Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26static struct kmem_cache *ino_entry_slab;
  27struct kmem_cache *inode_entry_slab;
  28
  29void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
  30{
  31	set_ckpt_flags(sbi, CP_ERROR_FLAG);
  32	sbi->sb->s_flags |= MS_RDONLY;
  33	if (!end_io)
  34		f2fs_flush_merged_bios(sbi);
  35}
  36
  37/*
  38 * We guarantee no failure on the returned page.
  39 */
  40struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  41{
  42	struct address_space *mapping = META_MAPPING(sbi);
  43	struct page *page = NULL;
  44repeat:
  45	page = f2fs_grab_cache_page(mapping, index, false);
  46	if (!page) {
  47		cond_resched();
  48		goto repeat;
  49	}
  50	f2fs_wait_on_page_writeback(page, META, true);
  51	if (!PageUptodate(page))
  52		SetPageUptodate(page);
  53	return page;
  54}
  55
  56/*
  57 * We guarantee no failure on the returned page.
  58 */
  59static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  60							bool is_meta)
  61{
  62	struct address_space *mapping = META_MAPPING(sbi);
  63	struct page *page;
  64	struct f2fs_io_info fio = {
  65		.sbi = sbi,
  66		.type = META,
  67		.op = REQ_OP_READ,
  68		.op_flags = REQ_META | REQ_PRIO,
  69		.old_blkaddr = index,
  70		.new_blkaddr = index,
  71		.encrypted_page = NULL,
  72	};
  73
  74	if (unlikely(!is_meta))
  75		fio.op_flags &= ~REQ_META;
  76repeat:
  77	page = f2fs_grab_cache_page(mapping, index, false);
  78	if (!page) {
  79		cond_resched();
  80		goto repeat;
  81	}
  82	if (PageUptodate(page))
  83		goto out;
  84
  85	fio.page = page;
  86
  87	if (f2fs_submit_page_bio(&fio)) {
  88		f2fs_put_page(page, 1);
  89		goto repeat;
  90	}
  91
  92	lock_page(page);
  93	if (unlikely(page->mapping != mapping)) {
  94		f2fs_put_page(page, 1);
  95		goto repeat;
  96	}
  97
  98	/*
  99	 * if there is any IO error when accessing device, make our filesystem
 100	 * readonly and make sure do not write checkpoint with non-uptodate
 101	 * meta page.
 102	 */
 103	if (unlikely(!PageUptodate(page)))
 104		f2fs_stop_checkpoint(sbi, false);
 105out:
 106	return page;
 107}
 108
 109struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 110{
 111	return __get_meta_page(sbi, index, true);
 112}
 113
 114/* for POR only */
 115struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 116{
 117	return __get_meta_page(sbi, index, false);
 118}
 119
 120bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
 121{
 122	switch (type) {
 123	case META_NAT:
 124		break;
 125	case META_SIT:
 126		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 127			return false;
 128		break;
 129	case META_SSA:
 130		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 131			blkaddr < SM_I(sbi)->ssa_blkaddr))
 132			return false;
 133		break;
 134	case META_CP:
 135		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 136			blkaddr < __start_cp_addr(sbi)))
 137			return false;
 138		break;
 139	case META_POR:
 140		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 141			blkaddr < MAIN_BLKADDR(sbi)))
 142			return false;
 143		break;
 144	default:
 145		BUG();
 146	}
 147
 148	return true;
 149}
 150
 151/*
 152 * Readahead CP/NAT/SIT/SSA pages
 153 */
 154int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 155							int type, bool sync)
 156{
 157	struct page *page;
 158	block_t blkno = start;
 159	struct f2fs_io_info fio = {
 160		.sbi = sbi,
 161		.type = META,
 162		.op = REQ_OP_READ,
 163		.op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
 164		.encrypted_page = NULL,
 165	};
 166	struct blk_plug plug;
 167
 168	if (unlikely(type == META_POR))
 169		fio.op_flags &= ~REQ_META;
 170
 171	blk_start_plug(&plug);
 172	for (; nrpages-- > 0; blkno++) {
 173
 174		if (!is_valid_blkaddr(sbi, blkno, type))
 175			goto out;
 176
 177		switch (type) {
 178		case META_NAT:
 179			if (unlikely(blkno >=
 180					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 181				blkno = 0;
 182			/* get nat block addr */
 183			fio.new_blkaddr = current_nat_addr(sbi,
 184					blkno * NAT_ENTRY_PER_BLOCK);
 185			break;
 186		case META_SIT:
 187			/* get sit block addr */
 188			fio.new_blkaddr = current_sit_addr(sbi,
 189					blkno * SIT_ENTRY_PER_BLOCK);
 190			break;
 191		case META_SSA:
 192		case META_CP:
 193		case META_POR:
 194			fio.new_blkaddr = blkno;
 195			break;
 196		default:
 197			BUG();
 198		}
 199
 200		page = f2fs_grab_cache_page(META_MAPPING(sbi),
 201						fio.new_blkaddr, false);
 202		if (!page)
 203			continue;
 204		if (PageUptodate(page)) {
 205			f2fs_put_page(page, 1);
 206			continue;
 207		}
 208
 209		fio.page = page;
 210		fio.old_blkaddr = fio.new_blkaddr;
 211		f2fs_submit_page_mbio(&fio);
 212		f2fs_put_page(page, 0);
 213	}
 214out:
 215	f2fs_submit_merged_bio(sbi, META, READ);
 216	blk_finish_plug(&plug);
 217	return blkno - start;
 218}
 219
 220void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 221{
 222	struct page *page;
 223	bool readahead = false;
 224
 225	page = find_get_page(META_MAPPING(sbi), index);
 226	if (!page || !PageUptodate(page))
 227		readahead = true;
 228	f2fs_put_page(page, 0);
 229
 230	if (readahead)
 231		ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
 232}
 233
 234static int f2fs_write_meta_page(struct page *page,
 235				struct writeback_control *wbc)
 236{
 237	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 238
 239	trace_f2fs_writepage(page, META);
 240
 241	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 242		goto redirty_out;
 243	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 244		goto redirty_out;
 245	if (unlikely(f2fs_cp_error(sbi)))
 246		goto redirty_out;
 247
 248	write_meta_page(sbi, page);
 249	dec_page_count(sbi, F2FS_DIRTY_META);
 250
 251	if (wbc->for_reclaim)
 252		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
 253
 254	unlock_page(page);
 255
 256	if (unlikely(f2fs_cp_error(sbi)))
 257		f2fs_submit_merged_bio(sbi, META, WRITE);
 258
 259	return 0;
 260
 261redirty_out:
 262	redirty_page_for_writepage(wbc, page);
 263	return AOP_WRITEPAGE_ACTIVATE;
 264}
 265
 266static int f2fs_write_meta_pages(struct address_space *mapping,
 267				struct writeback_control *wbc)
 268{
 269	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 270	long diff, written;
 271
 272	/* collect a number of dirty meta pages and write together */
 273	if (wbc->for_kupdate ||
 274		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
 275		goto skip_write;
 276
 277	trace_f2fs_writepages(mapping->host, wbc, META);
 278
 279	/* if mounting is failed, skip writing node pages */
 280	mutex_lock(&sbi->cp_mutex);
 281	diff = nr_pages_to_write(sbi, META, wbc);
 282	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
 283	mutex_unlock(&sbi->cp_mutex);
 284	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 285	return 0;
 286
 287skip_write:
 288	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 289	trace_f2fs_writepages(mapping->host, wbc, META);
 290	return 0;
 291}
 292
 293long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 294						long nr_to_write)
 295{
 296	struct address_space *mapping = META_MAPPING(sbi);
 297	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
 298	struct pagevec pvec;
 299	long nwritten = 0;
 300	struct writeback_control wbc = {
 301		.for_reclaim = 0,
 302	};
 303	struct blk_plug plug;
 304
 305	pagevec_init(&pvec, 0);
 306
 307	blk_start_plug(&plug);
 308
 309	while (index <= end) {
 310		int i, nr_pages;
 311		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 312				PAGECACHE_TAG_DIRTY,
 313				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 314		if (unlikely(nr_pages == 0))
 315			break;
 316
 317		for (i = 0; i < nr_pages; i++) {
 318			struct page *page = pvec.pages[i];
 319
 320			if (prev == ULONG_MAX)
 321				prev = page->index - 1;
 322			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 323				pagevec_release(&pvec);
 324				goto stop;
 325			}
 326
 327			lock_page(page);
 328
 329			if (unlikely(page->mapping != mapping)) {
 330continue_unlock:
 331				unlock_page(page);
 332				continue;
 333			}
 334			if (!PageDirty(page)) {
 335				/* someone wrote it for us */
 336				goto continue_unlock;
 337			}
 338
 339			f2fs_wait_on_page_writeback(page, META, true);
 340
 341			BUG_ON(PageWriteback(page));
 342			if (!clear_page_dirty_for_io(page))
 343				goto continue_unlock;
 344
 345			if (mapping->a_ops->writepage(page, &wbc)) {
 346				unlock_page(page);
 347				break;
 348			}
 349			nwritten++;
 350			prev = page->index;
 351			if (unlikely(nwritten >= nr_to_write))
 352				break;
 353		}
 354		pagevec_release(&pvec);
 355		cond_resched();
 356	}
 357stop:
 358	if (nwritten)
 359		f2fs_submit_merged_bio(sbi, type, WRITE);
 360
