Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 *  linux/fs/hfs/super.c
  3 *
  4 * Copyright (C) 1995-1997  Paul H. Hargrove
  5 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6 * This file may be distributed under the terms of the GNU General Public License.
  7 *
  8 * This file contains hfs_read_super(), some of the super_ops and
  9 * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
 10 * inode.c since they deal with inodes.
 11 *
 12 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/blkdev.h>
 17#include <linux/backing-dev.h>
 18#include <linux/mount.h>
 19#include <linux/init.h>
 20#include <linux/nls.h>
 21#include <linux/parser.h>
 22#include <linux/seq_file.h>
 23#include <linux/slab.h>
 24#include <linux/vfs.h>
 25
 26#include "hfs_fs.h"
 27#include "btree.h"
 28
 29static struct kmem_cache *hfs_inode_cachep;
 30
 31MODULE_LICENSE("GPL");
 32
 33static int hfs_sync_fs(struct super_block *sb, int wait)
 34{
 35	hfs_mdb_commit(sb);
 36	return 0;
 37}
 38
 39/*
 40 * hfs_put_super()
 41 *
 42 * This is the put_super() entry in the super_operations structure for
 43 * HFS filesystems.  The purpose is to release the resources
 44 * associated with the superblock sb.
 45 */
 46static void hfs_put_super(struct super_block *sb)
 47{
 48	cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
 49	hfs_mdb_close(sb);
 50	/* release the MDB's resources */
 51	hfs_mdb_put(sb);
 52}
 53
 54static void flush_mdb(struct work_struct *work)
 55{
 56	struct hfs_sb_info *sbi;
 57	struct super_block *sb;
 58
 59	sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
 60	sb = sbi->sb;
 61
 62	spin_lock(&sbi->work_lock);
 63	sbi->work_queued = 0;
 64	spin_unlock(&sbi->work_lock);
 65
 66	hfs_mdb_commit(sb);
 67}
 68
 69void hfs_mark_mdb_dirty(struct super_block *sb)
 70{
 71	struct hfs_sb_info *sbi = HFS_SB(sb);
 72	unsigned long delay;
 73
 74	if (sb->s_flags & MS_RDONLY)
 75		return;
 76
 77	spin_lock(&sbi->work_lock);
 78	if (!sbi->work_queued) {
 79		delay = msecs_to_jiffies(dirty_writeback_interval * 10);
 80		queue_delayed_work(system_long_wq, &sbi->mdb_work, delay);
 81		sbi->work_queued = 1;
 82	}
 83	spin_unlock(&sbi->work_lock);
 84}
 85
 86/*
 87 * hfs_statfs()
 88 *
 89 * This is the statfs() entry in the super_operations structure for
 90 * HFS filesystems.  The purpose is to return various data about the
 91 * filesystem.
 92 *
 93 * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
 94 */
 95static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 96{
 97	struct super_block *sb = dentry->d_sb;
 98	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 99
100	buf->f_type = HFS_SUPER_MAGIC;
101	buf->f_bsize = sb->s_blocksize;
102	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
103	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
104	buf->f_bavail = buf->f_bfree;
105	buf->f_files = HFS_SB(sb)->fs_ablocks;
106	buf->f_ffree = HFS_SB(sb)->free_ablocks;
107	buf->f_fsid.val[0] = (u32)id;
108	buf->f_fsid.val[1] = (u32)(id >> 32);
109	buf->f_namelen = HFS_NAMELEN;
110
111	return 0;
112}
113
114static int hfs_remount(struct super_block *sb, int *flags, char *data)
115{
116	sync_filesystem(sb);
117	*flags |= MS_NODIRATIME;
118	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
119		return 0;
120	if (!(*flags & MS_RDONLY)) {
121		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
