Loading...
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_shared.h"
22#include "xfs_format.h"
23#include "xfs_log_format.h"
24#include "xfs_trans_resv.h"
25#include "xfs_bit.h"
26#include "xfs_mount.h"
27#include "xfs_da_format.h"
28#include "xfs_defer.h"
29#include "xfs_inode.h"
30#include "xfs_btree.h"
31#include "xfs_trans.h"
32#include "xfs_extfree_item.h"
33#include "xfs_alloc.h"
34#include "xfs_bmap.h"
35#include "xfs_bmap_util.h"
36#include "xfs_bmap_btree.h"
37#include "xfs_rtalloc.h"
38#include "xfs_error.h"
39#include "xfs_quota.h"
40#include "xfs_trans_space.h"
41#include "xfs_trace.h"
42#include "xfs_icache.h"
43#include "xfs_log.h"
44#include "xfs_rmap_btree.h"
45#include "xfs_iomap.h"
46#include "xfs_reflink.h"
47#include "xfs_refcount.h"
48
49/* Kernel only BMAP related definitions and functions */
50
51/*
52 * Convert the given file system block to a disk block. We have to treat it
53 * differently based on whether the file is a real time file or not, because the
54 * bmap code does.
55 */
56xfs_daddr_t
57xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
58{
59 return (XFS_IS_REALTIME_INODE(ip) ? \
60 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
61 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
62}
63
64/*
65 * Routine to zero an extent on disk allocated to the specific inode.
66 *
67 * The VFS functions take a linearised filesystem block offset, so we have to
68 * convert the sparse xfs fsb to the right format first.
69 * VFS types are real funky, too.
70 */
71int
72xfs_zero_extent(
73 struct xfs_inode *ip,
74 xfs_fsblock_t start_fsb,
75 xfs_off_t count_fsb)
76{
77 struct xfs_mount *mp = ip->i_mount;
78 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
79 sector_t block = XFS_BB_TO_FSBT(mp, sector);
80
81 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
82 block << (mp->m_super->s_blocksize_bits - 9),
83 count_fsb << (mp->m_super->s_blocksize_bits - 9),
84 GFP_NOFS, true);
85}
86
87int
88xfs_bmap_rtalloc(
89 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
90{
91 xfs_alloctype_t atype = 0; /* type for allocation routines */
92 int error; /* error return value */
93 xfs_mount_t *mp; /* mount point structure */
94 xfs_extlen_t prod = 0; /* product factor for allocators */
95 xfs_extlen_t ralen = 0; /* realtime allocation length */
96 xfs_extlen_t align; /* minimum allocation alignment */
97 xfs_rtblock_t rtb;
98
99 mp = ap->ip->i_mount;
100 align = xfs_get_extsz_hint(ap->ip);
101 prod = align / mp->m_sb.sb_rextsize;
102 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
103 align, 1, ap->eof, 0,
104 ap->conv, &ap->offset, &ap->length);
105 if (error)
106 return error;
107 ASSERT(ap->length);
108 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
109
110 /*
111 * If the offset & length are not perfectly aligned
112 * then kill prod, it will just get us in trouble.
113 */
114 if (do_mod(ap->offset, align) || ap->length % align)
115 prod = 1;
116 /*
117 * Set ralen to be the actual requested length in rtextents.
118 */
119 ralen = ap->length / mp->m_sb.sb_rextsize;
120 /*
121 * If the old value was close enough to MAXEXTLEN that
122 * we rounded up to it, cut it back so it's valid again.
123 * Note that if it's a really large request (bigger than
124 * MAXEXTLEN), we don't hear about that number, and can't
125 * adjust the starting point to match it.
126 */
127 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
128 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
129
130 /*
131 * Lock out modifications to both the RT bitmap and summary inodes
132 */
133 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
134 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
135 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
136 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
137
138 /*
139 * If it's an allocation to an empty file at offset 0,
140 * pick an extent that will space things out in the rt area.
141 */
142 if (ap->eof && ap->offset == 0) {
143 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
144
145 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
146 if (error)
147 return error;
148 ap->blkno = rtx * mp->m_sb.sb_rextsize;
149 } else {
150 ap->blkno = 0;
151 }
152
153 xfs_bmap_adjacent(ap);
154
155 /*
156 * Realtime allocation, done through xfs_rtallocate_extent.
157 */
158 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
159 do_div(ap->blkno, mp->m_sb.sb_rextsize);
160 rtb = ap->blkno;
161 ap->length = ralen;
162 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
163 &ralen, atype, ap->wasdel, prod, &rtb)))
164 return error;
165 if (rtb == NULLFSBLOCK && prod > 1 &&
166 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
167 ap->length, &ralen, atype,
168 ap->wasdel, 1, &rtb)))
169 return error;
170 ap->blkno = rtb;
171 if (ap->blkno != NULLFSBLOCK) {
172 ap->blkno *= mp->m_sb.sb_rextsize;
173 ralen *= mp->m_sb.sb_rextsize;
174 ap->length = ralen;
175 ap->ip->i_d.di_nblocks += ralen;
176 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
177 if (ap->wasdel)
178 ap->ip->i_delayed_blks -= ralen;
179 /*
180 * Adjust the disk quota also. This was reserved
181 * earlier.
182 */
183 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
184 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
185 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
186
187 /* Zero the extent if we were asked to do so */
188 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
189 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
190 if (error)
191 return error;
192 }
193 } else {
194 ap->length = 0;
195 }
196 return 0;
197}
198
199/*
200 * Check if the endoff is outside the last extent. If so the caller will grow
201 * the allocation to a stripe unit boundary. All offsets are considered outside
202 * the end of file for an empty fork, so 1 is returned in *eof in that case.
203 */
204int
205xfs_bmap_eof(
206 struct xfs_inode *ip,
207 xfs_fileoff_t endoff,
208 int whichfork,
209 int *eof)
210{
211 struct xfs_bmbt_irec rec;
212 int error;
213
214 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
215 if (error || *eof)
216 return error;
217
218 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
219 return 0;
220}
221
222/*
223 * Extent tree block counting routines.
224 */
225
226/*
227 * Count leaf blocks given a range of extent records.
228 */
229STATIC void
230xfs_bmap_count_leaves(
231 xfs_ifork_t *ifp,
232 xfs_extnum_t idx,
233 int numrecs,
234 int *count)
235{
236 int b;
237
238 for (b = 0; b < numrecs; b++) {
239 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
240 *count += xfs_bmbt_get_blockcount(frp);
241 }
242}
243
244/*
245 * Count leaf blocks given a range of extent records originally
246 * in btree format.
247 */
248STATIC void
249xfs_bmap_disk_count_leaves(
250 struct xfs_mount *mp,
251 struct xfs_btree_block *block,
252 int numrecs,
253 int *count)
254{
255 int b;
256 xfs_bmbt_rec_t *frp;
257
258 for (b = 1; b <= numrecs; b++) {
259 frp = XFS_BMBT_REC_ADDR(mp, block, b);
260 *count += xfs_bmbt_disk_get_blockcount(frp);
261 }
262}
263
264/*
265 * Recursively walks each level of a btree
266 * to count total fsblocks in use.
267 */
268STATIC int /* error */
269xfs_bmap_count_tree(
270 xfs_mount_t *mp, /* file system mount point */
271 xfs_trans_t *tp, /* transaction pointer */
272 xfs_ifork_t *ifp, /* inode fork pointer */
273 xfs_fsblock_t blockno, /* file system block number */
274 int levelin, /* level in btree */
275 int *count) /* Count of blocks */
276{
277 int error;
278 xfs_buf_t *bp, *nbp;
279 int level = levelin;
280 __be64 *pp;
281 xfs_fsblock_t bno = blockno;
282 xfs_fsblock_t nextbno;
283 struct xfs_btree_block *block, *nextblock;
284 int numrecs;
285
286 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
287 &xfs_bmbt_buf_ops);
288 if (error)
289 return error;
290 *count += 1;
291 block = XFS_BUF_TO_BLOCK(bp);
292
293 if (--level) {
294 /* Not at node above leaves, count this level of nodes */
295 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
296 while (nextbno != NULLFSBLOCK) {
297 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
298 XFS_BMAP_BTREE_REF,
299 &xfs_bmbt_buf_ops);
300 if (error)
301 return error;
302 *count += 1;
303 nextblock = XFS_BUF_TO_BLOCK(nbp);
304 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
305 xfs_trans_brelse(tp, nbp);
306 }
307
308 /* Dive to the next level */
309 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
310 bno = be64_to_cpu(*pp);
311 if (unlikely((error =
312 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
313 xfs_trans_brelse(tp, bp);
314 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
315 XFS_ERRLEVEL_LOW, mp);
316 return -EFSCORRUPTED;
317 }
318 xfs_trans_brelse(tp, bp);
319 } else {
320 /* count all level 1 nodes and their leaves */
321 for (;;) {
322 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
323 numrecs = be16_to_cpu(block->bb_numrecs);
324 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
325 xfs_trans_brelse(tp, bp);
326 if (nextbno == NULLFSBLOCK)
327 break;
328 bno = nextbno;
329 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
330 XFS_BMAP_BTREE_REF,
331 &xfs_bmbt_buf_ops);
332 if (error)
333 return error;
334 *count += 1;
335 block = XFS_BUF_TO_BLOCK(bp);
336 }
337 }
338 return 0;
339}
340
341/*
342 * Count fsblocks of the given fork.
343 */
344static int /* error */
345xfs_bmap_count_blocks(
346 xfs_trans_t *tp, /* transaction pointer */
347 xfs_inode_t *ip, /* incore inode */
348 int whichfork, /* data or attr fork */
349 int *count) /* out: count of blocks */
350{
351 struct xfs_btree_block *block; /* current btree block */
352 xfs_fsblock_t bno; /* block # of "block" */
353 xfs_ifork_t *ifp; /* fork structure */
354 int level; /* btree level, for checking */
355 xfs_mount_t *mp; /* file system mount structure */
356 __be64 *pp; /* pointer to block address */
357
358 bno = NULLFSBLOCK;
359 mp = ip->i_mount;
360 ifp = XFS_IFORK_PTR(ip, whichfork);
361 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
362 xfs_bmap_count_leaves(ifp, 0, xfs_iext_count(ifp), count);
363 return 0;
364 }
365
366 /*
367 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
368 */
369 block = ifp->if_broot;
370 level = be16_to_cpu(block->bb_level);
371 ASSERT(level > 0);
372 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
373 bno = be64_to_cpu(*pp);
374 ASSERT(bno != NULLFSBLOCK);
375 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
376 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
377
378 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
379 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
380 mp);
381 return -EFSCORRUPTED;
382 }
383
384 return 0;
385}
386
387/*
388 * returns 1 for success, 0 if we failed to map the extent.
389 */
390STATIC int
391xfs_getbmapx_fix_eof_hole(
392 xfs_inode_t *ip, /* xfs incore inode pointer */
393 int whichfork,
394 struct getbmapx *out, /* output structure */
395 int prealloced, /* this is a file with
396 * preallocated data space */
397 __int64_t end, /* last block requested */
398 xfs_fsblock_t startblock,
399 bool moretocome)
400{
401 __int64_t fixlen;
402 xfs_mount_t *mp; /* file system mount point */
403 xfs_ifork_t *ifp; /* inode fork pointer */
404 xfs_extnum_t lastx; /* last extent pointer */
405 xfs_fileoff_t fileblock;
406
407 if (startblock == HOLESTARTBLOCK) {
408 mp = ip->i_mount;
409 out->bmv_block = -1;
410 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
411 fixlen -= out->bmv_offset;
412 if (prealloced && out->bmv_offset + out->bmv_length == end) {
413 /* Came to hole at EOF. Trim it. */
414 if (fixlen <= 0)
415 return 0;
416 out->bmv_length = fixlen;
417 }
418 } else {
419 if (startblock == DELAYSTARTBLOCK)
420 out->bmv_block = -2;
421 else
422 out->bmv_block = xfs_fsb_to_db(ip, startblock);
423 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
424 ifp = XFS_IFORK_PTR(ip, whichfork);
425 if (!moretocome &&
426 xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
427 (lastx == xfs_iext_count(ifp) - 1))
428 out->bmv_oflags |= BMV_OF_LAST;
429 }
430
431 return 1;
432}
433
434/* Adjust the reported bmap around shared/unshared extent transitions. */
435STATIC int
436xfs_getbmap_adjust_shared(
437 struct xfs_inode *ip,
438 int whichfork,
439 struct xfs_bmbt_irec *map,
440 struct getbmapx *out,
441 struct xfs_bmbt_irec *next_map)
442{
443 struct xfs_mount *mp = ip->i_mount;
444 xfs_agnumber_t agno;
445 xfs_agblock_t agbno;
446 xfs_agblock_t ebno;
447 xfs_extlen_t elen;
448 xfs_extlen_t nlen;
449 int error;
450
451 next_map->br_startblock = NULLFSBLOCK;
452 next_map->br_startoff = NULLFILEOFF;
453 next_map->br_blockcount = 0;
454
455 /* Only written data blocks can be shared. */
456 if (!xfs_is_reflink_inode(ip) || whichfork != XFS_DATA_FORK ||
457 map->br_startblock == DELAYSTARTBLOCK ||
458 map->br_startblock == HOLESTARTBLOCK ||
459 ISUNWRITTEN(map))
460 return 0;
461
462 agno = XFS_FSB_TO_AGNO(mp, map->br_startblock);
463 agbno = XFS_FSB_TO_AGBNO(mp, map->br_startblock);
464 error = xfs_reflink_find_shared(mp, agno, agbno, map->br_blockcount,
465 &ebno, &elen, true);
466 if (error)
467 return error;
468
469 if (ebno == NULLAGBLOCK) {
470 /* No shared blocks at all. */
471 return 0;
472 } else if (agbno == ebno) {
473 /*
474 * Shared extent at (agbno, elen). Shrink the reported
475 * extent length and prepare to move the start of map[i]
476 * to agbno+elen, with the aim of (re)formatting the new
477 * map[i] the next time through the inner loop.
478 */
479 out->bmv_length = XFS_FSB_TO_BB(mp, elen);
480 out->bmv_oflags |= BMV_OF_SHARED;
481 if (elen != map->br_blockcount) {
482 *next_map = *map;
483 next_map->br_startblock += elen;
484 next_map->br_startoff += elen;
485 next_map->br_blockcount -= elen;
486 }
487 map->br_blockcount -= elen;
488 } else {
489 /*
490 * There's an unshared extent (agbno, ebno - agbno)
491 * followed by shared extent at (ebno, elen). Shrink
492 * the reported extent length to cover only the unshared
493 * extent and prepare to move up the start of map[i] to
494 * ebno, with the aim of (re)formatting the new map[i]
495 * the next time through the inner loop.