 361	blk_finish_plug(&plug);
 362
 363	return nwritten;
 364}
 365
 366static int f2fs_set_meta_page_dirty(struct page *page)
 367{
 368	trace_f2fs_set_page_dirty(page, META);
 369
 370	if (!PageUptodate(page))
 371		SetPageUptodate(page);
 372	if (!PageDirty(page)) {
 373		f2fs_set_page_dirty_nobuffers(page);
 374		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 375		SetPagePrivate(page);
 376		f2fs_trace_pid(page);
 377		return 1;
 378	}
 379	return 0;
 380}
 381
 382const struct address_space_operations f2fs_meta_aops = {
 383	.writepage	= f2fs_write_meta_page,
 384	.writepages	= f2fs_write_meta_pages,
 385	.set_page_dirty	= f2fs_set_meta_page_dirty,
 386	.invalidatepage = f2fs_invalidate_page,
 387	.releasepage	= f2fs_release_page,
 388#ifdef CONFIG_MIGRATION
 389	.migratepage    = f2fs_migrate_page,
 390#endif
 391};
 392
 393static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 394{
 395	struct inode_management *im = &sbi->im[type];
 396	struct ino_entry *e, *tmp;
 397
 398	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 399retry:
 400	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 401
 402	spin_lock(&im->ino_lock);
 403	e = radix_tree_lookup(&im->ino_root, ino);
 404	if (!e) {
 405		e = tmp;
 406		if (radix_tree_insert(&im->ino_root, ino, e)) {
 407			spin_unlock(&im->ino_lock);
 408			radix_tree_preload_end();
 409			goto retry;
 410		}
 411		memset(e, 0, sizeof(struct ino_entry));
 412		e->ino = ino;
 413
 414		list_add_tail(&e->list, &im->ino_list);
 415		if (type != ORPHAN_INO)
 416			im->ino_num++;
 417	}
 418	spin_unlock(&im->ino_lock);
 419	radix_tree_preload_end();
 420
 421	if (e != tmp)
 422		kmem_cache_free(ino_entry_slab, tmp);
 423}
 424
 425static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 426{
 427	struct inode_management *im = &sbi->im[type];
 428	struct ino_entry *e;
 429
 430	spin_lock(&im->ino_lock);
 431	e = radix_tree_lookup(&im->ino_root, ino);
 432	if (e) {
 433		list_del(&e->list);
 434		radix_tree_delete(&im->ino_root, ino);
 435		im->ino_num--;
 436		spin_unlock(&im->ino_lock);
 437		kmem_cache_free(ino_entry_slab, e);
 438		return;
 439	}
 440	spin_unlock(&im->ino_lock);
 441}
 442
 443void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 444{
 445	/* add new dirty ino entry into list */
 446	__add_ino_entry(sbi, ino, type);
 447}
 448
 449void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 450{
 451	/* remove dirty ino entry from list */
 452	__remove_ino_entry(sbi, ino, type);
 453}
 454
 455/* mode should be APPEND_INO or UPDATE_INO */
 456bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 457{
 458	struct inode_management *im = &sbi->im[mode];
 459	struct ino_entry *e;
 460
 461	spin_lock(&im->ino_lock);
 462	e = radix_tree_lookup(&im->ino_root, ino);
 463	spin_unlock(&im->ino_lock);
 464	return e ? true : false;
 465}
 466
 467void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
 468{
 469	struct ino_entry *e, *tmp;
 470	int i;
 471
 472	for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
 473		struct inode_management *im = &sbi->im[i];
 474
 475		spin_lock(&im->ino_lock);
 476		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 477			list_del(&e->list);
 478			radix_tree_delete(&im->ino_root, e->ino);
 479			kmem_cache_free(ino_entry_slab, e);
 480			im->ino_num--;
 481		}
 482		spin_unlock(&im->ino_lock);
 483	}
 484}
 485
 486int acquire_orphan_inode(struct f2fs_sb_info *sbi)
 487{
 488	struct inode_management *im = &sbi->im[ORPHAN_INO];
 489	int err = 0;
 490
 491	spin_lock(&im->ino_lock);
 492
 493#ifdef CONFIG_F2FS_FAULT_INJECTION
 494	if (time_to_inject(sbi, FAULT_ORPHAN)) {
 495		spin_unlock(&im->ino_lock);
 496		return -ENOSPC;
 497	}
 498#endif
 499	if (unlikely(im->ino_num >= sbi->max_orphans))
 500		err = -ENOSPC;
 501	else
 502		im->ino_num++;
 503	spin_unlock(&im->ino_lock);
 504
 505	return err;
 506}
 507
 508void release_orphan_inode(struct f2fs_sb_info *sbi)
 509{
 510	struct inode_management *im = &sbi->im[ORPHAN_INO];
 511
 512	spin_lock(&im->ino_lock);
 513	f2fs_bug_on(sbi, im->ino_num == 0);
 514	im->ino_num--;
 515	spin_unlock(&im->ino_lock);
 516}
 517
 518void add_orphan_inode(struct inode *inode)
 519{
 520	/* add new orphan ino entry into list */
 521	__add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
 522	update_inode_page(inode);
 523}
 524
 525void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 526{
 527	/* remove orphan entry from orphan list */
 528	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 529}
 530
 531static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 532{
 533	struct inode *inode;
 534	struct node_info ni;
 535	int err = acquire_orphan_inode(sbi);
 536
 537	if (err) {
 538		set_sbi_flag(sbi, SBI_NEED_FSCK);
 539		f2fs_msg(sbi->sb, KERN_WARNING,
 540				"%s: orphan failed (ino=%x), run fsck to fix.",
 541				__func__, ino);
 542		return err;
 543	}
 544
 545	__add_ino_entry(sbi, ino, ORPHAN_INO);
 546
 547	inode = f2fs_iget_retry(sbi->sb, ino);
 548	if (IS_ERR(inode)) {
 549		/*
 550		 * there should be a bug that we can't find the entry
 551		 * to orphan inode.
 552		 */
 553		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 554		return PTR_ERR(inode);
 555	}
 556
 557	clear_nlink(inode);
 558
 559	/* truncate all the data during iput */
 560	iput(inode);
 561
 562	get_node_info(sbi, ino, &ni);
 563
 564	/* ENOMEM was fully retried in f2fs_evict_inode. */
 565	if (ni.blk_addr != NULL_ADDR) {
 566		set_sbi_flag(sbi, SBI_NEED_FSCK);
 567		f2fs_msg(sbi->sb, KERN_WARNING,
 568			"%s: orphan failed (ino=%x), run fsck to fix.",
 569				__func__, ino);
 570		return -EIO;
 571	}
 572	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 573	return 0;
 574}
 575
 576int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 577{
 578	block_t start_blk, orphan_blocks, i, j;
 579	int err;
 580
 581	if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
 582		return 0;
 583
 584	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 585	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 586
 587	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 588
 589	for (i = 0; i < orphan_blocks; i++) {
 590		struct page *page = get_meta_page(sbi, start_blk + i);
 591		struct f2fs_orphan_block *orphan_blk;
 592
 593		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 594		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 595			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 596			err = recover_orphan_inode(sbi, ino);
 597			if (err) {
 598				f2fs_put_page(page, 1);
 599				return err;
 600			}
 601		}
 602		f2fs_put_page(page, 1);
 603	}
 604	/* clear Orphan Flag */
 605	clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
 606	return 0;
 607}
 608
 609static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 610{
 611	struct list_head *head;
 612	struct f2fs_orphan_block *orphan_blk = NULL;
 613	unsigned int nentries = 0;
 614	unsigned short index = 1;
 615	unsigned short orphan_blocks;
 616	struct page *page = NULL;
 617	struct ino_entry *orphan = NULL;
 618	struct inode_management *im = &sbi->im[ORPHAN_INO];
 619
 620	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 621
 622	/*
 623	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 624	 * orphan inode operations are covered under f2fs_lock_op().
 625	 * And, spin_lock should be avoided due to page operations below.
 626	 */
 627	head = &im->ino_list;
 628
 629	/* loop for each orphan inode entry and write them in Jornal block */
 630	list_for_each_entry(orphan, head, list) {
 631		if (!page) {
 632			page = grab_meta_page(sbi, start_blk++);
 633			orphan_blk =
 634				(struct f2fs_orphan_block *)page_address(page);
 635			memset(orphan_blk, 0, sizeof(*orphan_blk));
 636		}
 637
 638		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 639
 640		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 641			/*
 642			 * an orphan block is full of 1020 entries,
 643			 * then we need to flush current orphan blocks
 644			 * and bring another one in memory
 645			 */
 646			orphan_blk->blk_addr = cpu_to_le16(index);
 647			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 648			orphan_blk->entry_count = cpu_to_le32(nentries);
 649			set_page_dirty(page);
 650			f2fs_put_page(page, 1);
 651			index++;
 652			nentries = 0;
 653			page = NULL;
 654		}
 655	}
 656
 657	if (page) {
 658		orphan_blk->blk_addr = cpu_to_le16(index);
 659		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 660		orphan_blk->entry_count = cpu_to_le32(nentries);
 661		set_page_dirty(page);
 662		f2fs_put_page(page, 1);
 663	}
 664}
 665
 666static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
 667		struct f2fs_checkpoint **cp_block, struct page **cp_page,
 668		unsigned long long *version)
 669{
 
