */
1050					kvm_loongson_clear_guest_ftlb();
1051				}
1052				local_irq_restore(flags);
1053#endif
1054			} else {
1055				er = EMULATE_FAIL;
1056			}
1057			break;
1058
1059		default:
1060			er = EMULATE_FAIL;
1061			break;
1062		}
1063	}
1064	/* Rollback PC only if emulation was unsuccessful */
1065	if (er == EMULATE_FAIL) {
1066		kvm_err("[%#lx]%s: unsupported cop0 instruction 0x%08x\n",
1067			curr_pc, __func__, inst.word);
1068
1069		vcpu->arch.pc = curr_pc;
1070	}
1071
1072	return er;
1073}
1074
1075static enum emulation_result kvm_vz_gpsi_cache(union mips_instruction inst,
1076					       u32 *opc, u32 cause,
1077					       struct kvm_vcpu *vcpu)
1078{
1079	enum emulation_result er = EMULATE_DONE;
1080	u32 cache, op_inst, op, base;
1081	s16 offset;
1082	struct kvm_vcpu_arch *arch = &vcpu->arch;
1083	unsigned long va, curr_pc;
1084
1085	/*
1086	 * Update PC and hold onto current PC in case there is
1087	 * an error and we want to rollback the PC
1088	 */
1089	curr_pc = vcpu->arch.pc;
1090	er = update_pc(vcpu, cause);
1091	if (er == EMULATE_FAIL)
1092		return er;
1093
1094	base = inst.i_format.rs;
1095	op_inst = inst.i_format.rt;
1096	if (cpu_has_mips_r6)
1097		offset = inst.spec3_format.simmediate;
1098	else
1099		offset = inst.i_format.simmediate;
1100	cache = op_inst & CacheOp_Cache;
1101	op = op_inst & CacheOp_Op;
1102
1103	va = arch->gprs[base] + offset;
1104
1105	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1106		  cache, op, base, arch->gprs[base], offset);
1107
1108	/* Secondary or tirtiary cache ops ignored */
1109	if (cache != Cache_I && cache != Cache_D)
1110		return EMULATE_DONE;
1111
1112	switch (op_inst) {
1113	case Index_Invalidate_I:
1114		flush_icache_line_indexed(va);
1115		return EMULATE_DONE;
1116	case Index_Writeback_Inv_D:
1117		flush_dcache_line_indexed(va);
1118		return EMULATE_DONE;
1119	case Hit_Invalidate_I:
1120	case Hit_Invalidate_D:
1121	case Hit_Writeback_Inv_D:
1122		if (boot_cpu_type() == CPU_CAVIUM_OCTEON3) {
1123			/* We can just flush entire icache */
1124			local_flush_icache_range(0, 0);
1125			return EMULATE_DONE;
1126		}
1127
1128		/* So far, other platforms support guest hit cache ops */
1129		break;
1130	default:
1131		break;
1132	}
1133
1134	kvm_err("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
1135		curr_pc, vcpu->arch.gprs[31], cache, op, base, arch->gprs[base],
1136		offset);
1137	/* Rollback PC */
1138	vcpu->arch.pc = curr_pc;
1139
1140	return EMULATE_FAIL;
1141}
1142
1143#ifdef CONFIG_CPU_LOONGSON64
1144static enum emulation_result kvm_vz_gpsi_lwc2(union mips_instruction inst,
1145					      u32 *opc, u32 cause,
1146					      struct kvm_vcpu *vcpu)
1147{
1148	unsigned int rs, rd;
1149	unsigned int hostcfg;
1150	unsigned long curr_pc;
1151	enum emulation_result er = EMULATE_DONE;
1152
1153	/*
1154	 * Update PC and hold onto current PC in case there is
1155	 * an error and we want to rollback the PC
1156	 */
1157	curr_pc = vcpu->arch.pc;
1158	er = update_pc(vcpu, cause);
1159	if (er == EMULATE_FAIL)
1160		return er;
1161
1162	rs = inst.loongson3_lscsr_format.rs;
1163	rd = inst.loongson3_lscsr_format.rd;
1164	switch (inst.loongson3_lscsr_format.fr) {
1165	case 0x8:  /* Read CPUCFG */
1166		++vcpu->stat.vz_cpucfg_exits;
1167		hostcfg = read_cpucfg(vcpu->arch.gprs[rs]);
1168
1169		switch (vcpu->arch.gprs[rs]) {
1170		case LOONGSON_CFG0:
1171			vcpu->arch.gprs[rd] = 0x14c000;
1172			break;
1173		case LOONGSON_CFG1:
1174			hostcfg &= (LOONGSON_CFG1_FP | LOONGSON_CFG1_MMI |
1175				    LOONGSON_CFG1_MSA1 | LOONGSON_CFG1_MSA2 |
1176				    LOONGSON_CFG1_SFBP);
1177			vcpu->arch.gprs[rd] = hostcfg;
1178			break;
1179		case LOONGSON_CFG2:
1180			hostcfg &= (LOONGSON_CFG2_LEXT1 | LOONGSON_CFG2_LEXT2 |
1181				    LOONGSON_CFG2_LEXT3 | LOONGSON_CFG2_LSPW);
1182			vcpu->arch.gprs[rd] = hostcfg;
1183			break;
1184		case LOONGSON_CFG3:
1185			vcpu->arch.gprs[rd] = hostcfg;
1186			break;
1187		default:
1188			/* Don't export any other advanced features to guest */
1189			vcpu->arch.gprs[rd] = 0;
1190			break;
1191		}
1192		break;
1193
1194	default:
1195		kvm_err("lwc2 emulate not impl %d rs %lx @%lx\n",
1196			inst.loongson3_lscsr_format.fr, vcpu->arch.gprs[rs], curr_pc);
1197		er = EMULATE_FAIL;
1198		break;
1199	}
1200
1201	/* Rollback PC only if emulation was unsuccessful */
1202	if (er == EMULATE_FAIL) {
1203		kvm_err("[%#lx]%s: unsupported lwc2 instruction 0x%08x 0x%08x\n",
1204			curr_pc, __func__, inst.word, inst.loongson3_lscsr_format.fr);
1205
1206		vcpu->arch.pc = curr_pc;
1207	}
1208
1209	return er;
1210}
1211#endif
1212
1213static enum emulation_result kvm_trap_vz_handle_gpsi(u32 cause, u32 *opc,
1214						     struct kvm_vcpu *vcpu)
1215{
1216	enum emulation_result er = EMULATE_DONE;
1217	struct kvm_vcpu_arch *arch = &vcpu->arch;
1218	union mips_instruction inst;
1219	int rd, rt, sel;
1220	int err;
1221
1222	/*
1223	 *  Fetch the instruction.
1224	 */
1225	if (cause & CAUSEF_BD)
1226		opc += 1;
1227	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1228	if (err)
1229		return EMULATE_FAIL;
1230
1231	switch (inst.r_format.opcode) {
1232	case cop0_op:
1233		er = kvm_vz_gpsi_cop0(inst, opc, cause, vcpu);
1234		break;
1235#ifndef CONFIG_CPU_MIPSR6
1236	case cache_op:
1237		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1238		er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1239		break;
1240#endif
1241#ifdef CONFIG_CPU_LOONGSON64
1242	case lwc2_op:
1243		er = kvm_vz_gpsi_lwc2(inst, opc, cause, vcpu);
1244		break;
1245#endif
1246	case spec3_op:
1247		switch (inst.spec3_format.func) {
1248#ifdef CONFIG_CPU_MIPSR6
1249		case cache6_op:
1250			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
1251			er = kvm_vz_gpsi_cache(inst, opc, cause, vcpu);
1252			break;
1253#endif
1254		case rdhwr_op:
1255			if (inst.r_format.rs || (inst.r_format.re >> 3))
1256				goto unknown;
1257
1258			rd = inst.r_format.rd;
1259			rt = inst.r_format.rt;
1260			sel = inst.r_format.re & 0x7;
1261
1262			switch (rd) {
1263			case MIPS_HWR_CC:	/* Read count register */
1264				arch->gprs[rt] =
1265					(long)(int)kvm_mips_read_count(vcpu);
1266				break;
1267			default:
1268				trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1269					      KVM_TRACE_HWR(rd, sel), 0);
1270				goto unknown;
1271			}
1272
1273			trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR,
1274				      KVM_TRACE_HWR(rd, sel), arch->gprs[rt]);
1275
1276			er = update_pc(vcpu, cause);
1277			break;
1278		default:
1279			goto unknown;
1280		}
1281		break;
1282unknown:
1283
1284	default:
1285		kvm_err("GPSI exception not supported (%p/%#x)\n",
1286				opc, inst.word);
1287		kvm_arch_vcpu_dump_regs(vcpu);
1288		er = EMULATE_FAIL;
1289		break;
1290	}
1291
1292	return er;
1293}
1294
1295static enum emulation_result kvm_trap_vz_handle_gsfc(u32 cause, u32 *opc,
1296						     struct kvm_vcpu *vcpu)
1297{
1298	enum emulation_result er = EMULATE_DONE;
1299	struct kvm_vcpu_arch *arch = &vcpu->arch;
1300	union mips_instruction inst;
1301	int err;
1302
1303	/*
1304	 *  Fetch the instruction.
1305	 */
1306	if (cause & CAUSEF_BD)
1307		opc += 1;
1308	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1309	if (err)
1310		return EMULATE_FAIL;
1311
1312	/* complete MTC0 on behalf of guest and advance EPC */
1313	if (inst.c0r_format.opcode == cop0_op &&
1314	    inst.c0r_format.rs == mtc_op &&
1315	    inst.c0r_format.z == 0) {
1316		int rt = inst.c0r_format.rt;
1317		int rd = inst.c0r_format.rd;
1318		int sel = inst.c0r_format.sel;
1319		unsigned int val = arch->gprs[rt];
1320		unsigned int old_val, change;
1321
1322		trace_kvm_hwr(vcpu, KVM_TRACE_MTC0, KVM_TRACE_COP0(rd, sel),
1323			      val);
1324
1325		if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1326			/* FR bit should read as zero if no FPU */
1327			if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1328				val &= ~(ST0_CU1 | ST0_FR);
1329
1330			/*
1331			 * Also don't allow FR to be set if host doesn't support
1332			 * it.
1333			 */
1334			if (!(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
1335				val &= ~ST0_FR;
1336
1337			old_val = read_gc0_status();
1338			change = val ^ old_val;
1339
1340			if (change & ST0_FR) {
1341				/*
1342				 * FPU and Vector register state is made
1343				 * UNPREDICTABLE by a change of FR, so don't
1344				 * even bother saving it.
1345				 */
1346				kvm_drop_fpu(vcpu);
1347			}
1348
1349			/*
1350			 * If MSA state is already live, it is undefined how it
1351			 * interacts with FR=0 FPU state, and we don't want to
1352			 * hit reserved instruction exceptions trying to save
1353			 * the MSA state later when CU=1 && FR=1, so play it
1354			 * safe and save it first.
