Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	    monitoring
   4 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
   9 *
  10 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/i2c.h>
  32#include <linux/hwmon.h>
  33#include <linux/hwmon-vid.h>
  34#include <linux/hwmon-sysfs.h>
  35#include <linux/err.h>
  36#include <linux/mutex.h>
  37#include <linux/util_macros.h>
  38
  39/* Addresses to scan */
  40static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  41
  42enum chips {
  43	lm85,
  44	adm1027, adt7463, adt7468,
  45	emc6d100, emc6d102, emc6d103, emc6d103s
  46};
  47
  48/* The LM85 registers */
  49
  50#define LM85_REG_IN(nr)			(0x20 + (nr))
  51#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  52#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  53
  54#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  55#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  56#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  57
  58/* Fan speeds are LSB, MSB (2 bytes) */
  59#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  60#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  61
  62#define LM85_REG_PWM(nr)		(0x30 + (nr))
  63
  64#define LM85_REG_COMPANY		0x3e
  65#define LM85_REG_VERSTEP		0x3f
  66
  67#define ADT7468_REG_CFG5		0x7c
  68#define ADT7468_OFF64			(1 << 0)
  69#define ADT7468_HFPWM			(1 << 1)
  70#define IS_ADT7468_OFF64(data)		\
  71	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  72#define IS_ADT7468_HFPWM(data)		\
  73	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  74
  75/* These are the recognized values for the above regs */
  76#define LM85_COMPANY_NATIONAL		0x01
  77#define LM85_COMPANY_ANALOG_DEV		0x41
  78#define LM85_COMPANY_SMSC		0x5c
  79#define LM85_VERSTEP_LM85C		0x60
  80#define LM85_VERSTEP_LM85B		0x62
  81#define LM85_VERSTEP_LM96000_1		0x68
  82#define LM85_VERSTEP_LM96000_2		0x69
  83#define LM85_VERSTEP_ADM1027		0x60
  84#define LM85_VERSTEP_ADT7463		0x62
  85#define LM85_VERSTEP_ADT7463C		0x6A
  86#define LM85_VERSTEP_ADT7468_1		0x71
  87#define LM85_VERSTEP_ADT7468_2		0x72
  88#define LM85_VERSTEP_EMC6D100_A0        0x60
  89#define LM85_VERSTEP_EMC6D100_A1        0x61
  90#define LM85_VERSTEP_EMC6D102		0x65
  91#define LM85_VERSTEP_EMC6D103_A0	0x68
  92#define LM85_VERSTEP_EMC6D103_A1	0x69
  93#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  94
  95#define LM85_REG_CONFIG			0x40
  96
  97#define LM85_REG_ALARM1			0x41
  98#define LM85_REG_ALARM2			0x42
  99
 100#define LM85_REG_VID			0x43
 101
 102/* Automated FAN control */
 103#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 104#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 105#define LM85_REG_AFAN_SPIKE1		0x62
 106#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 107#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 108#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 109#define LM85_REG_AFAN_HYST1		0x6d
 110#define LM85_REG_AFAN_HYST2		0x6e
 111
 112#define ADM1027_REG_EXTEND_ADC1		0x76
 113#define ADM1027_REG_EXTEND_ADC2		0x77
 114
 115#define EMC6D100_REG_ALARM3             0x7d
 116/* IN5, IN6 and IN7 */
 117#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 118#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 119#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 120#define EMC6D102_REG_EXTEND_ADC1	0x85
 121#define EMC6D102_REG_EXTEND_ADC2	0x86
 122#define EMC6D102_REG_EXTEND_ADC3	0x87
 123#define EMC6D102_REG_EXTEND_ADC4	0x88
 124
 125/*
 126 * Conversions. Rounding and limit checking is only done on the TO_REG
 127 * variants. Note that you should be a bit careful with which arguments
 128 * these macros are called: arguments may be evaluated more than once.
 129 */
 130
 131/* IN are scaled according to built-in resistors */
 132static const int lm85_scaling[] = {  /* .001 Volts */
 133	2500, 2250, 3300, 5000, 12000,
 134	3300, 1500, 1800 /*EMC6D100*/
 135};
 136#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 137
 138#define INS_TO_REG(n, val)	\
 139		SCALE(clamp_val(val, 0, 255 * lm85_scaling[n] / 192), \
 140		      lm85_scaling[n], 192)
 141
 142#define INSEXT_FROM_REG(n, val, ext)	\
 143		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 144
 145#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 146
 147/* FAN speed is measured using 90kHz clock */
 148static inline u16 FAN_TO_REG(unsigned long val)
 149{
 150	if (!val)
 151		return 0xffff;
 152	return clamp_val(5400000 / val, 1, 0xfffe);
 153}
 154#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 155				 5400000 / (val))
 156
 157/* Temperature is reported in .001 degC increments */
 158#define TEMP_TO_REG(val)	\
 159		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 160#define TEMPEXT_FROM_REG(val, ext)	\
 161		SCALE(((val) << 4) + (ext), 16, 1000)
 162#define TEMP_FROM_REG(val)	((val) * 1000)
 163
 164#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 165#define PWM_FROM_REG(val)		(val)
 166
 167
 168/*
 169 * ZONEs have the following parameters:
 170 *    Limit (low) temp,           1. degC
 171 *    Hysteresis (below limit),   1. degC (0-15)
 172 *    Range of speed control,     .1 degC (2-80)
 173 *    Critical (high) temp,       1. degC
 174 *
 175 * FAN PWMs have the following parameters:
 176 *    Reference Zone,                 1, 2, 3, etc.
 177 *    Spinup time,                    .05 sec
 178 *    PWM value at limit/low temp,    1 count
 179 *    PWM Frequency,                  1. Hz
 180 *    PWM is Min or OFF below limit,  flag
 181 *    Invert PWM output,              flag
 182 *
 183 * Some chips filter the temp, others the fan.
 184 *    Filter constant (or disabled)   .1 seconds
 185 */
 186
 187/* These are the zone temperature range encodings in .001 degree C */
 188static const int lm85_range_map[] = {
 189	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 190	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 191};
 192
 193static int RANGE_TO_REG(long range)
 194{
 195	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 196}
 197#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 198
 199/* These are the PWM frequency encodings */
 200static const int lm85_freq_map[8] = { /* 1 Hz */
 201	10, 15, 23, 30, 38, 47, 61, 94
 202};
 203static const int adm1027_freq_map[8] = { /* 1 Hz */
 204	11, 15, 22, 29, 35, 44, 59, 88
 205};
 206#define FREQ_MAP_LEN	8
 207
 208static int FREQ_TO_REG(const int *map,
 209		       unsigned int map_size, unsigned long freq)
 210{
 211	return find_closest(freq, map, map_size);
 212}
 213
 214static int FREQ_FROM_REG(const int *map, u8 reg)
 215{
 216	return map[reg & 0x07];
 217}
 218
 219/*
 220 * Since we can't use strings, I'm abusing these numbers
 221 *   to stand in for the following meanings:
 222 *      1 -- PWM responds to Zone 1
 223 *      2 -- PWM responds to Zone 2
 224 *      3 -- PWM responds to Zone 3
 225 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 226 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 227 *      0 -- PWM is always at 0% (ie, off)
 228 *     -1 -- PWM is always at 100%
 229 *     -2 -- PWM responds to manual control
 230 */
 231
 232static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 233#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 234
 235static int ZONE_TO_REG(int zone)
 236{
 237	int i;
 238
 239	for (i = 0; i <= 7; ++i)
 240		if (zone == lm85_zone_map[i])
 241			break;
 242	if (i > 7)   /* Not found. */
 243		i = 3;  /* Always 100% */
 244	return i << 5;
 245}
 246
 247#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 248#define HYST_FROM_REG(val)	((val) * 1000)
 249
 250/*
 251 * Chip sampling rates
 252 *
 253 * Some sensors are not updated more frequently than once per second
 254 *    so it doesn't make sense to read them more often than that.
 255 *    We cache the results and return the saved data if the driver
 256 *    is called again before a second has elapsed.
 257 *
 258 * Also, there is significant configuration data for this chip
 259 *    given the automatic PWM fan control that is possible.  There
 260 *    are about 47 bytes of config data to only 22 bytes of actual
 261 *    readings.  So, we keep the config data up to date in the cache
 262 *    when it is written and only sample it once every 1 *minute*
 263 */
 264#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 265#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 266
 267/*
 268 * LM85 can automatically adjust fan speeds based on temperature
 269 * This structure encapsulates an entire Zone config.  There are
 270 * three zones (one for each temperature input) on the lm85
 271 */
 272struct lm85_zone {
 273	s8 limit;	/* Low temp limit */
 274	u8 hyst;	/* Low limit hysteresis. (0-15) */
 275	u8 range;	/* Temp range, encoded */
 276	s8 critical;	/* "All fans ON" temp limit */
 277	u8 max_desired; /*
 278			 * Actual "max" temperature specified.  Preserved
 279			 * to prevent "drift" as other autofan control
 280			 * values change.
 281			 */
 282};
 283
 284struct lm85_autofan {
 285	u8 config;	/* Register value */
 286	u8 min_pwm;	/* Minimum PWM value, encoded */
 287	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 288};
 289
 290/*
 291 * For each registered chip, we need to keep some data in memory.
 292 * The structure is dynamically allocated.
 293 */
 294struct lm85_data {
 295	struct i2c_client *client;
 296	const struct attribute_group *groups[6];
 297	const int *freq_map;
 298	enum chips type;
 299
 300	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 301
 302	struct mutex update_lock;
 303	int valid;		/* !=0 if following fields are valid */
 304	unsigned long last_reading;	/* In jiffies */
 305	unsigned long last_config;	/* In jiffies */
 306
 307	u8 in[8];		/* Register value */
 308	u8 in_max[8];		/* Register value */
 309	u8 in_min[8];		/* Register value */
 310	s8 temp[3];		/* Register value */
 311	s8 temp_min[3];		/* Register value */
 312	s8 temp_max[3];		/* Register value */
 313	u16 fan[4];		/* Register value */
 314	u16 fan_min[4];		/* Register value */
 315	u8 pwm[3];		/* Register value */
 316	u8 pwm_freq[3];		/* Register encoding */
 317	u8 temp_ext[3];		/* Decoded values */
 318	u8 in_ext[8];		/* Decoded values */
 319	u8 vid;			/* Register value */
 320	u8 vrm;			/* VRM version */
 321	u32 alarms;		/* Register encoding, combined */
 322	u8 cfg5;		/* Config Register 5 on ADT7468 */
 323	struct lm85_autofan autofan[3];
 324	struct lm85_zone zone[3];
 325};
 326
 327static int lm85_read_value(struct i2c_client *client, u8 reg)
 328{
 329	int res;
 330
 331	/* What size location is it? */
 332	switch (reg) {
 333	case LM85_REG_FAN(0):  /* Read WORD data */
 334	case LM85_REG_FAN(1):
 335	case LM85_REG_FAN(2):
 336	case LM85_REG_FAN(3):
 337	case LM85_REG_FAN_MIN(0):
 338	case LM85_REG_FAN_MIN(1):
 339	case LM85_REG_FAN_MIN(2):
 340	case LM85_REG_FAN_MIN(3):
 341	case LM85_REG_ALARM1:	/* Read both bytes at once */
 342		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 343		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 344		break;
 345	default:	/* Read BYTE data */
 346		res = i2c_smbus_read_byte_data(client, reg);
 347		break;
 348	}
 349
 350	return res;
 351}
 352
 353static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 354{
 355	switch (reg) {
 356	case LM85_REG_FAN(0):  /* Write WORD data */
 357	case LM85_REG_FAN(1):
 358	case LM85_REG_FAN(2):
 359	case LM85_REG_FAN(3):
 360	case LM85_REG_FAN_MIN(0):
 361	case LM85_REG_FAN_MIN(1):
 362	case LM85_REG_FAN_MIN(2):
 363	case LM85_REG_FAN_MIN(3):
 364	/* NOTE: ALARM is read only, so not included here */
 365		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 366		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 367		break;
 368	default:	/* Write BYTE data */
 369		i2c_smbus_write_byte_data(client, reg, value);
 370		break;
 371	}
 372}
 373
 374static struct lm85_data *lm85_update_device(struct device *dev)
 375{
 376	struct lm85_data *data = dev_get_drvdata(dev);
 377	struct i2c_client *client = data->client;
 378	int i;
 379
 380	mutex_lock(&data->update_lock);
 381
 382	if (!data->valid ||
 383	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 384		/* Things that change quickly */
 385		dev_dbg(&client->dev, "Reading sensor values\n");
 386
 387		/*
 388		 * Have to read extended bits first to "freeze" the
 389		 * more significant bits that are read later.
 390		 * There are 2 additional resolution bits per channel and we
 391		 * have room for 4, so we shift them to the left.
 392		 */
 393		if (data->type == adm1027 || data->type == adt7463 ||
 394		    data->type == adt7468) {
 395			int ext1 = lm85_read_value(client,
 396						   ADM1027_REG_EXTEND_ADC1);
 397			int ext2 =  lm85_read_value(client,
 398						    ADM1027_REG_EXTEND_ADC2);
 399			int val = (ext1 << 8) + ext2;
 400
 401			for (i = 0; i <= 4; i++)
 402				data->in_ext[i] =
 403					((val >> (i * 2)) & 0x03) << 2;
 404
 405			for (i = 0; i <= 2; i++)
 406				data->temp_ext[i] =
 407					(val >> ((i + 4) * 2)) & 0x0c;
 408		}
 409
 410		data->vid = lm85_read_value(client, LM85_REG_VID);
 411
 412		for (i = 0; i <= 3; ++i) {
 413			data->in[i] =
 414			    lm85_read_value(client, LM85_REG_IN(i));
 415			data->fan[i] =
 416			    lm85_read_value(client, LM85_REG_FAN(i));
 417		}
 418
 419		if (!data->has_vid5)
 420			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 421
 422		if (data->type == adt7468)
 423			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 424
 425		for (i = 0; i <= 2; ++i) {
 426			data->temp[i] =
 427			    lm85_read_value(client, LM85_REG_TEMP(i));
 428			data->pwm[i] =
 429			    lm85_read_value(client, LM85_REG_PWM(i));
 430
 431			if (IS_ADT7468_OFF64(data))
 432				data->temp[i] -= 64;
 433		}
 434
 435		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 436
 437		if (data->type == emc6d100) {
 438			/* Three more voltage sensors */
 439			for (i = 5; i <= 7; ++i) {
 440				data->in[i] = lm85_read_value(client,
 441							EMC6D100_REG_IN(i));
 442			}
 443			/* More alarm bits */
 444			data->alarms |= lm85_read_value(client,
 445						EMC6D100_REG_ALARM3) << 16;
 446		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 447			   data->type == emc6d103s) {
 448			/*
 449			 * Have to read LSB bits after the MSB ones because
 450			 * the reading of the MSB bits has frozen the
 451			 * LSBs (backward from the ADM1027).