122			pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended.  leaving read-only.\n");
123			sb->s_flags |= MS_RDONLY;
124			*flags |= MS_RDONLY;
125		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
126			pr_warn("filesystem is marked locked, leaving read-only.\n");
127			sb->s_flags |= MS_RDONLY;
128			*flags |= MS_RDONLY;
129		}
130	}
131	return 0;
132}
133
134static int hfs_show_options(struct seq_file *seq, struct dentry *root)
135{
136	struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
137
138	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
139		seq_show_option_n(seq, "creator", (char *)&sbi->s_creator, 4);
140	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
141		seq_show_option_n(seq, "type", (char *)&sbi->s_type, 4);
142	seq_printf(seq, ",uid=%u,gid=%u",
143			from_kuid_munged(&init_user_ns, sbi->s_uid),
144			from_kgid_munged(&init_user_ns, sbi->s_gid));
145	if (sbi->s_file_umask != 0133)
146		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
147	if (sbi->s_dir_umask != 0022)
148		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
149	if (sbi->part >= 0)
150		seq_printf(seq, ",part=%u", sbi->part);
151	if (sbi->session >= 0)
152		seq_printf(seq, ",session=%u", sbi->session);
153	if (sbi->nls_disk)
154		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
155	if (sbi->nls_io)
156		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
157	if (sbi->s_quiet)
158		seq_printf(seq, ",quiet");
159	return 0;
160}
161
162static struct inode *hfs_alloc_inode(struct super_block *sb)
163{
164	struct hfs_inode_info *i;
165
166	i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
167	return i ? &i->vfs_inode : NULL;
168}
169
170static void hfs_i_callback(struct rcu_head *head)
171{
172	struct inode *inode = container_of(head, struct inode, i_rcu);
173	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
174}
175
176static void hfs_destroy_inode(struct inode *inode)
177{
178	call_rcu(&inode->i_rcu, hfs_i_callback);
179}
180
181static const struct super_operations hfs_super_operations = {
182	.alloc_inode	= hfs_alloc_inode,
183	.destroy_inode	= hfs_destroy_inode,
184	.write_inode	= hfs_write_inode,
185	.evict_inode	= hfs_evict_inode,
186	.put_super	= hfs_put_super,
187	.sync_fs	= hfs_sync_fs,
188	.statfs		= hfs_statfs,
189	.remount_fs     = hfs_remount,
190	.show_options	= hfs_show_options,
191};
192
193enum {
194	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
195	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
196	opt_codepage, opt_iocharset,
197	opt_err
198};
199
200static const match_table_t tokens = {
201	{ opt_uid, "uid=%u" },
202	{ opt_gid, "gid=%u" },
203	{ opt_umask, "umask=%o" },
204	{ opt_file_umask, "file_umask=%o" },
205	{ opt_dir_umask, "dir_umask=%o" },
206	{ opt_part, "part=%u" },
207	{ opt_session, "session=%u" },
208	{ opt_type, "type=%s" },
209	{ opt_creator, "creator=%s" },
210	{ opt_quiet, "quiet" },
211	{ opt_codepage, "codepage=%s" },
212	{ opt_iocharset, "iocharset=%s" },
213	{ opt_err, NULL }
214};
215
216static inline int match_fourchar(substring_t *arg, u32 *result)
217{
218	if (arg->to - arg->from != 4)
219		return -EINVAL;
220	memcpy(result, arg->from, 4);
221	return 0;
222}
223
224/*
225 * parse_options()
226 *
227 * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
228 * This function is called by hfs_read_super() to parse the mount options.