1355			 */
1356			if (change & ST0_CU1 && !(val & ST0_FR) &&
1357			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1358				kvm_lose_fpu(vcpu);
1359
1360			write_gc0_status(val);
1361		} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1362			u32 old_cause = read_gc0_cause();
1363			u32 change = old_cause ^ val;
1364
1365			/* DC bit enabling/disabling timer? */
1366			if (change & CAUSEF_DC) {
1367				if (val & CAUSEF_DC) {
1368					kvm_vz_lose_htimer(vcpu);
1369					kvm_mips_count_disable_cause(vcpu);
1370				} else {
1371					kvm_mips_count_enable_cause(vcpu);
1372				}
1373			}
1374
1375			/* Only certain bits are RW to the guest */
1376			change &= (CAUSEF_DC | CAUSEF_IV | CAUSEF_WP |
1377				   CAUSEF_IP0 | CAUSEF_IP1);
1378
1379			/* WP can only be cleared */
1380			change &= ~CAUSEF_WP | old_cause;
1381
1382			write_gc0_cause(old_cause ^ change);
1383		} else if ((rd == MIPS_CP0_STATUS) && (sel == 1)) { /* IntCtl */
1384			write_gc0_intctl(val);
1385		} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1386			old_val = read_gc0_config5();
1387			change = val ^ old_val;
1388			/* Handle changes in FPU/MSA modes */
1389			preempt_disable();
1390
1391			/*
1392			 * Propagate FRE changes immediately if the FPU
1393			 * context is already loaded.
1394			 */
1395			if (change & MIPS_CONF5_FRE &&
1396			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1397				change_c0_config5(MIPS_CONF5_FRE, val);
1398
1399			preempt_enable();
1400
1401			val = old_val ^
1402				(change & kvm_vz_config5_guest_wrmask(vcpu));
1403			write_gc0_config5(val);
1404		} else {
1405			kvm_err("Handle GSFC, unsupported field change @ %p: %#x\n",
1406			    opc, inst.word);
1407			er = EMULATE_FAIL;
1408		}
1409
1410		if (er != EMULATE_FAIL)
1411			er = update_pc(vcpu, cause);
1412	} else {
1413		kvm_err("Handle GSFC, unrecognized instruction @ %p: %#x\n",
1414			opc, inst.word);
1415		er = EMULATE_FAIL;
1416	}
1417
1418	return er;
1419}
1420
1421static enum emulation_result kvm_trap_vz_handle_ghfc(u32 cause, u32 *opc,
1422						     struct kvm_vcpu *vcpu)
1423{
1424	/*
1425	 * Presumably this is due to MC (guest mode change), so lets trace some
1426	 * relevant info.
1427	 */
1428	trace_kvm_guest_mode_change(vcpu);
1429
1430	return EMULATE_DONE;
1431}
1432
1433static enum emulation_result kvm_trap_vz_handle_hc(u32 cause, u32 *opc,
1434						   struct kvm_vcpu *vcpu)
1435{
1436	enum emulation_result er;
1437	union mips_instruction inst;
1438	unsigned long curr_pc;
1439	int err;
1440
1441	if (cause & CAUSEF_BD)
1442		opc += 1;
1443	err = kvm_get_badinstr(opc, vcpu, &inst.word);
1444	if (err)
1445		return EMULATE_FAIL;
1446
1447	/*
1448	 * Update PC and hold onto current PC in case there is
1449	 * an error and we want to rollback the PC
1450	 */
1451	curr_pc = vcpu->arch.pc;
1452	er = update_pc(vcpu, cause);
1453	if (er == EMULATE_FAIL)
1454		return er;
1455
1456	er = kvm_mips_emul_hypcall(vcpu, inst);
1457	if (er == EMULATE_FAIL)
1458		vcpu->arch.pc = curr_pc;
1459
1460	return er;
1461}
1462
1463static enum emulation_result kvm_trap_vz_no_handler_guest_exit(u32 gexccode,
1464							u32 cause,
1465							u32 *opc,
1466							struct kvm_vcpu *vcpu)
1467{
1468	u32 inst;
1469
1470	/*
1471	 *  Fetch the instruction.
1472	 */
1473	if (cause & CAUSEF_BD)
1474		opc += 1;
1475	kvm_get_badinstr(opc, vcpu, &inst);
1476
1477	kvm_err("Guest Exception Code: %d not yet handled @ PC: %p, inst: 0x%08x  Status: %#x\n",
1478		gexccode, opc, inst, read_gc0_status());
1479
1480	return EMULATE_FAIL;
1481}
1482
1483static int kvm_trap_vz_handle_guest_exit(struct kvm_vcpu *vcpu)
1484{
1485	u32 *opc = (u32 *) vcpu->arch.pc;
1486	u32 cause = vcpu->arch.host_cp0_cause;
1487	enum emulation_result er = EMULATE_DONE;
1488	u32 gexccode = (vcpu->arch.host_cp0_guestctl0 &
1489			MIPS_GCTL0_GEXC) >> MIPS_GCTL0_GEXC_SHIFT;
1490	int ret = RESUME_GUEST;
1491
1492	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_GEXCCODE_BASE + gexccode);
1493	switch (gexccode) {
1494	case MIPS_GCTL0_GEXC_GPSI:
1495		++vcpu->stat.vz_gpsi_exits;
1496		er = kvm_trap_vz_handle_gpsi(cause, opc, vcpu);
1497		break;
1498	case MIPS_GCTL0_GEXC_GSFC:
1499		++vcpu->stat.vz_gsfc_exits;
1500		er = kvm_trap_vz_handle_gsfc(cause, opc, vcpu);
1501		break;
1502	case MIPS_GCTL0_GEXC_HC:
1503		++vcpu->stat.vz_hc_exits;
1504		er = kvm_trap_vz_handle_hc(cause, opc, vcpu);
1505		break;
1506	case MIPS_GCTL0_GEXC_GRR:
1507		++vcpu->stat.vz_grr_exits;
1508		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1509						       vcpu);
1510		break;
1511	case MIPS_GCTL0_GEXC_GVA:
1512		++vcpu->stat.vz_gva_exits;
1513		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1514						       vcpu);
1515		break;
1516	case MIPS_GCTL0_GEXC_GHFC:
1517		++vcpu->stat.vz_ghfc_exits;
1518		er = kvm_trap_vz_handle_ghfc(cause, opc, vcpu);
1519		break;
1520	case MIPS_GCTL0_GEXC_GPA:
1521		++vcpu->stat.vz_gpa_exits;
1522		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1523						       vcpu);
1524		break;
1525	default:
1526		++vcpu->stat.vz_resvd_exits;
1527		er = kvm_trap_vz_no_handler_guest_exit(gexccode, cause, opc,
1528						       vcpu);
1529		break;
1530
1531	}
1532
1533	if (er == EMULATE_DONE) {
1534		ret = RESUME_GUEST;
1535	} else if (er == EMULATE_HYPERCALL) {
1536		ret = kvm_mips_handle_hypcall(vcpu);
1537	} else {
1538		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1539		ret = RESUME_HOST;
1540	}
1541	return ret;
1542}
1543
1544/**
1545 * kvm_trap_vz_handle_cop_unusuable() - Guest used unusable coprocessor.
1546 * @vcpu:	Virtual CPU context.
1547 *
1548 * Handle when the guest attempts to use a coprocessor which hasn't been allowed
1549 * by the root context.
1550 */
1551static int kvm_trap_vz_handle_cop_unusable(struct kvm_vcpu *vcpu)
1552{
1553	u32 cause = vcpu->arch.host_cp0_cause;
1554	enum emulation_result er = EMULATE_FAIL;
1555	int ret = RESUME_GUEST;
1556
1557	if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 1) {
1558		/*
1559		 * If guest FPU not present, the FPU operation should have been
1560		 * treated as a reserved instruction!
1561		 * If FPU already in use, we shouldn't get this at all.
1562		 */
1563		if (WARN_ON(!kvm_mips_guest_has_fpu(&vcpu->arch) ||
1564			    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1565			preempt_enable();
1566			return EMULATE_FAIL;
1567		}
1568
1569		kvm_own_fpu(vcpu);
1570		er = EMULATE_DONE;
1571	}
1572	/* other coprocessors not handled */
1573
1574	switch (er) {
1575	case EMULATE_DONE:
1576		ret = RESUME_GUEST;
1577		break;
1578
1579	case EMULATE_FAIL:
1580		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1581		ret = RESUME_HOST;
1582		break;
1583
1584	default:
1585		BUG();
1586	}
1587	return ret;
1588}
1589
1590/**
1591 * kvm_trap_vz_handle_msa_disabled() - Guest used MSA while disabled in root.
1592 * @vcpu:	Virtual CPU context.
1593 *
1594 * Handle when the guest attempts to use MSA when it is disabled in the root
1595 * context.
1596 */
1597static int kvm_trap_vz_handle_msa_disabled(struct kvm_vcpu *vcpu)
1598{
1599	/*
1600	 * If MSA not present or not exposed to guest or FR=0, the MSA operation
1601	 * should have been treated as a reserved instruction!
1602	 * Same if CU1=1, FR=0.
1603	 * If MSA already in use, we shouldn't get this at all.
