Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * core.h - DesignWare HS OTG Controller common declarations
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#ifndef __DWC2_CORE_H__
  38#define __DWC2_CORE_H__
  39
  40#include <linux/phy/phy.h>
  41#include <linux/regulator/consumer.h>
  42#include <linux/usb/gadget.h>
  43#include <linux/usb/otg.h>
  44#include <linux/usb/phy.h>
  45#include "hw.h"
  46
  47/*
  48 * Suggested defines for tracers:
  49 * - no_printk:    Disable tracing
  50 * - pr_info:      Print this info to the console
  51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  52 */
  53
  54#define DWC2_TRACE_SCHEDULER		no_printk
  55#define DWC2_TRACE_SCHEDULER_VB		no_printk
  56
  57/* Detailed scheduler tracing, but won't overwhelm console */
  58#define dwc2_sch_dbg(hsotg, fmt, ...)					\
  59	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
  60			     dev_name(hsotg->dev), ##__VA_ARGS__)
  61
  62/* Verbose scheduler tracing */
  63#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
  64	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
  65				dev_name(hsotg->dev), ##__VA_ARGS__)
  66
  67#ifdef CONFIG_MIPS
  68/*
  69 * There are some MIPS machines that can run in either big-endian
  70 * or little-endian mode and that use the dwc2 register without
  71 * a byteswap in both ways.
  72 * Unlike other architectures, MIPS apparently does not require a
  73 * barrier before the __raw_writel() to synchronize with DMA but does
  74 * require the barrier after the __raw_writel() to serialize a set of
  75 * writes. This set of operations was added specifically for MIPS and
  76 * should only be used there.
  77 */
  78static inline u32 dwc2_readl(const void __iomem *addr)
  79{
  80	u32 value = __raw_readl(addr);
  81
  82	/* In order to preserve endianness __raw_* operation is used. Therefore
  83	 * a barrier is needed to ensure IO access is not re-ordered across
  84	 * reads or writes
  85	 */
  86	mb();
  87	return value;
  88}
  89
  90static inline void dwc2_writel(u32 value, void __iomem *addr)
  91{
  92	__raw_writel(value, addr);
  93
  94	/*
  95	 * In order to preserve endianness __raw_* operation is used. Therefore
  96	 * a barrier is needed to ensure IO access is not re-ordered across
  97	 * reads or writes
  98	 */
  99	mb();
 100#ifdef DWC2_LOG_WRITES
 101	pr_info("INFO:: wrote %08x to %p\n", value, addr);
 102#endif
 103}
 104#else
 105/* Normal architectures just use readl/write */
 106static inline u32 dwc2_readl(const void __iomem *addr)
 107{
 108	return readl(addr);
 109}
 110
 111static inline void dwc2_writel(u32 value, void __iomem *addr)
 112{
 113	writel(value, addr);
 114
 115#ifdef DWC2_LOG_WRITES
 116	pr_info("info:: wrote %08x to %p\n", value, addr);
 117#endif
 118}
 119#endif
 120
 121/* Maximum number of Endpoints/HostChannels */
 122#define MAX_EPS_CHANNELS	16
 123
 124/* dwc2-hsotg declarations */
 125static const char * const dwc2_hsotg_supply_names[] = {
 126	"vusb_d",               /* digital USB supply, 1.2V */
 127	"vusb_a",               /* analog USB supply, 1.1V */
 128};
 129
 130/*
 131 * EP0_MPS_LIMIT
 132 *
 133 * Unfortunately there seems to be a limit of the amount of data that can
 134 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 135 * packets (which practically means 1 packet and 63 bytes of data) when the
 136 * MPS is set to 64.
 137 *
 138 * This means if we are wanting to move >127 bytes of data, we need to
 139 * split the transactions up, but just doing one packet at a time does
 140 * not work (this may be an implicit DATA0 PID on first packet of the
 141 * transaction) and doing 2 packets is outside the controller's limits.
 142 *
 143 * If we try to lower the MPS size for EP0, then no transfers work properly
 144 * for EP0, and the system will fail basic enumeration. As no cause for this
 145 * has currently been found, we cannot support any large IN transfers for
 146 * EP0.
 147 */
 148#define EP0_MPS_LIMIT   64
 149
 150struct dwc2_hsotg;
 151struct dwc2_hsotg_req;
 152
 153/**
 154 * struct dwc2_hsotg_ep - driver endpoint definition.
 155 * @ep: The gadget layer representation of the endpoint.
 156 * @name: The driver generated name for the endpoint.
 157 * @queue: Queue of requests for this endpoint.
 158 * @parent: Reference back to the parent device structure.
 159 * @req: The current request that the endpoint is processing. This is
 160 *       used to indicate an request has been loaded onto the endpoint
 161 *       and has yet to be completed (maybe due to data move, or simply
 162 *       awaiting an ack from the core all the data has been completed).
 163 * @debugfs: File entry for debugfs file for this endpoint.
 164 * @lock: State lock to protect contents of endpoint.
 165 * @dir_in: Set to true if this endpoint is of the IN direction, which
 166 *          means that it is sending data to the Host.
 167 * @index: The index for the endpoint registers.
 168 * @mc: Multi Count - number of transactions per microframe
 169 * @interval - Interval for periodic endpoints, in frames or microframes.
 170 * @name: The name array passed to the USB core.
 171 * @halted: Set if the endpoint has been halted.
 172 * @periodic: Set if this is a periodic ep, such as Interrupt
 173 * @isochronous: Set if this is a isochronous ep
 174 * @send_zlp: Set if we need to send a zero-length packet.
 175 * @desc_list_dma: The DMA address of descriptor chain currently in use.
 176 * @desc_list: Pointer to descriptor DMA chain head currently in use.
 177 * @desc_count: Count of entries within the DMA descriptor chain of EP.
 178 * @isoc_chain_num: Number of ISOC chain currently in use - either 0 or 1.
 179 * @next_desc: index of next free descriptor in the ISOC chain under SW control.
 180 * @total_data: The total number of data bytes done.
 181 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 182 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 183 * @last_load: The offset of data for the last start of request.
 184 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 185 * @target_frame: Targeted frame num to setup next ISOC transfer
 186 * @frame_overrun: Indicates SOF number overrun in DSTS
 187 *
 188 * This is the driver's state for each registered enpoint, allowing it
 189 * to keep track of transactions that need doing. Each endpoint has a
 190 * lock to protect the state, to try and avoid using an overall lock
 191 * for the host controller as much as possible.
 192 *
 193 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 194 * and keep track of the amount of data in the periodic FIFO for each
 195 * of these as we don't have a status register that tells us how much
 196 * is in each of them. (note, this may actually be useless information
 197 * as in shared-fifo mode periodic in acts like a single-frame packet
 198 * buffer than a fifo)
 199 */
 200struct dwc2_hsotg_ep {
 201	struct usb_ep           ep;
 202	struct list_head        queue;
 203	struct dwc2_hsotg       *parent;
 204	struct dwc2_hsotg_req    *req;
 205	struct dentry           *debugfs;
 206
 207	unsigned long           total_data;
 208	unsigned int            size_loaded;
 209	unsigned int            last_load;
 210	unsigned int            fifo_load;
 211	unsigned short          fifo_size;
 212	unsigned short		fifo_index;
 213
 214	unsigned char           dir_in;
 215	unsigned char           index;
 216	unsigned char           mc;
 217	unsigned char           interval;
 218
 219	unsigned int            halted:1;
 220	unsigned int            periodic:1;
 221	unsigned int            isochronous:1;
 222	unsigned int            send_zlp:1;
 223	unsigned int            target_frame;
 224#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 225	bool			frame_overrun;
 226
 227	dma_addr_t		desc_list_dma;
 228	struct dwc2_dma_desc	*desc_list;
 229	u8			desc_count;
 230
 231	unsigned char		isoc_chain_num;
 232	unsigned int		next_desc;
 233
 234	char                    name[10];
 235};
 236
 237/**
 238 * struct dwc2_hsotg_req - data transfer request
 239 * @req: The USB gadget request
 240 * @queue: The list of requests for the endpoint this is queued for.
 241 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 242 */
 243struct dwc2_hsotg_req {
 244	struct usb_request      req;
 245	struct list_head        queue;
 246	void *saved_req_buf;
 247};
 248
 249#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 250#define call_gadget(_hs, _entry) \
 251do { \
 252	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 253		(_hs)->driver && (_hs)->driver->_entry) { \
 254		spin_unlock(&_hs->lock); \
 255		(_hs)->driver->_entry(&(_hs)->gadget); \
 256		spin_lock(&_hs->lock); \
 257	} \
 258} while (0)
 259#else
 260#define call_gadget(_hs, _entry)	do {} while (0)
 261#endif
 262
 263struct dwc2_hsotg;
 264struct dwc2_host_chan;
 265
 266/* Device States */
 267enum dwc2_lx_state {
 268	DWC2_L0,	/* On state */
 269	DWC2_L1,	/* LPM sleep state */
 270	DWC2_L2,	/* USB suspend state */
 271	DWC2_L3,	/* Off state */
 272};
 273
 274/*
 275 * Gadget periodic tx fifo sizes as used by legacy driver
 276 * EP0 is not included
 277 */
 278#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
 279					   768, 0, 0, 0, 0, 0, 0, 0}
 280
 281/* Gadget ep0 states */
 282enum dwc2_ep0_state {
 283	DWC2_EP0_SETUP,
 284	DWC2_EP0_DATA_IN,
 285	DWC2_EP0_DATA_OUT,
 286	DWC2_EP0_STATUS_IN,
 287	DWC2_EP0_STATUS_OUT,
 288};
 289
 290/**
 291 * struct dwc2_core_params - Parameters for configuring the core
 292 *
 293 * @otg_cap:            Specifies the OTG capabilities.
 294 *                       0 - HNP and SRP capable
 295 *                       1 - SRP Only capable
 296 *                       2 - No HNP/SRP capable (always available)
 297 *                      Defaults to best available option (0, 1, then 2)
 298 * @otg_ver:            OTG version supported
 299 *                       0 - 1.3 (default)
 300 *                       1 - 2.0
 301 * @host_dma:           Specifies whether to use slave or DMA mode for accessing
 302 *                      the data FIFOs. The driver will automatically detect the
 303 *                      value for this parameter if none is specified.
 304 *                       0 - Slave (always available)
 305 *                       1 - DMA (default, if available)
 306 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 307 *                      address DMA mode or descriptor DMA mode for accessing
 308 *                      the data FIFOs. The driver will automatically detect the
 309 *                      value for this if none is specified.
 310 *                       0 - Address DMA
 311 *                       1 - Descriptor DMA (default, if available)
 312 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 313 *                      address DMA mode or descriptor DMA mode for accessing
 314 *                      the data FIFOs in Full Speed mode only. The driver
 315 *                      will automatically detect the value for this if none is
 316 *                      specified.
 317 *                       0 - Address DMA
 318 *                       1 - Descriptor DMA in FS (default, if available)
 319 * @speed:              Specifies the maximum speed of operation in host and
 320 *                      device mode. The actual speed depends on the speed of
 321 *                      the attached device and the value of phy_type.
 322 *                       0 - High Speed
 323 *                           (default when phy_type is UTMI+ or ULPI)
 324 *                       1 - Full Speed
 325 *                           (default when phy_type is Full Speed)
 326 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 327 *                       1 - Allow dynamic FIFO sizing (default, if available)
 328 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 329 *                      are enabled for non-periodic IN endpoints in device
 330 *                      mode.
 331 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 332 *                      dynamic FIFO sizing is enabled
 333 *                       16 to 32768
 334 *                      Actual maximum value is autodetected and also
 335 *                      the default.
 336 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 337 *                      in host mode when dynamic FIFO sizing is enabled
 338 *                       16 to 32768
 339 *                      Actual maximum value is autodetected and also
 340 *                      the default.
 341 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 342 *                      host mode when dynamic FIFO sizing is enabled
 343 *                       16 to 32768
 344 *                      Actual maximum value is autodetected and also
 345 *                      the default.
 346 * @max_transfer_size:  The maximum transfer size supported, in bytes
 347 *                       2047 to 65,535
 348 *                      Actual maximum value is autodetected and also
 349 *                      the default.
 350 * @max_packet_count:   The maximum number of packets in a transfer
 351 *                       15 to 511
 352 *                      Actual maximum value is autodetected and also
 353 *                      the default.
 354 * @host_channels:      The number of host channel registers to use
 355 *                       1 to 16
 356 *                      Actual maximum value is autodetected and also
 357 *                      the default.
 358 * @phy_type:           Specifies the type of PHY interface to use. By default,
 359 *                      the driver will automatically detect the phy_type.
 360 *                       0 - Full Speed Phy
 361 *                       1 - UTMI+ Phy
 362 *                       2 - ULPI Phy
 363 *                      Defaults to best available option (2, 1, then 0)
 364 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 365 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 366 *                      ULPI phy_type, this parameter indicates the data width
 367 *                      between the MAC and the ULPI Wrapper.) Also, this
 368 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 369 *                      parameter was set to "8 and 16 bits", meaning that the
 370 *                      core has been configured to work at either data path
 371 *                      width.
 372 *                       8 or 16 (default 16 if available)
 373 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 374 *                      data rate. This parameter is only applicable if phy_type
 375 *                      is ULPI.
 376 *                       0 - single data rate ULPI interface with 8 bit wide
 377 *                           data bus (default)
 378 *                       1 - double data rate ULPI interface with 4 bit wide
 379 *                           data bus
 380 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 381 *                      external supply to drive the VBus
 382 *                       0 - Internal supply (default)
 383 *                       1 - External supply
 384 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 385 *                      speed PHY. This parameter is only applicable if phy_type
 386 *                      is FS.
 387 *                       0 - No (default)
 388 *                       1 - Yes
 389 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 390 *                       0 - No (default)
 391 *                       1 - Yes
 392 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 393 *                      when attached to a Full Speed or Low Speed device in
 394 *                      host mode.
 395 *                       0 - Don't support low power mode (default)
 396 *                       1 - Support low power mode
 397 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 398 *                      when connected to a Low Speed device in host
 399 *                      mode. This parameter is applicable only if
 400 *                      host_support_fs_ls_low_power is enabled.
 401 *                       0 - 48 MHz
 402 *                           (default when phy_type is UTMI+ or ULPI)
 403 *                       1 - 6 MHz
 404 *                           (default when phy_type is Full Speed)
 405 * @ts_dline:           Enable Term Select Dline pulsing
 406 *                       0 - No (default)
 407 *                       1 - Yes
 408 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 409 *                       0 - No (default for core < 2.92a)
 410 *                       1 - Yes (default for core >= 2.92a)
 411 * @ahbcfg:             This field allows the default value of the GAHBCFG
 412 *                      register to be overridden
 413 *                       -1         - GAHBCFG value will be set to 0x06
 414 *                                    (INCR4, default)
 415 *                       all others - GAHBCFG value will be overridden with
 416 *                                    this value
 417 *                      Not all bits can be controlled like this, the
 418 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 419 *                      by the driver and are ignored in this
 420 *                      configuration value.
 421 * @uframe_sched:       True to enable the microframe scheduler
 422 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 423 *                      Disable CONIDSTSCHNG controller interrupt in such
 424 *                      case.
 425 *                      0 - No (default)
 426 *                      1 - Yes
 427 * @hibernation:	Specifies whether the controller support hibernation.
 428 *			If hibernation is enabled, the controller will enter
 429 *			hibernation in both peripheral and host mode when
 430 *			needed.
 431 *			0 - No (default)
 432 *			1 - Yes
 433 * @g_dma:              Enables gadget dma usage (default: autodetect).
 434 * @g_dma_desc:         Enables gadget descriptor DMA (default: autodetect).
 435 * @g_rx_fifo_size:	The periodic rx fifo size for the device, in
 436 *			DWORDS from 16-32768 (default: 2048 if
 437 *			possible, otherwise autodetect).
 438 * @g_np_tx_fifo_size:	The non-periodic tx fifo size for the device in
 439 *			DWORDS from 16-32768 (default: 1024 if
 440 *			possible, otherwise autodetect).
 441 * @g_tx_fifo_size:	An array of TX fifo sizes in dedicated fifo
 442 *			mode. Each value corresponds to one EP
 443 *			starting from EP1 (max 15 values). Sizes are
 444 *			in DWORDS with possible values from from
 445 *			16-32768 (default: 256, 256, 256, 256, 768,
 446 *			768, 768, 768, 0, 0, 0, 0, 0, 0, 0).
 447 *
 448 * The following parameters may be specified when starting the module. These
 449 * parameters define how the DWC_otg controller should be configured. A
 450 * value of -1 (or any other out of range value) for any parameter means
 451 * to read the value from hardware (if possible) or use the builtin
 452 * default described above.
 453 */
 454struct dwc2_core_params {
 455	/*
 456	 * Don't add any non-int members here, this will break
 457	 * dwc2_set_all_params!
 458	 */
 459	int otg_cap;
 460#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
 461#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
 462#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
 463
 464	int otg_ver;
 
