Linux Audio

Check our new training course

Loading...
v4.10.11
  1#include <linux/kernel.h>
  2
  3#include <linux/string.h>
  4#include <linux/bitops.h>
  5#include <linux/smp.h>
  6#include <linux/sched.h>
  7#include <linux/thread_info.h>
  8#include <linux/init.h>
  9#include <linux/uaccess.h>
 10
 11#include <asm/cpufeature.h>
 12#include <asm/pgtable.h>
 13#include <asm/msr.h>
 14#include <asm/bugs.h>
 15#include <asm/cpu.h>
 16#include <asm/intel-family.h>
 17#include <asm/microcode_intel.h>
 18
 19#ifdef CONFIG_X86_64
 20#include <linux/topology.h>
 21#endif
 22
 23#include "cpu.h"
 24
 25#ifdef CONFIG_X86_LOCAL_APIC
 26#include <asm/mpspec.h>
 27#include <asm/apic.h>
 28#endif
 29
 30/*
 31 * Just in case our CPU detection goes bad, or you have a weird system,
 32 * allow a way to override the automatic disabling of MPX.
 33 */
 34static int forcempx;
 35
 36static int __init forcempx_setup(char *__unused)
 37{
 38	forcempx = 1;
 39
 40	return 1;
 41}
 42__setup("intel-skd-046-workaround=disable", forcempx_setup);
 43
 44void check_mpx_erratum(struct cpuinfo_x86 *c)
 45{
 46	if (forcempx)
 47		return;
 48	/*
 49	 * Turn off the MPX feature on CPUs where SMEP is not
 50	 * available or disabled.
 51	 *
 52	 * Works around Intel Erratum SKD046: "Branch Instructions
 53	 * May Initialize MPX Bound Registers Incorrectly".
 54	 *
 55	 * This might falsely disable MPX on systems without
 56	 * SMEP, like Atom processors without SMEP.  But there
 57	 * is no such hardware known at the moment.
 58	 */
 59	if (cpu_has(c, X86_FEATURE_MPX) && !cpu_has(c, X86_FEATURE_SMEP)) {
 60		setup_clear_cpu_cap(X86_FEATURE_MPX);
 61		pr_warn("x86/mpx: Disabling MPX since SMEP not present\n");
 62	}
 63}
 64
 65static void early_init_intel(struct cpuinfo_x86 *c)
 66{
 67	u64 misc_enable;
 68
 69	/* Unmask CPUID levels if masked: */
 70	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 71		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 72				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 73			c->cpuid_level = cpuid_eax(0);
 74			get_cpu_cap(c);
 75		}
 76	}
 77
 78	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 79		(c->x86 == 0x6 && c->x86_model >= 0x0e))
 80		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 81
 82	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64))
 83		c->microcode = intel_get_microcode_revision();
 
 
 
 
 
 
 84
 85	/*
 86	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
 87	 *
 88	 * A race condition between speculative fetches and invalidating
 89	 * a large page.  This is worked around in microcode, but we
 90	 * need the microcode to have already been loaded... so if it is
 91	 * not, recommend a BIOS update and disable large pages.
 92	 */
 93	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
 94	    c->microcode < 0x20e) {
 95		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 96		clear_cpu_cap(c, X86_FEATURE_PSE);
 97	}
 98
 99#ifdef CONFIG_X86_64
100	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
101#else
102	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
103	if (c->x86 == 15 && c->x86_cache_alignment == 64)
104		c->x86_cache_alignment = 128;
105#endif
106
107	/* CPUID workaround for 0F33/0F34 CPU */
108	if (c->x86 == 0xF && c->x86_model == 0x3
109	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
110		c->x86_phys_bits = 36;
111
112	/*
113	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
114	 * with P/T states and does not stop in deep C-states.
115	 *
116	 * It is also reliable across cores and sockets. (but not across
117	 * cabinets - we turn it off in that case explicitly.)
118	 */
119	if (c->x86_power & (1 << 8)) {
120		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
121		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
122		if (!check_tsc_unstable())
123			set_sched_clock_stable();
124	}
125
126	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
127	if (c->x86 == 6) {
128		switch (c->x86_model) {
129		case 0x27:	/* Penwell */
130		case 0x35:	/* Cloverview */
131		case 0x4a:	/* Merrifield */
132			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
133			break;
134		default:
135			break;
136		}
137	}
138
139	/*
140	 * There is a known erratum on Pentium III and Core Solo
141	 * and Core Duo CPUs.
142	 * " Page with PAT set to WC while associated MTRR is UC
143	 *   may consolidate to UC "
144	 * Because of this erratum, it is better to stick with
145	 * setting WC in MTRR rather than using PAT on these CPUs.
146	 *
147	 * Enable PAT WC only on P4, Core 2 or later CPUs.
148	 */
149	if (c->x86 == 6 && c->x86_model < 15)
150		clear_cpu_cap(c, X86_FEATURE_PAT);
151
152#ifdef CONFIG_KMEMCHECK
153	/*
154	 * P4s have a "fast strings" feature which causes single-
155	 * stepping REP instructions to only generate a #DB on
156	 * cache-line boundaries.
157	 *
158	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
159	 * (model 2) with the same problem.
160	 */
161	if (c->x86 == 15)
162		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
163				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
164			pr_info("kmemcheck: Disabling fast string operations\n");
165#endif
166
167	/*
168	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
169	 * clear the fast string and enhanced fast string CPU capabilities.
170	 */
171	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
172		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
173		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
174			pr_info("Disabled fast string operations\n");
175			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
176			setup_clear_cpu_cap(X86_FEATURE_ERMS);
177		}
178	}
179
180	/*
181	 * Intel Quark Core DevMan_001.pdf section 6.4.11
182	 * "The operating system also is required to invalidate (i.e., flush)
183	 *  the TLB when any changes are made to any of the page table entries.
184	 *  The operating system must reload CR3 to cause the TLB to be flushed"
185	 *
186	 * As a result, boot_cpu_has(X86_FEATURE_PGE) in arch/x86/include/asm/tlbflush.h
187	 * should be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
188	 * to be modified.
189	 */
190	if (c->x86 == 5 && c->x86_model == 9) {
191		pr_info("Disabling PGE capability bit\n");
192		setup_clear_cpu_cap(X86_FEATURE_PGE);
193	}
194
195	if (c->cpuid_level >= 0x00000001) {
196		u32 eax, ebx, ecx, edx;
197
198		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
199		/*
200		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
201		 * apicids which are reserved per package. Store the resulting
202		 * shift value for the package management code.