1604	 */
1605	if (!kvm_mips_guest_has_msa(&vcpu->arch) ||
1606	    (read_gc0_status() & (ST0_CU1 | ST0_FR)) == ST0_CU1 ||
1607	    !(read_gc0_config5() & MIPS_CONF5_MSAEN) ||
1608	    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1609		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1610		return RESUME_HOST;
1611	}
1612
1613	kvm_own_msa(vcpu);
1614
1615	return RESUME_GUEST;
1616}
1617
1618static int kvm_trap_vz_handle_tlb_ld_miss(struct kvm_vcpu *vcpu)
1619{
1620	struct kvm_run *run = vcpu->run;
1621	u32 *opc = (u32 *) vcpu->arch.pc;
1622	u32 cause = vcpu->arch.host_cp0_cause;
1623	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1624	union mips_instruction inst;
1625	enum emulation_result er = EMULATE_DONE;
1626	int err, ret = RESUME_GUEST;
1627
1628	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, false)) {
1629		/* A code fetch fault doesn't count as an MMIO */
1630		if (kvm_is_ifetch_fault(&vcpu->arch)) {
1631			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1632			return RESUME_HOST;
1633		}
1634
1635		/* Fetch the instruction */
1636		if (cause & CAUSEF_BD)
1637			opc += 1;
1638		err = kvm_get_badinstr(opc, vcpu, &inst.word);
1639		if (err) {
1640			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1641			return RESUME_HOST;
1642		}
1643
1644		/* Treat as MMIO */
1645		er = kvm_mips_emulate_load(inst, cause, vcpu);
1646		if (er == EMULATE_FAIL) {
1647			kvm_err("Guest Emulate Load from MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1648				opc, badvaddr);
1649			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1650		}
1651	}
1652
1653	if (er == EMULATE_DONE) {
1654		ret = RESUME_GUEST;
1655	} else if (er == EMULATE_DO_MMIO) {
1656		run->exit_reason = KVM_EXIT_MMIO;
1657		ret = RESUME_HOST;
1658	} else {
1659		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1660		ret = RESUME_HOST;
1661	}
1662	return ret;
1663}
1664
1665static int kvm_trap_vz_handle_tlb_st_miss(struct kvm_vcpu *vcpu)
1666{
1667	struct kvm_run *run = vcpu->run;
1668	u32 *opc = (u32 *) vcpu->arch.pc;
1669	u32 cause = vcpu->arch.host_cp0_cause;
1670	ulong badvaddr = vcpu->arch.host_cp0_badvaddr;
1671	union mips_instruction inst;
1672	enum emulation_result er = EMULATE_DONE;
1673	int err;
1674	int ret = RESUME_GUEST;
1675
1676	/* Just try the access again if we couldn't do the translation */
1677	if (kvm_vz_badvaddr_to_gpa(vcpu, badvaddr, &badvaddr))
1678		return RESUME_GUEST;
1679	vcpu->arch.host_cp0_badvaddr = badvaddr;
1680
1681	if (kvm_mips_handle_vz_root_tlb_fault(badvaddr, vcpu, true)) {
1682		/* Fetch the instruction */
1683		if (cause & CAUSEF_BD)
1684			opc += 1;
1685		err = kvm_get_badinstr(opc, vcpu, &inst.word);
1686		if (err) {
1687			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1688			return RESUME_HOST;
1689		}
1690
1691		/* Treat as MMIO */
1692		er = kvm_mips_emulate_store(inst, cause, vcpu);
1693		if (er == EMULATE_FAIL) {
1694			kvm_err("Guest Emulate Store to MMIO space failed: PC: %p, BadVaddr: %#lx\n",
1695				opc, badvaddr);
1696			run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1697		}
1698	}
1699
1700	if (er == EMULATE_DONE) {
1701		ret = RESUME_GUEST;
1702	} else if (er == EMULATE_DO_MMIO) {
1703		run->exit_reason = KVM_EXIT_MMIO;
1704		ret = RESUME_HOST;
1705	} else {
1706		run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1707		ret = RESUME_HOST;
1708	}
1709	return ret;
1710}
1711
1712static u64 kvm_vz_get_one_regs[] = {
1713	KVM_REG_MIPS_CP0_INDEX,
1714	KVM_REG_MIPS_CP0_ENTRYLO0,
1715	KVM_REG_MIPS_CP0_ENTRYLO1,
1716	KVM_REG_MIPS_CP0_CONTEXT,
1717	KVM_REG_MIPS_CP0_PAGEMASK,
1718	KVM_REG_MIPS_CP0_PAGEGRAIN,
1719	KVM_REG_MIPS_CP0_WIRED,
1720	KVM_REG_MIPS_CP0_HWRENA,
1721	KVM_REG_MIPS_CP0_BADVADDR,
1722	KVM_REG_MIPS_CP0_COUNT,
1723	KVM_REG_MIPS_CP0_ENTRYHI,
1724	KVM_REG_MIPS_CP0_COMPARE,
1725	KVM_REG_MIPS_CP0_STATUS,
1726	KVM_REG_MIPS_CP0_INTCTL,
1727	KVM_REG_MIPS_CP0_CAUSE,
1728	KVM_REG_MIPS_CP0_EPC,
1729	KVM_REG_MIPS_CP0_PRID,
1730	KVM_REG_MIPS_CP0_EBASE,
1731	KVM_REG_MIPS_CP0_CONFIG,
1732	KVM_REG_MIPS_CP0_CONFIG1,
1733	KVM_REG_MIPS_CP0_CONFIG2,
1734	KVM_REG_MIPS_CP0_CONFIG3,
1735	KVM_REG_MIPS_CP0_CONFIG4,
1736	KVM_REG_MIPS_CP0_CONFIG5,
1737	KVM_REG_MIPS_CP0_CONFIG6,
1738#ifdef CONFIG_64BIT
1739	KVM_REG_MIPS_CP0_XCONTEXT,
1740#endif
1741	KVM_REG_MIPS_CP0_ERROREPC,
1742
1743	KVM_REG_MIPS_COUNT_CTL,
1744	KVM_REG_MIPS_COUNT_RESUME,
1745	KVM_REG_MIPS_COUNT_HZ,
1746};
1747
1748static u64 kvm_vz_get_one_regs_contextconfig[] = {
1749	KVM_REG_MIPS_CP0_CONTEXTCONFIG,
1750#ifdef CONFIG_64BIT
1751	KVM_REG_MIPS_CP0_XCONTEXTCONFIG,
1752#endif
1753};
1754
1755static u64 kvm_vz_get_one_regs_segments[] = {
1756	KVM_REG_MIPS_CP0_SEGCTL0,
1757	KVM_REG_MIPS_CP0_SEGCTL1,
1758	KVM_REG_MIPS_CP0_SEGCTL2,
1759};
1760
1761static u64 kvm_vz_get_one_regs_htw[] = {
1762	KVM_REG_MIPS_CP0_PWBASE,
1763	KVM_REG_MIPS_CP0_PWFIELD,
1764	KVM_REG_MIPS_CP0_PWSIZE,
1765	KVM_REG_MIPS_CP0_PWCTL,
1766};
1767
1768static u64 kvm_vz_get_one_regs_kscratch[] = {
1769	KVM_REG_MIPS_CP0_KSCRATCH1,
1770	KVM_REG_MIPS_CP0_KSCRATCH2,
1771	KVM_REG_MIPS_CP0_KSCRATCH3,
1772	KVM_REG_MIPS_CP0_KSCRATCH4,
1773	KVM_REG_MIPS_CP0_KSCRATCH5,
1774	KVM_REG_MIPS_CP0_KSCRATCH6,
1775};
1776
1777static unsigned long kvm_vz_num_regs(struct kvm_vcpu *vcpu)
1778{
1779	unsigned long ret;
1780
1781	ret = ARRAY_SIZE(kvm_vz_get_one_regs);
1782	if (cpu_guest_has_userlocal)
1783		++ret;
1784	if (cpu_guest_has_badinstr)
1785		++ret;
1786	if (cpu_guest_has_badinstrp)
1787		++ret;
1788	if (cpu_guest_has_contextconfig)
1789		ret += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1790	if (cpu_guest_has_segments)
1791		ret += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1792	if (cpu_guest_has_htw || cpu_guest_has_ldpte)
1793		ret += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1794	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar)
1795		ret += 1 + ARRAY_SIZE(vcpu->arch.maar);
1796	ret += __arch_hweight8(cpu_data[0].guest.kscratch_mask);
1797
1798	return ret;
1799}
1800
1801static int kvm_vz_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
1802{
1803	u64 index;
1804	unsigned int i;
1805
1806	if (copy_to_user(indices, kvm_vz_get_one_regs,
1807			 sizeof(kvm_vz_get_one_regs)))
1808		return -EFAULT;
1809	indices += ARRAY_SIZE(kvm_vz_get_one_regs);
1810
1811	if (cpu_guest_has_userlocal) {
1812		index = KVM_REG_MIPS_CP0_USERLOCAL;
1813		if (copy_to_user(indices, &index, sizeof(index)))
1814			return -EFAULT;
1815		++indices;
1816	}
1817	if (cpu_guest_has_badinstr) {
1818		index = KVM_REG_MIPS_CP0_BADINSTR;
1819		if (copy_to_user(indices, &index, sizeof(index)))
1820			return -EFAULT;
1821		++indices;
1822	}
1823	if (cpu_guest_has_badinstrp) {
1824		index = KVM_REG_MIPS_CP0_BADINSTRP;
1825		if (copy_to_user(indices, &index, sizeof(index)))
1826			return -EFAULT;
1827		++indices;
1828	}
1829	if (cpu_guest_has_contextconfig) {
1830		if (copy_to_user(indices, kvm_vz_get_one_regs_contextconfig,
1831				 sizeof(kvm_vz_get_one_regs_contextconfig)))
1832			return -EFAULT;
1833		indices += ARRAY_SIZE(kvm_vz_get_one_regs_contextconfig);
1834	}
1835	if (cpu_guest_has_segments) {
1836		if (copy_to_user(indices, kvm_vz_get_one_regs_segments,
1837				 sizeof(kvm_vz_get_one_regs_segments)))
1838			return -EFAULT;
1839		indices += ARRAY_SIZE(kvm_vz_get_one_regs_segments);
1840	}
1841	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
1842		if (copy_to_user(indices, kvm_vz_get_one_regs_htw,
1843				 sizeof(kvm_vz_get_one_regs_htw)))
1844			return -EFAULT;
1845		indices += ARRAY_SIZE(kvm_vz_get_one_regs_htw);
1846	}
1847	if (cpu_guest_has_maar && !cpu_guest_has_dyn_maar) {
1848		for (i = 0; i < ARRAY_SIZE(vcpu->arch.maar); ++i) {
1849			index = KVM_REG_MIPS_CP0_MAAR(i);
1850			if (copy_to_user(indices, &index, sizeof(index)))
1851				return -EFAULT;
1852			++indices;
1853		}
1854
1855		index = KVM_REG_MIPS_CP0_MAARI;
1856		if (copy_to_user(indices, &index, sizeof(index)))
1857			return -EFAULT;
1858		++indices;
1859	}
1860	for (i = 0; i < 6; ++i) {
1861		if (!cpu_guest_has_kscr(i + 2))
1862			continue;
1863
1864		if (copy_to_user(indices, &kvm_vz_get_one_regs_kscratch[i],
1865				 sizeof(kvm_vz_get_one_regs_kscratch[i])))
1866			return -EFAULT;
1867		++indices;
1868	}
1869
1870	return 0;
1871}
1872
1873static inline s64 entrylo_kvm_to_user(unsigned long v)
1874{
1875	s64 mask, ret = v;
1876
1877	if (BITS_PER_LONG == 32) {
1878		/*
1879		 * KVM API exposes 64-bit version of the register, so move the
1880		 * RI/XI bits up into place.
1881		 */
1882		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1883		ret &= ~mask;
1884		ret |= ((s64)v & mask) << 32;
1885	}
1886	return ret;
1887}
1888
1889static inline unsigned long entrylo_user_to_kvm(s64 v)
1890{
1891	unsigned long mask, ret = v;
1892
1893	if (BITS_PER_LONG == 32) {
1894		/*
1895		 * KVM API exposes 64-bit versiono of the register, so move the
1896		 * RI/XI bits down into place.
