Linux Audio

Check our new training course

Loading...
v4.10.11
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/export.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
  24#include <asm/geode.h>
  25#include <asm/apic.h>
  26#include <asm/intel-family.h>
  27
  28unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  29EXPORT_SYMBOL(cpu_khz);
  30
  31unsigned int __read_mostly tsc_khz;
  32EXPORT_SYMBOL(tsc_khz);
  33
  34/*
  35 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  36 */
  37static int __read_mostly tsc_unstable;
  38
  39/* native_sched_clock() is called before tsc_init(), so
  40   we must start with the TSC soft disabled to prevent
  41   erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
  42static int __read_mostly tsc_disabled = -1;
  43
  44static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  45
  46int tsc_clocksource_reliable;
  47
  48static u32 art_to_tsc_numerator;
  49static u32 art_to_tsc_denominator;
  50static u64 art_to_tsc_offset;
  51struct clocksource *art_related_clocksource;
  52
  53/*
  54 * Use a ring-buffer like data structure, where a writer advances the head by
  55 * writing a new data entry and a reader advances the tail when it observes a
  56 * new entry.
  57 *
  58 * Writers are made to wait on readers until there's space to write a new
  59 * entry.
  60 *
  61 * This means that we can always use an {offset, mul} pair to compute a ns
  62 * value that is 'roughly' in the right direction, even if we're writing a new
  63 * {offset, mul} pair during the clock read.
  64 *
  65 * The down-side is that we can no longer guarantee strict monotonicity anymore
  66 * (assuming the TSC was that to begin with), because while we compute the
  67 * intersection point of the two clock slopes and make sure the time is
  68 * continuous at the point of switching; we can no longer guarantee a reader is
  69 * strictly before or after the switch point.
  70 *
  71 * It does mean a reader no longer needs to disable IRQs in order to avoid
  72 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  73 * no longer run the risk of hitting half-written state.
  74 */
  75
  76struct cyc2ns {
  77	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
  78	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
  79	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
  80}; /* exactly fits one cacheline */
  81
  82static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  83
  84struct cyc2ns_data *cyc2ns_read_begin(void)
  85{
  86	struct cyc2ns_data *head;
  87
  88	preempt_disable();
  89
  90	head = this_cpu_read(cyc2ns.head);
  91	/*
  92	 * Ensure we observe the entry when we observe the pointer to it.
  93	 * matches the wmb from cyc2ns_write_end().
  94	 */
  95	smp_read_barrier_depends();
  96	head->__count++;
  97	barrier();
  98
  99	return head;
 100}
 101
 102void cyc2ns_read_end(struct cyc2ns_data *head)
 103{
 104	barrier();
 105	/*
 106	 * If we're the outer most nested read; update the tail pointer
 107	 * when we're done. This notifies possible pending writers
 108	 * that we've observed the head pointer and that the other
 109	 * entry is now free.
 110	 */
 111	if (!--head->__count) {
 112		/*
 113		 * x86-TSO does not reorder writes with older reads;
 114		 * therefore once this write becomes visible to another
 115		 * cpu, we must be finished reading the cyc2ns_data.
 116		 *
 117		 * matches with cyc2ns_write_begin().
 118		 */
 119		this_cpu_write(cyc2ns.tail, head);
 120	}
 121	preempt_enable();
 122}
 123
 124/*
 125 * Begin writing a new @data entry for @cpu.
 126 *
 127 * Assumes some sort of write side lock; currently 'provided' by the assumption
 128 * that cpufreq will call its notifiers sequentially.
 129 */
 130static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 131{
 132	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 133	struct cyc2ns_data *data = c2n->data;
 134
 135	if (data == c2n->head)
 136		data++;
 137
 138	/* XXX send an IPI to @cpu in order to guarantee a read? */
 139
 140	/*
 141	 * When we observe the tail write from cyc2ns_read_end(),
 142	 * the cpu must be done with that entry and its safe
 143	 * to start writing to it.
 144	 */
 145	while (c2n->tail == data)
 146		cpu_relax();
 147
 148	return data;
 149}
 150
 151static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 152{
 153	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 154
 155	/*
 156	 * Ensure the @data writes are visible before we publish the
 157	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 158	 */
 159	smp_wmb();
 160
 161	ACCESS_ONCE(c2n->head) = data;
 162}
 163
 164/*
 165 * Accelerators for sched_clock()
 166 * convert from cycles(64bits) => nanoseconds (64bits)
 167 *  basic equation:
 168 *              ns = cycles / (freq / ns_per_sec)
 169 *              ns = cycles * (ns_per_sec / freq)
 170 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 171 *              ns = cycles * (10^6 / cpu_khz)
 172 *
 173 *      Then we use scaling math (suggested by george@mvista.com) to get:
 174 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 175 *              ns = cycles * cyc2ns_scale / SC
 176 *
 177 *      And since SC is a constant power of two, we can convert the div
 178 *  into a shift. The larger SC is, the more accurate the conversion, but
 179 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 180 *  (64-bit result) can be used.
 181 *
 182 *  We can use khz divisor instead of mhz to keep a better precision.
 183 *  (mathieu.desnoyers@polymtl.ca)
 184 *
 185 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 186 */
 187
 188static void cyc2ns_data_init(struct cyc2ns_data *data)
 189{
 190	data->cyc2ns_mul = 0;
 191	data->cyc2ns_shift = 0;
 192	data->cyc2ns_offset = 0;
 193	data->__count = 0;
 194}
 195
 196static void cyc2ns_init(int cpu)
 197{
 198	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 199
 200	cyc2ns_data_init(&c2n->data[0]);
 201	cyc2ns_data_init(&c2n->data[1]);
 202
 203	c2n->head = c2n->data;
 204	c2n->tail = c2n->data;
 205}
 206
 207static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 208{
 209	struct cyc2ns_data *data, *tail;
 210	unsigned long long ns;
 211
 212	/*
 213	 * See cyc2ns_read_*() for details; replicated in order to avoid
 214	 * an extra few instructions that came with the abstraction.
 215	 * Notable, it allows us to only do the __count and tail update
 216	 * dance when its actually needed.
 217	 */
 218
 219	preempt_disable_notrace();
 220	data = this_cpu_read(cyc2ns.head);
 221	tail = this_cpu_read(cyc2ns.tail);
 222
 223	if (likely(data == tail)) {
 224		ns = data->cyc2ns_offset;
 225		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 226	} else {
 227		data->__count++;
 228
 229		barrier();
 230
 231		ns = data->cyc2ns_offset;
 232		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 233
 234		barrier();
 235
 236		if (!--data->__count)
 237			this_cpu_write(cyc2ns.tail, data);
 238	}
 239	preempt_enable_notrace();
 240
 241	return ns;
 242}
 243
 244static void set_cyc2ns_scale(unsigned long khz, int cpu)
 245{
 246	unsigned long long tsc_now, ns_now;
 247	struct cyc2ns_data *data;
 248	unsigned long flags;
 249
 250	local_irq_save(flags);
 251	sched_clock_idle_sleep_event();
 252
 253	if (!khz)
 254		goto done;
 255
 256	data = cyc2ns_write_begin(cpu);
 257
 258	tsc_now = rdtsc();
 259	ns_now = cycles_2_ns(tsc_now);
 260
 261	/*
 262	 * Compute a new multiplier as per the above comment and ensure our
 263	 * time function is continuous; see the comment near struct
 264	 * cyc2ns_data.
 265	 */
 266	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, khz,
 267			       NSEC_PER_MSEC, 0);
 268
 269	/*
 270	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 271	 * not expected to be greater than 31 due to the original published
 272	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 273	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 274	 */
 275	if (data->cyc2ns_shift == 32) {
 276		data->cyc2ns_shift = 31;
 277		data->cyc2ns_mul >>= 1;
 278	}
 279
 280	data->cyc2ns_offset = ns_now -
 281		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
 282
 283	cyc2ns_write_end(cpu, data);
 284
 285done:
 286	sched_clock_idle_wakeup_event(0);
 287	local_irq_restore(flags);
 288}
 289/*
 290 * Scheduler clock - returns current time in nanosec units.
 291 */
 292u64 native_sched_clock(void)
 293{
 294	if (static_branch_likely(&__use_tsc)) {
 295		u64 tsc_now = rdtsc();
 296
 297		/* return the value in ns */
 298		return cycles_2_ns(tsc_now);
 299	}
 300
 301	/*
 302	 * Fall back to jiffies if there's no TSC available:
 303	 * ( But note that we still use it if the TSC is marked
 304	 *   unstable. We do this because unlike Time Of Day,
 305	 *   the scheduler clock tolerates small errors and it's
 306	 *   very important for it to be as fast as the platform
 307	 *   can achieve it. )
 308	 */
 309
 310	/* No locking but a rare wrong value is not a big deal: */
 311	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 312}
 313
 314/*
 315 * Generate a sched_clock if you already have a TSC value.
 316 */
 317u64 native_sched_clock_from_tsc(u64 tsc)
 318{
 319	return cycles_2_ns(tsc);
 320}
 321
 322/* We need to define a real function for sched_clock, to override the
 323   weak default version */
 324#ifdef CONFIG_PARAVIRT
 325unsigned long long sched_clock(void)
 326{
 327	return paravirt_sched_clock();
 328}
 329#else
 330unsigned long long
 331sched_clock(void) __attribute__((alias("native_sched_clock")));
 332#endif
 333
 334int check_tsc_unstable(void)
 335{
 336	return tsc_unstable;
 337}
 338EXPORT_SYMBOL_GPL(check_tsc_unstable);
 339
 
 
 
 
 
