Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * kexec.c - kexec_load system call
  3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/file.h>
 14#include <linux/kexec.h>
 15#include <linux/mutex.h>
 16#include <linux/list.h>
 17#include <linux/syscalls.h>
 18#include <linux/vmalloc.h>
 19#include <linux/slab.h>
 20
 21#include "kexec_internal.h"
 22
 23static int copy_user_segment_list(struct kimage *image,
 24				  unsigned long nr_segments,
 25				  struct kexec_segment __user *segments)
 26{
 27	int ret;
 28	size_t segment_bytes;
 29
 30	/* Read in the segments */
 31	image->nr_segments = nr_segments;
 32	segment_bytes = nr_segments * sizeof(*segments);
 33	ret = copy_from_user(image->segment, segments, segment_bytes);
 34	if (ret)
 35		ret = -EFAULT;
 36
 37	return ret;
 38}
 39
 40static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 41			     unsigned long nr_segments,
 42			     struct kexec_segment __user *segments,
 43			     unsigned long flags)
 44{
 45	int ret;
 46	struct kimage *image;
 47	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 48
 49	if (kexec_on_panic) {
 50		/* Verify we have a valid entry point */
 51		if ((entry < phys_to_boot_phys(crashk_res.start)) ||
 52		    (entry > phys_to_boot_phys(crashk_res.end)))
 53			return -EADDRNOTAVAIL;
 54	}
 55
 56	/* Allocate and initialize a controlling structure */
 57	image = do_kimage_alloc_init();
 58	if (!image)
 59		return -ENOMEM;
 60
 61	image->start = entry;
 62
 63	ret = copy_user_segment_list(image, nr_segments, segments);
 64	if (ret)
 65		goto out_free_image;
 66
 67	if (kexec_on_panic) {
 68		/* Enable special crash kernel control page alloc policy. */
 69		image->control_page = crashk_res.start;
 70		image->type = KEXEC_TYPE_CRASH;
 71	}
 72
 73	ret = sanity_check_segment_list(image);
 74	if (ret)
 75		goto out_free_image;
 76
 77	/*
 78	 * Find a location for the control code buffer, and add it
 79	 * the vector of segments so that it's pages will also be
 80	 * counted as destination pages.
 81	 */
 82	ret = -ENOMEM;
 83	image->control_code_page = kimage_alloc_control_pages(image,
 84					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 85	if (!image->control_code_page) {
 86		pr_err("Could not allocate control_code_buffer\n");
 87		goto out_free_image;
 88	}
 89
 90	if (!kexec_on_panic) {
 91		image->swap_page = kimage_alloc_control_pages(image, 0);
 92		if (!image->swap_page) {
 93			pr_err("Could not allocate swap buffer\n");
 94			goto out_free_control_pages;
 95		}
 96	}
 97
 98	*rimage = image;
 99	return 0;
100out_free_control_pages:
101	kimage_free_page_list(&image->control_pages);
102out_free_image:
103	kfree(image);
104	return ret;
105}
106
107static int do_kexec_load(unsigned long entry, unsigned long nr_segments,
108		struct kexec_segment __user *segments, unsigned long flags)
109{
110	struct kimage **dest_image, *image;
111	unsigned long i;
112	int ret;
113
114	if (flags & KEXEC_ON_CRASH) {
115		dest_image = &kexec_crash_image;
116		if (kexec_crash_image)
117			arch_kexec_unprotect_crashkres();
118	} else {
119		dest_image = &kexec_image;
120	}
121
122	if (nr_segments == 0) {
123		/* Uninstall image */
124		kimage_free(xchg(dest_image, NULL));
125		return 0;
126	}
127	if (flags & KEXEC_ON_CRASH) {
128		/*
129		 * Loading another kernel to switch to if this one
130		 * crashes.  Free any current crash dump kernel before
131		 * we corrupt it.