1897		 */
1898		mask = MIPS_ENTRYLO_RI | MIPS_ENTRYLO_XI;
1899		ret &= ~mask;
1900		ret |= (v >> 32) & mask;
1901	}
1902	return ret;
1903}
1904
1905static int kvm_vz_get_one_reg(struct kvm_vcpu *vcpu,
1906			      const struct kvm_one_reg *reg,
1907			      s64 *v)
1908{
1909	struct mips_coproc *cop0 = vcpu->arch.cop0;
1910	unsigned int idx;
1911
1912	switch (reg->id) {
1913	case KVM_REG_MIPS_CP0_INDEX:
1914		*v = (long)read_gc0_index();
1915		break;
1916	case KVM_REG_MIPS_CP0_ENTRYLO0:
1917		*v = entrylo_kvm_to_user(read_gc0_entrylo0());
1918		break;
1919	case KVM_REG_MIPS_CP0_ENTRYLO1:
1920		*v = entrylo_kvm_to_user(read_gc0_entrylo1());
1921		break;
1922	case KVM_REG_MIPS_CP0_CONTEXT:
1923		*v = (long)read_gc0_context();
1924		break;
1925	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
1926		if (!cpu_guest_has_contextconfig)
1927			return -EINVAL;
1928		*v = read_gc0_contextconfig();
1929		break;
1930	case KVM_REG_MIPS_CP0_USERLOCAL:
1931		if (!cpu_guest_has_userlocal)
1932			return -EINVAL;
1933		*v = read_gc0_userlocal();
1934		break;
1935#ifdef CONFIG_64BIT
1936	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
1937		if (!cpu_guest_has_contextconfig)
1938			return -EINVAL;
1939		*v = read_gc0_xcontextconfig();
1940		break;
1941#endif
1942	case KVM_REG_MIPS_CP0_PAGEMASK:
1943		*v = (long)read_gc0_pagemask();
1944		break;
1945	case KVM_REG_MIPS_CP0_PAGEGRAIN:
1946		*v = (long)read_gc0_pagegrain();
1947		break;
1948	case KVM_REG_MIPS_CP0_SEGCTL0:
1949		if (!cpu_guest_has_segments)
1950			return -EINVAL;
1951		*v = read_gc0_segctl0();
1952		break;
1953	case KVM_REG_MIPS_CP0_SEGCTL1:
1954		if (!cpu_guest_has_segments)
1955			return -EINVAL;
1956		*v = read_gc0_segctl1();
1957		break;
1958	case KVM_REG_MIPS_CP0_SEGCTL2:
1959		if (!cpu_guest_has_segments)
1960			return -EINVAL;
1961		*v = read_gc0_segctl2();
1962		break;
1963	case KVM_REG_MIPS_CP0_PWBASE:
1964		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1965			return -EINVAL;
1966		*v = read_gc0_pwbase();
1967		break;
1968	case KVM_REG_MIPS_CP0_PWFIELD:
1969		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1970			return -EINVAL;
1971		*v = read_gc0_pwfield();
1972		break;
1973	case KVM_REG_MIPS_CP0_PWSIZE:
1974		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1975			return -EINVAL;
1976		*v = read_gc0_pwsize();
1977		break;
1978	case KVM_REG_MIPS_CP0_WIRED:
1979		*v = (long)read_gc0_wired();
1980		break;
1981	case KVM_REG_MIPS_CP0_PWCTL:
1982		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
1983			return -EINVAL;
1984		*v = read_gc0_pwctl();
1985		break;
1986	case KVM_REG_MIPS_CP0_HWRENA:
1987		*v = (long)read_gc0_hwrena();
1988		break;
1989	case KVM_REG_MIPS_CP0_BADVADDR:
1990		*v = (long)read_gc0_badvaddr();
1991		break;
1992	case KVM_REG_MIPS_CP0_BADINSTR:
1993		if (!cpu_guest_has_badinstr)
1994			return -EINVAL;
1995		*v = read_gc0_badinstr();
1996		break;
1997	case KVM_REG_MIPS_CP0_BADINSTRP:
1998		if (!cpu_guest_has_badinstrp)
1999			return -EINVAL;
2000		*v = read_gc0_badinstrp();
2001		break;
2002	case KVM_REG_MIPS_CP0_COUNT:
2003		*v = kvm_mips_read_count(vcpu);
2004		break;
2005	case KVM_REG_MIPS_CP0_ENTRYHI:
2006		*v = (long)read_gc0_entryhi();
2007		break;
2008	case KVM_REG_MIPS_CP0_COMPARE:
2009		*v = (long)read_gc0_compare();
2010		break;
2011	case KVM_REG_MIPS_CP0_STATUS:
2012		*v = (long)read_gc0_status();
2013		break;
2014	case KVM_REG_MIPS_CP0_INTCTL:
2015		*v = read_gc0_intctl();
2016		break;
2017	case KVM_REG_MIPS_CP0_CAUSE:
2018		*v = (long)read_gc0_cause();
2019		break;
2020	case KVM_REG_MIPS_CP0_EPC:
2021		*v = (long)read_gc0_epc();
2022		break;
2023	case KVM_REG_MIPS_CP0_PRID:
2024		switch (boot_cpu_type()) {
2025		case CPU_CAVIUM_OCTEON3:
2026			/* Octeon III has a read-only guest.PRid */
2027			*v = read_gc0_prid();
2028			break;
2029		default:
2030			*v = (long)kvm_read_c0_guest_prid(cop0);
2031			break;
2032		}
2033		break;
2034	case KVM_REG_MIPS_CP0_EBASE:
2035		*v = kvm_vz_read_gc0_ebase();
2036		break;
2037	case KVM_REG_MIPS_CP0_CONFIG:
2038		*v = read_gc0_config();
2039		break;
2040	case KVM_REG_MIPS_CP0_CONFIG1:
2041		if (!cpu_guest_has_conf1)
2042			return -EINVAL;
2043		*v = read_gc0_config1();
2044		break;
2045	case KVM_REG_MIPS_CP0_CONFIG2:
2046		if (!cpu_guest_has_conf2)
2047			return -EINVAL;
2048		*v = read_gc0_config2();
2049		break;
2050	case KVM_REG_MIPS_CP0_CONFIG3:
2051		if (!cpu_guest_has_conf3)
2052			return -EINVAL;
2053		*v = read_gc0_config3();
2054		break;
2055	case KVM_REG_MIPS_CP0_CONFIG4:
2056		if (!cpu_guest_has_conf4)
2057			return -EINVAL;
2058		*v = read_gc0_config4();
2059		break;
2060	case KVM_REG_MIPS_CP0_CONFIG5:
2061		if (!cpu_guest_has_conf5)
2062			return -EINVAL;
2063		*v = read_gc0_config5();
2064		break;
2065	case KVM_REG_MIPS_CP0_CONFIG6:
2066		*v = kvm_read_sw_gc0_config6(cop0);
2067		break;
2068	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2069		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2070			return -EINVAL;
2071		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2072		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2073			return -EINVAL;
2074		*v = vcpu->arch.maar[idx];
2075		break;
2076	case KVM_REG_MIPS_CP0_MAARI:
2077		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2078			return -EINVAL;
2079		*v = kvm_read_sw_gc0_maari(vcpu->arch.cop0);
2080		break;
2081#ifdef CONFIG_64BIT
2082	case KVM_REG_MIPS_CP0_XCONTEXT:
2083		*v = read_gc0_xcontext();
2084		break;
2085#endif
2086	case KVM_REG_MIPS_CP0_ERROREPC:
2087		*v = (long)read_gc0_errorepc();
2088		break;
2089	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2090		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2091		if (!cpu_guest_has_kscr(idx))
2092			return -EINVAL;
2093		switch (idx) {
2094		case 2:
2095			*v = (long)read_gc0_kscratch1();
2096			break;
2097		case 3:
2098			*v = (long)read_gc0_kscratch2();
2099			break;
2100		case 4:
2101			*v = (long)read_gc0_kscratch3();
2102			break;
2103		case 5:
2104			*v = (long)read_gc0_kscratch4();
2105			break;
2106		case 6:
2107			*v = (long)read_gc0_kscratch5();
2108			break;
2109		case 7:
2110			*v = (long)read_gc0_kscratch6();
2111			break;
2112		}
2113		break;
2114	case KVM_REG_MIPS_COUNT_CTL:
2115		*v = vcpu->arch.count_ctl;
2116		break;
2117	case KVM_REG_MIPS_COUNT_RESUME:
2118		*v = ktime_to_ns(vcpu->arch.count_resume);
2119		break;
2120	case KVM_REG_MIPS_COUNT_HZ:
2121		*v = vcpu->arch.count_hz;
2122		break;
2123	default:
2124		return -EINVAL;
2125	}
2126	return 0;
2127}
2128
2129static int kvm_vz_set_one_reg(struct kvm_vcpu *vcpu,
2130			      const struct kvm_one_reg *reg,
2131			      s64 v)
2132{
2133	struct mips_coproc *cop0 = vcpu->arch.cop0;
2134	unsigned int idx;
2135	int ret = 0;
2136	unsigned int cur, change;
2137
2138	switch (reg->id) {
2139	case KVM_REG_MIPS_CP0_INDEX:
2140		write_gc0_index(v);
2141		break;
2142	case KVM_REG_MIPS_CP0_ENTRYLO0:
2143		write_gc0_entrylo0(entrylo_user_to_kvm(v));
2144		break;
2145	case KVM_REG_MIPS_CP0_ENTRYLO1:
2146		write_gc0_entrylo1(entrylo_user_to_kvm(v));
2147		break;
2148	case KVM_REG_MIPS_CP0_CONTEXT:
2149		write_gc0_context(v);
2150		break;
2151	case KVM_REG_MIPS_CP0_CONTEXTCONFIG:
2152		if (!cpu_guest_has_contextconfig)
2153			return -EINVAL;
2154		write_gc0_contextconfig(v);
2155		break;
2156	case KVM_REG_MIPS_CP0_USERLOCAL:
2157		if (!cpu_guest_has_userlocal)
2158			return -EINVAL;
2159		write_gc0_userlocal(v);
2160		break;
2161#ifdef CONFIG_64BIT
2162	case KVM_REG_MIPS_CP0_XCONTEXTCONFIG:
2163		if (!cpu_guest_has_contextconfig)
2164			return -EINVAL;
2165		write_gc0_xcontextconfig(v);
2166		break;
2167#endif
2168	case KVM_REG_MIPS_CP0_PAGEMASK:
2169		write_gc0_pagemask(v);
2170		break;
2171	case KVM_REG_MIPS_CP0_PAGEGRAIN:
2172		write_gc0_pagegrain(v);
2173		break;
2174	case KVM_REG_MIPS_CP0_SEGCTL0:
2175		if (!cpu_guest_has_segments)
2176			return -EINVAL;
2177		write_gc0_segctl0(v);
2178		break;
2179	case KVM_REG_MIPS_CP0_SEGCTL1:
2180		if (!cpu_guest_has_segments)
2181			return -EINVAL;
2182		write_gc0_segctl1(v);
2183		break;
2184	case KVM_REG_MIPS_CP0_SEGCTL2:
2185		if (!cpu_guest_has_segments)
2186			return -EINVAL;
2187		write_gc0_segctl2(v);
2188		break;
2189	case KVM_REG_MIPS_CP0_PWBASE:
2190		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2191			return -EINVAL;
2192		write_gc0_pwbase(v);
2193		break;
2194	case KVM_REG_MIPS_CP0_PWFIELD:
2195		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2196			return -EINVAL;
2197		write_gc0_pwfield(v);
2198		break;
2199	case KVM_REG_MIPS_CP0_PWSIZE:
2200		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2201			return -EINVAL;
2202		write_gc0_pwsize(v);
2203		break;
2204	case KVM_REG_MIPS_CP0_WIRED:
2205		change_gc0_wired(MIPSR6_WIRED_WIRED, v);
2206		break;
2207	case KVM_REG_MIPS_CP0_PWCTL:
2208		if (!cpu_guest_has_htw && !cpu_guest_has_ldpte)
2209			return -EINVAL;
2210		write_gc0_pwctl(v);
2211		break;
2212	case KVM_REG_MIPS_CP0_HWRENA:
2213		write_gc0_hwrena(v);
2214		break;
2215	case KVM_REG_MIPS_CP0_BADVADDR:
2216		write_gc0_badvaddr(v);
2217		break;
2218	case KVM_REG_MIPS_CP0_BADINSTR:
2219		if (!cpu_guest_has_badinstr)
2220			return -EINVAL;
2221		write_gc0_badinstr(v);
2222		break;
2223	case KVM_REG_MIPS_CP0_BADINSTRP:
2224		if (!cpu_guest_has_badinstrp)
2225			return -EINVAL;
2226		write_gc0_badinstrp(v);
2227		break;
2228	case KVM_REG_MIPS_CP0_COUNT:
2229		kvm_mips_write_count(vcpu, v);
2230		break;
2231	case KVM_REG_MIPS_CP0_ENTRYHI:
2232		write_gc0_entryhi(v);
2233		break;
2234	case KVM_REG_MIPS_CP0_COMPARE:
2235		kvm_mips_write_compare(vcpu, v, false);
2236		break;
2237	case KVM_REG_MIPS_CP0_STATUS:
2238		write_gc0_status(v);
2239		break;
2240	case KVM_REG_MIPS_CP0_INTCTL:
2241		write_gc0_intctl(v);
2242		break;
2243	case KVM_REG_MIPS_CP0_CAUSE:
2244		/*
2245		 * If the timer is stopped or started (DC bit) it must look
2246		 * atomic with changes to the timer interrupt pending bit (TI).
2247		 * A timer interrupt should not happen in between.