 
 340#ifdef CONFIG_X86_TSC
 341int __init notsc_setup(char *str)
 342{
 343	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 344	tsc_disabled = 1;
 345	return 1;
 346}
 347#else
 348/*
 349 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 350 * in cpu/common.c
 351 */
 352int __init notsc_setup(char *str)
 353{
 354	setup_clear_cpu_cap(X86_FEATURE_TSC);
 355	return 1;
 356}
 357#endif
 358
 359__setup("notsc", notsc_setup);
 360
 361static int no_sched_irq_time;
 362
 363static int __init tsc_setup(char *str)
 364{
 365	if (!strcmp(str, "reliable"))
 366		tsc_clocksource_reliable = 1;
 367	if (!strncmp(str, "noirqtime", 9))
 368		no_sched_irq_time = 1;
 369	return 1;
 370}
 371
 372__setup("tsc=", tsc_setup);
 373
 374#define MAX_RETRIES     5
 375#define SMI_TRESHOLD    50000
 376
 377/*
 378 * Read TSC and the reference counters. Take care of SMI disturbance
 379 */
 380static u64 tsc_read_refs(u64 *p, int hpet)
 381{
 382	u64 t1, t2;
 383	int i;
 384
 385	for (i = 0; i < MAX_RETRIES; i++) {
 386		t1 = get_cycles();
 387		if (hpet)
 388			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 389		else
 390			*p = acpi_pm_read_early();
 391		t2 = get_cycles();
 392		if ((t2 - t1) < SMI_TRESHOLD)
 393			return t2;
 394	}
 395	return ULLONG_MAX;
 396}
 397
 398/*
 399 * Calculate the TSC frequency from HPET reference
 400 */
 401static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 402{
 403	u64 tmp;
 404
 405	if (hpet2 < hpet1)
 406		hpet2 += 0x100000000ULL;
 407	hpet2 -= hpet1;
 408	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 409	do_div(tmp, 1000000);
 410	do_div(deltatsc, tmp);
 411
 412	return (unsigned long) deltatsc;
 413}
 414
 415/*
 416 * Calculate the TSC frequency from PMTimer reference
 417 */
 418static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 419{
 420	u64 tmp;
 421
 422	if (!pm1 && !pm2)
 423		return ULONG_MAX;
 424
 425	if (pm2 < pm1)
 426		pm2 += (u64)ACPI_PM_OVRRUN;
 427	pm2 -= pm1;
 428	tmp = pm2 * 1000000000LL;
 429	do_div(tmp, PMTMR_TICKS_PER_SEC);
 430	do_div(deltatsc, tmp);
 431
 432	return (unsigned long) deltatsc;
 433}
 434
 435#define CAL_MS		10
 436#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 437#define CAL_PIT_LOOPS	1000
 438
 439#define CAL2_MS		50
 440#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 441#define CAL2_PIT_LOOPS	5000
 442
 443
 444/*
 445 * Try to calibrate the TSC against the Programmable
 446 * Interrupt Timer and return the frequency of the TSC
 447 * in kHz.
 448 *
 449 * Return ULONG_MAX on failure to calibrate.
 450 */
 451static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 452{
 453	u64 tsc, t1, t2, delta;
 454	unsigned long tscmin, tscmax;
 455	int pitcnt;
 456
 457	/* Set the Gate high, disable speaker */
 458	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 459
 460	/*
 461	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 462	 * count mode), binary count. Set the latch register to 50ms
 463	 * (LSB then MSB) to begin countdown.
 464	 */
 465	outb(0xb0, 0x43);
 466	outb(latch & 0xff, 0x42);
 467	outb(latch >> 8, 0x42);
 468
 469	tsc = t1 = t2 = get_cycles();
 470
 471	pitcnt = 0;
 472	tscmax = 0;
 473	tscmin = ULONG_MAX;
 474	while ((inb(0x61) & 0x20) == 0) {
 475		t2 = get_cycles();
 476		delta = t2 - tsc;
 477		tsc = t2;
 478		if ((unsigned long) delta < tscmin)
 479			tscmin = (unsigned int) delta;
 480		if ((unsigned long) delta > tscmax)
 481			tscmax = (unsigned int) delta;
 482		pitcnt++;
 483	}
 484
 485	/*
 486	 * Sanity checks:
 487	 *
 488	 * If we were not able to read the PIT more than loopmin
 489	 * times, then we have been hit by a massive SMI
 490	 *
 491	 * If the maximum is 10 times larger than the minimum,
 492	 * then we got hit by an SMI as well.
 493	 */
 494	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 495		return ULONG_MAX;
 496
 497	/* Calculate the PIT value */
 498	delta = t2 - t1;
 499	do_div(delta, ms);
 500	return delta;
 501}
 502
 503/*
 504 * This reads the current MSB of the PIT counter, and
 505 * checks if we are running on sufficiently fast and
 506 * non-virtualized hardware.
 507 *
 508 * Our expectations are:
 509 *
 510 *  - the PIT is running at roughly 1.19MHz
 511 *
 512 *  - each IO is going to take about 1us on real hardware,
 513 *    but we allow it to be much faster (by a factor of 10) or
 514 *    _slightly_ slower (ie we allow up to a 2us read+counter
 515 *    update - anything else implies a unacceptably slow CPU
 516 *    or PIT for the fast calibration to work.
 517 *
 518 *  - with 256 PIT ticks to read the value, we have 214us to
 519 *    see the same MSB (and overhead like doing a single TSC
 520 *    read per MSB value etc).
 521 *
 522 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 523 *    them each to take about a microsecond on real hardware.
 524 *    So we expect a count value of around 100. But we'll be
 525 *    generous, and accept anything over 50.
 526 *
 527 *  - if the PIT is stuck, and we see *many* more reads, we
 528 *    return early (and the next caller of pit_expect_msb()
 529 *    then consider it a failure when they don't see the
 530 *    next expected value).
 531 *
 532 * These expectations mean that we know that we have seen the
 533 * transition from one expected value to another with a fairly
 534 * high accuracy, and we didn't miss any events. We can thus
 535 * use the TSC value at the transitions to calculate a pretty
 536 * good value for the TSC frequencty.
 537 */
 538static inline int pit_verify_msb(unsigned char val)
 539{
 540	/* Ignore LSB */
 541	inb(0x42);
 542	return inb(0x42) == val;
 543}
 544
 545static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 546{
 547	int count;
 548	u64 tsc = 0, prev_tsc = 0;
 549
 550	for (count = 0; count < 50000; count++) {
 551		if (!pit_verify_msb(val))
 552			break;
 553		prev_tsc = tsc;
 554		tsc = get_cycles();
 555	}
 556	*deltap = get_cycles() - prev_tsc;
 557	*tscp = tsc;
 558
 559	/*
 560	 * We require _some_ success, but the quality control
 561	 * will be based on the error terms on the TSC values.
 562	 */
 563	return count > 5;
 564}
 565
 566/*
 567 * How many MSB values do we want to see? We aim for
 568 * a maximum error rate of 500ppm (in practice the
 569 * real error is much smaller), but refuse to spend
 570 * more than 50ms on it.
 571 */
 572#define MAX_QUICK_PIT_MS 50
 573#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 574
 575static unsigned long quick_pit_calibrate(void)
 576{
 577	int i;
 578	u64 tsc, delta;
 579	unsigned long d1, d2;
 580
 581	/* Set the Gate high, disable speaker */
 582	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 583
 584	/*
 585	 * Counter 2, mode 0 (one-shot), binary count
 586	 *
 587	 * NOTE! Mode 2 decrements by two (and then the
 588	 * output is flipped each time, giving the same
 589	 * final output frequency as a decrement-by-one),
 590	 * so mode 0 is much better when looking at the
 591	 * individual counts.
 592	 */
 593	outb(0xb0, 0x43);
 594
 595	/* Start at 0xffff */
 596	outb(0xff, 0x42);
 597	outb(0xff, 0x42);
 598
 599	/*
 600	 * The PIT starts counting at the next edge, so we
 601	 * need to delay for a microsecond. The easiest way
 602	 * to do that is to just read back the 16-bit counter
 603	 * once from the PIT.
 604	 */
 605	pit_verify_msb(0);
 606
 607	if (pit_expect_msb(0xff, &tsc, &d1)) {
 608		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 609			if (!pit_expect_msb(0xff-i, &delta, &d2))
 610				break;
 611
 612			delta -= tsc;
 613
 614			/*
 615			 * Extrapolate the error and fail fast if the error will
 616			 * never be below 500 ppm.
 617			 */
 618			if (i == 1 &&
 619			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 620				return 0;
 621
 622			/*
 623			 * Iterate until the error is less than 500 ppm
 624			 */
 625			if (d1+d2 >= delta >> 11)
 626				continue;
 627
 628			/*
 629			 * Check the PIT one more time to verify that
 630			 * all TSC reads were stable wrt the PIT.
 631			 *
 632			 * This also guarantees serialization of the
 633			 * last cycle read ('d2') in pit_expect_msb.
 634			 */
 635			if (!pit_verify_msb(0xfe - i))
 636				break;
 637			goto success;
 638		}
 639	}
 640	pr_info("Fast TSC calibration failed\n");
 641	return 0;
 642
 643success:
 644	/*
 645	 * Ok, if we get here, then we've seen the
 646	 * MSB of the PIT decrement 'i' times, and the
 647	 * error has shrunk to less than 500 ppm.
 648	 *
 649	 * As a result, we can depend on there not being
 650	 * any odd delays anywhere, and the TSC reads are
 651	 * reliable (within the error).
 652	 *
 653	 * kHz = ticks / time-in-seconds / 1000;
 654	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 655	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 656	 */
 657	delta *= PIT_TICK_RATE;
 658	do_div(delta, i*256*1000);
 659	pr_info("Fast TSC calibration using PIT\n");
 660	return delta;
 661}
 662
 663/**
 664 * native_calibrate_tsc
 665 * Determine TSC frequency via CPUID, else return 0.
 666 */
 667unsigned long native_calibrate_tsc(void)
 668{
 669	unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
 670	unsigned int crystal_khz;
 671
 672	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 673		return 0;
 674
 675	if (boot_cpu_data.cpuid_level < 0x15)
 676		return 0;
 677
 678	eax_denominator = ebx_numerator = ecx_hz = edx = 0;
 679
 680	/* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
 681	cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
 682
 683	if (ebx_numerator == 0 || eax_denominator == 0)
 684		return 0;
 685
 686	crystal_khz = ecx_hz / 1000;
 687
 688	if (crystal_khz == 0) {
 689		switch (boot_cpu_data.x86_model) {
 690		case INTEL_FAM6_SKYLAKE_MOBILE:
 691		case INTEL_FAM6_SKYLAKE_DESKTOP:
 692		case INTEL_FAM6_KABYLAKE_MOBILE:
 693		case INTEL_FAM6_KABYLAKE_DESKTOP:
 694			crystal_khz = 24000;	/* 24.0 MHz */
 695			break;
 696		case INTEL_FAM6_SKYLAKE_X:
 697		case INTEL_FAM6_ATOM_DENVERTON:
 698			crystal_khz = 25000;	/* 25.0 MHz */
 699			break;
 700		case INTEL_FAM6_ATOM_GOLDMONT:
 701			crystal_khz = 19200;	/* 19.2 MHz */
 702			break;
 703		}
 704	}
 705
 706	/*
 707	 * TSC frequency determined by CPUID is a "hardware reported"
 708	 * frequency and is the most accurate one so far we have. This
 709	 * is considered a known frequency.
 710	 */
 711	setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
 712
 713	/*
 714	 * For Atom SoCs TSC is the only reliable clocksource.
 715	 * Mark TSC reliable so no watchdog on it.
 716	 */
 717	if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
 718		setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
 719
 720	return crystal_khz * ebx_numerator / eax_denominator;
 721}
 722
 723static unsigned long cpu_khz_from_cpuid(void)
 724{
 725	unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
 726
 727	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 728		return 0;
 729
 730	if (boot_cpu_data.cpuid_level < 0x16)
 731		return 0;
 732
 733	eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
 734
 735	cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
 736
 737	return eax_base_mhz * 1000;
 738}
 739
 740/**
 741 * native_calibrate_cpu - calibrate the cpu on boot
 742 */
 743unsigned long native_calibrate_cpu(void)
 744{
 745	u64 tsc1, tsc2, delta, ref1, ref2;
 746	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 747	unsigned long flags, latch, ms, fast_calibrate;
 748	int hpet = is_hpet_enabled(), i, loopmin;
 749
 750	fast_calibrate = cpu_khz_from_cpuid();
 751	if (fast_calibrate)
 752		return fast_calibrate;
 753
 754	fast_calibrate = cpu_khz_from_msr();
 755	if (fast_calibrate)
 756		return fast_calibrate;
 757
 758	local_irq_save(flags);
 759	fast_calibrate = quick_pit_calibrate();
 760	local_irq_restore(flags);
 761	if (fast_calibrate)
 762		return fast_calibrate;
 763
 764	/*
 765	 * Run 5 calibration loops to get the lowest frequency value
 766	 * (the best estimate). We use two different calibration modes
 767	 * here:
 768	 *
 769	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 770	 * load a timeout of 50ms. We read the time right after we
 771	 * started the timer and wait until the PIT count down reaches
 772	 * zero. In each wait loop iteration we read the TSC and check
 773	 * the delta to the previous read. We keep track of the min
 774	 * and max values of that delta. The delta is mostly defined
 775	 * by the IO time of the PIT access, so we can detect when a
 776	 * SMI/SMM disturbance happened between the two reads. If the
 777	 * maximum time is significantly larger than the minimum time,
 778	 * then we discard the result and have another try.
 779	 *
 780	 * 2) Reference counter. If available we use the HPET or the
 781	 * PMTIMER as a reference to check the sanity of that value.
 782	 * We use separate TSC readouts and check inside of the
 783	 * reference read for a SMI/SMM disturbance. We dicard
 784	 * disturbed values here as well. We do that around the PIT
 785	 * calibration delay loop as we have to wait for a certain
 786	 * amount of time anyway.
 787	 */
 788
 789	/* Preset PIT loop values */
 790	latch = CAL_LATCH;
 791	ms = CAL_MS;
 792	loopmin = CAL_PIT_LOOPS;
 793
 794	for (i = 0; i < 3; i++) {
 795		unsigned long tsc_pit_khz;
 796
 797		/*
 798		 * Read the start value and the reference count of
 799		 * hpet/pmtimer when available. Then do the PIT
 800		 * calibration, which will take at least 50ms, and
 801		 * read the end value.
 802		 */
 803		local_irq_save(flags);
 804		tsc1 = tsc_read_refs(&ref1, hpet);
 805		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 806		tsc2 = tsc_read_refs(&ref2, hpet);
 807		local_irq_restore(flags);
 808
 809		/* Pick the lowest PIT TSC calibration so far */
 810		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 811
 812		/* hpet or pmtimer available ? */
 813		if (ref1 == ref2)
 814			continue;
 815
 816		/* Check, whether the sampling was disturbed by an SMI */
 817		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 818			continue;
 819
 820		tsc2 = (tsc2 - tsc1) * 1000000LL;
 821		if (hpet)
 822			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 823		else
 824			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 825
 826		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 827
 828		/* Check the reference deviation */
 829		delta = ((u64) tsc_pit_min) * 100;
 830		do_div(delta, tsc_ref_min);
 831
 832		/*
 833		 * If both calibration results are inside a 10% window
 834		 * then we can be sure, that the calibration
 835		 * succeeded. We break out of the loop right away. We
 836		 * use the reference value, as it is more precise.
 837		 */
 838		if (delta >= 90 && delta <= 110) {
 839			pr_info("PIT calibration matches %s. %d loops\n",
 840				hpet ? "HPET" : "PMTIMER", i + 1);
 841			return tsc_ref_min;
 842		}
 843
 844		/*
 845		 * Check whether PIT failed more than once. This
 846		 * happens in virtualized environments. We need to
 847		 * give the virtual PC a slightly longer timeframe for
 848		 * the HPET/PMTIMER to make the result precise.
 849		 */
 850		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 851			latch = CAL2_LATCH;
 852			ms = CAL2_MS;
 853			loopmin = CAL2_PIT_LOOPS;
 854		}
 855	}
 856
 857	/*
 858	 * Now check the results.
 859	 */
 860	if (tsc_pit_min == ULONG_MAX) {
 861		/* PIT gave no useful value */
 862		pr_warn("Unable to calibrate against PIT\n");
 863
 864		/* We don't have an alternative source, disable TSC */
 865		if (!hpet && !ref1 && !ref2) {
 866			pr_notice("No reference (HPET/PMTIMER) available\n");
 867			return 0;
 868		}
 869
 870		/* The alternative source failed as well, disable TSC */
 871		if (tsc_ref_min == ULONG_MAX) {
 872			pr_warn("HPET/PMTIMER calibration failed\n");
 873			return 0;
 874		}
 875
 876		/* Use the alternative source */
 877		pr_info("using %s reference calibration\n",
 878			hpet ? "HPET" : "PMTIMER");
 879
 880		return tsc_ref_min;
 881	}
 882
 883	/* We don't have an alternative source, use the PIT calibration value */
 884	if (!hpet && !ref1 && !ref2) {
 885		pr_info("Using PIT calibration value\n");
 886		return tsc_pit_min;
 887	}
 888
 889	/* The alternative source failed, use the PIT calibration value */
 890	if (tsc_ref_min == ULONG_MAX) {
 891		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 892		return tsc_pit_min;
 893	}
 894
 895	/*
 896	 * The calibration values differ too much. In doubt, we use
 897	 * the PIT value as we know that there are PMTIMERs around
 898	 * running at double speed. At least we let the user know:
 899	 */
 900	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 901		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 902	pr_info("Using PIT calibration value\n");
 903	return tsc_pit_min;
 904}
 905
 906int recalibrate_cpu_khz(void)
 907{
 908#ifndef CONFIG_SMP
 909	unsigned long cpu_khz_old = cpu_khz;
 910
 911	if (!boot_cpu_has(X86_FEATURE_TSC))
 912		return -ENODEV;
 913
 914	cpu_khz = x86_platform.calibrate_cpu();
 915	tsc_khz = x86_platform.calibrate_tsc();
 916	if (tsc_khz == 0)
 917		tsc_khz = cpu_khz;
 918	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
 919		cpu_khz = tsc_khz;
 920	cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
 921						    cpu_khz_old, cpu_khz);
 922
 923	return 0;
 
