Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v4.10.11
  1#ifndef __ASM_GENERIC_UACCESS_H
  2#define __ASM_GENERIC_UACCESS_H
  3
  4/*
  5 * User space memory access functions, these should work
  6 * on any machine that has kernel and user data in the same
  7 * address space, e.g. all NOMMU machines.
  8 */
  9#include <linux/sched.h>
 10#include <linux/string.h>
 11
 12#include <asm/segment.h>
 13
 14#define MAKE_MM_SEG(s)	((mm_segment_t) { (s) })
 15
 16#ifndef KERNEL_DS
 17#define KERNEL_DS	MAKE_MM_SEG(~0UL)
 18#endif
 19
 20#ifndef USER_DS
 21#define USER_DS		MAKE_MM_SEG(TASK_SIZE - 1)
 22#endif
 23
 24#ifndef get_fs
 25#define get_ds()	(KERNEL_DS)
 26#define get_fs()	(current_thread_info()->addr_limit)
 27
 28static inline void set_fs(mm_segment_t fs)
 29{
 30	current_thread_info()->addr_limit = fs;
 31}
 32#endif
 33
 34#ifndef segment_eq
 35#define segment_eq(a, b) ((a).seg == (b).seg)
 36#endif
 37
 38#define VERIFY_READ	0
 39#define VERIFY_WRITE	1
 40
 41#define access_ok(type, addr, size) __access_ok((unsigned long)(addr),(size))
 42
 43/*
 44 * The architecture should really override this if possible, at least
 45 * doing a check on the get_fs()
 46 */
 47#ifndef __access_ok
 48static inline int __access_ok(unsigned long addr, unsigned long size)
 49{
 50	return 1;
 51}
 52#endif
 53
 54/*
 55 * The exception table consists of pairs of addresses: the first is the
 56 * address of an instruction that is allowed to fault, and the second is
 57 * the address at which the program should continue.  No registers are
 58 * modified, so it is entirely up to the continuation code to figure out
 59 * what to do.
 60 *
 61 * All the routines below use bits of fixup code that are out of line
 62 * with the main instruction path.  This means when everything is well,
 63 * we don't even have to jump over them.  Further, they do not intrude
 64 * on our cache or tlb entries.
 65 */
 66
 67struct exception_table_entry
 68{
 69	unsigned long insn, fixup;
 70};
 71
 
 
 
 72/*
 73 * architectures with an MMU should override these two
 74 */
 75#ifndef __copy_from_user
 76static inline __must_check long __copy_from_user(void *to,
 77		const void __user * from, unsigned long n)
 78{
 79	if (__builtin_constant_p(n)) {
 80		switch(n) {
 81		case 1:
 82			*(u8 *)to = *(u8 __force *)from;
 83			return 0;
 84		case 2:
 85			*(u16 *)to = *(u16 __force *)from;
 86			return 0;
 87		case 4:
 88			*(u32 *)to = *(u32 __force *)from;
 89			return 0;
 90#ifdef CONFIG_64BIT
 91		case 8:
 92			*(u64 *)to = *(u64 __force *)from;
 93			return 0;
 94#endif
 95		default:
 96			break;
 97		}
 98	}
 99
100	memcpy(to, (const void __force *)from, n);
101	return 0;
102}
103#endif
104
105#ifndef __copy_to_user
106static inline __must_check long __copy_to_user(void __user *to,
107		const void *from, unsigned long n)
108{
109	if (__builtin_constant_p(n)) {
110		switch(n) {
111		case 1:
112			*(u8 __force *)to = *(u8 *)from;
113			return 0;
114		case 2:
115			*(u16 __force *)to = *(u16 *)from;
116			return 0;
117		case 4:
118			*(u32 __force *)to = *(u32 *)from;
119			return 0;
120#ifdef CONFIG_64BIT
121		case 8:
122			*(u64 __force *)to = *(u64 *)from;
123			return 0;
124#endif
125		default:
126			break;
127		}
128	}
129
130	memcpy((void __force *)to, from, n);
131	return 0;
132}
133#endif
134
135/*
136 * These are the main single-value transfer routines.  They automatically
137 * use the right size if we just have the right pointer type.