2248		 */
2249		if ((read_gc0_cause() ^ v) & CAUSEF_DC) {
2250			if (v & CAUSEF_DC) {
2251				/* disable timer first */
2252				kvm_mips_count_disable_cause(vcpu);
2253				change_gc0_cause((u32)~CAUSEF_DC, v);
2254			} else {
2255				/* enable timer last */
2256				change_gc0_cause((u32)~CAUSEF_DC, v);
2257				kvm_mips_count_enable_cause(vcpu);
2258			}
2259		} else {
2260			write_gc0_cause(v);
2261		}
2262		break;
2263	case KVM_REG_MIPS_CP0_EPC:
2264		write_gc0_epc(v);
2265		break;
2266	case KVM_REG_MIPS_CP0_PRID:
2267		switch (boot_cpu_type()) {
2268		case CPU_CAVIUM_OCTEON3:
2269			/* Octeon III has a guest.PRid, but its read-only */
2270			break;
2271		default:
2272			kvm_write_c0_guest_prid(cop0, v);
2273			break;
2274		}
2275		break;
2276	case KVM_REG_MIPS_CP0_EBASE:
2277		kvm_vz_write_gc0_ebase(v);
2278		break;
2279	case KVM_REG_MIPS_CP0_CONFIG:
2280		cur = read_gc0_config();
2281		change = (cur ^ v) & kvm_vz_config_user_wrmask(vcpu);
2282		if (change) {
2283			v = cur ^ change;
2284			write_gc0_config(v);
2285		}
2286		break;
2287	case KVM_REG_MIPS_CP0_CONFIG1:
2288		if (!cpu_guest_has_conf1)
2289			break;
2290		cur = read_gc0_config1();
2291		change = (cur ^ v) & kvm_vz_config1_user_wrmask(vcpu);
2292		if (change) {
2293			v = cur ^ change;
2294			write_gc0_config1(v);
2295		}
2296		break;
2297	case KVM_REG_MIPS_CP0_CONFIG2:
2298		if (!cpu_guest_has_conf2)
2299			break;
2300		cur = read_gc0_config2();
2301		change = (cur ^ v) & kvm_vz_config2_user_wrmask(vcpu);
2302		if (change) {
2303			v = cur ^ change;
2304			write_gc0_config2(v);
2305		}
2306		break;
2307	case KVM_REG_MIPS_CP0_CONFIG3:
2308		if (!cpu_guest_has_conf3)
2309			break;
2310		cur = read_gc0_config3();
2311		change = (cur ^ v) & kvm_vz_config3_user_wrmask(vcpu);
2312		if (change) {
2313			v = cur ^ change;
2314			write_gc0_config3(v);
2315		}
2316		break;
2317	case KVM_REG_MIPS_CP0_CONFIG4:
2318		if (!cpu_guest_has_conf4)
2319			break;
2320		cur = read_gc0_config4();
2321		change = (cur ^ v) & kvm_vz_config4_user_wrmask(vcpu);
2322		if (change) {
2323			v = cur ^ change;
2324			write_gc0_config4(v);
2325		}
2326		break;
2327	case KVM_REG_MIPS_CP0_CONFIG5:
2328		if (!cpu_guest_has_conf5)
2329			break;
2330		cur = read_gc0_config5();
2331		change = (cur ^ v) & kvm_vz_config5_user_wrmask(vcpu);
2332		if (change) {
2333			v = cur ^ change;
2334			write_gc0_config5(v);
2335		}
2336		break;
2337	case KVM_REG_MIPS_CP0_CONFIG6:
2338		cur = kvm_read_sw_gc0_config6(cop0);
2339		change = (cur ^ v) & kvm_vz_config6_user_wrmask(vcpu);
2340		if (change) {
2341			v = cur ^ change;
2342			kvm_write_sw_gc0_config6(cop0, (int)v);
2343		}
2344		break;
2345	case KVM_REG_MIPS_CP0_MAAR(0) ... KVM_REG_MIPS_CP0_MAAR(0x3f):
2346		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2347			return -EINVAL;
2348		idx = reg->id - KVM_REG_MIPS_CP0_MAAR(0);
2349		if (idx >= ARRAY_SIZE(vcpu->arch.maar))
2350			return -EINVAL;
2351		vcpu->arch.maar[idx] = mips_process_maar(dmtc_op, v);
2352		break;
2353	case KVM_REG_MIPS_CP0_MAARI:
2354		if (!cpu_guest_has_maar || cpu_guest_has_dyn_maar)
2355			return -EINVAL;
2356		kvm_write_maari(vcpu, v);
2357		break;
2358#ifdef CONFIG_64BIT
2359	case KVM_REG_MIPS_CP0_XCONTEXT:
2360		write_gc0_xcontext(v);
2361		break;
2362#endif
2363	case KVM_REG_MIPS_CP0_ERROREPC:
2364		write_gc0_errorepc(v);
2365		break;
2366	case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
2367		idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
2368		if (!cpu_guest_has_kscr(idx))
2369			return -EINVAL;
2370		switch (idx) {
2371		case 2:
2372			write_gc0_kscratch1(v);
2373			break;
2374		case 3:
2375			write_gc0_kscratch2(v);
2376			break;
2377		case 4:
2378			write_gc0_kscratch3(v);
2379			break;
2380		case 5:
2381			write_gc0_kscratch4(v);
2382			break;
2383		case 6:
2384			write_gc0_kscratch5(v);
2385			break;
2386		case 7:
2387			write_gc0_kscratch6(v);
2388			break;
2389		}
2390		break;
2391	case KVM_REG_MIPS_COUNT_CTL:
2392		ret = kvm_mips_set_count_ctl(vcpu, v);
2393		break;
2394	case KVM_REG_MIPS_COUNT_RESUME:
2395		ret = kvm_mips_set_count_resume(vcpu, v);
2396		break;
2397	case KVM_REG_MIPS_COUNT_HZ:
2398		ret = kvm_mips_set_count_hz(vcpu, v);
2399		break;
2400	default:
2401		return -EINVAL;
2402	}
2403	return ret;
2404}
2405
2406#define guestid_cache(cpu)	(cpu_data[cpu].guestid_cache)
2407static void kvm_vz_get_new_guestid(unsigned long cpu, struct kvm_vcpu *vcpu)
2408{
2409	unsigned long guestid = guestid_cache(cpu);
2410
2411	if (!(++guestid & GUESTID_MASK)) {
2412		if (cpu_has_vtag_icache)
2413			flush_icache_all();
2414
2415		if (!guestid)		/* fix version if needed */
2416			guestid = GUESTID_FIRST_VERSION;
2417
2418		++guestid;		/* guestid 0 reserved for root */
2419
2420		/* start new guestid cycle */
2421		kvm_vz_local_flush_roottlb_all_guests();
2422		kvm_vz_local_flush_guesttlb_all();
2423	}
2424
2425	guestid_cache(cpu) = guestid;
2426}
2427
2428/* Returns 1 if the guest TLB may be clobbered */
2429static int kvm_vz_check_requests(struct kvm_vcpu *vcpu, int cpu)
2430{
2431	int ret = 0;
2432	int i;
2433
2434	if (!kvm_request_pending(vcpu))
2435		return 0;
2436
2437	if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2438		if (cpu_has_guestid) {
2439			/* Drop all GuestIDs for this VCPU */
2440			for_each_possible_cpu(i)
2441				vcpu->arch.vzguestid[i] = 0;
2442			/* This will clobber guest TLB contents too */
2443			ret = 1;
2444		}
2445		/*
2446		 * For Root ASID Dealias (RAD) we don't do anything here, but we
2447		 * still need the request to ensure we recheck asid_flush_mask.
2448		 * We can still return 0 as only the root TLB will be affected
2449		 * by a root ASID flush.
2450		 */
2451	}
2452
2453	return ret;
2454}
2455
2456static void kvm_vz_vcpu_save_wired(struct kvm_vcpu *vcpu)
2457{
2458	unsigned int wired = read_gc0_wired();
2459	struct kvm_mips_tlb *tlbs;
2460	int i;
2461
2462	/* Expand the wired TLB array if necessary */
2463	wired &= MIPSR6_WIRED_WIRED;
2464	if (wired > vcpu->arch.wired_tlb_limit) {
2465		tlbs = krealloc(vcpu->arch.wired_tlb, wired *
2466				sizeof(*vcpu->arch.wired_tlb), GFP_ATOMIC);
2467		if (WARN_ON(!tlbs)) {
2468			/* Save whatever we can */
2469			wired = vcpu->arch.wired_tlb_limit;
2470		} else {
2471			vcpu->arch.wired_tlb = tlbs;
2472			vcpu->arch.wired_tlb_limit = wired;
2473		}
2474	}
2475
2476	if (wired)
2477		/* Save wired entries from the guest TLB */
2478		kvm_vz_save_guesttlb(vcpu->arch.wired_tlb, 0, wired);
2479	/* Invalidate any dropped entries since last time */
2480	for (i = wired; i < vcpu->arch.wired_tlb_used; ++i) {
2481		vcpu->arch.wired_tlb[i].tlb_hi = UNIQUE_GUEST_ENTRYHI(i);
2482		vcpu->arch.wired_tlb[i].tlb_lo[0] = 0;
2483		vcpu->arch.wired_tlb[i].tlb_lo[1] = 0;
2484		vcpu->arch.wired_tlb[i].tlb_mask = 0;
2485	}
2486	vcpu->arch.wired_tlb_used = wired;
2487}
2488
2489static void kvm_vz_vcpu_load_wired(struct kvm_vcpu *vcpu)
2490{
2491	/* Load wired entries into the guest TLB */
2492	if (vcpu->arch.wired_tlb)
2493		kvm_vz_load_guesttlb(vcpu->arch.wired_tlb, 0,
2494				     vcpu->arch.wired_tlb_used);
2495}
2496
2497static void kvm_vz_vcpu_load_tlb(struct kvm_vcpu *vcpu, int cpu)
2498{
2499	struct kvm *kvm = vcpu->kvm;
2500	struct mm_struct *gpa_mm = &kvm->arch.gpa_mm;
2501	bool migrated;
2502
2503	/*
2504	 * Are we entering guest context on a different CPU to last time?
2505	 * If so, the VCPU's guest TLB state on this CPU may be stale.
2506	 */
2507	migrated = (vcpu->arch.last_exec_cpu != cpu);
2508	vcpu->arch.last_exec_cpu = cpu;
2509
2510	/*
2511	 * A vcpu's GuestID is set in GuestCtl1.ID when the vcpu is loaded and
2512	 * remains set until another vcpu is loaded in.  As a rule GuestRID
2513	 * remains zeroed when in root context unless the kernel is busy
2514	 * manipulating guest tlb entries.
2515	 */
2516	if (cpu_has_guestid) {
2517		/*
2518		 * Check if our GuestID is of an older version and thus invalid.
2519		 *
2520		 * We also discard the stored GuestID if we've executed on
2521		 * another CPU, as the guest mappings may have changed without
2522		 * hypervisor knowledge.
2523		 */
2524		if (migrated ||
2525		    (vcpu->arch.vzguestid[cpu] ^ guestid_cache(cpu)) &
2526					GUESTID_VERSION_MASK) {
2527			kvm_vz_get_new_guestid(cpu, vcpu);
2528			vcpu->arch.vzguestid[cpu] = guestid_cache(cpu);
2529			trace_kvm_guestid_change(vcpu,
2530						 vcpu->arch.vzguestid[cpu]);
2531		}
2532
2533		/* Restore GuestID */
2534		change_c0_guestctl1(GUESTID_MASK, vcpu->arch.vzguestid[cpu]);
2535	} else {
2536		/*
2537		 * The Guest TLB only stores a single guest's TLB state, so
2538		 * flush it if another VCPU has executed on this CPU.
2539		 *
2540		 * We also flush if we've executed on another CPU, as the guest
2541		 * mappings may have changed without hypervisor knowledge.
2542		 */
2543		if (migrated || last_exec_vcpu[cpu] != vcpu)
2544			kvm_vz_local_flush_guesttlb_all();
2545		last_exec_vcpu[cpu] = vcpu;
2546
2547		/*
2548		 * Root ASID dealiases guest GPA mappings in the root TLB.
2549		 * Allocate new root ASID if needed.