 465	int dma_desc_enable;
 466	int dma_desc_fs_enable;
 467	int speed;
 468#define DWC2_SPEED_PARAM_HIGH	0
 469#define DWC2_SPEED_PARAM_FULL	1
 470#define DWC2_SPEED_PARAM_LOW	2
 471
 472	int enable_dynamic_fifo;
 473	int en_multiple_tx_fifo;
 474	int host_rx_fifo_size;
 475	int host_nperio_tx_fifo_size;
 476	int host_perio_tx_fifo_size;
 477	int max_transfer_size;
 478	int max_packet_count;
 479	int host_channels;
 480	int phy_type;
 481#define DWC2_PHY_TYPE_PARAM_FS		0
 482#define DWC2_PHY_TYPE_PARAM_UTMI	1
 483#define DWC2_PHY_TYPE_PARAM_ULPI	2
 484
 485	int phy_utmi_width;
 486	int phy_ulpi_ddr;
 487	int phy_ulpi_ext_vbus;
 488#define DWC2_PHY_ULPI_INTERNAL_VBUS	0
 489#define DWC2_PHY_ULPI_EXTERNAL_VBUS	1
 490
 491	int i2c_enable;
 492	int ulpi_fs_ls;
 493	int host_support_fs_ls_low_power;
 494	int host_ls_low_power_phy_clk;
 495#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ	0
 496#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ	1
 497
 498	int ts_dline;
 499	int reload_ctl;
 500	int ahbcfg;
 501	int uframe_sched;
 502	int external_id_pin_ctl;
 503	int hibernation;
 504
 505	/*
 506	 * The following parameters are *only* set via device
 507	 * properties and cannot be set directly in this structure.
 508	 */
 509
 510	/* Host parameters */
 511	bool host_dma;
 512
 513	/* Gadget parameters */
 514	bool g_dma;
 515	bool g_dma_desc;
 516	u32 g_rx_fifo_size;
 517	u32 g_np_tx_fifo_size;
 518	u32 g_tx_fifo_size[MAX_EPS_CHANNELS];
 519};
 520
 521/**
 522 * struct dwc2_hw_params - Autodetected parameters.
 523 *
 524 * These parameters are the various parameters read from hardware
 525 * registers during initialization. They typically contain the best
 526 * supported or maximum value that can be configured in the
 527 * corresponding dwc2_core_params value.
 528 *
 529 * The values that are not in dwc2_core_params are documented below.
 530 *
 531 * @op_mode             Mode of Operation
 532 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 533 *                       1 - SRP-Capable OTG (Host & Device)
 534 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 535 *                       3 - SRP-Capable Device
 536 *                       4 - Non-OTG Device
 537 *                       5 - SRP-Capable Host
 538 *                       6 - Non-OTG Host
 539 * @arch                Architecture
 540 *                       0 - Slave only
 541 *                       1 - External DMA
 542 *                       2 - Internal DMA
 543 * @power_optimized     Are power optimizations enabled?
 544 * @num_dev_ep          Number of device endpoints available
 545 * @num_dev_perio_in_ep Number of device periodic IN endpoints
 546 *                      available
 547 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 548 *                      Depth
 549 *                       0 to 30
 550 * @host_perio_tx_q_depth
 551 *                      Host Mode Periodic Request Queue Depth
 552 *                       2, 4 or 8
 553 * @nperio_tx_q_depth
 554 *                      Non-Periodic Request Queue Depth
 555 *                       2, 4 or 8
 556 * @hs_phy_type         High-speed PHY interface type
 557 *                       0 - High-speed interface not supported
 558 *                       1 - UTMI+
 559 *                       2 - ULPI
 560 *                       3 - UTMI+ and ULPI
 561 * @fs_phy_type         Full-speed PHY interface type
 562 *                       0 - Full speed interface not supported
 563 *                       1 - Dedicated full speed interface
 564 *                       2 - FS pins shared with UTMI+ pins
 565 *                       3 - FS pins shared with ULPI pins
 566 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 567 * @utmi_phy_data_width UTMI+ PHY data width
 568 *                       0 - 8 bits
 569 *                       1 - 16 bits
 570 *                       2 - 8 or 16 bits
 571 * @snpsid:             Value from SNPSID register
 572 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 573 */
 574struct dwc2_hw_params {
 575	unsigned op_mode:3;
 576	unsigned arch:2;
 577	unsigned dma_desc_enable:1;
 