 670	unsigned long blk_size = sbi->blocksize;
 671	size_t crc_offset = 0;
 
 
 672	__u32 crc = 0;
 673
 674	*cp_page = get_meta_page(sbi, cp_addr);
 675	*cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
 676
 677	crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
 678	if (crc_offset >= blk_size) {
 679		f2fs_msg(sbi->sb, KERN_WARNING,
 680			"invalid crc_offset: %zu", crc_offset);
 681		return -EINVAL;
 682	}
 683
 684	crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block
 685							+ crc_offset)));
 686	if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
 687		f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
 688		return -EINVAL;
 689	}
 690
 691	*version = cur_cp_version(*cp_block);
 692	return 0;
 693}
 694
 695static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 696				block_t cp_addr, unsigned long long *version)
 697{
 698	struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
 699	struct f2fs_checkpoint *cp_block = NULL;
 700	unsigned long long cur_version = 0, pre_version = 0;
 701	int err;
 702
 703	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 704					&cp_page_1, version);
 705	if (err)
 706		goto invalid_cp1;
 707	pre_version = *version;
 708
 709	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 710	err = get_checkpoint_version(sbi, cp_addr, &cp_block,
 711					&cp_page_2, version);
 712	if (err)
 713		goto invalid_cp2;
 714	cur_version = *version;
 
 715
 716	if (cur_version == pre_version) {
 717		*version = cur_version;
 718		f2fs_put_page(cp_page_2, 1);
 719		return cp_page_1;
 720	}
 721invalid_cp2:
 722	f2fs_put_page(cp_page_2, 1);
 723invalid_cp1:
 724	f2fs_put_page(cp_page_1, 1);
 725	return NULL;
 726}
 727
 728int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 729{
 730	struct f2fs_checkpoint *cp_block;
 731	struct f2fs_super_block *fsb = sbi->raw_super;
 732	struct page *cp1, *cp2, *cur_page;
 733	unsigned long blk_size = sbi->blocksize;
 734	unsigned long long cp1_version = 0, cp2_version = 0;
 735	unsigned long long cp_start_blk_no;
 736	unsigned int cp_blks = 1 + __cp_payload(sbi);
 737	block_t cp_blk_no;
 738	int i;
 739
 740	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
 741	if (!sbi->ckpt)
 742		return -ENOMEM;
 743	/*
 744	 * Finding out valid cp block involves read both
 745	 * sets( cp pack1 and cp pack 2)
 746	 */
 747	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 748	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 749
 750	/* The second checkpoint pack should start at the next segment */
 751	cp_start_blk_no += ((unsigned long long)1) <<
 752				le32_to_cpu(fsb->log_blocks_per_seg);
 753	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 754
 755	if (cp1 && cp2) {
 756		if (ver_after(cp2_version, cp1_version))
 757			cur_page = cp2;
 758		else
 759			cur_page = cp1;
 760	} else if (cp1) {
 761		cur_page = cp1;
 762	} else if (cp2) {
 763		cur_page = cp2;
 764	} else {
 765		goto fail_no_cp;
 766	}
 767
 768	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 769	memcpy(sbi->ckpt, cp_block, blk_size);
 770
 771	/* Sanity checking of checkpoint */
 772	if (sanity_check_ckpt(sbi))
 773		goto free_fail_no_cp;
 774
 775	if (cur_page == cp1)
 776		sbi->cur_cp_pack = 1;
 777	else
 778		sbi->cur_cp_pack = 2;
 779
 780	if (cp_blks <= 1)
 781		goto done;
 782
 783	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 784	if (cur_page == cp2)
 785		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 786
 787	for (i = 1; i < cp_blks; i++) {
 788		void *sit_bitmap_ptr;
 789		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 790
 791		cur_page = get_meta_page(sbi, cp_blk_no + i);
 792		sit_bitmap_ptr = page_address(cur_page);
 793		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 794		f2fs_put_page(cur_page, 1);
 795	}
 796done:
 797	f2fs_put_page(cp1, 1);
 798	f2fs_put_page(cp2, 1);
 799	return 0;
 800
 801free_fail_no_cp:
 802	f2fs_put_page(cp1, 1);
 803	f2fs_put_page(cp2, 1);
 804fail_no_cp:
 805	kfree(sbi->ckpt);
 806	return -EINVAL;
 807}
 808
 809static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 810{
 811	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 812	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 813
 814	if (is_inode_flag_set(inode, flag))
 815		return;
 816
 817	set_inode_flag(inode, flag);
 818	list_add_tail(&F2FS_I(inode)->dirty_list, &sbi->inode_list[type]);
 819	stat_inc_dirty_inode(sbi, type);
 820}
 821
 822static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 823{
 
 824	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 825
 826	if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
 
 827		return;
 828
 829	list_del_init(&F2FS_I(inode)->dirty_list);
 830	clear_inode_flag(inode, flag);
 831	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 832}
 833
 834void update_dirty_page(struct inode *inode, struct page *page)
 835{
 836	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 837	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 838
 839	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 840			!S_ISLNK(inode->i_mode))
 841		return;
 842
 843	spin_lock(&sbi->inode_lock[type]);
 844	if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
 845		__add_dirty_inode(inode, type);
 846	inode_inc_dirty_pages(inode);
 847	spin_unlock(&sbi->inode_lock[type]);
 848
 849	SetPagePrivate(page);
 850	f2fs_trace_pid(page);
 851}
 852
 
 
 
 
 
 
 
 
 
 853void remove_dirty_inode(struct inode *inode)
 854{
 855	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 
 856	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 857
 858	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 859			!S_ISLNK(inode->i_mode))
 860		return;
 861
 862	if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
 863		return;
 864
 865	spin_lock(&sbi->inode_lock[type]);
 866	__remove_dirty_inode(inode, type);
 867	spin_unlock(&sbi->inode_lock[type]);
 
 
 
 
 
 
 868}
 869
 870int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
 871{
 872	struct list_head *head;
 873	struct inode *inode;
 874	struct f2fs_inode_info *fi;
 875	bool is_dir = (type == DIR_INODE);
 876
 877	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
 878				get_pages(sbi, is_dir ?
 879				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 880retry:
 881	if (unlikely(f2fs_cp_error(sbi)))
 882		return -EIO;
 883
 884	spin_lock(&sbi->inode_lock[type]);
 885
 886	head = &sbi->inode_list[type];
 887	if (list_empty(head)) {
 888		spin_unlock(&sbi->inode_lock[type]);
 889		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 890				get_pages(sbi, is_dir ?
 891				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 892		return 0;
 893	}
 894	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
 895	inode = igrab(&fi->vfs_inode);
 896	spin_unlock(&sbi->inode_lock[type]);
 897	if (inode) {
 898		filemap_fdatawrite(inode->i_mapping);
 899		iput(inode);
 900	} else {
 901		/*
 902		 * We should submit bio, since it exists several
 903		 * wribacking dentry pages in the freeing inode.
 904		 */
 905		f2fs_submit_merged_bio(sbi, DATA, WRITE);
 906		cond_resched();
 907	}
 908	goto retry;
 909}
 910
 911int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
 912{
 913	struct list_head *head = &sbi->inode_list[DIRTY_META];
 914	struct inode *inode;
 915	struct f2fs_inode_info *fi;
 916	s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
 917
 918	while (total--) {
 919		if (unlikely(f2fs_cp_error(sbi)))
 920			return -EIO;
 921
 922		spin_lock(&sbi->inode_lock[DIRTY_META]);
 923		if (list_empty(head)) {
 924			spin_unlock(&sbi->inode_lock[DIRTY_META]);
 925			return 0;
 926		}
 927		fi = list_entry(head->next, struct f2fs_inode_info,
 928							gdirty_list);
 929		inode = igrab(&fi->vfs_inode);
 930		spin_unlock(&sbi->inode_lock[DIRTY_META]);
 931		if (inode) {
 932			sync_inode_metadata(inode, 0);
 933
 934			/* it's on eviction */
 935			if (is_inode_flag_set(inode, FI_DIRTY_INODE))
 936				update_inode_page(inode);
 937			iput(inode);
 938		}
 939	};
 940	return 0;
 941}
 942
 943/*
 944 * Freeze all the FS-operations for checkpoint.
 945 */
 946static int block_operations(struct f2fs_sb_info *sbi)
 947{
 948	struct writeback_control wbc = {
 949		.sync_mode = WB_SYNC_ALL,
 950		.nr_to_write = LONG_MAX,
 951		.for_reclaim = 0,
 952	};
 953	struct blk_plug plug;
 954	int err = 0;
 955
 956	blk_start_plug(&plug);
 957
 958retry_flush_dents:
 959	f2fs_lock_all(sbi);
 960	/* write all the dirty dentry pages */
 961	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 962		f2fs_unlock_all(sbi);
 963		err = sync_dirty_inodes(sbi, DIR_INODE);
 964		if (err)
 965			goto out;
 966		goto retry_flush_dents;
 967	}
 968
 969	if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
 970		f2fs_unlock_all(sbi);
 971		err = f2fs_sync_inode_meta(sbi);
 972		if (err)
 973			goto out;
 974		goto retry_flush_dents;
 975	}
 976
 977	/*
 978	 * POR: we should ensure that there are no dirty node pages
 979	 * until finishing nat/sit flush.
 980	 */
 981retry_flush_nodes:
 982	down_write(&sbi->node_write);
 983
 984	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 985		up_write(&sbi->node_write);
 986		err = sync_node_pages(sbi, &wbc);
 987		if (err) {
 988			f2fs_unlock_all(sbi);
 989			goto out;
 990		}
 991		goto retry_flush_nodes;
 992	}
 993out:
 994	blk_finish_plug(&plug);
 995	return err;
 996}
 997
 998static void unblock_operations(struct f2fs_sb_info *sbi)
 999{
1000	up_write(&sbi->node_write);
1001
1002	build_free_nids(sbi, false);
1003	f2fs_unlock_all(sbi);
1004}
1005
1006static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1007{
1008	DEFINE_WAIT(wait);
1009
1010	for (;;) {
1011		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1012
1013		if (!get_pages(sbi, F2FS_WB_CP_DATA))
1014			break;
1015
1016		io_schedule_timeout(5*HZ);
1017	}
1018	finish_wait(&sbi->cp_wait, &wait);
1019}
1020
1021static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1022{
1023	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1024	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1025
1026	spin_lock(&sbi->cp_lock);
1027
1028	if (cpc->reason == CP_UMOUNT)
1029		__set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1030	else
1031		__clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1032
1033	if (cpc->reason == CP_FASTBOOT)
1034		__set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1035	else
1036		__clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1037
1038	if (orphan_num)
1039		__set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1040	else
1041		__clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1042
1043	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1044		__set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1045
1046	/* set this flag to activate crc|cp_ver for recovery */
1047	__set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1048
1049	spin_unlock(&sbi->cp_lock);
1050}
1051
1052static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1053{
1054	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 
1055	struct f2fs_nm_info *nm_i = NM_I(sbi);
1056	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1057	nid_t last_nid = nm_i->next_scan_nid;
1058	block_t start_blk;
1059	unsigned int data_sum_blocks, orphan_blocks;
1060	__u32 crc32 = 0;
1061	int i;
1062	int cp_payload_blks = __cp_payload(sbi);
 