229 */
230static int parse_options(char *options, struct hfs_sb_info *hsb)
231{
232	char *p;
233	substring_t args[MAX_OPT_ARGS];
234	int tmp, token;
235
236	/* initialize the sb with defaults */
237	hsb->s_uid = current_uid();
238	hsb->s_gid = current_gid();
239	hsb->s_file_umask = 0133;
240	hsb->s_dir_umask = 0022;
241	hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f);	/* == '????' */
242	hsb->s_quiet = 0;
243	hsb->part = -1;
244	hsb->session = -1;
245
246	if (!options)
247		return 1;
248
249	while ((p = strsep(&options, ",")) != NULL) {
250		if (!*p)
251			continue;
252
253		token = match_token(p, tokens, args);
254		switch (token) {
255		case opt_uid:
256			if (match_int(&args[0], &tmp)) {
257				pr_err("uid requires an argument\n");
258				return 0;
259			}
260			hsb->s_uid = make_kuid(current_user_ns(), (uid_t)tmp);
261			if (!uid_valid(hsb->s_uid)) {
262				pr_err("invalid uid %d\n", tmp);
263				return 0;
264			}
265			break;
266		case opt_gid:
267			if (match_int(&args[0], &tmp)) {
268				pr_err("gid requires an argument\n");
269				return 0;
270			}
271			hsb->s_gid = make_kgid(current_user_ns(), (gid_t)tmp);
272			if (!gid_valid(hsb->s_gid)) {
273				pr_err("invalid gid %d\n", tmp);
274				return 0;
275			}
276			break;
277		case opt_umask:
278			if (match_octal(&args[0], &tmp)) {
279				pr_err("umask requires a value\n");
280				return 0;
281			}
282			hsb->s_file_umask = (umode_t)tmp;
283			hsb->s_dir_umask = (umode_t)tmp;
284			break;
285		case opt_file_umask:
286			if (match_octal(&args[0], &tmp)) {
287				pr_err("file_umask requires a value\n");
288				return 0;
289			}
290			hsb->s_file_umask = (umode_t)tmp;
291			break;
292		case opt_dir_umask:
293			if (match_octal(&args[0], &tmp)) {
294				pr_err("dir_umask requires a value\n");
295				return 0;
296			}
297			hsb->s_dir_umask = (umode_t)tmp;
298			break;
299		case opt_part:
300			if (match_int(&args[0], &hsb->part)) {
301				pr_err("part requires an argument\n");
302				return 0;
303			}
304			break;
305		case opt_session:
306			if (match_int(&args[0], &hsb->session)) {
307				pr_err("session requires an argument\n");
308				return 0;
309			}
310			break;
311		case opt_type:
312			if (match_fourchar(&args[0], &hsb->s_type)) {
313				pr_err("type requires a 4 character value\n");
314				return 0;
315			}
316			break;
317		case opt_creator:
318			if (match_fourchar(&args[0], &hsb->s_creator)) {
319				pr_err("creator requires a 4 character value\n");
320				return 0;
321			}
322			break;
323		case opt_quiet:
324			hsb->s_quiet = 1;
325			break;
326		case opt_codepage:
327			if (hsb->nls_disk) {
328				pr_err("unable to change codepage\n");
329				return 0;
330			}
331			p = match_strdup(&args[0]);
332			if (p)
333				hsb->nls_disk = load_nls(p);
334			if (!hsb->nls_disk) {
335				pr_err("unable to load codepage \"%s\"\n", p);
336				kfree(p);
337				return 0;
338			}
339			kfree(p);
340			break;
341		case opt_iocharset:
342			if (hsb->nls_io) {
343				pr_err("unable to change iocharset\n");
344				return 0;
345			}
346			p = match_strdup(&args[0]);
347			if (p)
348				hsb->nls_io = load_nls(p);
349			if (!hsb->nls_io) {
350				pr_err("unable to load iocharset \"%s\"\n", p);
351				kfree(p);
352				return 0;
353			}
354			kfree(p);
355			break;
356		default:
357			return 0;
358		}
359	}
360
361	if (hsb->nls_disk && !hsb->nls_io) {
362		hsb->nls_io = load_nls_default();
363		if (!hsb->nls_io) {
364			pr_err("unable to load default iocharset\n");
365			return 0;
366		}
367	}
368	hsb->s_dir_umask &= 0777;
369	hsb->s_file_umask &= 0577;
370
371	return 1;
372}
373
374/*
375 * hfs_read_super()
376 *
377 * This is the function that is responsible for mounting an HFS
378 * filesystem.	It performs all the tasks necessary to get enough data
379 * from the disk to read the root inode.  This includes parsing the
380 * mount options, dealing with Macintosh partitions, reading the
381 * superblock and the allocation bitmap blocks, calling
382 * hfs_btree_init() to get the necessary data about the extents and
383 * catalog B-trees and, finally, reading the root inode into memory.