132		 */
133		kimage_free(xchg(&kexec_crash_image, NULL));
134	}
135
136	ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags);
137	if (ret)
138		return ret;
139
140	if (flags & KEXEC_PRESERVE_CONTEXT)
141		image->preserve_context = 1;
142
143	ret = machine_kexec_prepare(image);
144	if (ret)
145		goto out;
146
147	for (i = 0; i < nr_segments; i++) {
148		ret = kimage_load_segment(image, &image->segment[i]);
149		if (ret)
150			goto out;
151	}
152
153	kimage_terminate(image);
154
155	/* Install the new kernel and uninstall the old */
156	image = xchg(dest_image, image);
157
158out:
159	if ((flags & KEXEC_ON_CRASH) && kexec_crash_image)
160		arch_kexec_protect_crashkres();
161
162	kimage_free(image);
163	return ret;
164}
165
166/*
167 * Exec Kernel system call: for obvious reasons only root may call it.
168 *
169 * This call breaks up into three pieces.
170 * - A generic part which loads the new kernel from the current
171 *   address space, and very carefully places the data in the
172 *   allocated pages.
173 *
174 * - A generic part that interacts with the kernel and tells all of
175 *   the devices to shut down.  Preventing on-going dmas, and placing
176 *   the devices in a consistent state so a later kernel can
177 *   reinitialize them.
178 *
179 * - A machine specific part that includes the syscall number
180 *   and then copies the image to it's final destination.  And
181 *   jumps into the image at entry.
182 *
183 * kexec does not sync, or unmount filesystems so if you need
184 * that to happen you need to do that yourself.
185 */
186
187SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
188		struct kexec_segment __user *, segments, unsigned long, flags)
189{
 
190	int result;
191
192	/* We only trust the superuser with rebooting the system. */
193	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
194		return -EPERM;
195
196	/*
197	 * Verify we have a legal set of flags
198	 * This leaves us room for future extensions.
199	 */
200	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
201		return -EINVAL;
202
203	/* Verify we are on the appropriate architecture */
204	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
205		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
206		return -EINVAL;
207
208	/* Put an artificial cap on the number
209	 * of segments passed to kexec_load.
210	 */
211	if (nr_segments > KEXEC_SEGMENT_MAX)
212		return -EINVAL;
213
 
 
 
214	/* Because we write directly to the reserved memory
215	 * region when loading crash kernels we need a mutex here to
216	 * prevent multiple crash  kernels from attempting to load
217	 * simultaneously, and to prevent a crash kernel from loading
218	 * over the top of a in use crash kernel.
219	 *
220	 * KISS: always take the mutex.
221	 */
222	if (!mutex_trylock(&kexec_mutex))
223		return -EBUSY;
224
225	result = do_kexec_load(entry, nr_segments, segments, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
 
227	mutex_unlock(&kexec_mutex);
 
228
229	return result;
230}
231
232#ifdef CONFIG_COMPAT
233COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
234		       compat_ulong_t, nr_segments,
235		       struct compat_kexec_segment __user *, segments,
236		       compat_ulong_t, flags)
237{
238	struct compat_kexec_segment in;
239	struct kexec_segment out, __user *ksegments;
240	unsigned long i, result;
241
242	/* Don't allow clients that don't understand the native
243	 * architecture to do anything.