496 */
497 *next_map = *map;
498 nlen = ebno - agbno;
499 out->bmv_length = XFS_FSB_TO_BB(mp, nlen);
500 next_map->br_startblock += nlen;
501 next_map->br_startoff += nlen;
502 next_map->br_blockcount -= nlen;
503 map->br_blockcount -= nlen;
504 }
505
506 return 0;
507}
508
509/*
510 * Get inode's extents as described in bmv, and format for output.
511 * Calls formatter to fill the user's buffer until all extents
512 * are mapped, until the passed-in bmv->bmv_count slots have
513 * been filled, or until the formatter short-circuits the loop,
514 * if it is tracking filled-in extents on its own.
515 */
516int /* error code */
517xfs_getbmap(
518 xfs_inode_t *ip,
519 struct getbmapx *bmv, /* user bmap structure */
520 xfs_bmap_format_t formatter, /* format to user */
521 void *arg) /* formatter arg */
522{
523 __int64_t bmvend; /* last block requested */
524 int error = 0; /* return value */
525 __int64_t fixlen; /* length for -1 case */
526 int i; /* extent number */
527 int lock; /* lock state */
528 xfs_bmbt_irec_t *map; /* buffer for user's data */
529 xfs_mount_t *mp; /* file system mount point */
530 int nex; /* # of user extents can do */
531 int subnex; /* # of bmapi's can do */
532 int nmap; /* number of map entries */
533 struct getbmapx *out; /* output structure */
534 int whichfork; /* data or attr fork */
535 int prealloced; /* this is a file with
536 * preallocated data space */
537 int iflags; /* interface flags */
538 int bmapi_flags; /* flags for xfs_bmapi */
539 int cur_ext = 0;
540 struct xfs_bmbt_irec inject_map;
541
542 mp = ip->i_mount;
543 iflags = bmv->bmv_iflags;
544
545#ifndef DEBUG
546 /* Only allow CoW fork queries if we're debugging. */
547 if (iflags & BMV_IF_COWFORK)
548 return -EINVAL;
549#endif
550 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
551 return -EINVAL;
552
553 if (iflags & BMV_IF_ATTRFORK)
554 whichfork = XFS_ATTR_FORK;
555 else if (iflags & BMV_IF_COWFORK)
556 whichfork = XFS_COW_FORK;
557 else
558 whichfork = XFS_DATA_FORK;
559
560 switch (whichfork) {
561 case XFS_ATTR_FORK:
562 if (XFS_IFORK_Q(ip)) {
563 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
564 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
565 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
566 return -EINVAL;
567 } else if (unlikely(
568 ip->i_d.di_aformat != 0 &&
569 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
570 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
571 ip->i_mount);
572 return -EFSCORRUPTED;
573 }
574
575 prealloced = 0;
576 fixlen = 1LL << 32;
577 break;
578 case XFS_COW_FORK:
579 if (ip->i_cformat != XFS_DINODE_FMT_EXTENTS)
580 return -EINVAL;
581
582 if (xfs_get_cowextsz_hint(ip)) {
583 prealloced = 1;
584 fixlen = mp->m_super->s_maxbytes;
585 } else {
586 prealloced = 0;
587 fixlen = XFS_ISIZE(ip);
588 }
589 break;
590 default:
591 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
592 ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
593 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
594 return -EINVAL;
595
596 if (xfs_get_extsz_hint(ip) ||
597 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
598 prealloced = 1;
599 fixlen = mp->m_super->s_maxbytes;
600 } else {
601 prealloced = 0;
602 fixlen = XFS_ISIZE(ip);
603 }
604 break;
605 }
606
607 if (bmv->bmv_length == -1) {
608 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
609 bmv->bmv_length =
610 max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
611 } else if (bmv->bmv_length == 0) {
612 bmv->bmv_entries = 0;
613 return 0;
614 } else if (bmv->bmv_length < 0) {
615 return -EINVAL;
616 }
617
618 nex = bmv->bmv_count - 1;
619 if (nex <= 0)
620 return -EINVAL;
621 bmvend = bmv->bmv_offset + bmv->bmv_length;
622
623
624 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
625 return -ENOMEM;
626 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
627 if (!out)
628 return -ENOMEM;
629
630 xfs_ilock(ip, XFS_IOLOCK_SHARED);
631 switch (whichfork) {
632 case XFS_DATA_FORK:
633 if (!(iflags & BMV_IF_DELALLOC) &&
634 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
635 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
636 if (error)
637 goto out_unlock_iolock;
638
639 /*
640 * Even after flushing the inode, there can still be
641 * delalloc blocks on the inode beyond EOF due to
642 * speculative preallocation. These are not removed
643 * until the release function is called or the inode
644 * is inactivated. Hence we cannot assert here that
645 * ip->i_delayed_blks == 0.
646 */
647 }
648
649 lock = xfs_ilock_data_map_shared(ip);
650 break;
651 case XFS_COW_FORK:
652 lock = XFS_ILOCK_SHARED;
653 xfs_ilock(ip, lock);
654 break;
655 case XFS_ATTR_FORK:
656 lock = xfs_ilock_attr_map_shared(ip);
657 break;
658 }
659
660 /*
661 * Don't let nex be bigger than the number of extents
662 * we can have assuming alternating holes and real extents.
663 */
664 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
665 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
666
667 bmapi_flags = xfs_bmapi_aflag(whichfork);
668 if (!(iflags & BMV_IF_PREALLOC))
669 bmapi_flags |= XFS_BMAPI_IGSTATE;
670
671 /*
672 * Allocate enough space to handle "subnex" maps at a time.
673 */
674 error = -ENOMEM;
675 subnex = 16;
676 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
677 if (!map)
678 goto out_unlock_ilock;
679
680 bmv->bmv_entries = 0;
681
682 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
683 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
684 error = 0;
685 goto out_free_map;
686 }
687
688 do {
689 nmap = (nex> subnex) ? subnex : nex;
690 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
691 XFS_BB_TO_FSB(mp, bmv->bmv_length),
692 map, &nmap, bmapi_flags);
693 if (error)
694 goto out_free_map;
695 ASSERT(nmap <= subnex);
696
697 for (i = 0; i < nmap && bmv->bmv_length &&
698 cur_ext < bmv->bmv_count - 1; i++) {
699 out[cur_ext].bmv_oflags = 0;
700 if (map[i].br_state == XFS_EXT_UNWRITTEN)
701 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
702 else if (map[i].br_startblock == DELAYSTARTBLOCK)
703 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
704 out[cur_ext].bmv_offset =
705 XFS_FSB_TO_BB(mp, map[i].br_startoff);
706 out[cur_ext].bmv_length =
707 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
708 out[cur_ext].bmv_unused1 = 0;
709 out[cur_ext].bmv_unused2 = 0;
710
711 /*
712 * delayed allocation extents that start beyond EOF can
713 * occur due to speculative EOF allocation when the
714 * delalloc extent is larger than the largest freespace
715 * extent at conversion time. These extents cannot be
716 * converted by data writeback, so can exist here even
717 * if we are not supposed to be finding delalloc
718 * extents.
719 */
720 if (map[i].br_startblock == DELAYSTARTBLOCK &&
721 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
722 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
723
724 if (map[i].br_startblock == HOLESTARTBLOCK &&
725 whichfork == XFS_ATTR_FORK) {
726 /* came to the end of attribute fork */
727 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
728 goto out_free_map;
729 }
730
731 /* Is this a shared block? */
732 error = xfs_getbmap_adjust_shared(ip, whichfork,
733 &map[i], &out[cur_ext], &inject_map);
734 if (error)
735 goto out_free_map;
736
737 if (!xfs_getbmapx_fix_eof_hole(ip, whichfork,
738 &out[cur_ext], prealloced, bmvend,
739 map[i].br_startblock,
740 inject_map.br_startblock != NULLFSBLOCK))
741 goto out_free_map;
742
743 bmv->bmv_offset =
744 out[cur_ext].bmv_offset +
745 out[cur_ext].bmv_length;
746 bmv->bmv_length =
747 max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
748
749 /*
750 * In case we don't want to return the hole,
751 * don't increase cur_ext so that we can reuse
752 * it in the next loop.
753 */
754 if ((iflags & BMV_IF_NO_HOLES) &&
755 map[i].br_startblock == HOLESTARTBLOCK) {
756 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
757 continue;
758 }
759
760 /*
761 * In order to report shared extents accurately,
762 * we report each distinct shared/unshared part
763 * of a single bmbt record using multiple bmap
764 * extents. To make that happen, we iterate the
765 * same map array item multiple times, each
766 * time trimming out the subextent that we just
767 * reported.
768 *
769 * Because of this, we must check the out array
770 * index (cur_ext) directly against bmv_count-1
771 * to avoid overflows.
772 */
773 if (inject_map.br_startblock != NULLFSBLOCK) {
774 map[i] = inject_map;
775 i--;
776 }
777 bmv->bmv_entries++;
778 cur_ext++;
779 }
780 } while (nmap && bmv->bmv_length && cur_ext < bmv->bmv_count - 1);
781
782 out_free_map:
783 kmem_free(map);
784 out_unlock_ilock:
785 xfs_iunlock(ip, lock);
786 out_unlock_iolock:
787 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
788
789 for (i = 0; i < cur_ext; i++) {
790 int full = 0; /* user array is full */
791
792 /* format results & advance arg */
793 error = formatter(&arg, &out[i], &full);
794 if (error || full)
795 break;
796 }
797
798 kmem_free(out);
799 return error;
800}
801
802/*
803 * dead simple method of punching delalyed allocation blocks from a range in
804 * the inode. Walks a block at a time so will be slow, but is only executed in
805 * rare error cases so the overhead is not critical. This will always punch out
806 * both the start and end blocks, even if the ranges only partially overlap
807 * them, so it is up to the caller to ensure that partial blocks are not
808 * passed in.
809 */
810int
811xfs_bmap_punch_delalloc_range(
812 struct xfs_inode *ip,
813 xfs_fileoff_t start_fsb,
814 xfs_fileoff_t length)
815{
816 xfs_fileoff_t remaining = length;
817 int error = 0;
818
819 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
820
821 do {
822 int done;
823 xfs_bmbt_irec_t imap;
824 int nimaps = 1;
825 xfs_fsblock_t firstblock;
826 struct xfs_defer_ops dfops;
827
828 /*
829 * Map the range first and check that it is a delalloc extent
830 * before trying to unmap the range. Otherwise we will be
831 * trying to remove a real extent (which requires a
832 * transaction) or a hole, which is probably a bad idea...
833 */
834 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
835 XFS_BMAPI_ENTIRE);
836
837 if (error) {
838 /* something screwed, just bail */
839 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
840 xfs_alert(ip->i_mount,
841 "Failed delalloc mapping lookup ino %lld fsb %lld.",
842 ip->i_ino, start_fsb);
843 }
844 break;
845 }
846 if (!nimaps) {
847 /* nothing there */
848 goto next_block;
849 }
850 if (imap.br_startblock != DELAYSTARTBLOCK) {
851 /* been converted, ignore */
852 goto next_block;
853 }
854 WARN_ON(imap.br_blockcount == 0);
855
856 /*
857 * Note: while we initialise the firstblock/dfops pair, they
858 * should never be used because blocks should never be
859 * allocated or freed for a delalloc extent and hence we need
860 * don't cancel or finish them after the xfs_bunmapi() call.
861 */
862 xfs_defer_init(&dfops, &firstblock);
863 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
864 &dfops, &done);
865 if (error)
866 break;
867
868 ASSERT(!xfs_defer_has_unfinished_work(&dfops));
869next_block:
870 start_fsb++;
871 remaining--;
872 } while(remaining > 0);
873
874 return error;
875}
876
877/*
878 * Test whether it is appropriate to check an inode for and free post EOF
879 * blocks. The 'force' parameter determines whether we should also consider
880 * regular files that are marked preallocated or append-only.
881 */
882bool
883xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
884{
885 /* prealloc/delalloc exists only on regular files */
886 if (!S_ISREG(VFS_I(ip)->i_mode))
887 return false;
888
889 /*
890 * Zero sized files with no cached pages and delalloc blocks will not
891 * have speculative prealloc/delalloc blocks to remove.
892 */
893 if (VFS_I(ip)->i_size == 0 &&
894 VFS_I(ip)->i_mapping->nrpages == 0 &&
895 ip->i_delayed_blks == 0)
896 return false;
897
898 /* If we haven't read in the extent list, then don't do it now. */
899 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
900 return false;
901
902 /*
903 * Do not free real preallocated or append-only files unless the file
904 * has delalloc blocks and we are forced to remove them.
905 */
906 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
907 if (!force || ip->i_delayed_blks == 0)
908 return false;
909
910 return true;
911}
912
913/*
914 * This is called by xfs_inactive to free any blocks beyond eof
915 * when the link count isn't zero and by xfs_dm_punch_hole() when
916 * punching a hole to EOF.
917 */
918int
919xfs_free_eofblocks(
920 struct xfs_inode *ip)
921{
922 struct xfs_trans *tp;
923 int error;
924 xfs_fileoff_t end_fsb;
925 xfs_fileoff_t last_fsb;
926 xfs_filblks_t map_len;
927 int nimaps;
928 struct xfs_bmbt_irec imap;
929 struct xfs_mount *mp = ip->i_mount;
930
931 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
932
933 /*
934 * Figure out if there are any blocks beyond the end
935 * of the file. If not, then there is nothing to do.
936 */
937 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
938 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
939 if (last_fsb <= end_fsb)
940 return 0;
941 map_len = last_fsb - end_fsb;
942
943 nimaps = 1;
944 xfs_ilock(ip, XFS_ILOCK_SHARED);
945 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
946 xfs_iunlock(ip, XFS_ILOCK_SHARED);
947
948 /*
949 * If there are blocks after the end of file, truncate the file to its
950 * current size to free them up.
951 */
952 if (!error && (nimaps != 0) &&
953 (imap.br_startblock != HOLESTARTBLOCK ||
954 ip->i_delayed_blks)) {
955 /*
956 * Attach the dquots to the inode up front.
957 */
958 error = xfs_qm_dqattach(ip, 0);
959 if (error)
960 return error;
961
962 /* wait on dio to ensure i_size has settled */
963 inode_dio_wait(VFS_I(ip));
964
965 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
966 &tp);
967 if (error) {
968 ASSERT(XFS_FORCED_SHUTDOWN(mp));
969 return error;
970 }
971
972 xfs_ilock(ip, XFS_ILOCK_EXCL);
973 xfs_trans_ijoin(tp, ip, 0);
974
975 /*
976 * Do not update the on-disk file size. If we update the
977 * on-disk file size and then the system crashes before the
978 * contents of the file are flushed to disk then the files
979 * may be full of holes (ie NULL files bug).