384 */
385static int hfs_fill_super(struct super_block *sb, void *data, int silent)
386{
387	struct hfs_sb_info *sbi;
388	struct hfs_find_data fd;
389	hfs_cat_rec rec;
390	struct inode *root_inode;
391	int res;
392
393	sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
394	if (!sbi)
395		return -ENOMEM;
396
397	sbi->sb = sb;
398	sb->s_fs_info = sbi;
399	spin_lock_init(&sbi->work_lock);
400	INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
401
402	res = -EINVAL;
403	if (!parse_options((char *)data, sbi)) {
404		pr_err("unable to parse mount options\n");
405		goto bail;
406	}
407
408	sb->s_op = &hfs_super_operations;
409	sb->s_xattr = hfs_xattr_handlers;
410	sb->s_flags |= MS_NODIRATIME;
411	mutex_init(&sbi->bitmap_lock);
412
413	res = hfs_mdb_get(sb);
414	if (res) {
415		if (!silent)
416			pr_warn("can't find a HFS filesystem on dev %s\n",
417				hfs_mdb_name(sb));
418		res = -EINVAL;
419		goto bail;
420	}
421
422	/* try to get the root inode */
423	res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
424	if (res)
425		goto bail_no_root;
426	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
427	if (!res) {
428		if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
429			res =  -EIO;
430			goto bail;
431		}
432		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
433	}
434	if (res) {
435		hfs_find_exit(&fd);
436		goto bail_no_root;
437	}
438	res = -EINVAL;
439	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
440	hfs_find_exit(&fd);
441	if (!root_inode)
442		goto bail_no_root;
443
444	sb->s_d_op = &hfs_dentry_operations;
445	res = -ENOMEM;
446	sb->s_root = d_make_root(root_inode);
447	if (!sb->s_root)
448		goto bail_no_root;
449
450	/* everything's okay */
451	return 0;
452
453bail_no_root:
454	pr_err("get root inode failed\n");
455bail:
456	hfs_mdb_put(sb);
457	return res;
458}
459
460static struct dentry *hfs_mount(struct file_system_type *fs_type,
461		      int flags, const char *dev_name, void *data)
462{
463	return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
464}
465
466static struct file_system_type hfs_fs_type = {
467	.owner		= THIS_MODULE,
468	.name		= "hfs",
469	.mount		= hfs_mount,
470	.kill_sb	= kill_block_super,
471	.fs_flags	= FS_REQUIRES_DEV,
472};
473MODULE_ALIAS_FS("hfs");
474
475static void hfs_init_once(void *p)
476{
477	struct hfs_inode_info *i = p;
478
479	inode_init_once(&i->vfs_inode);
480}
481
482static int __init init_hfs_fs(void)
483{
484	int err;
485
486	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
487		sizeof(struct hfs_inode_info), 0,
488		SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, hfs_init_once);
489	if (!hfs_inode_cachep)
490		return -ENOMEM;
491	err = register_filesystem(&hfs_fs_type);
492	if (err)
493		kmem_cache_destroy(hfs_inode_cachep);
494	return err;
495}
496
497static void __exit exit_hfs_fs(void)
498{
499	unregister_filesystem(&hfs_fs_type);
500
501	/*
502	 * Make sure all delayed rcu free inodes are flushed before we
503	 * destroy cache.
504	 */
505	rcu_barrier();
506	kmem_cache_destroy(hfs_inode_cachep);
507}
508
509module_init(init_hfs_fs)
510module_exit(exit_hfs_fs)
v4.6
  1/*
  2 *  linux/fs/hfs/super.c
  3 *
  4 * Copyright (C) 1995-1997  Paul H. Hargrove
  5 * (C) 2003 Ardis Technologies <roman@ardistech.com>
  6 * This file may be distributed under the terms of the GNU General Public License.