 578	unsigned enable_dynamic_fifo:1;
 579	unsigned en_multiple_tx_fifo:1;
 580	unsigned rx_fifo_size:16;
 581	unsigned host_nperio_tx_fifo_size:16;
 582	unsigned dev_nperio_tx_fifo_size:16;
 583	unsigned host_perio_tx_fifo_size:16;
 584	unsigned nperio_tx_q_depth:3;
 585	unsigned host_perio_tx_q_depth:3;
 586	unsigned dev_token_q_depth:5;
 587	unsigned max_transfer_size:26;
 588	unsigned max_packet_count:11;
 589	unsigned host_channels:5;
 590	unsigned hs_phy_type:2;
 591	unsigned fs_phy_type:2;
 592	unsigned i2c_enable:1;
 593	unsigned num_dev_ep:4;
 594	unsigned num_dev_perio_in_ep:4;
 595	unsigned total_fifo_size:16;
 596	unsigned power_optimized:1;
 597	unsigned utmi_phy_data_width:2;
 598	u32 snpsid;
 599	u32 dev_ep_dirs;
 600};
 601
 602/* Size of control and EP0 buffers */
 603#define DWC2_CTRL_BUFF_SIZE 8
 604
 605/**
 606 * struct dwc2_gregs_backup - Holds global registers state before entering partial
 607 * power down
 608 * @gotgctl:		Backup of GOTGCTL register
 609 * @gintmsk:		Backup of GINTMSK register
 610 * @gahbcfg:		Backup of GAHBCFG register
 611 * @gusbcfg:		Backup of GUSBCFG register
 612 * @grxfsiz:		Backup of GRXFSIZ register
 613 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 614 * @gi2cctl:		Backup of GI2CCTL register
 615 * @hptxfsiz:		Backup of HPTXFSIZ register
 616 * @gdfifocfg:		Backup of GDFIFOCFG register
 617 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 618 * @gpwrdn:		Backup of GPWRDN register
 619 */
 620struct dwc2_gregs_backup {
 621	u32 gotgctl;
 622	u32 gintmsk;
 623	u32 gahbcfg;
 624	u32 gusbcfg;
 625	u32 grxfsiz;
 626	u32 gnptxfsiz;
 627	u32 gi2cctl;
 628	u32 hptxfsiz;
 629	u32 pcgcctl;
 630	u32 gdfifocfg;
 631	u32 dtxfsiz[MAX_EPS_CHANNELS];
 632	u32 gpwrdn;
 633	bool valid;
 634};
 635
 636/**
 637 * struct  dwc2_dregs_backup - Holds device registers state before entering partial
 638 * power down
 639 * @dcfg:		Backup of DCFG register
 640 * @dctl:		Backup of DCTL register
 641 * @daintmsk:		Backup of DAINTMSK register
 642 * @diepmsk:		Backup of DIEPMSK register
 643 * @doepmsk:		Backup of DOEPMSK register
 644 * @diepctl:		Backup of DIEPCTL register
 645 * @dieptsiz:		Backup of DIEPTSIZ register
 646 * @diepdma:		Backup of DIEPDMA register
 647 * @doepctl:		Backup of DOEPCTL register
 648 * @doeptsiz:		Backup of DOEPTSIZ register
 649 * @doepdma:		Backup of DOEPDMA register
 650 */
 651struct dwc2_dregs_backup {
 652	u32 dcfg;
 653	u32 dctl;
 654	u32 daintmsk;
 655	u32 diepmsk;
 656	u32 doepmsk;
 657	u32 diepctl[MAX_EPS_CHANNELS];
 658	u32 dieptsiz[MAX_EPS_CHANNELS];
 659	u32 diepdma[MAX_EPS_CHANNELS];
 660	u32 doepctl[MAX_EPS_CHANNELS];
 661	u32 doeptsiz[MAX_EPS_CHANNELS];
 662	u32 doepdma[MAX_EPS_CHANNELS];
 663	bool valid;
 664};
 665
 666/**
 667 * struct  dwc2_hregs_backup - Holds host registers state before entering partial
 668 * power down
 669 * @hcfg:		Backup of HCFG register
 670 * @haintmsk:		Backup of HAINTMSK register
 671 * @hcintmsk:		Backup of HCINTMSK register
 672 * @hptr0:		Backup of HPTR0 register
 673 * @hfir:		Backup of HFIR register
 674 */
 675struct dwc2_hregs_backup {
 676	u32 hcfg;
 677	u32 haintmsk;
 678	u32 hcintmsk[MAX_EPS_CHANNELS];
 679	u32 hprt0;
 680	u32 hfir;
 681	bool valid;
 682};
 683
 684/*
 685 * Constants related to high speed periodic scheduling
 686 *
 687 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 688 * reservation point of view it's assumed that the schedule goes right back to
 689 * the beginning after the end of the schedule.
 690 *
 691 * What does that mean for scheduling things with a long interval?  It means
 692 * we'll reserve time for them in every possible microframe that they could
 693 * ever be scheduled in.  ...but we'll still only actually schedule them as
 694 * often as they were requested.
 695 *
 696 * We keep our schedule in a "bitmap" structure.  This simplifies having
 697 * to keep track of and merge intervals: we just let the bitmap code do most
 698 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 699 *
 700 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 701 * supposed to schedule for periodic transfers).  That's according to spec.
 702 *
 703 * Note that though we only schedule 80% of each microframe, the bitmap that we
 704 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 705 * space for each uFrame).
 706 *
 707 * Requirements:
 708 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 709 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 710 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 711 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 712 */
 713#define DWC2_US_PER_UFRAME		125
 714#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
 715
 716#define DWC2_HS_SCHEDULE_UFRAMES	8
 717#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
 718					 DWC2_HS_PERIODIC_US_PER_UFRAME)
 719
 720/*
 721 * Constants related to low speed scheduling
 722 *
 723 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 724 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 725 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 726 * transfers.
 727 *
 728 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 729 * we only schedule 1 frame it means that we'll need to reserve a time every
 730 * frame even for things that only transfer very rarely, so something that runs
 731 * every 2048 frames will get time reserved in every frame.  Our low speed
 732 * schedule can be longer and we'll be able to handle more overlap, but that
 733 * will come at increased memory cost and increased time to schedule.
 734 *
 735 * Note: one other advantage of a short low speed schedule is that if we mess
 736 * up and miss scheduling we can jump in and use any of the slots that we
 737 * happened to reserve.
 738 *
 739 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 740 * the schedule.  There will be one schedule per TT.
 741 *
 742 * Requirements:
 743 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 744 */
 745#define DWC2_US_PER_SLICE	25
 746#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 747
 748#define DWC2_ROUND_US_TO_SLICE(us) \
 749				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 750				 DWC2_US_PER_SLICE)
 751
 752#define DWC2_LS_PERIODIC_US_PER_FRAME \
 753				900
 754#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 755				(DWC2_LS_PERIODIC_US_PER_FRAME / \
 756				 DWC2_US_PER_SLICE)
 757
 758#define DWC2_LS_SCHEDULE_FRAMES	1
 759#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
 760				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 761
 762/**
 763 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 764 * and periodic schedules
 765 *
 766 * These are common for both host and peripheral modes:
 767 *
 768 * @dev:                The struct device pointer
 769 * @regs:		Pointer to controller regs
 770 * @hw_params:          Parameters that were autodetected from the
 771 *                      hardware registers
 772 * @core_params:	Parameters that define how the core should be configured
 773 * @op_state:           The operational State, during transitions (a_host=>
 774 *                      a_peripheral and b_device=>b_host) this may not match
 775 *                      the core, but allows the software to determine
 776 *                      transitions
 777 * @dr_mode:            Requested mode of operation, one of following:
 778 *                      - USB_DR_MODE_PERIPHERAL
 779 *                      - USB_DR_MODE_HOST
 780 *                      - USB_DR_MODE_OTG
 781 * @hcd_enabled		Host mode sub-driver initialization indicator.
 782 * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
 783 * @ll_hw_enabled	Status of low-level hardware resources.
 784 * @phy:                The otg phy transceiver structure for phy control.
 785 * @uphy:               The otg phy transceiver structure for old USB phy control.
 786 * @plat:               The platform specific configuration data. This can be removed once
 787 *                      all SoCs support usb transceiver.
 788 * @supplies:           Definition of USB power supplies
 789 * @phyif:              PHY interface width
 790 * @lock:		Spinlock that protects all the driver data structures
 791 * @priv:		Stores a pointer to the struct usb_hcd
 792 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 793 *                      transfer are in process of being queued
 794 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 795 *                      with an I2C interface
 796 * @wq_otg:             Workqueue object used for handling of some interrupts
 797 * @wf_otg:             Work object for handling Connector ID Status Change
 798 *                      interrupt
 799 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 800 * @lx_state:           Lx state of connected device
 801 * @gregs_backup: Backup of global registers during suspend
 802 * @dregs_backup: Backup of device registers during suspend
 803 * @hregs_backup: Backup of host registers during suspend
 804 *
 805 * These are for host mode:
 806 *
 807 * @flags:              Flags for handling root port state changes
 808 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 809 *                      Transfers associated with these QHs are not currently
 810 *                      assigned to a host channel.
 811 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 812 *                      Transfers associated with these QHs are currently
 813 *                      assigned to a host channel.
 814 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 815 *                      non-periodic schedule
 816 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 817 *                      list of QHs for periodic transfers that are _not_
 818 *                      scheduled for the next frame. Each QH in the list has an
 819 *                      interval counter that determines when it needs to be
 820 *                      scheduled for execution. This scheduling mechanism
 821 *                      allows only a simple calculation for periodic bandwidth
 822 *                      used (i.e. must assume that all periodic transfers may
 823 *                      need to execute in the same frame). However, it greatly
 824 *                      simplifies scheduling and should be sufficient for the
 825 *                      vast majority of OTG hosts, which need to connect to a
 826 *                      small number of peripherals at one time. Items move from
 827 *                      this list to periodic_sched_ready when the QH interval
 828 *                      counter is 0 at SOF.
 829 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 830 *                      the next frame, but have not yet been assigned to host
 831 *                      channels. Items move from this list to
 832 *                      periodic_sched_assigned as host channels become
 833 *                      available during the current frame.
 834 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 835 *                      frame that are assigned to host channels. Items move
 836 *                      from this list to periodic_sched_queued as the
 837 *                      transactions for the QH are queued to the DWC_otg
 838 *                      controller.
 839 * @periodic_sched_queued: List of periodic QHs that have been queued for
 840 *                      execution. Items move from this list to either
 841 *                      periodic_sched_inactive or periodic_sched_ready when the
 842 *                      channel associated with the transfer is released. If the
 843 *                      interval for the QH is 1, the item moves to
 844 *                      periodic_sched_ready because it must be rescheduled for
 845 *                      the next frame. Otherwise, the item moves to
 846 *                      periodic_sched_inactive.
 847 * @split_order:        List keeping track of channels doing splits, in order.
 848 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 849 *                      This value is in microseconds per (micro)frame. The
 850 *                      assumption is that all periodic transfers may occur in
 851 *                      the same (micro)frame.
 852 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 853 *                      host is in high speed mode; low speed schedules are
 854 *                      stored elsewhere since we need one per TT.
 855 * @frame_number:       Frame number read from the core at SOF. The value ranges
 856 *                      from 0 to HFNUM_MAX_FRNUM.
 857 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 858 *                      SOF enable/disable.
 859 * @free_hc_list:       Free host channels in the controller. This is a list of
 860 *                      struct dwc2_host_chan items.
 861 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 862 *                      Currently assuming that there is a dedicated host
 863 *                      channel for each periodic transaction and at least one
 864 *                      host channel is available for non-periodic transactions.
 865 * @non_periodic_channels: Number of host channels assigned to non-periodic
 866 *                      transfers
 867 * @available_host_channels Number of host channels available for the microframe
 868 *                      scheduler to use
 869 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 870 *                      Allows accessing a host channel descriptor given the
 871 *                      host channel number. This is useful in interrupt
 872 *                      handlers.
 873 * @status_buf:         Buffer used for data received during the status phase of
 874 *                      a control transfer.
 875 * @status_buf_dma:     DMA address for status_buf
 876 * @start_work:         Delayed work for handling host A-cable connection
 877 * @reset_work:         Delayed work for handling a port reset
 878 * @otg_port:           OTG port number
 879 * @frame_list:         Frame list
 880 * @frame_list_dma:     Frame list DMA address
 881 * @frame_list_sz:      Frame list size
 882 * @desc_gen_cache:     Kmem cache for generic descriptors
 883 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 884 *
 885 * These are for peripheral mode:
 886 *
 887 * @driver:             USB gadget driver
 888 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 889 * @num_of_eps:         Number of available EPs (excluding EP0)
 890 * @debug_root:         Root directrory for debugfs.
 891 * @debug_file:         Main status file for debugfs.
 892 * @debug_testmode:     Testmode status file for debugfs.
 893 * @debug_fifo:         FIFO status file for debugfs.
 894 * @ep0_reply:          Request used for ep0 reply.
 895 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 896 * @ctrl_buff:          Buffer for EP0 control requests.
 897 * @ctrl_req:           Request for EP0 control packets.
 898 * @ep0_state:          EP0 control transfers state
 899 * @test_mode:          USB test mode requested by the host
 900 * @setup_desc_dma:	EP0 setup stage desc chain DMA address
 901 * @setup_desc:		EP0 setup stage desc chain pointer
 902 * @ctrl_in_desc_dma:	EP0 IN data phase desc chain DMA address
 903 * @ctrl_in_desc:	EP0 IN data phase desc chain pointer
 904 * @ctrl_out_desc_dma:	EP0 OUT data phase desc chain DMA address
 905 * @ctrl_out_desc:	EP0 OUT data phase desc chain pointer
 906 * @eps:                The endpoints being supplied to the gadget framework
 
