Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Common Flash Interface support:
  3 *   Generic utility functions not dependent on command set
  4 *
  5 * Copyright (C) 2002 Red Hat
  6 * Copyright (C) 2003 STMicroelectronics Limited
  7 *
  8 * This code is covered by the GPL.
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/types.h>
 13#include <linux/kernel.h>
 14#include <asm/io.h>
 15#include <asm/byteorder.h>
 16
 17#include <linux/errno.h>
 18#include <linux/slab.h>
 19#include <linux/delay.h>
 20#include <linux/interrupt.h>
 21#include <linux/mtd/xip.h>
 22#include <linux/mtd/mtd.h>
 23#include <linux/mtd/map.h>
 24#include <linux/mtd/cfi.h>
 25
 26void cfi_udelay(int us)
 27{
 28	if (us >= 1000) {
 29		msleep((us+999)/1000);
 30	} else {
 31		udelay(us);
 32		cond_resched();
 33	}
 34}
 35EXPORT_SYMBOL(cfi_udelay);
 36
 37/*
 38 * Returns the command address according to the given geometry.
 39 */
 40uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
 41				struct map_info *map, struct cfi_private *cfi)
 42{
 43	unsigned bankwidth = map_bankwidth(map);
 44	unsigned interleave = cfi_interleave(cfi);
 45	unsigned type = cfi->device_type;
 46	uint32_t addr;
 47
 48	addr = (cmd_ofs * type) * interleave;
 49
 50	/* Modify the unlock address if we are in compatibility mode.
 51	 * For 16bit devices on 8 bit busses
 52	 * and 32bit devices on 16 bit busses
 53	 * set the low bit of the alternating bit sequence of the address.
 54	 */
 55	if (((type * interleave) > bankwidth) && ((cmd_ofs & 0xff) == 0xaa))
 56		addr |= (type >> 1)*interleave;
 57
 58	return  addr;
 59}
 60EXPORT_SYMBOL(cfi_build_cmd_addr);
 61
 62/*
 63 * Transforms the CFI command for the given geometry (bus width & interleave).
 64 * It looks too long to be inline, but in the common case it should almost all
 65 * get optimised away.
 66 */
 67map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
 68{
 69	map_word val = { {0} };
 70	int wordwidth, words_per_bus, chip_mode, chips_per_word;
 71	unsigned long onecmd;
 72	int i;
 73
 74	/* We do it this way to give the compiler a fighting chance
 75	   of optimising away all the crap for 'bankwidth' larger than
 76	   an unsigned long, in the common case where that support is
 77	   disabled */
 78	if (map_bankwidth_is_large(map)) {
 79		wordwidth = sizeof(unsigned long);
 80		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
 81	} else {
 82		wordwidth = map_bankwidth(map);
 83		words_per_bus = 1;
 84	}
 85
 86	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
 87	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
 88
 89	/* First, determine what the bit-pattern should be for a single
 90	   device, according to chip mode and endianness... */
 91	switch (chip_mode) {
 92	default: BUG();
 93	case 1:
 94		onecmd = cmd;
 95		break;
 96	case 2:
 97		onecmd = cpu_to_cfi16(map, cmd);
 98		break;
 99	case 4:
100		onecmd = cpu_to_cfi32(map, cmd);
101		break;
102	}
103
104	/* Now replicate it across the size of an unsigned long, or
105	   just to the bus width as appropriate */
106	switch (chips_per_word) {
107	default: BUG();
108#if BITS_PER_LONG >= 64
109	case 8:
110		onecmd |= (onecmd << (chip_mode * 32));
111#endif
112	case 4:
113		onecmd |= (onecmd << (chip_mode * 16));
114	case 2:
115		onecmd |= (onecmd << (chip_mode * 8));
116	case 1:
117		;
118	}
119
120	/* And finally, for the multi-word case, replicate it
121	   in all words in the structure */
122	for (i=0; i < words_per_bus; i++) {
123		val.x[i] = onecmd;
124	}
125
126	return val;
127}
128EXPORT_SYMBOL(cfi_build_cmd);
129
130unsigned long cfi_merge_status(map_word val, struct map_info *map,
131					   struct cfi_private *cfi)
132{
133	int wordwidth, words_per_bus, chip_mode, chips_per_word;
134	unsigned long onestat, res = 0;