  7 *
  8 * This file contains hfs_read_super(), some of the super_ops and
  9 * init_hfs_fs() and exit_hfs_fs().  The remaining super_ops are in
 10 * inode.c since they deal with inodes.
 11 *
 12 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
 13 */
 14
 15#include <linux/module.h>
 16#include <linux/blkdev.h>
 17#include <linux/backing-dev.h>
 18#include <linux/mount.h>
 19#include <linux/init.h>
 20#include <linux/nls.h>
 21#include <linux/parser.h>
 22#include <linux/seq_file.h>
 23#include <linux/slab.h>
 24#include <linux/vfs.h>
 25
 26#include "hfs_fs.h"
 27#include "btree.h"
 28
 29static struct kmem_cache *hfs_inode_cachep;
 30
 31MODULE_LICENSE("GPL");
 32
 33static int hfs_sync_fs(struct super_block *sb, int wait)
 34{
 35	hfs_mdb_commit(sb);
 36	return 0;
 37}
 38
 39/*
 40 * hfs_put_super()
 41 *
 42 * This is the put_super() entry in the super_operations structure for
 43 * HFS filesystems.  The purpose is to release the resources
 44 * associated with the superblock sb.
 45 */
 46static void hfs_put_super(struct super_block *sb)
 47{
 48	cancel_delayed_work_sync(&HFS_SB(sb)->mdb_work);
 49	hfs_mdb_close(sb);
 50	/* release the MDB's resources */
 51	hfs_mdb_put(sb);
 52}
 53
 54static void flush_mdb(struct work_struct *work)
 55{
 56	struct hfs_sb_info *sbi;
 57	struct super_block *sb;
 58
 59	sbi = container_of(work, struct hfs_sb_info, mdb_work.work);
 60	sb = sbi->sb;
 61
 62	spin_lock(&sbi->work_lock);
 63	sbi->work_queued = 0;
 64	spin_unlock(&sbi->work_lock);
 65
 66	hfs_mdb_commit(sb);
 67}
 68
 69void hfs_mark_mdb_dirty(struct super_block *sb)
 70{
 71	struct hfs_sb_info *sbi = HFS_SB(sb);
 72	unsigned long delay;
 73
 74	if (sb->s_flags & MS_RDONLY)
 75		return;
 76
 77	spin_lock(&sbi->work_lock);
 78	if (!sbi->work_queued) {
 79		delay = msecs_to_jiffies(dirty_writeback_interval * 10);
 80		queue_delayed_work(system_long_wq, &sbi->mdb_work, delay);
 81		sbi->work_queued = 1;
 82	}
 83	spin_unlock(&sbi->work_lock);
 84}
 85
 86/*
 87 * hfs_statfs()
 88 *
 89 * This is the statfs() entry in the super_operations structure for
 90 * HFS filesystems.  The purpose is to return various data about the
 91 * filesystem.
 92 *
 93 * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
 94 */
 95static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
 96{
 97	struct super_block *sb = dentry->d_sb;
 98	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 99
100	buf->f_type = HFS_SUPER_MAGIC;
101	buf->f_bsize = sb->s_blocksize;
102	buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
103	buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
104	buf->f_bavail = buf->f_bfree;
105	buf->f_files = HFS_SB(sb)->fs_ablocks;
106	buf->f_ffree = HFS_SB(sb)->free_ablocks;
107	buf->f_fsid.val[0] = (u32)id;
108	buf->f_fsid.val[1] = (u32)(id >> 32);
109	buf->f_namelen = HFS_NAMELEN;
110
111	return 0;
112}
113
114static int hfs_remount(struct super_block *sb, int *flags, char *data)
115{
116	sync_filesystem(sb);
117	*flags |= MS_NODIRATIME;
118	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
119		return 0;
120	if (!(*flags & MS_RDONLY)) {
121		if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
122			pr_warn("filesystem was not cleanly unmounted, running fsck.hfs is recommended.  leaving read-only.\n");