203		 */
204		if (edx & (1U << 28))
205			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
206	}
207
208	check_mpx_erratum(c);
209}
210
211#ifdef CONFIG_X86_32
212/*
213 *	Early probe support logic for ppro memory erratum #50
214 *
215 *	This is called before we do cpu ident work
216 */
217
218int ppro_with_ram_bug(void)
219{
220	/* Uses data from early_cpu_detect now */
221	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
222	    boot_cpu_data.x86 == 6 &&
223	    boot_cpu_data.x86_model == 1 &&
224	    boot_cpu_data.x86_mask < 8) {
225		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
226		return 1;
227	}
228	return 0;
229}
230
231static void intel_smp_check(struct cpuinfo_x86 *c)
232{
233	/* calling is from identify_secondary_cpu() ? */
234	if (!c->cpu_index)
235		return;
236
237	/*
238	 * Mask B, Pentium, but not Pentium MMX
239	 */
240	if (c->x86 == 5 &&
241	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
242	    c->x86_model <= 3) {
243		/*
244		 * Remember we have B step Pentia with bugs
245		 */
246		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
247				    "with B stepping processors.\n");
248	}
249}
250
251static int forcepae;
252static int __init forcepae_setup(char *__unused)
253{
254	forcepae = 1;
255	return 1;
256}
257__setup("forcepae", forcepae_setup);
258
259static void intel_workarounds(struct cpuinfo_x86 *c)
260{
261#ifdef CONFIG_X86_F00F_BUG
262	/*
263	 * All models of Pentium and Pentium with MMX technology CPUs
264	 * have the F0 0F bug, which lets nonprivileged users lock up the
265	 * system. Announce that the fault handler will be checking for it.
266	 * The Quark is also family 5, but does not have the same bug.
267	 */
268	clear_cpu_bug(c, X86_BUG_F00F);
269	if (c->x86 == 5 && c->x86_model < 9) {
270		static int f00f_workaround_enabled;
271
272		set_cpu_bug(c, X86_BUG_F00F);
273		if (!f00f_workaround_enabled) {
274			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
275			f00f_workaround_enabled = 1;
276		}
277	}
278#endif
279
280	/*
281	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
282	 * model 3 mask 3
283	 */
284	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
285		clear_cpu_cap(c, X86_FEATURE_SEP);
286
287	/*
288	 * PAE CPUID issue: many Pentium M report no PAE but may have a
289	 * functionally usable PAE implementation.
290	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
291	 */
292	if (forcepae) {
293		pr_warn("PAE forced!\n");
294		set_cpu_cap(c, X86_FEATURE_PAE);
295		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
296	}
297
298	/*
299	 * P4 Xeon erratum 037 workaround.
300	 * Hardware prefetcher may cause stale data to be loaded into the cache.
301	 */
302	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
303		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
304				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT) > 0) {
 
305			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
306			pr_info("CPU: Disabling hardware prefetching (Erratum 037)\n");
307		}
308	}
309
310	/*
311	 * See if we have a good local APIC by checking for buggy Pentia,
312	 * i.e. all B steppings and the C2 stepping of P54C when using their
313	 * integrated APIC (see 11AP erratum in "Pentium Processor
314	 * Specification Update").
315	 */
316	if (boot_cpu_has(X86_FEATURE_APIC) && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
317	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
318		set_cpu_bug(c, X86_BUG_11AP);
319
320
321#ifdef CONFIG_X86_INTEL_USERCOPY
322	/*
323	 * Set up the preferred alignment for movsl bulk memory moves
324	 */
325	switch (c->x86) {
326	case 4:		/* 486: untested */
327		break;
328	case 5:		/* Old Pentia: untested */
329		break;
330	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
331		movsl_mask.mask = 7;
332		break;
333	case 15:	/* P4 is OK down to 8-byte alignment */
334		movsl_mask.mask = 7;
335		break;
336	}
337#endif
338
339	intel_smp_check(c);
340}
341#else
342static void intel_workarounds(struct cpuinfo_x86 *c)
343{
344}
345#endif
346
347static void srat_detect_node(struct cpuinfo_x86 *c)
348{
349#ifdef CONFIG_NUMA
350	unsigned node;
351	int cpu = smp_processor_id();
352
353	/* Don't do the funky fallback heuristics the AMD version employs
354	   for now. */
355	node = numa_cpu_node(cpu);
356	if (node == NUMA_NO_NODE || !node_online(node)) {
357		/* reuse the value from init_cpu_to_node() */
358		node = cpu_to_node(cpu);
359	}
360	numa_set_node(cpu, node);
361#endif
362}
363
364/*
365 * find out the number of processor cores on the die
366 */
367static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
368{
369	unsigned int eax, ebx, ecx, edx;
370
371	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
372		return 1;
373
374	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
375	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
376	if (eax & 0x1f)
377		return (eax >> 26) + 1;
378	else
379		return 1;
380}
381
382static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
383{
384	/* Intel VMX MSR indicated features */
385#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
386#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
387#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
388#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
389#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
390#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
391
392	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
393
394	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
395	clear_cpu_cap(c, X86_FEATURE_VNMI);
396	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
397	clear_cpu_cap(c, X86_FEATURE_EPT);
398	clear_cpu_cap(c, X86_FEATURE_VPID);
399
400	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
401	msr_ctl = vmx_msr_high | vmx_msr_low;
402	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
403		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
404	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
405		set_cpu_cap(c, X86_FEATURE_VNMI);
406	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
407		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
408		      vmx_msr_low, vmx_msr_high);
409		msr_ctl2 = vmx_msr_high | vmx_msr_low;
410		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
411		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
412			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
413		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
414			set_cpu_cap(c, X86_FEATURE_EPT);
415		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
416			set_cpu_cap(c, X86_FEATURE_VPID);
417	}
418}
419
420static void init_intel_energy_perf(struct cpuinfo_x86 *c)
421{
422	u64 epb;
423
424	/*
425	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
426	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
427	 */
428	if (!cpu_has(c, X86_FEATURE_EPB))
429		return;
430
431	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
432	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
433		return;
434
435	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
436	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
437	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
438	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
439}
440
441static void intel_bsp_resume(struct cpuinfo_x86 *c)
442{
443	/*
444	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
445	 * so reinitialize it properly like during bootup:
446	 */
447	init_intel_energy_perf(c);
448}
449
450static void init_intel(struct cpuinfo_x86 *c)
451{
452	unsigned int l2 = 0;
453
454	early_init_intel(c);
455
456	intel_workarounds(c);
457
458	/*
459	 * Detect the extended topology information if available. This
460	 * will reinitialise the initial_apicid which will be used
461	 * in init_intel_cacheinfo()
462	 */
463	detect_extended_topology(c);
464
465	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
466		/*
467		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
468		 * detection.