135	int i;
136
137	/* We do it this way to give the compiler a fighting chance
138	   of optimising away all the crap for 'bankwidth' larger than
139	   an unsigned long, in the common case where that support is
140	   disabled */
141	if (map_bankwidth_is_large(map)) {
142		wordwidth = sizeof(unsigned long);
143		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
144	} else {
145		wordwidth = map_bankwidth(map);
146		words_per_bus = 1;
147	}
148
149	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
150	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
151
152	onestat = val.x[0];
153	/* Or all status words together */
154	for (i=1; i < words_per_bus; i++) {
155		onestat |= val.x[i];
156	}
157
158	res = onestat;
159	switch(chips_per_word) {
160	default: BUG();
161#if BITS_PER_LONG >= 64
162	case 8:
163		res |= (onestat >> (chip_mode * 32));
164#endif
165	case 4:
166		res |= (onestat >> (chip_mode * 16));
167	case 2:
168		res |= (onestat >> (chip_mode * 8));
169	case 1:
170		;
171	}
172
173	/* Last, determine what the bit-pattern should be for a single
174	   device, according to chip mode and endianness... */
175	switch (chip_mode) {
176	case 1:
177		break;
178	case 2:
179		res = cfi16_to_cpu(map, res);
180		break;
181	case 4:
182		res = cfi32_to_cpu(map, res);
183		break;
184	default: BUG();
185	}
186	return res;
187}
188EXPORT_SYMBOL(cfi_merge_status);
189
190/*
191 * Sends a CFI command to a bank of flash for the given geometry.
192 *
193 * Returns the offset in flash where the command was written.
194 * If prev_val is non-null, it will be set to the value at the command address,
195 * before the command was written.
196 */
197uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
198				struct map_info *map, struct cfi_private *cfi,
199				int type, map_word *prev_val)
200{
201	map_word val;
202	uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
203	val = cfi_build_cmd(cmd, map, cfi);
204
205	if (prev_val)
206		*prev_val = map_read(map, addr);
207
208	map_write(map, val, addr);
209
210	return addr - base;
211}
212EXPORT_SYMBOL(cfi_send_gen_cmd);
213
214int __xipram cfi_qry_present(struct map_info *map, __u32 base,
215			     struct cfi_private *cfi)
216{
217	int osf = cfi->interleave * cfi->device_type;	/* scale factor */
218	map_word val[3];
219	map_word qry[3];
220
221	qry[0] = cfi_build_cmd('Q', map, cfi);
222	qry[1] = cfi_build_cmd('R', map, cfi);
223	qry[2] = cfi_build_cmd('Y', map, cfi);
224
225	val[0] = map_read(map, base + osf*0x10);
226	val[1] = map_read(map, base + osf*0x11);
227	val[2] = map_read(map, base + osf*0x12);
228
229	if (!map_word_equal(map, qry[0], val[0]))
230		return 0;
231
232	if (!map_word_equal(map, qry[1], val[1]))
233		return 0;
234
235	if (!map_word_equal(map, qry[2], val[2]))
236		return 0;
237
238	return 1; 	/* "QRY" found */
239}
240EXPORT_SYMBOL_GPL(cfi_qry_present);
241
242int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
243			     struct cfi_private *cfi)
244{
245	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
246	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
247	if (cfi_qry_present(map, base, cfi))
248		return 1;
249	/* QRY not found probably we deal with some odd CFI chips */
250	/* Some revisions of some old Intel chips? */
251	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
252	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
253	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
254	if (cfi_qry_present(map, base, cfi))
255		return 1;
256	/* ST M29DW chips */
257	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
258	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
259	if (cfi_qry_present(map, base, cfi))
260		return 1;
261	/* some old SST chips, e.g. 39VF160x/39VF320x */