 452			 */
 453			int ext1 = lm85_read_value(client,
 454						   EMC6D102_REG_EXTEND_ADC1);
 455			int ext2 = lm85_read_value(client,
 456						   EMC6D102_REG_EXTEND_ADC2);
 457			int ext3 = lm85_read_value(client,
 458						   EMC6D102_REG_EXTEND_ADC3);
 459			int ext4 = lm85_read_value(client,
 460						   EMC6D102_REG_EXTEND_ADC4);
 461			data->in_ext[0] = ext3 & 0x0f;
 462			data->in_ext[1] = ext4 & 0x0f;
 463			data->in_ext[2] = ext4 >> 4;
 464			data->in_ext[3] = ext3 >> 4;
 465			data->in_ext[4] = ext2 >> 4;
 466
 467			data->temp_ext[0] = ext1 & 0x0f;
 468			data->temp_ext[1] = ext2 & 0x0f;
 469			data->temp_ext[2] = ext1 >> 4;
 470		}
 471
 472		data->last_reading = jiffies;
 473	}  /* last_reading */
 474
 475	if (!data->valid ||
 476	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 477		/* Things that don't change often */
 478		dev_dbg(&client->dev, "Reading config values\n");
 479
 480		for (i = 0; i <= 3; ++i) {
 481			data->in_min[i] =
 482			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 483			data->in_max[i] =
 484			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 485			data->fan_min[i] =
 486			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 487		}
 488
 489		if (!data->has_vid5)  {
 490			data->in_min[4] = lm85_read_value(client,
 491					  LM85_REG_IN_MIN(4));
 492			data->in_max[4] = lm85_read_value(client,
 493					  LM85_REG_IN_MAX(4));
 494		}
 495
 496		if (data->type == emc6d100) {
 497			for (i = 5; i <= 7; ++i) {
 498				data->in_min[i] = lm85_read_value(client,
 499						EMC6D100_REG_IN_MIN(i));
 500				data->in_max[i] = lm85_read_value(client,
 501						EMC6D100_REG_IN_MAX(i));
 502			}
 503		}
 504
 505		for (i = 0; i <= 2; ++i) {
 506			int val;
 507
 508			data->temp_min[i] =
 509			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 510			data->temp_max[i] =
 511			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 512
 513			data->autofan[i].config =
 514			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 515			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 516			data->pwm_freq[i] = val & 0x07;
 517			data->zone[i].range = val >> 4;
 518			data->autofan[i].min_pwm =
 519			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 520			data->zone[i].limit =
 521			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 522			data->zone[i].critical =
 523			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 524
 525			if (IS_ADT7468_OFF64(data)) {
 526				data->temp_min[i] -= 64;
 527				data->temp_max[i] -= 64;
 528				data->zone[i].limit -= 64;
 529				data->zone[i].critical -= 64;
 530			}
 531		}
 532
 533		if (data->type != emc6d103s) {
 534			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 535			data->autofan[0].min_off = (i & 0x20) != 0;
 536			data->autofan[1].min_off = (i & 0x40) != 0;
 537			data->autofan[2].min_off = (i & 0x80) != 0;
 538
 539			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 540			data->zone[0].hyst = i >> 4;
 541			data->zone[1].hyst = i & 0x0f;
 542
 543			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 544			data->zone[2].hyst = i >> 4;
 545		}
 546
 547		data->last_config = jiffies;
 548	}  /* last_config */
 549
 550	data->valid = 1;
 551
 552	mutex_unlock(&data->update_lock);
 553
 554	return data;
 555}
 556
 557/* 4 Fans */
 558static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 559		char *buf)
 560{
 561	int nr = to_sensor_dev_attr(attr)->index;
 562	struct lm85_data *data = lm85_update_device(dev);
 563	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 564}
 565
 566static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 567		char *buf)
 568{
 569	int nr = to_sensor_dev_attr(attr)->index;
 570	struct lm85_data *data = lm85_update_device(dev);
 571	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 572}
 573
 574static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 575		const char *buf, size_t count)
 576{
 577	int nr = to_sensor_dev_attr(attr)->index;
 578	struct lm85_data *data = dev_get_drvdata(dev);
 579	struct i2c_client *client = data->client;
 580	unsigned long val;
 581	int err;
 582
 583	err = kstrtoul(buf, 10, &val);
 584	if (err)
 585		return err;
 586
 587	mutex_lock(&data->update_lock);
 588	data->fan_min[nr] = FAN_TO_REG(val);
 589	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 590	mutex_unlock(&data->update_lock);
 591	return count;
 592}
 593
 594#define show_fan_offset(offset)						\
 595static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 596		show_fan, NULL, offset - 1);				\
 597static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 598		show_fan_min, set_fan_min, offset - 1)
 599
 600show_fan_offset(1);
 601show_fan_offset(2);
 602show_fan_offset(3);
 603show_fan_offset(4);
 604
 605/* vid, vrm, alarms */
 606
 607static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
 608		char *buf)
 609{
 610	struct lm85_data *data = lm85_update_device(dev);
 611	int vid;
 612
 613	if (data->has_vid5) {
 614		/* 6-pin VID (VRM 10) */
 615		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 616	} else {
 617		/* 5-pin VID (VRM 9) */
 618		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 619	}
 620
 621	return sprintf(buf, "%d\n", vid);
 622}
 623
 624static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
 625
 626static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
 627		char *buf)
 628{
 629	struct lm85_data *data = dev_get_drvdata(dev);
 630	return sprintf(buf, "%ld\n", (long) data->vrm);
 631}
 632
 633static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
 634		const char *buf, size_t count)
 635{
 636	struct lm85_data *data = dev_get_drvdata(dev);
 637	unsigned long val;
 638	int err;
 639
 640	err = kstrtoul(buf, 10, &val);
 641	if (err)
 642		return err;
 643
 644	if (val > 255)
 645		return -EINVAL;
 646
 647	data->vrm = val;
 648	return count;
 649}
 650
 651static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
 652
 653static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
 654		*attr, char *buf)
 655{
 656	struct lm85_data *data = lm85_update_device(dev);
 657	return sprintf(buf, "%u\n", data->alarms);
 658}
 659
 660static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
 661
 662static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 663		char *buf)
 664{
 665	int nr = to_sensor_dev_attr(attr)->index;
 666	struct lm85_data *data = lm85_update_device(dev);
 667	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 668}
 669
 670static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 671static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 672static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 673static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 674static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 675static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 676static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 677static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 678static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 679static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 680static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 681static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 682static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 683static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 684static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 685static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 686static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 687
 688/* pwm */
 689
 690static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 691		char *buf)
 692{
 693	int nr = to_sensor_dev_attr(attr)->index;
 694	struct lm85_data *data = lm85_update_device(dev);
 695	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 696}
 697
 698static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 699		const char *buf, size_t count)
 700{
 701	int nr = to_sensor_dev_attr(attr)->index;
 702	struct lm85_data *data = dev_get_drvdata(dev);
 703	struct i2c_client *client = data->client;
 704	unsigned long val;
 705	int err;
 706
 707	err = kstrtoul(buf, 10, &val);
 708	if (err)
 709		return err;
 710
 711	mutex_lock(&data->update_lock);
 712	data->pwm[nr] = PWM_TO_REG(val);
 713	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 714	mutex_unlock(&data->update_lock);
 715	return count;
 716}
 717
 718static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 719		*attr, char *buf)
 720{
 721	int nr = to_sensor_dev_attr(attr)->index;
 722	struct lm85_data *data = lm85_update_device(dev);
 723	int pwm_zone, enable;
 724
 725	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 726	switch (pwm_zone) {
 727	case -1:	/* PWM is always at 100% */
 728		enable = 0;
 729		break;
 730	case 0:		/* PWM is always at 0% */
 731	case -2:	/* PWM responds to manual control */
 732		enable = 1;
 733		break;
 734	default:	/* PWM in automatic mode */
 735		enable = 2;
 736	}
 737	return sprintf(buf, "%d\n", enable);
 738}
 739
 740static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 741		*attr, const char *buf, size_t count)
 742{
 743	int nr = to_sensor_dev_attr(attr)->index;
 744	struct lm85_data *data = dev_get_drvdata(dev);
 745	struct i2c_client *client = data->client;
 746	u8 config;
 747	unsigned long val;
 748	int err;
 749
 750	err = kstrtoul(buf, 10, &val);
 751	if (err)
 752		return err;
 753
 754	switch (val) {
 755	case 0:
 756		config = 3;
 757		break;
 758	case 1:
 759		config = 7;
 760		break;
 761	case 2:
 762		/*
 763		 * Here we have to choose arbitrarily one of the 5 possible
 764		 * configurations; I go for the safest
 765		 */
 766		config = 6;
 767		break;
 768	default:
 769		return -EINVAL;
 770	}
 771
 772	mutex_lock(&data->update_lock);
 773	data->autofan[nr].config = lm85_read_value(client,
 774		LM85_REG_AFAN_CONFIG(nr));
 775	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 776		| (config << 5);
 777	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 778		data->autofan[nr].config);
 779	mutex_unlock(&data->update_lock);
 780	return count;
 781}
 782
 783static ssize_t show_pwm_freq(struct device *dev,
 784		struct device_attribute *attr, char *buf)
 785{
 786	int nr = to_sensor_dev_attr(attr)->index;
 787	struct lm85_data *data = lm85_update_device(dev);
 788	int freq;
 789
 790	if (IS_ADT7468_HFPWM(data))
 791		freq = 22500;
 792	else
 793		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 794
 795	return sprintf(buf, "%d\n", freq);
 796}
 797
 798static ssize_t set_pwm_freq(struct device *dev,
 799		struct device_attribute *attr, const char *buf, size_t count)
 800{
 801	int nr = to_sensor_dev_attr(attr)->index;
 802	struct lm85_data *data = dev_get_drvdata(dev);
 803	struct i2c_client *client = data->client;
 804	unsigned long val;
 805	int err;
 806
 807	err = kstrtoul(buf, 10, &val);
 808	if (err)
 809		return err;
 810
 811	mutex_lock(&data->update_lock);
 812	/*
 813	 * The ADT7468 has a special high-frequency PWM output mode,
 814	 * where all PWM outputs are driven by a 22.5 kHz clock.
 815	 * This might confuse the user, but there's not much we can do.
 816	 */
 817	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 818		data->cfg5 &= ~ADT7468_HFPWM;
 819		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 820	} else {					/* Low freq. mode */
 821		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 822						 FREQ_MAP_LEN, val);
 823		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 824				 (data->zone[nr].range << 4)
 825				 | data->pwm_freq[nr]);
 826		if (data->type == adt7468) {
 827			data->cfg5 |= ADT7468_HFPWM;
 828			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 829		}
 830	}
 831	mutex_unlock(&data->update_lock);
 832	return count;
 833}
 834
 835#define show_pwm_reg(offset)						\
 836static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 837		show_pwm, set_pwm, offset - 1);				\
 838static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 839		show_pwm_enable, set_pwm_enable, offset - 1);		\
 840static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 841		show_pwm_freq, set_pwm_freq, offset - 1)
 842
 843show_pwm_reg(1);
 844show_pwm_reg(2);
 845show_pwm_reg(3);
 846
 847/* Voltages */
 848
 849static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 850		char *buf)
 851{
 852	int nr = to_sensor_dev_attr(attr)->index;
 853	struct lm85_data *data = lm85_update_device(dev);
 854	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 855						    data->in_ext[nr]));
 856}
 857
 858static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 859		char *buf)
 860{
 861	int nr = to_sensor_dev_attr(attr)->index;
 862	struct lm85_data *data = lm85_update_device(dev);
 863	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 864}
 865
 866static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 867		const char *buf, size_t count)
 868{
 869	int nr = to_sensor_dev_attr(attr)->index;
 870	struct lm85_data *data = dev_get_drvdata(dev);
 871	struct i2c_client *client = data->client;
 872	long val;
 873	int err;
 874
 875	err = kstrtol(buf, 10, &val);
 876	if (err)
 877		return err;
 878
 879	mutex_lock(&data->update_lock);
 880	data->in_min[nr] = INS_TO_REG(nr, val);
 881	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 882	mutex_unlock(&data->update_lock);
 883	return count;
 884}
 885
 886static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 887		char *buf)
 888{
 889	int nr = to_sensor_dev_attr(attr)->index;
 890	struct lm85_data *data = lm85_update_device(dev);
 891	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 892}
 893
 894static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 895		const char *buf, size_t count)
 896{
 897	int nr = to_sensor_dev_attr(attr)->index;
 898	struct lm85_data *data = dev_get_drvdata(dev);
 899	struct i2c_client *client = data->client;
 900	long val;
 901	int err;
 902
 903	err = kstrtol(buf, 10, &val);
 904	if (err)
 905		return err;
 906
 907	mutex_lock(&data->update_lock);
 908	data->in_max[nr] = INS_TO_REG(nr, val);
 909	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 910	mutex_unlock(&data->update_lock);
 911	return count;
 912}
 913
 914#define show_in_reg(offset)						\
 915static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 916		show_in, NULL, offset);					\
 917static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 918		show_in_min, set_in_min, offset);			\
 919static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 920		show_in_max, set_in_max, offset)
 921
 922show_in_reg(0);
 923show_in_reg(1);
 924show_in_reg(2);
 925show_in_reg(3);
 926show_in_reg(4);
 927show_in_reg(5);
 928show_in_reg(6);
 929show_in_reg(7);
 930
 931/* Temps */
 932
 933static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 934		char *buf)
 935{
 936	int nr = to_sensor_dev_attr(attr)->index;
 937	struct lm85_data *data = lm85_update_device(dev);
 938	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 939						     data->temp_ext[nr]));
 940}
 941
 942static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 943		char *buf)
 944{
 945	int nr = to_sensor_dev_attr(attr)->index;
 946	struct lm85_data *data = lm85_update_device(dev);
 947	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 948}
 949
 950static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 951		const char *buf, size_t count)
 952{
 953	int nr = to_sensor_dev_attr(attr)->index;
 954	struct lm85_data *data = dev_get_drvdata(dev);
 955	struct i2c_client *client = data->client;
 956	long val;
 957	int err;
 958
 959	err = kstrtol(buf, 10, &val);
 960	if (err)
 961		return err;
 962
 963	if (IS_ADT7468_OFF64(data))
 964		val += 64;
 965
 966	mutex_lock(&data->update_lock);
 967	data->temp_min[nr] = TEMP_TO_REG(val);
 968	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 969	mutex_unlock(&data->update_lock);
 970	return count;
 971}
 972
 973static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 974		char *buf)
 975{
 976	int nr = to_sensor_dev_attr(attr)->index;
 977	struct lm85_data *data = lm85_update_device(dev);
 978	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 979}
 980
 981static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 982		const char *buf, size_t count)
 983{
 984	int nr = to_sensor_dev_attr(attr)->index;