469		 */
470		c->x86_max_cores = intel_num_cpu_cores(c);
471#ifdef CONFIG_X86_32
472		detect_ht(c);
473#endif
474	}
475
476	l2 = init_intel_cacheinfo(c);
477
478	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
479	if (l2 == 0) {
480		cpu_detect_cache_sizes(c);
481		l2 = c->x86_cache_size;
482	}
483
484	if (c->cpuid_level > 9) {
485		unsigned eax = cpuid_eax(10);
486		/* Check for version and the number of counters */
487		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
488			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
489	}
490
491	if (cpu_has(c, X86_FEATURE_XMM2))
492		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
493
494	if (boot_cpu_has(X86_FEATURE_DS)) {
495		unsigned int l1;
496		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
497		if (!(l1 & (1<<11)))
498			set_cpu_cap(c, X86_FEATURE_BTS);
499		if (!(l1 & (1<<12)))
500			set_cpu_cap(c, X86_FEATURE_PEBS);
501	}
502
503	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_CLFLUSH) &&
504	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
505		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
506
507	if (c->x86 == 6 && boot_cpu_has(X86_FEATURE_MWAIT) &&
508		((c->x86_model == INTEL_FAM6_ATOM_GOLDMONT)))
509		set_cpu_bug(c, X86_BUG_MONITOR);
510
511#ifdef CONFIG_X86_64
512	if (c->x86 == 15)
513		c->x86_cache_alignment = c->x86_clflush_size * 2;
514	if (c->x86 == 6)
515		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
516#else
517	/*
518	 * Names for the Pentium II/Celeron processors
519	 * detectable only by also checking the cache size.
520	 * Dixon is NOT a Celeron.
521	 */
522	if (c->x86 == 6) {
523		char *p = NULL;
524
525		switch (c->x86_model) {
526		case 5:
527			if (l2 == 0)
528				p = "Celeron (Covington)";
529			else if (l2 == 256)
530				p = "Mobile Pentium II (Dixon)";
531			break;
532
533		case 6:
534			if (l2 == 128)
535				p = "Celeron (Mendocino)";
536			else if (c->x86_mask == 0 || c->x86_mask == 5)
537				p = "Celeron-A";
538			break;
539
540		case 8:
541			if (l2 == 128)
542				p = "Celeron (Coppermine)";
543			break;
544		}
545
546		if (p)
547			strcpy(c->x86_model_id, p);
548	}
549
550	if (c->x86 == 15)
551		set_cpu_cap(c, X86_FEATURE_P4);
552	if (c->x86 == 6)
553		set_cpu_cap(c, X86_FEATURE_P3);
554#endif
555
556	/* Work around errata */
557	srat_detect_node(c);
558
559	if (cpu_has(c, X86_FEATURE_VMX))
560		detect_vmx_virtcap(c);
561
562	init_intel_energy_perf(c);
563}
564
565#ifdef CONFIG_X86_32
566static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
567{
568	/*
569	 * Intel PIII Tualatin. This comes in two flavours.
570	 * One has 256kb of cache, the other 512. We have no way
571	 * to determine which, so we use a boottime override
572	 * for the 512kb model, and assume 256 otherwise.
573	 */
574	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
575		size = 256;
576
577	/*
578	 * Intel Quark SoC X1000 contains a 4-way set associative
579	 * 16K cache with a 16 byte cache line and 256 lines per tag
580	 */
581	if ((c->x86 == 5) && (c->x86_model == 9))
582		size = 16;
583	return size;
584}
585#endif
586
587#define TLB_INST_4K	0x01
588#define TLB_INST_4M	0x02
589#define TLB_INST_2M_4M	0x03
590
591#define TLB_INST_ALL	0x05
592#define TLB_INST_1G	0x06
593
594#define TLB_DATA_4K	0x11
595#define TLB_DATA_4M	0x12
596#define TLB_DATA_2M_4M	0x13
597#define TLB_DATA_4K_4M	0x14
598
599#define TLB_DATA_1G	0x16
600
601#define TLB_DATA0_4K	0x21
602#define TLB_DATA0_4M	0x22
603#define TLB_DATA0_2M_4M	0x23
604
605#define STLB_4K		0x41
606#define STLB_4K_2M	0x42
607
608static const struct _tlb_table intel_tlb_table[] = {
609	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
610	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
611	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
612	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
613	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
614	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
615	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
616	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
617	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
618	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
619	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
620	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
621	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
622	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
623	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
624	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
625	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
626	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
627	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
628	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
629	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
630	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
631	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
632	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
633	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
634	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
635	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
636	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
637	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
638	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
639	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
640	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
641	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
642	{ 0x00, 0, 0 }
643};
644
645static void intel_tlb_lookup(const unsigned char desc)
646{
647	unsigned char k;
648	if (desc == 0)
649		return;
650
651	/* look up this descriptor in the table */
652	for (k = 0; intel_tlb_table[k].descriptor != desc && \
653			intel_tlb_table[k].descriptor != 0; k++)
654		;
655
656	if (intel_tlb_table[k].tlb_type == 0)
657		return;
658
659	switch (intel_tlb_table[k].tlb_type) {
660	case STLB_4K:
661		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
662			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
663		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
664			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
665		break;
666	case STLB_4K_2M:
667		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
668			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
669		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
670			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
671		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
672			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
673		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
674			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
675		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
676			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
677		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
678			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
679		break;
680	case TLB_INST_ALL:
681		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
682			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
683		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
684			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
685		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
686			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
687		break;
688	case TLB_INST_4K:
689		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
690			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
691		break;
692	case TLB_INST_4M:
693		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
694			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
695		break;
696	case TLB_INST_2M_4M:
697		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
698			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
699		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
700			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
701		break;
702	case TLB_DATA_4K:
703	case TLB_DATA0_4K:
704		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
705			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
706		break;
707	case TLB_DATA_4M:
708	case TLB_DATA0_4M:
709		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
710			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
711		break;
712	case TLB_DATA_2M_4M:
713	case TLB_DATA0_2M_4M:
714		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
715			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
716		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
717			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
718		break;
719	case TLB_DATA_4K_4M:
720		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
721			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
722		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
723			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
724		break;
725	case TLB_DATA_1G:
726		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
727			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
728		break;
729	}
730}
731
732static void intel_detect_tlb(struct cpuinfo_x86 *c)
733{
734	int i, j, n;
735	unsigned int regs[4];
736	unsigned char *desc = (unsigned char *)regs;
737
738	if (c->cpuid_level < 2)
739		return;
740
741	/* Number of times to iterate */
742	n = cpuid_eax(2) & 0xFF;
743
744	for (i = 0 ; i < n ; i++) {
745		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
746
747		/* If bit 31 is set, this is an unknown format */
748		for (j = 0 ; j < 3 ; j++)
749			if (regs[j] & (1 << 31))
750				regs[j] = 0;
751
752		/* Byte 0 is level count, not a descriptor */
753		for (j = 1 ; j < 16 ; j++)
754			intel_tlb_lookup(desc[j]);
755	}
756}
757
758static const struct cpu_dev intel_cpu_dev = {
759	.c_vendor	= "Intel",
760	.c_ident	= { "GenuineIntel" },
761#ifdef CONFIG_X86_32
762	.legacy_models = {
763		{ .family = 4, .model_names =
764		  {
765			  [0] = "486 DX-25/33",
766			  [1] = "486 DX-50",
767			  [2] = "486 SX",
768			  [3] = "486 DX/2",
769			  [4] = "486 SL",
770			  [5] = "486 SX/2",
771			  [7] = "486 DX/2-WB",
772			  [8] = "486 DX/4",
773			  [9] = "486 DX/4-WB"
774		  }
775		},
776		{ .family = 5, .model_names =
777		  {
778			  [0] = "Pentium 60/66 A-step",
779			  [1] = "Pentium 60/66",
780			  [2] = "Pentium 75 - 200",
781			  [3] = "OverDrive PODP5V83",
782			  [4] = "Pentium MMX",
783			  [7] = "Mobile Pentium 75 - 200",
784			  [8] = "Mobile Pentium MMX",
785			  [9] = "Quark SoC X1000",
786		  }
787		},
788		{ .family = 6, .model_names =
789		  {
790			  [0] = "Pentium Pro A-step",
791			  [1] = "Pentium Pro",
792			  [3] = "Pentium II (Klamath)",
793			  [4] = "Pentium II (Deschutes)",
794			  [5] = "Pentium II (Deschutes)",
795			  [6] = "Mobile Pentium II",
796			  [7] = "Pentium III (Katmai)",
797			  [8] = "Pentium III (Coppermine)",
798			  [10] = "Pentium III (Cascades)",
799			  [11] = "Pentium III (Tualatin)",
800		  }
801		},
802		{ .family = 15, .model_names =
803		  {
804			  [0] = "Pentium 4 (Unknown)",
805			  [1] = "Pentium 4 (Willamette)",
806			  [2] = "Pentium 4 (Northwood)",
807			  [4] = "Pentium 4 (Foster)",
808			  [5] = "Pentium 4 (Foster)",
809		  }
810		},
811	},
812	.legacy_cache_size = intel_size_cache,
813#endif
814	.c_detect_tlb	= intel_detect_tlb,
815	.c_early_init   = early_init_intel,
816	.c_init		= init_intel,
817	.c_bsp_resume	= intel_bsp_resume,
818	.c_x86_vendor	= X86_VENDOR_INTEL,
819};
820
821cpu_dev_register(intel_cpu_dev);
822
v4.6
  1#include <linux/kernel.h>
  2
  3#include <linux/string.h>
  4#include <linux/bitops.h>
  5#include <linux/smp.h>
  6#include <linux/sched.h>
  7#include <linux/thread_info.h>
  8#include <linux/module.h>
  9#include <linux/uaccess.h>
 10
 11#include <asm/cpufeature.h>
 12#include <asm/pgtable.h>
 13#include <asm/msr.h>
 14#include <asm/bugs.h>
 15#include <asm/cpu.h>
 
 
 16
 17#ifdef CONFIG_X86_64
 18#include <linux/topology.h>
 19#endif
 20
 21#include "cpu.h"
 22
 23#ifdef CONFIG_X86_LOCAL_APIC
 24#include <asm/mpspec.h>
 25#include <asm/apic.h>
 26#endif
 27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 28static void early_init_intel(struct cpuinfo_x86 *c)
 29{
 30	u64 misc_enable;
 31
 32	/* Unmask CPUID levels if masked: */
 33	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
 34		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
 35				  MSR_IA32_MISC_ENABLE_LIMIT_CPUID_BIT) > 0) {
 36			c->cpuid_level = cpuid_eax(0);
 37			get_cpu_cap(c);
 38		}
 39	}
 40
 41	if ((c->x86 == 0xf && c->x86_model >= 0x03) ||
 42		(c->x86 == 0x6 && c->x86_model >= 0x0e))
 43		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 44
 45	if (c->x86 >= 6 && !cpu_has(c, X86_FEATURE_IA64)) {
 46		unsigned lower_word;
 47
 48		wrmsr(MSR_IA32_UCODE_REV, 0, 0);
 49		/* Required by the SDM */
 50		sync_core();
 51		rdmsr(MSR_IA32_UCODE_REV, lower_word, c->microcode);
 52	}
 53
 54	/*
 55	 * Atom erratum AAE44/AAF40/AAG38/AAH41:
 56	 *
 57	 * A race condition between speculative fetches and invalidating
 58	 * a large page.  This is worked around in microcode, but we
 59	 * need the microcode to have already been loaded... so if it is
 60	 * not, recommend a BIOS update and disable large pages.
 61	 */
 62	if (c->x86 == 6 && c->x86_model == 0x1c && c->x86_mask <= 2 &&
 63	    c->microcode < 0x20e) {
 64		pr_warn("Atom PSE erratum detected, BIOS microcode update recommended\n");
 65		clear_cpu_cap(c, X86_FEATURE_PSE);
 66	}
 67
 68#ifdef CONFIG_X86_64
 69	set_cpu_cap(c, X86_FEATURE_SYSENTER32);
 70#else
 71	/* Netburst reports 64 bytes clflush size, but does IO in 128 bytes */
 72	if (c->x86 == 15 && c->x86_cache_alignment == 64)
 73		c->x86_cache_alignment = 128;
 74#endif
 75
 76	/* CPUID workaround for 0F33/0F34 CPU */
 77	if (c->x86 == 0xF && c->x86_model == 0x3
 78	    && (c->x86_mask == 0x3 || c->x86_mask == 0x4))
 79		c->x86_phys_bits = 36;
 80
 81	/*
 82	 * c->x86_power is 8000_0007 edx. Bit 8 is TSC runs at constant rate
 83	 * with P/T states and does not stop in deep C-states.
 84	 *
 85	 * It is also reliable across cores and sockets. (but not across
 86	 * cabinets - we turn it off in that case explicitly.)
 87	 */
 88	if (c->x86_power & (1 << 8)) {
 89		set_cpu_cap(c, X86_FEATURE_CONSTANT_TSC);
 90		set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC);
 91		if (!check_tsc_unstable())
 92			set_sched_clock_stable();
 93	}
 94
 95	/* Penwell and Cloverview have the TSC which doesn't sleep on S3 */
 96	if (c->x86 == 6) {
 97		switch (c->x86_model) {
 98		case 0x27:	/* Penwell */
 99		case 0x35:	/* Cloverview */
100		case 0x4a:	/* Merrifield */
101			set_cpu_cap(c, X86_FEATURE_NONSTOP_TSC_S3);
102			break;
103		default:
104			break;
105		}
106	}
107
108	/*
109	 * There is a known erratum on Pentium III and Core Solo
110	 * and Core Duo CPUs.