262	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
263	cfi_send_gen_cmd(0xAA, 0x5555, base, map, cfi, cfi->device_type, NULL);
264	cfi_send_gen_cmd(0x55, 0x2AAA, base, map, cfi, cfi->device_type, NULL);
265	cfi_send_gen_cmd(0x98, 0x5555, base, map, cfi, cfi->device_type, NULL);
266	if (cfi_qry_present(map, base, cfi))
267		return 1;
268	/* SST 39VF640xB */
269	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
270	cfi_send_gen_cmd(0xAA, 0x555, base, map, cfi, cfi->device_type, NULL);
271	cfi_send_gen_cmd(0x55, 0x2AA, base, map, cfi, cfi->device_type, NULL);
272	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
273	if (cfi_qry_present(map, base, cfi))
274		return 1;
275	/* QRY not found */
276	return 0;
277}
278EXPORT_SYMBOL_GPL(cfi_qry_mode_on);
279
280void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
281			       struct cfi_private *cfi)
282{
283	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
284	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
285	/* M29W128G flashes require an additional reset command
286	   when exit qry mode */
287	if ((cfi->mfr == CFI_MFR_ST) && (cfi->id == 0x227E || cfi->id == 0x7E))
288		cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
289}
290EXPORT_SYMBOL_GPL(cfi_qry_mode_off);
291
292struct cfi_extquery *
293__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name)
294{
295	struct cfi_private *cfi = map->fldrv_priv;
296	__u32 base = 0; // cfi->chips[0].start;
297	int ofs_factor = cfi->interleave * cfi->device_type;
298	int i;
299	struct cfi_extquery *extp = NULL;
300
301	if (!adr)
302		goto out;
303
304	printk(KERN_INFO "%s Extended Query Table at 0x%4.4X\n", name, adr);
305
306	extp = kmalloc(size, GFP_KERNEL);
307	if (!extp)
308		goto out;
309
310#ifdef CONFIG_MTD_XIP
311	local_irq_disable();
312#endif
313
314	/* Switch it into Query Mode */
315	cfi_qry_mode_on(base, map, cfi);
316	/* Read in the Extended Query Table */
317	for (i=0; i<size; i++) {
318		((unsigned char *)extp)[i] =
319			cfi_read_query(map, base+((adr+i)*ofs_factor));
320	}
321
322	/* Make sure it returns to read mode */
323	cfi_qry_mode_off(base, map, cfi);
324
325#ifdef CONFIG_MTD_XIP
326	(void) map_read(map, base);
327	xip_iprefetch();
328	local_irq_enable();
329#endif
330
331 out:	return extp;
332}
333
334EXPORT_SYMBOL(cfi_read_pri);
335
336void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups)
337{
338	struct map_info *map = mtd->priv;
339	struct cfi_private *cfi = map->fldrv_priv;
340	struct cfi_fixup *f;
341
342	for (f=fixups; f->fixup; f++) {
343		if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) &&
344		    ((f->id  == CFI_ID_ANY)  || (f->id  == cfi->id))) {
345			f->fixup(mtd);
346		}
347	}
348}
349
350EXPORT_SYMBOL(cfi_fixup);
351
352int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
353				     loff_t ofs, size_t len, void *thunk)
354{
355	struct map_info *map = mtd->priv;
356	struct cfi_private *cfi = map->fldrv_priv;
357	unsigned long adr;
358	int chipnum, ret = 0;
359	int i, first;
360	struct mtd_erase_region_info *regions = mtd->eraseregions;
361
362	/* Check that both start and end of the requested erase are
363	 * aligned with the erasesize at the appropriate addresses.
364	 */
365
366	i = 0;
367
368	/* Skip all erase regions which are ended before the start of
369	   the requested erase. Actually, to save on the calculations,
370	   we skip to the first erase region which starts after the
371	   start of the requested erase, and then go back one.
372	*/
373
374	while (i < mtd->numeraseregions && ofs >= regions[i].offset)
375	       i++;
376	i--;
377
378	/* OK, now i is pointing at the erase region in which this
379	   erase request starts. Check the start of the requested
380	   erase range is aligned with the erase size which is in
381	   effect here.