 
 924#else
 925	return -ENODEV;
 926#endif
 927}
 928
 929EXPORT_SYMBOL(recalibrate_cpu_khz);
 930
 931
 932static unsigned long long cyc2ns_suspend;
 933
 934void tsc_save_sched_clock_state(void)
 935{
 936	if (!sched_clock_stable())
 937		return;
 938
 939	cyc2ns_suspend = sched_clock();
 940}
 941
 942/*
 943 * Even on processors with invariant TSC, TSC gets reset in some the
 944 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 945 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 946 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 947 * that sched_clock() continues from the point where it was left off during
 948 * suspend.
 949 */
 950void tsc_restore_sched_clock_state(void)
 951{
 952	unsigned long long offset;
 953	unsigned long flags;
 954	int cpu;
 955
 956	if (!sched_clock_stable())
 957		return;
 958
 959	local_irq_save(flags);
 960
 961	/*
 962	 * We're coming out of suspend, there's no concurrency yet; don't
 963	 * bother being nice about the RCU stuff, just write to both
 964	 * data fields.
 965	 */
 966
 967	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 968	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 969
 970	offset = cyc2ns_suspend - sched_clock();
 971
 972	for_each_possible_cpu(cpu) {
 973		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 974		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 975	}
 976
 977	local_irq_restore(flags);
 978}
 979
 980#ifdef CONFIG_CPU_FREQ
 981
 982/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 983 * changes.
 984 *
 985 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 986 * not that important because current Opteron setups do not support
 987 * scaling on SMP anyroads.
 988 *
 989 * Should fix up last_tsc too. Currently gettimeofday in the
 990 * first tick after the change will be slightly wrong.
 991 */
 992
 993static unsigned int  ref_freq;
 994static unsigned long loops_per_jiffy_ref;
 995static unsigned long tsc_khz_ref;
 996
 997static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 998				void *data)
 999{
1000	struct cpufreq_freqs *freq = data;
1001	unsigned long *lpj;
1002
 
 
 
1003	lpj = &boot_cpu_data.loops_per_jiffy;
1004#ifdef CONFIG_SMP
1005	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1006		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
1007#endif
1008
1009	if (!ref_freq) {
1010		ref_freq = freq->old;
1011		loops_per_jiffy_ref = *lpj;
1012		tsc_khz_ref = tsc_khz;
1013	}
1014	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
1015			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
1016		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
1017
1018		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
1019		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
1020			mark_tsc_unstable("cpufreq changes");
1021
1022		set_cyc2ns_scale(tsc_khz, freq->cpu);
1023	}
1024
1025	return 0;
1026}
1027
1028static struct notifier_block time_cpufreq_notifier_block = {
1029	.notifier_call  = time_cpufreq_notifier
1030};
1031
1032static int __init cpufreq_register_tsc_scaling(void)
1033{
1034	if (!boot_cpu_has(X86_FEATURE_TSC))
1035		return 0;
1036	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1037		return 0;
1038	cpufreq_register_notifier(&time_cpufreq_notifier_block,
1039				CPUFREQ_TRANSITION_NOTIFIER);
1040	return 0;
1041}
1042
1043core_initcall(cpufreq_register_tsc_scaling);
1044
1045#endif /* CONFIG_CPU_FREQ */
1046
1047#define ART_CPUID_LEAF (0x15)
1048#define ART_MIN_DENOMINATOR (1)
1049
1050
1051/*
1052 * If ART is present detect the numerator:denominator to convert to TSC
1053 */
1054static void detect_art(void)
1055{
1056	unsigned int unused[2];
1057
1058	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
1059		return;
1060
1061	/* Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required */
1062	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
1063	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
1064	    !boot_cpu_has(X86_FEATURE_TSC_ADJUST))
1065		return;
1066
1067	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
1068	      &art_to_tsc_numerator, unused, unused+1);
1069
1070	if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
 
 
 