111	 * " Page with PAT set to WC while associated MTRR is UC
112	 *   may consolidate to UC "
113	 * Because of this erratum, it is better to stick with
114	 * setting WC in MTRR rather than using PAT on these CPUs.
115	 *
116	 * Enable PAT WC only on P4, Core 2 or later CPUs.
117	 */
118	if (c->x86 == 6 && c->x86_model < 15)
119		clear_cpu_cap(c, X86_FEATURE_PAT);
120
121#ifdef CONFIG_KMEMCHECK
122	/*
123	 * P4s have a "fast strings" feature which causes single-
124	 * stepping REP instructions to only generate a #DB on
125	 * cache-line boundaries.
126	 *
127	 * Ingo Molnar reported a Pentium D (model 6) and a Xeon
128	 * (model 2) with the same problem.
129	 */
130	if (c->x86 == 15)
131		if (msr_clear_bit(MSR_IA32_MISC_ENABLE,
132				  MSR_IA32_MISC_ENABLE_FAST_STRING_BIT) > 0)
133			pr_info("kmemcheck: Disabling fast string operations\n");
134#endif
135
136	/*
137	 * If fast string is not enabled in IA32_MISC_ENABLE for any reason,
138	 * clear the fast string and enhanced fast string CPU capabilities.
139	 */
140	if (c->x86 > 6 || (c->x86 == 6 && c->x86_model >= 0xd)) {
141		rdmsrl(MSR_IA32_MISC_ENABLE, misc_enable);
142		if (!(misc_enable & MSR_IA32_MISC_ENABLE_FAST_STRING)) {
143			pr_info("Disabled fast string operations\n");
144			setup_clear_cpu_cap(X86_FEATURE_REP_GOOD);
145			setup_clear_cpu_cap(X86_FEATURE_ERMS);
146		}
147	}
148
149	/*
150	 * Intel Quark Core DevMan_001.pdf section 6.4.11
151	 * "The operating system also is required to invalidate (i.e., flush)
152	 *  the TLB when any changes are made to any of the page table entries.
153	 *  The operating system must reload CR3 to cause the TLB to be flushed"
154	 *
155	 * As a result cpu_has_pge() in arch/x86/include/asm/tlbflush.h should
156	 * be false so that __flush_tlb_all() causes CR3 insted of CR4.PGE
157	 * to be modified
158	 */
159	if (c->x86 == 5 && c->x86_model == 9) {
160		pr_info("Disabling PGE capability bit\n");
161		setup_clear_cpu_cap(X86_FEATURE_PGE);
162	}
163
164	if (c->cpuid_level >= 0x00000001) {
165		u32 eax, ebx, ecx, edx;
166
167		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
168		/*
169		 * If HTT (EDX[28]) is set EBX[16:23] contain the number of
170		 * apicids which are reserved per package. Store the resulting
171		 * shift value for the package management code.
172		 */
173		if (edx & (1U << 28))
174			c->x86_coreid_bits = get_count_order((ebx >> 16) & 0xff);
175	}
 
 
176}
177
178#ifdef CONFIG_X86_32
179/*
180 *	Early probe support logic for ppro memory erratum #50
181 *
182 *	This is called before we do cpu ident work
183 */
184
185int ppro_with_ram_bug(void)
186{
187	/* Uses data from early_cpu_detect now */
188	if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
189	    boot_cpu_data.x86 == 6 &&
190	    boot_cpu_data.x86_model == 1 &&
191	    boot_cpu_data.x86_mask < 8) {
192		pr_info("Pentium Pro with Errata#50 detected. Taking evasive action.\n");
193		return 1;
194	}
195	return 0;
196}
197
198static void intel_smp_check(struct cpuinfo_x86 *c)
199{
200	/* calling is from identify_secondary_cpu() ? */
201	if (!c->cpu_index)
202		return;
203
204	/*
205	 * Mask B, Pentium, but not Pentium MMX
206	 */
207	if (c->x86 == 5 &&
208	    c->x86_mask >= 1 && c->x86_mask <= 4 &&
209	    c->x86_model <= 3) {
210		/*
211		 * Remember we have B step Pentia with bugs
212		 */
213		WARN_ONCE(1, "WARNING: SMP operation may be unreliable"
214				    "with B stepping processors.\n");
215	}
216}
217
218static int forcepae;
219static int __init forcepae_setup(char *__unused)
220{
221	forcepae = 1;
222	return 1;
223}
224__setup("forcepae", forcepae_setup);
225
226static void intel_workarounds(struct cpuinfo_x86 *c)
227{
228#ifdef CONFIG_X86_F00F_BUG
229	/*
230	 * All models of Pentium and Pentium with MMX technology CPUs
231	 * have the F0 0F bug, which lets nonprivileged users lock up the
232	 * system. Announce that the fault handler will be checking for it.
233	 * The Quark is also family 5, but does not have the same bug.
234	 */
235	clear_cpu_bug(c, X86_BUG_F00F);
236	if (!paravirt_enabled() && c->x86 == 5 && c->x86_model < 9) {
237		static int f00f_workaround_enabled;
238
239		set_cpu_bug(c, X86_BUG_F00F);
240		if (!f00f_workaround_enabled) {
241			pr_notice("Intel Pentium with F0 0F bug - workaround enabled.\n");
242			f00f_workaround_enabled = 1;
243		}
244	}
245#endif
246
247	/*
248	 * SEP CPUID bug: Pentium Pro reports SEP but doesn't have it until
249	 * model 3 mask 3
250	 */
251	if ((c->x86<<8 | c->x86_model<<4 | c->x86_mask) < 0x633)
252		clear_cpu_cap(c, X86_FEATURE_SEP);
253
254	/*
255	 * PAE CPUID issue: many Pentium M report no PAE but may have a
256	 * functionally usable PAE implementation.
257	 * Forcefully enable PAE if kernel parameter "forcepae" is present.
258	 */
259	if (forcepae) {
260		pr_warn("PAE forced!\n");
261		set_cpu_cap(c, X86_FEATURE_PAE);
262		add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_NOW_UNRELIABLE);
263	}
264
265	/*
266	 * P4 Xeon errata 037 workaround.
267	 * Hardware prefetcher may cause stale data to be loaded into the cache.
268	 */
269	if ((c->x86 == 15) && (c->x86_model == 1) && (c->x86_mask == 1)) {
270		if (msr_set_bit(MSR_IA32_MISC_ENABLE,
271				MSR_IA32_MISC_ENABLE_PREFETCH_DISABLE_BIT)
272		    > 0) {
273			pr_info("CPU: C0 stepping P4 Xeon detected.\n");
274			pr_info("CPU: Disabling hardware prefetching (Errata 037)\n");
275		}
276	}
277
278	/*
279	 * See if we have a good local APIC by checking for buggy Pentia,
280	 * i.e. all B steppings and the C2 stepping of P54C when using their
281	 * integrated APIC (see 11AP erratum in "Pentium Processor
282	 * Specification Update").