 
1063	struct super_block *sb = sbi->sb;
1064	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1065	u64 kbytes_written;
1066
 
 
 
 
 
 
 
1067	/* Flush all the NAT/SIT pages */
1068	while (get_pages(sbi, F2FS_DIRTY_META)) {
1069		sync_meta_pages(sbi, META, LONG_MAX);
1070		if (unlikely(f2fs_cp_error(sbi)))
1071			return -EIO;
1072	}
1073
1074	next_free_nid(sbi, &last_nid);
1075
1076	/*
1077	 * modify checkpoint
1078	 * version number is already updated
1079	 */
1080	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1081	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1082	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1083	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1084		ckpt->cur_node_segno[i] =
1085			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1086		ckpt->cur_node_blkoff[i] =
1087			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1088		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1089				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1090	}
1091	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1092		ckpt->cur_data_segno[i] =
1093			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1094		ckpt->cur_data_blkoff[i] =
1095			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1096		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1097				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1098	}
1099
1100	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1101	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1102	ckpt->next_free_nid = cpu_to_le32(last_nid);
1103
1104	/* 2 cp  + n data seg summary + orphan inode blocks */
1105	data_sum_blocks = npages_for_summary_flush(sbi, false);
1106	spin_lock(&sbi->cp_lock);
1107	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1108		__set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1109	else
1110		__clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1111	spin_unlock(&sbi->cp_lock);
1112
1113	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1114	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1115			orphan_blocks);
1116
1117	if (__remain_node_summaries(cpc->reason))
1118		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1119				cp_payload_blks + data_sum_blocks +
1120				orphan_blocks + NR_CURSEG_NODE_TYPE);
1121	else
1122		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1123				cp_payload_blks + data_sum_blocks +
1124				orphan_blocks);
1125
1126	/* update ckpt flag for checkpoint */
1127	update_ckpt_flags(sbi, cpc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1128
1129	/* update SIT/NAT bitmap */
1130	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1131	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1132
1133	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1134	*((__le32 *)((unsigned char *)ckpt +
1135				le32_to_cpu(ckpt->checksum_offset)))
1136				= cpu_to_le32(crc32);
1137
1138	start_blk = __start_cp_next_addr(sbi);
1139
1140	/* need to wait for end_io results */
1141	wait_on_all_pages_writeback(sbi);
1142	if (unlikely(f2fs_cp_error(sbi)))
1143		return -EIO;
1144
1145	/* write out checkpoint buffer at block 0 */
1146	update_meta_page(sbi, ckpt, start_blk++);
1147
1148	for (i = 1; i < 1 + cp_payload_blks; i++)
1149		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1150							start_blk++);
1151
1152	if (orphan_num) {
1153		write_orphan_inodes(sbi, start_blk);
1154		start_blk += orphan_blocks;
1155	}
1156
1157	write_data_summaries(sbi, start_blk);
1158	start_blk += data_sum_blocks;
1159
1160	/* Record write statistics in the hot node summary */
1161	kbytes_written = sbi->kbytes_written;
1162	if (sb->s_bdev->bd_part)
1163		kbytes_written += BD_PART_WRITTEN(sbi);
1164
1165	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1166
1167	if (__remain_node_summaries(cpc->reason)) {
1168		write_node_summaries(sbi, start_blk);
1169		start_blk += NR_CURSEG_NODE_TYPE;
1170	}
1171
1172	/* writeout checkpoint block */
1173	update_meta_page(sbi, ckpt, start_blk);
1174
1175	/* wait for previous submitted node/meta pages writeback */
1176	wait_on_all_pages_writeback(sbi);
1177
1178	if (unlikely(f2fs_cp_error(sbi)))
1179		return -EIO;
1180
1181	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1182	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1183
1184	/* update user_block_counts */
1185	sbi->last_valid_block_count = sbi->total_valid_block_count;
1186	percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1187
1188	/* Here, we only have one bio having CP pack */
1189	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1190
1191	/* wait for previous submitted meta pages writeback */
1192	wait_on_all_pages_writeback(sbi);
1193
1194	release_ino_entry(sbi, false);
 
 
 
 
 
 
 
 
1195
1196	if (unlikely(f2fs_cp_error(sbi)))
1197		return -EIO;
1198
 
1199	clear_sbi_flag(sbi, SBI_IS_DIRTY);
1200	clear_sbi_flag(sbi, SBI_NEED_CP);
1201	__set_cp_next_pack(sbi);
1202
1203	/*
1204	 * redirty superblock if metadata like node page or inode cache is
1205	 * updated during writing checkpoint.
1206	 */
1207	if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1208			get_pages(sbi, F2FS_DIRTY_IMETA))
1209		set_sbi_flag(sbi, SBI_IS_DIRTY);
1210
1211	f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1212
1213	return 0;
1214}
1215
1216/*
1217 * We guarantee that this checkpoint procedure will not fail.
1218 */
1219int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1220{
1221	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1222	unsigned long long ckpt_ver;
1223	int err = 0;
1224
1225	mutex_lock(&sbi->cp_mutex);
1226
1227	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1228		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1229		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1230		goto out;
1231	if (unlikely(f2fs_cp_error(sbi))) {
1232		err = -EIO;
1233		goto out;
1234	}
1235	if (f2fs_readonly(sbi->sb)) {
1236		err = -EROFS;
1237		goto out;
1238	}
1239
1240	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1241
1242	err = block_operations(sbi);
1243	if (err)
1244		goto out;
1245
1246	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1247
1248	f2fs_flush_merged_bios(sbi);
1249
1250	/* this is the case of multiple fstrims without any changes */
1251	if (cpc->reason == CP_DISCARD && !is_sbi_flag_set(sbi, SBI_IS_DIRTY)) {
1252		f2fs_bug_on(sbi, NM_I(sbi)->dirty_nat_cnt);
1253		f2fs_bug_on(sbi, SIT_I(sbi)->dirty_sentries);
1254		f2fs_bug_on(sbi, prefree_segments(sbi));
1255		flush_sit_entries(sbi, cpc);
1256		clear_prefree_segments(sbi, cpc);
1257		f2fs_wait_all_discard_bio(sbi);
1258		unblock_operations(sbi);
1259		goto out;
1260	}
1261
1262	/*
1263	 * update checkpoint pack index
1264	 * Increase the version number so that
1265	 * SIT entries and seg summaries are written at correct place
1266	 */
1267	ckpt_ver = cur_cp_version(ckpt);
1268	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1269
1270	/* write cached NAT/SIT entries to NAT/SIT area */
1271	flush_nat_entries(sbi);
1272	flush_sit_entries(sbi, cpc);
1273
1274	/* unlock all the fs_lock[] in do_checkpoint() */
1275	err = do_checkpoint(sbi, cpc);
1276	if (err) {
1277		release_discard_addrs(sbi);
1278	} else {
1279		clear_prefree_segments(sbi, cpc);
1280		f2fs_wait_all_discard_bio(sbi);
1281	}
1282
1283	unblock_operations(sbi);
1284	stat_inc_cp_count(sbi->stat_info);
1285
1286	if (cpc->reason == CP_RECOVERY)
1287		f2fs_msg(sbi->sb, KERN_NOTICE,
1288			"checkpoint: version = %llx", ckpt_ver);
1289
1290	/* do checkpoint periodically */
1291	f2fs_update_time(sbi, CP_TIME);
1292	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1293out:
1294	mutex_unlock(&sbi->cp_mutex);
1295	return err;
1296}
1297
1298void init_ino_entry_info(struct f2fs_sb_info *sbi)
1299{
1300	int i;
1301
1302	for (i = 0; i < MAX_INO_ENTRY; i++) {
1303		struct inode_management *im = &sbi->im[i];
1304
1305		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1306		spin_lock_init(&im->ino_lock);
1307		INIT_LIST_HEAD(&im->ino_list);
1308		im->ino_num = 0;
1309	}
1310
1311	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1312			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1313				F2FS_ORPHANS_PER_BLOCK;
1314}
1315
1316int __init create_checkpoint_caches(void)
1317{
1318	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1319			sizeof(struct ino_entry));
1320	if (!ino_entry_slab)
1321		return -ENOMEM;
1322	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1323			sizeof(struct inode_entry));
1324	if (!inode_entry_slab) {
1325		kmem_cache_destroy(ino_entry_slab);
1326		return -ENOMEM;
1327	}
1328	return 0;
1329}
1330
1331void destroy_checkpoint_caches(void)
1332{
1333	kmem_cache_destroy(ino_entry_slab);
1334	kmem_cache_destroy(inode_entry_slab);
1335}
v4.6
   1/*
   2 * fs/f2fs/checkpoint.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/bio.h>
  13#include <linux/mpage.h>
  14#include <linux/writeback.h>
  15#include <linux/blkdev.h>
  16#include <linux/f2fs_fs.h>
  17#include <linux/pagevec.h>
  18#include <linux/swap.h>
  19
  20#include "f2fs.h"
  21#include "node.h"
  22#include "segment.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26static struct kmem_cache *ino_entry_slab;
  27struct kmem_cache *inode_entry_slab;
  28
 