 
 
 
 907 */
 908struct dwc2_hsotg {
 909	struct device *dev;
 910	void __iomem *regs;
 911	/** Params detected from hardware */
 912	struct dwc2_hw_params hw_params;
 913	/** Params to actually use */
 914	struct dwc2_core_params params;
 915	enum usb_otg_state op_state;
 916	enum usb_dr_mode dr_mode;
 917	unsigned int hcd_enabled:1;
 918	unsigned int gadget_enabled:1;
 919	unsigned int ll_hw_enabled:1;
 920
 921	struct phy *phy;
 922	struct usb_phy *uphy;
 923	struct dwc2_hsotg_plat *plat;
 924	struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
 925	u32 phyif;
 926
 927	spinlock_t lock;
 928	void *priv;
 929	int     irq;
 930	struct clk *clk;
 931	struct reset_control *reset;
 932
 933	unsigned int queuing_high_bandwidth:1;
 934	unsigned int srp_success:1;
 935
 936	struct workqueue_struct *wq_otg;
 937	struct work_struct wf_otg;
 938	struct timer_list wkp_timer;
 939	enum dwc2_lx_state lx_state;
 940	struct dwc2_gregs_backup gr_backup;
 941	struct dwc2_dregs_backup dr_backup;
 942	struct dwc2_hregs_backup hr_backup;
 943
 944	struct dentry *debug_root;
 945	struct debugfs_regset32 *regset;
 946
 947	/* DWC OTG HW Release versions */
 948#define DWC2_CORE_REV_2_71a	0x4f54271a
 949#define DWC2_CORE_REV_2_90a	0x4f54290a
 950#define DWC2_CORE_REV_2_92a	0x4f54292a
 951#define DWC2_CORE_REV_2_94a	0x4f54294a
 952#define DWC2_CORE_REV_3_00a	0x4f54300a
 953#define DWC2_CORE_REV_3_10a	0x4f54310a
 954#define DWC2_FS_IOT_REV_1_00a	0x5531100a
 955#define DWC2_HS_IOT_REV_1_00a	0x5532100a
 956
 957#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 958	union dwc2_hcd_internal_flags {
 959		u32 d32;
 960		struct {
 961			unsigned port_connect_status_change:1;
 962			unsigned port_connect_status:1;
 963			unsigned port_reset_change:1;
 964			unsigned port_enable_change:1;
 965			unsigned port_suspend_change:1;
 966			unsigned port_over_current_change:1;
 967			unsigned port_l1_change:1;
 968			unsigned reserved:25;
 969		} b;
 970	} flags;
 971
 972	struct list_head non_periodic_sched_inactive;
 973	struct list_head non_periodic_sched_active;
 974	struct list_head *non_periodic_qh_ptr;
 975	struct list_head periodic_sched_inactive;
 976	struct list_head periodic_sched_ready;
 977	struct list_head periodic_sched_assigned;
 978	struct list_head periodic_sched_queued;
 979	struct list_head split_order;
 980	u16 periodic_usecs;
 981	unsigned long hs_periodic_bitmap[
 982		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
 983	u16 frame_number;
 984	u16 periodic_qh_count;
 985	bool bus_suspended;
 986	bool new_connection;
 987
 988	u16 last_frame_num;
 989
 990#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
 991#define FRAME_NUM_ARRAY_SIZE 1000
 992	u16 *frame_num_array;
 993	u16 *last_frame_num_array;
 994	int frame_num_idx;
 995	int dumped_frame_num_array;
 996#endif
 997
 998	struct list_head free_hc_list;
 999	int periodic_channels;
1000	int non_periodic_channels;
1001	int available_host_channels;
1002	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
1003	u8 *status_buf;
1004	dma_addr_t status_buf_dma;
1005#define DWC2_HCD_STATUS_BUF_SIZE 64
1006
1007	struct delayed_work start_work;
1008	struct delayed_work reset_work;
1009	u8 otg_port;
1010	u32 *frame_list;
1011	dma_addr_t frame_list_dma;
1012	u32 frame_list_sz;
1013	struct kmem_cache *desc_gen_cache;
1014	struct kmem_cache *desc_hsisoc_cache;
1015
1016#ifdef DEBUG
1017	u32 frrem_samples;
1018	u64 frrem_accum;
1019
1020	u32 hfnum_7_samples_a;
1021	u64 hfnum_7_frrem_accum_a;
1022	u32 hfnum_0_samples_a;
1023	u64 hfnum_0_frrem_accum_a;
1024	u32 hfnum_other_samples_a;
1025	u64 hfnum_other_frrem_accum_a;
1026
1027	u32 hfnum_7_samples_b;
1028	u64 hfnum_7_frrem_accum_b;
1029	u32 hfnum_0_samples_b;
1030	u64 hfnum_0_frrem_accum_b;
1031	u32 hfnum_other_samples_b;
1032	u64 hfnum_other_frrem_accum_b;
1033#endif
1034#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
1035
1036#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1037	/* Gadget structures */
1038	struct usb_gadget_driver *driver;
1039	int fifo_mem;
1040	unsigned int dedicated_fifos:1;
1041	unsigned char num_of_eps;
1042	u32 fifo_map;
1043
1044	struct usb_request *ep0_reply;
1045	struct usb_request *ctrl_req;
1046	void *ep0_buff;
1047	void *ctrl_buff;
1048	enum dwc2_ep0_state ep0_state;
1049	u8 test_mode;
1050
1051	dma_addr_t setup_desc_dma[2];
1052	struct dwc2_dma_desc *setup_desc[2];
1053	dma_addr_t ctrl_in_desc_dma;
1054	struct dwc2_dma_desc *ctrl_in_desc;
1055	dma_addr_t ctrl_out_desc_dma;
1056	struct dwc2_dma_desc *ctrl_out_desc;
1057
1058	struct usb_gadget gadget;
1059	unsigned int enabled:1;
1060	unsigned int connected:1;
1061	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
1062	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
 
 
 
 
1063#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
1064};
1065
1066/* Reasons for halting a host channel */
1067enum dwc2_halt_status {
1068	DWC2_HC_XFER_NO_HALT_STATUS,
1069	DWC2_HC_XFER_COMPLETE,
1070	DWC2_HC_XFER_URB_COMPLETE,
1071	DWC2_HC_XFER_ACK,
1072	DWC2_HC_XFER_NAK,
1073	DWC2_HC_XFER_NYET,
1074	DWC2_HC_XFER_STALL,
1075	DWC2_HC_XFER_XACT_ERR,
1076	DWC2_HC_XFER_FRAME_OVERRUN,
1077	DWC2_HC_XFER_BABBLE_ERR,
1078	DWC2_HC_XFER_DATA_TOGGLE_ERR,
1079	DWC2_HC_XFER_AHB_ERR,
1080	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1081	DWC2_HC_XFER_URB_DEQUEUE,
1082};
1083
1084/* Core version information */
1085static inline bool dwc2_is_iot(struct dwc2_hsotg *hsotg)
1086{
1087	return (hsotg->hw_params.snpsid & 0xfff00000) == 0x55300000;
1088}
1089
1090static inline bool dwc2_is_fs_iot(struct dwc2_hsotg *hsotg)
1091{
1092	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55310000;
1093}
1094
1095static inline bool dwc2_is_hs_iot(struct dwc2_hsotg *hsotg)
1096{
1097	return (hsotg->hw_params.snpsid & 0xffff0000) == 0x55320000;
1098}
1099
1100/*
1101 * The following functions support initialization of the core driver component
1102 * and the DWC_otg controller
1103 */
1104extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1105extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1106extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1107extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1108
1109bool dwc2_force_mode_if_needed(struct dwc2_hsotg *hsotg, bool host);
1110void dwc2_clear_force_mode(struct dwc2_hsotg *hsotg);
1111void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1112
1113extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1114
1115/*
1116 * Common core Functions.
1117 * The following functions support managing the DWC_otg controller in either
1118 * device or host mode.
1119 */
1120extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1121extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1122extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1123
1124extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1125extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1126
1127/* This function should be called on every hardware interrupt. */
1128extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1129
1130/* The device ID match table */
1131extern const struct of_device_id dwc2_of_match_table[];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1132
1133extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1134extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1135
1136/* Parameters */
1137int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1138int dwc2_init_params(struct dwc2_hsotg *hsotg);
1139
1140/*
1141 * The following functions check the controller's OTG operation mode
1142 * capability (GHWCFG2.OTG_MODE).
1143 *
1144 * These functions can be used before the internal hsotg->hw_params
1145 * are read in and cached so they always read directly from the
1146 * GHWCFG2 register.
1147 */
1148unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1149bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1150bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1151bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1152
1153/*
1154 * Returns the mode of operation, host or device
1155 */
1156static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1157{
1158	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1159}
1160static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1161{
1162	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1163}
1164
1165/*
1166 * Dump core registers and SPRAM
1167 */
1168extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1169extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1170extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1171
1172/*
1173 * Return OTG version - either 1.3 or 2.0
1174 */
1175extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1176
1177/* Gadget defines */
1178#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1179extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1180extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1181extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1182extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1183extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1184		bool reset);
1185extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1186extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1187extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1188#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1189int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1190int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1191#else
1192static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1193{ return 0; }
1194static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1195{ return 0; }
1196static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1197{ return 0; }
1198static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1199{ return 0; }
1200static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1201		bool reset) {}
1202static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1203static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1204static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1205							int testmode)
1206{ return 0; }
1207#define dwc2_is_device_connected(hsotg) (0)
1208static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1209{ return 0; }
1210static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1211{ return 0; }
1212#endif
1213
1214#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1215extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1216extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1217extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1218extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1219extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1220int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1221int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1222#else
1223static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1224{ return 0; }
1225static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1226						   int us)
1227{ return 0; }
1228static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1229static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1230static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1231static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1232static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1233{ return 0; }
1234static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1235{ return 0; }
1236static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1237{ return 0; }
1238
1239#endif
1240
1241#endif /* __DWC2_CORE_H__ */
v4.6
   1/*
   2 * core.h - DesignWare HS OTG Controller common declarations
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#ifndef __DWC2_CORE_H__
  38#define __DWC2_CORE_H__
  39
  40#include <linux/phy/phy.h>
  41#include <linux/regulator/consumer.h>
  42#include <linux/usb/gadget.h>
  43#include <linux/usb/otg.h>
  44#include <linux/usb/phy.h>
  45#include "hw.h"
  46
  47/*
  48 * Suggested defines for tracers:
  49 * - no_printk:    Disable tracing
  50 * - pr_info:      Print this info to the console
  51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  52 */
  53
  54#define DWC2_TRACE_SCHEDULER		no_printk
  55#define DWC2_TRACE_SCHEDULER_VB		no_printk
  56
  57/* Detailed scheduler tracing, but won't overwhelm console */
  58#define dwc2_sch_dbg(hsotg, fmt, ...)					\
  59	DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),			\
  60			     dev_name(hsotg->dev), ##__VA_ARGS__)
  61
  62/* Verbose scheduler tracing */
  63#define dwc2_sch_vdbg(hsotg, fmt, ...)					\
  64	DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),		\
  65				dev_name(hsotg->dev), ##__VA_ARGS__)
  66
 