382	*/
383
384	if (ofs & (regions[i].erasesize-1))
385		return -EINVAL;
386
387	/* Remember the erase region we start on */
388	first = i;
389
390	/* Next, check that the end of the requested erase is aligned
391	 * with the erase region at that address.
392	 */
393
394	while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset)
395		i++;
396
397	/* As before, drop back one to point at the region in which
398	   the address actually falls
399	*/
400	i--;
401
402	if ((ofs + len) & (regions[i].erasesize-1))
403		return -EINVAL;
404
405	chipnum = ofs >> cfi->chipshift;
406	adr = ofs - (chipnum << cfi->chipshift);
407
408	i=first;
409
410	while(len) {
411		int size = regions[i].erasesize;
412
413		ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk);
414
415		if (ret)
416			return ret;
417
418		adr += size;
419		ofs += size;
420		len -= size;
421
422		if (ofs == regions[i].offset + size * regions[i].numblocks)
423			i++;
424
425		if (adr >> cfi->chipshift) {
426			adr = 0;
427			chipnum++;
428
429			if (chipnum >= cfi->numchips)
430				break;
431		}
432	}
433
434	return 0;
435}
436
437EXPORT_SYMBOL(cfi_varsize_frob);
438
439MODULE_LICENSE("GPL");
v4.6
  1/*
  2 * Common Flash Interface support:
  3 *   Generic utility functions not dependent on command set
  4 *
  5 * Copyright (C) 2002 Red Hat
  6 * Copyright (C) 2003 STMicroelectronics Limited
  7 *
  8 * This code is covered by the GPL.
  9 */
 10
 11#include <linux/module.h>
 12#include <linux/types.h>
 13#include <linux/kernel.h>
 14#include <asm/io.h>
 15#include <asm/byteorder.h>
 16
 17#include <linux/errno.h>
 18#include <linux/slab.h>
 19#include <linux/delay.h>
 20#include <linux/interrupt.h>
 21#include <linux/mtd/xip.h>
 22#include <linux/mtd/mtd.h>
 23#include <linux/mtd/map.h>
 24#include <linux/mtd/cfi.h>
 25
 26void cfi_udelay(int us)
 27{
 28	if (us >= 1000) {
 29		msleep((us+999)/1000);
 30	} else {
 31		udelay(us);
 32		cond_resched();
 33	}
 34}
 35EXPORT_SYMBOL(cfi_udelay);
 36
 37/*
 38 * Returns the command address according to the given geometry.
 39 */
 40uint32_t cfi_build_cmd_addr(uint32_t cmd_ofs,
 41				struct map_info *map, struct cfi_private *cfi)
 42{
 43	unsigned bankwidth = map_bankwidth(map);
 44	unsigned interleave = cfi_interleave(cfi);
 45	unsigned type = cfi->device_type;
 46	uint32_t addr;
 47
 48	addr = (cmd_ofs * type) * interleave;
 49
 50	/* Modify the unlock address if we are in compatibility mode.
 51	 * For 16bit devices on 8 bit busses
 52	 * and 32bit devices on 16 bit busses
 53	 * set the low bit of the alternating bit sequence of the address.
 54	 */
 55	if (((type * interleave) > bankwidth) && ((cmd_ofs & 0xff) == 0xaa))
 56		addr |= (type >> 1)*interleave;
 57
 58	return  addr;
 59}
 60EXPORT_SYMBOL(cfi_build_cmd_addr);
 61
 62/*
 63 * Transforms the CFI command for the given geometry (bus width & interleave).
 64 * It looks too long to be inline, but in the common case it should almost all
 65 * get optimised away.