 985	struct lm85_data *data = dev_get_drvdata(dev);
 986	struct i2c_client *client = data->client;
 987	long val;
 988	int err;
 989
 990	err = kstrtol(buf, 10, &val);
 991	if (err)
 992		return err;
 993
 994	if (IS_ADT7468_OFF64(data))
 995		val += 64;
 996
 997	mutex_lock(&data->update_lock);
 998	data->temp_max[nr] = TEMP_TO_REG(val);
 999	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
1000	mutex_unlock(&data->update_lock);
1001	return count;
1002}
1003
1004#define show_temp_reg(offset)						\
1005static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1006		show_temp, NULL, offset - 1);				\
1007static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1008		show_temp_min, set_temp_min, offset - 1);		\
1009static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1010		show_temp_max, set_temp_max, offset - 1);
1011
1012show_temp_reg(1);
1013show_temp_reg(2);
1014show_temp_reg(3);
1015
1016
1017/* Automatic PWM control */
1018
1019static ssize_t show_pwm_auto_channels(struct device *dev,
1020		struct device_attribute *attr, char *buf)
1021{
1022	int nr = to_sensor_dev_attr(attr)->index;
1023	struct lm85_data *data = lm85_update_device(dev);
1024	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1025}
1026
1027static ssize_t set_pwm_auto_channels(struct device *dev,
1028		struct device_attribute *attr, const char *buf, size_t count)
1029{
1030	int nr = to_sensor_dev_attr(attr)->index;
1031	struct lm85_data *data = dev_get_drvdata(dev);
1032	struct i2c_client *client = data->client;
1033	long val;
1034	int err;
1035
1036	err = kstrtol(buf, 10, &val);
1037	if (err)
1038		return err;
1039
1040	mutex_lock(&data->update_lock);
1041	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1042		| ZONE_TO_REG(val);
1043	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1044		data->autofan[nr].config);
1045	mutex_unlock(&data->update_lock);
1046	return count;
1047}
1048
1049static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1050		struct device_attribute *attr, char *buf)
1051{
1052	int nr = to_sensor_dev_attr(attr)->index;
1053	struct lm85_data *data = lm85_update_device(dev);
1054	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1055}
1056
1057static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1058		struct device_attribute *attr, const char *buf, size_t count)
1059{
1060	int nr = to_sensor_dev_attr(attr)->index;
1061	struct lm85_data *data = dev_get_drvdata(dev);
1062	struct i2c_client *client = data->client;
1063	unsigned long val;
1064	int err;
1065
1066	err = kstrtoul(buf, 10, &val);
1067	if (err)
1068		return err;
1069
1070	mutex_lock(&data->update_lock);
1071	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1072	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1073		data->autofan[nr].min_pwm);
1074	mutex_unlock(&data->update_lock);
1075	return count;
1076}
1077
1078static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1079		struct device_attribute *attr, char *buf)
1080{
1081	int nr = to_sensor_dev_attr(attr)->index;
1082	struct lm85_data *data = lm85_update_device(dev);
1083	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1084}
1085
1086static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1087		struct device_attribute *attr, const char *buf, size_t count)
1088{
1089	int nr = to_sensor_dev_attr(attr)->index;
1090	struct lm85_data *data = dev_get_drvdata(dev);
1091	struct i2c_client *client = data->client;
1092	u8 tmp;
1093	long val;
1094	int err;
1095
1096	err = kstrtol(buf, 10, &val);
1097	if (err)
1098		return err;
1099
1100	mutex_lock(&data->update_lock);
1101	data->autofan[nr].min_off = val;
1102	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1103	tmp &= ~(0x20 << nr);
1104	if (data->autofan[nr].min_off)
1105		tmp |= 0x20 << nr;
1106	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1107	mutex_unlock(&data->update_lock);
1108	return count;
1109}
1110
1111#define pwm_auto(offset)						\
1112static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1113		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1114		set_pwm_auto_channels, offset - 1);			\
1115static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1116		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1117		set_pwm_auto_pwm_min, offset - 1);			\
1118static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1119		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1120		set_pwm_auto_pwm_minctl, offset - 1)
1121
1122pwm_auto(1);
1123pwm_auto(2);
1124pwm_auto(3);
1125
1126/* Temperature settings for automatic PWM control */
1127
1128static ssize_t show_temp_auto_temp_off(struct device *dev,
1129		struct device_attribute *attr, char *buf)
1130{
1131	int nr = to_sensor_dev_attr(attr)->index;
1132	struct lm85_data *data = lm85_update_device(dev);
1133	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1134		HYST_FROM_REG(data->zone[nr].hyst));
1135}
1136
1137static ssize_t set_temp_auto_temp_off(struct device *dev,
1138		struct device_attribute *attr, const char *buf, size_t count)
1139{
1140	int nr = to_sensor_dev_attr(attr)->index;
1141	struct lm85_data *data = dev_get_drvdata(dev);
1142	struct i2c_client *client = data->client;
1143	int min;
1144	long val;
1145	int err;
1146
1147	err = kstrtol(buf, 10, &val);
1148	if (err)
1149		return err;
1150
1151	mutex_lock(&data->update_lock);
1152	min = TEMP_FROM_REG(data->zone[nr].limit);
1153	data->zone[nr].hyst = HYST_TO_REG(min - val);
1154	if (nr == 0 || nr == 1) {
1155		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1156			(data->zone[0].hyst << 4)
1157			| data->zone[1].hyst);
1158	} else {
1159		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1160			(data->zone[2].hyst << 4));
1161	}
1162	mutex_unlock(&data->update_lock);
1163	return count;
1164}
1165
1166static ssize_t show_temp_auto_temp_min(struct device *dev,
1167		struct device_attribute *attr, char *buf)
1168{
1169	int nr = to_sensor_dev_attr(attr)->index;
1170	struct lm85_data *data = lm85_update_device(dev);
1171	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1172}
1173
1174static ssize_t set_temp_auto_temp_min(struct device *dev,
1175		struct device_attribute *attr, const char *buf, size_t count)
1176{
1177	int nr = to_sensor_dev_attr(attr)->index;
1178	struct lm85_data *data = dev_get_drvdata(dev);
1179	struct i2c_client *client = data->client;
1180	long val;
1181	int err;
1182
1183	err = kstrtol(buf, 10, &val);
1184	if (err)
1185		return err;
1186
1187	mutex_lock(&data->update_lock);
1188	data->zone[nr].limit = TEMP_TO_REG(val);
1189	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1190		data->zone[nr].limit);
1191
1192/* Update temp_auto_max and temp_auto_range */
1193	data->zone[nr].range = RANGE_TO_REG(
1194		TEMP_FROM_REG(data->zone[nr].max_desired) -
1195		TEMP_FROM_REG(data->zone[nr].limit));
1196	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1197		((data->zone[nr].range & 0x0f) << 4)
1198		| (data->pwm_freq[nr] & 0x07));
1199
1200	mutex_unlock(&data->update_lock);
1201	return count;
1202}
1203
1204static ssize_t show_temp_auto_temp_max(struct device *dev,
1205		struct device_attribute *attr, char *buf)
1206{
1207	int nr = to_sensor_dev_attr(attr)->index;
1208	struct lm85_data *data = lm85_update_device(dev);
1209	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1210		RANGE_FROM_REG(data->zone[nr].range));
1211}
1212
1213static ssize_t set_temp_auto_temp_max(struct device *dev,
1214		struct device_attribute *attr, const char *buf, size_t count)
1215{
1216	int nr = to_sensor_dev_attr(attr)->index;
1217	struct lm85_data *data = dev_get_drvdata(dev);
1218	struct i2c_client *client = data->client;
1219	int min;
1220	long val;
1221	int err;
1222
1223	err = kstrtol(buf, 10, &val);
1224	if (err)
1225		return err;
1226
1227	mutex_lock(&data->update_lock);
1228	min = TEMP_FROM_REG(data->zone[nr].limit);
1229	data->zone[nr].max_desired = TEMP_TO_REG(val);
1230	data->zone[nr].range = RANGE_TO_REG(
1231		val - min);
1232	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1233		((data->zone[nr].range & 0x0f) << 4)
1234		| (data->pwm_freq[nr] & 0x07));
1235	mutex_unlock(&data->update_lock);
1236	return count;
1237}
1238
1239static ssize_t show_temp_auto_temp_crit(struct device *dev,
1240		struct device_attribute *attr, char *buf)
1241{
1242	int nr = to_sensor_dev_attr(attr)->index;
1243	struct lm85_data *data = lm85_update_device(dev);
1244	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1245}
1246
1247static ssize_t set_temp_auto_temp_crit(struct device *dev,
1248		struct device_attribute *attr, const char *buf, size_t count)
1249{
1250	int nr = to_sensor_dev_attr(attr)->index;
1251	struct lm85_data *data = dev_get_drvdata(dev);
1252	struct i2c_client *client = data->client;
1253	long val;
1254	int err;
1255
1256	err = kstrtol(buf, 10, &val);
1257	if (err)
1258		return err;
1259
1260	mutex_lock(&data->update_lock);
1261	data->zone[nr].critical = TEMP_TO_REG(val);
1262	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1263		data->zone[nr].critical);
1264	mutex_unlock(&data->update_lock);
1265	return count;
1266}
1267
1268#define temp_auto(offset)						\
1269static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1270		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1271		set_temp_auto_temp_off, offset - 1);			\
1272static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1273		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1274		set_temp_auto_temp_min, offset - 1);			\
1275static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1276		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1277		set_temp_auto_temp_max, offset - 1);			\
1278static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1279		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1280		set_temp_auto_temp_crit, offset - 1);
1281
1282temp_auto(1);
1283temp_auto(2);
1284temp_auto(3);
1285
1286static struct attribute *lm85_attributes[] = {
1287	&sensor_dev_attr_fan1_input.dev_attr.attr,
1288	&sensor_dev_attr_fan2_input.dev_attr.attr,
1289	&sensor_dev_attr_fan3_input.dev_attr.attr,
1290	&sensor_dev_attr_fan4_input.dev_attr.attr,
1291	&sensor_dev_attr_fan1_min.dev_attr.attr,
1292	&sensor_dev_attr_fan2_min.dev_attr.attr,
1293	&sensor_dev_attr_fan3_min.dev_attr.attr,
1294	&sensor_dev_attr_fan4_min.dev_attr.attr,
1295	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1296	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1297	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1298	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1299
1300	&sensor_dev_attr_pwm1.dev_attr.attr,
1301	&sensor_dev_attr_pwm2.dev_attr.attr,
1302	&sensor_dev_attr_pwm3.dev_attr.attr,
1303	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1304	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1305	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1306	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1307	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1308	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1309
1310	&sensor_dev_attr_in0_input.dev_attr.attr,
1311	&sensor_dev_attr_in1_input.dev_attr.attr,
1312	&sensor_dev_attr_in2_input.dev_attr.attr,
1313	&sensor_dev_attr_in3_input.dev_attr.attr,
1314	&sensor_dev_attr_in0_min.dev_attr.attr,
1315	&sensor_dev_attr_in1_min.dev_attr.attr,
1316	&sensor_dev_attr_in2_min.dev_attr.attr,
1317	&sensor_dev_attr_in3_min.dev_attr.attr,
1318	&sensor_dev_attr_in0_max.dev_attr.attr,
1319	&sensor_dev_attr_in1_max.dev_attr.attr,
1320	&sensor_dev_attr_in2_max.dev_attr.attr,
1321	&sensor_dev_attr_in3_max.dev_attr.attr,
1322	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1323	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1324	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1325	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1326
1327	&sensor_dev_attr_temp1_input.dev_attr.attr,
1328	&sensor_dev_attr_temp2_input.dev_attr.attr,
1329	&sensor_dev_attr_temp3_input.dev_attr.attr,
1330	&sensor_dev_attr_temp1_min.dev_attr.attr,
1331	&sensor_dev_attr_temp2_min.dev_attr.attr,
1332	&sensor_dev_attr_temp3_min.dev_attr.attr,
1333	&sensor_dev_attr_temp1_max.dev_attr.attr,
1334	&sensor_dev_attr_temp2_max.dev_attr.attr,
1335	&sensor_dev_attr_temp3_max.dev_attr.attr,
1336	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1337	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1338	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1339	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1340	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1341
1342	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1343	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1344	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1345	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1346	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1347	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1348
1349	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1350	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1351	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1352	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1353	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1354	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1355	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1356	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1357	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1358
1359	&dev_attr_vrm.attr,
1360	&dev_attr_cpu0_vid.attr,
1361	&dev_attr_alarms.attr,
1362	NULL
1363};
1364
1365static const struct attribute_group lm85_group = {
1366	.attrs = lm85_attributes,
1367};
1368
1369static struct attribute *lm85_attributes_minctl[] = {
1370	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1371	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1372	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1373	NULL
1374};
1375
1376static const struct attribute_group lm85_group_minctl = {
1377	.attrs = lm85_attributes_minctl,
1378};
1379
1380static struct attribute *lm85_attributes_temp_off[] = {
1381	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1382	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1383	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1384	NULL
1385};
1386
1387static const struct attribute_group lm85_group_temp_off = {
1388	.attrs = lm85_attributes_temp_off,
1389};
1390
1391static struct attribute *lm85_attributes_in4[] = {
1392	&sensor_dev_attr_in4_input.dev_attr.attr,
1393	&sensor_dev_attr_in4_min.dev_attr.attr,
1394	&sensor_dev_attr_in4_max.dev_attr.attr,
1395	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1396	NULL
1397};
1398
1399static const struct attribute_group lm85_group_in4 = {
1400	.attrs = lm85_attributes_in4,
1401};
1402
1403static struct attribute *lm85_attributes_in567[] = {
1404	&sensor_dev_attr_in5_input.dev_attr.attr,
1405	&sensor_dev_attr_in6_input.dev_attr.attr,
1406	&sensor_dev_attr_in7_input.dev_attr.attr,
1407	&sensor_dev_attr_in5_min.dev_attr.attr,
1408	&sensor_dev_attr_in6_min.dev_attr.attr,
1409	&sensor_dev_attr_in7_min.dev_attr.attr,
1410	&sensor_dev_attr_in5_max.dev_attr.attr,
1411	&sensor_dev_attr_in6_max.dev_attr.attr,
1412	&sensor_dev_attr_in7_max.dev_attr.attr,
1413	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1414	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1415	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1416	NULL
1417};
1418
1419static const struct attribute_group lm85_group_in567 = {
1420	.attrs = lm85_attributes_in567,
1421};
1422
1423static void lm85_init_client(struct i2c_client *client)
1424{
1425	int value;
1426
1427	/* Start monitoring if needed */
1428	value = lm85_read_value(client, LM85_REG_CONFIG);
1429	if (!(value & 0x01)) {
1430		dev_info(&client->dev, "Starting monitoring\n");
1431		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1432	}
1433
1434	/* Warn about unusual configuration bits */
1435	if (value & 0x02)
1436		dev_warn(&client->dev, "Device configuration is locked\n");
1437	if (!(value & 0x04))
1438		dev_warn(&client->dev, "Device is not ready\n");
1439}
1440
1441static int lm85_is_fake(struct i2c_client *client)
1442{
1443	/*
1444	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1445	 * emulate the former except that it has no hardware monitoring function
1446	 * so the readings are always 0.