980 */
981 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
982 XFS_ISIZE(ip));
983 if (error) {
984 /*
985 * If we get an error at this point we simply don't
986 * bother truncating the file.
987 */
988 xfs_trans_cancel(tp);
989 } else {
990 error = xfs_trans_commit(tp);
991 if (!error)
992 xfs_inode_clear_eofblocks_tag(ip);
993 }
994
995 xfs_iunlock(ip, XFS_ILOCK_EXCL);
996 }
997 return error;
998}
999
1000int
1001xfs_alloc_file_space(
1002 struct xfs_inode *ip,
1003 xfs_off_t offset,
1004 xfs_off_t len,
1005 int alloc_type)
1006{
1007 xfs_mount_t *mp = ip->i_mount;
1008 xfs_off_t count;
1009 xfs_filblks_t allocated_fsb;
1010 xfs_filblks_t allocatesize_fsb;
1011 xfs_extlen_t extsz, temp;
1012 xfs_fileoff_t startoffset_fsb;
1013 xfs_fsblock_t firstfsb;
1014 int nimaps;
1015 int quota_flag;
1016 int rt;
1017 xfs_trans_t *tp;
1018 xfs_bmbt_irec_t imaps[1], *imapp;
1019 struct xfs_defer_ops dfops;
1020 uint qblocks, resblks, resrtextents;
1021 int error;
1022
1023 trace_xfs_alloc_file_space(ip);
1024
1025 if (XFS_FORCED_SHUTDOWN(mp))
1026 return -EIO;
1027
1028 error = xfs_qm_dqattach(ip, 0);
1029 if (error)
1030 return error;
1031
1032 if (len <= 0)
1033 return -EINVAL;
1034
1035 rt = XFS_IS_REALTIME_INODE(ip);
1036 extsz = xfs_get_extsz_hint(ip);
1037
1038 count = len;
1039 imapp = &imaps[0];
1040 nimaps = 1;
1041 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
1042 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
1043
1044 /*
1045 * Allocate file space until done or until there is an error
1046 */
1047 while (allocatesize_fsb && !error) {
1048 xfs_fileoff_t s, e;
1049
1050 /*
1051 * Determine space reservations for data/realtime.
1052 */
1053 if (unlikely(extsz)) {
1054 s = startoffset_fsb;
1055 do_div(s, extsz);
1056 s *= extsz;
1057 e = startoffset_fsb + allocatesize_fsb;
1058 if ((temp = do_mod(startoffset_fsb, extsz)))
1059 e += temp;
1060 if ((temp = do_mod(e, extsz)))
1061 e += extsz - temp;
1062 } else {
1063 s = 0;
1064 e = allocatesize_fsb;
1065 }
1066
1067 /*
1068 * The transaction reservation is limited to a 32-bit block
1069 * count, hence we need to limit the number of blocks we are
1070 * trying to reserve to avoid an overflow. We can't allocate
1071 * more than @nimaps extents, and an extent is limited on disk
1072 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1073 */
1074 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1075 if (unlikely(rt)) {
1076 resrtextents = qblocks = resblks;
1077 resrtextents /= mp->m_sb.sb_rextsize;
1078 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1079 quota_flag = XFS_QMOPT_RES_RTBLKS;
1080 } else {
1081 resrtextents = 0;
1082 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1083 quota_flag = XFS_QMOPT_RES_REGBLKS;
1084 }
1085
1086 /*
1087 * Allocate and setup the transaction.
1088 */
1089 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1090 resrtextents, 0, &tp);
1091
1092 /*
1093 * Check for running out of space
1094 */
1095 if (error) {
1096 /*
1097 * Free the transaction structure.
1098 */
1099 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1100 break;
1101 }
1102 xfs_ilock(ip, XFS_ILOCK_EXCL);
1103 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1104 0, quota_flag);
1105 if (error)
1106 goto error1;
1107
1108 xfs_trans_ijoin(tp, ip, 0);
1109
1110 xfs_defer_init(&dfops, &firstfsb);
1111 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1112 allocatesize_fsb, alloc_type, &firstfsb,
1113 resblks, imapp, &nimaps, &dfops);
1114 if (error)
1115 goto error0;
1116
1117 /*
1118 * Complete the transaction
1119 */
1120 error = xfs_defer_finish(&tp, &dfops, NULL);
1121 if (error)
1122 goto error0;
1123
1124 error = xfs_trans_commit(tp);
1125 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1126 if (error)
1127 break;
1128
1129 allocated_fsb = imapp->br_blockcount;
1130
1131 if (nimaps == 0) {
1132 error = -ENOSPC;
1133 break;
1134 }
1135
1136 startoffset_fsb += allocated_fsb;
1137 allocatesize_fsb -= allocated_fsb;
1138 }
1139
1140 return error;
1141
1142error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1143 xfs_defer_cancel(&dfops);
1144 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1145
1146error1: /* Just cancel transaction */
1147 xfs_trans_cancel(tp);
1148 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1149 return error;
1150}
1151
1152static int
1153xfs_unmap_extent(
1154 struct xfs_inode *ip,
1155 xfs_fileoff_t startoffset_fsb,
1156 xfs_filblks_t len_fsb,
1157 int *done)
1158{
1159 struct xfs_mount *mp = ip->i_mount;
1160 struct xfs_trans *tp;
1161 struct xfs_defer_ops dfops;
1162 xfs_fsblock_t firstfsb;
1163 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1164 int error;
1165
1166 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1167 if (error) {
1168 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1169 return error;
1170 }
1171
1172 xfs_ilock(ip, XFS_ILOCK_EXCL);
1173 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1174 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1175 if (error)
1176 goto out_trans_cancel;
1177
1178 xfs_trans_ijoin(tp, ip, 0);
1179
1180 xfs_defer_init(&dfops, &firstfsb);
1181 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, &firstfsb,
1182 &dfops, done);
1183 if (error)
1184 goto out_bmap_cancel;
1185
1186 error = xfs_defer_finish(&tp, &dfops, ip);
1187 if (error)
1188 goto out_bmap_cancel;
1189
1190 error = xfs_trans_commit(tp);
1191out_unlock:
1192 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1193 return error;
1194
1195out_bmap_cancel:
1196 xfs_defer_cancel(&dfops);
1197out_trans_cancel:
1198 xfs_trans_cancel(tp);
1199 goto out_unlock;
1200}
1201
1202static int
1203xfs_adjust_extent_unmap_boundaries(
1204 struct xfs_inode *ip,
1205 xfs_fileoff_t *startoffset_fsb,
1206 xfs_fileoff_t *endoffset_fsb)
1207{
1208 struct xfs_mount *mp = ip->i_mount;
1209 struct xfs_bmbt_irec imap;
1210 int nimap, error;
1211 xfs_extlen_t mod = 0;
1212
1213 nimap = 1;
1214 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1215 if (error)
1216 return error;
1217
1218 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1219 xfs_daddr_t block;
1220
1221 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1222 block = imap.br_startblock;
1223 mod = do_div(block, mp->m_sb.sb_rextsize);
1224 if (mod)
1225 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1226 }
1227
1228 nimap = 1;
1229 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1230 if (error)
1231 return error;
1232
1233 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1234 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1235 mod++;
1236 if (mod && mod != mp->m_sb.sb_rextsize)
1237 *endoffset_fsb -= mod;
1238 }
1239
1240 return 0;
1241}
1242
1243static int
1244xfs_flush_unmap_range(
1245 struct xfs_inode *ip,
1246 xfs_off_t offset,
1247 xfs_off_t len)
1248{
1249 struct xfs_mount *mp = ip->i_mount;
1250 struct inode *inode = VFS_I(ip);
1251 xfs_off_t rounding, start, end;
1252 int error;
1253
1254 /* wait for the completion of any pending DIOs */
1255 inode_dio_wait(inode);
1256
1257 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1258 start = round_down(offset, rounding);
1259 end = round_up(offset + len, rounding) - 1;
1260
1261 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1262 if (error)
1263 return error;
1264 truncate_pagecache_range(inode, start, end);
1265 return 0;
1266}
1267
1268int
1269xfs_free_file_space(
1270 struct xfs_inode *ip,
1271 xfs_off_t offset,
1272 xfs_off_t len)
1273{
1274 struct xfs_mount *mp = ip->i_mount;
1275 xfs_fileoff_t startoffset_fsb;
1276 xfs_fileoff_t endoffset_fsb;
1277 int done = 0, error;
1278
1279 trace_xfs_free_file_space(ip);
1280
1281 error = xfs_qm_dqattach(ip, 0);
1282 if (error)
1283 return error;
1284
1285 if (len <= 0) /* if nothing being freed */
1286 return 0;
1287
1288 error = xfs_flush_unmap_range(ip, offset, len);
1289 if (error)
1290 return error;
1291
1292 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1293 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1294
1295 /*
1296 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1297 * and we can't use unwritten extents then we actually need to ensure
1298 * to zero the whole extent, otherwise we just need to take of block
1299 * boundaries, and xfs_bunmapi will handle the rest.
1300 */
1301 if (XFS_IS_REALTIME_INODE(ip) &&
1302 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1303 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1304 &endoffset_fsb);
1305 if (error)
1306 return error;
1307 }
1308
1309 if (endoffset_fsb > startoffset_fsb) {
1310 while (!done) {
1311 error = xfs_unmap_extent(ip, startoffset_fsb,
1312 endoffset_fsb - startoffset_fsb, &done);
1313 if (error)
1314 return error;
1315 }
1316 }
1317
1318 /*
1319 * Now that we've unmap all full blocks we'll have to zero out any
1320 * partial block at the beginning and/or end. xfs_zero_range is
1321 * smart enough to skip any holes, including those we just created,
1322 * but we must take care not to zero beyond EOF and enlarge i_size.
1323 */
1324
1325 if (offset >= XFS_ISIZE(ip))
1326 return 0;
1327
1328 if (offset + len > XFS_ISIZE(ip))
1329 len = XFS_ISIZE(ip) - offset;
1330
1331 return xfs_zero_range(ip, offset, len, NULL);
1332}
1333
1334/*
1335 * Preallocate and zero a range of a file. This mechanism has the allocation
1336 * semantics of fallocate and in addition converts data in the range to zeroes.
1337 */
1338int
1339xfs_zero_file_space(
1340 struct xfs_inode *ip,
1341 xfs_off_t offset,
1342 xfs_off_t len)
1343{
1344 struct xfs_mount *mp = ip->i_mount;
1345 uint blksize;
1346 int error;
1347
1348 trace_xfs_zero_file_space(ip);
1349
1350 blksize = 1 << mp->m_sb.sb_blocklog;
1351
1352 /*
1353 * Punch a hole and prealloc the range. We use hole punch rather than
1354 * unwritten extent conversion for two reasons:
1355 *
1356 * 1.) Hole punch handles partial block zeroing for us.
1357 *
1358 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1359 * by virtue of the hole punch.
1360 */
1361 error = xfs_free_file_space(ip, offset, len);
1362 if (error)
1363 goto out;
1364
1365 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1366 round_up(offset + len, blksize) -
1367 round_down(offset, blksize),
1368 XFS_BMAPI_PREALLOC);
1369out:
1370 return error;
1371
1372}
1373
1374/*
1375 * @next_fsb will keep track of the extent currently undergoing shift.
1376 * @stop_fsb will keep track of the extent at which we have to stop.
1377 * If we are shifting left, we will start with block (offset + len) and
1378 * shift each extent till last extent.
1379 * If we are shifting right, we will start with last extent inside file space
1380 * and continue until we reach the block corresponding to offset.
1381 */
1382static int
1383xfs_shift_file_space(
1384 struct xfs_inode *ip,
1385 xfs_off_t offset,
1386 xfs_off_t len,
1387 enum shift_direction direction)
1388{
1389 int done = 0;
1390 struct xfs_mount *mp = ip->i_mount;
1391 struct xfs_trans *tp;
1392 int error;
1393 struct xfs_defer_ops dfops;
1394 xfs_fsblock_t first_block;
1395 xfs_fileoff_t stop_fsb;
1396 xfs_fileoff_t next_fsb;
1397 xfs_fileoff_t shift_fsb;
1398 uint resblks;
1399
1400 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1401
1402 if (direction == SHIFT_LEFT) {
1403 /*
1404 * Reserve blocks to cover potential extent merges after left
1405 * shift operations.
1406 */
1407 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1408 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1409 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1410 } else {
1411 /*
1412 * If right shift, delegate the work of initialization of
1413 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1414 */
1415 resblks = 0;
1416 next_fsb = NULLFSBLOCK;
1417 stop_fsb = XFS_B_TO_FSB(mp, offset);
1418 }
1419
1420 shift_fsb = XFS_B_TO_FSB(mp, len);
1421
1422 /*
1423 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1424 * into the accessible region of the file.
1425 */
1426 if (xfs_can_free_eofblocks(ip, true)) {
1427 error = xfs_free_eofblocks(ip);
1428 if (error)
1429 return error;
1430 }
1431
1432 /*
1433 * Writeback and invalidate cache for the remainder of the file as we're
1434 * about to shift down every extent from offset to EOF.
1435 */
1436 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1437 offset, -1);
1438 if (error)
1439 return error;
1440 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1441 offset >> PAGE_SHIFT, -1);
1442 if (error)
1443 return error;
1444
1445 /*
1446 * The extent shiting code works on extent granularity. So, if
1447 * stop_fsb is not the starting block of extent, we need to split
1448 * the extent at stop_fsb.
1449 */
1450 if (direction == SHIFT_RIGHT) {
1451 error = xfs_bmap_split_extent(ip, stop_fsb);
1452 if (error)
1453 return error;
1454 }
1455
1456 while (!error && !done) {
1457 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
1458 &tp);
1459 if (error)
1460 break;
1461
1462 xfs_ilock(ip, XFS_ILOCK_EXCL);
1463 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1464 ip->i_gdquot, ip->i_pdquot, resblks, 0,
1465 XFS_QMOPT_RES_REGBLKS);
1466 if (error)
1467 goto out_trans_cancel;
1468
1469 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1470
1471 xfs_defer_init(&dfops, &first_block);
1472
1473 /*
1474 * We are using the write transaction in which max 2 bmbt
1475 * updates are allowed
1476 */
1477 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1478 &done, stop_fsb, &first_block, &dfops,
1479 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1480 if (error)
1481 goto out_bmap_cancel;
1482
1483 error = xfs_defer_finish(&tp, &dfops, NULL);
1484 if (error)
1485 goto out_bmap_cancel;
1486
1487 error = xfs_trans_commit(tp);
1488 }
1489
1490 return error;
1491
1492out_bmap_cancel:
1493 xfs_defer_cancel(&dfops);
1494out_trans_cancel:
1495 xfs_trans_cancel(tp);
1496 return error;
1497}
1498
1499/*
1500 * xfs_collapse_file_space()
1501 * This routine frees disk space and shift extent for the given file.