1071		return;
1072
1073	rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
 
1074
1075	/* Make this sticky over multiple CPU init calls */
1076	setup_force_cpu_cap(X86_FEATURE_ART);
1077}
1078
1079
1080/* clocksource code */
1081
1082static struct clocksource clocksource_tsc;
1083
1084static void tsc_resume(struct clocksource *cs)
1085{
1086	tsc_verify_tsc_adjust(true);
1087}
1088
1089/*
1090 * We used to compare the TSC to the cycle_last value in the clocksource
1091 * structure to avoid a nasty time-warp. This can be observed in a
1092 * very small window right after one CPU updated cycle_last under
1093 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1094 * is smaller than the cycle_last reference value due to a TSC which
1095 * is slighty behind. This delta is nowhere else observable, but in
1096 * that case it results in a forward time jump in the range of hours
1097 * due to the unsigned delta calculation of the time keeping core
1098 * code, which is necessary to support wrapping clocksources like pm
1099 * timer.
1100 *
1101 * This sanity check is now done in the core timekeeping code.
1102 * checking the result of read_tsc() - cycle_last for being negative.
1103 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1104 */
1105static u64 read_tsc(struct clocksource *cs)
1106{
1107	return (u64)rdtsc_ordered();
1108}
1109
1110/*
1111 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1112 */
1113static struct clocksource clocksource_tsc = {
1114	.name                   = "tsc",
1115	.rating                 = 300,
1116	.read                   = read_tsc,
1117	.mask                   = CLOCKSOURCE_MASK(64),
1118	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1119				  CLOCK_SOURCE_MUST_VERIFY,
1120	.archdata               = { .vclock_mode = VCLOCK_TSC },
1121	.resume			= tsc_resume,
1122};
1123
1124void mark_tsc_unstable(char *reason)
1125{
1126	if (!tsc_unstable) {
1127		tsc_unstable = 1;
1128		clear_sched_clock_stable();
1129		disable_sched_clock_irqtime();
1130		pr_info("Marking TSC unstable due to %s\n", reason);
1131		/* Change only the rating, when not registered */
1132		if (clocksource_tsc.mult)
1133			clocksource_mark_unstable(&clocksource_tsc);
1134		else {
1135			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1136			clocksource_tsc.rating = 0;
1137		}
1138	}
1139}
1140
1141EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1142
1143static void __init check_system_tsc_reliable(void)
1144{
1145#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1146	if (is_geode_lx()) {
1147		/* RTSC counts during suspend */
1148#define RTSC_SUSP 0x100
1149		unsigned long res_low, res_high;
1150
1151		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1152		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1153		if (res_low & RTSC_SUSP)
1154			tsc_clocksource_reliable = 1;
1155	}
1156#endif
1157	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1158		tsc_clocksource_reliable = 1;
1159}
1160
1161/*
1162 * Make an educated guess if the TSC is trustworthy and synchronized
1163 * over all CPUs.
1164 */
1165int unsynchronized_tsc(void)
1166{
1167	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
1168		return 1;
1169
1170#ifdef CONFIG_SMP
1171	if (apic_is_clustered_box())
1172		return 1;
1173#endif
1174
1175	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1176		return 0;
1177
1178	if (tsc_clocksource_reliable)
1179		return 0;
1180	/*
1181	 * Intel systems are normally all synchronized.
1182	 * Exceptions must mark TSC as unstable:
1183	 */
1184	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1185		/* assume multi socket systems are not synchronized: */
1186		if (num_possible_cpus() > 1)
1187			return 1;
1188	}
1189
1190	return 0;
1191}
1192
1193/*
1194 * Convert ART to TSC given numerator/denominator found in detect_art()
1195 */
1196struct system_counterval_t convert_art_to_tsc(u64 art)
1197{
1198	u64 tmp, res, rem;
1199
1200	rem = do_div(art, art_to_tsc_denominator);
1201
1202	res = art * art_to_tsc_numerator;
1203	tmp = rem * art_to_tsc_numerator;
1204
1205	do_div(tmp, art_to_tsc_denominator);
1206	res += tmp + art_to_tsc_offset;
1207
1208	return (struct system_counterval_t) {.cs = art_related_clocksource,
1209			.cycles = res};
1210}
1211EXPORT_SYMBOL(convert_art_to_tsc);
1212
1213static void tsc_refine_calibration_work(struct work_struct *work);
1214static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1215/**
1216 * tsc_refine_calibration_work - Further refine tsc freq calibration
1217 * @work - ignored.
1218 *
1219 * This functions uses delayed work over a period of a
1220 * second to further refine the TSC freq value. Since this is
1221 * timer based, instead of loop based, we don't block the boot
1222 * process while this longer calibration is done.
1223 *
1224 * If there are any calibration anomalies (too many SMIs, etc),
1225 * or the refined calibration is off by 1% of the fast early
1226 * calibration, we throw out the new calibration and use the
1227 * early calibration.
1228 */
1229static void tsc_refine_calibration_work(struct work_struct *work)
1230{
1231	static u64 tsc_start = -1, ref_start;
1232	static int hpet;
1233	u64 tsc_stop, ref_stop, delta;
1234	unsigned long freq;
1235
1236	/* Don't bother refining TSC on unstable systems */
1237	if (check_tsc_unstable())
1238		goto out;
1239
1240	/*
1241	 * Since the work is started early in boot, we may be
1242	 * delayed the first time we expire. So set the workqueue
1243	 * again once we know timers are working.
1244	 */
1245	if (tsc_start == -1) {
1246		/*
1247		 * Only set hpet once, to avoid mixing hardware
1248		 * if the hpet becomes enabled later.
1249		 */
1250		hpet = is_hpet_enabled();
1251		schedule_delayed_work(&tsc_irqwork, HZ);
1252		tsc_start = tsc_read_refs(&ref_start, hpet);
1253		return;
1254	}
1255
1256	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1257
1258	/* hpet or pmtimer available ? */
1259	if (ref_start == ref_stop)
1260		goto out;
1261
1262	/* Check, whether the sampling was disturbed by an SMI */
1263	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1264		goto out;
1265
1266	delta = tsc_stop - tsc_start;
1267	delta *= 1000000LL;
1268	if (hpet)
1269		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1270	else
1271		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1272
1273	/* Make sure we're within 1% */
1274	if (abs(tsc_khz - freq) > tsc_khz/100)
1275		goto out;
1276
1277	tsc_khz = freq;
1278	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1279		(unsigned long)tsc_khz / 1000,
1280		(unsigned long)tsc_khz % 1000);
1281
1282	/* Inform the TSC deadline clockevent devices about the recalibration */
1283	lapic_update_tsc_freq();
1284
1285out:
1286	if (boot_cpu_has(X86_FEATURE_ART))
1287		art_related_clocksource = &clocksource_tsc;
1288	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1289}
1290
1291
1292static int __init init_tsc_clocksource(void)
1293{
1294	if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
1295		return 0;
1296
1297	if (tsc_clocksource_reliable)
1298		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1299	/* lower the rating if we already know its unstable: */
1300	if (check_tsc_unstable()) {
1301		clocksource_tsc.rating = 0;
1302		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1303	}
1304
1305	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1306		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1307
1308	/*
1309	 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1310	 * the refined calibration and directly register it as a clocksource.
1311	 */
1312	if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
1313		if (boot_cpu_has(X86_FEATURE_ART))
1314			art_related_clocksource = &clocksource_tsc;
1315		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1316		return 0;
1317	}
1318
1319	schedule_delayed_work(&tsc_irqwork, 0);
1320	return 0;
1321}
1322/*
1323 * We use device_initcall here, to ensure we run after the hpet
1324 * is fully initialized, which may occur at fs_initcall time.
1325 */
1326device_initcall(init_tsc_clocksource);
1327
1328void __init tsc_init(void)
1329{
1330	u64 lpj;
1331	int cpu;
1332
1333	if (!boot_cpu_has(X86_FEATURE_TSC)) {
1334		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1335		return;
1336	}
1337
1338	cpu_khz = x86_platform.calibrate_cpu();
1339	tsc_khz = x86_platform.calibrate_tsc();
1340
1341	/*
1342	 * Trust non-zero tsc_khz as authorative,
1343	 * and use it to sanity check cpu_khz,
1344	 * which will be off if system timer is off.
1345	 */
1346	if (tsc_khz == 0)
1347		tsc_khz = cpu_khz;
1348	else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1349		cpu_khz = tsc_khz;
1350
1351	if (!tsc_khz) {
1352		mark_tsc_unstable("could not calculate TSC khz");
1353		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1354		return;
1355	}
1356
1357	pr_info("Detected %lu.%03lu MHz processor\n",
1358		(unsigned long)cpu_khz / 1000,
1359		(unsigned long)cpu_khz % 1000);
1360
1361	/* Sanitize TSC ADJUST before cyc2ns gets initialized */
1362	tsc_store_and_check_tsc_adjust(true);
1363
1364	/*
1365	 * Secondary CPUs do not run through tsc_init(), so set up
1366	 * all the scale factors for all CPUs, assuming the same
1367	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1368	 * up if their speed diverges)
1369	 */
1370	for_each_possible_cpu(cpu) {
1371		cyc2ns_init(cpu);
1372		set_cyc2ns_scale(tsc_khz, cpu);
1373	}
1374
1375	if (tsc_disabled > 0)
1376		return;
1377
1378	/* now allow native_sched_clock() to use rdtsc */
1379
1380	tsc_disabled = 0;
1381	static_branch_enable(&__use_tsc);
1382
1383	if (!no_sched_irq_time)
1384		enable_sched_clock_irqtime();
1385
1386	lpj = ((u64)tsc_khz * 1000);
1387	do_div(lpj, HZ);
1388	lpj_fine = lpj;
1389
1390	use_tsc_delay();
1391
1392	if (unsynchronized_tsc())
1393		mark_tsc_unstable("TSCs unsynchronized");
1394
1395	check_system_tsc_reliable();
1396
1397	detect_art();
1398}
1399
1400#ifdef CONFIG_SMP
1401/*
1402 * If we have a constant TSC and are using the TSC for the delay loop,
1403 * we can skip clock calibration if another cpu in the same socket has already
1404 * been calibrated. This assumes that CONSTANT_TSC applies to all
1405 * cpus in the socket - this should be a safe assumption.
1406 */
1407unsigned long calibrate_delay_is_known(void)
1408{
1409	int sibling, cpu = smp_processor_id();
1410	struct cpumask *mask = topology_core_cpumask(cpu);
1411
1412	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1413		return 0;
1414
1415	if (!mask)
1416		return 0;
1417
1418	sibling = cpumask_any_but(mask, cpu);
1419	if (sibling < nr_cpu_ids)
1420		return cpu_data(sibling).loops_per_jiffy;
1421	return 0;
1422}
1423#endif
v4.6
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/kernel.h>
   4#include <linux/sched.h>
   5#include <linux/init.h>
   6#include <linux/module.h>
   7#include <linux/timer.h>
   8#include <linux/acpi_pmtmr.h>
   9#include <linux/cpufreq.h>
  10#include <linux/delay.h>
  11#include <linux/clocksource.h>
  12#include <linux/percpu.h>
  13#include <linux/timex.h>
  14#include <linux/static_key.h>
  15
  16#include <asm/hpet.h>
  17#include <asm/timer.h>
  18#include <asm/vgtod.h>
  19#include <asm/time.h>
  20#include <asm/delay.h>
  21#include <asm/hypervisor.h>
  22#include <asm/nmi.h>
  23#include <asm/x86_init.h>
  24#include <asm/geode.h>
 