123			sb->s_flags |= MS_RDONLY;
124			*flags |= MS_RDONLY;
125		} else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
126			pr_warn("filesystem is marked locked, leaving read-only.\n");
127			sb->s_flags |= MS_RDONLY;
128			*flags |= MS_RDONLY;
129		}
130	}
131	return 0;
132}
133
134static int hfs_show_options(struct seq_file *seq, struct dentry *root)
135{
136	struct hfs_sb_info *sbi = HFS_SB(root->d_sb);
137
138	if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
139		seq_show_option_n(seq, "creator", (char *)&sbi->s_creator, 4);
140	if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
141		seq_show_option_n(seq, "type", (char *)&sbi->s_type, 4);
142	seq_printf(seq, ",uid=%u,gid=%u",
143			from_kuid_munged(&init_user_ns, sbi->s_uid),
144			from_kgid_munged(&init_user_ns, sbi->s_gid));
145	if (sbi->s_file_umask != 0133)
146		seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
147	if (sbi->s_dir_umask != 0022)
148		seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
149	if (sbi->part >= 0)
150		seq_printf(seq, ",part=%u", sbi->part);
151	if (sbi->session >= 0)
152		seq_printf(seq, ",session=%u", sbi->session);
153	if (sbi->nls_disk)
154		seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
155	if (sbi->nls_io)
156		seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
157	if (sbi->s_quiet)
158		seq_printf(seq, ",quiet");
159	return 0;
160}
161
162static struct inode *hfs_alloc_inode(struct super_block *sb)
163{
164	struct hfs_inode_info *i;
165
166	i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
167	return i ? &i->vfs_inode : NULL;
168}
169
170static void hfs_i_callback(struct rcu_head *head)
171{
172	struct inode *inode = container_of(head, struct inode, i_rcu);
173	kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
174}
175
176static void hfs_destroy_inode(struct inode *inode)
177{
178	call_rcu(&inode->i_rcu, hfs_i_callback);
179}
180
181static const struct super_operations hfs_super_operations = {
182	.alloc_inode	= hfs_alloc_inode,
183	.destroy_inode	= hfs_destroy_inode,
184	.write_inode	= hfs_write_inode,
185	.evict_inode	= hfs_evict_inode,
186	.put_super	= hfs_put_super,
187	.sync_fs	= hfs_sync_fs,
188	.statfs		= hfs_statfs,
189	.remount_fs     = hfs_remount,
190	.show_options	= hfs_show_options,
191};
192
193enum {
194	opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
195	opt_part, opt_session, opt_type, opt_creator, opt_quiet,
196	opt_codepage, opt_iocharset,
197	opt_err
198};
199
200static const match_table_t tokens = {
201	{ opt_uid, "uid=%u" },
202	{ opt_gid, "gid=%u" },
203	{ opt_umask, "umask=%o" },
204	{ opt_file_umask, "file_umask=%o" },
205	{ opt_dir_umask, "dir_umask=%o" },
206	{ opt_part, "part=%u" },
207	{ opt_session, "session=%u" },
208	{ opt_type, "type=%s" },
209	{ opt_creator, "creator=%s" },
210	{ opt_quiet, "quiet" },
211	{ opt_codepage, "codepage=%s" },
212	{ opt_iocharset, "iocharset=%s" },
213	{ opt_err, NULL }
214};
215
216static inline int match_fourchar(substring_t *arg, u32 *result)
217{
218	if (arg->to - arg->from != 4)
219		return -EINVAL;
220	memcpy(result, arg->from, 4);
221	return 0;
222}
223
224/*
225 * parse_options()
226 *
227 * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
228 * This function is called by hfs_read_super() to parse the mount options.