1502 * The first thing we do is to free data blocks in the specified range
1503 * by calling xfs_free_file_space(). It would also sync dirty data
1504 * and invalidate page cache over the region on which collapse range
1505 * is working. And Shift extent records to the left to cover a hole.
1506 * RETURNS:
1507 * 0 on success
1508 * errno on error
1509 *
1510 */
1511int
1512xfs_collapse_file_space(
1513 struct xfs_inode *ip,
1514 xfs_off_t offset,
1515 xfs_off_t len)
1516{
1517 int error;
1518
1519 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1520 trace_xfs_collapse_file_space(ip);
1521
1522 error = xfs_free_file_space(ip, offset, len);
1523 if (error)
1524 return error;
1525
1526 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1527}
1528
1529/*
1530 * xfs_insert_file_space()
1531 * This routine create hole space by shifting extents for the given file.
1532 * The first thing we do is to sync dirty data and invalidate page cache
1533 * over the region on which insert range is working. And split an extent
1534 * to two extents at given offset by calling xfs_bmap_split_extent.
1535 * And shift all extent records which are laying between [offset,
1536 * last allocated extent] to the right to reserve hole range.
1537 * RETURNS:
1538 * 0 on success
1539 * errno on error
1540 */
1541int
1542xfs_insert_file_space(
1543 struct xfs_inode *ip,
1544 loff_t offset,
1545 loff_t len)
1546{
1547 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1548 trace_xfs_insert_file_space(ip);
1549
1550 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1551}
1552
1553/*
1554 * We need to check that the format of the data fork in the temporary inode is
1555 * valid for the target inode before doing the swap. This is not a problem with
1556 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1557 * data fork depending on the space the attribute fork is taking so we can get
1558 * invalid formats on the target inode.
1559 *
1560 * E.g. target has space for 7 extents in extent format, temp inode only has
1561 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1562 * btree, but when swapped it needs to be in extent format. Hence we can't just
1563 * blindly swap data forks on attr2 filesystems.
1564 *
1565 * Note that we check the swap in both directions so that we don't end up with
1566 * a corrupt temporary inode, either.
1567 *
1568 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1569 * inode will prevent this situation from occurring, so all we do here is
1570 * reject and log the attempt. basically we are putting the responsibility on
1571 * userspace to get this right.
1572 */
1573static int
1574xfs_swap_extents_check_format(
1575 struct xfs_inode *ip, /* target inode */
1576 struct xfs_inode *tip) /* tmp inode */
1577{
1578
1579 /* Should never get a local format */
1580 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1581 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1582 return -EINVAL;
1583
1584 /*
1585 * if the target inode has less extents that then temporary inode then
1586 * why did userspace call us?
1587 */
1588 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1589 return -EINVAL;
1590
1591 /*
1592 * If we have to use the (expensive) rmap swap method, we can
1593 * handle any number of extents and any format.
1594 */
1595 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1596 return 0;
1597
1598 /*
1599 * if the target inode is in extent form and the temp inode is in btree
1600 * form then we will end up with the target inode in the wrong format
1601 * as we already know there are less extents in the temp inode.
1602 */
1603 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1604 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1605 return -EINVAL;
1606
1607 /* Check temp in extent form to max in target */
1608 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1609 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1610 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1611 return -EINVAL;
1612
1613 /* Check target in extent form to max in temp */
1614 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1615 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1616 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1617 return -EINVAL;
1618
1619 /*
1620 * If we are in a btree format, check that the temp root block will fit
1621 * in the target and that it has enough extents to be in btree format
1622 * in the target.
1623 *
1624 * Note that we have to be careful to allow btree->extent conversions
1625 * (a common defrag case) which will occur when the temp inode is in
1626 * extent format...
1627 */
1628 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1629 if (XFS_IFORK_BOFF(ip) &&
1630 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1631 return -EINVAL;
1632 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1633 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1634 return -EINVAL;
1635 }
1636
1637 /* Reciprocal target->temp btree format checks */
1638 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1639 if (XFS_IFORK_BOFF(tip) &&
1640 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1641 return -EINVAL;
1642 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1643 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1644 return -EINVAL;
1645 }
1646
1647 return 0;
1648}
1649
1650static int
1651xfs_swap_extent_flush(
1652 struct xfs_inode *ip)
1653{
1654 int error;
1655
1656 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1657 if (error)
1658 return error;
1659 truncate_pagecache_range(VFS_I(ip), 0, -1);
1660
1661 /* Verify O_DIRECT for ftmp */
1662 if (VFS_I(ip)->i_mapping->nrpages)
1663 return -EINVAL;
1664 return 0;
1665}
1666
1667/*
1668 * Move extents from one file to another, when rmap is enabled.
1669 */
1670STATIC int
1671xfs_swap_extent_rmap(
1672 struct xfs_trans **tpp,
1673 struct xfs_inode *ip,
1674 struct xfs_inode *tip)
1675{
1676 struct xfs_bmbt_irec irec;
1677 struct xfs_bmbt_irec uirec;
1678 struct xfs_bmbt_irec tirec;
1679 xfs_fileoff_t offset_fsb;
1680 xfs_fileoff_t end_fsb;
1681 xfs_filblks_t count_fsb;
1682 xfs_fsblock_t firstfsb;
1683 struct xfs_defer_ops dfops;
1684 int error;
1685 xfs_filblks_t ilen;
1686 xfs_filblks_t rlen;
1687 int nimaps;
1688 __uint64_t tip_flags2;
1689
1690 /*
1691 * If the source file has shared blocks, we must flag the donor
1692 * file as having shared blocks so that we get the shared-block
1693 * rmap functions when we go to fix up the rmaps. The flags
1694 * will be switch for reals later.
1695 */
1696 tip_flags2 = tip->i_d.di_flags2;
1697 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1698 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1699
1700 offset_fsb = 0;
1701 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1702 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1703
1704 while (count_fsb) {
1705 /* Read extent from the donor file */
1706 nimaps = 1;
1707 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1708 &nimaps, 0);
1709 if (error)
1710 goto out;
1711 ASSERT(nimaps == 1);
1712 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1713
1714 trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1715 ilen = tirec.br_blockcount;
1716
1717 /* Unmap the old blocks in the source file. */
1718 while (tirec.br_blockcount) {
1719 xfs_defer_init(&dfops, &firstfsb);
1720 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1721
1722 /* Read extent from the source file */
1723 nimaps = 1;
1724 error = xfs_bmapi_read(ip, tirec.br_startoff,
1725 tirec.br_blockcount, &irec,
1726 &nimaps, 0);
1727 if (error)
1728 goto out_defer;
1729 ASSERT(nimaps == 1);
1730 ASSERT(tirec.br_startoff == irec.br_startoff);
1731 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1732
1733 /* Trim the extent. */
1734 uirec = tirec;
1735 uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1736 tirec.br_blockcount,
1737 irec.br_blockcount);
1738 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1739
1740 /* Remove the mapping from the donor file. */
1741 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1742 tip, &uirec);
1743 if (error)
1744 goto out_defer;
1745
1746 /* Remove the mapping from the source file. */
1747 error = xfs_bmap_unmap_extent((*tpp)->t_mountp, &dfops,
1748 ip, &irec);
1749 if (error)
1750 goto out_defer;
1751
1752 /* Map the donor file's blocks into the source file. */
1753 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1754 ip, &uirec);
1755 if (error)
1756 goto out_defer;
1757
1758 /* Map the source file's blocks into the donor file. */
1759 error = xfs_bmap_map_extent((*tpp)->t_mountp, &dfops,
1760 tip, &irec);
1761 if (error)
1762 goto out_defer;
1763
1764 error = xfs_defer_finish(tpp, &dfops, ip);
1765 if (error)
1766 goto out_defer;
1767
1768 tirec.br_startoff += rlen;
1769 if (tirec.br_startblock != HOLESTARTBLOCK &&
1770 tirec.br_startblock != DELAYSTARTBLOCK)
1771 tirec.br_startblock += rlen;
1772 tirec.br_blockcount -= rlen;
1773 }
1774
1775 /* Roll on... */
1776 count_fsb -= ilen;
1777 offset_fsb += ilen;
1778 }
1779
1780 tip->i_d.di_flags2 = tip_flags2;
1781 return 0;
1782
1783out_defer:
1784 xfs_defer_cancel(&dfops);
1785out:
1786 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1787 tip->i_d.di_flags2 = tip_flags2;
1788 return error;
1789}
1790
1791/* Swap the extents of two files by swapping data forks. */
1792STATIC int
1793xfs_swap_extent_forks(
1794 struct xfs_trans *tp,
1795 struct xfs_inode *ip,
1796 struct xfs_inode *tip,
1797 int *src_log_flags,
1798 int *target_log_flags)
1799{
1800 struct xfs_ifork tempifp, *ifp, *tifp;
1801 int aforkblks = 0;
1802 int taforkblks = 0;
1803 xfs_extnum_t nextents;
1804 __uint64_t tmp;
1805 int error;
1806
1807 /*
1808 * Count the number of extended attribute blocks
1809 */
1810 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1811 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1812 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK,
1813 &aforkblks);
1814 if (error)
1815 return error;
1816 }
1817 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1818 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1819 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1820 &taforkblks);
1821 if (error)
1822 return error;
1823 }
1824
1825 /*
1826 * Before we've swapped the forks, lets set the owners of the forks
1827 * appropriately. We have to do this as we are demand paging the btree
1828 * buffers, and so the validation done on read will expect the owner
1829 * field to be correctly set. Once we change the owners, we can swap the
1830 * inode forks.
1831 */
1832 if (ip->i_d.di_version == 3 &&
1833 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1834 (*target_log_flags) |= XFS_ILOG_DOWNER;
1835 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1836 tip->i_ino, NULL);
1837 if (error)
1838 return error;
1839 }
1840
1841 if (tip->i_d.di_version == 3 &&
1842 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1843 (*src_log_flags) |= XFS_ILOG_DOWNER;
1844 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1845 ip->i_ino, NULL);
1846 if (error)
1847 return error;
1848 }
1849
1850 /*
1851 * Swap the data forks of the inodes
1852 */
1853 ifp = &ip->i_df;
1854 tifp = &tip->i_df;
1855 tempifp = *ifp; /* struct copy */
1856 *ifp = *tifp; /* struct copy */
1857 *tifp = tempifp; /* struct copy */
1858
1859 /*
1860 * Fix the on-disk inode values
1861 */
1862 tmp = (__uint64_t)ip->i_d.di_nblocks;
1863 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1864 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1865
1866 tmp = (__uint64_t) ip->i_d.di_nextents;
1867 ip->i_d.di_nextents = tip->i_d.di_nextents;
1868 tip->i_d.di_nextents = tmp;
1869
1870 tmp = (__uint64_t) ip->i_d.di_format;
1871 ip->i_d.di_format = tip->i_d.di_format;
1872 tip->i_d.di_format = tmp;
1873
1874 /*
1875 * The extents in the source inode could still contain speculative
1876 * preallocation beyond EOF (e.g. the file is open but not modified
1877 * while defrag is in progress). In that case, we need to copy over the
1878 * number of delalloc blocks the data fork in the source inode is
1879 * tracking beyond EOF so that when the fork is truncated away when the
1880 * temporary inode is unlinked we don't underrun the i_delayed_blks
1881 * counter on that inode.
1882 */
1883 ASSERT(tip->i_delayed_blks == 0);
1884 tip->i_delayed_blks = ip->i_delayed_blks;
1885 ip->i_delayed_blks = 0;
1886
1887 switch (ip->i_d.di_format) {
1888 case XFS_DINODE_FMT_EXTENTS:
1889 /*
1890 * If the extents fit in the inode, fix the pointer. Otherwise
1891 * it's already NULL or pointing to the extent.
1892 */
1893 nextents = xfs_iext_count(&ip->i_df);
1894 if (nextents <= XFS_INLINE_EXTS)
1895 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
1896 (*src_log_flags) |= XFS_ILOG_DEXT;
1897 break;
1898 case XFS_DINODE_FMT_BTREE:
1899 ASSERT(ip->i_d.di_version < 3 ||
1900 (*src_log_flags & XFS_ILOG_DOWNER));
1901 (*src_log_flags) |= XFS_ILOG_DBROOT;
1902 break;
1903 }
1904
1905 switch (tip->i_d.di_format) {
1906 case XFS_DINODE_FMT_EXTENTS:
1907 /*
1908 * If the extents fit in the inode, fix the pointer. Otherwise
1909 * it's already NULL or pointing to the extent.
1910 */
1911 nextents = xfs_iext_count(&tip->i_df);
1912 if (nextents <= XFS_INLINE_EXTS)
1913 tifp->if_u1.if_extents = tifp->if_u2.if_inline_ext;
1914 (*target_log_flags) |= XFS_ILOG_DEXT;
1915 break;
1916 case XFS_DINODE_FMT_BTREE:
1917 (*target_log_flags) |= XFS_ILOG_DBROOT;
1918 ASSERT(tip->i_d.di_version < 3 ||
1919 (*target_log_flags & XFS_ILOG_DOWNER));
1920 break;
1921 }
1922
1923 return 0;
1924}
1925
1926int
1927xfs_swap_extents(
1928 struct xfs_inode *ip, /* target inode */
1929 struct xfs_inode *tip, /* tmp inode */
1930 struct xfs_swapext *sxp)
1931{
1932 struct xfs_mount *mp = ip->i_mount;
1933 struct xfs_trans *tp;
1934 struct xfs_bstat *sbp = &sxp->sx_stat;
1935 int src_log_flags, target_log_flags;
1936 int error = 0;
1937 int lock_flags;
1938 struct xfs_ifork *cowfp;
1939 __uint64_t f;
1940 int resblks;
1941
1942 /*
1943 * Lock the inodes against other IO, page faults and truncate to
1944 * begin with. Then we can ensure the inodes are flushed and have no
1945 * page cache safely. Once we have done this we can take the ilocks and
1946 * do the rest of the checks.