283	 */
284	if (cpu_has_apic && (c->x86<<8 | c->x86_model<<4) == 0x520 &&
285	    (c->x86_mask < 0x6 || c->x86_mask == 0xb))
286		set_cpu_bug(c, X86_BUG_11AP);
287
288
289#ifdef CONFIG_X86_INTEL_USERCOPY
290	/*
291	 * Set up the preferred alignment for movsl bulk memory moves
292	 */
293	switch (c->x86) {
294	case 4:		/* 486: untested */
295		break;
296	case 5:		/* Old Pentia: untested */
297		break;
298	case 6:		/* PII/PIII only like movsl with 8-byte alignment */
299		movsl_mask.mask = 7;
300		break;
301	case 15:	/* P4 is OK down to 8-byte alignment */
302		movsl_mask.mask = 7;
303		break;
304	}
305#endif
306
307	intel_smp_check(c);
308}
309#else
310static void intel_workarounds(struct cpuinfo_x86 *c)
311{
312}
313#endif
314
315static void srat_detect_node(struct cpuinfo_x86 *c)
316{
317#ifdef CONFIG_NUMA
318	unsigned node;
319	int cpu = smp_processor_id();
320
321	/* Don't do the funky fallback heuristics the AMD version employs
322	   for now. */
323	node = numa_cpu_node(cpu);
324	if (node == NUMA_NO_NODE || !node_online(node)) {
325		/* reuse the value from init_cpu_to_node() */
326		node = cpu_to_node(cpu);
327	}
328	numa_set_node(cpu, node);
329#endif
330}
331
332/*
333 * find out the number of processor cores on the die
334 */
335static int intel_num_cpu_cores(struct cpuinfo_x86 *c)
336{
337	unsigned int eax, ebx, ecx, edx;
338
339	if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
340		return 1;
341
342	/* Intel has a non-standard dependency on %ecx for this CPUID level. */
343	cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
344	if (eax & 0x1f)
345		return (eax >> 26) + 1;
346	else
347		return 1;
348}
349
350static void detect_vmx_virtcap(struct cpuinfo_x86 *c)
351{
352	/* Intel VMX MSR indicated features */
353#define X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW	0x00200000
354#define X86_VMX_FEATURE_PROC_CTLS_VNMI		0x00400000
355#define X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS	0x80000000
356#define X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC	0x00000001
357#define X86_VMX_FEATURE_PROC_CTLS2_EPT		0x00000002
358#define X86_VMX_FEATURE_PROC_CTLS2_VPID		0x00000020
359
360	u32 vmx_msr_low, vmx_msr_high, msr_ctl, msr_ctl2;
361
362	clear_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
363	clear_cpu_cap(c, X86_FEATURE_VNMI);
364	clear_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
365	clear_cpu_cap(c, X86_FEATURE_EPT);
366	clear_cpu_cap(c, X86_FEATURE_VPID);
367
368	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, vmx_msr_low, vmx_msr_high);
369	msr_ctl = vmx_msr_high | vmx_msr_low;
370	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW)
371		set_cpu_cap(c, X86_FEATURE_TPR_SHADOW);
372	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_VNMI)
373		set_cpu_cap(c, X86_FEATURE_VNMI);
374	if (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_2ND_CTLS) {
375		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
376		      vmx_msr_low, vmx_msr_high);
377		msr_ctl2 = vmx_msr_high | vmx_msr_low;
378		if ((msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VIRT_APIC) &&
379		    (msr_ctl & X86_VMX_FEATURE_PROC_CTLS_TPR_SHADOW))
380			set_cpu_cap(c, X86_FEATURE_FLEXPRIORITY);
381		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_EPT)
382			set_cpu_cap(c, X86_FEATURE_EPT);
383		if (msr_ctl2 & X86_VMX_FEATURE_PROC_CTLS2_VPID)
384			set_cpu_cap(c, X86_FEATURE_VPID);
385	}
386}
387
388static void init_intel_energy_perf(struct cpuinfo_x86 *c)
389{
390	u64 epb;
391
392	/*
393	 * Initialize MSR_IA32_ENERGY_PERF_BIAS if not already initialized.
394	 * (x86_energy_perf_policy(8) is available to change it at run-time.)
395	 */
396	if (!cpu_has(c, X86_FEATURE_EPB))
397		return;
398
399	rdmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
400	if ((epb & 0xF) != ENERGY_PERF_BIAS_PERFORMANCE)
401		return;
402
403	pr_warn_once("ENERGY_PERF_BIAS: Set to 'normal', was 'performance'\n");
404	pr_warn_once("ENERGY_PERF_BIAS: View and update with x86_energy_perf_policy(8)\n");
405	epb = (epb & ~0xF) | ENERGY_PERF_BIAS_NORMAL;
406	wrmsrl(MSR_IA32_ENERGY_PERF_BIAS, epb);
407}
408
409static void intel_bsp_resume(struct cpuinfo_x86 *c)
410{
411	/*
412	 * MSR_IA32_ENERGY_PERF_BIAS is lost across suspend/resume,
413	 * so reinitialize it properly like during bootup:
414	 */
415	init_intel_energy_perf(c);
416}
417
418static void init_intel(struct cpuinfo_x86 *c)
419{
420	unsigned int l2 = 0;
421
422	early_init_intel(c);
423
424	intel_workarounds(c);
425
426	/*
427	 * Detect the extended topology information if available. This
428	 * will reinitialise the initial_apicid which will be used
429	 * in init_intel_cacheinfo()
430	 */
431	detect_extended_topology(c);
432
433	if (!cpu_has(c, X86_FEATURE_XTOPOLOGY)) {
434		/*
435		 * let's use the legacy cpuid vector 0x1 and 0x4 for topology
436		 * detection.
437		 */
438		c->x86_max_cores = intel_num_cpu_cores(c);
439#ifdef CONFIG_X86_32
440		detect_ht(c);
441#endif
442	}
443
444	l2 = init_intel_cacheinfo(c);
445
446	/* Detect legacy cache sizes if init_intel_cacheinfo did not */
447	if (l2 == 0) {
448		cpu_detect_cache_sizes(c);
449		l2 = c->x86_cache_size;
450	}
451
452	if (c->cpuid_level > 9) {
453		unsigned eax = cpuid_eax(10);
454		/* Check for version and the number of counters */
455		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1))
456			set_cpu_cap(c, X86_FEATURE_ARCH_PERFMON);
457	}
458
459	if (cpu_has_xmm2)
460		set_cpu_cap(c, X86_FEATURE_LFENCE_RDTSC);
461
462	if (boot_cpu_has(X86_FEATURE_DS)) {
463		unsigned int l1;
464		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2);
465		if (!(l1 & (1<<11)))
466			set_cpu_cap(c, X86_FEATURE_BTS);
467		if (!(l1 & (1<<12)))
468			set_cpu_cap(c, X86_FEATURE_PEBS);
469	}
470
471	if (c->x86 == 6 && cpu_has_clflush &&
472	    (c->x86_model == 29 || c->x86_model == 46 || c->x86_model == 47))
473		set_cpu_bug(c, X86_BUG_CLFLUSH_MONITOR);
 
 
 
 
474
475#ifdef CONFIG_X86_64
476	if (c->x86 == 15)
477		c->x86_cache_alignment = c->x86_clflush_size * 2;
478	if (c->x86 == 6)
479		set_cpu_cap(c, X86_FEATURE_REP_GOOD);
480#else
481	/*
482	 * Names for the Pentium II/Celeron processors
483	 * detectable only by also checking the cache size.