1447	 */
1448	int i;
1449	u8 in_temp, fan;
1450
1451	for (i = 0; i < 8; i++) {
1452		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1453		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1454		if (in_temp != 0x00 || fan != 0xff)
1455			return 0;
1456	}
1457
1458	return 1;
1459}
1460
1461/* Return 0 if detection is successful, -ENODEV otherwise */
1462static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1463{
1464	struct i2c_adapter *adapter = client->adapter;
1465	int address = client->addr;
1466	const char *type_name = NULL;
1467	int company, verstep;
1468
1469	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1470		/* We need to be able to do byte I/O */
1471		return -ENODEV;
1472	}
1473
1474	/* Determine the chip type */
1475	company = lm85_read_value(client, LM85_REG_COMPANY);
1476	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1477
1478	dev_dbg(&adapter->dev,
1479		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1480		address, company, verstep);
1481
1482	if (company == LM85_COMPANY_NATIONAL) {
1483		switch (verstep) {
1484		case LM85_VERSTEP_LM85C:
1485			type_name = "lm85c";
1486			break;
1487		case LM85_VERSTEP_LM85B:
1488			type_name = "lm85b";
1489			break;
1490		case LM85_VERSTEP_LM96000_1:
1491		case LM85_VERSTEP_LM96000_2:
1492			/* Check for Winbond WPCD377I */
1493			if (lm85_is_fake(client)) {
1494				dev_dbg(&adapter->dev,
1495					"Found Winbond WPCD377I, ignoring\n");
1496				return -ENODEV;
1497			}
1498			type_name = "lm85";
1499			break;
1500		}
1501	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1502		switch (verstep) {
1503		case LM85_VERSTEP_ADM1027:
1504			type_name = "adm1027";
1505			break;
1506		case LM85_VERSTEP_ADT7463:
1507		case LM85_VERSTEP_ADT7463C:
1508			type_name = "adt7463";
1509			break;
1510		case LM85_VERSTEP_ADT7468_1:
1511		case LM85_VERSTEP_ADT7468_2:
1512			type_name = "adt7468";
1513			break;
1514		}
1515	} else if (company == LM85_COMPANY_SMSC) {
1516		switch (verstep) {
1517		case LM85_VERSTEP_EMC6D100_A0:
1518		case LM85_VERSTEP_EMC6D100_A1:
1519			/* Note: we can't tell a '100 from a '101 */
1520			type_name = "emc6d100";
1521			break;
1522		case LM85_VERSTEP_EMC6D102:
1523			type_name = "emc6d102";
1524			break;
1525		case LM85_VERSTEP_EMC6D103_A0:
1526		case LM85_VERSTEP_EMC6D103_A1:
1527			type_name = "emc6d103";
1528			break;
1529		case LM85_VERSTEP_EMC6D103S:
1530			type_name = "emc6d103s";
1531			break;
1532		}
1533	}
1534
1535	if (!type_name)
1536		return -ENODEV;
1537
1538	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1539
1540	return 0;
1541}
1542
1543static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1544{
1545	struct device *dev = &client->dev;
1546	struct device *hwmon_dev;
1547	struct lm85_data *data;
1548	int idx = 0;
1549
1550	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1551	if (!data)
1552		return -ENOMEM;
1553
1554	data->client = client;
1555	data->type = id->driver_data;
1556	mutex_init(&data->update_lock);
1557
1558	/* Fill in the chip specific driver values */
1559	switch (data->type) {
1560	case adm1027:
1561	case adt7463:
1562	case adt7468:
1563	case emc6d100:
1564	case emc6d102:
1565	case emc6d103:
1566	case emc6d103s:
1567		data->freq_map = adm1027_freq_map;
1568		break;
1569	default:
1570		data->freq_map = lm85_freq_map;
1571	}
1572
1573	/* Set the VRM version */
1574	data->vrm = vid_which_vrm();
1575
1576	/* Initialize the LM85 chip */
1577	lm85_init_client(client);
1578
1579	/* sysfs hooks */
1580	data->groups[idx++] = &lm85_group;
1581
1582	/* minctl and temp_off exist on all chips except emc6d103s */
1583	if (data->type != emc6d103s) {
1584		data->groups[idx++] = &lm85_group_minctl;
1585		data->groups[idx++] = &lm85_group_temp_off;
1586	}
1587
1588	/*
1589	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1590	 * as a sixth digital VID input rather than an analog input.
1591	 */
1592	if (data->type == adt7463 || data->type == adt7468) {
1593		u8 vid = lm85_read_value(client, LM85_REG_VID);
1594		if (vid & 0x80)
1595			data->has_vid5 = true;
1596	}
1597
1598	if (!data->has_vid5)
1599		data->groups[idx++] = &lm85_group_in4;
1600
1601	/* The EMC6D100 has 3 additional voltage inputs */
1602	if (data->type == emc6d100)
1603		data->groups[idx++] = &lm85_group_in567;
1604
1605	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1606							   data, data->groups);
1607	return PTR_ERR_OR_ZERO(hwmon_dev);
1608}
1609
1610static const struct i2c_device_id lm85_id[] = {
1611	{ "adm1027", adm1027 },
1612	{ "adt7463", adt7463 },
1613	{ "adt7468", adt7468 },
1614	{ "lm85", lm85 },
1615	{ "lm85b", lm85 },
1616	{ "lm85c", lm85 },
1617	{ "emc6d100", emc6d100 },
1618	{ "emc6d101", emc6d100 },
1619	{ "emc6d102", emc6d102 },
1620	{ "emc6d103", emc6d103 },
1621	{ "emc6d103s", emc6d103s },
1622	{ }
1623};
1624MODULE_DEVICE_TABLE(i2c, lm85_id);
1625
1626static struct i2c_driver lm85_driver = {
1627	.class		= I2C_CLASS_HWMON,
1628	.driver = {
1629		.name   = "lm85",
1630	},
1631	.probe		= lm85_probe,
1632	.id_table	= lm85_id,
1633	.detect		= lm85_detect,
1634	.address_list	= normal_i2c,
1635};
1636
1637module_i2c_driver(lm85_driver);
1638
1639MODULE_LICENSE("GPL");
1640MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1641	"Margit Schubert-While <margitsw@t-online.de>, "
1642	"Justin Thiessen <jthiessen@penguincomputing.com>");
1643MODULE_DESCRIPTION("LM85-B, LM85-C driver");
v4.6
   1/*
   2 * lm85.c - Part of lm_sensors, Linux kernel modules for hardware
   3 *	    monitoring
   4 * Copyright (c) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
   5 * Copyright (c) 2002, 2003  Philip Pokorny <ppokorny@penguincomputing.com>
   6 * Copyright (c) 2003        Margit Schubert-While <margitsw@t-online.de>
   7 * Copyright (c) 2004        Justin Thiessen <jthiessen@penguincomputing.com>
   8 * Copyright (C) 2007--2014  Jean Delvare <jdelvare@suse.de>
   9 *
  10 * Chip details at	      <http://www.national.com/ds/LM/LM85.pdf>
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License as published by
  14 * the Free Software Foundation; either version 2 of the License, or
  15 * (at your option) any later version.
  16 *
  17 * This program is distributed in the hope that it will be useful,
  18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 * GNU General Public License for more details.
  21 *
  22 * You should have received a copy of the GNU General Public License
  23 * along with this program; if not, write to the Free Software
  24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25 */
  26
  27#include <linux/module.h>
  28#include <linux/init.h>
  29#include <linux/slab.h>
  30#include <linux/jiffies.h>
  31#include <linux/i2c.h>
  32#include <linux/hwmon.h>
  33#include <linux/hwmon-vid.h>
  34#include <linux/hwmon-sysfs.h>
  35#include <linux/err.h>
  36#include <linux/mutex.h>
  37#include <linux/util_macros.h>
  38
  39/* Addresses to scan */
  40static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, I2C_CLIENT_END };
  41
  42enum chips {
  43	lm85,
  44	adm1027, adt7463, adt7468,
  45	emc6d100, emc6d102, emc6d103, emc6d103s
  46};
  47
  48/* The LM85 registers */
  49
  50#define LM85_REG_IN(nr)			(0x20 + (nr))
  51#define LM85_REG_IN_MIN(nr)		(0x44 + (nr) * 2)
  52#define LM85_REG_IN_MAX(nr)		(0x45 + (nr) * 2)
  53
  54#define LM85_REG_TEMP(nr)		(0x25 + (nr))
  55#define LM85_REG_TEMP_MIN(nr)		(0x4e + (nr) * 2)
  56#define LM85_REG_TEMP_MAX(nr)		(0x4f + (nr) * 2)
  57
  58/* Fan speeds are LSB, MSB (2 bytes) */
  59#define LM85_REG_FAN(nr)		(0x28 + (nr) * 2)
  60#define LM85_REG_FAN_MIN(nr)		(0x54 + (nr) * 2)
  61
  62#define LM85_REG_PWM(nr)		(0x30 + (nr))
  63
  64#define LM85_REG_COMPANY		0x3e
  65#define LM85_REG_VERSTEP		0x3f
  66
  67#define ADT7468_REG_CFG5		0x7c
  68#define ADT7468_OFF64			(1 << 0)
  69#define ADT7468_HFPWM			(1 << 1)
  70#define IS_ADT7468_OFF64(data)		\
  71	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_OFF64))
  72#define IS_ADT7468_HFPWM(data)		\
  73	((data)->type == adt7468 && !((data)->cfg5 & ADT7468_HFPWM))
  74
  75/* These are the recognized values for the above regs */
  76#define LM85_COMPANY_NATIONAL		0x01
  77#define LM85_COMPANY_ANALOG_DEV		0x41
  78#define LM85_COMPANY_SMSC		0x5c
  79#define LM85_VERSTEP_LM85C		0x60
  80#define LM85_VERSTEP_LM85B		0x62
  81#define LM85_VERSTEP_LM96000_1		0x68
  82#define LM85_VERSTEP_LM96000_2		0x69
  83#define LM85_VERSTEP_ADM1027		0x60
  84#define LM85_VERSTEP_ADT7463		0x62
  85#define LM85_VERSTEP_ADT7463C		0x6A
  86#define LM85_VERSTEP_ADT7468_1		0x71
  87#define LM85_VERSTEP_ADT7468_2		0x72
  88#define LM85_VERSTEP_EMC6D100_A0        0x60
  89#define LM85_VERSTEP_EMC6D100_A1        0x61
  90#define LM85_VERSTEP_EMC6D102		0x65
  91#define LM85_VERSTEP_EMC6D103_A0	0x68
  92#define LM85_VERSTEP_EMC6D103_A1	0x69
  93#define LM85_VERSTEP_EMC6D103S		0x6A	/* Also known as EMC6D103:A2 */
  94
  95#define LM85_REG_CONFIG			0x40
  96
  97#define LM85_REG_ALARM1			0x41
  98#define LM85_REG_ALARM2			0x42
  99
 100#define LM85_REG_VID			0x43
 101
 102/* Automated FAN control */
 103#define LM85_REG_AFAN_CONFIG(nr)	(0x5c + (nr))
 104#define LM85_REG_AFAN_RANGE(nr)		(0x5f + (nr))
 105#define LM85_REG_AFAN_SPIKE1		0x62
 106#define LM85_REG_AFAN_MINPWM(nr)	(0x64 + (nr))
 107#define LM85_REG_AFAN_LIMIT(nr)		(0x67 + (nr))
 108#define LM85_REG_AFAN_CRITICAL(nr)	(0x6a + (nr))
 109#define LM85_REG_AFAN_HYST1		0x6d
 110#define LM85_REG_AFAN_HYST2		0x6e
 111
 112#define ADM1027_REG_EXTEND_ADC1		0x76
 113#define ADM1027_REG_EXTEND_ADC2		0x77
 114
 115#define EMC6D100_REG_ALARM3             0x7d
 116/* IN5, IN6 and IN7 */
 117#define EMC6D100_REG_IN(nr)             (0x70 + ((nr) - 5))
 118#define EMC6D100_REG_IN_MIN(nr)         (0x73 + ((nr) - 5) * 2)
 119#define EMC6D100_REG_IN_MAX(nr)         (0x74 + ((nr) - 5) * 2)
 120#define EMC6D102_REG_EXTEND_ADC1	0x85
 121#define EMC6D102_REG_EXTEND_ADC2	0x86
 122#define EMC6D102_REG_EXTEND_ADC3	0x87
 123#define EMC6D102_REG_EXTEND_ADC4	0x88
 124
 125/*
 126 * Conversions. Rounding and limit checking is only done on the TO_REG
 127 * variants. Note that you should be a bit careful with which arguments
 128 * these macros are called: arguments may be evaluated more than once.
 129 */
 130
 131/* IN are scaled according to built-in resistors */
 132static const int lm85_scaling[] = {  /* .001 Volts */
 133	2500, 2250, 3300, 5000, 12000,
 134	3300, 1500, 1800 /*EMC6D100*/
 135};
 136#define SCALE(val, from, to)	(((val) * (to) + ((from) / 2)) / (from))
 137
 138#define INS_TO_REG(n, val)	\
 139		clamp_val(SCALE(val, lm85_scaling[n], 192), 0, 255)
 
 140
 141#define INSEXT_FROM_REG(n, val, ext)	\
 142		SCALE(((val) << 4) + (ext), 192 << 4, lm85_scaling[n])
 143
 144#define INS_FROM_REG(n, val)	SCALE((val), 192, lm85_scaling[n])
 145
 146/* FAN speed is measured using 90kHz clock */
 147static inline u16 FAN_TO_REG(unsigned long val)
 148{
 149	if (!val)
 150		return 0xffff;
 151	return clamp_val(5400000 / val, 1, 0xfffe);
 152}
 153#define FAN_FROM_REG(val)	((val) == 0 ? -1 : (val) == 0xffff ? 0 : \
 154				 5400000 / (val))
 155
 156/* Temperature is reported in .001 degC increments */
 157#define TEMP_TO_REG(val)	\
 158		DIV_ROUND_CLOSEST(clamp_val((val), -127000, 127000), 1000)
 159#define TEMPEXT_FROM_REG(val, ext)	\
 160		SCALE(((val) << 4) + (ext), 16, 1000)
 161#define TEMP_FROM_REG(val)	((val) * 1000)
 162
 163#define PWM_TO_REG(val)			clamp_val(val, 0, 255)
 164#define PWM_FROM_REG(val)		(val)
 165
 166
 167/*
 168 * ZONEs have the following parameters:
 169 *    Limit (low) temp,           1. degC
 170 *    Hysteresis (below limit),   1. degC (0-15)
 171 *    Range of speed control,     .1 degC (2-80)
 172 *    Critical (high) temp,       1. degC
 173 *
 174 * FAN PWMs have the following parameters:
 175 *    Reference Zone,                 1, 2, 3, etc.