2550		 */
2551		if (cpumask_test_and_clear_cpu(cpu, &kvm->arch.asid_flush_mask))
2552			get_new_mmu_context(gpa_mm);
2553		else
2554			check_mmu_context(gpa_mm);
2555	}
2556}
2557
2558static int kvm_vz_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2559{
2560	struct mips_coproc *cop0 = vcpu->arch.cop0;
2561	bool migrated, all;
2562
2563	/*
2564	 * Have we migrated to a different CPU?
2565	 * If so, any old guest TLB state may be stale.
2566	 */
2567	migrated = (vcpu->arch.last_sched_cpu != cpu);
2568
2569	/*
2570	 * Was this the last VCPU to run on this CPU?
2571	 * If not, any old guest state from this VCPU will have been clobbered.
2572	 */
2573	all = migrated || (last_vcpu[cpu] != vcpu);
2574	last_vcpu[cpu] = vcpu;
2575
2576	/*
2577	 * Restore CP0_Wired unconditionally as we clear it after use, and
2578	 * restore wired guest TLB entries (while in guest context).
2579	 */
2580	kvm_restore_gc0_wired(cop0);
2581	if (current->flags & PF_VCPU) {
2582		tlbw_use_hazard();
2583		kvm_vz_vcpu_load_tlb(vcpu, cpu);
2584		kvm_vz_vcpu_load_wired(vcpu);
2585	}
2586
2587	/*
2588	 * Restore timer state regardless, as e.g. Cause.TI can change over time
2589	 * if left unmaintained.
2590	 */
2591	kvm_vz_restore_timer(vcpu);
2592
2593	/* Set MC bit if we want to trace guest mode changes */
2594	if (kvm_trace_guest_mode_change)
2595		set_c0_guestctl0(MIPS_GCTL0_MC);
2596	else
2597		clear_c0_guestctl0(MIPS_GCTL0_MC);
2598
2599	/* Don't bother restoring registers multiple times unless necessary */
2600	if (!all)
2601		return 0;
2602
2603	/*
2604	 * Restore config registers first, as some implementations restrict
2605	 * writes to other registers when the corresponding feature bits aren't
2606	 * set. For example Status.CU1 cannot be set unless Config1.FP is set.
2607	 */
2608	kvm_restore_gc0_config(cop0);
2609	if (cpu_guest_has_conf1)
2610		kvm_restore_gc0_config1(cop0);
2611	if (cpu_guest_has_conf2)
2612		kvm_restore_gc0_config2(cop0);
2613	if (cpu_guest_has_conf3)
2614		kvm_restore_gc0_config3(cop0);
2615	if (cpu_guest_has_conf4)
2616		kvm_restore_gc0_config4(cop0);
2617	if (cpu_guest_has_conf5)
2618		kvm_restore_gc0_config5(cop0);
2619	if (cpu_guest_has_conf6)
2620		kvm_restore_gc0_config6(cop0);
2621	if (cpu_guest_has_conf7)
2622		kvm_restore_gc0_config7(cop0);
2623
2624	kvm_restore_gc0_index(cop0);
2625	kvm_restore_gc0_entrylo0(cop0);
2626	kvm_restore_gc0_entrylo1(cop0);
2627	kvm_restore_gc0_context(cop0);
2628	if (cpu_guest_has_contextconfig)
2629		kvm_restore_gc0_contextconfig(cop0);
2630#ifdef CONFIG_64BIT
2631	kvm_restore_gc0_xcontext(cop0);
2632	if (cpu_guest_has_contextconfig)
2633		kvm_restore_gc0_xcontextconfig(cop0);
2634#endif
2635	kvm_restore_gc0_pagemask(cop0);
2636	kvm_restore_gc0_pagegrain(cop0);
2637	kvm_restore_gc0_hwrena(cop0);
2638	kvm_restore_gc0_badvaddr(cop0);
2639	kvm_restore_gc0_entryhi(cop0);
2640	kvm_restore_gc0_status(cop0);
2641	kvm_restore_gc0_intctl(cop0);
2642	kvm_restore_gc0_epc(cop0);
2643	kvm_vz_write_gc0_ebase(kvm_read_sw_gc0_ebase(cop0));
2644	if (cpu_guest_has_userlocal)
2645		kvm_restore_gc0_userlocal(cop0);
2646
2647	kvm_restore_gc0_errorepc(cop0);
2648
2649	/* restore KScratch registers if enabled in guest */
2650	if (cpu_guest_has_conf4) {
2651		if (cpu_guest_has_kscr(2))
2652			kvm_restore_gc0_kscratch1(cop0);
2653		if (cpu_guest_has_kscr(3))
2654			kvm_restore_gc0_kscratch2(cop0);
2655		if (cpu_guest_has_kscr(4))
2656			kvm_restore_gc0_kscratch3(cop0);
2657		if (cpu_guest_has_kscr(5))
2658			kvm_restore_gc0_kscratch4(cop0);
2659		if (cpu_guest_has_kscr(6))
2660			kvm_restore_gc0_kscratch5(cop0);
2661		if (cpu_guest_has_kscr(7))
2662			kvm_restore_gc0_kscratch6(cop0);
2663	}
2664
2665	if (cpu_guest_has_badinstr)
2666		kvm_restore_gc0_badinstr(cop0);
2667	if (cpu_guest_has_badinstrp)
2668		kvm_restore_gc0_badinstrp(cop0);
2669
2670	if (cpu_guest_has_segments) {
2671		kvm_restore_gc0_segctl0(cop0);
2672		kvm_restore_gc0_segctl1(cop0);
2673		kvm_restore_gc0_segctl2(cop0);
2674	}
2675
2676	/* restore HTW registers */
2677	if (cpu_guest_has_htw || cpu_guest_has_ldpte) {
2678		kvm_restore_gc0_pwbase(cop0);
2679		kvm_restore_gc0_pwfield(cop0);
2680		kvm_restore_gc0_pwsize(cop0);
2681		kvm_restore_gc0_pwctl(cop0);
2682	}
2683
2684	/* restore Root.GuestCtl2 from unused Guest guestctl2 register */
2685	if (cpu_has_guestctl2)
2686		write_c0_guestctl2(
2687			cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL]);
2688
2689	/*
2690	 * We should clear linked load bit to break interrupted atomics. This
2691	 * prevents a SC on the next VCPU from succeeding by matching a LL on
2692	 * the previous VCPU.
2693	 */
2694	if (vcpu->kvm->created_vcpus > 1)
2695		write_gc0_lladdr(0);
2696
2697	return 0;
2698}
2699
2700static int kvm_vz_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
2701{
2702	struct mips_coproc *cop0 = vcpu->arch.cop0;
2703
2704	if (current->flags & PF_VCPU)
2705		kvm_vz_vcpu_save_wired(vcpu);
2706
2707	kvm_lose_fpu(vcpu);
2708
2709	kvm_save_gc0_index(cop0);
2710	kvm_save_gc0_entrylo0(cop0);
2711	kvm_save_gc0_entrylo1(cop0);
2712	kvm_save_gc0_context(cop0);
2713	if (cpu_guest_has_contextconfig)
2714		kvm_save_gc0_contextconfig(cop0);
2715#ifdef CONFIG_64BIT
2716	kvm_save_gc0_xcontext(cop0);
2717	if (cpu_guest_has_contextconfig)
2718		kvm_save_gc0_xcontextconfig(cop0);
2719#endif
2720	kvm_save_gc0_pagemask(cop0);
2721	kvm_save_gc0_pagegrain(cop0);
2722	kvm_save_gc0_wired(cop0);
2723	/* allow wired TLB entries to be overwritten */
2724	clear_gc0_wired(MIPSR6_WIRED_WIRED);
2725	kvm_save_gc0_hwrena(cop0);
2726	kvm_save_gc0_badvaddr(cop0);
2727	kvm_save_gc0_entryhi(cop0);
2728	kvm_save_gc0_status(cop0);
2729	kvm_save_gc0_intctl(cop0);
2730	kvm_save_gc0_epc(cop0);
2731	kvm_write_sw_gc0_ebase(cop0, kvm_vz_read_gc0_ebase());
2732	if (cpu_guest_has_userlocal)
2733		kvm_save_gc0_userlocal(cop0);
2734
2735	/* only save implemented config registers */
2736	kvm_save_gc0_config(cop0);
2737	if (cpu_guest_has_conf1)
2738		kvm_save_gc0_config1(cop0);
2739	if (cpu_guest_has_conf2)
2740		kvm_save_gc0_config2(cop0);
2741	if (cpu_guest_has_conf3)
2742		kvm_save_gc0_config3(cop0);
2743	if (cpu_guest_has_conf4)
2744		kvm_save_gc0_config4(cop0);
2745	if (cpu_guest_has_conf5)
2746		kvm_save_gc0_config5(cop0);
2747	if (cpu_guest_has_conf6)
2748		kvm_save_gc0_config6(cop0);
2749	if (cpu_guest_has_conf7)
2750		kvm_save_gc0_config7(cop0);
2751
2752	kvm_save_gc0_errorepc(cop0);
2753
2754	/* save KScratch registers if enabled in guest */
2755	if (cpu_guest_has_conf4) {
2756		if (cpu_guest_has_kscr(2))
2757			kvm_save_gc0_kscratch1(cop0);
2758		if (cpu_guest_has_kscr(3))
2759			kvm_save_gc0_kscratch2(cop0);
2760		if (cpu_guest_has_kscr(4))
2761			kvm_save_gc0_kscratch3(cop0);
2762		if (cpu_guest_has_kscr(5))
2763			kvm_save_gc0_kscratch4(cop0);
2764		if (cpu_guest_has_kscr(6))
2765			kvm_save_gc0_kscratch5(cop0);
2766		if (cpu_guest_has_kscr(7))
2767			kvm_save_gc0_kscratch6(cop0);
2768	}
2769
2770	if (cpu_guest_has_badinstr)
2771		kvm_save_gc0_badinstr(cop0);
2772	if (cpu_guest_has_badinstrp)
2773		kvm_save_gc0_badinstrp(cop0);
2774
2775	if (cpu_guest_has_segments) {
2776		kvm_save_gc0_segctl0(cop0);
2777		kvm_save_gc0_segctl1(cop0);
2778		kvm_save_gc0_segctl2(cop0);
2779	}
2780
2781	/* save HTW registers if enabled in guest */
2782	if (cpu_guest_has_ldpte || (cpu_guest_has_htw &&
2783	    kvm_read_sw_gc0_config3(cop0) & MIPS_CONF3_PW)) {
2784		kvm_save_gc0_pwbase(cop0);
2785		kvm_save_gc0_pwfield(cop0);
2786		kvm_save_gc0_pwsize(cop0);
2787		kvm_save_gc0_pwctl(cop0);
2788	}
2789
2790	kvm_vz_save_timer(vcpu);
2791
2792	/* save Root.GuestCtl2 in unused Guest guestctl2 register */
2793	if (cpu_has_guestctl2)
2794		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] =
2795			read_c0_guestctl2();
2796
2797	return 0;
2798}
2799
2800/**
2801 * kvm_vz_resize_guest_vtlb() - Attempt to resize guest VTLB.
2802 * @size:	Number of guest VTLB entries (0 < @size <= root VTLB entries).
2803 *
2804 * Attempt to resize the guest VTLB by writing guest Config registers. This is
2805 * necessary for cores with a shared root/guest TLB to avoid overlap with wired
2806 * entries in the root VTLB.
2807 *
2808 * Returns:	The resulting guest VTLB size.