484	 * Dixon is NOT a Celeron.
485	 */
486	if (c->x86 == 6) {
487		char *p = NULL;
488
489		switch (c->x86_model) {
490		case 5:
491			if (l2 == 0)
492				p = "Celeron (Covington)";
493			else if (l2 == 256)
494				p = "Mobile Pentium II (Dixon)";
495			break;
496
497		case 6:
498			if (l2 == 128)
499				p = "Celeron (Mendocino)";
500			else if (c->x86_mask == 0 || c->x86_mask == 5)
501				p = "Celeron-A";
502			break;
503
504		case 8:
505			if (l2 == 128)
506				p = "Celeron (Coppermine)";
507			break;
508		}
509
510		if (p)
511			strcpy(c->x86_model_id, p);
512	}
513
514	if (c->x86 == 15)
515		set_cpu_cap(c, X86_FEATURE_P4);
516	if (c->x86 == 6)
517		set_cpu_cap(c, X86_FEATURE_P3);
518#endif
519
520	/* Work around errata */
521	srat_detect_node(c);
522
523	if (cpu_has(c, X86_FEATURE_VMX))
524		detect_vmx_virtcap(c);
525
526	init_intel_energy_perf(c);
527}
528
529#ifdef CONFIG_X86_32
530static unsigned int intel_size_cache(struct cpuinfo_x86 *c, unsigned int size)
531{
532	/*
533	 * Intel PIII Tualatin. This comes in two flavours.
534	 * One has 256kb of cache, the other 512. We have no way
535	 * to determine which, so we use a boottime override
536	 * for the 512kb model, and assume 256 otherwise.
537	 */
538	if ((c->x86 == 6) && (c->x86_model == 11) && (size == 0))
539		size = 256;
540
541	/*
542	 * Intel Quark SoC X1000 contains a 4-way set associative
543	 * 16K cache with a 16 byte cache line and 256 lines per tag
544	 */
545	if ((c->x86 == 5) && (c->x86_model == 9))
546		size = 16;
547	return size;
548}
549#endif
550
551#define TLB_INST_4K	0x01
552#define TLB_INST_4M	0x02
553#define TLB_INST_2M_4M	0x03
554
555#define TLB_INST_ALL	0x05
556#define TLB_INST_1G	0x06
557
558#define TLB_DATA_4K	0x11
559#define TLB_DATA_4M	0x12
560#define TLB_DATA_2M_4M	0x13
561#define TLB_DATA_4K_4M	0x14
562
563#define TLB_DATA_1G	0x16
564
565#define TLB_DATA0_4K	0x21
566#define TLB_DATA0_4M	0x22
567#define TLB_DATA0_2M_4M	0x23
568
569#define STLB_4K		0x41
570#define STLB_4K_2M	0x42
571
572static const struct _tlb_table intel_tlb_table[] = {
573	{ 0x01, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages, 4-way set associative" },
574	{ 0x02, TLB_INST_4M,		2,	" TLB_INST 4 MByte pages, full associative" },
575	{ 0x03, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way set associative" },
576	{ 0x04, TLB_DATA_4M,		8,	" TLB_DATA 4 MByte pages, 4-way set associative" },
577	{ 0x05, TLB_DATA_4M,		32,	" TLB_DATA 4 MByte pages, 4-way set associative" },
578	{ 0x0b, TLB_INST_4M,		4,	" TLB_INST 4 MByte pages, 4-way set associative" },
579	{ 0x4f, TLB_INST_4K,		32,	" TLB_INST 4 KByte pages */" },
580	{ 0x50, TLB_INST_ALL,		64,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
581	{ 0x51, TLB_INST_ALL,		128,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
582	{ 0x52, TLB_INST_ALL,		256,	" TLB_INST 4 KByte and 2-MByte or 4-MByte pages" },
583	{ 0x55, TLB_INST_2M_4M,		7,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
584	{ 0x56, TLB_DATA0_4M,		16,	" TLB_DATA0 4 MByte pages, 4-way set associative" },
585	{ 0x57, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, 4-way associative" },
586	{ 0x59, TLB_DATA0_4K,		16,	" TLB_DATA0 4 KByte pages, fully associative" },
587	{ 0x5a, TLB_DATA0_2M_4M,	32,	" TLB_DATA0 2-MByte or 4 MByte pages, 4-way set associative" },
588	{ 0x5b, TLB_DATA_4K_4M,		64,	" TLB_DATA 4 KByte and 4 MByte pages" },
589	{ 0x5c, TLB_DATA_4K_4M,		128,	" TLB_DATA 4 KByte and 4 MByte pages" },
590	{ 0x5d, TLB_DATA_4K_4M,		256,	" TLB_DATA 4 KByte and 4 MByte pages" },
591	{ 0x61, TLB_INST_4K,		48,	" TLB_INST 4 KByte pages, full associative" },
592	{ 0x63, TLB_DATA_1G,		4,	" TLB_DATA 1 GByte pages, 4-way set associative" },
593	{ 0x76, TLB_INST_2M_4M,		8,	" TLB_INST 2-MByte or 4-MByte pages, fully associative" },
594	{ 0xb0, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 4-way set associative" },
595	{ 0xb1, TLB_INST_2M_4M,		4,	" TLB_INST 2M pages, 4-way, 8 entries or 4M pages, 4-way entries" },
596	{ 0xb2, TLB_INST_4K,		64,	" TLB_INST 4KByte pages, 4-way set associative" },
597	{ 0xb3, TLB_DATA_4K,		128,	" TLB_DATA 4 KByte pages, 4-way set associative" },
598	{ 0xb4, TLB_DATA_4K,		256,	" TLB_DATA 4 KByte pages, 4-way associative" },
599	{ 0xb5, TLB_INST_4K,		64,	" TLB_INST 4 KByte pages, 8-way set associative" },
600	{ 0xb6, TLB_INST_4K,		128,	" TLB_INST 4 KByte pages, 8-way set associative" },
601	{ 0xba, TLB_DATA_4K,		64,	" TLB_DATA 4 KByte pages, 4-way associative" },
602	{ 0xc0, TLB_DATA_4K_4M,		8,	" TLB_DATA 4 KByte and 4 MByte pages, 4-way associative" },
603	{ 0xc1, STLB_4K_2M,		1024,	" STLB 4 KByte and 2 MByte pages, 8-way associative" },
604	{ 0xc2, TLB_DATA_2M_4M,		16,	" DTLB 2 MByte/4MByte pages, 4-way associative" },
605	{ 0xca, STLB_4K,		512,	" STLB 4 KByte pages, 4-way associative" },
606	{ 0x00, 0, 0 }
607};
608
609static void intel_tlb_lookup(const unsigned char desc)
610{
611	unsigned char k;
612	if (desc == 0)
613		return;
614
615	/* look up this descriptor in the table */
616	for (k = 0; intel_tlb_table[k].descriptor != desc && \
617			intel_tlb_table[k].descriptor != 0; k++)
618		;
619
620	if (intel_tlb_table[k].tlb_type == 0)
621		return;
622
623	switch (intel_tlb_table[k].tlb_type) {
624	case STLB_4K:
625		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
626			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