244	 */
245	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
246		return -EINVAL;
247
248	if (nr_segments > KEXEC_SEGMENT_MAX)
249		return -EINVAL;
250
251	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
252	for (i = 0; i < nr_segments; i++) {
253		result = copy_from_user(&in, &segments[i], sizeof(in));
254		if (result)
255			return -EFAULT;
256
257		out.buf   = compat_ptr(in.buf);
258		out.bufsz = in.bufsz;
259		out.mem   = in.mem;
260		out.memsz = in.memsz;
261
262		result = copy_to_user(&ksegments[i], &out, sizeof(out));
263		if (result)
264			return -EFAULT;
265	}
266
267	return sys_kexec_load(entry, nr_segments, ksegments, flags);
268}
269#endif
v4.6
  1/*
  2 * kexec.c - kexec_load system call
  3 * Copyright (C) 2002-2004 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
 10
 11#include <linux/capability.h>
 12#include <linux/mm.h>
 13#include <linux/file.h>
 14#include <linux/kexec.h>
 15#include <linux/mutex.h>
 16#include <linux/list.h>
 17#include <linux/syscalls.h>
 18#include <linux/vmalloc.h>
 19#include <linux/slab.h>
 20
 21#include "kexec_internal.h"
 22
 23static int copy_user_segment_list(struct kimage *image,
 24				  unsigned long nr_segments,
 25				  struct kexec_segment __user *segments)
 26{
 27	int ret;
 28	size_t segment_bytes;
 29
 30	/* Read in the segments */
 31	image->nr_segments = nr_segments;
 32	segment_bytes = nr_segments * sizeof(*segments);
 33	ret = copy_from_user(image->segment, segments, segment_bytes);
 34	if (ret)
 35		ret = -EFAULT;
 36
 37	return ret;
 38}
 39
 40static int kimage_alloc_init(struct kimage **rimage, unsigned long entry,
 41			     unsigned long nr_segments,
 42			     struct kexec_segment __user *segments,
 43			     unsigned long flags)
 44{
 45	int ret;
 46	struct kimage *image;
 47	bool kexec_on_panic = flags & KEXEC_ON_CRASH;
 48
 49	if (kexec_on_panic) {
 50		/* Verify we have a valid entry point */
 51		if ((entry < crashk_res.start) || (entry > crashk_res.end))
 
 52			return -EADDRNOTAVAIL;
 53	}
 54
 55	/* Allocate and initialize a controlling structure */
 56	image = do_kimage_alloc_init();
 57	if (!image)
 58		return -ENOMEM;
 59
 60	image->start = entry;
 61
 62	ret = copy_user_segment_list(image, nr_segments, segments);
 63	if (ret)
 64		goto out_free_image;
 65
 66	if (kexec_on_panic) {
 67		/* Enable special crash kernel control page alloc policy. */
 68		image->control_page = crashk_res.start;
 69		image->type = KEXEC_TYPE_CRASH;
 70	}
 71
 72	ret = sanity_check_segment_list(image);
 73	if (ret)
 74		goto out_free_image;
 75
 76	/*
 77	 * Find a location for the control code buffer, and add it
 78	 * the vector of segments so that it's pages will also be
 79	 * counted as destination pages.
 80	 */
 81	ret = -ENOMEM;
 82	image->control_code_page = kimage_alloc_control_pages(image,
 83					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 84	if (!image->control_code_page) {
 85		pr_err("Could not allocate control_code_buffer\n");
 86		goto out_free_image;
 87	}
 88
 89	if (!kexec_on_panic) {
 90		image->swap_page = kimage_alloc_control_pages(image, 0);
 91		if (!image->swap_page) {
 92			pr_err("Could not allocate swap buffer\n");
 93			goto out_free_control_pages;
 94		}
 95	}
 96
 97	*rimage = image;
 98	return 0;
 99out_free_control_pages:
100	kimage_free_page_list(&image->control_pages);
101out_free_image:
102	kfree(image);
103	return ret;
104}
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106/*
107 * Exec Kernel system call: for obvious reasons only root may call it.
108 *
109 * This call breaks up into three pieces.
110 * - A generic part which loads the new kernel from the current
111 *   address space, and very carefully places the data in the
112 *   allocated pages.
113 *
114 * - A generic part that interacts with the kernel and tells all of
115 *   the devices to shut down.  Preventing on-going dmas, and placing
116 *   the devices in a consistent state so a later kernel can
117 *   reinitialize them.
118 *
119 * - A machine specific part that includes the syscall number
120 *   and then copies the image to it's final destination.  And
121 *   jumps into the image at entry.
122 *
123 * kexec does not sync, or unmount filesystems so if you need
124 * that to happen you need to do that yourself.