1947 */
1948 lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1949 lock_flags = XFS_MMAPLOCK_EXCL;
1950 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1951
1952 /* Verify that both files have the same format */
1953 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1954 error = -EINVAL;
1955 goto out_unlock;
1956 }
1957
1958 /* Verify both files are either real-time or non-realtime */
1959 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1960 error = -EINVAL;
1961 goto out_unlock;
1962 }
1963
1964 error = xfs_swap_extent_flush(ip);
1965 if (error)
1966 goto out_unlock;
1967 error = xfs_swap_extent_flush(tip);
1968 if (error)
1969 goto out_unlock;
1970
1971 /*
1972 * Extent "swapping" with rmap requires a permanent reservation and
1973 * a block reservation because it's really just a remap operation
1974 * performed with log redo items!
1975 */
1976 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
1977 /*
1978 * Conceptually this shouldn't affect the shape of either
1979 * bmbt, but since we atomically move extents one by one,
1980 * we reserve enough space to rebuild both trees.
1981 */
1982 resblks = XFS_SWAP_RMAP_SPACE_RES(mp,
1983 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK),
1984 XFS_DATA_FORK) +
1985 XFS_SWAP_RMAP_SPACE_RES(mp,
1986 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK),
1987 XFS_DATA_FORK);
1988 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
1989 0, 0, &tp);
1990 } else
1991 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0,
1992 0, 0, &tp);
1993 if (error)
1994 goto out_unlock;
1995
1996 /*
1997 * Lock and join the inodes to the tansaction so that transaction commit
1998 * or cancel will unlock the inodes from this point onwards.
1999 */
2000 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
2001 lock_flags |= XFS_ILOCK_EXCL;
2002 xfs_trans_ijoin(tp, ip, 0);
2003 xfs_trans_ijoin(tp, tip, 0);
2004
2005
2006 /* Verify all data are being swapped */
2007 if (sxp->sx_offset != 0 ||
2008 sxp->sx_length != ip->i_d.di_size ||
2009 sxp->sx_length != tip->i_d.di_size) {
2010 error = -EFAULT;
2011 goto out_trans_cancel;
2012 }
2013
2014 trace_xfs_swap_extent_before(ip, 0);
2015 trace_xfs_swap_extent_before(tip, 1);
2016
2017 /* check inode formats now that data is flushed */
2018 error = xfs_swap_extents_check_format(ip, tip);
2019 if (error) {
2020 xfs_notice(mp,
2021 "%s: inode 0x%llx format is incompatible for exchanging.",
2022 __func__, ip->i_ino);
2023 goto out_trans_cancel;
2024 }
2025
2026 /*
2027 * Compare the current change & modify times with that
2028 * passed in. If they differ, we abort this swap.
2029 * This is the mechanism used to ensure the calling
2030 * process that the file was not changed out from
2031 * under it.
2032 */
2033 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
2034 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
2035 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
2036 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
2037 error = -EBUSY;
2038 goto out_trans_cancel;
2039 }
2040
2041 /*
2042 * Note the trickiness in setting the log flags - we set the owner log
2043 * flag on the opposite inode (i.e. the inode we are setting the new
2044 * owner to be) because once we swap the forks and log that, log
2045 * recovery is going to see the fork as owned by the swapped inode,
2046 * not the pre-swapped inodes.
2047 */
2048 src_log_flags = XFS_ILOG_CORE;
2049 target_log_flags = XFS_ILOG_CORE;
2050
2051 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
2052 error = xfs_swap_extent_rmap(&tp, ip, tip);
2053 else
2054 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
2055 &target_log_flags);
2056 if (error)
2057 goto out_trans_cancel;
2058
2059 /* Do we have to swap reflink flags? */
2060 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
2061 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
2062 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2063 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2064 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
2065 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
2066 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
2067 cowfp = ip->i_cowfp;
2068 ip->i_cowfp = tip->i_cowfp;
2069 tip->i_cowfp = cowfp;
2070 xfs_inode_set_cowblocks_tag(ip);
2071 xfs_inode_set_cowblocks_tag(tip);
2072 }
2073
2074 xfs_trans_log_inode(tp, ip, src_log_flags);
2075 xfs_trans_log_inode(tp, tip, target_log_flags);
2076
2077 /*
2078 * If this is a synchronous mount, make sure that the
2079 * transaction goes to disk before returning to the user.
2080 */
2081 if (mp->m_flags & XFS_MOUNT_WSYNC)
2082 xfs_trans_set_sync(tp);
2083
2084 error = xfs_trans_commit(tp);
2085
2086 trace_xfs_swap_extent_after(ip, 0);
2087 trace_xfs_swap_extent_after(tip, 1);
2088
2089out_unlock:
2090 xfs_iunlock(ip, lock_flags);
2091 xfs_iunlock(tip, lock_flags);
2092 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
2093 return error;
2094
2095out_trans_cancel:
2096 xfs_trans_cancel(tp);
2097 goto out_unlock;
2098}
1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * Copyright (c) 2012 Red Hat, Inc.
4 * All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it would be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19#include "xfs.h"
20#include "xfs_fs.h"
21#include "xfs_shared.h"
22#include "xfs_format.h"
23#include "xfs_log_format.h"
24#include "xfs_trans_resv.h"
25#include "xfs_bit.h"
26#include "xfs_mount.h"
27#include "xfs_da_format.h"
28#include "xfs_inode.h"
29#include "xfs_btree.h"
30#include "xfs_trans.h"
31#include "xfs_extfree_item.h"
32#include "xfs_alloc.h"
33#include "xfs_bmap.h"
34#include "xfs_bmap_util.h"
35#include "xfs_bmap_btree.h"
36#include "xfs_rtalloc.h"
37#include "xfs_error.h"
38#include "xfs_quota.h"
39#include "xfs_trans_space.h"
40#include "xfs_trace.h"
41#include "xfs_icache.h"
42#include "xfs_log.h"
43
44/* Kernel only BMAP related definitions and functions */
45
46/*
47 * Convert the given file system block to a disk block. We have to treat it
48 * differently based on whether the file is a real time file or not, because the
49 * bmap code does.
50 */
51xfs_daddr_t
52xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
53{
54 return (XFS_IS_REALTIME_INODE(ip) ? \
55 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
56 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
57}
58
59/*
60 * Routine to zero an extent on disk allocated to the specific inode.
61 *
62 * The VFS functions take a linearised filesystem block offset, so we have to
63 * convert the sparse xfs fsb to the right format first.
64 * VFS types are real funky, too.
65 */
66int
67xfs_zero_extent(
68 struct xfs_inode *ip,
69 xfs_fsblock_t start_fsb,
70 xfs_off_t count_fsb)
71{
72 struct xfs_mount *mp = ip->i_mount;
73 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
74 sector_t block = XFS_BB_TO_FSBT(mp, sector);
75 ssize_t size = XFS_FSB_TO_B(mp, count_fsb);
76
77 if (IS_DAX(VFS_I(ip)))
78 return dax_clear_sectors(xfs_find_bdev_for_inode(VFS_I(ip)),
79 sector, size);
80
81 /*
82 * let the block layer decide on the fastest method of
83 * implementing the zeroing.
84 */
85 return sb_issue_zeroout(mp->m_super, block, count_fsb, GFP_NOFS);
86
87}
88
89/*
90 * Routine to be called at transaction's end by xfs_bmapi, xfs_bunmapi
91 * caller. Frees all the extents that need freeing, which must be done
92 * last due to locking considerations. We never free any extents in
93 * the first transaction.
94 *
95 * If an inode *ip is provided, rejoin it to the transaction if
96 * the transaction was committed.
97 */
98int /* error */
99xfs_bmap_finish(
100 struct xfs_trans **tp, /* transaction pointer addr */
101 struct xfs_bmap_free *flist, /* i/o: list extents to free */
102 struct xfs_inode *ip)
103{
104 struct xfs_efd_log_item *efd; /* extent free data */
105 struct xfs_efi_log_item *efi; /* extent free intention */
106 int error; /* error return value */
107 int committed;/* xact committed or not */
108 struct xfs_bmap_free_item *free; /* free extent item */
109 struct xfs_bmap_free_item *next; /* next item on free list */
110
111 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
112 if (flist->xbf_count == 0)
113 return 0;
114
115 efi = xfs_trans_get_efi(*tp, flist->xbf_count);
116 for (free = flist->xbf_first; free; free = free->xbfi_next)
117 xfs_trans_log_efi_extent(*tp, efi, free->xbfi_startblock,
118 free->xbfi_blockcount);
119
120 error = __xfs_trans_roll(tp, ip, &committed);
121 if (error) {
122 /*
123 * If the transaction was committed, drop the EFD reference
124 * since we're bailing out of here. The other reference is
125 * dropped when the EFI hits the AIL.
126 *
127 * If the transaction was not committed, the EFI is freed by the
128 * EFI item unlock handler on abort. Also, we have a new
129 * transaction so we should return committed=1 even though we're
130 * returning an error.
131 */
132 if (committed) {
133 xfs_efi_release(efi);
134 xfs_force_shutdown((*tp)->t_mountp,
135 (error == -EFSCORRUPTED) ?
136 SHUTDOWN_CORRUPT_INCORE :
137 SHUTDOWN_META_IO_ERROR);
138 }
139 return error;
140 }
141
142 /*
143 * Get an EFD and free each extent in the list, logging to the EFD in
144 * the process. The remaining bmap free list is cleaned up by the caller
145 * on error.
146 */
147 efd = xfs_trans_get_efd(*tp, efi, flist->xbf_count);
148 for (free = flist->xbf_first; free != NULL; free = next) {
149 next = free->xbfi_next;
150
151 error = xfs_trans_free_extent(*tp, efd, free->xbfi_startblock,
152 free->xbfi_blockcount);
153 if (error)
154 return error;
155
156 xfs_bmap_del_free(flist, NULL, free);
157 }
158
159 return 0;
160}
161
162int
163xfs_bmap_rtalloc(
164 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
165{
166 xfs_alloctype_t atype = 0; /* type for allocation routines */
167 int error; /* error return value */
168 xfs_mount_t *mp; /* mount point structure */
169 xfs_extlen_t prod = 0; /* product factor for allocators */
170 xfs_extlen_t ralen = 0; /* realtime allocation length */
171 xfs_extlen_t align; /* minimum allocation alignment */
172 xfs_rtblock_t rtb;
173
174 mp = ap->ip->i_mount;
175 align = xfs_get_extsz_hint(ap->ip);
176 prod = align / mp->m_sb.sb_rextsize;
177 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
178 align, 1, ap->eof, 0,
179 ap->conv, &ap->offset, &ap->length);
180 if (error)
181 return error;
182 ASSERT(ap->length);
183 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
184
185 /*
186 * If the offset & length are not perfectly aligned
187 * then kill prod, it will just get us in trouble.
188 */
189 if (do_mod(ap->offset, align) || ap->length % align)
190 prod = 1;
191 /*
192 * Set ralen to be the actual requested length in rtextents.
193 */
194 ralen = ap->length / mp->m_sb.sb_rextsize;
195 /*
196 * If the old value was close enough to MAXEXTLEN that
197 * we rounded up to it, cut it back so it's valid again.
198 * Note that if it's a really large request (bigger than
199 * MAXEXTLEN), we don't hear about that number, and can't
200 * adjust the starting point to match it.
201 */
202 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
203 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
204
205 /*
206 * Lock out modifications to both the RT bitmap and summary inodes
207 */
208 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL);
209 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
210 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL);
211 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
212
213 /*
214 * If it's an allocation to an empty file at offset 0,
215 * pick an extent that will space things out in the rt area.
216 */
217 if (ap->eof && ap->offset == 0) {
218 xfs_rtblock_t uninitialized_var(rtx); /* realtime extent no */
219
220 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
221 if (error)
222 return error;
223 ap->blkno = rtx * mp->m_sb.sb_rextsize;
224 } else {
225 ap->blkno = 0;
226 }
227
228 xfs_bmap_adjacent(ap);
229
230 /*
231 * Realtime allocation, done through xfs_rtallocate_extent.
232 */
233 atype = ap->blkno == 0 ? XFS_ALLOCTYPE_ANY_AG : XFS_ALLOCTYPE_NEAR_BNO;
234 do_div(ap->blkno, mp->m_sb.sb_rextsize);
235 rtb = ap->blkno;
236 ap->length = ralen;
237 if ((error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
238 &ralen, atype, ap->wasdel, prod, &rtb)))
239 return error;
240 if (rtb == NULLFSBLOCK && prod > 1 &&
241 (error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1,
242 ap->length, &ralen, atype,
243 ap->wasdel, 1, &rtb)))
244 return error;
245 ap->blkno = rtb;
246 if (ap->blkno != NULLFSBLOCK) {
247 ap->blkno *= mp->m_sb.sb_rextsize;
248 ralen *= mp->m_sb.sb_rextsize;
249 ap->length = ralen;
250 ap->ip->i_d.di_nblocks += ralen;
251 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
252 if (ap->wasdel)
253 ap->ip->i_delayed_blks -= ralen;
254 /*
255 * Adjust the disk quota also. This was reserved
256 * earlier.
257 */
258 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
259 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
260 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
261
262 /* Zero the extent if we were asked to do so */
263 if (ap->userdata & XFS_ALLOC_USERDATA_ZERO) {
264 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
265 if (error)
266 return error;
267 }
268 } else {
269 ap->length = 0;
270 }
271 return 0;
272}
273
274/*
275 * Check if the endoff is outside the last extent. If so the caller will grow
276 * the allocation to a stripe unit boundary. All offsets are considered outside
277 * the end of file for an empty fork, so 1 is returned in *eof in that case.
278 */
279int
280xfs_bmap_eof(
281 struct xfs_inode *ip,
282 xfs_fileoff_t endoff,
283 int whichfork,
284 int *eof)
285{
286 struct xfs_bmbt_irec rec;
287 int error;
288
289 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
290 if (error || *eof)
291 return error;
292
293 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
294 return 0;
295}
296
297/*
298 * Extent tree block counting routines.
299 */
300
301/*
302 * Count leaf blocks given a range of extent records.
303 */
304STATIC void
305xfs_bmap_count_leaves(
306 xfs_ifork_t *ifp,
307 xfs_extnum_t idx,
308 int numrecs,
309 int *count)
310{
311 int b;
312
313 for (b = 0; b < numrecs; b++) {
314 xfs_bmbt_rec_host_t *frp = xfs_iext_get_ext(ifp, idx + b);
315 *count += xfs_bmbt_get_blockcount(frp);
316 }
317}
318
319/*
320 * Count leaf blocks given a range of extent records originally
321 * in btree format.