627		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
628			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
629		break;
630	case STLB_4K_2M:
631		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
632			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
633		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
634			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
635		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
636			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
637		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
638			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
639		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
640			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
641		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
642			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
643		break;
644	case TLB_INST_ALL:
645		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
646			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
647		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
648			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
649		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
650			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
651		break;
652	case TLB_INST_4K:
653		if (tlb_lli_4k[ENTRIES] < intel_tlb_table[k].entries)
654			tlb_lli_4k[ENTRIES] = intel_tlb_table[k].entries;
655		break;
656	case TLB_INST_4M:
657		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
658			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
659		break;
660	case TLB_INST_2M_4M:
661		if (tlb_lli_2m[ENTRIES] < intel_tlb_table[k].entries)
662			tlb_lli_2m[ENTRIES] = intel_tlb_table[k].entries;
663		if (tlb_lli_4m[ENTRIES] < intel_tlb_table[k].entries)
664			tlb_lli_4m[ENTRIES] = intel_tlb_table[k].entries;
665		break;
666	case TLB_DATA_4K:
667	case TLB_DATA0_4K:
668		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
669			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
670		break;
671	case TLB_DATA_4M:
672	case TLB_DATA0_4M:
673		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
674			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
675		break;
676	case TLB_DATA_2M_4M:
677	case TLB_DATA0_2M_4M:
678		if (tlb_lld_2m[ENTRIES] < intel_tlb_table[k].entries)
679			tlb_lld_2m[ENTRIES] = intel_tlb_table[k].entries;
680		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
681			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
682		break;
683	case TLB_DATA_4K_4M:
684		if (tlb_lld_4k[ENTRIES] < intel_tlb_table[k].entries)
685			tlb_lld_4k[ENTRIES] = intel_tlb_table[k].entries;
686		if (tlb_lld_4m[ENTRIES] < intel_tlb_table[k].entries)
687			tlb_lld_4m[ENTRIES] = intel_tlb_table[k].entries;
688		break;
689	case TLB_DATA_1G:
690		if (tlb_lld_1g[ENTRIES] < intel_tlb_table[k].entries)
691			tlb_lld_1g[ENTRIES] = intel_tlb_table[k].entries;
692		break;
693	}
694}
695
696static void intel_detect_tlb(struct cpuinfo_x86 *c)
697{
698	int i, j, n;
699	unsigned int regs[4];
700	unsigned char *desc = (unsigned char *)regs;
701
702	if (c->cpuid_level < 2)
703		return;
704
705	/* Number of times to iterate */
706	n = cpuid_eax(2) & 0xFF;
707
708	for (i = 0 ; i < n ; i++) {
709		cpuid(2, &regs[0], &regs[1], &regs[2], &regs[3]);
710
711		/* If bit 31 is set, this is an unknown format */
712		for (j = 0 ; j < 3 ; j++)
713			if (regs[j] & (1 << 31))
714				regs[j] = 0;
715
716		/* Byte 0 is level count, not a descriptor */
717		for (j = 1 ; j < 16 ; j++)
718			intel_tlb_lookup(desc[j]);
719	}
720}
721
722static const struct cpu_dev intel_cpu_dev = {
723	.c_vendor	= "Intel",
724	.c_ident	= { "GenuineIntel" },
725#ifdef CONFIG_X86_32
726	.legacy_models = {
727		{ .family = 4, .model_names =
728		  {
729			  [0] = "486 DX-25/33",
730			  [1] = "486 DX-50",
731			  [2] = "486 SX",
732			  [3] = "486 DX/2",
733			  [4] = "486 SL",
734			  [5] = "486 SX/2",
735			  [7] = "486 DX/2-WB",
736			  [8] = "486 DX/4",
737			  [9] = "486 DX/4-WB"
738		  }
739		},
740		{ .family = 5, .model_names =
741		  {
742			  [0] = "Pentium 60/66 A-step",
743			  [1] = "Pentium 60/66",
744			  [2] = "Pentium 75 - 200",
745			  [3] = "OverDrive PODP5V83",
746			  [4] = "Pentium MMX",
747			  [7] = "Mobile Pentium 75 - 200",
748			  [8] = "Mobile Pentium MMX",
749			  [9] = "Quark SoC X1000",
750		  }
751		},
752		{ .family = 6, .model_names =
753		  {
754			  [0] = "Pentium Pro A-step",
755			  [1] = "Pentium Pro",
756			  [3] = "Pentium II (Klamath)",
757			  [4] = "Pentium II (Deschutes)",
758			  [5] = "Pentium II (Deschutes)",
759			  [6] = "Mobile Pentium II",
760			  [7] = "Pentium III (Katmai)",
761			  [8] = "Pentium III (Coppermine)",
762			  [10] = "Pentium III (Cascades)",
763			  [11] = "Pentium III (Tualatin)",
764		  }
765		},
766		{ .family = 15, .model_names =
767		  {
768			  [0] = "Pentium 4 (Unknown)",
769			  [1] = "Pentium 4 (Willamette)",
770			  [2] = "Pentium 4 (Northwood)",
771			  [4] = "Pentium 4 (Foster)",
772			  [5] = "Pentium 4 (Foster)",
773		  }
774		},
775	},
776	.legacy_cache_size = intel_size_cache,
777#endif
778	.c_detect_tlb	= intel_detect_tlb,
779	.c_early_init   = early_init_intel,
780	.c_init		= init_intel,
781	.c_bsp_resume	= intel_bsp_resume,
782	.c_x86_vendor	= X86_VENDOR_INTEL,
783};
784
785cpu_dev_register(intel_cpu_dev);
786