 176 *    Spinup time,                    .05 sec
 177 *    PWM value at limit/low temp,    1 count
 178 *    PWM Frequency,                  1. Hz
 179 *    PWM is Min or OFF below limit,  flag
 180 *    Invert PWM output,              flag
 181 *
 182 * Some chips filter the temp, others the fan.
 183 *    Filter constant (or disabled)   .1 seconds
 184 */
 185
 186/* These are the zone temperature range encodings in .001 degree C */
 187static const int lm85_range_map[] = {
 188	2000, 2500, 3300, 4000, 5000, 6600, 8000, 10000,
 189	13300, 16000, 20000, 26600, 32000, 40000, 53300, 80000
 190};
 191
 192static int RANGE_TO_REG(long range)
 193{
 194	return find_closest(range, lm85_range_map, ARRAY_SIZE(lm85_range_map));
 195}
 196#define RANGE_FROM_REG(val)	lm85_range_map[(val) & 0x0f]
 197
 198/* These are the PWM frequency encodings */
 199static const int lm85_freq_map[8] = { /* 1 Hz */
 200	10, 15, 23, 30, 38, 47, 61, 94
 201};
 202static const int adm1027_freq_map[8] = { /* 1 Hz */
 203	11, 15, 22, 29, 35, 44, 59, 88
 204};
 205#define FREQ_MAP_LEN	8
 206
 207static int FREQ_TO_REG(const int *map,
 208		       unsigned int map_size, unsigned long freq)
 209{
 210	return find_closest(freq, map, map_size);
 211}
 212
 213static int FREQ_FROM_REG(const int *map, u8 reg)
 214{
 215	return map[reg & 0x07];
 216}
 217
 218/*
 219 * Since we can't use strings, I'm abusing these numbers
 220 *   to stand in for the following meanings:
 221 *      1 -- PWM responds to Zone 1
 222 *      2 -- PWM responds to Zone 2
 223 *      3 -- PWM responds to Zone 3
 224 *     23 -- PWM responds to the higher temp of Zone 2 or 3
 225 *    123 -- PWM responds to highest of Zone 1, 2, or 3
 226 *      0 -- PWM is always at 0% (ie, off)
 227 *     -1 -- PWM is always at 100%
 228 *     -2 -- PWM responds to manual control
 229 */
 230
 231static const int lm85_zone_map[] = { 1, 2, 3, -1, 0, 23, 123, -2 };
 232#define ZONE_FROM_REG(val)	lm85_zone_map[(val) >> 5]
 233
 234static int ZONE_TO_REG(int zone)
 235{
 236	int i;
 237
 238	for (i = 0; i <= 7; ++i)
 239		if (zone == lm85_zone_map[i])
 240			break;
 241	if (i > 7)   /* Not found. */
 242		i = 3;  /* Always 100% */
 243	return i << 5;
 244}
 245
 246#define HYST_TO_REG(val)	clamp_val(((val) + 500) / 1000, 0, 15)
 247#define HYST_FROM_REG(val)	((val) * 1000)
 248
 249/*
 250 * Chip sampling rates
 251 *
 252 * Some sensors are not updated more frequently than once per second
 253 *    so it doesn't make sense to read them more often than that.
 254 *    We cache the results and return the saved data if the driver
 255 *    is called again before a second has elapsed.
 256 *
 257 * Also, there is significant configuration data for this chip
 258 *    given the automatic PWM fan control that is possible.  There
 259 *    are about 47 bytes of config data to only 22 bytes of actual
 260 *    readings.  So, we keep the config data up to date in the cache
 261 *    when it is written and only sample it once every 1 *minute*
 262 */
 263#define LM85_DATA_INTERVAL  (HZ + HZ / 2)
 264#define LM85_CONFIG_INTERVAL  (1 * 60 * HZ)
 265
 266/*
 267 * LM85 can automatically adjust fan speeds based on temperature
 268 * This structure encapsulates an entire Zone config.  There are
 269 * three zones (one for each temperature input) on the lm85
 270 */
 271struct lm85_zone {
 272	s8 limit;	/* Low temp limit */
 273	u8 hyst;	/* Low limit hysteresis. (0-15) */
 274	u8 range;	/* Temp range, encoded */
 275	s8 critical;	/* "All fans ON" temp limit */
 276	u8 max_desired; /*
 277			 * Actual "max" temperature specified.  Preserved
 278			 * to prevent "drift" as other autofan control
 279			 * values change.
 280			 */
 281};
 282
 283struct lm85_autofan {
 284	u8 config;	/* Register value */
 285	u8 min_pwm;	/* Minimum PWM value, encoded */
 286	u8 min_off;	/* Min PWM or OFF below "limit", flag */
 287};
 288
 289/*
 290 * For each registered chip, we need to keep some data in memory.
 291 * The structure is dynamically allocated.
 292 */
 293struct lm85_data {
 294	struct i2c_client *client;
 295	const struct attribute_group *groups[6];
 296	const int *freq_map;
 297	enum chips type;
 298
 299	bool has_vid5;	/* true if VID5 is configured for ADT7463 or ADT7468 */
 300
 301	struct mutex update_lock;
 302	int valid;		/* !=0 if following fields are valid */
 303	unsigned long last_reading;	/* In jiffies */
 304	unsigned long last_config;	/* In jiffies */
 305
 306	u8 in[8];		/* Register value */
 307	u8 in_max[8];		/* Register value */
 308	u8 in_min[8];		/* Register value */
 309	s8 temp[3];		/* Register value */
 310	s8 temp_min[3];		/* Register value */
 311	s8 temp_max[3];		/* Register value */
 312	u16 fan[4];		/* Register value */
 313	u16 fan_min[4];		/* Register value */
 314	u8 pwm[3];		/* Register value */
 315	u8 pwm_freq[3];		/* Register encoding */
 316	u8 temp_ext[3];		/* Decoded values */
 317	u8 in_ext[8];		/* Decoded values */
 318	u8 vid;			/* Register value */
 319	u8 vrm;			/* VRM version */
 320	u32 alarms;		/* Register encoding, combined */
 321	u8 cfg5;		/* Config Register 5 on ADT7468 */
 322	struct lm85_autofan autofan[3];
 323	struct lm85_zone zone[3];
 324};
 325
 326static int lm85_read_value(struct i2c_client *client, u8 reg)
 327{
 328	int res;
 329
 330	/* What size location is it? */
 331	switch (reg) {
 332	case LM85_REG_FAN(0):  /* Read WORD data */
 333	case LM85_REG_FAN(1):
 334	case LM85_REG_FAN(2):
 335	case LM85_REG_FAN(3):
 336	case LM85_REG_FAN_MIN(0):
 337	case LM85_REG_FAN_MIN(1):
 338	case LM85_REG_FAN_MIN(2):
 339	case LM85_REG_FAN_MIN(3):
 340	case LM85_REG_ALARM1:	/* Read both bytes at once */
 341		res = i2c_smbus_read_byte_data(client, reg) & 0xff;
 342		res |= i2c_smbus_read_byte_data(client, reg + 1) << 8;
 343		break;
 344	default:	/* Read BYTE data */
 345		res = i2c_smbus_read_byte_data(client, reg);
 346		break;
 347	}
 348
 349	return res;
 350}
 351
 352static void lm85_write_value(struct i2c_client *client, u8 reg, int value)
 353{
 354	switch (reg) {
 355	case LM85_REG_FAN(0):  /* Write WORD data */
 356	case LM85_REG_FAN(1):
 357	case LM85_REG_FAN(2):
 358	case LM85_REG_FAN(3):
 359	case LM85_REG_FAN_MIN(0):
 360	case LM85_REG_FAN_MIN(1):
 361	case LM85_REG_FAN_MIN(2):
 362	case LM85_REG_FAN_MIN(3):
 363	/* NOTE: ALARM is read only, so not included here */
 364		i2c_smbus_write_byte_data(client, reg, value & 0xff);
 365		i2c_smbus_write_byte_data(client, reg + 1, value >> 8);
 366		break;
 367	default:	/* Write BYTE data */
 368		i2c_smbus_write_byte_data(client, reg, value);
 369		break;
 370	}
 371}
 372
 373static struct lm85_data *lm85_update_device(struct device *dev)
 374{
 375	struct lm85_data *data = dev_get_drvdata(dev);
 376	struct i2c_client *client = data->client;
 377	int i;
 378
 379	mutex_lock(&data->update_lock);
 380
 381	if (!data->valid ||
 382	     time_after(jiffies, data->last_reading + LM85_DATA_INTERVAL)) {
 383		/* Things that change quickly */
 384		dev_dbg(&client->dev, "Reading sensor values\n");
 385
 386		/*
 387		 * Have to read extended bits first to "freeze" the
 388		 * more significant bits that are read later.
 389		 * There are 2 additional resolution bits per channel and we
 390		 * have room for 4, so we shift them to the left.
 391		 */
 392		if (data->type == adm1027 || data->type == adt7463 ||
 393		    data->type == adt7468) {
 394			int ext1 = lm85_read_value(client,
 395						   ADM1027_REG_EXTEND_ADC1);
 396			int ext2 =  lm85_read_value(client,
 397						    ADM1027_REG_EXTEND_ADC2);
 398			int val = (ext1 << 8) + ext2;
 399
 400			for (i = 0; i <= 4; i++)
 401				data->in_ext[i] =
 402					((val >> (i * 2)) & 0x03) << 2;
 403
 404			for (i = 0; i <= 2; i++)
 405				data->temp_ext[i] =
 406					(val >> ((i + 4) * 2)) & 0x0c;
 407		}
 408
 409		data->vid = lm85_read_value(client, LM85_REG_VID);
 410
 411		for (i = 0; i <= 3; ++i) {
 412			data->in[i] =
 413			    lm85_read_value(client, LM85_REG_IN(i));
 414			data->fan[i] =
 415			    lm85_read_value(client, LM85_REG_FAN(i));
 416		}
 417
 418		if (!data->has_vid5)
 419			data->in[4] = lm85_read_value(client, LM85_REG_IN(4));
 420
 421		if (data->type == adt7468)
 422			data->cfg5 = lm85_read_value(client, ADT7468_REG_CFG5);
 423
 424		for (i = 0; i <= 2; ++i) {
 425			data->temp[i] =
 426			    lm85_read_value(client, LM85_REG_TEMP(i));
 427			data->pwm[i] =
 428			    lm85_read_value(client, LM85_REG_PWM(i));
 429
 430			if (IS_ADT7468_OFF64(data))
 431				data->temp[i] -= 64;
 432		}
 433
 434		data->alarms = lm85_read_value(client, LM85_REG_ALARM1);
 435
 436		if (data->type == emc6d100) {
 437			/* Three more voltage sensors */
 438			for (i = 5; i <= 7; ++i) {
 439				data->in[i] = lm85_read_value(client,
 440							EMC6D100_REG_IN(i));
 441			}
 442			/* More alarm bits */
 443			data->alarms |= lm85_read_value(client,
 444						EMC6D100_REG_ALARM3) << 16;
 445		} else if (data->type == emc6d102 || data->type == emc6d103 ||
 446			   data->type == emc6d103s) {
 447			/*
 448			 * Have to read LSB bits after the MSB ones because
 449			 * the reading of the MSB bits has frozen the
 450			 * LSBs (backward from the ADM1027).