 66 */
 67map_word cfi_build_cmd(u_long cmd, struct map_info *map, struct cfi_private *cfi)
 68{
 69	map_word val = { {0} };
 70	int wordwidth, words_per_bus, chip_mode, chips_per_word;
 71	unsigned long onecmd;
 72	int i;
 73
 74	/* We do it this way to give the compiler a fighting chance
 75	   of optimising away all the crap for 'bankwidth' larger than
 76	   an unsigned long, in the common case where that support is
 77	   disabled */
 78	if (map_bankwidth_is_large(map)) {
 79		wordwidth = sizeof(unsigned long);
 80		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
 81	} else {
 82		wordwidth = map_bankwidth(map);
 83		words_per_bus = 1;
 84	}
 85
 86	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
 87	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
 88
 89	/* First, determine what the bit-pattern should be for a single
 90	   device, according to chip mode and endianness... */
 91	switch (chip_mode) {
 92	default: BUG();
 93	case 1:
 94		onecmd = cmd;
 95		break;
 96	case 2:
 97		onecmd = cpu_to_cfi16(map, cmd);
 98		break;
 99	case 4:
100		onecmd = cpu_to_cfi32(map, cmd);
101		break;
102	}
103
104	/* Now replicate it across the size of an unsigned long, or
105	   just to the bus width as appropriate */
106	switch (chips_per_word) {
107	default: BUG();
108#if BITS_PER_LONG >= 64
109	case 8:
110		onecmd |= (onecmd << (chip_mode * 32));
111#endif
112	case 4:
113		onecmd |= (onecmd << (chip_mode * 16));
114	case 2:
115		onecmd |= (onecmd << (chip_mode * 8));
116	case 1:
117		;
118	}
119
120	/* And finally, for the multi-word case, replicate it
121	   in all words in the structure */
122	for (i=0; i < words_per_bus; i++) {
123		val.x[i] = onecmd;
124	}
125
126	return val;
127}
128EXPORT_SYMBOL(cfi_build_cmd);
129
130unsigned long cfi_merge_status(map_word val, struct map_info *map,
131					   struct cfi_private *cfi)
132{
133	int wordwidth, words_per_bus, chip_mode, chips_per_word;
134	unsigned long onestat, res = 0;
135	int i;
136
137	/* We do it this way to give the compiler a fighting chance
138	   of optimising away all the crap for 'bankwidth' larger than
139	   an unsigned long, in the common case where that support is
140	   disabled */
141	if (map_bankwidth_is_large(map)) {
142		wordwidth = sizeof(unsigned long);
143		words_per_bus = (map_bankwidth(map)) / wordwidth; // i.e. normally 1
144	} else {
145		wordwidth = map_bankwidth(map);
146		words_per_bus = 1;
147	}
148
149	chip_mode = map_bankwidth(map) / cfi_interleave(cfi);
150	chips_per_word = wordwidth * cfi_interleave(cfi) / map_bankwidth(map);
151
152	onestat = val.x[0];
153	/* Or all status words together */
154	for (i=1; i < words_per_bus; i++) {
155		onestat |= val.x[i];
156	}
157
158	res = onestat;
159	switch(chips_per_word) {
160	default: BUG();
161#if BITS_PER_LONG >= 64
162	case 8:
163		res |= (onestat >> (chip_mode * 32));
164#endif
165	case 4:
166		res |= (onestat >> (chip_mode * 16));
167	case 2:
168		res |= (onestat >> (chip_mode * 8));
169	case 1:
170		;
171	}
172
173	/* Last, determine what the bit-pattern should be for a single
174	   device, according to chip mode and endianness... */
175	switch (chip_mode) {
176	case 1:
177		break;
178	case 2:
179		res = cfi16_to_cpu(map, res);
180		break;
181	case 4:
182		res = cfi32_to_cpu(map, res);
183		break;
184	default: BUG();
185	}
186	return res;
187}
188EXPORT_SYMBOL(cfi_merge_status);
189
190/*
191 * Sends a CFI command to a bank of flash for the given geometry.
192 *
193 * Returns the offset in flash where the command was written.
194 * If prev_val is non-null, it will be set to the value at the command address,
195 * before the command was written.