 
 
 
 
 
 
 
 
 
 
  67static inline u32 dwc2_readl(const void __iomem *addr)
  68{
  69	u32 value = __raw_readl(addr);
  70
  71	/* In order to preserve endianness __raw_* operation is used. Therefore
  72	 * a barrier is needed to ensure IO access is not re-ordered across
  73	 * reads or writes
  74	 */
  75	mb();
  76	return value;
  77}
  78
  79static inline void dwc2_writel(u32 value, void __iomem *addr)
  80{
  81	__raw_writel(value, addr);
  82
  83	/*
  84	 * In order to preserve endianness __raw_* operation is used. Therefore
  85	 * a barrier is needed to ensure IO access is not re-ordered across
  86	 * reads or writes
  87	 */
  88	mb();
  89#ifdef DWC2_LOG_WRITES
  90	pr_info("INFO:: wrote %08x to %p\n", value, addr);
  91#endif
  92}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93
  94/* Maximum number of Endpoints/HostChannels */
  95#define MAX_EPS_CHANNELS	16
  96
  97/* dwc2-hsotg declarations */
  98static const char * const dwc2_hsotg_supply_names[] = {
  99	"vusb_d",               /* digital USB supply, 1.2V */
 100	"vusb_a",               /* analog USB supply, 1.1V */
 101};
 102
 103/*
 104 * EP0_MPS_LIMIT
 105 *
 106 * Unfortunately there seems to be a limit of the amount of data that can
 107 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 108 * packets (which practically means 1 packet and 63 bytes of data) when the
 109 * MPS is set to 64.
 110 *
 111 * This means if we are wanting to move >127 bytes of data, we need to
 112 * split the transactions up, but just doing one packet at a time does
 113 * not work (this may be an implicit DATA0 PID on first packet of the
 114 * transaction) and doing 2 packets is outside the controller's limits.
 115 *
 116 * If we try to lower the MPS size for EP0, then no transfers work properly
 117 * for EP0, and the system will fail basic enumeration. As no cause for this
 118 * has currently been found, we cannot support any large IN transfers for
 119 * EP0.
 120 */
 121#define EP0_MPS_LIMIT   64
 122
 123struct dwc2_hsotg;
 124struct dwc2_hsotg_req;
 125
 126/**
 127 * struct dwc2_hsotg_ep - driver endpoint definition.
 128 * @ep: The gadget layer representation of the endpoint.
 129 * @name: The driver generated name for the endpoint.
 130 * @queue: Queue of requests for this endpoint.
 131 * @parent: Reference back to the parent device structure.
 132 * @req: The current request that the endpoint is processing. This is
 133 *       used to indicate an request has been loaded onto the endpoint
 134 *       and has yet to be completed (maybe due to data move, or simply
 135 *       awaiting an ack from the core all the data has been completed).
 136 * @debugfs: File entry for debugfs file for this endpoint.
 137 * @lock: State lock to protect contents of endpoint.
 138 * @dir_in: Set to true if this endpoint is of the IN direction, which
 139 *          means that it is sending data to the Host.
 140 * @index: The index for the endpoint registers.
 141 * @mc: Multi Count - number of transactions per microframe
 142 * @interval - Interval for periodic endpoints
 143 * @name: The name array passed to the USB core.
 144 * @halted: Set if the endpoint has been halted.
 145 * @periodic: Set if this is a periodic ep, such as Interrupt
 146 * @isochronous: Set if this is a isochronous ep
 147 * @send_zlp: Set if we need to send a zero-length packet.
 
 
 
 
 
 148 * @total_data: The total number of data bytes done.
 149 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 150 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 151 * @last_load: The offset of data for the last start of request.
 152 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 
 
 153 *
 154 * This is the driver's state for each registered enpoint, allowing it
 155 * to keep track of transactions that need doing. Each endpoint has a
 156 * lock to protect the state, to try and avoid using an overall lock
 157 * for the host controller as much as possible.
 158 *
 159 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 160 * and keep track of the amount of data in the periodic FIFO for each
 161 * of these as we don't have a status register that tells us how much
 162 * is in each of them. (note, this may actually be useless information
 163 * as in shared-fifo mode periodic in acts like a single-frame packet
 164 * buffer than a fifo)
 165 */
 166struct dwc2_hsotg_ep {
 167	struct usb_ep           ep;
 168	struct list_head        queue;
 169	struct dwc2_hsotg       *parent;
 170	struct dwc2_hsotg_req    *req;
 171	struct dentry           *debugfs;
 172
 173	unsigned long           total_data;
 174	unsigned int            size_loaded;
 175	unsigned int            last_load;
 176	unsigned int            fifo_load;
 177	unsigned short          fifo_size;
 178	unsigned short		fifo_index;
 179
 180	unsigned char           dir_in;
 181	unsigned char           index;
 182	unsigned char           mc;
 183	unsigned char           interval;
 184
 185	unsigned int            halted:1;
 186	unsigned int            periodic:1;
 187	unsigned int            isochronous:1;
 188	unsigned int            send_zlp:1;
 189	unsigned int            has_correct_parity:1;
 
 
 
 
 
 
 
 
 
 190
 191	char                    name[10];
 192};
 193
 194/**
 195 * struct dwc2_hsotg_req - data transfer request
 196 * @req: The USB gadget request
 197 * @queue: The list of requests for the endpoint this is queued for.
 198 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 199 */
 200struct dwc2_hsotg_req {
 201	struct usb_request      req;
 202	struct list_head        queue;
 203	void *saved_req_buf;
 204};
 205
 206#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 207#define call_gadget(_hs, _entry) \
 208do { \
 209	if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 210		(_hs)->driver && (_hs)->driver->_entry) { \
 211		spin_unlock(&_hs->lock); \
 212		(_hs)->driver->_entry(&(_hs)->gadget); \
 213		spin_lock(&_hs->lock); \
 214	} \
 215} while (0)
 216#else
 217#define call_gadget(_hs, _entry)	do {} while (0)
 218#endif
 219
 220struct dwc2_hsotg;
 221struct dwc2_host_chan;
 222
 223/* Device States */
 224enum dwc2_lx_state {
 225	DWC2_L0,	/* On state */
 226	DWC2_L1,	/* LPM sleep state */
 227	DWC2_L2,	/* USB suspend state */
 228	DWC2_L3,	/* Off state */
 229};
 230
 231/*
 232 * Gadget periodic tx fifo sizes as used by legacy driver
 233 * EP0 is not included
 234 */
 235#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
 236					   768, 0, 0, 0, 0, 0, 0, 0}
 237
 238/* Gadget ep0 states */
 239enum dwc2_ep0_state {
 240	DWC2_EP0_SETUP,
 241	DWC2_EP0_DATA_IN,
 242	DWC2_EP0_DATA_OUT,
 243	DWC2_EP0_STATUS_IN,
 244	DWC2_EP0_STATUS_OUT,
 245};
 246
 247/**
 248 * struct dwc2_core_params - Parameters for configuring the core
 249 *
 250 * @otg_cap:            Specifies the OTG capabilities.
 251 *                       0 - HNP and SRP capable
 252 *                       1 - SRP Only capable
 253 *                       2 - No HNP/SRP capable (always available)
 254 *                      Defaults to best available option (0, 1, then 2)
 255 * @otg_ver:            OTG version supported
 256 *                       0 - 1.3 (default)
 257 *                       1 - 2.0
 258 * @dma_enable:         Specifies whether to use slave or DMA mode for accessing
 259 *                      the data FIFOs. The driver will automatically detect the
 260 *                      value for this parameter if none is specified.
 261 *                       0 - Slave (always available)
 262 *                       1 - DMA (default, if available)
 263 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 264 *                      address DMA mode or descriptor DMA mode for accessing
 265 *                      the data FIFOs. The driver will automatically detect the
 266 *                      value for this if none is specified.
 267 *                       0 - Address DMA
 268 *                       1 - Descriptor DMA (default, if available)
 269 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 270 *                      address DMA mode or descriptor DMA mode for accessing
 271 *                      the data FIFOs in Full Speed mode only. The driver
 272 *                      will automatically detect the value for this if none is
 273 *                      specified.
 274 *                       0 - Address DMA
 275 *                       1 - Descriptor DMA in FS (default, if available)
 276 * @speed:              Specifies the maximum speed of operation in host and
 277 *                      device mode. The actual speed depends on the speed of
 278 *                      the attached device and the value of phy_type.
 279 *                       0 - High Speed
 280 *                           (default when phy_type is UTMI+ or ULPI)
 281 *                       1 - Full Speed
 282 *                           (default when phy_type is Full Speed)
 283 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 284 *                       1 - Allow dynamic FIFO sizing (default, if available)
 285 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 286 *                      are enabled
 
 287 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 288 *                      dynamic FIFO sizing is enabled
 289 *                       16 to 32768
 290 *                      Actual maximum value is autodetected and also
 291 *                      the default.
 292 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 293 *                      in host mode when dynamic FIFO sizing is enabled
 294 *                       16 to 32768
 295 *                      Actual maximum value is autodetected and also
 296 *                      the default.
 297 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 298 *                      host mode when dynamic FIFO sizing is enabled
 299 *                       16 to 32768
 300 *                      Actual maximum value is autodetected and also
 301 *                      the default.
 302 * @max_transfer_size:  The maximum transfer size supported, in bytes
 303 *                       2047 to 65,535
 304 *                      Actual maximum value is autodetected and also
 305 *                      the default.
 306 * @max_packet_count:   The maximum number of packets in a transfer
 307 *                       15 to 511
 308 *                      Actual maximum value is autodetected and also
 309 *                      the default.
 310 * @host_channels:      The number of host channel registers to use
 311 *                       1 to 16
 312 *                      Actual maximum value is autodetected and also
 313 *                      the default.
 314 * @phy_type:           Specifies the type of PHY interface to use. By default,
 315 *                      the driver will automatically detect the phy_type.
 316 *                       0 - Full Speed Phy
 317 *                       1 - UTMI+ Phy
 318 *                       2 - ULPI Phy
 319 *                      Defaults to best available option (2, 1, then 0)
 320 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 321 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 322 *                      ULPI phy_type, this parameter indicates the data width
 323 *                      between the MAC and the ULPI Wrapper.) Also, this
 324 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 325 *                      parameter was set to "8 and 16 bits", meaning that the
 326 *                      core has been configured to work at either data path
 327 *                      width.
 328 *                       8 or 16 (default 16 if available)
 329 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 330 *                      data rate. This parameter is only applicable if phy_type
 331 *                      is ULPI.
 332 *                       0 - single data rate ULPI interface with 8 bit wide
 333 *                           data bus (default)
 334 *                       1 - double data rate ULPI interface with 4 bit wide
 335 *                           data bus
 336 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 337 *                      external supply to drive the VBus
 338 *                       0 - Internal supply (default)
 339 *                       1 - External supply
 340 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 341 *                      speed PHY. This parameter is only applicable if phy_type
 342 *                      is FS.
 343 *                       0 - No (default)
 344 *                       1 - Yes
 345 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 346 *                       0 - No (default)
 347 *                       1 - Yes
 348 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 349 *                      when attached to a Full Speed or Low Speed device in
 350 *                      host mode.
 351 *                       0 - Don't support low power mode (default)
 352 *                       1 - Support low power mode
 353 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 354 *                      when connected to a Low Speed device in host
 355 *                      mode. This parameter is applicable only if
 356 *                      host_support_fs_ls_low_power is enabled.
 357 *                       0 - 48 MHz
 358 *                           (default when phy_type is UTMI+ or ULPI)
 359 *                       1 - 6 MHz
 360 *                           (default when phy_type is Full Speed)
 361 * @ts_dline:           Enable Term Select Dline pulsing
 362 *                       0 - No (default)
 363 *                       1 - Yes
 364 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 365 *                       0 - No (default for core < 2.92a)
 366 *                       1 - Yes (default for core >= 2.92a)
 367 * @ahbcfg:             This field allows the default value of the GAHBCFG
 368 *                      register to be overridden
 369 *                       -1         - GAHBCFG value will be set to 0x06
 370 *                                    (INCR4, default)
 371 *                       all others - GAHBCFG value will be overridden with
 372 *                                    this value
 373 *                      Not all bits can be controlled like this, the
 374 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 375 *                      by the driver and are ignored in this
 376 *                      configuration value.
 377 * @uframe_sched:       True to enable the microframe scheduler
 378 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 379 *                      Disable CONIDSTSCHNG controller interrupt in such
 380 *                      case.
 381 *                      0 - No (default)
 382 *                      1 - Yes
 383 * @hibernation:	Specifies whether the controller support hibernation.
 384 *			If hibernation is enabled, the controller will enter
 385 *			hibernation in both peripheral and host mode when
 386 *			needed.
 387 *			0 - No (default)
 388 *			1 - Yes
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 389 *
 390 * The following parameters may be specified when starting the module. These
 391 * parameters define how the DWC_otg controller should be configured. A
 392 * value of -1 (or any other out of range value) for any parameter means
 393 * to read the value from hardware (if possible) or use the builtin
 394 * default described above.
 395 */
 396struct dwc2_core_params {
 397	/*
 398	 * Don't add any non-int members here, this will break
 399	 * dwc2_set_all_params!
 400	 */
 401	int otg_cap;
 