229 */
230static int parse_options(char *options, struct hfs_sb_info *hsb)
231{
232	char *p;
233	substring_t args[MAX_OPT_ARGS];
234	int tmp, token;
235
236	/* initialize the sb with defaults */
237	hsb->s_uid = current_uid();
238	hsb->s_gid = current_gid();
239	hsb->s_file_umask = 0133;
240	hsb->s_dir_umask = 0022;
241	hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f);	/* == '????' */
242	hsb->s_quiet = 0;
243	hsb->part = -1;
244	hsb->session = -1;
245
246	if (!options)
247		return 1;
248
249	while ((p = strsep(&options, ",")) != NULL) {
250		if (!*p)
251			continue;
252
253		token = match_token(p, tokens, args);
254		switch (token) {
255		case opt_uid:
256			if (match_int(&args[0], &tmp)) {
257				pr_err("uid requires an argument\n");
258				return 0;
259			}
260			hsb->s_uid = make_kuid(current_user_ns(), (uid_t)tmp);
261			if (!uid_valid(hsb->s_uid)) {
262				pr_err("invalid uid %d\n", tmp);
263				return 0;
264			}
265			break;
266		case opt_gid:
267			if (match_int(&args[0], &tmp)) {
268				pr_err("gid requires an argument\n");
269				return 0;
270			}
271			hsb->s_gid = make_kgid(current_user_ns(), (gid_t)tmp);
272			if (!gid_valid(hsb->s_gid)) {
273				pr_err("invalid gid %d\n", tmp);
274				return 0;
275			}
276			break;
277		case opt_umask:
278			if (match_octal(&args[0], &tmp)) {
279				pr_err("umask requires a value\n");
280				return 0;
281			}
282			hsb->s_file_umask = (umode_t)tmp;
283			hsb->s_dir_umask = (umode_t)tmp;
284			break;
285		case opt_file_umask:
286			if (match_octal(&args[0], &tmp)) {
287				pr_err("file_umask requires a value\n");
288				return 0;
289			}
290			hsb->s_file_umask = (umode_t)tmp;
291			break;
292		case opt_dir_umask:
293			if (match_octal(&args[0], &tmp)) {
294				pr_err("dir_umask requires a value\n");
295				return 0;
296			}
297			hsb->s_dir_umask = (umode_t)tmp;
298			break;
299		case opt_part:
300			if (match_int(&args[0], &hsb->part)) {
301				pr_err("part requires an argument\n");
302				return 0;
303			}
304			break;
305		case opt_session:
306			if (match_int(&args[0], &hsb->session)) {
307				pr_err("session requires an argument\n");
308				return 0;
309			}
310			break;
311		case opt_type:
312			if (match_fourchar(&args[0], &hsb->s_type)) {
313				pr_err("type requires a 4 character value\n");
314				return 0;
315			}
316			break;
317		case opt_creator:
318			if (match_fourchar(&args[0], &hsb->s_creator)) {
319				pr_err("creator requires a 4 character value\n");
320				return 0;
321			}
322			break;
323		case opt_quiet:
324			hsb->s_quiet = 1;
325			break;
326		case opt_codepage:
327			if (hsb->nls_disk) {
328				pr_err("unable to change codepage\n");
329				return 0;
330			}
331			p = match_strdup(&args[0]);
332			if (p)
333				hsb->nls_disk = load_nls(p);
334			if (!hsb->nls_disk) {
335				pr_err("unable to load codepage \"%s\"\n", p);
336				kfree(p);
337				return 0;
338			}
339			kfree(p);
340			break;
341		case opt_iocharset:
342			if (hsb->nls_io) {
343				pr_err("unable to change iocharset\n");
344				return 0;
345			}
346			p = match_strdup(&args[0]);
347			if (p)
348				hsb->nls_io = load_nls(p);
349			if (!hsb->nls_io) {
350				pr_err("unable to load iocharset \"%s\"\n", p);
351				kfree(p);
352				return 0;
353			}
354			kfree(p);
355			break;
356		default:
357			return 0;
358		}
359	}
360
361	if (hsb->nls_disk && !hsb->nls_io) {
362		hsb->nls_io = load_nls_default();
363		if (!hsb->nls_io) {
364			pr_err("unable to load default iocharset\n");
365			return 0;
366		}
367	}
368	hsb->s_dir_umask &= 0777;
369	hsb->s_file_umask &= 0577;
370
371	return 1;
372}
373
374/*
375 * hfs_read_super()
376 *
377 * This is the function that is responsible for mounting an HFS
378 * filesystem.	It performs all the tasks necessary to get enough data
379 * from the disk to read the root inode.  This includes parsing the
380 * mount options, dealing with Macintosh partitions, reading the
381 * superblock and the allocation bitmap blocks, calling
382 * hfs_btree_init() to get the necessary data about the extents and
383 * catalog B-trees and, finally, reading the root inode into memory.