125 */
126
127SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments,
128		struct kexec_segment __user *, segments, unsigned long, flags)
129{
130	struct kimage **dest_image, *image;
131	int result;
132
133	/* We only trust the superuser with rebooting the system. */
134	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
135		return -EPERM;
136
137	/*
138	 * Verify we have a legal set of flags
139	 * This leaves us room for future extensions.
140	 */
141	if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK))
142		return -EINVAL;
143
144	/* Verify we are on the appropriate architecture */
145	if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) &&
146		((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT))
147		return -EINVAL;
148
149	/* Put an artificial cap on the number
150	 * of segments passed to kexec_load.
151	 */
152	if (nr_segments > KEXEC_SEGMENT_MAX)
153		return -EINVAL;
154
155	image = NULL;
156	result = 0;
157
158	/* Because we write directly to the reserved memory
159	 * region when loading crash kernels we need a mutex here to
160	 * prevent multiple crash  kernels from attempting to load
161	 * simultaneously, and to prevent a crash kernel from loading
162	 * over the top of a in use crash kernel.
163	 *
164	 * KISS: always take the mutex.
165	 */
166	if (!mutex_trylock(&kexec_mutex))
167		return -EBUSY;
168
169	dest_image = &kexec_image;
170	if (flags & KEXEC_ON_CRASH)
171		dest_image = &kexec_crash_image;
172	if (nr_segments > 0) {
173		unsigned long i;
174
175		if (flags & KEXEC_ON_CRASH) {
176			/*
177			 * Loading another kernel to switch to if this one
178			 * crashes.  Free any current crash dump kernel before
179			 * we corrupt it.
180			 */
181
182			kimage_free(xchg(&kexec_crash_image, NULL));
183			result = kimage_alloc_init(&image, entry, nr_segments,
184						   segments, flags);
185			crash_map_reserved_pages();
186		} else {
187			/* Loading another kernel to reboot into. */
188
189			result = kimage_alloc_init(&image, entry, nr_segments,
190						   segments, flags);
191		}
192		if (result)
193			goto out;
194
195		if (flags & KEXEC_PRESERVE_CONTEXT)
196			image->preserve_context = 1;
197		result = machine_kexec_prepare(image);
198		if (result)
199			goto out;
200
201		for (i = 0; i < nr_segments; i++) {
202			result = kimage_load_segment(image, &image->segment[i]);
203			if (result)
204				goto out;
205		}
206		kimage_terminate(image);
207		if (flags & KEXEC_ON_CRASH)
208			crash_unmap_reserved_pages();
209	}
210	/* Install the new kernel, and  Uninstall the old */
211	image = xchg(dest_image, image);
212
213out:
214	mutex_unlock(&kexec_mutex);
215	kimage_free(image);
216
217	return result;
218}
219
220#ifdef CONFIG_COMPAT
221COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry,
222		       compat_ulong_t, nr_segments,
223		       struct compat_kexec_segment __user *, segments,
224		       compat_ulong_t, flags)
225{
226	struct compat_kexec_segment in;
227	struct kexec_segment out, __user *ksegments;
228	unsigned long i, result;
229
230	/* Don't allow clients that don't understand the native
231	 * architecture to do anything.
232	 */
233	if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT)
234		return -EINVAL;
235
236	if (nr_segments > KEXEC_SEGMENT_MAX)
237		return -EINVAL;
238
239	ksegments = compat_alloc_user_space(nr_segments * sizeof(out));
240	for (i = 0; i < nr_segments; i++) {
241		result = copy_from_user(&in, &segments[i], sizeof(in));
242		if (result)
243			return -EFAULT;
244
245		out.buf   = compat_ptr(in.buf);
246		out.bufsz = in.bufsz;
247		out.mem   = in.mem;
248		out.memsz = in.memsz;
249
250		result = copy_to_user(&ksegments[i], &out, sizeof(out));
251		if (result)
252			return -EFAULT;
253	}
254
255	return sys_kexec_load(entry, nr_segments, ksegments, flags);
256}
257#endif