 
  25
  26unsigned int __read_mostly cpu_khz;	/* TSC clocks / usec, not used here */
  27EXPORT_SYMBOL(cpu_khz);
  28
  29unsigned int __read_mostly tsc_khz;
  30EXPORT_SYMBOL(tsc_khz);
  31
  32/*
  33 * TSC can be unstable due to cpufreq or due to unsynced TSCs
  34 */
  35static int __read_mostly tsc_unstable;
  36
  37/* native_sched_clock() is called before tsc_init(), so
  38   we must start with the TSC soft disabled to prevent
  39   erroneous rdtsc usage on !cpu_has_tsc processors */
  40static int __read_mostly tsc_disabled = -1;
  41
  42static DEFINE_STATIC_KEY_FALSE(__use_tsc);
  43
  44int tsc_clocksource_reliable;
  45
  46static u32 art_to_tsc_numerator;
  47static u32 art_to_tsc_denominator;
  48static u64 art_to_tsc_offset;
  49struct clocksource *art_related_clocksource;
  50
  51/*
  52 * Use a ring-buffer like data structure, where a writer advances the head by
  53 * writing a new data entry and a reader advances the tail when it observes a
  54 * new entry.
  55 *
  56 * Writers are made to wait on readers until there's space to write a new
  57 * entry.
  58 *
  59 * This means that we can always use an {offset, mul} pair to compute a ns
  60 * value that is 'roughly' in the right direction, even if we're writing a new
  61 * {offset, mul} pair during the clock read.
  62 *
  63 * The down-side is that we can no longer guarantee strict monotonicity anymore
  64 * (assuming the TSC was that to begin with), because while we compute the
  65 * intersection point of the two clock slopes and make sure the time is
  66 * continuous at the point of switching; we can no longer guarantee a reader is
  67 * strictly before or after the switch point.
  68 *
  69 * It does mean a reader no longer needs to disable IRQs in order to avoid
  70 * CPU-Freq updates messing with his times, and similarly an NMI reader will
  71 * no longer run the risk of hitting half-written state.
  72 */
  73
  74struct cyc2ns {
  75	struct cyc2ns_data data[2];	/*  0 + 2*24 = 48 */
  76	struct cyc2ns_data *head;	/* 48 + 8    = 56 */
  77	struct cyc2ns_data *tail;	/* 56 + 8    = 64 */
  78}; /* exactly fits one cacheline */
  79
  80static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
  81
  82struct cyc2ns_data *cyc2ns_read_begin(void)
  83{
  84	struct cyc2ns_data *head;
  85
  86	preempt_disable();
  87
  88	head = this_cpu_read(cyc2ns.head);
  89	/*
  90	 * Ensure we observe the entry when we observe the pointer to it.
  91	 * matches the wmb from cyc2ns_write_end().
  92	 */
  93	smp_read_barrier_depends();
  94	head->__count++;
  95	barrier();
  96
  97	return head;
  98}
  99
 100void cyc2ns_read_end(struct cyc2ns_data *head)
 101{
 102	barrier();
 103	/*
 104	 * If we're the outer most nested read; update the tail pointer
 105	 * when we're done. This notifies possible pending writers
 106	 * that we've observed the head pointer and that the other
 107	 * entry is now free.
 108	 */
 109	if (!--head->__count) {
 110		/*
 111		 * x86-TSO does not reorder writes with older reads;
 112		 * therefore once this write becomes visible to another
 113		 * cpu, we must be finished reading the cyc2ns_data.
 114		 *
 115		 * matches with cyc2ns_write_begin().
 116		 */
 117		this_cpu_write(cyc2ns.tail, head);
 118	}
 119	preempt_enable();
 120}
 121
 122/*
 123 * Begin writing a new @data entry for @cpu.
 124 *
 125 * Assumes some sort of write side lock; currently 'provided' by the assumption
 126 * that cpufreq will call its notifiers sequentially.
 127 */
 128static struct cyc2ns_data *cyc2ns_write_begin(int cpu)
 129{
 130	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 131	struct cyc2ns_data *data = c2n->data;
 132
 133	if (data == c2n->head)
 134		data++;
 135
 136	/* XXX send an IPI to @cpu in order to guarantee a read? */
 137
 138	/*
 139	 * When we observe the tail write from cyc2ns_read_end(),
 140	 * the cpu must be done with that entry and its safe
 141	 * to start writing to it.
 142	 */
 143	while (c2n->tail == data)
 144		cpu_relax();
 145
 146	return data;
 147}
 148
 149static void cyc2ns_write_end(int cpu, struct cyc2ns_data *data)
 150{
 151	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 152
 153	/*
 154	 * Ensure the @data writes are visible before we publish the
 155	 * entry. Matches the data-depencency in cyc2ns_read_begin().
 156	 */
 157	smp_wmb();
 158
 159	ACCESS_ONCE(c2n->head) = data;
 160}
 161
 162/*
 163 * Accelerators for sched_clock()
 164 * convert from cycles(64bits) => nanoseconds (64bits)
 165 *  basic equation:
 166 *              ns = cycles / (freq / ns_per_sec)
 167 *              ns = cycles * (ns_per_sec / freq)
 168 *              ns = cycles * (10^9 / (cpu_khz * 10^3))
 169 *              ns = cycles * (10^6 / cpu_khz)
 170 *
 171 *      Then we use scaling math (suggested by george@mvista.com) to get:
 172 *              ns = cycles * (10^6 * SC / cpu_khz) / SC
 173 *              ns = cycles * cyc2ns_scale / SC
 174 *
 175 *      And since SC is a constant power of two, we can convert the div
 176 *  into a shift. The larger SC is, the more accurate the conversion, but
 177 *  cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
 178 *  (64-bit result) can be used.
 179 *
 180 *  We can use khz divisor instead of mhz to keep a better precision.
 181 *  (mathieu.desnoyers@polymtl.ca)
 182 *
 183 *                      -johnstul@us.ibm.com "math is hard, lets go shopping!"
 184 */
 185
 186static void cyc2ns_data_init(struct cyc2ns_data *data)
 187{
 188	data->cyc2ns_mul = 0;
 189	data->cyc2ns_shift = 0;
 190	data->cyc2ns_offset = 0;
 191	data->__count = 0;
 192}
 193
 194static void cyc2ns_init(int cpu)
 195{
 196	struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
 197
 198	cyc2ns_data_init(&c2n->data[0]);
 199	cyc2ns_data_init(&c2n->data[1]);
 200
 201	c2n->head = c2n->data;
 202	c2n->tail = c2n->data;
 203}
 204
 205static inline unsigned long long cycles_2_ns(unsigned long long cyc)
 206{
 207	struct cyc2ns_data *data, *tail;
 208	unsigned long long ns;
 209
 210	/*
 211	 * See cyc2ns_read_*() for details; replicated in order to avoid
 212	 * an extra few instructions that came with the abstraction.
 213	 * Notable, it allows us to only do the __count and tail update
 214	 * dance when its actually needed.
 215	 */
 216
 217	preempt_disable_notrace();
 218	data = this_cpu_read(cyc2ns.head);
 219	tail = this_cpu_read(cyc2ns.tail);
 220
 221	if (likely(data == tail)) {
 222		ns = data->cyc2ns_offset;
 223		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 224	} else {
 225		data->__count++;
 226
 227		barrier();
 228
 229		ns = data->cyc2ns_offset;
 230		ns += mul_u64_u32_shr(cyc, data->cyc2ns_mul, data->cyc2ns_shift);
 231
 232		barrier();
 233
 234		if (!--data->__count)
 235			this_cpu_write(cyc2ns.tail, data);
 236	}
 237	preempt_enable_notrace();
 238
 239	return ns;
 240}
 241
 242static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
 243{
 244	unsigned long long tsc_now, ns_now;
 245	struct cyc2ns_data *data;
 246	unsigned long flags;
 247
 248	local_irq_save(flags);
 249	sched_clock_idle_sleep_event();
 250
 251	if (!cpu_khz)
 252		goto done;
 253
 254	data = cyc2ns_write_begin(cpu);
 255
 256	tsc_now = rdtsc();
 257	ns_now = cycles_2_ns(tsc_now);
 258
 259	/*
 260	 * Compute a new multiplier as per the above comment and ensure our
 261	 * time function is continuous; see the comment near struct
 262	 * cyc2ns_data.
 263	 */
 264	clocks_calc_mult_shift(&data->cyc2ns_mul, &data->cyc2ns_shift, cpu_khz,
 265			       NSEC_PER_MSEC, 0);
 266
 267	/*
 268	 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
 269	 * not expected to be greater than 31 due to the original published
 270	 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
 271	 * value) - refer perf_event_mmap_page documentation in perf_event.h.
 272	 */
 273	if (data->cyc2ns_shift == 32) {
 274		data->cyc2ns_shift = 31;
 275		data->cyc2ns_mul >>= 1;
 276	}
 277
 278	data->cyc2ns_offset = ns_now -
 279		mul_u64_u32_shr(tsc_now, data->cyc2ns_mul, data->cyc2ns_shift);
 280
 281	cyc2ns_write_end(cpu, data);
 282
 283done:
 284	sched_clock_idle_wakeup_event(0);
 285	local_irq_restore(flags);
 286}
 287/*
 288 * Scheduler clock - returns current time in nanosec units.
 289 */
 290u64 native_sched_clock(void)
 291{
 292	if (static_branch_likely(&__use_tsc)) {
 293		u64 tsc_now = rdtsc();
 294
 295		/* return the value in ns */
 296		return cycles_2_ns(tsc_now);
 297	}
 298
 299	/*
 300	 * Fall back to jiffies if there's no TSC available:
 301	 * ( But note that we still use it if the TSC is marked
 302	 *   unstable. We do this because unlike Time Of Day,
 303	 *   the scheduler clock tolerates small errors and it's
 304	 *   very important for it to be as fast as the platform
 305	 *   can achieve it. )
 306	 */
 307
 308	/* No locking but a rare wrong value is not a big deal: */
 309	return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
 310}
 311
 312/*
 313 * Generate a sched_clock if you already have a TSC value.
 314 */
 315u64 native_sched_clock_from_tsc(u64 tsc)
 316{
 317	return cycles_2_ns(tsc);
 318}
 319
 320/* We need to define a real function for sched_clock, to override the
 321   weak default version */
 322#ifdef CONFIG_PARAVIRT
 323unsigned long long sched_clock(void)
 324{
 325	return paravirt_sched_clock();
 326}
 327#else