322 */
323STATIC void
324xfs_bmap_disk_count_leaves(
325 struct xfs_mount *mp,
326 struct xfs_btree_block *block,
327 int numrecs,
328 int *count)
329{
330 int b;
331 xfs_bmbt_rec_t *frp;
332
333 for (b = 1; b <= numrecs; b++) {
334 frp = XFS_BMBT_REC_ADDR(mp, block, b);
335 *count += xfs_bmbt_disk_get_blockcount(frp);
336 }
337}
338
339/*
340 * Recursively walks each level of a btree
341 * to count total fsblocks in use.
342 */
343STATIC int /* error */
344xfs_bmap_count_tree(
345 xfs_mount_t *mp, /* file system mount point */
346 xfs_trans_t *tp, /* transaction pointer */
347 xfs_ifork_t *ifp, /* inode fork pointer */
348 xfs_fsblock_t blockno, /* file system block number */
349 int levelin, /* level in btree */
350 int *count) /* Count of blocks */
351{
352 int error;
353 xfs_buf_t *bp, *nbp;
354 int level = levelin;
355 __be64 *pp;
356 xfs_fsblock_t bno = blockno;
357 xfs_fsblock_t nextbno;
358 struct xfs_btree_block *block, *nextblock;
359 int numrecs;
360
361 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
362 &xfs_bmbt_buf_ops);
363 if (error)
364 return error;
365 *count += 1;
366 block = XFS_BUF_TO_BLOCK(bp);
367
368 if (--level) {
369 /* Not at node above leaves, count this level of nodes */
370 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
371 while (nextbno != NULLFSBLOCK) {
372 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
373 XFS_BMAP_BTREE_REF,
374 &xfs_bmbt_buf_ops);
375 if (error)
376 return error;
377 *count += 1;
378 nextblock = XFS_BUF_TO_BLOCK(nbp);
379 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
380 xfs_trans_brelse(tp, nbp);
381 }
382
383 /* Dive to the next level */
384 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
385 bno = be64_to_cpu(*pp);
386 if (unlikely((error =
387 xfs_bmap_count_tree(mp, tp, ifp, bno, level, count)) < 0)) {
388 xfs_trans_brelse(tp, bp);
389 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
390 XFS_ERRLEVEL_LOW, mp);
391 return -EFSCORRUPTED;
392 }
393 xfs_trans_brelse(tp, bp);
394 } else {
395 /* count all level 1 nodes and their leaves */
396 for (;;) {
397 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
398 numrecs = be16_to_cpu(block->bb_numrecs);
399 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
400 xfs_trans_brelse(tp, bp);
401 if (nextbno == NULLFSBLOCK)
402 break;
403 bno = nextbno;
404 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
405 XFS_BMAP_BTREE_REF,
406 &xfs_bmbt_buf_ops);
407 if (error)
408 return error;
409 *count += 1;
410 block = XFS_BUF_TO_BLOCK(bp);
411 }
412 }
413 return 0;
414}
415
416/*
417 * Count fsblocks of the given fork.
418 */
419int /* error */
420xfs_bmap_count_blocks(
421 xfs_trans_t *tp, /* transaction pointer */
422 xfs_inode_t *ip, /* incore inode */
423 int whichfork, /* data or attr fork */
424 int *count) /* out: count of blocks */
425{
426 struct xfs_btree_block *block; /* current btree block */
427 xfs_fsblock_t bno; /* block # of "block" */
428 xfs_ifork_t *ifp; /* fork structure */
429 int level; /* btree level, for checking */
430 xfs_mount_t *mp; /* file system mount structure */
431 __be64 *pp; /* pointer to block address */
432
433 bno = NULLFSBLOCK;
434 mp = ip->i_mount;
435 ifp = XFS_IFORK_PTR(ip, whichfork);
436 if ( XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_EXTENTS ) {
437 xfs_bmap_count_leaves(ifp, 0,
438 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t),
439 count);
440 return 0;
441 }
442
443 /*
444 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
445 */
446 block = ifp->if_broot;
447 level = be16_to_cpu(block->bb_level);
448 ASSERT(level > 0);
449 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
450 bno = be64_to_cpu(*pp);
451 ASSERT(bno != NULLFSBLOCK);
452 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
453 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
454
455 if (unlikely(xfs_bmap_count_tree(mp, tp, ifp, bno, level, count) < 0)) {
456 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)", XFS_ERRLEVEL_LOW,
457 mp);
458 return -EFSCORRUPTED;
459 }
460
461 return 0;
462}
463
464/*
465 * returns 1 for success, 0 if we failed to map the extent.
466 */
467STATIC int
468xfs_getbmapx_fix_eof_hole(
469 xfs_inode_t *ip, /* xfs incore inode pointer */
470 struct getbmapx *out, /* output structure */
471 int prealloced, /* this is a file with
472 * preallocated data space */
473 __int64_t end, /* last block requested */
474 xfs_fsblock_t startblock)
475{
476 __int64_t fixlen;
477 xfs_mount_t *mp; /* file system mount point */
478 xfs_ifork_t *ifp; /* inode fork pointer */
479 xfs_extnum_t lastx; /* last extent pointer */
480 xfs_fileoff_t fileblock;
481
482 if (startblock == HOLESTARTBLOCK) {
483 mp = ip->i_mount;
484 out->bmv_block = -1;
485 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
486 fixlen -= out->bmv_offset;
487 if (prealloced && out->bmv_offset + out->bmv_length == end) {
488 /* Came to hole at EOF. Trim it. */
489 if (fixlen <= 0)
490 return 0;
491 out->bmv_length = fixlen;
492 }
493 } else {
494 if (startblock == DELAYSTARTBLOCK)
495 out->bmv_block = -2;
496 else
497 out->bmv_block = xfs_fsb_to_db(ip, startblock);
498 fileblock = XFS_BB_TO_FSB(ip->i_mount, out->bmv_offset);
499 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
500 if (xfs_iext_bno_to_ext(ifp, fileblock, &lastx) &&
501 (lastx == (ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t))-1))
502 out->bmv_oflags |= BMV_OF_LAST;
503 }
504
505 return 1;
506}
507
508/*
509 * Get inode's extents as described in bmv, and format for output.
510 * Calls formatter to fill the user's buffer until all extents
511 * are mapped, until the passed-in bmv->bmv_count slots have
512 * been filled, or until the formatter short-circuits the loop,
513 * if it is tracking filled-in extents on its own.
514 */
515int /* error code */
516xfs_getbmap(
517 xfs_inode_t *ip,
518 struct getbmapx *bmv, /* user bmap structure */
519 xfs_bmap_format_t formatter, /* format to user */
520 void *arg) /* formatter arg */
521{
522 __int64_t bmvend; /* last block requested */
523 int error = 0; /* return value */
524 __int64_t fixlen; /* length for -1 case */
525 int i; /* extent number */
526 int lock; /* lock state */
527 xfs_bmbt_irec_t *map; /* buffer for user's data */
528 xfs_mount_t *mp; /* file system mount point */
529 int nex; /* # of user extents can do */
530 int nexleft; /* # of user extents left */
531 int subnex; /* # of bmapi's can do */
532 int nmap; /* number of map entries */
533 struct getbmapx *out; /* output structure */
534 int whichfork; /* data or attr fork */
535 int prealloced; /* this is a file with
536 * preallocated data space */
537 int iflags; /* interface flags */
538 int bmapi_flags; /* flags for xfs_bmapi */
539 int cur_ext = 0;
540
541 mp = ip->i_mount;
542 iflags = bmv->bmv_iflags;
543 whichfork = iflags & BMV_IF_ATTRFORK ? XFS_ATTR_FORK : XFS_DATA_FORK;
544
545 if (whichfork == XFS_ATTR_FORK) {
546 if (XFS_IFORK_Q(ip)) {
547 if (ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS &&
548 ip->i_d.di_aformat != XFS_DINODE_FMT_BTREE &&
549 ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)
550 return -EINVAL;
551 } else if (unlikely(
552 ip->i_d.di_aformat != 0 &&
553 ip->i_d.di_aformat != XFS_DINODE_FMT_EXTENTS)) {
554 XFS_ERROR_REPORT("xfs_getbmap", XFS_ERRLEVEL_LOW,
555 ip->i_mount);
556 return -EFSCORRUPTED;
557 }
558
559 prealloced = 0;
560 fixlen = 1LL << 32;
561 } else {
562 if (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS &&
563 ip->i_d.di_format != XFS_DINODE_FMT_BTREE &&
564 ip->i_d.di_format != XFS_DINODE_FMT_LOCAL)
565 return -EINVAL;
566
567 if (xfs_get_extsz_hint(ip) ||
568 ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC|XFS_DIFLAG_APPEND)){
569 prealloced = 1;
570 fixlen = mp->m_super->s_maxbytes;
571 } else {
572 prealloced = 0;
573 fixlen = XFS_ISIZE(ip);
574 }
575 }
576
577 if (bmv->bmv_length == -1) {
578 fixlen = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, fixlen));
579 bmv->bmv_length =
580 max_t(__int64_t, fixlen - bmv->bmv_offset, 0);
581 } else if (bmv->bmv_length == 0) {
582 bmv->bmv_entries = 0;
583 return 0;
584 } else if (bmv->bmv_length < 0) {
585 return -EINVAL;
586 }
587
588 nex = bmv->bmv_count - 1;
589 if (nex <= 0)
590 return -EINVAL;
591 bmvend = bmv->bmv_offset + bmv->bmv_length;
592
593
594 if (bmv->bmv_count > ULONG_MAX / sizeof(struct getbmapx))
595 return -ENOMEM;
596 out = kmem_zalloc_large(bmv->bmv_count * sizeof(struct getbmapx), 0);
597 if (!out)
598 return -ENOMEM;
599
600 xfs_ilock(ip, XFS_IOLOCK_SHARED);
601 if (whichfork == XFS_DATA_FORK) {
602 if (!(iflags & BMV_IF_DELALLOC) &&
603 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
604 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
605 if (error)
606 goto out_unlock_iolock;
607
608 /*
609 * Even after flushing the inode, there can still be
610 * delalloc blocks on the inode beyond EOF due to
611 * speculative preallocation. These are not removed
612 * until the release function is called or the inode
613 * is inactivated. Hence we cannot assert here that
614 * ip->i_delayed_blks == 0.
615 */
616 }
617
618 lock = xfs_ilock_data_map_shared(ip);
619 } else {
620 lock = xfs_ilock_attr_map_shared(ip);
621 }
622
623 /*
624 * Don't let nex be bigger than the number of extents
625 * we can have assuming alternating holes and real extents.
626 */
627 if (nex > XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1)
628 nex = XFS_IFORK_NEXTENTS(ip, whichfork) * 2 + 1;
629
630 bmapi_flags = xfs_bmapi_aflag(whichfork);
631 if (!(iflags & BMV_IF_PREALLOC))
632 bmapi_flags |= XFS_BMAPI_IGSTATE;
633
634 /*
635 * Allocate enough space to handle "subnex" maps at a time.
636 */
637 error = -ENOMEM;
638 subnex = 16;
639 map = kmem_alloc(subnex * sizeof(*map), KM_MAYFAIL | KM_NOFS);
640 if (!map)
641 goto out_unlock_ilock;
642
643 bmv->bmv_entries = 0;
644
645 if (XFS_IFORK_NEXTENTS(ip, whichfork) == 0 &&
646 (whichfork == XFS_ATTR_FORK || !(iflags & BMV_IF_DELALLOC))) {
647 error = 0;
648 goto out_free_map;
649 }
650
651 nexleft = nex;
652
653 do {
654 nmap = (nexleft > subnex) ? subnex : nexleft;
655 error = xfs_bmapi_read(ip, XFS_BB_TO_FSBT(mp, bmv->bmv_offset),
656 XFS_BB_TO_FSB(mp, bmv->bmv_length),
657 map, &nmap, bmapi_flags);
658 if (error)
659 goto out_free_map;
660 ASSERT(nmap <= subnex);
661
662 for (i = 0; i < nmap && nexleft && bmv->bmv_length; i++) {
663 out[cur_ext].bmv_oflags = 0;
664 if (map[i].br_state == XFS_EXT_UNWRITTEN)
665 out[cur_ext].bmv_oflags |= BMV_OF_PREALLOC;
666 else if (map[i].br_startblock == DELAYSTARTBLOCK)
667 out[cur_ext].bmv_oflags |= BMV_OF_DELALLOC;
668 out[cur_ext].bmv_offset =
669 XFS_FSB_TO_BB(mp, map[i].br_startoff);
670 out[cur_ext].bmv_length =
671 XFS_FSB_TO_BB(mp, map[i].br_blockcount);
672 out[cur_ext].bmv_unused1 = 0;
673 out[cur_ext].bmv_unused2 = 0;
674
675 /*
676 * delayed allocation extents that start beyond EOF can
677 * occur due to speculative EOF allocation when the
678 * delalloc extent is larger than the largest freespace
679 * extent at conversion time. These extents cannot be
680 * converted by data writeback, so can exist here even
681 * if we are not supposed to be finding delalloc
682 * extents.
683 */
684 if (map[i].br_startblock == DELAYSTARTBLOCK &&
685 map[i].br_startoff <= XFS_B_TO_FSB(mp, XFS_ISIZE(ip)))
686 ASSERT((iflags & BMV_IF_DELALLOC) != 0);
687
688 if (map[i].br_startblock == HOLESTARTBLOCK &&
689 whichfork == XFS_ATTR_FORK) {
690 /* came to the end of attribute fork */
691 out[cur_ext].bmv_oflags |= BMV_OF_LAST;
692 goto out_free_map;
693 }
694
695 if (!xfs_getbmapx_fix_eof_hole(ip, &out[cur_ext],
696 prealloced, bmvend,
697 map[i].br_startblock))
698 goto out_free_map;
699
700 bmv->bmv_offset =
701 out[cur_ext].bmv_offset +
702 out[cur_ext].bmv_length;
703 bmv->bmv_length =
704 max_t(__int64_t, 0, bmvend - bmv->bmv_offset);
705
706 /*
707 * In case we don't want to return the hole,
708 * don't increase cur_ext so that we can reuse
709 * it in the next loop.