196 */
197uint32_t cfi_send_gen_cmd(u_char cmd, uint32_t cmd_addr, uint32_t base,
198				struct map_info *map, struct cfi_private *cfi,
199				int type, map_word *prev_val)
200{
201	map_word val;
202	uint32_t addr = base + cfi_build_cmd_addr(cmd_addr, map, cfi);
203	val = cfi_build_cmd(cmd, map, cfi);
204
205	if (prev_val)
206		*prev_val = map_read(map, addr);
207
208	map_write(map, val, addr);
209
210	return addr - base;
211}
212EXPORT_SYMBOL(cfi_send_gen_cmd);
213
214int __xipram cfi_qry_present(struct map_info *map, __u32 base,
215			     struct cfi_private *cfi)
216{
217	int osf = cfi->interleave * cfi->device_type;	/* scale factor */
218	map_word val[3];
219	map_word qry[3];
220
221	qry[0] = cfi_build_cmd('Q', map, cfi);
222	qry[1] = cfi_build_cmd('R', map, cfi);
223	qry[2] = cfi_build_cmd('Y', map, cfi);
224
225	val[0] = map_read(map, base + osf*0x10);
226	val[1] = map_read(map, base + osf*0x11);
227	val[2] = map_read(map, base + osf*0x12);
228
229	if (!map_word_equal(map, qry[0], val[0]))
230		return 0;
231
232	if (!map_word_equal(map, qry[1], val[1]))
233		return 0;
234
235	if (!map_word_equal(map, qry[2], val[2]))
236		return 0;
237
238	return 1; 	/* "QRY" found */
239}
240EXPORT_SYMBOL_GPL(cfi_qry_present);
241
242int __xipram cfi_qry_mode_on(uint32_t base, struct map_info *map,
243			     struct cfi_private *cfi)
244{
245	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
246	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
247	if (cfi_qry_present(map, base, cfi))
248		return 1;
249	/* QRY not found probably we deal with some odd CFI chips */
250	/* Some revisions of some old Intel chips? */
251	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
252	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
253	cfi_send_gen_cmd(0x98, 0x55, base, map, cfi, cfi->device_type, NULL);
254	if (cfi_qry_present(map, base, cfi))
255		return 1;
256	/* ST M29DW chips */
257	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
258	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
259	if (cfi_qry_present(map, base, cfi))
260		return 1;
261	/* some old SST chips, e.g. 39VF160x/39VF320x */
262	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
263	cfi_send_gen_cmd(0xAA, 0x5555, base, map, cfi, cfi->device_type, NULL);
264	cfi_send_gen_cmd(0x55, 0x2AAA, base, map, cfi, cfi->device_type, NULL);
265	cfi_send_gen_cmd(0x98, 0x5555, base, map, cfi, cfi->device_type, NULL);
266	if (cfi_qry_present(map, base, cfi))
267		return 1;
268	/* SST 39VF640xB */
269	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
270	cfi_send_gen_cmd(0xAA, 0x555, base, map, cfi, cfi->device_type, NULL);
271	cfi_send_gen_cmd(0x55, 0x2AA, base, map, cfi, cfi->device_type, NULL);
272	cfi_send_gen_cmd(0x98, 0x555, base, map, cfi, cfi->device_type, NULL);
273	if (cfi_qry_present(map, base, cfi))
274		return 1;
275	/* QRY not found */
276	return 0;
277}
278EXPORT_SYMBOL_GPL(cfi_qry_mode_on);
279
280void __xipram cfi_qry_mode_off(uint32_t base, struct map_info *map,
281			       struct cfi_private *cfi)
282{
283	cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
284	cfi_send_gen_cmd(0xFF, 0, base, map, cfi, cfi->device_type, NULL);
285	/* M29W128G flashes require an additional reset command
286	   when exit qry mode */
287	if ((cfi->mfr == CFI_MFR_ST) && (cfi->id == 0x227E || cfi->id == 0x7E))
288		cfi_send_gen_cmd(0xF0, 0, base, map, cfi, cfi->device_type, NULL);
289}
290EXPORT_SYMBOL_GPL(cfi_qry_mode_off);
291
292struct cfi_extquery *
293__xipram cfi_read_pri(struct map_info *map, __u16 adr, __u16 size, const char* name)
294{