138 * This version just falls back to copy_{from,to}_user, which should
139 * provide a fast-path for small values.
140 */
141#define __put_user(x, ptr) \
142({								\
143	__typeof__(*(ptr)) __x = (x);				\
144	int __pu_err = -EFAULT;					\
145        __chk_user_ptr(ptr);                                    \
146	switch (sizeof (*(ptr))) {				\
147	case 1:							\
148	case 2:							\
149	case 4:							\
150	case 8:							\
151		__pu_err = __put_user_fn(sizeof (*(ptr)),	\
152					 ptr, &__x);		\
153		break;						\
154	default:						\
155		__put_user_bad();				\
156		break;						\
157	 }							\
158	__pu_err;						\
159})
160
161#define put_user(x, ptr)					\
162({								\
163	void *__p = (ptr);					\
164	might_fault();						\
165	access_ok(VERIFY_WRITE, __p, sizeof(*ptr)) ?		\
166		__put_user((x), ((__typeof__(*(ptr)) *)__p)) :	\
167		-EFAULT;					\
168})
169
170#ifndef __put_user_fn
171
172static inline int __put_user_fn(size_t size, void __user *ptr, void *x)
173{
174	size = __copy_to_user(ptr, x, size);
175	return size ? -EFAULT : size;
176}
177
178#define __put_user_fn(sz, u, k)	__put_user_fn(sz, u, k)
179
180#endif
181
182extern int __put_user_bad(void) __attribute__((noreturn));
183
184#define __get_user(x, ptr)					\
185({								\
186	int __gu_err = -EFAULT;					\
187	__chk_user_ptr(ptr);					\
188	switch (sizeof(*(ptr))) {				\
189	case 1: {						\
190		unsigned char __x;				\
191		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
192					 ptr, &__x);		\
193		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
194		break;						\
195	};							\
196	case 2: {						\
197		unsigned short __x;				\
198		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
199					 ptr, &__x);		\
200		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
201		break;						\
202	};							\
203	case 4: {						\
204		unsigned int __x;				\
205		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
206					 ptr, &__x);		\
207		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
208		break;						\
209	};							\
210	case 8: {						\
211		unsigned long long __x;				\
212		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
213					 ptr, &__x);		\
214		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
215		break;						\
216	};							\
217	default:						\
218		__get_user_bad();				\
219		break;						\
220	}							\
221	__gu_err;						\
222})
223
224#define get_user(x, ptr)					\
225({								\
226	const void *__p = (ptr);				\
227	might_fault();						\
228	access_ok(VERIFY_READ, __p, sizeof(*ptr)) ?		\
229		__get_user((x), (__typeof__(*(ptr)) *)__p) :	\
230		((x) = (__typeof__(*(ptr)))0,-EFAULT);		\
231})
232
233#ifndef __get_user_fn
234static inline int __get_user_fn(size_t size, const void __user *ptr, void *x)
235{
236	size_t n = __copy_from_user(x, ptr, size);
237	if (unlikely(n)) {
238		memset(x + (size - n), 0, n);
239		return -EFAULT;
240	}
241	return 0;
242}
243
244#define __get_user_fn(sz, u, k)	__get_user_fn(sz, u, k)
245
246#endif
247
248extern int __get_user_bad(void) __attribute__((noreturn));
249
250#ifndef __copy_from_user_inatomic
251#define __copy_from_user_inatomic __copy_from_user
252#endif
253
254#ifndef __copy_to_user_inatomic
255#define __copy_to_user_inatomic __copy_to_user
256#endif
257
258static inline long copy_from_user(void *to,
259		const void __user * from, unsigned long n)
260{
261	unsigned long res = n;
262	might_fault();
263	if (likely(access_ok(VERIFY_READ, from, n)))
264		res = __copy_from_user(to, from, n);
265	if (unlikely(res))
266		memset(to + (n - res), 0, res);
267	return res;
268}
269
270static inline long copy_to_user(void __user *to,
271		const void *from, unsigned long n)
272{
273	might_fault();
274	if (access_ok(VERIFY_WRITE, to, n))
275		return __copy_to_user(to, from, n);
276	else
277		return n;
278}
279
280/*
281 * Copy a null terminated string from userspace.