 
 
 
 
 
 
 
  29/*
  30 * We guarantee no failure on the returned page.
  31 */
  32struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
  33{
  34	struct address_space *mapping = META_MAPPING(sbi);
  35	struct page *page = NULL;
  36repeat:
  37	page = grab_cache_page(mapping, index);
  38	if (!page) {
  39		cond_resched();
  40		goto repeat;
  41	}
  42	f2fs_wait_on_page_writeback(page, META, true);
  43	SetPageUptodate(page);
 
  44	return page;
  45}
  46
  47/*
  48 * We guarantee no failure on the returned page.
  49 */
  50static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
  51							bool is_meta)
  52{
  53	struct address_space *mapping = META_MAPPING(sbi);
  54	struct page *page;
  55	struct f2fs_io_info fio = {
  56		.sbi = sbi,
  57		.type = META,
  58		.rw = READ_SYNC | REQ_META | REQ_PRIO,
 
  59		.old_blkaddr = index,
  60		.new_blkaddr = index,
  61		.encrypted_page = NULL,
  62	};
  63
  64	if (unlikely(!is_meta))
  65		fio.rw &= ~REQ_META;
  66repeat:
  67	page = grab_cache_page(mapping, index);
  68	if (!page) {
  69		cond_resched();
  70		goto repeat;
  71	}
  72	if (PageUptodate(page))
  73		goto out;
  74
  75	fio.page = page;
  76
  77	if (f2fs_submit_page_bio(&fio)) {
  78		f2fs_put_page(page, 1);
  79		goto repeat;
  80	}
  81
  82	lock_page(page);
  83	if (unlikely(page->mapping != mapping)) {
  84		f2fs_put_page(page, 1);
  85		goto repeat;
  86	}
  87
  88	/*
  89	 * if there is any IO error when accessing device, make our filesystem
  90	 * readonly and make sure do not write checkpoint with non-uptodate
  91	 * meta page.
  92	 */
  93	if (unlikely(!PageUptodate(page)))
  94		f2fs_stop_checkpoint(sbi);
  95out:
  96	return page;
  97}
  98
  99struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
 100{
 101	return __get_meta_page(sbi, index, true);
 102}
 103
 104/* for POR only */
 105struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
 106{
 107	return __get_meta_page(sbi, index, false);
 108}
 109
 110bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
 111{
 112	switch (type) {
 113	case META_NAT:
 114		break;
 115	case META_SIT:
 116		if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
 117			return false;
 118		break;
 119	case META_SSA:
 120		if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
 121			blkaddr < SM_I(sbi)->ssa_blkaddr))
 122			return false;
 123		break;
 124	case META_CP:
 125		if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
 126			blkaddr < __start_cp_addr(sbi)))
 127			return false;
 128		break;
 129	case META_POR:
 130		if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
 131			blkaddr < MAIN_BLKADDR(sbi)))
 132			return false;
 133		break;
 134	default:
 135		BUG();
 136	}
 137
 138	return true;
 139}
 140
 141/*
 142 * Readahead CP/NAT/SIT/SSA pages
 143 */
 144int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
 145							int type, bool sync)
 146{
 147	struct page *page;
 148	block_t blkno = start;
 149	struct f2fs_io_info fio = {
 150		.sbi = sbi,
 151		.type = META,
 152		.rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
 
 153		.encrypted_page = NULL,
 154	};
 155	struct blk_plug plug;
 156
 157	if (unlikely(type == META_POR))
 158		fio.rw &= ~REQ_META;
 159
 160	blk_start_plug(&plug);
 161	for (; nrpages-- > 0; blkno++) {
 162
 163		if (!is_valid_blkaddr(sbi, blkno, type))
 164			goto out;
 165
 166		switch (type) {
 167		case META_NAT:
 168			if (unlikely(blkno >=
 169					NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
 170				blkno = 0;
 171			/* get nat block addr */
 172			fio.new_blkaddr = current_nat_addr(sbi,
 173					blkno * NAT_ENTRY_PER_BLOCK);
 174			break;
 175		case META_SIT:
 176			/* get sit block addr */
 177			fio.new_blkaddr = current_sit_addr(sbi,
 178					blkno * SIT_ENTRY_PER_BLOCK);
 179			break;
 180		case META_SSA:
 181		case META_CP:
 182		case META_POR:
 183			fio.new_blkaddr = blkno;
 184			break;
 185		default:
 186			BUG();
 187		}
 188
 189		page = grab_cache_page(META_MAPPING(sbi), fio.new_blkaddr);
 
 190		if (!page)
 191			continue;
 192		if (PageUptodate(page)) {
 193			f2fs_put_page(page, 1);
 194			continue;
 195		}
 196
 197		fio.page = page;
 198		fio.old_blkaddr = fio.new_blkaddr;
 199		f2fs_submit_page_mbio(&fio);
 200		f2fs_put_page(page, 0);
 201	}
 202out:
 203	f2fs_submit_merged_bio(sbi, META, READ);
 204	blk_finish_plug(&plug);
 205	return blkno - start;
 206}
 207
 208void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
 209{
 210	struct page *page;
 211	bool readahead = false;
 212
 213	page = find_get_page(META_MAPPING(sbi), index);
 214	if (!page || (page && !PageUptodate(page)))
 215		readahead = true;
 216	f2fs_put_page(page, 0);
 217
 218	if (readahead)
 219		ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
 220}
 221
 222static int f2fs_write_meta_page(struct page *page,
 223				struct writeback_control *wbc)
 224{
 225	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
 226
 227	trace_f2fs_writepage(page, META);
 228
 229	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 230		goto redirty_out;
 231	if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
 232		goto redirty_out;
 233	if (unlikely(f2fs_cp_error(sbi)))
 234		goto redirty_out;
 235
 236	write_meta_page(sbi, page);
 237	dec_page_count(sbi, F2FS_DIRTY_META);
 238
 239	if (wbc->for_reclaim)
 240		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, META, WRITE);
 241
 242	unlock_page(page);
 243
 244	if (unlikely(f2fs_cp_error(sbi)))
 245		f2fs_submit_merged_bio(sbi, META, WRITE);
 246
 247	return 0;
 248
 249redirty_out:
 250	redirty_page_for_writepage(wbc, page);
 251	return AOP_WRITEPAGE_ACTIVATE;
 252}
 253
 254static int f2fs_write_meta_pages(struct address_space *mapping,
 255				struct writeback_control *wbc)
 256{
 257	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 258	long diff, written;
 259
 260	/* collect a number of dirty meta pages and write together */
 261	if (wbc->for_kupdate ||
 262		get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
 263		goto skip_write;
 264
 265	trace_f2fs_writepages(mapping->host, wbc, META);
 266
 267	/* if mounting is failed, skip writing node pages */
 268	mutex_lock(&sbi->cp_mutex);
 269	diff = nr_pages_to_write(sbi, META, wbc);
 270	written = sync_meta_pages(sbi, META, wbc->nr_to_write);
 271	mutex_unlock(&sbi->cp_mutex);
 272	wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
 273	return 0;
 274
 275skip_write:
 276	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
 277	trace_f2fs_writepages(mapping->host, wbc, META);
 278	return 0;
 279}
 280
 281long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
 282						long nr_to_write)
 283{
 284	struct address_space *mapping = META_MAPPING(sbi);
 285	pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
 286	struct pagevec pvec;
 287	long nwritten = 0;
 288	struct writeback_control wbc = {
 289		.for_reclaim = 0,
 290	};
 291	struct blk_plug plug;
 292
 293	pagevec_init(&pvec, 0);
 294
 295	blk_start_plug(&plug);
 296
 297	while (index <= end) {
 298		int i, nr_pages;
 299		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 300				PAGECACHE_TAG_DIRTY,
 301				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 302		if (unlikely(nr_pages == 0))
 303			break;
 304
 305		for (i = 0; i < nr_pages; i++) {
 306			struct page *page = pvec.pages[i];
 307
 308			if (prev == ULONG_MAX)
 309				prev = page->index - 1;
 310			if (nr_to_write != LONG_MAX && page->index != prev + 1) {
 311				pagevec_release(&pvec);
 312				goto stop;
 313			}
 314
 315			lock_page(page);
 316
 317			if (unlikely(page->mapping != mapping)) {
 318continue_unlock:
 319				unlock_page(page);
 320				continue;
 321			}
 322			if (!PageDirty(page)) {
 323				/* someone wrote it for us */
 324				goto continue_unlock;
 325			}
 326
 327			f2fs_wait_on_page_writeback(page, META, true);
 328
 329			BUG_ON(PageWriteback(page));
 330			if (!clear_page_dirty_for_io(page))
 331				goto continue_unlock;
 332
 333			if (mapping->a_ops->writepage(page, &wbc)) {
 334				unlock_page(page);
 335				break;
 336			}
 337			nwritten++;
 338			prev = page->index;
 339			if (unlikely(nwritten >= nr_to_write))
 340				break;
 341		}
 342		pagevec_release(&pvec);
 343		cond_resched();
 344	}
 345stop:
 346	if (nwritten)
 347		f2fs_submit_merged_bio(sbi, type, WRITE);
 348
 349	blk_finish_plug(&plug);
 350
 351	return nwritten;
 352}
 353
 354static int f2fs_set_meta_page_dirty(struct page *page)
 355{
 356	trace_f2fs_set_page_dirty(page, META);
 357
 358	SetPageUptodate(page);
 