 451			 */
 452			int ext1 = lm85_read_value(client,
 453						   EMC6D102_REG_EXTEND_ADC1);
 454			int ext2 = lm85_read_value(client,
 455						   EMC6D102_REG_EXTEND_ADC2);
 456			int ext3 = lm85_read_value(client,
 457						   EMC6D102_REG_EXTEND_ADC3);
 458			int ext4 = lm85_read_value(client,
 459						   EMC6D102_REG_EXTEND_ADC4);
 460			data->in_ext[0] = ext3 & 0x0f;
 461			data->in_ext[1] = ext4 & 0x0f;
 462			data->in_ext[2] = ext4 >> 4;
 463			data->in_ext[3] = ext3 >> 4;
 464			data->in_ext[4] = ext2 >> 4;
 465
 466			data->temp_ext[0] = ext1 & 0x0f;
 467			data->temp_ext[1] = ext2 & 0x0f;
 468			data->temp_ext[2] = ext1 >> 4;
 469		}
 470
 471		data->last_reading = jiffies;
 472	}  /* last_reading */
 473
 474	if (!data->valid ||
 475	     time_after(jiffies, data->last_config + LM85_CONFIG_INTERVAL)) {
 476		/* Things that don't change often */
 477		dev_dbg(&client->dev, "Reading config values\n");
 478
 479		for (i = 0; i <= 3; ++i) {
 480			data->in_min[i] =
 481			    lm85_read_value(client, LM85_REG_IN_MIN(i));
 482			data->in_max[i] =
 483			    lm85_read_value(client, LM85_REG_IN_MAX(i));
 484			data->fan_min[i] =
 485			    lm85_read_value(client, LM85_REG_FAN_MIN(i));
 486		}
 487
 488		if (!data->has_vid5)  {
 489			data->in_min[4] = lm85_read_value(client,
 490					  LM85_REG_IN_MIN(4));
 491			data->in_max[4] = lm85_read_value(client,
 492					  LM85_REG_IN_MAX(4));
 493		}
 494
 495		if (data->type == emc6d100) {
 496			for (i = 5; i <= 7; ++i) {
 497				data->in_min[i] = lm85_read_value(client,
 498						EMC6D100_REG_IN_MIN(i));
 499				data->in_max[i] = lm85_read_value(client,
 500						EMC6D100_REG_IN_MAX(i));
 501			}
 502		}
 503
 504		for (i = 0; i <= 2; ++i) {
 505			int val;
 506
 507			data->temp_min[i] =
 508			    lm85_read_value(client, LM85_REG_TEMP_MIN(i));
 509			data->temp_max[i] =
 510			    lm85_read_value(client, LM85_REG_TEMP_MAX(i));
 511
 512			data->autofan[i].config =
 513			    lm85_read_value(client, LM85_REG_AFAN_CONFIG(i));
 514			val = lm85_read_value(client, LM85_REG_AFAN_RANGE(i));
 515			data->pwm_freq[i] = val & 0x07;
 516			data->zone[i].range = val >> 4;
 517			data->autofan[i].min_pwm =
 518			    lm85_read_value(client, LM85_REG_AFAN_MINPWM(i));
 519			data->zone[i].limit =
 520			    lm85_read_value(client, LM85_REG_AFAN_LIMIT(i));
 521			data->zone[i].critical =
 522			    lm85_read_value(client, LM85_REG_AFAN_CRITICAL(i));
 523
 524			if (IS_ADT7468_OFF64(data)) {
 525				data->temp_min[i] -= 64;
 526				data->temp_max[i] -= 64;
 527				data->zone[i].limit -= 64;
 528				data->zone[i].critical -= 64;
 529			}
 530		}
 531
 532		if (data->type != emc6d103s) {
 533			i = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
 534			data->autofan[0].min_off = (i & 0x20) != 0;
 535			data->autofan[1].min_off = (i & 0x40) != 0;
 536			data->autofan[2].min_off = (i & 0x80) != 0;
 537
 538			i = lm85_read_value(client, LM85_REG_AFAN_HYST1);
 539			data->zone[0].hyst = i >> 4;
 540			data->zone[1].hyst = i & 0x0f;
 541
 542			i = lm85_read_value(client, LM85_REG_AFAN_HYST2);
 543			data->zone[2].hyst = i >> 4;
 544		}
 545
 546		data->last_config = jiffies;
 547	}  /* last_config */
 548
 549	data->valid = 1;
 550
 551	mutex_unlock(&data->update_lock);
 552
 553	return data;
 554}
 555
 556/* 4 Fans */
 557static ssize_t show_fan(struct device *dev, struct device_attribute *attr,
 558		char *buf)
 559{
 560	int nr = to_sensor_dev_attr(attr)->index;
 561	struct lm85_data *data = lm85_update_device(dev);
 562	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[nr]));
 563}
 564
 565static ssize_t show_fan_min(struct device *dev, struct device_attribute *attr,
 566		char *buf)
 567{
 568	int nr = to_sensor_dev_attr(attr)->index;
 569	struct lm85_data *data = lm85_update_device(dev);
 570	return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[nr]));
 571}
 572
 573static ssize_t set_fan_min(struct device *dev, struct device_attribute *attr,
 574		const char *buf, size_t count)
 575{
 576	int nr = to_sensor_dev_attr(attr)->index;
 577	struct lm85_data *data = dev_get_drvdata(dev);
 578	struct i2c_client *client = data->client;
 579	unsigned long val;
 580	int err;
 581
 582	err = kstrtoul(buf, 10, &val);
 583	if (err)
 584		return err;
 585
 586	mutex_lock(&data->update_lock);
 587	data->fan_min[nr] = FAN_TO_REG(val);
 588	lm85_write_value(client, LM85_REG_FAN_MIN(nr), data->fan_min[nr]);
 589	mutex_unlock(&data->update_lock);
 590	return count;
 591}
 592
 593#define show_fan_offset(offset)						\
 594static SENSOR_DEVICE_ATTR(fan##offset##_input, S_IRUGO,			\
 595		show_fan, NULL, offset - 1);				\
 596static SENSOR_DEVICE_ATTR(fan##offset##_min, S_IRUGO | S_IWUSR,		\
 597		show_fan_min, set_fan_min, offset - 1)
 598
 599show_fan_offset(1);
 600show_fan_offset(2);
 601show_fan_offset(3);
 602show_fan_offset(4);
 603
 604/* vid, vrm, alarms */
 605
 606static ssize_t show_vid_reg(struct device *dev, struct device_attribute *attr,
 607		char *buf)
 608{
 609	struct lm85_data *data = lm85_update_device(dev);
 610	int vid;
 611
 612	if (data->has_vid5) {
 613		/* 6-pin VID (VRM 10) */
 614		vid = vid_from_reg(data->vid & 0x3f, data->vrm);
 615	} else {
 616		/* 5-pin VID (VRM 9) */
 617		vid = vid_from_reg(data->vid & 0x1f, data->vrm);
 618	}
 619
 620	return sprintf(buf, "%d\n", vid);
 621}
 622
 623static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
 624
 625static ssize_t show_vrm_reg(struct device *dev, struct device_attribute *attr,
 626		char *buf)
 627{
 628	struct lm85_data *data = dev_get_drvdata(dev);
 629	return sprintf(buf, "%ld\n", (long) data->vrm);
 630}
 631
 632static ssize_t store_vrm_reg(struct device *dev, struct device_attribute *attr,
 633		const char *buf, size_t count)
 634{
 635	struct lm85_data *data = dev_get_drvdata(dev);
 636	unsigned long val;
 637	int err;
 638
 639	err = kstrtoul(buf, 10, &val);
 640	if (err)
 641		return err;
 642
 643	if (val > 255)
 644		return -EINVAL;
 645
 646	data->vrm = val;
 647	return count;
 648}
 649
 650static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
 651
 652static ssize_t show_alarms_reg(struct device *dev, struct device_attribute
 653		*attr, char *buf)
 654{
 655	struct lm85_data *data = lm85_update_device(dev);
 656	return sprintf(buf, "%u\n", data->alarms);
 657}
 658
 659static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
 660
 661static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
 662		char *buf)
 663{
 664	int nr = to_sensor_dev_attr(attr)->index;
 665	struct lm85_data *data = lm85_update_device(dev);
 666	return sprintf(buf, "%u\n", (data->alarms >> nr) & 1);
 667}
 668
 669static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
 670static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
 671static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
 672static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
 673static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
 674static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 18);
 675static SENSOR_DEVICE_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 16);
 676static SENSOR_DEVICE_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 17);
 677static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
 678static SENSOR_DEVICE_ATTR(temp1_fault, S_IRUGO, show_alarm, NULL, 14);
 679static SENSOR_DEVICE_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5);
 680static SENSOR_DEVICE_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 6);
 681static SENSOR_DEVICE_ATTR(temp3_fault, S_IRUGO, show_alarm, NULL, 15);
 682static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 10);
 683static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 11);
 684static SENSOR_DEVICE_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 12);
 685static SENSOR_DEVICE_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 13);
 686
 687/* pwm */
 688
 689static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
 690		char *buf)
 691{
 692	int nr = to_sensor_dev_attr(attr)->index;
 693	struct lm85_data *data = lm85_update_device(dev);
 694	return sprintf(buf, "%d\n", PWM_FROM_REG(data->pwm[nr]));
 695}
 696
 697static ssize_t set_pwm(struct device *dev, struct device_attribute *attr,
 698		const char *buf, size_t count)
 699{
 700	int nr = to_sensor_dev_attr(attr)->index;
 701	struct lm85_data *data = dev_get_drvdata(dev);
 702	struct i2c_client *client = data->client;
 703	unsigned long val;
 704	int err;
 705
 706	err = kstrtoul(buf, 10, &val);
 707	if (err)
 708		return err;
 709
 710	mutex_lock(&data->update_lock);
 711	data->pwm[nr] = PWM_TO_REG(val);
 712	lm85_write_value(client, LM85_REG_PWM(nr), data->pwm[nr]);
 713	mutex_unlock(&data->update_lock);
 714	return count;
 715}
 716
 717static ssize_t show_pwm_enable(struct device *dev, struct device_attribute
 718		*attr, char *buf)
 719{
 720	int nr = to_sensor_dev_attr(attr)->index;
 721	struct lm85_data *data = lm85_update_device(dev);
 722	int pwm_zone, enable;
 723
 724	pwm_zone = ZONE_FROM_REG(data->autofan[nr].config);
 725	switch (pwm_zone) {
 726	case -1:	/* PWM is always at 100% */
 727		enable = 0;
 728		break;
 729	case 0:		/* PWM is always at 0% */
 730	case -2:	/* PWM responds to manual control */
 731		enable = 1;
 732		break;
 733	default:	/* PWM in automatic mode */
 734		enable = 2;
 735	}
 736	return sprintf(buf, "%d\n", enable);
 737}
 738
 739static ssize_t set_pwm_enable(struct device *dev, struct device_attribute
 740		*attr, const char *buf, size_t count)
 741{
 742	int nr = to_sensor_dev_attr(attr)->index;
 743	struct lm85_data *data = dev_get_drvdata(dev);
 744	struct i2c_client *client = data->client;
 745	u8 config;
 746	unsigned long val;
 747	int err;
 748
 749	err = kstrtoul(buf, 10, &val);
 750	if (err)
 751		return err;
 752
 753	switch (val) {
 754	case 0:
 755		config = 3;
 756		break;
 757	case 1:
 758		config = 7;
 759		break;
 760	case 2:
 761		/*
 762		 * Here we have to choose arbitrarily one of the 5 possible
 763		 * configurations; I go for the safest
 764		 */
 765		config = 6;
 766		break;
 767	default:
 768		return -EINVAL;
 769	}
 770
 771	mutex_lock(&data->update_lock);
 772	data->autofan[nr].config = lm85_read_value(client,
 773		LM85_REG_AFAN_CONFIG(nr));
 774	data->autofan[nr].config = (data->autofan[nr].config & ~0xe0)
 775		| (config << 5);
 776	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
 777		data->autofan[nr].config);
 778	mutex_unlock(&data->update_lock);
 779	return count;
 780}
 781
 782static ssize_t show_pwm_freq(struct device *dev,
 783		struct device_attribute *attr, char *buf)
 784{
 785	int nr = to_sensor_dev_attr(attr)->index;
 786	struct lm85_data *data = lm85_update_device(dev);
 787	int freq;
 788
 789	if (IS_ADT7468_HFPWM(data))
 790		freq = 22500;
 791	else
 792		freq = FREQ_FROM_REG(data->freq_map, data->pwm_freq[nr]);
 793
 794	return sprintf(buf, "%d\n", freq);
 795}
 796
 797static ssize_t set_pwm_freq(struct device *dev,
 798		struct device_attribute *attr, const char *buf, size_t count)
 799{
 800	int nr = to_sensor_dev_attr(attr)->index;
 801	struct lm85_data *data = dev_get_drvdata(dev);
 802	struct i2c_client *client = data->client;
 803	unsigned long val;
 804	int err;
 805
 806	err = kstrtoul(buf, 10, &val);
 807	if (err)
 808		return err;
 809
 810	mutex_lock(&data->update_lock);
 811	/*
 812	 * The ADT7468 has a special high-frequency PWM output mode,
 813	 * where all PWM outputs are driven by a 22.5 kHz clock.
 814	 * This might confuse the user, but there's not much we can do.
 815	 */
 816	if (data->type == adt7468 && val >= 11300) {	/* High freq. mode */
 817		data->cfg5 &= ~ADT7468_HFPWM;
 818		lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 819	} else {					/* Low freq. mode */
 820		data->pwm_freq[nr] = FREQ_TO_REG(data->freq_map,
 821						 FREQ_MAP_LEN, val);
 822		lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
 823				 (data->zone[nr].range << 4)
 824				 | data->pwm_freq[nr]);
 825		if (data->type == adt7468) {
 826			data->cfg5 |= ADT7468_HFPWM;
 827			lm85_write_value(client, ADT7468_REG_CFG5, data->cfg5);
 828		}
 829	}
 830	mutex_unlock(&data->update_lock);
 831	return count;
 832}
 833
 834#define show_pwm_reg(offset)						\
 835static SENSOR_DEVICE_ATTR(pwm##offset, S_IRUGO | S_IWUSR,		\
 836		show_pwm, set_pwm, offset - 1);				\
 837static SENSOR_DEVICE_ATTR(pwm##offset##_enable, S_IRUGO | S_IWUSR,	\
 838		show_pwm_enable, set_pwm_enable, offset - 1);		\
 839static SENSOR_DEVICE_ATTR(pwm##offset##_freq, S_IRUGO | S_IWUSR,	\
 840		show_pwm_freq, set_pwm_freq, offset - 1)
 841
 842show_pwm_reg(1);
 843show_pwm_reg(2);
 844show_pwm_reg(3);
 845
 846/* Voltages */
 847
 848static ssize_t show_in(struct device *dev, struct device_attribute *attr,
 849		char *buf)
 850{
 851	int nr = to_sensor_dev_attr(attr)->index;
 852	struct lm85_data *data = lm85_update_device(dev);