384 */
385static int hfs_fill_super(struct super_block *sb, void *data, int silent)
386{
387	struct hfs_sb_info *sbi;
388	struct hfs_find_data fd;
389	hfs_cat_rec rec;
390	struct inode *root_inode;
391	int res;
392
393	sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
394	if (!sbi)
395		return -ENOMEM;
396
397	sbi->sb = sb;
398	sb->s_fs_info = sbi;
399	spin_lock_init(&sbi->work_lock);
400	INIT_DELAYED_WORK(&sbi->mdb_work, flush_mdb);
401
402	res = -EINVAL;
403	if (!parse_options((char *)data, sbi)) {
404		pr_err("unable to parse mount options\n");
405		goto bail;
406	}
407
408	sb->s_op = &hfs_super_operations;
 
409	sb->s_flags |= MS_NODIRATIME;
410	mutex_init(&sbi->bitmap_lock);
411
412	res = hfs_mdb_get(sb);
413	if (res) {
414		if (!silent)
415			pr_warn("can't find a HFS filesystem on dev %s\n",
416				hfs_mdb_name(sb));
417		res = -EINVAL;
418		goto bail;
419	}
420
421	/* try to get the root inode */
422	res = hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
423	if (res)
424		goto bail_no_root;
425	res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
426	if (!res) {
427		if (fd.entrylength > sizeof(rec) || fd.entrylength < 0) {
428			res =  -EIO;
429			goto bail;
430		}
431		hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
432	}
433	if (res) {
434		hfs_find_exit(&fd);
435		goto bail_no_root;
436	}
437	res = -EINVAL;
438	root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
439	hfs_find_exit(&fd);
440	if (!root_inode)
441		goto bail_no_root;
442
443	sb->s_d_op = &hfs_dentry_operations;
444	res = -ENOMEM;
445	sb->s_root = d_make_root(root_inode);
446	if (!sb->s_root)
447		goto bail_no_root;
448
449	/* everything's okay */
450	return 0;
451
452bail_no_root:
453	pr_err("get root inode failed\n");
454bail:
455	hfs_mdb_put(sb);
456	return res;
457}
458
459static struct dentry *hfs_mount(struct file_system_type *fs_type,
460		      int flags, const char *dev_name, void *data)
461{
462	return mount_bdev(fs_type, flags, dev_name, data, hfs_fill_super);
463}
464
465static struct file_system_type hfs_fs_type = {
466	.owner		= THIS_MODULE,
467	.name		= "hfs",
468	.mount		= hfs_mount,
469	.kill_sb	= kill_block_super,
470	.fs_flags	= FS_REQUIRES_DEV,
471};
472MODULE_ALIAS_FS("hfs");
473
474static void hfs_init_once(void *p)
475{
476	struct hfs_inode_info *i = p;
477
478	inode_init_once(&i->vfs_inode);
479}
480
481static int __init init_hfs_fs(void)
482{
483	int err;
484
485	hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
486		sizeof(struct hfs_inode_info), 0,
487		SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, hfs_init_once);
488	if (!hfs_inode_cachep)
489		return -ENOMEM;
490	err = register_filesystem(&hfs_fs_type);
491	if (err)
492		kmem_cache_destroy(hfs_inode_cachep);
493	return err;
494}
495
496static void __exit exit_hfs_fs(void)
497{
498	unregister_filesystem(&hfs_fs_type);
499
500	/*
501	 * Make sure all delayed rcu free inodes are flushed before we
502	 * destroy cache.
503	 */
504	rcu_barrier();
505	kmem_cache_destroy(hfs_inode_cachep);
506}
507
508module_init(init_hfs_fs)
509module_exit(exit_hfs_fs)