 328unsigned long long
 329sched_clock(void) __attribute__((alias("native_sched_clock")));
 330#endif
 331
 332int check_tsc_unstable(void)
 333{
 334	return tsc_unstable;
 335}
 336EXPORT_SYMBOL_GPL(check_tsc_unstable);
 337
 338int check_tsc_disabled(void)
 339{
 340	return tsc_disabled;
 341}
 342EXPORT_SYMBOL_GPL(check_tsc_disabled);
 343
 344#ifdef CONFIG_X86_TSC
 345int __init notsc_setup(char *str)
 346{
 347	pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
 348	tsc_disabled = 1;
 349	return 1;
 350}
 351#else
 352/*
 353 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
 354 * in cpu/common.c
 355 */
 356int __init notsc_setup(char *str)
 357{
 358	setup_clear_cpu_cap(X86_FEATURE_TSC);
 359	return 1;
 360}
 361#endif
 362
 363__setup("notsc", notsc_setup);
 364
 365static int no_sched_irq_time;
 366
 367static int __init tsc_setup(char *str)
 368{
 369	if (!strcmp(str, "reliable"))
 370		tsc_clocksource_reliable = 1;
 371	if (!strncmp(str, "noirqtime", 9))
 372		no_sched_irq_time = 1;
 373	return 1;
 374}
 375
 376__setup("tsc=", tsc_setup);
 377
 378#define MAX_RETRIES     5
 379#define SMI_TRESHOLD    50000
 380
 381/*
 382 * Read TSC and the reference counters. Take care of SMI disturbance
 383 */
 384static u64 tsc_read_refs(u64 *p, int hpet)
 385{
 386	u64 t1, t2;
 387	int i;
 388
 389	for (i = 0; i < MAX_RETRIES; i++) {
 390		t1 = get_cycles();
 391		if (hpet)
 392			*p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
 393		else
 394			*p = acpi_pm_read_early();
 395		t2 = get_cycles();
 396		if ((t2 - t1) < SMI_TRESHOLD)
 397			return t2;
 398	}
 399	return ULLONG_MAX;
 400}
 401
 402/*
 403 * Calculate the TSC frequency from HPET reference
 404 */
 405static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
 406{
 407	u64 tmp;
 408
 409	if (hpet2 < hpet1)
 410		hpet2 += 0x100000000ULL;
 411	hpet2 -= hpet1;
 412	tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
 413	do_div(tmp, 1000000);
 414	do_div(deltatsc, tmp);
 415
 416	return (unsigned long) deltatsc;
 417}
 418
 419/*
 420 * Calculate the TSC frequency from PMTimer reference
 421 */
 422static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
 423{
 424	u64 tmp;
 425
 426	if (!pm1 && !pm2)
 427		return ULONG_MAX;
 428
 429	if (pm2 < pm1)
 430		pm2 += (u64)ACPI_PM_OVRRUN;
 431	pm2 -= pm1;
 432	tmp = pm2 * 1000000000LL;
 433	do_div(tmp, PMTMR_TICKS_PER_SEC);
 434	do_div(deltatsc, tmp);
 435
 436	return (unsigned long) deltatsc;
 437}
 438
 439#define CAL_MS		10
 440#define CAL_LATCH	(PIT_TICK_RATE / (1000 / CAL_MS))
 441#define CAL_PIT_LOOPS	1000
 442
 443#define CAL2_MS		50
 444#define CAL2_LATCH	(PIT_TICK_RATE / (1000 / CAL2_MS))
 445#define CAL2_PIT_LOOPS	5000
 446
 447
 448/*
 449 * Try to calibrate the TSC against the Programmable
 450 * Interrupt Timer and return the frequency of the TSC
 451 * in kHz.
 452 *
 453 * Return ULONG_MAX on failure to calibrate.
 454 */
 455static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
 456{
 457	u64 tsc, t1, t2, delta;
 458	unsigned long tscmin, tscmax;
 459	int pitcnt;
 460
 461	/* Set the Gate high, disable speaker */
 462	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 463
 464	/*
 465	 * Setup CTC channel 2* for mode 0, (interrupt on terminal
 466	 * count mode), binary count. Set the latch register to 50ms
 467	 * (LSB then MSB) to begin countdown.
 468	 */
 469	outb(0xb0, 0x43);
 470	outb(latch & 0xff, 0x42);
 471	outb(latch >> 8, 0x42);
 472
 473	tsc = t1 = t2 = get_cycles();
 474
 475	pitcnt = 0;
 476	tscmax = 0;
 477	tscmin = ULONG_MAX;
 478	while ((inb(0x61) & 0x20) == 0) {
 479		t2 = get_cycles();
 480		delta = t2 - tsc;
 481		tsc = t2;
 482		if ((unsigned long) delta < tscmin)
 483			tscmin = (unsigned int) delta;
 484		if ((unsigned long) delta > tscmax)
 485			tscmax = (unsigned int) delta;
 486		pitcnt++;
 487	}
 488
 489	/*
 490	 * Sanity checks:
 491	 *
 492	 * If we were not able to read the PIT more than loopmin
 493	 * times, then we have been hit by a massive SMI
 494	 *
 495	 * If the maximum is 10 times larger than the minimum,
 496	 * then we got hit by an SMI as well.
 497	 */
 498	if (pitcnt < loopmin || tscmax > 10 * tscmin)
 499		return ULONG_MAX;
 500
 501	/* Calculate the PIT value */
 502	delta = t2 - t1;
 503	do_div(delta, ms);
 504	return delta;
 505}
 506
 507/*
 508 * This reads the current MSB of the PIT counter, and
 509 * checks if we are running on sufficiently fast and
 510 * non-virtualized hardware.
 511 *
 512 * Our expectations are:
 513 *
 514 *  - the PIT is running at roughly 1.19MHz
 515 *
 516 *  - each IO is going to take about 1us on real hardware,
 517 *    but we allow it to be much faster (by a factor of 10) or
 518 *    _slightly_ slower (ie we allow up to a 2us read+counter
 519 *    update - anything else implies a unacceptably slow CPU
 520 *    or PIT for the fast calibration to work.
 521 *
 522 *  - with 256 PIT ticks to read the value, we have 214us to
 523 *    see the same MSB (and overhead like doing a single TSC
 524 *    read per MSB value etc).
 525 *
 526 *  - We're doing 2 reads per loop (LSB, MSB), and we expect
 527 *    them each to take about a microsecond on real hardware.
 528 *    So we expect a count value of around 100. But we'll be
 529 *    generous, and accept anything over 50.
 530 *
 531 *  - if the PIT is stuck, and we see *many* more reads, we
 532 *    return early (and the next caller of pit_expect_msb()
 533 *    then consider it a failure when they don't see the
 534 *    next expected value).
 535 *
 536 * These expectations mean that we know that we have seen the
 537 * transition from one expected value to another with a fairly
 538 * high accuracy, and we didn't miss any events. We can thus
 539 * use the TSC value at the transitions to calculate a pretty
 540 * good value for the TSC frequencty.
 541 */
 542static inline int pit_verify_msb(unsigned char val)
 543{
 544	/* Ignore LSB */
 545	inb(0x42);
 546	return inb(0x42) == val;
 547}
 548
 549static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
 550{
 551	int count;
 552	u64 tsc = 0, prev_tsc = 0;
 553
 554	for (count = 0; count < 50000; count++) {
 555		if (!pit_verify_msb(val))
 556			break;
 557		prev_tsc = tsc;
 558		tsc = get_cycles();
 559	}
 560	*deltap = get_cycles() - prev_tsc;
 561	*tscp = tsc;
 562
 563	/*
 564	 * We require _some_ success, but the quality control
 565	 * will be based on the error terms on the TSC values.
 566	 */
 567	return count > 5;
 568}
 569
 570/*
 571 * How many MSB values do we want to see? We aim for
 572 * a maximum error rate of 500ppm (in practice the
 573 * real error is much smaller), but refuse to spend
 574 * more than 50ms on it.
 575 */
 576#define MAX_QUICK_PIT_MS 50
 577#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
 578
 579static unsigned long quick_pit_calibrate(void)
 580{
 581	int i;
 582	u64 tsc, delta;
 583	unsigned long d1, d2;
 584
 585	/* Set the Gate high, disable speaker */
 586	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 587
 588	/*
 589	 * Counter 2, mode 0 (one-shot), binary count
 590	 *
 591	 * NOTE! Mode 2 decrements by two (and then the
 592	 * output is flipped each time, giving the same
 593	 * final output frequency as a decrement-by-one),
 594	 * so mode 0 is much better when looking at the
 595	 * individual counts.
 596	 */
 597	outb(0xb0, 0x43);
 598
 599	/* Start at 0xffff */
 600	outb(0xff, 0x42);
 601	outb(0xff, 0x42);
 602
 603	/*
 604	 * The PIT starts counting at the next edge, so we
 605	 * need to delay for a microsecond. The easiest way
 606	 * to do that is to just read back the 16-bit counter
 607	 * once from the PIT.
 608	 */
 609	pit_verify_msb(0);
 610
 611	if (pit_expect_msb(0xff, &tsc, &d1)) {
 612		for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
 613			if (!pit_expect_msb(0xff-i, &delta, &d2))
 614				break;
 615
 616			delta -= tsc;
 617
 618			/*
 619			 * Extrapolate the error and fail fast if the error will
 620			 * never be below 500 ppm.
 621			 */
 622			if (i == 1 &&
 623			    d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
 624				return 0;
 625
 626			/*
 627			 * Iterate until the error is less than 500 ppm
 628			 */
 629			if (d1+d2 >= delta >> 11)
 630				continue;
 631
 632			/*
 633			 * Check the PIT one more time to verify that
 634			 * all TSC reads were stable wrt the PIT.
 635			 *
 636			 * This also guarantees serialization of the
 637			 * last cycle read ('d2') in pit_expect_msb.
 638			 */
 639			if (!pit_verify_msb(0xfe - i))
 640				break;
 641			goto success;
 642		}
 643	}
 644	pr_info("Fast TSC calibration failed\n");
 645	return 0;
 646
 647success:
 648	/*
 649	 * Ok, if we get here, then we've seen the
 650	 * MSB of the PIT decrement 'i' times, and the
 651	 * error has shrunk to less than 500 ppm.
 652	 *
 653	 * As a result, we can depend on there not being
 654	 * any odd delays anywhere, and the TSC reads are
 655	 * reliable (within the error).
 656	 *
 657	 * kHz = ticks / time-in-seconds / 1000;
 658	 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
 659	 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
 660	 */
 661	delta *= PIT_TICK_RATE;
 662	do_div(delta, i*256*1000);
 663	pr_info("Fast TSC calibration using PIT\n");
 664	return delta;
 665}
 666
 667/**
 668 * native_calibrate_tsc - calibrate the tsc on boot
 