282 */
283#ifndef __strncpy_from_user
284static inline long
285__strncpy_from_user(char *dst, const char __user *src, long count)
286{
287	char *tmp;
288	strncpy(dst, (const char __force *)src, count);
289	for (tmp = dst; *tmp && count > 0; tmp++, count--)
290		;
291	return (tmp - dst);
292}
293#endif
294
295static inline long
296strncpy_from_user(char *dst, const char __user *src, long count)
297{
298	if (!access_ok(VERIFY_READ, src, 1))
299		return -EFAULT;
300	return __strncpy_from_user(dst, src, count);
301}
302
303/*
304 * Return the size of a string (including the ending 0)
305 *
306 * Return 0 on exception, a value greater than N if too long
307 */
308#ifndef __strnlen_user
309#define __strnlen_user(s, n) (strnlen((s), (n)) + 1)
310#endif
311
312/*
313 * Unlike strnlen, strnlen_user includes the nul terminator in
314 * its returned count. Callers should check for a returned value
315 * greater than N as an indication the string is too long.
316 */
317static inline long strnlen_user(const char __user *src, long n)
318{
319	if (!access_ok(VERIFY_READ, src, 1))
320		return 0;
321	return __strnlen_user(src, n);
322}
323
324static inline long strlen_user(const char __user *src)
325{
326	return strnlen_user(src, 32767);
327}
328
329/*
330 * Zero Userspace
331 */
332#ifndef __clear_user
333static inline __must_check unsigned long
334__clear_user(void __user *to, unsigned long n)
335{
336	memset((void __force *)to, 0, n);
337	return 0;
338}
339#endif
340
341static inline __must_check unsigned long
342clear_user(void __user *to, unsigned long n)
343{
344	might_fault();
345	if (!access_ok(VERIFY_WRITE, to, n))
346		return n;
347
348	return __clear_user(to, n);
349}
350
351#endif /* __ASM_GENERIC_UACCESS_H */
v4.6
  1#ifndef __ASM_GENERIC_UACCESS_H
  2#define __ASM_GENERIC_UACCESS_H
  3
  4/*
  5 * User space memory access functions, these should work
  6 * on any machine that has kernel and user data in the same
  7 * address space, e.g. all NOMMU machines.
  8 */
  9#include <linux/sched.h>
 10#include <linux/string.h>
 11
 12#include <asm/segment.h>
 13
 14#define MAKE_MM_SEG(s)	((mm_segment_t) { (s) })
 15
 16#ifndef KERNEL_DS
 17#define KERNEL_DS	MAKE_MM_SEG(~0UL)
 18#endif
 19
 20#ifndef USER_DS
 21#define USER_DS		MAKE_MM_SEG(TASK_SIZE - 1)
 22#endif
 23
 24#ifndef get_fs
 25#define get_ds()	(KERNEL_DS)
 26#define get_fs()	(current_thread_info()->addr_limit)
 27
 28static inline void set_fs(mm_segment_t fs)
 29{
 30	current_thread_info()->addr_limit = fs;
 31}
 32#endif
 33
 34#ifndef segment_eq
 35#define segment_eq(a, b) ((a).seg == (b).seg)
 36#endif
 37
 38#define VERIFY_READ	0
 39#define VERIFY_WRITE	1
 40
 41#define access_ok(type, addr, size) __access_ok((unsigned long)(addr),(size))
 42
 43/*
 44 * The architecture should really override this if possible, at least
 45 * doing a check on the get_fs()
 46 */
 47#ifndef __access_ok
 48static inline int __access_ok(unsigned long addr, unsigned long size)
 49{
 50	return 1;
 51}
 52#endif
 53
 54/*
 55 * The exception table consists of pairs of addresses: the first is the
 56 * address of an instruction that is allowed to fault, and the second is
 57 * the address at which the program should continue.  No registers are
 58 * modified, so it is entirely up to the continuation code to figure out
 59 * what to do.