295	struct cfi_private *cfi = map->fldrv_priv;
296	__u32 base = 0; // cfi->chips[0].start;
297	int ofs_factor = cfi->interleave * cfi->device_type;
298	int i;
299	struct cfi_extquery *extp = NULL;
300
301	if (!adr)
302		goto out;
303
304	printk(KERN_INFO "%s Extended Query Table at 0x%4.4X\n", name, adr);
305
306	extp = kmalloc(size, GFP_KERNEL);
307	if (!extp)
308		goto out;
309
310#ifdef CONFIG_MTD_XIP
311	local_irq_disable();
312#endif
313
314	/* Switch it into Query Mode */
315	cfi_qry_mode_on(base, map, cfi);
316	/* Read in the Extended Query Table */
317	for (i=0; i<size; i++) {
318		((unsigned char *)extp)[i] =
319			cfi_read_query(map, base+((adr+i)*ofs_factor));
320	}
321
322	/* Make sure it returns to read mode */
323	cfi_qry_mode_off(base, map, cfi);
324
325#ifdef CONFIG_MTD_XIP
326	(void) map_read(map, base);
327	xip_iprefetch();
328	local_irq_enable();
329#endif
330
331 out:	return extp;
332}
333
334EXPORT_SYMBOL(cfi_read_pri);
335
336void cfi_fixup(struct mtd_info *mtd, struct cfi_fixup *fixups)
337{
338	struct map_info *map = mtd->priv;
339	struct cfi_private *cfi = map->fldrv_priv;
340	struct cfi_fixup *f;
341
342	for (f=fixups; f->fixup; f++) {
343		if (((f->mfr == CFI_MFR_ANY) || (f->mfr == cfi->mfr)) &&
344		    ((f->id  == CFI_ID_ANY)  || (f->id  == cfi->id))) {
345			f->fixup(mtd);
346		}
347	}
348}
349
350EXPORT_SYMBOL(cfi_fixup);
351
352int cfi_varsize_frob(struct mtd_info *mtd, varsize_frob_t frob,
353				     loff_t ofs, size_t len, void *thunk)
354{
355	struct map_info *map = mtd->priv;
356	struct cfi_private *cfi = map->fldrv_priv;
357	unsigned long adr;
358	int chipnum, ret = 0;
359	int i, first;
360	struct mtd_erase_region_info *regions = mtd->eraseregions;
361
362	/* Check that both start and end of the requested erase are
363	 * aligned with the erasesize at the appropriate addresses.
364	 */
365
366	i = 0;
367
368	/* Skip all erase regions which are ended before the start of
369	   the requested erase. Actually, to save on the calculations,
370	   we skip to the first erase region which starts after the
371	   start of the requested erase, and then go back one.
372	*/
373
374	while (i < mtd->numeraseregions && ofs >= regions[i].offset)
375	       i++;
376	i--;
377
378	/* OK, now i is pointing at the erase region in which this
379	   erase request starts. Check the start of the requested
380	   erase range is aligned with the erase size which is in
381	   effect here.
382	*/
383
384	if (ofs & (regions[i].erasesize-1))
385		return -EINVAL;
386
387	/* Remember the erase region we start on */
388	first = i;
389
390	/* Next, check that the end of the requested erase is aligned
391	 * with the erase region at that address.
392	 */
393
394	while (i<mtd->numeraseregions && (ofs + len) >= regions[i].offset)
395		i++;
396
397	/* As before, drop back one to point at the region in which
398	   the address actually falls
399	*/
400	i--;
401
402	if ((ofs + len) & (regions[i].erasesize-1))
403		return -EINVAL;
404
405	chipnum = ofs >> cfi->chipshift;
406	adr = ofs - (chipnum << cfi->chipshift);
407
408	i=first;
409
410	while(len) {
411		int size = regions[i].erasesize;
412
413		ret = (*frob)(map, &cfi->chips[chipnum], adr, size, thunk);
414
415		if (ret)
416			return ret;
417
418		adr += size;
419		ofs += size;
420		len -= size;
421
422		if (ofs == regions[i].offset + size * regions[i].numblocks)
423			i++;
424
425		if (adr >> cfi->chipshift) {
426			adr = 0;
427			chipnum++;
428
429			if (chipnum >= cfi->numchips)
430				break;
431		}
432	}
433
434	return 0;
435}
436
437EXPORT_SYMBOL(cfi_varsize_frob);
438
439MODULE_LICENSE("GPL");