 669 */
 670unsigned long native_calibrate_tsc(void)
 671{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672	u64 tsc1, tsc2, delta, ref1, ref2;
 673	unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
 674	unsigned long flags, latch, ms, fast_calibrate;
 675	int hpet = is_hpet_enabled(), i, loopmin;
 676
 677	/* Calibrate TSC using MSR for Intel Atom SoCs */
 678	local_irq_save(flags);
 679	fast_calibrate = try_msr_calibrate_tsc();
 680	local_irq_restore(flags);
 
 681	if (fast_calibrate)
 682		return fast_calibrate;
 683
 684	local_irq_save(flags);
 685	fast_calibrate = quick_pit_calibrate();
 686	local_irq_restore(flags);
 687	if (fast_calibrate)
 688		return fast_calibrate;
 689
 690	/*
 691	 * Run 5 calibration loops to get the lowest frequency value
 692	 * (the best estimate). We use two different calibration modes
 693	 * here:
 694	 *
 695	 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
 696	 * load a timeout of 50ms. We read the time right after we
 697	 * started the timer and wait until the PIT count down reaches
 698	 * zero. In each wait loop iteration we read the TSC and check
 699	 * the delta to the previous read. We keep track of the min
 700	 * and max values of that delta. The delta is mostly defined
 701	 * by the IO time of the PIT access, so we can detect when a
 702	 * SMI/SMM disturbance happened between the two reads. If the
 703	 * maximum time is significantly larger than the minimum time,
 704	 * then we discard the result and have another try.
 705	 *
 706	 * 2) Reference counter. If available we use the HPET or the
 707	 * PMTIMER as a reference to check the sanity of that value.
 708	 * We use separate TSC readouts and check inside of the
 709	 * reference read for a SMI/SMM disturbance. We dicard
 710	 * disturbed values here as well. We do that around the PIT
 711	 * calibration delay loop as we have to wait for a certain
 712	 * amount of time anyway.
 713	 */
 714
 715	/* Preset PIT loop values */
 716	latch = CAL_LATCH;
 717	ms = CAL_MS;
 718	loopmin = CAL_PIT_LOOPS;
 719
 720	for (i = 0; i < 3; i++) {
 721		unsigned long tsc_pit_khz;
 722
 723		/*
 724		 * Read the start value and the reference count of
 725		 * hpet/pmtimer when available. Then do the PIT
 726		 * calibration, which will take at least 50ms, and
 727		 * read the end value.
 728		 */
 729		local_irq_save(flags);
 730		tsc1 = tsc_read_refs(&ref1, hpet);
 731		tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
 732		tsc2 = tsc_read_refs(&ref2, hpet);
 733		local_irq_restore(flags);
 734
 735		/* Pick the lowest PIT TSC calibration so far */
 736		tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
 737
 738		/* hpet or pmtimer available ? */
 739		if (ref1 == ref2)
 740			continue;
 741
 742		/* Check, whether the sampling was disturbed by an SMI */
 743		if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
 744			continue;
 745
 746		tsc2 = (tsc2 - tsc1) * 1000000LL;
 747		if (hpet)
 748			tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
 749		else
 750			tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
 751
 752		tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
 753
 754		/* Check the reference deviation */
 755		delta = ((u64) tsc_pit_min) * 100;
 756		do_div(delta, tsc_ref_min);
 757
 758		/*
 759		 * If both calibration results are inside a 10% window
 760		 * then we can be sure, that the calibration
 761		 * succeeded. We break out of the loop right away. We
 762		 * use the reference value, as it is more precise.
 763		 */
 764		if (delta >= 90 && delta <= 110) {
 765			pr_info("PIT calibration matches %s. %d loops\n",
 766				hpet ? "HPET" : "PMTIMER", i + 1);
 767			return tsc_ref_min;
 768		}
 769
 770		/*
 771		 * Check whether PIT failed more than once. This
 772		 * happens in virtualized environments. We need to
 773		 * give the virtual PC a slightly longer timeframe for
 774		 * the HPET/PMTIMER to make the result precise.
 775		 */
 776		if (i == 1 && tsc_pit_min == ULONG_MAX) {
 777			latch = CAL2_LATCH;
 778			ms = CAL2_MS;
 779			loopmin = CAL2_PIT_LOOPS;
 780		}
 781	}
 782
 783	/*
 784	 * Now check the results.
 785	 */
 786	if (tsc_pit_min == ULONG_MAX) {
 787		/* PIT gave no useful value */
 788		pr_warn("Unable to calibrate against PIT\n");
 789
 790		/* We don't have an alternative source, disable TSC */
 791		if (!hpet && !ref1 && !ref2) {
 792			pr_notice("No reference (HPET/PMTIMER) available\n");
 793			return 0;
 794		}
 795
 796		/* The alternative source failed as well, disable TSC */
 797		if (tsc_ref_min == ULONG_MAX) {
 798			pr_warn("HPET/PMTIMER calibration failed\n");
 799			return 0;
 800		}
 801
 802		/* Use the alternative source */
 803		pr_info("using %s reference calibration\n",
 804			hpet ? "HPET" : "PMTIMER");
 805
 806		return tsc_ref_min;
 807	}
 808
 809	/* We don't have an alternative source, use the PIT calibration value */
 810	if (!hpet && !ref1 && !ref2) {
 811		pr_info("Using PIT calibration value\n");
 812		return tsc_pit_min;
 813	}
 814
 815	/* The alternative source failed, use the PIT calibration value */
 816	if (tsc_ref_min == ULONG_MAX) {
 817		pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
 818		return tsc_pit_min;
 819	}
 820
 821	/*
 822	 * The calibration values differ too much. In doubt, we use
 823	 * the PIT value as we know that there are PMTIMERs around
 824	 * running at double speed. At least we let the user know:
 825	 */
 826	pr_warn("PIT calibration deviates from %s: %lu %lu\n",
 827		hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
 828	pr_info("Using PIT calibration value\n");
 829	return tsc_pit_min;
 830}
 831
 832int recalibrate_cpu_khz(void)
 833{
 834#ifndef CONFIG_SMP
 835	unsigned long cpu_khz_old = cpu_khz;
 836
 837	if (cpu_has_tsc) {
 838		tsc_khz = x86_platform.calibrate_tsc();
 
 
 
 
 
 
 839		cpu_khz = tsc_khz;
 840		cpu_data(0).loops_per_jiffy =
 841			cpufreq_scale(cpu_data(0).loops_per_jiffy,
 842					cpu_khz_old, cpu_khz);
 843		return 0;
 844	} else
 845		return -ENODEV;
 846#else
 847	return -ENODEV;
 848#endif
 849}
 850
 851EXPORT_SYMBOL(recalibrate_cpu_khz);
 852
 853
 854static unsigned long long cyc2ns_suspend;
 855
 856void tsc_save_sched_clock_state(void)
 857{
 858	if (!sched_clock_stable())
 859		return;
 860
 861	cyc2ns_suspend = sched_clock();
 862}
 863
 864/*
 865 * Even on processors with invariant TSC, TSC gets reset in some the
 866 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
 867 * arbitrary value (still sync'd across cpu's) during resume from such sleep
 868 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
 869 * that sched_clock() continues from the point where it was left off during
 870 * suspend.
 871 */
 872void tsc_restore_sched_clock_state(void)
 873{
 874	unsigned long long offset;
 875	unsigned long flags;
 876	int cpu;
 877
 878	if (!sched_clock_stable())
 879		return;
 880
 881	local_irq_save(flags);
 882
 883	/*
 884	 * We're coming out of suspend, there's no concurrency yet; don't
 885	 * bother being nice about the RCU stuff, just write to both
 886	 * data fields.
 887	 */
 888
 889	this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
 890	this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
 891
 892	offset = cyc2ns_suspend - sched_clock();
 893
 894	for_each_possible_cpu(cpu) {
 895		per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
 896		per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
 897	}
 898
 899	local_irq_restore(flags);
 900}
 901
 902#ifdef CONFIG_CPU_FREQ
 903
 904/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
 905 * changes.
 906 *
 907 * RED-PEN: On SMP we assume all CPUs run with the same frequency.  It's
 908 * not that important because current Opteron setups do not support
 909 * scaling on SMP anyroads.
 910 *
 911 * Should fix up last_tsc too. Currently gettimeofday in the
 912 * first tick after the change will be slightly wrong.
 913 */
 914
 915static unsigned int  ref_freq;
 916static unsigned long loops_per_jiffy_ref;
 917static unsigned long tsc_khz_ref;
 918
 919static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 920				void *data)
 921{
 922	struct cpufreq_freqs *freq = data;
 923	unsigned long *lpj;
 924
 925	if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
 926		return 0;
 927
 928	lpj = &boot_cpu_data.loops_per_jiffy;
 929#ifdef CONFIG_SMP
 930	if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 931		lpj = &cpu_data(freq->cpu).loops_per_jiffy;
 932#endif
 933
 934	if (!ref_freq) {
 935		ref_freq = freq->old;
 936		loops_per_jiffy_ref = *lpj;
 937		tsc_khz_ref = tsc_khz;
 938	}
 939	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
 940			(val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
 941		*lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
 942
 943		tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 944		if (!(freq->flags & CPUFREQ_CONST_LOOPS))
 945			mark_tsc_unstable("cpufreq changes");
 946
 947		set_cyc2ns_scale(tsc_khz, freq->cpu);
 948	}
 949
 950	return 0;
 951}
 952
 953static struct notifier_block time_cpufreq_notifier_block = {
 954	.notifier_call  = time_cpufreq_notifier
 955};
 956
 957static int __init cpufreq_tsc(void)
 958{
 959	if (!cpu_has_tsc)
 960		return 0;
 961	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 962		return 0;
 963	cpufreq_register_notifier(&time_cpufreq_notifier_block,
 964				CPUFREQ_TRANSITION_NOTIFIER);
 965	return 0;
 966}
 967
 968core_initcall(cpufreq_tsc);
 969
 970#endif /* CONFIG_CPU_FREQ */
 971
 972#define ART_CPUID_LEAF (0x15)
 973#define ART_MIN_DENOMINATOR (1)
 974
 975
 976/*
 977 * If ART is present detect the numerator:denominator to convert to TSC
 978 */
 979static void detect_art(void)
 980{
 981	unsigned int unused[2];
 982
 983	if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
 984		return;
 985
 
 
 
 
 