 853	return sprintf(buf, "%d\n", INSEXT_FROM_REG(nr, data->in[nr],
 854						    data->in_ext[nr]));
 855}
 856
 857static ssize_t show_in_min(struct device *dev, struct device_attribute *attr,
 858		char *buf)
 859{
 860	int nr = to_sensor_dev_attr(attr)->index;
 861	struct lm85_data *data = lm85_update_device(dev);
 862	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_min[nr]));
 863}
 864
 865static ssize_t set_in_min(struct device *dev, struct device_attribute *attr,
 866		const char *buf, size_t count)
 867{
 868	int nr = to_sensor_dev_attr(attr)->index;
 869	struct lm85_data *data = dev_get_drvdata(dev);
 870	struct i2c_client *client = data->client;
 871	long val;
 872	int err;
 873
 874	err = kstrtol(buf, 10, &val);
 875	if (err)
 876		return err;
 877
 878	mutex_lock(&data->update_lock);
 879	data->in_min[nr] = INS_TO_REG(nr, val);
 880	lm85_write_value(client, LM85_REG_IN_MIN(nr), data->in_min[nr]);
 881	mutex_unlock(&data->update_lock);
 882	return count;
 883}
 884
 885static ssize_t show_in_max(struct device *dev, struct device_attribute *attr,
 886		char *buf)
 887{
 888	int nr = to_sensor_dev_attr(attr)->index;
 889	struct lm85_data *data = lm85_update_device(dev);
 890	return sprintf(buf, "%d\n", INS_FROM_REG(nr, data->in_max[nr]));
 891}
 892
 893static ssize_t set_in_max(struct device *dev, struct device_attribute *attr,
 894		const char *buf, size_t count)
 895{
 896	int nr = to_sensor_dev_attr(attr)->index;
 897	struct lm85_data *data = dev_get_drvdata(dev);
 898	struct i2c_client *client = data->client;
 899	long val;
 900	int err;
 901
 902	err = kstrtol(buf, 10, &val);
 903	if (err)
 904		return err;
 905
 906	mutex_lock(&data->update_lock);
 907	data->in_max[nr] = INS_TO_REG(nr, val);
 908	lm85_write_value(client, LM85_REG_IN_MAX(nr), data->in_max[nr]);
 909	mutex_unlock(&data->update_lock);
 910	return count;
 911}
 912
 913#define show_in_reg(offset)						\
 914static SENSOR_DEVICE_ATTR(in##offset##_input, S_IRUGO,			\
 915		show_in, NULL, offset);					\
 916static SENSOR_DEVICE_ATTR(in##offset##_min, S_IRUGO | S_IWUSR,		\
 917		show_in_min, set_in_min, offset);			\
 918static SENSOR_DEVICE_ATTR(in##offset##_max, S_IRUGO | S_IWUSR,		\
 919		show_in_max, set_in_max, offset)
 920
 921show_in_reg(0);
 922show_in_reg(1);
 923show_in_reg(2);
 924show_in_reg(3);
 925show_in_reg(4);
 926show_in_reg(5);
 927show_in_reg(6);
 928show_in_reg(7);
 929
 930/* Temps */
 931
 932static ssize_t show_temp(struct device *dev, struct device_attribute *attr,
 933		char *buf)
 934{
 935	int nr = to_sensor_dev_attr(attr)->index;
 936	struct lm85_data *data = lm85_update_device(dev);
 937	return sprintf(buf, "%d\n", TEMPEXT_FROM_REG(data->temp[nr],
 938						     data->temp_ext[nr]));
 939}
 940
 941static ssize_t show_temp_min(struct device *dev, struct device_attribute *attr,
 942		char *buf)
 943{
 944	int nr = to_sensor_dev_attr(attr)->index;
 945	struct lm85_data *data = lm85_update_device(dev);
 946	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_min[nr]));
 947}
 948
 949static ssize_t set_temp_min(struct device *dev, struct device_attribute *attr,
 950		const char *buf, size_t count)
 951{
 952	int nr = to_sensor_dev_attr(attr)->index;
 953	struct lm85_data *data = dev_get_drvdata(dev);
 954	struct i2c_client *client = data->client;
 955	long val;
 956	int err;
 957
 958	err = kstrtol(buf, 10, &val);
 959	if (err)
 960		return err;
 961
 962	if (IS_ADT7468_OFF64(data))
 963		val += 64;
 964
 965	mutex_lock(&data->update_lock);
 966	data->temp_min[nr] = TEMP_TO_REG(val);
 967	lm85_write_value(client, LM85_REG_TEMP_MIN(nr), data->temp_min[nr]);
 968	mutex_unlock(&data->update_lock);
 969	return count;
 970}
 971
 972static ssize_t show_temp_max(struct device *dev, struct device_attribute *attr,
 973		char *buf)
 974{
 975	int nr = to_sensor_dev_attr(attr)->index;
 976	struct lm85_data *data = lm85_update_device(dev);
 977	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp_max[nr]));
 978}
 979
 980static ssize_t set_temp_max(struct device *dev, struct device_attribute *attr,
 981		const char *buf, size_t count)
 982{
 983	int nr = to_sensor_dev_attr(attr)->index;
 984	struct lm85_data *data = dev_get_drvdata(dev);
 985	struct i2c_client *client = data->client;
 986	long val;
 987	int err;
 988
 989	err = kstrtol(buf, 10, &val);
 990	if (err)
 991		return err;
 992
 993	if (IS_ADT7468_OFF64(data))
 994		val += 64;
 995
 996	mutex_lock(&data->update_lock);
 997	data->temp_max[nr] = TEMP_TO_REG(val);
 998	lm85_write_value(client, LM85_REG_TEMP_MAX(nr), data->temp_max[nr]);
 999	mutex_unlock(&data->update_lock);
1000	return count;
1001}
1002
1003#define show_temp_reg(offset)						\
1004static SENSOR_DEVICE_ATTR(temp##offset##_input, S_IRUGO,		\
1005		show_temp, NULL, offset - 1);				\
1006static SENSOR_DEVICE_ATTR(temp##offset##_min, S_IRUGO | S_IWUSR,	\
1007		show_temp_min, set_temp_min, offset - 1);		\
1008static SENSOR_DEVICE_ATTR(temp##offset##_max, S_IRUGO | S_IWUSR,	\
1009		show_temp_max, set_temp_max, offset - 1);
1010
1011show_temp_reg(1);
1012show_temp_reg(2);
1013show_temp_reg(3);
1014
1015
1016/* Automatic PWM control */
1017
1018static ssize_t show_pwm_auto_channels(struct device *dev,
1019		struct device_attribute *attr, char *buf)
1020{
1021	int nr = to_sensor_dev_attr(attr)->index;
1022	struct lm85_data *data = lm85_update_device(dev);
1023	return sprintf(buf, "%d\n", ZONE_FROM_REG(data->autofan[nr].config));
1024}
1025
1026static ssize_t set_pwm_auto_channels(struct device *dev,
1027		struct device_attribute *attr, const char *buf, size_t count)
1028{
1029	int nr = to_sensor_dev_attr(attr)->index;
1030	struct lm85_data *data = dev_get_drvdata(dev);
1031	struct i2c_client *client = data->client;
1032	long val;
1033	int err;
1034
1035	err = kstrtol(buf, 10, &val);
1036	if (err)
1037		return err;
1038
1039	mutex_lock(&data->update_lock);
1040	data->autofan[nr].config = (data->autofan[nr].config & (~0xe0))
1041		| ZONE_TO_REG(val);
1042	lm85_write_value(client, LM85_REG_AFAN_CONFIG(nr),
1043		data->autofan[nr].config);
1044	mutex_unlock(&data->update_lock);
1045	return count;
1046}
1047
1048static ssize_t show_pwm_auto_pwm_min(struct device *dev,
1049		struct device_attribute *attr, char *buf)
1050{
1051	int nr = to_sensor_dev_attr(attr)->index;
1052	struct lm85_data *data = lm85_update_device(dev);
1053	return sprintf(buf, "%d\n", PWM_FROM_REG(data->autofan[nr].min_pwm));
1054}
1055
1056static ssize_t set_pwm_auto_pwm_min(struct device *dev,
1057		struct device_attribute *attr, const char *buf, size_t count)
1058{
1059	int nr = to_sensor_dev_attr(attr)->index;
1060	struct lm85_data *data = dev_get_drvdata(dev);
1061	struct i2c_client *client = data->client;
1062	unsigned long val;
1063	int err;
1064
1065	err = kstrtoul(buf, 10, &val);
1066	if (err)
1067		return err;
1068
1069	mutex_lock(&data->update_lock);
1070	data->autofan[nr].min_pwm = PWM_TO_REG(val);
1071	lm85_write_value(client, LM85_REG_AFAN_MINPWM(nr),
1072		data->autofan[nr].min_pwm);
1073	mutex_unlock(&data->update_lock);
1074	return count;
1075}
1076
1077static ssize_t show_pwm_auto_pwm_minctl(struct device *dev,
1078		struct device_attribute *attr, char *buf)
1079{
1080	int nr = to_sensor_dev_attr(attr)->index;
1081	struct lm85_data *data = lm85_update_device(dev);
1082	return sprintf(buf, "%d\n", data->autofan[nr].min_off);
1083}
1084
1085static ssize_t set_pwm_auto_pwm_minctl(struct device *dev,
1086		struct device_attribute *attr, const char *buf, size_t count)
1087{
1088	int nr = to_sensor_dev_attr(attr)->index;
1089	struct lm85_data *data = dev_get_drvdata(dev);
1090	struct i2c_client *client = data->client;
1091	u8 tmp;
1092	long val;
1093	int err;
1094
1095	err = kstrtol(buf, 10, &val);
1096	if (err)
1097		return err;
1098
1099	mutex_lock(&data->update_lock);
1100	data->autofan[nr].min_off = val;
1101	tmp = lm85_read_value(client, LM85_REG_AFAN_SPIKE1);
1102	tmp &= ~(0x20 << nr);
1103	if (data->autofan[nr].min_off)
1104		tmp |= 0x20 << nr;
1105	lm85_write_value(client, LM85_REG_AFAN_SPIKE1, tmp);
1106	mutex_unlock(&data->update_lock);
1107	return count;
1108}
1109
1110#define pwm_auto(offset)						\
1111static SENSOR_DEVICE_ATTR(pwm##offset##_auto_channels,			\
1112		S_IRUGO | S_IWUSR, show_pwm_auto_channels,		\
1113		set_pwm_auto_channels, offset - 1);			\
1114static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_min,			\
1115		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_min,		\
1116		set_pwm_auto_pwm_min, offset - 1);			\
1117static SENSOR_DEVICE_ATTR(pwm##offset##_auto_pwm_minctl,		\
1118		S_IRUGO | S_IWUSR, show_pwm_auto_pwm_minctl,		\
1119		set_pwm_auto_pwm_minctl, offset - 1)
1120
1121pwm_auto(1);
1122pwm_auto(2);
1123pwm_auto(3);
1124
1125/* Temperature settings for automatic PWM control */
1126
1127static ssize_t show_temp_auto_temp_off(struct device *dev,
1128		struct device_attribute *attr, char *buf)
1129{
1130	int nr = to_sensor_dev_attr(attr)->index;
1131	struct lm85_data *data = lm85_update_device(dev);
1132	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) -
1133		HYST_FROM_REG(data->zone[nr].hyst));
1134}
1135
1136static ssize_t set_temp_auto_temp_off(struct device *dev,
1137		struct device_attribute *attr, const char *buf, size_t count)
1138{
1139	int nr = to_sensor_dev_attr(attr)->index;
1140	struct lm85_data *data = dev_get_drvdata(dev);
1141	struct i2c_client *client = data->client;
1142	int min;
1143	long val;
1144	int err;
1145
1146	err = kstrtol(buf, 10, &val);
1147	if (err)
1148		return err;
1149
1150	mutex_lock(&data->update_lock);
1151	min = TEMP_FROM_REG(data->zone[nr].limit);
1152	data->zone[nr].hyst = HYST_TO_REG(min - val);
1153	if (nr == 0 || nr == 1) {
1154		lm85_write_value(client, LM85_REG_AFAN_HYST1,
1155			(data->zone[0].hyst << 4)
1156			| data->zone[1].hyst);
1157	} else {
1158		lm85_write_value(client, LM85_REG_AFAN_HYST2,
1159			(data->zone[2].hyst << 4));
1160	}
1161	mutex_unlock(&data->update_lock);
1162	return count;
1163}
1164
1165static ssize_t show_temp_auto_temp_min(struct device *dev,
1166		struct device_attribute *attr, char *buf)
1167{
1168	int nr = to_sensor_dev_attr(attr)->index;
1169	struct lm85_data *data = lm85_update_device(dev);
1170	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit));
1171}
1172
1173static ssize_t set_temp_auto_temp_min(struct device *dev,
1174		struct device_attribute *attr, const char *buf, size_t count)
1175{
1176	int nr = to_sensor_dev_attr(attr)->index;
1177	struct lm85_data *data = dev_get_drvdata(dev);
1178	struct i2c_client *client = data->client;
1179	long val;
1180	int err;
1181
1182	err = kstrtol(buf, 10, &val);
1183	if (err)
1184		return err;
1185
1186	mutex_lock(&data->update_lock);
1187	data->zone[nr].limit = TEMP_TO_REG(val);
1188	lm85_write_value(client, LM85_REG_AFAN_LIMIT(nr),
1189		data->zone[nr].limit);
1190
1191/* Update temp_auto_max and temp_auto_range */
1192	data->zone[nr].range = RANGE_TO_REG(
1193		TEMP_FROM_REG(data->zone[nr].max_desired) -
1194		TEMP_FROM_REG(data->zone[nr].limit));
1195	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1196		((data->zone[nr].range & 0x0f) << 4)
1197		| (data->pwm_freq[nr] & 0x07));
1198
1199	mutex_unlock(&data->update_lock);
1200	return count;
1201}
1202
1203static ssize_t show_temp_auto_temp_max(struct device *dev,
1204		struct device_attribute *attr, char *buf)
1205{
1206	int nr = to_sensor_dev_attr(attr)->index;
1207	struct lm85_data *data = lm85_update_device(dev);
1208	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].limit) +
1209		RANGE_FROM_REG(data->zone[nr].range));
1210}
1211
1212static ssize_t set_temp_auto_temp_max(struct device *dev,
1213		struct device_attribute *attr, const char *buf, size_t count)
1214{
1215	int nr = to_sensor_dev_attr(attr)->index;
1216	struct lm85_data *data = dev_get_drvdata(dev);
1217	struct i2c_client *client = data->client;
1218	int min;
1219	long val;
1220	int err;
1221
1222	err = kstrtol(buf, 10, &val);
1223	if (err)
1224		return err;
1225
1226	mutex_lock(&data->update_lock);
1227	min = TEMP_FROM_REG(data->zone[nr].limit);
1228	data->zone[nr].max_desired = TEMP_TO_REG(val);
1229	data->zone[nr].range = RANGE_TO_REG(
1230		val - min);
1231	lm85_write_value(client, LM85_REG_AFAN_RANGE(nr),
1232		((data->zone[nr].range & 0x0f) << 4)
1233		| (data->pwm_freq[nr] & 0x07));
1234	mutex_unlock(&data->update_lock);
1235	return count;
1236}
1237
1238static ssize_t show_temp_auto_temp_crit(struct device *dev,
1239		struct device_attribute *attr, char *buf)
1240{
1241	int nr = to_sensor_dev_attr(attr)->index;
1242	struct lm85_data *data = lm85_update_device(dev);
1243	return sprintf(buf, "%d\n", TEMP_FROM_REG(data->zone[nr].critical));
1244}
1245
1246static ssize_t set_temp_auto_temp_crit(struct device *dev,
1247		struct device_attribute *attr, const char *buf, size_t count)
1248{
1249	int nr = to_sensor_dev_attr(attr)->index;