710 */
711 if ((iflags & BMV_IF_NO_HOLES) &&
712 map[i].br_startblock == HOLESTARTBLOCK) {
713 memset(&out[cur_ext], 0, sizeof(out[cur_ext]));
714 continue;
715 }
716
717 nexleft--;
718 bmv->bmv_entries++;
719 cur_ext++;
720 }
721 } while (nmap && nexleft && bmv->bmv_length);
722
723 out_free_map:
724 kmem_free(map);
725 out_unlock_ilock:
726 xfs_iunlock(ip, lock);
727 out_unlock_iolock:
728 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
729
730 for (i = 0; i < cur_ext; i++) {
731 int full = 0; /* user array is full */
732
733 /* format results & advance arg */
734 error = formatter(&arg, &out[i], &full);
735 if (error || full)
736 break;
737 }
738
739 kmem_free(out);
740 return error;
741}
742
743/*
744 * dead simple method of punching delalyed allocation blocks from a range in
745 * the inode. Walks a block at a time so will be slow, but is only executed in
746 * rare error cases so the overhead is not critical. This will always punch out
747 * both the start and end blocks, even if the ranges only partially overlap
748 * them, so it is up to the caller to ensure that partial blocks are not
749 * passed in.
750 */
751int
752xfs_bmap_punch_delalloc_range(
753 struct xfs_inode *ip,
754 xfs_fileoff_t start_fsb,
755 xfs_fileoff_t length)
756{
757 xfs_fileoff_t remaining = length;
758 int error = 0;
759
760 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
761
762 do {
763 int done;
764 xfs_bmbt_irec_t imap;
765 int nimaps = 1;
766 xfs_fsblock_t firstblock;
767 xfs_bmap_free_t flist;
768
769 /*
770 * Map the range first and check that it is a delalloc extent
771 * before trying to unmap the range. Otherwise we will be
772 * trying to remove a real extent (which requires a
773 * transaction) or a hole, which is probably a bad idea...
774 */
775 error = xfs_bmapi_read(ip, start_fsb, 1, &imap, &nimaps,
776 XFS_BMAPI_ENTIRE);
777
778 if (error) {
779 /* something screwed, just bail */
780 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
781 xfs_alert(ip->i_mount,
782 "Failed delalloc mapping lookup ino %lld fsb %lld.",
783 ip->i_ino, start_fsb);
784 }
785 break;
786 }
787 if (!nimaps) {
788 /* nothing there */
789 goto next_block;
790 }
791 if (imap.br_startblock != DELAYSTARTBLOCK) {
792 /* been converted, ignore */
793 goto next_block;
794 }
795 WARN_ON(imap.br_blockcount == 0);
796
797 /*
798 * Note: while we initialise the firstblock/flist pair, they
799 * should never be used because blocks should never be
800 * allocated or freed for a delalloc extent and hence we need
801 * don't cancel or finish them after the xfs_bunmapi() call.
802 */
803 xfs_bmap_init(&flist, &firstblock);
804 error = xfs_bunmapi(NULL, ip, start_fsb, 1, 0, 1, &firstblock,
805 &flist, &done);
806 if (error)
807 break;
808
809 ASSERT(!flist.xbf_count && !flist.xbf_first);
810next_block:
811 start_fsb++;
812 remaining--;
813 } while(remaining > 0);
814
815 return error;
816}
817
818/*
819 * Test whether it is appropriate to check an inode for and free post EOF
820 * blocks. The 'force' parameter determines whether we should also consider
821 * regular files that are marked preallocated or append-only.
822 */
823bool
824xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
825{
826 /* prealloc/delalloc exists only on regular files */
827 if (!S_ISREG(VFS_I(ip)->i_mode))
828 return false;
829
830 /*
831 * Zero sized files with no cached pages and delalloc blocks will not
832 * have speculative prealloc/delalloc blocks to remove.
833 */
834 if (VFS_I(ip)->i_size == 0 &&
835 VFS_I(ip)->i_mapping->nrpages == 0 &&
836 ip->i_delayed_blks == 0)
837 return false;
838
839 /* If we haven't read in the extent list, then don't do it now. */
840 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
841 return false;
842
843 /*
844 * Do not free real preallocated or append-only files unless the file
845 * has delalloc blocks and we are forced to remove them.
846 */
847 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
848 if (!force || ip->i_delayed_blks == 0)
849 return false;
850
851 return true;
852}
853
854/*
855 * This is called by xfs_inactive to free any blocks beyond eof
856 * when the link count isn't zero and by xfs_dm_punch_hole() when
857 * punching a hole to EOF.
858 */
859int
860xfs_free_eofblocks(
861 xfs_mount_t *mp,
862 xfs_inode_t *ip,
863 bool need_iolock)
864{
865 xfs_trans_t *tp;
866 int error;
867 xfs_fileoff_t end_fsb;
868 xfs_fileoff_t last_fsb;
869 xfs_filblks_t map_len;
870 int nimaps;
871 xfs_bmbt_irec_t imap;
872
873 /*
874 * Figure out if there are any blocks beyond the end
875 * of the file. If not, then there is nothing to do.
876 */
877 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
878 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
879 if (last_fsb <= end_fsb)
880 return 0;
881 map_len = last_fsb - end_fsb;
882
883 nimaps = 1;
884 xfs_ilock(ip, XFS_ILOCK_SHARED);
885 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
886 xfs_iunlock(ip, XFS_ILOCK_SHARED);
887
888 if (!error && (nimaps != 0) &&
889 (imap.br_startblock != HOLESTARTBLOCK ||
890 ip->i_delayed_blks)) {
891 /*
892 * Attach the dquots to the inode up front.
893 */
894 error = xfs_qm_dqattach(ip, 0);
895 if (error)
896 return error;
897
898 /*
899 * There are blocks after the end of file.
900 * Free them up now by truncating the file to
901 * its current size.
902 */
903 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
904
905 if (need_iolock) {
906 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
907 xfs_trans_cancel(tp);
908 return -EAGAIN;
909 }
910 }
911
912 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
913 if (error) {
914 ASSERT(XFS_FORCED_SHUTDOWN(mp));
915 xfs_trans_cancel(tp);
916 if (need_iolock)
917 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
918 return error;
919 }
920
921 xfs_ilock(ip, XFS_ILOCK_EXCL);
922 xfs_trans_ijoin(tp, ip, 0);
923
924 /*
925 * Do not update the on-disk file size. If we update the
926 * on-disk file size and then the system crashes before the
927 * contents of the file are flushed to disk then the files
928 * may be full of holes (ie NULL files bug).
929 */
930 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK,
931 XFS_ISIZE(ip));
932 if (error) {
933 /*
934 * If we get an error at this point we simply don't
935 * bother truncating the file.
936 */
937 xfs_trans_cancel(tp);
938 } else {
939 error = xfs_trans_commit(tp);
940 if (!error)
941 xfs_inode_clear_eofblocks_tag(ip);
942 }
943
944 xfs_iunlock(ip, XFS_ILOCK_EXCL);
945 if (need_iolock)
946 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
947 }
948 return error;
949}
950
951int
952xfs_alloc_file_space(
953 struct xfs_inode *ip,
954 xfs_off_t offset,
955 xfs_off_t len,
956 int alloc_type)
957{
958 xfs_mount_t *mp = ip->i_mount;
959 xfs_off_t count;
960 xfs_filblks_t allocated_fsb;
961 xfs_filblks_t allocatesize_fsb;
962 xfs_extlen_t extsz, temp;
963 xfs_fileoff_t startoffset_fsb;
964 xfs_fsblock_t firstfsb;
965 int nimaps;
966 int quota_flag;
967 int rt;
968 xfs_trans_t *tp;
969 xfs_bmbt_irec_t imaps[1], *imapp;
970 xfs_bmap_free_t free_list;
971 uint qblocks, resblks, resrtextents;
972 int error;
973
974 trace_xfs_alloc_file_space(ip);
975
976 if (XFS_FORCED_SHUTDOWN(mp))
977 return -EIO;
978
979 error = xfs_qm_dqattach(ip, 0);
980 if (error)
981 return error;
982
983 if (len <= 0)
984 return -EINVAL;
985
986 rt = XFS_IS_REALTIME_INODE(ip);
987 extsz = xfs_get_extsz_hint(ip);
988
989 count = len;
990 imapp = &imaps[0];
991 nimaps = 1;
992 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
993 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
994
995 /*
996 * Allocate file space until done or until there is an error
997 */
998 while (allocatesize_fsb && !error) {
999 xfs_fileoff_t s, e;
1000
1001 /*
1002 * Determine space reservations for data/realtime.
1003 */
1004 if (unlikely(extsz)) {
1005 s = startoffset_fsb;
1006 do_div(s, extsz);
1007 s *= extsz;
1008 e = startoffset_fsb + allocatesize_fsb;
1009 if ((temp = do_mod(startoffset_fsb, extsz)))
1010 e += temp;
1011 if ((temp = do_mod(e, extsz)))
1012 e += extsz - temp;
1013 } else {
1014 s = 0;
1015 e = allocatesize_fsb;
1016 }
1017
1018 /*
1019 * The transaction reservation is limited to a 32-bit block
1020 * count, hence we need to limit the number of blocks we are
1021 * trying to reserve to avoid an overflow. We can't allocate
1022 * more than @nimaps extents, and an extent is limited on disk
1023 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
1024 */
1025 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
1026 if (unlikely(rt)) {
1027 resrtextents = qblocks = resblks;
1028 resrtextents /= mp->m_sb.sb_rextsize;
1029 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1030 quota_flag = XFS_QMOPT_RES_RTBLKS;
1031 } else {
1032 resrtextents = 0;
1033 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
1034 quota_flag = XFS_QMOPT_RES_REGBLKS;
1035 }
1036
1037 /*
1038 * Allocate and setup the transaction.
1039 */
1040 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1041 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1042 resblks, resrtextents);
1043 /*
1044 * Check for running out of space
1045 */
1046 if (error) {
1047 /*
1048 * Free the transaction structure.
1049 */
1050 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1051 xfs_trans_cancel(tp);
1052 break;
1053 }
1054 xfs_ilock(ip, XFS_ILOCK_EXCL);
1055 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
1056 0, quota_flag);
1057 if (error)
1058 goto error1;
1059
1060 xfs_trans_ijoin(tp, ip, 0);
1061
1062 xfs_bmap_init(&free_list, &firstfsb);
1063 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
1064 allocatesize_fsb, alloc_type, &firstfsb,
1065 resblks, imapp, &nimaps, &free_list);
1066 if (error)
1067 goto error0;
1068
1069 /*
1070 * Complete the transaction
1071 */
1072 error = xfs_bmap_finish(&tp, &free_list, NULL);
1073 if (error)
1074 goto error0;
1075
1076 error = xfs_trans_commit(tp);
1077 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1078 if (error)
1079 break;
1080
1081 allocated_fsb = imapp->br_blockcount;
1082
1083 if (nimaps == 0) {
1084 error = -ENOSPC;
1085 break;
1086 }
1087
1088 startoffset_fsb += allocated_fsb;
1089 allocatesize_fsb -= allocated_fsb;
1090 }
1091
1092 return error;
1093
1094error0: /* Cancel bmap, unlock inode, unreserve quota blocks, cancel trans */
1095 xfs_bmap_cancel(&free_list);
1096 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
1097
1098error1: /* Just cancel transaction */
1099 xfs_trans_cancel(tp);
1100 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1101 return error;
1102}
1103
1104/*
1105 * Zero file bytes between startoff and endoff inclusive.
1106 * The iolock is held exclusive and no blocks are buffered.
1107 *
1108 * This function is used by xfs_free_file_space() to zero
1109 * partial blocks when the range to free is not block aligned.
1110 * When unreserving space with boundaries that are not block
1111 * aligned we round up the start and round down the end
1112 * boundaries and then use this function to zero the parts of
1113 * the blocks that got dropped during the rounding.
1114 */
1115STATIC int
1116xfs_zero_remaining_bytes(
1117 xfs_inode_t *ip,
1118 xfs_off_t startoff,
1119 xfs_off_t endoff)
1120{
1121 xfs_bmbt_irec_t imap;
1122 xfs_fileoff_t offset_fsb;
1123 xfs_off_t lastoffset;
1124 xfs_off_t offset;
1125 xfs_buf_t *bp;
1126 xfs_mount_t *mp = ip->i_mount;
1127 int nimap;
1128 int error = 0;
1129
1130 /*
1131 * Avoid doing I/O beyond eof - it's not necessary
1132 * since nothing can read beyond eof. The space will
1133 * be zeroed when the file is extended anyway.
1134 */
1135 if (startoff >= XFS_ISIZE(ip))
1136 return 0;
1137
1138 if (endoff > XFS_ISIZE(ip))
1139 endoff = XFS_ISIZE(ip);
1140
1141 for (offset = startoff; offset <= endoff; offset = lastoffset + 1) {
1142 uint lock_mode;
1143
1144 offset_fsb = XFS_B_TO_FSBT(mp, offset);
1145 nimap = 1;
1146
1147 lock_mode = xfs_ilock_data_map_shared(ip);
1148 error = xfs_bmapi_read(ip, offset_fsb, 1, &imap, &nimap, 0);
1149 xfs_iunlock(ip, lock_mode);
1150
1151 if (error || nimap < 1)
1152 break;
1153 ASSERT(imap.br_blockcount >= 1);
1154 ASSERT(imap.br_startoff == offset_fsb);
1155 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1156
1157 if (imap.br_startblock == HOLESTARTBLOCK ||
1158 imap.br_state == XFS_EXT_UNWRITTEN) {
1159 /* skip the entire extent */
1160 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff +
1161 imap.br_blockcount) - 1;
1162 continue;
1163 }
1164
1165 lastoffset = XFS_FSB_TO_B(mp, imap.br_startoff + 1) - 1;
1166 if (lastoffset > endoff)
1167 lastoffset = endoff;
1168
1169 /* DAX can just zero the backing device directly */
1170 if (IS_DAX(VFS_I(ip))) {
1171 error = dax_zero_page_range(VFS_I(ip), offset,
1172 lastoffset - offset + 1,
1173 xfs_get_blocks_direct);
1174 if (error)
1175 return error;
1176 continue;
1177 }
1178
1179 error = xfs_buf_read_uncached(XFS_IS_REALTIME_INODE(ip) ?