 60 *
 61 * All the routines below use bits of fixup code that are out of line
 62 * with the main instruction path.  This means when everything is well,
 63 * we don't even have to jump over them.  Further, they do not intrude
 64 * on our cache or tlb entries.
 65 */
 66
 67struct exception_table_entry
 68{
 69	unsigned long insn, fixup;
 70};
 71
 72/* Returns 0 if exception not found and fixup otherwise.  */
 73extern unsigned long search_exception_table(unsigned long);
 74
 75/*
 76 * architectures with an MMU should override these two
 77 */
 78#ifndef __copy_from_user
 79static inline __must_check long __copy_from_user(void *to,
 80		const void __user * from, unsigned long n)
 81{
 82	if (__builtin_constant_p(n)) {
 83		switch(n) {
 84		case 1:
 85			*(u8 *)to = *(u8 __force *)from;
 86			return 0;
 87		case 2:
 88			*(u16 *)to = *(u16 __force *)from;
 89			return 0;
 90		case 4:
 91			*(u32 *)to = *(u32 __force *)from;
 92			return 0;
 93#ifdef CONFIG_64BIT
 94		case 8:
 95			*(u64 *)to = *(u64 __force *)from;
 96			return 0;
 97#endif
 98		default:
 99			break;
100		}
101	}
102
103	memcpy(to, (const void __force *)from, n);
104	return 0;
105}
106#endif
107
108#ifndef __copy_to_user
109static inline __must_check long __copy_to_user(void __user *to,
110		const void *from, unsigned long n)
111{
112	if (__builtin_constant_p(n)) {
113		switch(n) {
114		case 1:
115			*(u8 __force *)to = *(u8 *)from;
116			return 0;
117		case 2:
118			*(u16 __force *)to = *(u16 *)from;
119			return 0;
120		case 4:
121			*(u32 __force *)to = *(u32 *)from;
122			return 0;
123#ifdef CONFIG_64BIT
124		case 8:
125			*(u64 __force *)to = *(u64 *)from;
126			return 0;
127#endif
128		default:
129			break;
130		}
131	}
132
133	memcpy((void __force *)to, from, n);
134	return 0;
135}
136#endif
137
138/*
139 * These are the main single-value transfer routines.  They automatically
140 * use the right size if we just have the right pointer type.
141 * This version just falls back to copy_{from,to}_user, which should
142 * provide a fast-path for small values.
143 */
144#define __put_user(x, ptr) \
145({								\
146	__typeof__(*(ptr)) __x = (x);				\
147	int __pu_err = -EFAULT;					\
148        __chk_user_ptr(ptr);                                    \
149	switch (sizeof (*(ptr))) {				\
150	case 1:							\
151	case 2:							\
152	case 4:							\
153	case 8:							\
154		__pu_err = __put_user_fn(sizeof (*(ptr)),	\
155					 ptr, &__x);		\
156		break;						\
157	default:						\
158		__put_user_bad();				\
159		break;						\
160	 }							\
161	__pu_err;						\
162})
163
164#define put_user(x, ptr)					\
165({								\
166	void *__p = (ptr);					\
167	might_fault();						\
168	access_ok(VERIFY_WRITE, __p, sizeof(*ptr)) ?		\
169		__put_user((x), ((__typeof__(*(ptr)) *)__p)) :	\
170		-EFAULT;					\
171})
172
173#ifndef __put_user_fn
174
175static inline int __put_user_fn(size_t size, void __user *ptr, void *x)
176{
177	size = __copy_to_user(ptr, x, size);
178	return size ? -EFAULT : size;
179}
180
181#define __put_user_fn(sz, u, k)	__put_user_fn(sz, u, k)
182
183#endif
184
185extern int __put_user_bad(void) __attribute__((noreturn));
186
187#define __get_user(x, ptr)					\
188({								\
189	int __gu_err = -EFAULT;					\
190	__chk_user_ptr(ptr);					\
191	switch (sizeof(*(ptr))) {				\
192	case 1: {						\
193		unsigned char __x;				\
194		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
195					 ptr, &__x);		\
196		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
197		break;						\
198	};							\
199	case 2: {						\
200		unsigned short __x;				\
201		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
202					 ptr, &__x);		\