2809 */
2810static unsigned int kvm_vz_resize_guest_vtlb(unsigned int size)
2811{
2812	unsigned int config4 = 0, ret = 0, limit;
2813
2814	/* Write MMUSize - 1 into guest Config registers */
2815	if (cpu_guest_has_conf1)
2816		change_gc0_config1(MIPS_CONF1_TLBS,
2817				   (size - 1) << MIPS_CONF1_TLBS_SHIFT);
2818	if (cpu_guest_has_conf4) {
2819		config4 = read_gc0_config4();
2820		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2821		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT) {
2822			config4 &= ~MIPS_CONF4_VTLBSIZEEXT;
2823			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2824				MIPS_CONF4_VTLBSIZEEXT_SHIFT;
2825		} else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2826			   MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT) {
2827			config4 &= ~MIPS_CONF4_MMUSIZEEXT;
2828			config4 |= ((size - 1) >> MIPS_CONF1_TLBS_SIZE) <<
2829				MIPS_CONF4_MMUSIZEEXT_SHIFT;
2830		}
2831		write_gc0_config4(config4);
2832	}
2833
2834	/*
2835	 * Set Guest.Wired.Limit = 0 (no limit up to Guest.MMUSize-1), unless it
2836	 * would exceed Root.Wired.Limit (clearing Guest.Wired.Wired so write
2837	 * not dropped)
2838	 */
2839	if (cpu_has_mips_r6) {
2840		limit = (read_c0_wired() & MIPSR6_WIRED_LIMIT) >>
2841						MIPSR6_WIRED_LIMIT_SHIFT;
2842		if (size - 1 <= limit)
2843			limit = 0;
2844		write_gc0_wired(limit << MIPSR6_WIRED_LIMIT_SHIFT);
2845	}
2846
2847	/* Read back MMUSize - 1 */
2848	back_to_back_c0_hazard();
2849	if (cpu_guest_has_conf1)
2850		ret = (read_gc0_config1() & MIPS_CONF1_TLBS) >>
2851						MIPS_CONF1_TLBS_SHIFT;
2852	if (config4) {
2853		if (cpu_has_mips_r6 || (config4 & MIPS_CONF4_MMUEXTDEF) ==
2854		    MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT)
2855			ret |= ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
2856				MIPS_CONF4_VTLBSIZEEXT_SHIFT) <<
2857				MIPS_CONF1_TLBS_SIZE;
2858		else if ((config4 & MIPS_CONF4_MMUEXTDEF) ==
2859			 MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT)
2860			ret |= ((config4 & MIPS_CONF4_MMUSIZEEXT) >>
2861				MIPS_CONF4_MMUSIZEEXT_SHIFT) <<
2862				MIPS_CONF1_TLBS_SIZE;
2863	}
2864	return ret + 1;
2865}
2866
2867static int kvm_vz_hardware_enable(void)
2868{
2869	unsigned int mmu_size, guest_mmu_size, ftlb_size;
2870	u64 guest_cvmctl, cvmvmconfig;
2871
2872	switch (current_cpu_type()) {
2873	case CPU_CAVIUM_OCTEON3:
2874		/* Set up guest timer/perfcount IRQ lines */
2875		guest_cvmctl = read_gc0_cvmctl();
2876		guest_cvmctl &= ~CVMCTL_IPTI;
2877		guest_cvmctl |= 7ull << CVMCTL_IPTI_SHIFT;
2878		guest_cvmctl &= ~CVMCTL_IPPCI;
2879		guest_cvmctl |= 6ull << CVMCTL_IPPCI_SHIFT;
2880		write_gc0_cvmctl(guest_cvmctl);
2881
2882		cvmvmconfig = read_c0_cvmvmconfig();
2883		/* No I/O hole translation. */
2884		cvmvmconfig |= CVMVMCONF_DGHT;
2885		/* Halve the root MMU size */
2886		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2887			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
2888		guest_mmu_size = mmu_size / 2;
2889		mmu_size -= guest_mmu_size;
2890		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
2891		cvmvmconfig |= mmu_size - 1;
2892		write_c0_cvmvmconfig(cvmvmconfig);
2893
2894		/* Update our records */
2895		current_cpu_data.tlbsize = mmu_size;
2896		current_cpu_data.tlbsizevtlb = mmu_size;
2897		current_cpu_data.guest.tlbsize = guest_mmu_size;
2898
2899		/* Flush moved entries in new (guest) context */
2900		kvm_vz_local_flush_guesttlb_all();
2901		break;
2902	default:
2903		/*
2904		 * ImgTec cores tend to use a shared root/guest TLB. To avoid
2905		 * overlap of root wired and guest entries, the guest TLB may
2906		 * need resizing.
2907		 */
2908		mmu_size = current_cpu_data.tlbsizevtlb;
2909		ftlb_size = current_cpu_data.tlbsize - mmu_size;
2910
2911		/* Try switching to maximum guest VTLB size for flush */
2912		guest_mmu_size = kvm_vz_resize_guest_vtlb(mmu_size);
2913		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2914		kvm_vz_local_flush_guesttlb_all();
2915
2916		/*
2917		 * Reduce to make space for root wired entries and at least 2
2918		 * root non-wired entries. This does assume that long-term wired
2919		 * entries won't be added later.
2920		 */
2921		guest_mmu_size = mmu_size - num_wired_entries() - 2;
2922		guest_mmu_size = kvm_vz_resize_guest_vtlb(guest_mmu_size);
2923		current_cpu_data.guest.tlbsize = guest_mmu_size + ftlb_size;
2924
2925		/*
2926		 * Write the VTLB size, but if another CPU has already written,
2927		 * check it matches or we won't provide a consistent view to the
2928		 * guest. If this ever happens it suggests an asymmetric number
2929		 * of wired entries.
2930		 */
2931		if (cmpxchg(&kvm_vz_guest_vtlb_size, 0, guest_mmu_size) &&
2932		    WARN(guest_mmu_size != kvm_vz_guest_vtlb_size,
2933			 "Available guest VTLB size mismatch"))
2934			return -EINVAL;
2935		break;
2936	}
2937
2938	/*
2939	 * Enable virtualization features granting guest direct control of
2940	 * certain features:
2941	 * CP0=1:	Guest coprocessor 0 context.
2942	 * AT=Guest:	Guest MMU.
2943	 * CG=1:	Hit (virtual address) CACHE operations (optional).
2944	 * CF=1:	Guest Config registers.
2945	 * CGI=1:	Indexed flush CACHE operations (optional).
2946	 */
2947	write_c0_guestctl0(MIPS_GCTL0_CP0 |
2948			   (MIPS_GCTL0_AT_GUEST << MIPS_GCTL0_AT_SHIFT) |
2949			   MIPS_GCTL0_CG | MIPS_GCTL0_CF);
2950	if (cpu_has_guestctl0ext) {
2951		if (current_cpu_type() != CPU_LOONGSON64)
2952			set_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2953		else
2954			clear_c0_guestctl0ext(MIPS_GCTL0EXT_CGI);
2955	}
2956
2957	if (cpu_has_guestid) {
2958		write_c0_guestctl1(0);
2959		kvm_vz_local_flush_roottlb_all_guests();
2960
2961		GUESTID_MASK = current_cpu_data.guestid_mask;
2962		GUESTID_FIRST_VERSION = GUESTID_MASK + 1;
2963		GUESTID_VERSION_MASK = ~GUESTID_MASK;
2964
2965		current_cpu_data.guestid_cache = GUESTID_FIRST_VERSION;
2966	}
2967
2968	/* clear any pending injected virtual guest interrupts */
2969	if (cpu_has_guestctl2)
2970		clear_c0_guestctl2(0x3f << 10);
2971
2972#ifdef CONFIG_CPU_LOONGSON64
2973	/* Control guest CCA attribute */
2974	if (cpu_has_csr())
2975		csr_writel(csr_readl(0xffffffec) | 0x1, 0xffffffec);
2976#endif
2977
2978	return 0;
2979}
2980
2981static void kvm_vz_hardware_disable(void)
2982{
2983	u64 cvmvmconfig;
2984	unsigned int mmu_size;
2985
2986	/* Flush any remaining guest TLB entries */
2987	kvm_vz_local_flush_guesttlb_all();
2988
2989	switch (current_cpu_type()) {
2990	case CPU_CAVIUM_OCTEON3:
2991		/*
2992		 * Allocate whole TLB for root. Existing guest TLB entries will
2993		 * change ownership to the root TLB. We should be safe though as
2994		 * they've already been flushed above while in guest TLB.
2995		 */
2996		cvmvmconfig = read_c0_cvmvmconfig();
2997		mmu_size = ((cvmvmconfig & CVMVMCONF_MMUSIZEM1)
2998			    >> CVMVMCONF_MMUSIZEM1_S) + 1;
2999		cvmvmconfig &= ~CVMVMCONF_RMMUSIZEM1;
3000		cvmvmconfig |= mmu_size - 1;
3001		write_c0_cvmvmconfig(cvmvmconfig);
3002
3003		/* Update our records */
3004		current_cpu_data.tlbsize = mmu_size;
3005		current_cpu_data.tlbsizevtlb = mmu_size;
3006		current_cpu_data.guest.tlbsize = 0;
3007
3008		/* Flush moved entries in new (root) context */
3009		local_flush_tlb_all();
3010		break;
3011	}
3012
3013	if (cpu_has_guestid) {
3014		write_c0_guestctl1(0);
3015		kvm_vz_local_flush_roottlb_all_guests();
3016	}
3017}
3018
3019static int kvm_vz_check_extension(struct kvm *kvm, long ext)
3020{
3021	int r;
3022
3023	switch (ext) {
3024	case KVM_CAP_MIPS_VZ:
3025		/* we wouldn't be here unless cpu_has_vz */
3026		r = 1;
3027		break;
3028#ifdef CONFIG_64BIT
3029	case KVM_CAP_MIPS_64BIT:
3030		/* We support 64-bit registers/operations and addresses */
3031		r = 2;
3032		break;
3033#endif
3034	case KVM_CAP_IOEVENTFD:
3035		r = 1;
3036		break;
3037	default:
3038		r = 0;
3039		break;
3040	}
3041
3042	return r;
3043}
3044
3045static int kvm_vz_vcpu_init(struct kvm_vcpu *vcpu)
3046{
3047	int i;
3048
3049	for_each_possible_cpu(i)
3050		vcpu->arch.vzguestid[i] = 0;
3051
3052	return 0;
3053}
3054
3055static void kvm_vz_vcpu_uninit(struct kvm_vcpu *vcpu)
3056{
3057	int cpu;
3058
3059	/*
3060	 * If the VCPU is freed and reused as another VCPU, we don't want the
3061	 * matching pointer wrongly hanging around in last_vcpu[] or
3062	 * last_exec_vcpu[].
3063	 */
3064	for_each_possible_cpu(cpu) {
3065		if (last_vcpu[cpu] == vcpu)
3066			last_vcpu[cpu] = NULL;
3067		if (last_exec_vcpu[cpu] == vcpu)
3068			last_exec_vcpu[cpu] = NULL;
3069	}
3070}
3071
3072static int kvm_vz_vcpu_setup(struct kvm_vcpu *vcpu)
3073{
3074	struct mips_coproc *cop0 = vcpu->arch.cop0;
3075	unsigned long count_hz = 100*1000*1000; /* default to 100 MHz */
3076
3077	/*
3078	 * Start off the timer at the same frequency as the host timer, but the
3079	 * soft timer doesn't handle frequencies greater than 1GHz yet.
3080	 */
3081	if (mips_hpt_frequency && mips_hpt_frequency <= NSEC_PER_SEC)
3082		count_hz = mips_hpt_frequency;
3083	kvm_mips_init_count(vcpu, count_hz);
3084
3085	/*
3086	 * Initialize guest register state to valid architectural reset state.