 
 986	cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
 987	      &art_to_tsc_numerator, unused, unused+1);
 988
 989	/* Don't enable ART in a VM, non-stop TSC required */
 990	if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
 991	    !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
 992	    art_to_tsc_denominator < ART_MIN_DENOMINATOR)
 993		return;
 994
 995	if (rdmsrl_safe(MSR_IA32_TSC_ADJUST, &art_to_tsc_offset))
 996		return;
 997
 998	/* Make this sticky over multiple CPU init calls */
 999	setup_force_cpu_cap(X86_FEATURE_ART);
1000}
1001
1002
1003/* clocksource code */
1004
1005static struct clocksource clocksource_tsc;
1006
 
 
 
 
 
1007/*
1008 * We used to compare the TSC to the cycle_last value in the clocksource
1009 * structure to avoid a nasty time-warp. This can be observed in a
1010 * very small window right after one CPU updated cycle_last under
1011 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1012 * is smaller than the cycle_last reference value due to a TSC which
1013 * is slighty behind. This delta is nowhere else observable, but in
1014 * that case it results in a forward time jump in the range of hours
1015 * due to the unsigned delta calculation of the time keeping core
1016 * code, which is necessary to support wrapping clocksources like pm
1017 * timer.
1018 *
1019 * This sanity check is now done in the core timekeeping code.
1020 * checking the result of read_tsc() - cycle_last for being negative.
1021 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
1022 */
1023static cycle_t read_tsc(struct clocksource *cs)
1024{
1025	return (cycle_t)rdtsc_ordered();
1026}
1027
1028/*
1029 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1030 */
1031static struct clocksource clocksource_tsc = {
1032	.name                   = "tsc",
1033	.rating                 = 300,
1034	.read                   = read_tsc,
1035	.mask                   = CLOCKSOURCE_MASK(64),
1036	.flags                  = CLOCK_SOURCE_IS_CONTINUOUS |
1037				  CLOCK_SOURCE_MUST_VERIFY,
1038	.archdata               = { .vclock_mode = VCLOCK_TSC },
 
1039};
1040
1041void mark_tsc_unstable(char *reason)
1042{
1043	if (!tsc_unstable) {
1044		tsc_unstable = 1;
1045		clear_sched_clock_stable();
1046		disable_sched_clock_irqtime();
1047		pr_info("Marking TSC unstable due to %s\n", reason);
1048		/* Change only the rating, when not registered */
1049		if (clocksource_tsc.mult)
1050			clocksource_mark_unstable(&clocksource_tsc);
1051		else {
1052			clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1053			clocksource_tsc.rating = 0;
1054		}
1055	}
1056}
1057
1058EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1059
1060static void __init check_system_tsc_reliable(void)
1061{
1062#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1063	if (is_geode_lx()) {
1064		/* RTSC counts during suspend */
1065#define RTSC_SUSP 0x100
1066		unsigned long res_low, res_high;
1067
1068		rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1069		/* Geode_LX - the OLPC CPU has a very reliable TSC */
1070		if (res_low & RTSC_SUSP)
1071			tsc_clocksource_reliable = 1;
1072	}
1073#endif
1074	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1075		tsc_clocksource_reliable = 1;
1076}
1077
1078/*
1079 * Make an educated guess if the TSC is trustworthy and synchronized
1080 * over all CPUs.
1081 */
1082int unsynchronized_tsc(void)
1083{
1084	if (!cpu_has_tsc || tsc_unstable)
1085		return 1;
1086
1087#ifdef CONFIG_SMP
1088	if (apic_is_clustered_box())
1089		return 1;
1090#endif
1091
1092	if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1093		return 0;
1094
1095	if (tsc_clocksource_reliable)
1096		return 0;
1097	/*
1098	 * Intel systems are normally all synchronized.
1099	 * Exceptions must mark TSC as unstable:
1100	 */
1101	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1102		/* assume multi socket systems are not synchronized: */
1103		if (num_possible_cpus() > 1)
1104			return 1;
1105	}
1106
1107	return 0;
1108}
1109
1110/*
1111 * Convert ART to TSC given numerator/denominator found in detect_art()
1112 */
1113struct system_counterval_t convert_art_to_tsc(cycle_t art)
1114{
1115	u64 tmp, res, rem;
1116
1117	rem = do_div(art, art_to_tsc_denominator);
1118
1119	res = art * art_to_tsc_numerator;
1120	tmp = rem * art_to_tsc_numerator;
1121
1122	do_div(tmp, art_to_tsc_denominator);
1123	res += tmp + art_to_tsc_offset;
1124
1125	return (struct system_counterval_t) {.cs = art_related_clocksource,
1126			.cycles = res};
1127}
1128EXPORT_SYMBOL(convert_art_to_tsc);
1129
1130static void tsc_refine_calibration_work(struct work_struct *work);
1131static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1132/**
1133 * tsc_refine_calibration_work - Further refine tsc freq calibration
1134 * @work - ignored.
1135 *
1136 * This functions uses delayed work over a period of a
1137 * second to further refine the TSC freq value. Since this is
1138 * timer based, instead of loop based, we don't block the boot
1139 * process while this longer calibration is done.
1140 *
1141 * If there are any calibration anomalies (too many SMIs, etc),
1142 * or the refined calibration is off by 1% of the fast early
1143 * calibration, we throw out the new calibration and use the
1144 * early calibration.
1145 */
1146static void tsc_refine_calibration_work(struct work_struct *work)
1147{
1148	static u64 tsc_start = -1, ref_start;
1149	static int hpet;
1150	u64 tsc_stop, ref_stop, delta;
1151	unsigned long freq;
1152
1153	/* Don't bother refining TSC on unstable systems */
1154	if (check_tsc_unstable())
1155		goto out;
1156
1157	/*
1158	 * Since the work is started early in boot, we may be
1159	 * delayed the first time we expire. So set the workqueue
1160	 * again once we know timers are working.
1161	 */
1162	if (tsc_start == -1) {
1163		/*
1164		 * Only set hpet once, to avoid mixing hardware
1165		 * if the hpet becomes enabled later.
1166		 */
1167		hpet = is_hpet_enabled();
1168		schedule_delayed_work(&tsc_irqwork, HZ);
1169		tsc_start = tsc_read_refs(&ref_start, hpet);
1170		return;
1171	}
1172
1173	tsc_stop = tsc_read_refs(&ref_stop, hpet);
1174
1175	/* hpet or pmtimer available ? */
1176	if (ref_start == ref_stop)
1177		goto out;
1178
1179	/* Check, whether the sampling was disturbed by an SMI */
1180	if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1181		goto out;
1182
1183	delta = tsc_stop - tsc_start;
1184	delta *= 1000000LL;
1185	if (hpet)
1186		freq = calc_hpet_ref(delta, ref_start, ref_stop);
1187	else
1188		freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1189
1190	/* Make sure we're within 1% */
1191	if (abs(tsc_khz - freq) > tsc_khz/100)
1192		goto out;
1193
1194	tsc_khz = freq;
1195	pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1196		(unsigned long)tsc_khz / 1000,
1197		(unsigned long)tsc_khz % 1000);
1198
 
 
 
1199out:
1200	if (boot_cpu_has(X86_FEATURE_ART))
1201		art_related_clocksource = &clocksource_tsc;
1202	clocksource_register_khz(&clocksource_tsc, tsc_khz);
1203}
1204
1205
1206static int __init init_tsc_clocksource(void)
1207{
1208	if (!cpu_has_tsc || tsc_disabled > 0 || !tsc_khz)
1209		return 0;
1210
1211	if (tsc_clocksource_reliable)
1212		clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
1213	/* lower the rating if we already know its unstable: */
1214	if (check_tsc_unstable()) {
1215		clocksource_tsc.rating = 0;
1216		clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1217	}
1218
1219	if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1220		clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1221
1222	/*
1223	 * Trust the results of the earlier calibration on systems
1224	 * exporting a reliable TSC.
1225	 */
1226	if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE)) {
 
 
1227		clocksource_register_khz(&clocksource_tsc, tsc_khz);
1228		return 0;
1229	}
1230
1231	schedule_delayed_work(&tsc_irqwork, 0);
1232	return 0;
1233}
1234/*
1235 * We use device_initcall here, to ensure we run after the hpet
1236 * is fully initialized, which may occur at fs_initcall time.
1237 */
1238device_initcall(init_tsc_clocksource);
1239
1240void __init tsc_init(void)
1241{
1242	u64 lpj;
1243	int cpu;
1244
1245	if (!cpu_has_tsc) {
1246		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1247		return;
1248	}
1249
 
1250	tsc_khz = x86_platform.calibrate_tsc();
1251	cpu_khz = tsc_khz;
 
 
 
 
 
 
 
 
 
1252
1253	if (!tsc_khz) {
1254		mark_tsc_unstable("could not calculate TSC khz");
1255		setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
1256		return;
1257	}
1258
1259	pr_info("Detected %lu.%03lu MHz processor\n",
1260		(unsigned long)cpu_khz / 1000,
1261		(unsigned long)cpu_khz % 1000);
1262
 
 
 
1263	/*
1264	 * Secondary CPUs do not run through tsc_init(), so set up
1265	 * all the scale factors for all CPUs, assuming the same
1266	 * speed as the bootup CPU. (cpufreq notifiers will fix this
1267	 * up if their speed diverges)
1268	 */
1269	for_each_possible_cpu(cpu) {
1270		cyc2ns_init(cpu);
1271		set_cyc2ns_scale(cpu_khz, cpu);
1272	}
1273
1274	if (tsc_disabled > 0)
1275		return;
1276
1277	/* now allow native_sched_clock() to use rdtsc */
1278
1279	tsc_disabled = 0;
1280	static_branch_enable(&__use_tsc);
1281
1282	if (!no_sched_irq_time)
1283		enable_sched_clock_irqtime();
1284
1285	lpj = ((u64)tsc_khz * 1000);
1286	do_div(lpj, HZ);
1287	lpj_fine = lpj;
1288
1289	use_tsc_delay();
1290
1291	if (unsynchronized_tsc())
1292		mark_tsc_unstable("TSCs unsynchronized");
1293
1294	check_system_tsc_reliable();
1295
1296	detect_art();
1297}
1298
1299#ifdef CONFIG_SMP
1300/*
1301 * If we have a constant TSC and are using the TSC for the delay loop,
1302 * we can skip clock calibration if another cpu in the same socket has already
1303 * been calibrated. This assumes that CONSTANT_TSC applies to all
1304 * cpus in the socket - this should be a safe assumption.
1305 */
1306unsigned long calibrate_delay_is_known(void)
1307{
1308	int sibling, cpu = smp_processor_id();
1309	struct cpumask *mask = topology_core_cpumask(cpu);
1310
1311	if (!tsc_disabled && !cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC))
1312		return 0;
1313
1314	if (!mask)
1315		return 0;
1316
1317	sibling = cpumask_any_but(mask, cpu);
1318	if (sibling < nr_cpu_ids)
1319		return cpu_data(sibling).loops_per_jiffy;
1320	return 0;
1321}
1322#endif