203		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
204		break;						\
205	};							\
206	case 4: {						\
207		unsigned int __x;				\
208		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
209					 ptr, &__x);		\
210		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
211		break;						\
212	};							\
213	case 8: {						\
214		unsigned long long __x;				\
215		__gu_err = __get_user_fn(sizeof (*(ptr)),	\
216					 ptr, &__x);		\
217		(x) = *(__force __typeof__(*(ptr)) *) &__x;	\
218		break;						\
219	};							\
220	default:						\
221		__get_user_bad();				\
222		break;						\
223	}							\
224	__gu_err;						\
225})
226
227#define get_user(x, ptr)					\
228({								\
229	const void *__p = (ptr);				\
230	might_fault();						\
231	access_ok(VERIFY_READ, __p, sizeof(*ptr)) ?		\
232		__get_user((x), (__typeof__(*(ptr)) *)__p) :	\
233		-EFAULT;					\
234})
235
236#ifndef __get_user_fn
237static inline int __get_user_fn(size_t size, const void __user *ptr, void *x)
238{
239	size = __copy_from_user(x, ptr, size);
240	return size ? -EFAULT : size;
 
 
 
 
241}
242
243#define __get_user_fn(sz, u, k)	__get_user_fn(sz, u, k)
244
245#endif
246
247extern int __get_user_bad(void) __attribute__((noreturn));
248
249#ifndef __copy_from_user_inatomic
250#define __copy_from_user_inatomic __copy_from_user
251#endif
252
253#ifndef __copy_to_user_inatomic
254#define __copy_to_user_inatomic __copy_to_user
255#endif
256
257static inline long copy_from_user(void *to,
258		const void __user * from, unsigned long n)
259{
 
260	might_fault();
261	if (access_ok(VERIFY_READ, from, n))
262		return __copy_from_user(to, from, n);
263	else
264		return n;
 
265}
266
267static inline long copy_to_user(void __user *to,
268		const void *from, unsigned long n)
269{
270	might_fault();
271	if (access_ok(VERIFY_WRITE, to, n))
272		return __copy_to_user(to, from, n);
273	else
274		return n;
275}
276
277/*
278 * Copy a null terminated string from userspace.
279 */
280#ifndef __strncpy_from_user
281static inline long
282__strncpy_from_user(char *dst, const char __user *src, long count)
283{
284	char *tmp;
285	strncpy(dst, (const char __force *)src, count);
286	for (tmp = dst; *tmp && count > 0; tmp++, count--)
287		;
288	return (tmp - dst);
289}
290#endif
291
292static inline long
293strncpy_from_user(char *dst, const char __user *src, long count)
294{
295	if (!access_ok(VERIFY_READ, src, 1))
296		return -EFAULT;
297	return __strncpy_from_user(dst, src, count);
298}
299
300/*
301 * Return the size of a string (including the ending 0)
302 *
303 * Return 0 on exception, a value greater than N if too long
304 */
305#ifndef __strnlen_user
306#define __strnlen_user(s, n) (strnlen((s), (n)) + 1)
307#endif
308
309/*
310 * Unlike strnlen, strnlen_user includes the nul terminator in
311 * its returned count. Callers should check for a returned value
312 * greater than N as an indication the string is too long.
313 */
314static inline long strnlen_user(const char __user *src, long n)
315{
316	if (!access_ok(VERIFY_READ, src, 1))
317		return 0;
318	return __strnlen_user(src, n);
319}
320
321static inline long strlen_user(const char __user *src)
322{
323	return strnlen_user(src, 32767);
324}
325
326/*
327 * Zero Userspace
328 */
329#ifndef __clear_user
330static inline __must_check unsigned long
331__clear_user(void __user *to, unsigned long n)
332{
333	memset((void __force *)to, 0, n);
334	return 0;
335}
336#endif
337
338static inline __must_check unsigned long
339clear_user(void __user *to, unsigned long n)
340{
341	might_fault();
342	if (!access_ok(VERIFY_WRITE, to, n))
343		return n;
344
345	return __clear_user(to, n);
346}
347
348#endif /* __ASM_GENERIC_UACCESS_H */