3087	 */
3088
3089	/* PageGrain */
3090	if (cpu_has_mips_r5 || cpu_has_mips_r6)
3091		kvm_write_sw_gc0_pagegrain(cop0, PG_RIE | PG_XIE | PG_IEC);
3092	/* Wired */
3093	if (cpu_has_mips_r6)
3094		kvm_write_sw_gc0_wired(cop0,
3095				       read_gc0_wired() & MIPSR6_WIRED_LIMIT);
3096	/* Status */
3097	kvm_write_sw_gc0_status(cop0, ST0_BEV | ST0_ERL);
3098	if (cpu_has_mips_r5 || cpu_has_mips_r6)
3099		kvm_change_sw_gc0_status(cop0, ST0_FR, read_gc0_status());
3100	/* IntCtl */
3101	kvm_write_sw_gc0_intctl(cop0, read_gc0_intctl() &
3102				(INTCTLF_IPFDC | INTCTLF_IPPCI | INTCTLF_IPTI));
3103	/* PRId */
3104	kvm_write_sw_gc0_prid(cop0, boot_cpu_data.processor_id);
3105	/* EBase */
3106	kvm_write_sw_gc0_ebase(cop0, (s32)0x80000000 | vcpu->vcpu_id);
3107	/* Config */
3108	kvm_save_gc0_config(cop0);
3109	/* architecturally writable (e.g. from guest) */
3110	kvm_change_sw_gc0_config(cop0, CONF_CM_CMASK,
3111				 _page_cachable_default >> _CACHE_SHIFT);
3112	/* architecturally read only, but maybe writable from root */
3113	kvm_change_sw_gc0_config(cop0, MIPS_CONF_MT, read_c0_config());
3114	if (cpu_guest_has_conf1) {
3115		kvm_set_sw_gc0_config(cop0, MIPS_CONF_M);
3116		/* Config1 */
3117		kvm_save_gc0_config1(cop0);
3118		/* architecturally read only, but maybe writable from root */
3119		kvm_clear_sw_gc0_config1(cop0, MIPS_CONF1_C2	|
3120					       MIPS_CONF1_MD	|
3121					       MIPS_CONF1_PC	|
3122					       MIPS_CONF1_WR	|
3123					       MIPS_CONF1_CA	|
3124					       MIPS_CONF1_FP);
3125	}
3126	if (cpu_guest_has_conf2) {
3127		kvm_set_sw_gc0_config1(cop0, MIPS_CONF_M);
3128		/* Config2 */
3129		kvm_save_gc0_config2(cop0);
3130	}
3131	if (cpu_guest_has_conf3) {
3132		kvm_set_sw_gc0_config2(cop0, MIPS_CONF_M);
3133		/* Config3 */
3134		kvm_save_gc0_config3(cop0);
3135		/* architecturally writable (e.g. from guest) */
3136		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_ISA_OE);
3137		/* architecturally read only, but maybe writable from root */
3138		kvm_clear_sw_gc0_config3(cop0, MIPS_CONF3_MSA	|
3139					       MIPS_CONF3_BPG	|
3140					       MIPS_CONF3_ULRI	|
3141					       MIPS_CONF3_DSP	|
3142					       MIPS_CONF3_CTXTC	|
3143					       MIPS_CONF3_ITL	|
3144					       MIPS_CONF3_LPA	|
3145					       MIPS_CONF3_VEIC	|
3146					       MIPS_CONF3_VINT	|
3147					       MIPS_CONF3_SP	|
3148					       MIPS_CONF3_CDMM	|
3149					       MIPS_CONF3_MT	|
3150					       MIPS_CONF3_SM	|
3151					       MIPS_CONF3_TL);
3152	}
3153	if (cpu_guest_has_conf4) {
3154		kvm_set_sw_gc0_config3(cop0, MIPS_CONF_M);
3155		/* Config4 */
3156		kvm_save_gc0_config4(cop0);
3157	}
3158	if (cpu_guest_has_conf5) {
3159		kvm_set_sw_gc0_config4(cop0, MIPS_CONF_M);
3160		/* Config5 */
3161		kvm_save_gc0_config5(cop0);
3162		/* architecturally writable (e.g. from guest) */
3163		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_K	|
3164					       MIPS_CONF5_CV	|
3165					       MIPS_CONF5_MSAEN	|
3166					       MIPS_CONF5_UFE	|
3167					       MIPS_CONF5_FRE	|
3168					       MIPS_CONF5_SBRI	|
3169					       MIPS_CONF5_UFR);
3170		/* architecturally read only, but maybe writable from root */
3171		kvm_clear_sw_gc0_config5(cop0, MIPS_CONF5_MRP);
3172	}
3173
3174	if (cpu_guest_has_contextconfig) {
3175		/* ContextConfig */
3176		kvm_write_sw_gc0_contextconfig(cop0, 0x007ffff0);
3177#ifdef CONFIG_64BIT
3178		/* XContextConfig */
3179		/* bits SEGBITS-13+3:4 set */
3180		kvm_write_sw_gc0_xcontextconfig(cop0,
3181					((1ull << (cpu_vmbits - 13)) - 1) << 4);
3182#endif
3183	}
3184
3185	/* Implementation dependent, use the legacy layout */
3186	if (cpu_guest_has_segments) {
3187		/* SegCtl0, SegCtl1, SegCtl2 */
3188		kvm_write_sw_gc0_segctl0(cop0, 0x00200010);
3189		kvm_write_sw_gc0_segctl1(cop0, 0x00000002 |
3190				(_page_cachable_default >> _CACHE_SHIFT) <<
3191						(16 + MIPS_SEGCFG_C_SHIFT));
3192		kvm_write_sw_gc0_segctl2(cop0, 0x00380438);
3193	}
3194
3195	/* reset HTW registers */
3196	if (cpu_guest_has_htw && (cpu_has_mips_r5 || cpu_has_mips_r6)) {
3197		/* PWField */
3198		kvm_write_sw_gc0_pwfield(cop0, 0x0c30c302);
3199		/* PWSize */
3200		kvm_write_sw_gc0_pwsize(cop0, 1 << MIPS_PWSIZE_PTW_SHIFT);
3201	}
3202
3203	/* start with no pending virtual guest interrupts */
3204	if (cpu_has_guestctl2)
3205		cop0->reg[MIPS_CP0_GUESTCTL2][MIPS_CP0_GUESTCTL2_SEL] = 0;
3206
3207	/* Put PC at reset vector */
3208	vcpu->arch.pc = CKSEG1ADDR(0x1fc00000);
3209
3210	return 0;
3211}
3212
3213static void kvm_vz_prepare_flush_shadow(struct kvm *kvm)
3214{
3215	if (!cpu_has_guestid) {
3216		/*
3217		 * For each CPU there is a single GPA ASID used by all VCPUs in
3218		 * the VM, so it doesn't make sense for the VCPUs to handle
3219		 * invalidation of these ASIDs individually.
3220		 *
3221		 * Instead mark all CPUs as needing ASID invalidation in
3222		 * asid_flush_mask, and kvm_flush_remote_tlbs(kvm) will
3223		 * kick any running VCPUs so they check asid_flush_mask.
3224		 */
3225		cpumask_setall(&kvm->arch.asid_flush_mask);
3226	}
3227}
3228
3229static void kvm_vz_vcpu_reenter(struct kvm_vcpu *vcpu)
3230{
3231	int cpu = smp_processor_id();
3232	int preserve_guest_tlb;
3233
3234	preserve_guest_tlb = kvm_vz_check_requests(vcpu, cpu);
3235
3236	if (preserve_guest_tlb)
3237		kvm_vz_vcpu_save_wired(vcpu);
3238
3239	kvm_vz_vcpu_load_tlb(vcpu, cpu);
3240
3241	if (preserve_guest_tlb)
3242		kvm_vz_vcpu_load_wired(vcpu);
3243}
3244
3245static int kvm_vz_vcpu_run(struct kvm_vcpu *vcpu)
3246{
3247	int cpu = smp_processor_id();
3248	int r;
3249
3250	kvm_vz_acquire_htimer(vcpu);
3251	/* Check if we have any exceptions/interrupts pending */
3252	kvm_mips_deliver_interrupts(vcpu, read_gc0_cause());
3253
3254	kvm_vz_check_requests(vcpu, cpu);
3255	kvm_vz_vcpu_load_tlb(vcpu, cpu);
3256	kvm_vz_vcpu_load_wired(vcpu);
3257
3258	r = vcpu->arch.vcpu_run(vcpu);
3259
3260	kvm_vz_vcpu_save_wired(vcpu);
3261
3262	return r;
3263}
3264
3265static struct kvm_mips_callbacks kvm_vz_callbacks = {
3266	.handle_cop_unusable = kvm_trap_vz_handle_cop_unusable,
3267	.handle_tlb_mod = kvm_trap_vz_handle_tlb_st_miss,
3268	.handle_tlb_ld_miss = kvm_trap_vz_handle_tlb_ld_miss,
3269	.handle_tlb_st_miss = kvm_trap_vz_handle_tlb_st_miss,
3270	.handle_addr_err_st = kvm_trap_vz_no_handler,
3271	.handle_addr_err_ld = kvm_trap_vz_no_handler,
3272	.handle_syscall = kvm_trap_vz_no_handler,
3273	.handle_res_inst = kvm_trap_vz_no_handler,
3274	.handle_break = kvm_trap_vz_no_handler,
3275	.handle_msa_disabled = kvm_trap_vz_handle_msa_disabled,
3276	.handle_guest_exit = kvm_trap_vz_handle_guest_exit,
3277
3278	.hardware_enable = kvm_vz_hardware_enable,
3279	.hardware_disable = kvm_vz_hardware_disable,
3280	.check_extension = kvm_vz_check_extension,
3281	.vcpu_init = kvm_vz_vcpu_init,
3282	.vcpu_uninit = kvm_vz_vcpu_uninit,
3283	.vcpu_setup = kvm_vz_vcpu_setup,
3284	.prepare_flush_shadow = kvm_vz_prepare_flush_shadow,
3285	.gva_to_gpa = kvm_vz_gva_to_gpa_cb,
3286	.queue_timer_int = kvm_vz_queue_timer_int_cb,
3287	.dequeue_timer_int = kvm_vz_dequeue_timer_int_cb,
3288	.queue_io_int = kvm_vz_queue_io_int_cb,
3289	.dequeue_io_int = kvm_vz_dequeue_io_int_cb,
3290	.irq_deliver = kvm_vz_irq_deliver_cb,
3291	.irq_clear = kvm_vz_irq_clear_cb,
3292	.num_regs = kvm_vz_num_regs,
3293	.copy_reg_indices = kvm_vz_copy_reg_indices,
3294	.get_one_reg = kvm_vz_get_one_reg,
3295	.set_one_reg = kvm_vz_set_one_reg,
3296	.vcpu_load = kvm_vz_vcpu_load,
3297	.vcpu_put = kvm_vz_vcpu_put,
3298	.vcpu_run = kvm_vz_vcpu_run,
3299	.vcpu_reenter = kvm_vz_vcpu_reenter,
3300};
3301
3302int kvm_mips_emulation_init(struct kvm_mips_callbacks **install_callbacks)
3303{
3304	if (!cpu_has_vz)
3305		return -ENODEV;
3306
3307	/*
3308	 * VZ requires at least 2 KScratch registers, so it should have been
3309	 * possible to allocate pgd_reg.
3310	 */
3311	if (WARN(pgd_reg == -1,
3312		 "pgd_reg not allocated even though cpu_has_vz\n"))
3313		return -ENODEV;
3314
3315	pr_info("Starting KVM with MIPS VZ extensions\n");
3316
3317	*install_callbacks = &kvm_vz_callbacks;
3318	return 0;
3319}