 359	if (!PageDirty(page)) {
 360		__set_page_dirty_nobuffers(page);
 361		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
 362		SetPagePrivate(page);
 363		f2fs_trace_pid(page);
 364		return 1;
 365	}
 366	return 0;
 367}
 368
 369const struct address_space_operations f2fs_meta_aops = {
 370	.writepage	= f2fs_write_meta_page,
 371	.writepages	= f2fs_write_meta_pages,
 372	.set_page_dirty	= f2fs_set_meta_page_dirty,
 373	.invalidatepage = f2fs_invalidate_page,
 374	.releasepage	= f2fs_release_page,
 
 
 
 375};
 376
 377static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 378{
 379	struct inode_management *im = &sbi->im[type];
 380	struct ino_entry *e, *tmp;
 381
 382	tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
 383retry:
 384	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
 385
 386	spin_lock(&im->ino_lock);
 387	e = radix_tree_lookup(&im->ino_root, ino);
 388	if (!e) {
 389		e = tmp;
 390		if (radix_tree_insert(&im->ino_root, ino, e)) {
 391			spin_unlock(&im->ino_lock);
 392			radix_tree_preload_end();
 393			goto retry;
 394		}
 395		memset(e, 0, sizeof(struct ino_entry));
 396		e->ino = ino;
 397
 398		list_add_tail(&e->list, &im->ino_list);
 399		if (type != ORPHAN_INO)
 400			im->ino_num++;
 401	}
 402	spin_unlock(&im->ino_lock);
 403	radix_tree_preload_end();
 404
 405	if (e != tmp)
 406		kmem_cache_free(ino_entry_slab, tmp);
 407}
 408
 409static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 410{
 411	struct inode_management *im = &sbi->im[type];
 412	struct ino_entry *e;
 413
 414	spin_lock(&im->ino_lock);
 415	e = radix_tree_lookup(&im->ino_root, ino);
 416	if (e) {
 417		list_del(&e->list);
 418		radix_tree_delete(&im->ino_root, ino);
 419		im->ino_num--;
 420		spin_unlock(&im->ino_lock);
 421		kmem_cache_free(ino_entry_slab, e);
 422		return;
 423	}
 424	spin_unlock(&im->ino_lock);
 425}
 426
 427void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 428{
 429	/* add new dirty ino entry into list */
 430	__add_ino_entry(sbi, ino, type);
 431}
 432
 433void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
 434{
 435	/* remove dirty ino entry from list */
 436	__remove_ino_entry(sbi, ino, type);
 437}
 438
 439/* mode should be APPEND_INO or UPDATE_INO */
 440bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
 441{
 442	struct inode_management *im = &sbi->im[mode];
 443	struct ino_entry *e;
 444
 445	spin_lock(&im->ino_lock);
 446	e = radix_tree_lookup(&im->ino_root, ino);
 447	spin_unlock(&im->ino_lock);
 448	return e ? true : false;
 449}
 450
 451void release_ino_entry(struct f2fs_sb_info *sbi)
 452{
 453	struct ino_entry *e, *tmp;
 454	int i;
 455
 456	for (i = APPEND_INO; i <= UPDATE_INO; i++) {
 457		struct inode_management *im = &sbi->im[i];
 458
 459		spin_lock(&im->ino_lock);
 460		list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
 461			list_del(&e->list);
 462			radix_tree_delete(&im->ino_root, e->ino);
 463			kmem_cache_free(ino_entry_slab, e);
 464			im->ino_num--;
 465		}
 466		spin_unlock(&im->ino_lock);
 467	}
 468}
 469
 470int acquire_orphan_inode(struct f2fs_sb_info *sbi)
 471{
 472	struct inode_management *im = &sbi->im[ORPHAN_INO];
 473	int err = 0;
 474
 475	spin_lock(&im->ino_lock);
 
 
 
 
 
 
 
 476	if (unlikely(im->ino_num >= sbi->max_orphans))
 477		err = -ENOSPC;
 478	else
 479		im->ino_num++;
 480	spin_unlock(&im->ino_lock);
 481
 482	return err;
 483}
 484
 485void release_orphan_inode(struct f2fs_sb_info *sbi)
 486{
 487	struct inode_management *im = &sbi->im[ORPHAN_INO];
 488
 489	spin_lock(&im->ino_lock);
 490	f2fs_bug_on(sbi, im->ino_num == 0);
 491	im->ino_num--;
 492	spin_unlock(&im->ino_lock);
 493}
 494
 495void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 496{
 497	/* add new orphan ino entry into list */
 498	__add_ino_entry(sbi, ino, ORPHAN_INO);
 
 499}
 500
 501void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 502{
 503	/* remove orphan entry from orphan list */
 504	__remove_ino_entry(sbi, ino, ORPHAN_INO);
 505}
 506
 507static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
 508{
 509	struct inode *inode;
 
 
 510
 511	inode = f2fs_iget(sbi->sb, ino);
 
 
 
 
 
 
 
 
 
 
 512	if (IS_ERR(inode)) {
 513		/*
 514		 * there should be a bug that we can't find the entry
 515		 * to orphan inode.
 516		 */
 517		f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
 518		return PTR_ERR(inode);
 519	}
 520
 521	clear_nlink(inode);
 522
 523	/* truncate all the data during iput */
 524	iput(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 525	return 0;
 526}
 527
 528int recover_orphan_inodes(struct f2fs_sb_info *sbi)
 529{
 530	block_t start_blk, orphan_blocks, i, j;
 531	int err;
 532
 533	if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
 534		return 0;
 535
 536	start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
 537	orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
 538
 539	ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
 540
 541	for (i = 0; i < orphan_blocks; i++) {
 542		struct page *page = get_meta_page(sbi, start_blk + i);
 543		struct f2fs_orphan_block *orphan_blk;
 544
 545		orphan_blk = (struct f2fs_orphan_block *)page_address(page);
 546		for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
 547			nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
 548			err = recover_orphan_inode(sbi, ino);
 549			if (err) {
 550				f2fs_put_page(page, 1);
 551				return err;
 552			}
 553		}
 554		f2fs_put_page(page, 1);
 555	}
 556	/* clear Orphan Flag */
 557	clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
 558	return 0;
 559}
 560
 561static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
 562{
 563	struct list_head *head;
 564	struct f2fs_orphan_block *orphan_blk = NULL;
 565	unsigned int nentries = 0;
 566	unsigned short index = 1;
 567	unsigned short orphan_blocks;
 568	struct page *page = NULL;
 569	struct ino_entry *orphan = NULL;
 570	struct inode_management *im = &sbi->im[ORPHAN_INO];
 571
 572	orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
 573
 574	/*
 575	 * we don't need to do spin_lock(&im->ino_lock) here, since all the
 576	 * orphan inode operations are covered under f2fs_lock_op().
 577	 * And, spin_lock should be avoided due to page operations below.
 578	 */
 579	head = &im->ino_list;
 580
 581	/* loop for each orphan inode entry and write them in Jornal block */
 582	list_for_each_entry(orphan, head, list) {
 583		if (!page) {
 584			page = grab_meta_page(sbi, start_blk++);
 585			orphan_blk =
 586				(struct f2fs_orphan_block *)page_address(page);
 587			memset(orphan_blk, 0, sizeof(*orphan_blk));
 588		}
 589
 590		orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
 591
 592		if (nentries == F2FS_ORPHANS_PER_BLOCK) {
 593			/*
 594			 * an orphan block is full of 1020 entries,
 595			 * then we need to flush current orphan blocks
 596			 * and bring another one in memory
 597			 */
 598			orphan_blk->blk_addr = cpu_to_le16(index);
 599			orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 600			orphan_blk->entry_count = cpu_to_le32(nentries);
 601			set_page_dirty(page);
 602			f2fs_put_page(page, 1);
 603			index++;
 604			nentries = 0;
 605			page = NULL;
 606		}
 607	}
 608
 609	if (page) {
 610		orphan_blk->blk_addr = cpu_to_le16(index);
 611		orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
 612		orphan_blk->entry_count = cpu_to_le32(nentries);
 613		set_page_dirty(page);
 614		f2fs_put_page(page, 1);
 615	}
 616}
 617
 618static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
 619				block_t cp_addr, unsigned long long *version)
 