 
 
 
 402	int otg_ver;
 403	int dma_enable;
 404	int dma_desc_enable;
 405	int dma_desc_fs_enable;
 406	int speed;
 
 
 
 
 407	int enable_dynamic_fifo;
 408	int en_multiple_tx_fifo;
 409	int host_rx_fifo_size;
 410	int host_nperio_tx_fifo_size;
 411	int host_perio_tx_fifo_size;
 412	int max_transfer_size;
 413	int max_packet_count;
 414	int host_channels;
 415	int phy_type;
 
 
 
 
 416	int phy_utmi_width;
 417	int phy_ulpi_ddr;
 418	int phy_ulpi_ext_vbus;
 
 
 
 419	int i2c_enable;
 420	int ulpi_fs_ls;
 421	int host_support_fs_ls_low_power;
 422	int host_ls_low_power_phy_clk;
 
 
 
 423	int ts_dline;
 424	int reload_ctl;
 425	int ahbcfg;
 426	int uframe_sched;
 427	int external_id_pin_ctl;
 428	int hibernation;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429};
 430
 431/**
 432 * struct dwc2_hw_params - Autodetected parameters.
 433 *
 434 * These parameters are the various parameters read from hardware
 435 * registers during initialization. They typically contain the best
 436 * supported or maximum value that can be configured in the
 437 * corresponding dwc2_core_params value.
 438 *
 439 * The values that are not in dwc2_core_params are documented below.
 440 *
 441 * @op_mode             Mode of Operation
 442 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 443 *                       1 - SRP-Capable OTG (Host & Device)
 444 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 445 *                       3 - SRP-Capable Device
 446 *                       4 - Non-OTG Device
 447 *                       5 - SRP-Capable Host
 448 *                       6 - Non-OTG Host
 449 * @arch                Architecture
 450 *                       0 - Slave only
 451 *                       1 - External DMA
 452 *                       2 - Internal DMA
 453 * @power_optimized     Are power optimizations enabled?
 454 * @num_dev_ep          Number of device endpoints available
 455 * @num_dev_perio_in_ep Number of device periodic IN endpoints
 456 *                      available
 457 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 458 *                      Depth
 459 *                       0 to 30
 460 * @host_perio_tx_q_depth
 461 *                      Host Mode Periodic Request Queue Depth
 462 *                       2, 4 or 8
 463 * @nperio_tx_q_depth
 464 *                      Non-Periodic Request Queue Depth
 465 *                       2, 4 or 8
 466 * @hs_phy_type         High-speed PHY interface type
 467 *                       0 - High-speed interface not supported
 468 *                       1 - UTMI+
 469 *                       2 - ULPI
 470 *                       3 - UTMI+ and ULPI
 471 * @fs_phy_type         Full-speed PHY interface type
 472 *                       0 - Full speed interface not supported
 473 *                       1 - Dedicated full speed interface
 474 *                       2 - FS pins shared with UTMI+ pins
 475 *                       3 - FS pins shared with ULPI pins
 476 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 477 * @utmi_phy_data_width UTMI+ PHY data width
 478 *                       0 - 8 bits
 479 *                       1 - 16 bits
 480 *                       2 - 8 or 16 bits
 481 * @snpsid:             Value from SNPSID register
 482 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 483 */
 484struct dwc2_hw_params {
 485	unsigned op_mode:3;
 486	unsigned arch:2;
 487	unsigned dma_desc_enable:1;
 488	unsigned dma_desc_fs_enable:1;
 489	unsigned enable_dynamic_fifo:1;
 490	unsigned en_multiple_tx_fifo:1;
 491	unsigned host_rx_fifo_size:16;
 492	unsigned host_nperio_tx_fifo_size:16;
 493	unsigned dev_nperio_tx_fifo_size:16;
 494	unsigned host_perio_tx_fifo_size:16;
 495	unsigned nperio_tx_q_depth:3;
 496	unsigned host_perio_tx_q_depth:3;
 497	unsigned dev_token_q_depth:5;
 498	unsigned max_transfer_size:26;
 499	unsigned max_packet_count:11;
 500	unsigned host_channels:5;
 501	unsigned hs_phy_type:2;
 502	unsigned fs_phy_type:2;
 503	unsigned i2c_enable:1;
 504	unsigned num_dev_ep:4;
 505	unsigned num_dev_perio_in_ep:4;
 506	unsigned total_fifo_size:16;
 507	unsigned power_optimized:1;
 508	unsigned utmi_phy_data_width:2;
 509	u32 snpsid;
 510	u32 dev_ep_dirs;
 511};
 512
 513/* Size of control and EP0 buffers */
 514#define DWC2_CTRL_BUFF_SIZE 8
 515
 516/**
 517 * struct dwc2_gregs_backup - Holds global registers state before entering partial
 518 * power down
 519 * @gotgctl:		Backup of GOTGCTL register
 520 * @gintmsk:		Backup of GINTMSK register
 521 * @gahbcfg:		Backup of GAHBCFG register
 522 * @gusbcfg:		Backup of GUSBCFG register
 523 * @grxfsiz:		Backup of GRXFSIZ register
 524 * @gnptxfsiz:		Backup of GNPTXFSIZ register
 525 * @gi2cctl:		Backup of GI2CCTL register
 526 * @hptxfsiz:		Backup of HPTXFSIZ register
 527 * @gdfifocfg:		Backup of GDFIFOCFG register
 528 * @dtxfsiz:		Backup of DTXFSIZ registers for each endpoint
 529 * @gpwrdn:		Backup of GPWRDN register
 530 */
 531struct dwc2_gregs_backup {
 532	u32 gotgctl;
 533	u32 gintmsk;
 534	u32 gahbcfg;
 535	u32 gusbcfg;
 536	u32 grxfsiz;
 537	u32 gnptxfsiz;
 538	u32 gi2cctl;
 539	u32 hptxfsiz;
 540	u32 pcgcctl;
 541	u32 gdfifocfg;
 542	u32 dtxfsiz[MAX_EPS_CHANNELS];
 543	u32 gpwrdn;
 544	bool valid;
 545};
 546
 547/**
 548 * struct  dwc2_dregs_backup - Holds device registers state before entering partial
 549 * power down
 550 * @dcfg:		Backup of DCFG register
 551 * @dctl:		Backup of DCTL register
 552 * @daintmsk:		Backup of DAINTMSK register
 553 * @diepmsk:		Backup of DIEPMSK register
 554 * @doepmsk:		Backup of DOEPMSK register
 555 * @diepctl:		Backup of DIEPCTL register
 556 * @dieptsiz:		Backup of DIEPTSIZ register
 557 * @diepdma:		Backup of DIEPDMA register
 558 * @doepctl:		Backup of DOEPCTL register
 559 * @doeptsiz:		Backup of DOEPTSIZ register
 560 * @doepdma:		Backup of DOEPDMA register
 561 */
 562struct dwc2_dregs_backup {
 563	u32 dcfg;
 564	u32 dctl;
 565	u32 daintmsk;
 566	u32 diepmsk;
 567	u32 doepmsk;
 568	u32 diepctl[MAX_EPS_CHANNELS];
 569	u32 dieptsiz[MAX_EPS_CHANNELS];
 570	u32 diepdma[MAX_EPS_CHANNELS];
 571	u32 doepctl[MAX_EPS_CHANNELS];
 572	u32 doeptsiz[MAX_EPS_CHANNELS];
 573	u32 doepdma[MAX_EPS_CHANNELS];
 574	bool valid;
 575};
 576
 577/**
 578 * struct  dwc2_hregs_backup - Holds host registers state before entering partial
 579 * power down
 580 * @hcfg:		Backup of HCFG register
 581 * @haintmsk:		Backup of HAINTMSK register
 582 * @hcintmsk:		Backup of HCINTMSK register
 583 * @hptr0:		Backup of HPTR0 register
 584 * @hfir:		Backup of HFIR register
 585 */
 586struct dwc2_hregs_backup {
 587	u32 hcfg;
 588	u32 haintmsk;
 589	u32 hcintmsk[MAX_EPS_CHANNELS];
 590	u32 hprt0;
 591	u32 hfir;
 592	bool valid;
 593};
 594
 595/*
 596 * Constants related to high speed periodic scheduling
 597 *
 598 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 599 * reservation point of view it's assumed that the schedule goes right back to
 600 * the beginning after the end of the schedule.
 601 *
 602 * What does that mean for scheduling things with a long interval?  It means
 603 * we'll reserve time for them in every possible microframe that they could
 604 * ever be scheduled in.  ...but we'll still only actually schedule them as
 605 * often as they were requested.
 606 *
 607 * We keep our schedule in a "bitmap" structure.  This simplifies having
 608 * to keep track of and merge intervals: we just let the bitmap code do most
 609 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 610 *
 611 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 612 * supposed to schedule for periodic transfers).  That's according to spec.
 613 *
 614 * Note that though we only schedule 80% of each microframe, the bitmap that we
 615 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 616 * space for each uFrame).
 617 *
 618 * Requirements:
 619 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 620 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 621 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 622 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 623 */
 624#define DWC2_US_PER_UFRAME		125
 625#define DWC2_HS_PERIODIC_US_PER_UFRAME	100
 626
 627#define DWC2_HS_SCHEDULE_UFRAMES	8
 628#define DWC2_HS_SCHEDULE_US		(DWC2_HS_SCHEDULE_UFRAMES * \
 629					 DWC2_HS_PERIODIC_US_PER_UFRAME)
 630
 631/*
 632 * Constants related to low speed scheduling
 633 *
 634 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 635 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 636 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 637 * transfers.
 638 *
 639 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 640 * we only schedule 1 frame it means that we'll need to reserve a time every
 641 * frame even for things that only transfer very rarely, so something that runs
 642 * every 2048 frames will get time reserved in every frame.  Our low speed
 643 * schedule can be longer and we'll be able to handle more overlap, but that
 644 * will come at increased memory cost and increased time to schedule.
 645 *
 646 * Note: one other advantage of a short low speed schedule is that if we mess
 647 * up and miss scheduling we can jump in and use any of the slots that we
 648 * happened to reserve.
 649 *
 650 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 651 * the schedule.  There will be one schedule per TT.
 652 *
 653 * Requirements:
 654 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 655 */
 656#define DWC2_US_PER_SLICE	25
 657#define DWC2_SLICES_PER_UFRAME	(DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 658
 659#define DWC2_ROUND_US_TO_SLICE(us) \
 660				(DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 661				 DWC2_US_PER_SLICE)
 662
 663#define DWC2_LS_PERIODIC_US_PER_FRAME \
 664				900
 665#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 666				(DWC2_LS_PERIODIC_US_PER_FRAME / \
 667				 DWC2_US_PER_SLICE)
 668
 669#define DWC2_LS_SCHEDULE_FRAMES	1
 670#define DWC2_LS_SCHEDULE_SLICES	(DWC2_LS_SCHEDULE_FRAMES * \
 671				 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 672
 673/**
 674 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 675 * and periodic schedules
 676 *
 677 * These are common for both host and peripheral modes:
 678 *
 679 * @dev:                The struct device pointer
 680 * @regs:		Pointer to controller regs
 681 * @hw_params:          Parameters that were autodetected from the
 682 *                      hardware registers
 683 * @core_params:	Parameters that define how the core should be configured
 684 * @op_state:           The operational State, during transitions (a_host=>
 685 *                      a_peripheral and b_device=>b_host) this may not match
 686 *                      the core, but allows the software to determine
 687 *                      transitions
 688 * @dr_mode:            Requested mode of operation, one of following:
 689 *                      - USB_DR_MODE_PERIPHERAL
 690 *                      - USB_DR_MODE_HOST
 691 *                      - USB_DR_MODE_OTG
 692 * @hcd_enabled		Host mode sub-driver initialization indicator.
 693 * @gadget_enabled	Peripheral mode sub-driver initialization indicator.
 694 * @ll_hw_enabled	Status of low-level hardware resources.
 695 * @phy:                The otg phy transceiver structure for phy control.
 696 * @uphy:               The otg phy transceiver structure for old USB phy control.
 697 * @plat:               The platform specific configuration data. This can be removed once
 698 *                      all SoCs support usb transceiver.
 699 * @supplies:           Definition of USB power supplies
 700 * @phyif:              PHY interface width
 701 * @lock:		Spinlock that protects all the driver data structures
 702 * @priv:		Stores a pointer to the struct usb_hcd
 703 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 704 *                      transfer are in process of being queued
 705 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 706 *                      with an I2C interface
 707 * @wq_otg:             Workqueue object used for handling of some interrupts
 708 * @wf_otg:             Work object for handling Connector ID Status Change
 709 *                      interrupt
 710 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 711 * @lx_state:           Lx state of connected device
 712 * @gregs_backup: Backup of global registers during suspend
 713 * @dregs_backup: Backup of device registers during suspend
 714 * @hregs_backup: Backup of host registers during suspend
 715 *
 716 * These are for host mode:
 717 *
 718 * @flags:              Flags for handling root port state changes
 719 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 720 *                      Transfers associated with these QHs are not currently
 721 *                      assigned to a host channel.
 722 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 723 *                      Transfers associated with these QHs are currently
 724 *                      assigned to a host channel.
 725 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 726 *                      non-periodic schedule
 727 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 728 *                      list of QHs for periodic transfers that are _not_
 729 *                      scheduled for the next frame. Each QH in the list has an
 730 *                      interval counter that determines when it needs to be
 731 *                      scheduled for execution. This scheduling mechanism
 732 *                      allows only a simple calculation for periodic bandwidth
 733 *                      used (i.e. must assume that all periodic transfers may
 734 *                      need to execute in the same frame). However, it greatly
 735 *                      simplifies scheduling and should be sufficient for the
 736 *                      vast majority of OTG hosts, which need to connect to a
 737 *                      small number of peripherals at one time. Items move from
 738 *                      this list to periodic_sched_ready when the QH interval
 739 *                      counter is 0 at SOF.
 740 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 741 *                      the next frame, but have not yet been assigned to host
 742 *                      channels. Items move from this list to
 743 *                      periodic_sched_assigned as host channels become
 744 *                      available during the current frame.
 745 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 746 *                      frame that are assigned to host channels. Items move
 747 *                      from this list to periodic_sched_queued as the
 748 *                      transactions for the QH are queued to the DWC_otg
 749 *                      controller.
 750 * @periodic_sched_queued: List of periodic QHs that have been queued for
 751 *                      execution. Items move from this list to either
 752 *                      periodic_sched_inactive or periodic_sched_ready when the
 753 *                      channel associated with the transfer is released. If the
 754 *                      interval for the QH is 1, the item moves to
 755 *                      periodic_sched_ready because it must be rescheduled for
 756 *                      the next frame. Otherwise, the item moves to
 757 *                      periodic_sched_inactive.
 758 * @split_order:        List keeping track of channels doing splits, in order.
 759 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 760 *                      This value is in microseconds per (micro)frame. The
 761 *                      assumption is that all periodic transfers may occur in
 762 *                      the same (micro)frame.
 763 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 764 *                      host is in high speed mode; low speed schedules are
 765 *                      stored elsewhere since we need one per TT.
 766 * @frame_number:       Frame number read from the core at SOF. The value ranges
 767 *                      from 0 to HFNUM_MAX_FRNUM.
 768 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 769 *                      SOF enable/disable.
 770 * @free_hc_list:       Free host channels in the controller. This is a list of
 771 *                      struct dwc2_host_chan items.
 772 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 773 *                      Currently assuming that there is a dedicated host
 774 *                      channel for each periodic transaction and at least one
 775 *                      host channel is available for non-periodic transactions.
 776 * @non_periodic_channels: Number of host channels assigned to non-periodic
 777 *                      transfers
 778 * @available_host_channels Number of host channels available for the microframe
 779 *                      scheduler to use
 780 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 781 *                      Allows accessing a host channel descriptor given the
 782 *                      host channel number. This is useful in interrupt
 783 *                      handlers.
 784 * @status_buf:         Buffer used for data received during the status phase of
 785 *                      a control transfer.
 786 * @status_buf_dma:     DMA address for status_buf
 787 * @start_work:         Delayed work for handling host A-cable connection
 788 * @reset_work:         Delayed work for handling a port reset
 789 * @otg_port:           OTG port number
 790 * @frame_list:         Frame list
 791 * @frame_list_dma:     Frame list DMA address
 792 * @frame_list_sz:      Frame list size
 793 * @desc_gen_cache:     Kmem cache for generic descriptors
 794 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 795 *
 796 * These are for peripheral mode:
 797 *
 798 * @driver:             USB gadget driver
 799 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 800 * @num_of_eps:         Number of available EPs (excluding EP0)
 801 * @debug_root:         Root directrory for debugfs.
 802 * @debug_file:         Main status file for debugfs.
 803 * @debug_testmode:     Testmode status file for debugfs.
 804 * @debug_fifo:         FIFO status file for debugfs.
 805 * @ep0_reply:          Request used for ep0 reply.
 806 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 807 * @ctrl_buff:          Buffer for EP0 control requests.
 808 * @ctrl_req:           Request for EP0 control packets.
 809 * @ep0_state:          EP0 control transfers state
 810 * @test_mode:          USB test mode requested by the host
 