1250	struct lm85_data *data = dev_get_drvdata(dev);
1251	struct i2c_client *client = data->client;
1252	long val;
1253	int err;
1254
1255	err = kstrtol(buf, 10, &val);
1256	if (err)
1257		return err;
1258
1259	mutex_lock(&data->update_lock);
1260	data->zone[nr].critical = TEMP_TO_REG(val);
1261	lm85_write_value(client, LM85_REG_AFAN_CRITICAL(nr),
1262		data->zone[nr].critical);
1263	mutex_unlock(&data->update_lock);
1264	return count;
1265}
1266
1267#define temp_auto(offset)						\
1268static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_off,			\
1269		S_IRUGO | S_IWUSR, show_temp_auto_temp_off,		\
1270		set_temp_auto_temp_off, offset - 1);			\
1271static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_min,			\
1272		S_IRUGO | S_IWUSR, show_temp_auto_temp_min,		\
1273		set_temp_auto_temp_min, offset - 1);			\
1274static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_max,			\
1275		S_IRUGO | S_IWUSR, show_temp_auto_temp_max,		\
1276		set_temp_auto_temp_max, offset - 1);			\
1277static SENSOR_DEVICE_ATTR(temp##offset##_auto_temp_crit,		\
1278		S_IRUGO | S_IWUSR, show_temp_auto_temp_crit,		\
1279		set_temp_auto_temp_crit, offset - 1);
1280
1281temp_auto(1);
1282temp_auto(2);
1283temp_auto(3);
1284
1285static struct attribute *lm85_attributes[] = {
1286	&sensor_dev_attr_fan1_input.dev_attr.attr,
1287	&sensor_dev_attr_fan2_input.dev_attr.attr,
1288	&sensor_dev_attr_fan3_input.dev_attr.attr,
1289	&sensor_dev_attr_fan4_input.dev_attr.attr,
1290	&sensor_dev_attr_fan1_min.dev_attr.attr,
1291	&sensor_dev_attr_fan2_min.dev_attr.attr,
1292	&sensor_dev_attr_fan3_min.dev_attr.attr,
1293	&sensor_dev_attr_fan4_min.dev_attr.attr,
1294	&sensor_dev_attr_fan1_alarm.dev_attr.attr,
1295	&sensor_dev_attr_fan2_alarm.dev_attr.attr,
1296	&sensor_dev_attr_fan3_alarm.dev_attr.attr,
1297	&sensor_dev_attr_fan4_alarm.dev_attr.attr,
1298
1299	&sensor_dev_attr_pwm1.dev_attr.attr,
1300	&sensor_dev_attr_pwm2.dev_attr.attr,
1301	&sensor_dev_attr_pwm3.dev_attr.attr,
1302	&sensor_dev_attr_pwm1_enable.dev_attr.attr,
1303	&sensor_dev_attr_pwm2_enable.dev_attr.attr,
1304	&sensor_dev_attr_pwm3_enable.dev_attr.attr,
1305	&sensor_dev_attr_pwm1_freq.dev_attr.attr,
1306	&sensor_dev_attr_pwm2_freq.dev_attr.attr,
1307	&sensor_dev_attr_pwm3_freq.dev_attr.attr,
1308
1309	&sensor_dev_attr_in0_input.dev_attr.attr,
1310	&sensor_dev_attr_in1_input.dev_attr.attr,
1311	&sensor_dev_attr_in2_input.dev_attr.attr,
1312	&sensor_dev_attr_in3_input.dev_attr.attr,
1313	&sensor_dev_attr_in0_min.dev_attr.attr,
1314	&sensor_dev_attr_in1_min.dev_attr.attr,
1315	&sensor_dev_attr_in2_min.dev_attr.attr,
1316	&sensor_dev_attr_in3_min.dev_attr.attr,
1317	&sensor_dev_attr_in0_max.dev_attr.attr,
1318	&sensor_dev_attr_in1_max.dev_attr.attr,
1319	&sensor_dev_attr_in2_max.dev_attr.attr,
1320	&sensor_dev_attr_in3_max.dev_attr.attr,
1321	&sensor_dev_attr_in0_alarm.dev_attr.attr,
1322	&sensor_dev_attr_in1_alarm.dev_attr.attr,
1323	&sensor_dev_attr_in2_alarm.dev_attr.attr,
1324	&sensor_dev_attr_in3_alarm.dev_attr.attr,
1325
1326	&sensor_dev_attr_temp1_input.dev_attr.attr,
1327	&sensor_dev_attr_temp2_input.dev_attr.attr,
1328	&sensor_dev_attr_temp3_input.dev_attr.attr,
1329	&sensor_dev_attr_temp1_min.dev_attr.attr,
1330	&sensor_dev_attr_temp2_min.dev_attr.attr,
1331	&sensor_dev_attr_temp3_min.dev_attr.attr,
1332	&sensor_dev_attr_temp1_max.dev_attr.attr,
1333	&sensor_dev_attr_temp2_max.dev_attr.attr,
1334	&sensor_dev_attr_temp3_max.dev_attr.attr,
1335	&sensor_dev_attr_temp1_alarm.dev_attr.attr,
1336	&sensor_dev_attr_temp2_alarm.dev_attr.attr,
1337	&sensor_dev_attr_temp3_alarm.dev_attr.attr,
1338	&sensor_dev_attr_temp1_fault.dev_attr.attr,
1339	&sensor_dev_attr_temp3_fault.dev_attr.attr,
1340
1341	&sensor_dev_attr_pwm1_auto_channels.dev_attr.attr,
1342	&sensor_dev_attr_pwm2_auto_channels.dev_attr.attr,
1343	&sensor_dev_attr_pwm3_auto_channels.dev_attr.attr,
1344	&sensor_dev_attr_pwm1_auto_pwm_min.dev_attr.attr,
1345	&sensor_dev_attr_pwm2_auto_pwm_min.dev_attr.attr,
1346	&sensor_dev_attr_pwm3_auto_pwm_min.dev_attr.attr,
1347
1348	&sensor_dev_attr_temp1_auto_temp_min.dev_attr.attr,
1349	&sensor_dev_attr_temp2_auto_temp_min.dev_attr.attr,
1350	&sensor_dev_attr_temp3_auto_temp_min.dev_attr.attr,
1351	&sensor_dev_attr_temp1_auto_temp_max.dev_attr.attr,
1352	&sensor_dev_attr_temp2_auto_temp_max.dev_attr.attr,
1353	&sensor_dev_attr_temp3_auto_temp_max.dev_attr.attr,
1354	&sensor_dev_attr_temp1_auto_temp_crit.dev_attr.attr,
1355	&sensor_dev_attr_temp2_auto_temp_crit.dev_attr.attr,
1356	&sensor_dev_attr_temp3_auto_temp_crit.dev_attr.attr,
1357
1358	&dev_attr_vrm.attr,
1359	&dev_attr_cpu0_vid.attr,
1360	&dev_attr_alarms.attr,
1361	NULL
1362};
1363
1364static const struct attribute_group lm85_group = {
1365	.attrs = lm85_attributes,
1366};
1367
1368static struct attribute *lm85_attributes_minctl[] = {
1369	&sensor_dev_attr_pwm1_auto_pwm_minctl.dev_attr.attr,
1370	&sensor_dev_attr_pwm2_auto_pwm_minctl.dev_attr.attr,
1371	&sensor_dev_attr_pwm3_auto_pwm_minctl.dev_attr.attr,
1372	NULL
1373};
1374
1375static const struct attribute_group lm85_group_minctl = {
1376	.attrs = lm85_attributes_minctl,
1377};
1378
1379static struct attribute *lm85_attributes_temp_off[] = {
1380	&sensor_dev_attr_temp1_auto_temp_off.dev_attr.attr,
1381	&sensor_dev_attr_temp2_auto_temp_off.dev_attr.attr,
1382	&sensor_dev_attr_temp3_auto_temp_off.dev_attr.attr,
1383	NULL
1384};
1385
1386static const struct attribute_group lm85_group_temp_off = {
1387	.attrs = lm85_attributes_temp_off,
1388};
1389
1390static struct attribute *lm85_attributes_in4[] = {
1391	&sensor_dev_attr_in4_input.dev_attr.attr,
1392	&sensor_dev_attr_in4_min.dev_attr.attr,
1393	&sensor_dev_attr_in4_max.dev_attr.attr,
1394	&sensor_dev_attr_in4_alarm.dev_attr.attr,
1395	NULL
1396};
1397
1398static const struct attribute_group lm85_group_in4 = {
1399	.attrs = lm85_attributes_in4,
1400};
1401
1402static struct attribute *lm85_attributes_in567[] = {
1403	&sensor_dev_attr_in5_input.dev_attr.attr,
1404	&sensor_dev_attr_in6_input.dev_attr.attr,
1405	&sensor_dev_attr_in7_input.dev_attr.attr,
1406	&sensor_dev_attr_in5_min.dev_attr.attr,
1407	&sensor_dev_attr_in6_min.dev_attr.attr,
1408	&sensor_dev_attr_in7_min.dev_attr.attr,
1409	&sensor_dev_attr_in5_max.dev_attr.attr,
1410	&sensor_dev_attr_in6_max.dev_attr.attr,
1411	&sensor_dev_attr_in7_max.dev_attr.attr,
1412	&sensor_dev_attr_in5_alarm.dev_attr.attr,
1413	&sensor_dev_attr_in6_alarm.dev_attr.attr,
1414	&sensor_dev_attr_in7_alarm.dev_attr.attr,
1415	NULL
1416};
1417
1418static const struct attribute_group lm85_group_in567 = {
1419	.attrs = lm85_attributes_in567,
1420};
1421
1422static void lm85_init_client(struct i2c_client *client)
1423{
1424	int value;
1425
1426	/* Start monitoring if needed */
1427	value = lm85_read_value(client, LM85_REG_CONFIG);
1428	if (!(value & 0x01)) {
1429		dev_info(&client->dev, "Starting monitoring\n");
1430		lm85_write_value(client, LM85_REG_CONFIG, value | 0x01);
1431	}
1432
1433	/* Warn about unusual configuration bits */
1434	if (value & 0x02)
1435		dev_warn(&client->dev, "Device configuration is locked\n");
1436	if (!(value & 0x04))
1437		dev_warn(&client->dev, "Device is not ready\n");
1438}
1439
1440static int lm85_is_fake(struct i2c_client *client)
1441{
1442	/*
1443	 * Differenciate between real LM96000 and Winbond WPCD377I. The latter
1444	 * emulate the former except that it has no hardware monitoring function
1445	 * so the readings are always 0.
1446	 */
1447	int i;
1448	u8 in_temp, fan;
1449
1450	for (i = 0; i < 8; i++) {
1451		in_temp = i2c_smbus_read_byte_data(client, 0x20 + i);
1452		fan = i2c_smbus_read_byte_data(client, 0x28 + i);
1453		if (in_temp != 0x00 || fan != 0xff)
1454			return 0;
1455	}
1456
1457	return 1;
1458}
1459
1460/* Return 0 if detection is successful, -ENODEV otherwise */
1461static int lm85_detect(struct i2c_client *client, struct i2c_board_info *info)
1462{
1463	struct i2c_adapter *adapter = client->adapter;
1464	int address = client->addr;
1465	const char *type_name = NULL;
1466	int company, verstep;
1467
1468	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) {
1469		/* We need to be able to do byte I/O */
1470		return -ENODEV;
1471	}
1472
1473	/* Determine the chip type */
1474	company = lm85_read_value(client, LM85_REG_COMPANY);
1475	verstep = lm85_read_value(client, LM85_REG_VERSTEP);
1476
1477	dev_dbg(&adapter->dev,
1478		"Detecting device at 0x%02x with COMPANY: 0x%02x and VERSTEP: 0x%02x\n",
1479		address, company, verstep);
1480
1481	if (company == LM85_COMPANY_NATIONAL) {
1482		switch (verstep) {
1483		case LM85_VERSTEP_LM85C:
1484			type_name = "lm85c";
1485			break;
1486		case LM85_VERSTEP_LM85B:
1487			type_name = "lm85b";
1488			break;
1489		case LM85_VERSTEP_LM96000_1:
1490		case LM85_VERSTEP_LM96000_2:
1491			/* Check for Winbond WPCD377I */
1492			if (lm85_is_fake(client)) {
1493				dev_dbg(&adapter->dev,
1494					"Found Winbond WPCD377I, ignoring\n");
1495				return -ENODEV;
1496			}
1497			type_name = "lm85";
1498			break;
1499		}
1500	} else if (company == LM85_COMPANY_ANALOG_DEV) {
1501		switch (verstep) {
1502		case LM85_VERSTEP_ADM1027:
1503			type_name = "adm1027";
1504			break;
1505		case LM85_VERSTEP_ADT7463:
1506		case LM85_VERSTEP_ADT7463C:
1507			type_name = "adt7463";
1508			break;
1509		case LM85_VERSTEP_ADT7468_1:
1510		case LM85_VERSTEP_ADT7468_2:
1511			type_name = "adt7468";
1512			break;
1513		}
1514	} else if (company == LM85_COMPANY_SMSC) {
1515		switch (verstep) {
1516		case LM85_VERSTEP_EMC6D100_A0:
1517		case LM85_VERSTEP_EMC6D100_A1:
1518			/* Note: we can't tell a '100 from a '101 */
1519			type_name = "emc6d100";
1520			break;
1521		case LM85_VERSTEP_EMC6D102:
1522			type_name = "emc6d102";
1523			break;
1524		case LM85_VERSTEP_EMC6D103_A0:
1525		case LM85_VERSTEP_EMC6D103_A1:
1526			type_name = "emc6d103";
1527			break;
1528		case LM85_VERSTEP_EMC6D103S:
1529			type_name = "emc6d103s";
1530			break;
1531		}
1532	}
1533
1534	if (!type_name)
1535		return -ENODEV;
1536
1537	strlcpy(info->type, type_name, I2C_NAME_SIZE);
1538
1539	return 0;
1540}
1541
1542static int lm85_probe(struct i2c_client *client, const struct i2c_device_id *id)
1543{
1544	struct device *dev = &client->dev;
1545	struct device *hwmon_dev;
1546	struct lm85_data *data;
1547	int idx = 0;
1548
1549	data = devm_kzalloc(dev, sizeof(struct lm85_data), GFP_KERNEL);
1550	if (!data)
1551		return -ENOMEM;
1552
1553	data->client = client;
1554	data->type = id->driver_data;
1555	mutex_init(&data->update_lock);
1556
1557	/* Fill in the chip specific driver values */
1558	switch (data->type) {
1559	case adm1027:
1560	case adt7463:
1561	case adt7468:
1562	case emc6d100:
1563	case emc6d102:
1564	case emc6d103:
1565	case emc6d103s:
1566		data->freq_map = adm1027_freq_map;
1567		break;
1568	default:
1569		data->freq_map = lm85_freq_map;
1570	}
1571
1572	/* Set the VRM version */
1573	data->vrm = vid_which_vrm();
1574
1575	/* Initialize the LM85 chip */
1576	lm85_init_client(client);
1577
1578	/* sysfs hooks */
1579	data->groups[idx++] = &lm85_group;
1580
1581	/* minctl and temp_off exist on all chips except emc6d103s */
1582	if (data->type != emc6d103s) {
1583		data->groups[idx++] = &lm85_group_minctl;
1584		data->groups[idx++] = &lm85_group_temp_off;
1585	}
1586
1587	/*
1588	 * The ADT7463/68 have an optional VRM 10 mode where pin 21 is used
1589	 * as a sixth digital VID input rather than an analog input.
1590	 */
1591	if (data->type == adt7463 || data->type == adt7468) {
1592		u8 vid = lm85_read_value(client, LM85_REG_VID);
1593		if (vid & 0x80)
1594			data->has_vid5 = true;
1595	}
1596
1597	if (!data->has_vid5)
1598		data->groups[idx++] = &lm85_group_in4;
1599
1600	/* The EMC6D100 has 3 additional voltage inputs */
1601	if (data->type == emc6d100)
1602		data->groups[idx++] = &lm85_group_in567;
1603
1604	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
1605							   data, data->groups);
1606	return PTR_ERR_OR_ZERO(hwmon_dev);
1607}
1608
1609static const struct i2c_device_id lm85_id[] = {
1610	{ "adm1027", adm1027 },
1611	{ "adt7463", adt7463 },
1612	{ "adt7468", adt7468 },
1613	{ "lm85", lm85 },
1614	{ "lm85b", lm85 },
1615	{ "lm85c", lm85 },
1616	{ "emc6d100", emc6d100 },
1617	{ "emc6d101", emc6d100 },
1618	{ "emc6d102", emc6d102 },
1619	{ "emc6d103", emc6d103 },
1620	{ "emc6d103s", emc6d103s },
1621	{ }
1622};
1623MODULE_DEVICE_TABLE(i2c, lm85_id);
1624
1625static struct i2c_driver lm85_driver = {
1626	.class		= I2C_CLASS_HWMON,
1627	.driver = {
1628		.name   = "lm85",
1629	},
1630	.probe		= lm85_probe,
1631	.id_table	= lm85_id,
1632	.detect		= lm85_detect,
1633	.address_list	= normal_i2c,
1634};
1635
1636module_i2c_driver(lm85_driver);
1637
1638MODULE_LICENSE("GPL");
1639MODULE_AUTHOR("Philip Pokorny <ppokorny@penguincomputing.com>, "
1640	"Margit Schubert-While <margitsw@t-online.de>, "
1641	"Justin Thiessen <jthiessen@penguincomputing.com>");
1642MODULE_DESCRIPTION("LM85-B, LM85-C driver");