 620{
 621	struct page *cp_page_1, *cp_page_2 = NULL;
 622	unsigned long blk_size = sbi->blocksize;
 623	struct f2fs_checkpoint *cp_block;
 624	unsigned long long cur_version = 0, pre_version = 0;
 625	size_t crc_offset;
 626	__u32 crc = 0;
 627
 628	/* Read the 1st cp block in this CP pack */
 629	cp_page_1 = get_meta_page(sbi, cp_addr);
 630
 631	/* get the version number */
 632	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_1);
 633	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 634	if (crc_offset >= blk_size)
 635		goto invalid_cp1;
 
 636
 637	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 638	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 639		goto invalid_cp1;
 
 
 
 640
 641	pre_version = cur_cp_version(cp_block);
 
 
 642
 643	/* Read the 2nd cp block in this CP pack */
 644	cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
 645	cp_page_2 = get_meta_page(sbi, cp_addr);
 
 
 
 
 646
 647	cp_block = (struct f2fs_checkpoint *)page_address(cp_page_2);
 648	crc_offset = le32_to_cpu(cp_block->checksum_offset);
 649	if (crc_offset >= blk_size)
 650		goto invalid_cp2;
 
 651
 652	crc = le32_to_cpu(*((__le32 *)((unsigned char *)cp_block + crc_offset)));
 653	if (!f2fs_crc_valid(sbi, crc, cp_block, crc_offset))
 
 
 654		goto invalid_cp2;
 655
 656	cur_version = cur_cp_version(cp_block);
 657
 658	if (cur_version == pre_version) {
 659		*version = cur_version;
 660		f2fs_put_page(cp_page_2, 1);
 661		return cp_page_1;
 662	}
 663invalid_cp2:
 664	f2fs_put_page(cp_page_2, 1);
 665invalid_cp1:
 666	f2fs_put_page(cp_page_1, 1);
 667	return NULL;
 668}
 669
 670int get_valid_checkpoint(struct f2fs_sb_info *sbi)
 671{
 672	struct f2fs_checkpoint *cp_block;
 673	struct f2fs_super_block *fsb = sbi->raw_super;
 674	struct page *cp1, *cp2, *cur_page;
 675	unsigned long blk_size = sbi->blocksize;
 676	unsigned long long cp1_version = 0, cp2_version = 0;
 677	unsigned long long cp_start_blk_no;
 678	unsigned int cp_blks = 1 + __cp_payload(sbi);
 679	block_t cp_blk_no;
 680	int i;
 681
 682	sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
 683	if (!sbi->ckpt)
 684		return -ENOMEM;
 685	/*
 686	 * Finding out valid cp block involves read both
 687	 * sets( cp pack1 and cp pack 2)
 688	 */
 689	cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 690	cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
 691
 692	/* The second checkpoint pack should start at the next segment */
 693	cp_start_blk_no += ((unsigned long long)1) <<
 694				le32_to_cpu(fsb->log_blocks_per_seg);
 695	cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
 696
 697	if (cp1 && cp2) {
 698		if (ver_after(cp2_version, cp1_version))
 699			cur_page = cp2;
 700		else
 701			cur_page = cp1;
 702	} else if (cp1) {
 703		cur_page = cp1;
 704	} else if (cp2) {
 705		cur_page = cp2;
 706	} else {
 707		goto fail_no_cp;
 708	}
 709
 710	cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
 711	memcpy(sbi->ckpt, cp_block, blk_size);
 712
 713	/* Sanity checking of checkpoint */
 714	if (sanity_check_ckpt(sbi))
 715		goto fail_no_cp;
 
 
 
 
 
 716
 717	if (cp_blks <= 1)
 718		goto done;
 719
 720	cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
 721	if (cur_page == cp2)
 722		cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
 723
 724	for (i = 1; i < cp_blks; i++) {
 725		void *sit_bitmap_ptr;
 726		unsigned char *ckpt = (unsigned char *)sbi->ckpt;
 727
 728		cur_page = get_meta_page(sbi, cp_blk_no + i);
 729		sit_bitmap_ptr = page_address(cur_page);
 730		memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
 731		f2fs_put_page(cur_page, 1);
 732	}
 733done:
 734	f2fs_put_page(cp1, 1);
 735	f2fs_put_page(cp2, 1);
 736	return 0;
 737
 
 
 
 738fail_no_cp:
 739	kfree(sbi->ckpt);
 740	return -EINVAL;
 741}
 742
 743static void __add_dirty_inode(struct inode *inode, enum inode_type type)
 744{
 745	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 746	struct f2fs_inode_info *fi = F2FS_I(inode);
 747	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 748
 749	if (is_inode_flag_set(fi, flag))
 750		return;
 751
 752	set_inode_flag(fi, flag);
 753	list_add_tail(&fi->dirty_list, &sbi->inode_list[type]);
 754	stat_inc_dirty_inode(sbi, type);
 755}
 756
 757static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
 758{
 759	struct f2fs_inode_info *fi = F2FS_I(inode);
 760	int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
 761
 762	if (get_dirty_pages(inode) ||
 763			!is_inode_flag_set(F2FS_I(inode), flag))
 764		return;
 765
 766	list_del_init(&fi->dirty_list);
 767	clear_inode_flag(fi, flag);
 768	stat_dec_dirty_inode(F2FS_I_SB(inode), type);
 769}
 770
 771void update_dirty_page(struct inode *inode, struct page *page)
 772{
 773	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 774	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 775
 776	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 777			!S_ISLNK(inode->i_mode))
 778		return;
 779
 780	spin_lock(&sbi->inode_lock[type]);
 781	__add_dirty_inode(inode, type);
 
 782	inode_inc_dirty_pages(inode);
 783	spin_unlock(&sbi->inode_lock[type]);
 784
 785	SetPagePrivate(page);
 786	f2fs_trace_pid(page);
 787}
 788
 789void add_dirty_dir_inode(struct inode *inode)
 790{
 791	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 792
 793	spin_lock(&sbi->inode_lock[DIR_INODE]);
 794	__add_dirty_inode(inode, DIR_INODE);
 795	spin_unlock(&sbi->inode_lock[DIR_INODE]);
 796}
 797
 798void remove_dirty_inode(struct inode *inode)
 799{
 800	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 801	struct f2fs_inode_info *fi = F2FS_I(inode);
 802	enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
 803
 804	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
 805			!S_ISLNK(inode->i_mode))
 806		return;
 807
 
 
 
 808	spin_lock(&sbi->inode_lock[type]);
 809	__remove_dirty_inode(inode, type);
 810	spin_unlock(&sbi->inode_lock[type]);
 811
 812	/* Only from the recovery routine */
 813	if (is_inode_flag_set(fi, FI_DELAY_IPUT)) {
 814		clear_inode_flag(fi, FI_DELAY_IPUT);
 815		iput(inode);
 816	}
 817}
 818
 819int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
 820{
 821	struct list_head *head;
 822	struct inode *inode;
 823	struct f2fs_inode_info *fi;
 824	bool is_dir = (type == DIR_INODE);
 825
 826	trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
 827				get_pages(sbi, is_dir ?
 828				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 829retry:
 830	if (unlikely(f2fs_cp_error(sbi)))
 831		return -EIO;
 832
 833	spin_lock(&sbi->inode_lock[type]);
 834
 835	head = &sbi->inode_list[type];
 836	if (list_empty(head)) {
 837		spin_unlock(&sbi->inode_lock[type]);
 838		trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
 839				get_pages(sbi, is_dir ?
 840				F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
 841		return 0;
 842	}
 843	fi = list_entry(head->next, struct f2fs_inode_info, dirty_list);
 844	inode = igrab(&fi->vfs_inode);
 845	spin_unlock(&sbi->inode_lock[type]);
 846	if (inode) {
 847		filemap_fdatawrite(inode->i_mapping);
 848		iput(inode);
 849	} else {
 850		/*
 851		 * We should submit bio, since it exists several
 852		 * wribacking dentry pages in the freeing inode.
 853		 */
 854		f2fs_submit_merged_bio(sbi, DATA, WRITE);
 855		cond_resched();
 856	}
 857	goto retry;
 858}
 859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860/*
 861 * Freeze all the FS-operations for checkpoint.
 862 */
 863static int block_operations(struct f2fs_sb_info *sbi)
 864{
 865	struct writeback_control wbc = {
 866		.sync_mode = WB_SYNC_ALL,
 867		.nr_to_write = LONG_MAX,
 868		.for_reclaim = 0,
 869	};
 870	struct blk_plug plug;
 871	int err = 0;
 872
 873	blk_start_plug(&plug);
 874
 875retry_flush_dents:
 876	f2fs_lock_all(sbi);
 877	/* write all the dirty dentry pages */
 878	if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
 879		f2fs_unlock_all(sbi);
 880		err = sync_dirty_inodes(sbi, DIR_INODE);
 881		if (err)
 882			goto out;
 883		goto retry_flush_dents;
 884	}
 885
 
 
 
 
 
 
 
 
 886	/*
 887	 * POR: we should ensure that there are no dirty node pages
 888	 * until finishing nat/sit flush.
 889	 */
 890retry_flush_nodes:
 891	down_write(&sbi->node_write);
 892
 893	if (get_pages(sbi, F2FS_DIRTY_NODES)) {
 894		up_write(&sbi->node_write);
 895		err = sync_node_pages(sbi, 0, &wbc);
 896		if (err) {
 897			f2fs_unlock_all(sbi);
 898			goto out;
 899		}
 900		goto retry_flush_nodes;
 901	}
 902out:
 903	blk_finish_plug(&plug);
 904	return err;
 905}
 906
 907static void unblock_operations(struct f2fs_sb_info *sbi)
 908{
 909	up_write(&sbi->node_write);
 