 
 
 
 
 
 811 * @eps:                The endpoints being supplied to the gadget framework
 812 * @g_using_dma:          Indicate if dma usage is enabled
 813 * @g_rx_fifo_sz:         Contains rx fifo size value
 814 * @g_np_g_tx_fifo_sz:      Contains Non-Periodic tx fifo size value
 815 * @g_tx_fifo_sz:         Contains tx fifo size value per endpoints
 816 */
 817struct dwc2_hsotg {
 818	struct device *dev;
 819	void __iomem *regs;
 820	/** Params detected from hardware */
 821	struct dwc2_hw_params hw_params;
 822	/** Params to actually use */
 823	struct dwc2_core_params *core_params;
 824	enum usb_otg_state op_state;
 825	enum usb_dr_mode dr_mode;
 826	unsigned int hcd_enabled:1;
 827	unsigned int gadget_enabled:1;
 828	unsigned int ll_hw_enabled:1;
 829
 830	struct phy *phy;
 831	struct usb_phy *uphy;
 832	struct dwc2_hsotg_plat *plat;
 833	struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
 834	u32 phyif;
 835
 836	spinlock_t lock;
 837	void *priv;
 838	int     irq;
 839	struct clk *clk;
 
 840
 841	unsigned int queuing_high_bandwidth:1;
 842	unsigned int srp_success:1;
 843
 844	struct workqueue_struct *wq_otg;
 845	struct work_struct wf_otg;
 846	struct timer_list wkp_timer;
 847	enum dwc2_lx_state lx_state;
 848	struct dwc2_gregs_backup gr_backup;
 849	struct dwc2_dregs_backup dr_backup;
 850	struct dwc2_hregs_backup hr_backup;
 851
 852	struct dentry *debug_root;
 853	struct debugfs_regset32 *regset;
 854
 855	/* DWC OTG HW Release versions */
 856#define DWC2_CORE_REV_2_71a	0x4f54271a
 857#define DWC2_CORE_REV_2_90a	0x4f54290a
 858#define DWC2_CORE_REV_2_92a	0x4f54292a
 859#define DWC2_CORE_REV_2_94a	0x4f54294a
 860#define DWC2_CORE_REV_3_00a	0x4f54300a
 
 
 
 861
 862#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 863	union dwc2_hcd_internal_flags {
 864		u32 d32;
 865		struct {
 866			unsigned port_connect_status_change:1;
 867			unsigned port_connect_status:1;
 868			unsigned port_reset_change:1;
 869			unsigned port_enable_change:1;
 870			unsigned port_suspend_change:1;
 871			unsigned port_over_current_change:1;
 872			unsigned port_l1_change:1;
 873			unsigned reserved:25;
 874		} b;
 875	} flags;
 876
 877	struct list_head non_periodic_sched_inactive;
 878	struct list_head non_periodic_sched_active;
 879	struct list_head *non_periodic_qh_ptr;
 880	struct list_head periodic_sched_inactive;
 881	struct list_head periodic_sched_ready;
 882	struct list_head periodic_sched_assigned;
 883	struct list_head periodic_sched_queued;
 884	struct list_head split_order;
 885	u16 periodic_usecs;
 886	unsigned long hs_periodic_bitmap[
 887		DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
 888	u16 frame_number;
 889	u16 periodic_qh_count;
 890	bool bus_suspended;
 891	bool new_connection;
 892
 893	u16 last_frame_num;
 894
 895#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
 896#define FRAME_NUM_ARRAY_SIZE 1000
 897	u16 *frame_num_array;
 898	u16 *last_frame_num_array;
 899	int frame_num_idx;
 900	int dumped_frame_num_array;
 901#endif
 902
 903	struct list_head free_hc_list;
 904	int periodic_channels;
 905	int non_periodic_channels;
 906	int available_host_channels;
 907	struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
 908	u8 *status_buf;
 909	dma_addr_t status_buf_dma;
 910#define DWC2_HCD_STATUS_BUF_SIZE 64
 911
 912	struct delayed_work start_work;
 913	struct delayed_work reset_work;
 914	u8 otg_port;
 915	u32 *frame_list;
 916	dma_addr_t frame_list_dma;
 917	u32 frame_list_sz;
 918	struct kmem_cache *desc_gen_cache;
 919	struct kmem_cache *desc_hsisoc_cache;
 920
 921#ifdef DEBUG
 922	u32 frrem_samples;
 923	u64 frrem_accum;
 924
 925	u32 hfnum_7_samples_a;
 926	u64 hfnum_7_frrem_accum_a;
 927	u32 hfnum_0_samples_a;
 928	u64 hfnum_0_frrem_accum_a;
 929	u32 hfnum_other_samples_a;
 930	u64 hfnum_other_frrem_accum_a;
 931
 932	u32 hfnum_7_samples_b;
 933	u64 hfnum_7_frrem_accum_b;
 934	u32 hfnum_0_samples_b;
 935	u64 hfnum_0_frrem_accum_b;
 936	u32 hfnum_other_samples_b;
 937	u64 hfnum_other_frrem_accum_b;
 938#endif
 939#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
 940
 941#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 942	/* Gadget structures */
 943	struct usb_gadget_driver *driver;
 944	int fifo_mem;
 945	unsigned int dedicated_fifos:1;
 946	unsigned char num_of_eps;
 947	u32 fifo_map;
 948
 949	struct usb_request *ep0_reply;
 950	struct usb_request *ctrl_req;
 951	void *ep0_buff;
 952	void *ctrl_buff;
 953	enum dwc2_ep0_state ep0_state;
 954	u8 test_mode;
 955
 
 
 
 
 
 
 
 956	struct usb_gadget gadget;
 957	unsigned int enabled:1;
 958	unsigned int connected:1;
 959	struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
 960	struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
 961	u32 g_using_dma;
 962	u32 g_rx_fifo_sz;
 963	u32 g_np_g_tx_fifo_sz;
 964	u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
 965#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
 966};
 967
 968/* Reasons for halting a host channel */
 969enum dwc2_halt_status {
 970	DWC2_HC_XFER_NO_HALT_STATUS,
 971	DWC2_HC_XFER_COMPLETE,
 972	DWC2_HC_XFER_URB_COMPLETE,
 973	DWC2_HC_XFER_ACK,
 974	DWC2_HC_XFER_NAK,
 975	DWC2_HC_XFER_NYET,
 976	DWC2_HC_XFER_STALL,
 977	DWC2_HC_XFER_XACT_ERR,
 978	DWC2_HC_XFER_FRAME_OVERRUN,
 979	DWC2_HC_XFER_BABBLE_ERR,
 980	DWC2_HC_XFER_DATA_TOGGLE_ERR,
 981	DWC2_HC_XFER_AHB_ERR,
 982	DWC2_HC_XFER_PERIODIC_INCOMPLETE,
 983	DWC2_HC_XFER_URB_DEQUEUE,
 984};
 985
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986/*
 987 * The following functions support initialization of the core driver component
 988 * and the DWC_otg controller
 989 */
 990extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
 991extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
 992extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
 993extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
 994
 
 
 995void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
 996
 997extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
 998
 999/*
1000 * Common core Functions.
1001 * The following functions support managing the DWC_otg controller in either
1002 * device or host mode.
1003 */
1004extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1005extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1006extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1007
1008extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1009extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1010
1011/* This function should be called on every hardware interrupt. */
1012extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1013
1014/* OTG Core Parameters */
1015
1016/*
1017 * Specifies the OTG capabilities. The driver will automatically
1018 * detect the value for this parameter if none is specified.
1019 * 0 - HNP and SRP capable (default)
1020 * 1 - SRP Only capable
1021 * 2 - No HNP/SRP capable
1022 */
1023extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1024#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE		0
1025#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE		1
1026#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE	2
1027
1028/*
1029 * Specifies whether to use slave or DMA mode for accessing the data
1030 * FIFOs. The driver will automatically detect the value for this
1031 * parameter if none is specified.
1032 * 0 - Slave
1033 * 1 - DMA (default, if available)
1034 */
1035extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1036
1037/*
1038 * When DMA mode is enabled specifies whether to use
1039 * address DMA or DMA Descritor mode for accessing the data
1040 * FIFOs in device mode. The driver will automatically detect
1041 * the value for this parameter if none is specified.
1042 * 0 - address DMA
1043 * 1 - DMA Descriptor(default, if available)
1044 */
1045extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1046
1047/*
1048 * When DMA mode is enabled specifies whether to use
1049 * address DMA or DMA Descritor mode with full speed devices
1050 * for accessing the data FIFOs in host mode.
1051 * 0 - address DMA
1052 * 1 - FS DMA Descriptor(default, if available)
1053 */
1054extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1055					      int val);
1056
1057/*
1058 * Specifies the maximum speed of operation in host and device mode.
1059 * The actual speed depends on the speed of the attached device and
1060 * the value of phy_type. The actual speed depends on the speed of the
1061 * attached device.
1062 * 0 - High Speed (default)
1063 * 1 - Full Speed
1064 */
1065extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1066#define DWC2_SPEED_PARAM_HIGH	0
1067#define DWC2_SPEED_PARAM_FULL	1
1068
1069/*
1070 * Specifies whether low power mode is supported when attached
1071 * to a Full Speed or Low Speed device in host mode.
1072 *
1073 * 0 - Don't support low power mode (default)
1074 * 1 - Support low power mode
1075 */
1076extern void dwc2_set_param_host_support_fs_ls_low_power(
1077		struct dwc2_hsotg *hsotg, int val);
1078
1079/*
1080 * Specifies the PHY clock rate in low power mode when connected to a
1081 * Low Speed device in host mode. This parameter is applicable only if
1082 * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1083 * then defaults to 6 MHZ otherwise 48 MHZ.
1084 *
1085 * 0 - 48 MHz
1086 * 1 - 6 MHz
1087 */
1088extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1089						     int val);
1090#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ	0
1091#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ	1
1092
1093/*
1094 * 0 - Use cC FIFO size parameters
1095 * 1 - Allow dynamic FIFO sizing (default)
1096 */
1097extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1098					       int val);
1099
1100/*
1101 * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1102 * FIFO sizing is enabled.
1103 * 16 to 32768 (default 1024)
1104 */
1105extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1106
1107/*
1108 * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1109 * when Dynamic FIFO sizing is enabled in the core.
1110 * 16 to 32768 (default 256)
1111 */
1112extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1113						    int val);
1114
1115/*
1116 * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1117 * FIFO sizing is enabled.
1118 * 16 to 32768 (default 256)
1119 */
1120extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1121						   int val);
1122
1123/*
1124 * The maximum transfer size supported in bytes.
1125 * 2047 to 65,535  (default 65,535)
1126 */
1127extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1128
1129/*
1130 * The maximum number of packets in a transfer.
1131 * 15 to 511  (default 511)
1132 */
1133extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1134
1135/*
1136 * The number of host channel registers to use.
1137 * 1 to 16 (default 11)
1138 * Note: The FPGA configuration supports a maximum of 11 host channels.
1139 */
1140extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1141
1142/*
1143 * Specifies the type of PHY interface to use. By default, the driver
1144 * will automatically detect the phy_type.
1145 *
1146 * 0 - Full Speed PHY
1147 * 1 - UTMI+ (default)
1148 * 2 - ULPI
1149 */
1150extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1151#define DWC2_PHY_TYPE_PARAM_FS		0
1152#define DWC2_PHY_TYPE_PARAM_UTMI	1
1153#define DWC2_PHY_TYPE_PARAM_ULPI	2
1154
1155/*
1156 * Specifies the UTMI+ Data Width. This parameter is
1157 * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1158 * PHY_TYPE, this parameter indicates the data width between
1159 * the MAC and the ULPI Wrapper.) Also, this parameter is
1160 * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1161 * to "8 and 16 bits", meaning that the core has been
1162 * configured to work at either data path width.
1163 *
1164 * 8 or 16 bits (default 16)
1165 */
1166extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1167
1168/*
1169 * Specifies whether the ULPI operates at double or single
1170 * data rate. This parameter is only applicable if PHY_TYPE is
1171 * ULPI.
1172 *
1173 * 0 - single data rate ULPI interface with 8 bit wide data
1174 * bus (default)
1175 * 1 - double data rate ULPI interface with 4 bit wide data
1176 * bus
1177 */
1178extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1179
1180/*
1181 * Specifies whether to use the internal or external supply to
1182 * drive the vbus with a ULPI phy.
1183 */
1184extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1185#define DWC2_PHY_ULPI_INTERNAL_VBUS	0
1186#define DWC2_PHY_ULPI_EXTERNAL_VBUS	1
1187
1188/*
1189 * Specifies whether to use the I2Cinterface for full speed PHY. This
1190 * parameter is only applicable if PHY_TYPE is FS.
1191 * 0 - No (default)
1192 * 1 - Yes
1193 */
1194extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1195
1196extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1197
1198extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1199
1200/*
1201 * Specifies whether dedicated transmit FIFOs are
1202 * enabled for non periodic IN endpoints in device mode
1203 * 0 - No
1204 * 1 - Yes
1205 */
1206extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1207					       int val);
1208
1209extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1210
1211extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1212
1213extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1214
1215extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1216				const struct dwc2_core_params *params);
1217
1218extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1219
1220extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1221
1222extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1223extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
 
 
 
 
1224
1225/*
1226 * The following functions check the controller's OTG operation mode
1227 * capability (GHWCFG2.OTG_MODE).
1228 *
1229 * These functions can be used before the internal hsotg->hw_params
1230 * are read in and cached so they always read directly from the
1231 * GHWCFG2 register.
1232 */
1233unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1234bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1235bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1236bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1237
1238/*
1239 * Returns the mode of operation, host or device
1240 */
1241static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1242{
1243	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1244}
1245static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1246{
1247	return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1248}
1249
1250/*
1251 * Dump core registers and SPRAM
1252 */
1253extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1254extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1255extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1256
1257/*
1258 * Return OTG version - either 1.3 or 2.0
1259 */
1260extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1261
1262/* Gadget defines */
1263#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1264extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1265extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1266extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1267extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1268extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1269		bool reset);
1270extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1271extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1272extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1273#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1274int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1275int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1276#else
1277static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1278{ return 0; }
1279static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1280{ return 0; }
1281static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1282{ return 0; }
1283static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1284{ return 0; }
1285static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1286		bool reset) {}
1287static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1288static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1289static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1290							int testmode)
1291{ return 0; }
1292#define dwc2_is_device_connected(hsotg) (0)
1293static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1294{ return 0; }
1295static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1296{ return 0; }
1297#endif
1298
1299#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1300extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1301extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1302extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1303extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1304extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1305int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1306int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1307#else
1308static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1309{ return 0; }
1310static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1311						   int us)
1312{ return 0; }
1313static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1314static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1315static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1316static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1317static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1318{ return 0; }
1319static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1320{ return 0; }
1321static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1322{ return 0; }
1323
1324#endif
1325
1326#endif /* __DWC2_CORE_H__ */