 
 910	f2fs_unlock_all(sbi);
 911}
 912
 913static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
 914{
 915	DEFINE_WAIT(wait);
 916
 917	for (;;) {
 918		prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
 919
 920		if (!get_pages(sbi, F2FS_WRITEBACK))
 921			break;
 922
 923		io_schedule_timeout(5*HZ);
 924	}
 925	finish_wait(&sbi->cp_wait, &wait);
 926}
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 929{
 930	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 931	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
 932	struct f2fs_nm_info *nm_i = NM_I(sbi);
 933	unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
 934	nid_t last_nid = nm_i->next_scan_nid;
 935	block_t start_blk;
 936	unsigned int data_sum_blocks, orphan_blocks;
 937	__u32 crc32 = 0;
 938	int i;
 939	int cp_payload_blks = __cp_payload(sbi);
 940	block_t discard_blk = NEXT_FREE_BLKADDR(sbi, curseg);
 941	bool invalidate = false;
 942	struct super_block *sb = sbi->sb;
 943	struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
 944	u64 kbytes_written;
 945
 946	/*
 947	 * This avoids to conduct wrong roll-forward operations and uses
 948	 * metapages, so should be called prior to sync_meta_pages below.
 949	 */
 950	if (discard_next_dnode(sbi, discard_blk))
 951		invalidate = true;
 952
 953	/* Flush all the NAT/SIT pages */
 954	while (get_pages(sbi, F2FS_DIRTY_META)) {
 955		sync_meta_pages(sbi, META, LONG_MAX);
 956		if (unlikely(f2fs_cp_error(sbi)))
 957			return -EIO;
 958	}
 959
 960	next_free_nid(sbi, &last_nid);
 961
 962	/*
 963	 * modify checkpoint
 964	 * version number is already updated
 965	 */
 966	ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
 967	ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
 968	ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
 969	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
 970		ckpt->cur_node_segno[i] =
 971			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
 972		ckpt->cur_node_blkoff[i] =
 973			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
 974		ckpt->alloc_type[i + CURSEG_HOT_NODE] =
 975				curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
 976	}
 977	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
 978		ckpt->cur_data_segno[i] =
 979			cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
 980		ckpt->cur_data_blkoff[i] =
 981			cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
 982		ckpt->alloc_type[i + CURSEG_HOT_DATA] =
 983				curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
 984	}
 985
 986	ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
 987	ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
 988	ckpt->next_free_nid = cpu_to_le32(last_nid);
 989
 990	/* 2 cp  + n data seg summary + orphan inode blocks */
 991	data_sum_blocks = npages_for_summary_flush(sbi, false);
 
 992	if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
 993		set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 994	else
 995		clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
 
 996
 997	orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
 998	ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
 999			orphan_blocks);
1000
1001	if (__remain_node_summaries(cpc->reason))
1002		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1003				cp_payload_blks + data_sum_blocks +
1004				orphan_blocks + NR_CURSEG_NODE_TYPE);
1005	else
1006		ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1007				cp_payload_blks + data_sum_blocks +
1008				orphan_blocks);
1009
1010	if (cpc->reason == CP_UMOUNT)
1011		set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1012	else
1013		clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1014
1015	if (cpc->reason == CP_FASTBOOT)
1016		set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1017	else
1018		clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1019
1020	if (orphan_num)
1021		set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1022	else
1023		clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1024
1025	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1026		set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1027
1028	/* update SIT/NAT bitmap */
1029	get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1030	get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1031
1032	crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1033	*((__le32 *)((unsigned char *)ckpt +
1034				le32_to_cpu(ckpt->checksum_offset)))
1035				= cpu_to_le32(crc32);
1036
1037	start_blk = __start_cp_addr(sbi);
1038
1039	/* need to wait for end_io results */
1040	wait_on_all_pages_writeback(sbi);
1041	if (unlikely(f2fs_cp_error(sbi)))
1042		return -EIO;
1043
1044	/* write out checkpoint buffer at block 0 */
1045	update_meta_page(sbi, ckpt, start_blk++);
1046
1047	for (i = 1; i < 1 + cp_payload_blks; i++)
1048		update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1049							start_blk++);
1050
1051	if (orphan_num) {
1052		write_orphan_inodes(sbi, start_blk);
1053		start_blk += orphan_blocks;
1054	}
1055
1056	write_data_summaries(sbi, start_blk);
1057	start_blk += data_sum_blocks;
1058
1059	/* Record write statistics in the hot node summary */
1060	kbytes_written = sbi->kbytes_written;
1061	if (sb->s_bdev->bd_part)
1062		kbytes_written += BD_PART_WRITTEN(sbi);
1063
1064	seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1065
1066	if (__remain_node_summaries(cpc->reason)) {
1067		write_node_summaries(sbi, start_blk);
1068		start_blk += NR_CURSEG_NODE_TYPE;
1069	}
1070
1071	/* writeout checkpoint block */
1072	update_meta_page(sbi, ckpt, start_blk);
1073
1074	/* wait for previous submitted node/meta pages writeback */
1075	wait_on_all_pages_writeback(sbi);
1076
1077	if (unlikely(f2fs_cp_error(sbi)))
1078		return -EIO;
1079
1080	filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1081	filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1082
1083	/* update user_block_counts */
1084	sbi->last_valid_block_count = sbi->total_valid_block_count;
1085	sbi->alloc_valid_block_count = 0;
1086
1087	/* Here, we only have one bio having CP pack */
1088	sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1089
1090	/* wait for previous submitted meta pages writeback */
1091	wait_on_all_pages_writeback(sbi);
1092
1093	/*
1094	 * invalidate meta page which is used temporarily for zeroing out
1095	 * block at the end of warm node chain.
1096	 */
1097	if (invalidate)
1098		invalidate_mapping_pages(META_MAPPING(sbi), discard_blk,
1099								discard_blk);
1100
1101	release_ino_entry(sbi);
1102
1103	if (unlikely(f2fs_cp_error(sbi)))
1104		return -EIO;
1105
1106	clear_prefree_segments(sbi, cpc);
1107	clear_sbi_flag(sbi, SBI_IS_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
1108
1109	return 0;
1110}
1111
1112/*
1113 * We guarantee that this checkpoint procedure will not fail.
1114 */
1115int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1116{
1117	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1118	unsigned long long ckpt_ver;
1119	int err = 0;
1120
1121	mutex_lock(&sbi->cp_mutex);
1122
1123	if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1124		(cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1125		(cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1126		goto out;
1127	if (unlikely(f2fs_cp_error(sbi))) {
1128		err = -EIO;
1129		goto out;
1130	}
1131	if (f2fs_readonly(sbi->sb)) {
1132		err = -EROFS;
1133		goto out;
1134	}
1135
1136	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1137
1138	err = block_operations(sbi);
1139	if (err)
1140		goto out;
1141
1142	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1143
1144	f2fs_flush_merged_bios(sbi);
1145
 
 
 
 
 
 
 
 
 
 
 
 
1146	/*
1147	 * update checkpoint pack index
1148	 * Increase the version number so that
1149	 * SIT entries and seg summaries are written at correct place
1150	 */
1151	ckpt_ver = cur_cp_version(ckpt);
1152	ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1153
1154	/* write cached NAT/SIT entries to NAT/SIT area */
1155	flush_nat_entries(sbi);
1156	flush_sit_entries(sbi, cpc);
1157
1158	/* unlock all the fs_lock[] in do_checkpoint() */
1159	err = do_checkpoint(sbi, cpc);
 
 
 
 
 
 
1160
1161	unblock_operations(sbi);
1162	stat_inc_cp_count(sbi->stat_info);
1163
1164	if (cpc->reason == CP_RECOVERY)
1165		f2fs_msg(sbi->sb, KERN_NOTICE,
1166			"checkpoint: version = %llx", ckpt_ver);
1167
1168	/* do checkpoint periodically */
1169	f2fs_update_time(sbi, CP_TIME);
1170	trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1171out:
1172	mutex_unlock(&sbi->cp_mutex);
1173	return err;
1174}
1175
1176void init_ino_entry_info(struct f2fs_sb_info *sbi)
1177{
1178	int i;
1179
1180	for (i = 0; i < MAX_INO_ENTRY; i++) {
1181		struct inode_management *im = &sbi->im[i];
1182
1183		INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1184		spin_lock_init(&im->ino_lock);
1185		INIT_LIST_HEAD(&im->ino_list);
1186		im->ino_num = 0;
1187	}
1188
1189	sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1190			NR_CURSEG_TYPE - __cp_payload(sbi)) *
1191				F2FS_ORPHANS_PER_BLOCK;
1192}
1193
1194int __init create_checkpoint_caches(void)
1195{
1196	ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1197			sizeof(struct ino_entry));
1198	if (!ino_entry_slab)
1199		return -ENOMEM;
1200	inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1201			sizeof(struct inode_entry));
1202	if (!inode_entry_slab) {
1203		kmem_cache_destroy(ino_entry_slab);
1204		return -ENOMEM;
1205	}
1206	return 0;
1207}
1208
1209void destroy_checkpoint_caches(void)
1210{
1211	kmem_cache_destroy(ino_entry_slab);
1212	kmem_cache_destroy(inode_entry_slab);
1213}