1180 mp->m_rtdev_targp : mp->m_ddev_targp,
1181 xfs_fsb_to_db(ip, imap.br_startblock),
1182 BTOBB(mp->m_sb.sb_blocksize),
1183 0, &bp, NULL);
1184 if (error)
1185 return error;
1186
1187 memset(bp->b_addr +
1188 (offset - XFS_FSB_TO_B(mp, imap.br_startoff)),
1189 0, lastoffset - offset + 1);
1190
1191 error = xfs_bwrite(bp);
1192 xfs_buf_relse(bp);
1193 if (error)
1194 return error;
1195 }
1196 return error;
1197}
1198
1199int
1200xfs_free_file_space(
1201 struct xfs_inode *ip,
1202 xfs_off_t offset,
1203 xfs_off_t len)
1204{
1205 int done;
1206 xfs_fileoff_t endoffset_fsb;
1207 int error;
1208 xfs_fsblock_t firstfsb;
1209 xfs_bmap_free_t free_list;
1210 xfs_bmbt_irec_t imap;
1211 xfs_off_t ioffset;
1212 xfs_off_t iendoffset;
1213 xfs_extlen_t mod=0;
1214 xfs_mount_t *mp;
1215 int nimap;
1216 uint resblks;
1217 xfs_off_t rounding;
1218 int rt;
1219 xfs_fileoff_t startoffset_fsb;
1220 xfs_trans_t *tp;
1221
1222 mp = ip->i_mount;
1223
1224 trace_xfs_free_file_space(ip);
1225
1226 error = xfs_qm_dqattach(ip, 0);
1227 if (error)
1228 return error;
1229
1230 error = 0;
1231 if (len <= 0) /* if nothing being freed */
1232 return error;
1233 rt = XFS_IS_REALTIME_INODE(ip);
1234 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1235 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1236
1237 /* wait for the completion of any pending DIOs */
1238 inode_dio_wait(VFS_I(ip));
1239
1240 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1241 ioffset = round_down(offset, rounding);
1242 iendoffset = round_up(offset + len, rounding) - 1;
1243 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping, ioffset,
1244 iendoffset);
1245 if (error)
1246 goto out;
1247 truncate_pagecache_range(VFS_I(ip), ioffset, iendoffset);
1248
1249 /*
1250 * Need to zero the stuff we're not freeing, on disk.
1251 * If it's a realtime file & can't use unwritten extents then we
1252 * actually need to zero the extent edges. Otherwise xfs_bunmapi
1253 * will take care of it for us.
1254 */
1255 if (rt && !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1256 nimap = 1;
1257 error = xfs_bmapi_read(ip, startoffset_fsb, 1,
1258 &imap, &nimap, 0);
1259 if (error)
1260 goto out;
1261 ASSERT(nimap == 0 || nimap == 1);
1262 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1263 xfs_daddr_t block;
1264
1265 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1266 block = imap.br_startblock;
1267 mod = do_div(block, mp->m_sb.sb_rextsize);
1268 if (mod)
1269 startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1270 }
1271 nimap = 1;
1272 error = xfs_bmapi_read(ip, endoffset_fsb - 1, 1,
1273 &imap, &nimap, 0);
1274 if (error)
1275 goto out;
1276 ASSERT(nimap == 0 || nimap == 1);
1277 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1278 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1279 mod++;
1280 if (mod && (mod != mp->m_sb.sb_rextsize))
1281 endoffset_fsb -= mod;
1282 }
1283 }
1284 if ((done = (endoffset_fsb <= startoffset_fsb)))
1285 /*
1286 * One contiguous piece to clear
1287 */
1288 error = xfs_zero_remaining_bytes(ip, offset, offset + len - 1);
1289 else {
1290 /*
1291 * Some full blocks, possibly two pieces to clear
1292 */
1293 if (offset < XFS_FSB_TO_B(mp, startoffset_fsb))
1294 error = xfs_zero_remaining_bytes(ip, offset,
1295 XFS_FSB_TO_B(mp, startoffset_fsb) - 1);
1296 if (!error &&
1297 XFS_FSB_TO_B(mp, endoffset_fsb) < offset + len)
1298 error = xfs_zero_remaining_bytes(ip,
1299 XFS_FSB_TO_B(mp, endoffset_fsb),
1300 offset + len - 1);
1301 }
1302
1303 /*
1304 * free file space until done or until there is an error
1305 */
1306 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1307 while (!error && !done) {
1308
1309 /*
1310 * allocate and setup the transaction. Allow this
1311 * transaction to dip into the reserve blocks to ensure
1312 * the freeing of the space succeeds at ENOSPC.
1313 */
1314 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1315 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write, resblks, 0);
1316
1317 /*
1318 * check for running out of space
1319 */
1320 if (error) {
1321 /*
1322 * Free the transaction structure.
1323 */
1324 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1325 xfs_trans_cancel(tp);
1326 break;
1327 }
1328 xfs_ilock(ip, XFS_ILOCK_EXCL);
1329 error = xfs_trans_reserve_quota(tp, mp,
1330 ip->i_udquot, ip->i_gdquot, ip->i_pdquot,
1331 resblks, 0, XFS_QMOPT_RES_REGBLKS);
1332 if (error)
1333 goto error1;
1334
1335 xfs_trans_ijoin(tp, ip, 0);
1336
1337 /*
1338 * issue the bunmapi() call to free the blocks
1339 */
1340 xfs_bmap_init(&free_list, &firstfsb);
1341 error = xfs_bunmapi(tp, ip, startoffset_fsb,
1342 endoffset_fsb - startoffset_fsb,
1343 0, 2, &firstfsb, &free_list, &done);
1344 if (error)
1345 goto error0;
1346
1347 /*
1348 * complete the transaction
1349 */
1350 error = xfs_bmap_finish(&tp, &free_list, NULL);
1351 if (error)
1352 goto error0;
1353
1354 error = xfs_trans_commit(tp);
1355 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1356 }
1357
1358 out:
1359 return error;
1360
1361 error0:
1362 xfs_bmap_cancel(&free_list);
1363 error1:
1364 xfs_trans_cancel(tp);
1365 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1366 goto out;
1367}
1368
1369/*
1370 * Preallocate and zero a range of a file. This mechanism has the allocation
1371 * semantics of fallocate and in addition converts data in the range to zeroes.
1372 */
1373int
1374xfs_zero_file_space(
1375 struct xfs_inode *ip,
1376 xfs_off_t offset,
1377 xfs_off_t len)
1378{
1379 struct xfs_mount *mp = ip->i_mount;
1380 uint blksize;
1381 int error;
1382
1383 trace_xfs_zero_file_space(ip);
1384
1385 blksize = 1 << mp->m_sb.sb_blocklog;
1386
1387 /*
1388 * Punch a hole and prealloc the range. We use hole punch rather than
1389 * unwritten extent conversion for two reasons:
1390 *
1391 * 1.) Hole punch handles partial block zeroing for us.
1392 *
1393 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1394 * by virtue of the hole punch.
1395 */
1396 error = xfs_free_file_space(ip, offset, len);
1397 if (error)
1398 goto out;
1399
1400 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1401 round_up(offset + len, blksize) -
1402 round_down(offset, blksize),
1403 XFS_BMAPI_PREALLOC);
1404out:
1405 return error;
1406
1407}
1408
1409/*
1410 * @next_fsb will keep track of the extent currently undergoing shift.
1411 * @stop_fsb will keep track of the extent at which we have to stop.
1412 * If we are shifting left, we will start with block (offset + len) and
1413 * shift each extent till last extent.
1414 * If we are shifting right, we will start with last extent inside file space
1415 * and continue until we reach the block corresponding to offset.
1416 */
1417static int
1418xfs_shift_file_space(
1419 struct xfs_inode *ip,
1420 xfs_off_t offset,
1421 xfs_off_t len,
1422 enum shift_direction direction)
1423{
1424 int done = 0;
1425 struct xfs_mount *mp = ip->i_mount;
1426 struct xfs_trans *tp;
1427 int error;
1428 struct xfs_bmap_free free_list;
1429 xfs_fsblock_t first_block;
1430 xfs_fileoff_t stop_fsb;
1431 xfs_fileoff_t next_fsb;
1432 xfs_fileoff_t shift_fsb;
1433
1434 ASSERT(direction == SHIFT_LEFT || direction == SHIFT_RIGHT);
1435
1436 if (direction == SHIFT_LEFT) {
1437 next_fsb = XFS_B_TO_FSB(mp, offset + len);
1438 stop_fsb = XFS_B_TO_FSB(mp, VFS_I(ip)->i_size);
1439 } else {
1440 /*
1441 * If right shift, delegate the work of initialization of
1442 * next_fsb to xfs_bmap_shift_extent as it has ilock held.
1443 */
1444 next_fsb = NULLFSBLOCK;
1445 stop_fsb = XFS_B_TO_FSB(mp, offset);
1446 }
1447
1448 shift_fsb = XFS_B_TO_FSB(mp, len);
1449
1450 /*
1451 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1452 * into the accessible region of the file.
1453 */
1454 if (xfs_can_free_eofblocks(ip, true)) {
1455 error = xfs_free_eofblocks(mp, ip, false);
1456 if (error)
1457 return error;
1458 }
1459
1460 /*
1461 * Writeback and invalidate cache for the remainder of the file as we're
1462 * about to shift down every extent from offset to EOF.
1463 */
1464 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1465 offset, -1);
1466 if (error)
1467 return error;
1468 error = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
1469 offset >> PAGE_SHIFT, -1);
1470 if (error)
1471 return error;
1472
1473 /*
1474 * The extent shiting code works on extent granularity. So, if
1475 * stop_fsb is not the starting block of extent, we need to split
1476 * the extent at stop_fsb.
1477 */
1478 if (direction == SHIFT_RIGHT) {
1479 error = xfs_bmap_split_extent(ip, stop_fsb);
1480 if (error)
1481 return error;
1482 }
1483
1484 while (!error && !done) {
1485 tp = xfs_trans_alloc(mp, XFS_TRANS_DIOSTRAT);
1486 /*
1487 * We would need to reserve permanent block for transaction.
1488 * This will come into picture when after shifting extent into
1489 * hole we found that adjacent extents can be merged which
1490 * may lead to freeing of a block during record update.
1491 */
1492 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_write,
1493 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0);
1494 if (error) {
1495 xfs_trans_cancel(tp);
1496 break;
1497 }
1498
1499 xfs_ilock(ip, XFS_ILOCK_EXCL);
1500 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1501 ip->i_gdquot, ip->i_pdquot,
1502 XFS_DIOSTRAT_SPACE_RES(mp, 0), 0,
1503 XFS_QMOPT_RES_REGBLKS);
1504 if (error)
1505 goto out_trans_cancel;
1506
1507 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1508
1509 xfs_bmap_init(&free_list, &first_block);
1510
1511 /*
1512 * We are using the write transaction in which max 2 bmbt
1513 * updates are allowed
1514 */
1515 error = xfs_bmap_shift_extents(tp, ip, &next_fsb, shift_fsb,
1516 &done, stop_fsb, &first_block, &free_list,
1517 direction, XFS_BMAP_MAX_SHIFT_EXTENTS);
1518 if (error)
1519 goto out_bmap_cancel;
1520
1521 error = xfs_bmap_finish(&tp, &free_list, NULL);
1522 if (error)
1523 goto out_bmap_cancel;
1524
1525 error = xfs_trans_commit(tp);
1526 }
1527
1528 return error;
1529
1530out_bmap_cancel:
1531 xfs_bmap_cancel(&free_list);
1532out_trans_cancel:
1533 xfs_trans_cancel(tp);
1534 return error;
1535}
1536
1537/*
1538 * xfs_collapse_file_space()
1539 * This routine frees disk space and shift extent for the given file.
1540 * The first thing we do is to free data blocks in the specified range
1541 * by calling xfs_free_file_space(). It would also sync dirty data
1542 * and invalidate page cache over the region on which collapse range
1543 * is working. And Shift extent records to the left to cover a hole.
1544 * RETURNS:
1545 * 0 on success
1546 * errno on error
1547 *
1548 */
1549int
1550xfs_collapse_file_space(
1551 struct xfs_inode *ip,
1552 xfs_off_t offset,
1553 xfs_off_t len)
1554{
1555 int error;
1556
1557 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1558 trace_xfs_collapse_file_space(ip);
1559
1560 error = xfs_free_file_space(ip, offset, len);
1561 if (error)
1562 return error;
1563
1564 return xfs_shift_file_space(ip, offset, len, SHIFT_LEFT);
1565}
1566
1567/*
1568 * xfs_insert_file_space()
1569 * This routine create hole space by shifting extents for the given file.
1570 * The first thing we do is to sync dirty data and invalidate page cache
1571 * over the region on which insert range is working. And split an extent
1572 * to two extents at given offset by calling xfs_bmap_split_extent.
1573 * And shift all extent records which are laying between [offset,
1574 * last allocated extent] to the right to reserve hole range.
1575 * RETURNS:
1576 * 0 on success
1577 * errno on error
1578 */
1579int
1580xfs_insert_file_space(
1581 struct xfs_inode *ip,
1582 loff_t offset,
1583 loff_t len)
1584{
1585 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1586 trace_xfs_insert_file_space(ip);
1587
1588 return xfs_shift_file_space(ip, offset, len, SHIFT_RIGHT);
1589}
1590
1591/*
1592 * We need to check that the format of the data fork in the temporary inode is
1593 * valid for the target inode before doing the swap. This is not a problem with
1594 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1595 * data fork depending on the space the attribute fork is taking so we can get
1596 * invalid formats on the target inode.
1597 *
1598 * E.g. target has space for 7 extents in extent format, temp inode only has
1599 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1600 * btree, but when swapped it needs to be in extent format. Hence we can't just
1601 * blindly swap data forks on attr2 filesystems.
1602 *
1603 * Note that we check the swap in both directions so that we don't end up with
1604 * a corrupt temporary inode, either.
1605 *
1606 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1607 * inode will prevent this situation from occurring, so all we do here is
1608 * reject and log the attempt. basically we are putting the responsibility on
1609 * userspace to get this right.
1610 */
1611static int
1612xfs_swap_extents_check_format(
1613 xfs_inode_t *ip, /* target inode */
1614 xfs_inode_t *tip) /* tmp inode */
1615{
1616
1617 /* Should never get a local format */
1618 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1619 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1620 return -EINVAL;
1621
1622 /*
1623 * if the target inode has less extents that then temporary inode then
1624 * why did userspace call us?
1625 */
1626 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1627 return -EINVAL;
1628
1629 /*
1630 * if the target inode is in extent form and the temp inode is in btree
1631 * form then we will end up with the target inode in the wrong format
1632 * as we already know there are less extents in the temp inode.
1633 */
1634 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1635 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1636 return -EINVAL;
1637
1638 /* Check temp in extent form to max in target */
1639 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1640 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1641 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1642 return -EINVAL;
1643
1644 /* Check target in extent form to max in temp */
1645 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1646 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1647 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1648 return -EINVAL;
1649
1650 /*
1651 * If we are in a btree format, check that the temp root block will fit
1652 * in the target and that it has enough extents to be in btree format
1653 * in the target.
1654 *
1655 * Note that we have to be careful to allow btree->extent conversions
1656 * (a common defrag case) which will occur when the temp inode is in
1657 * extent format...
1658 */
1659 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1660 if (XFS_IFORK_BOFF(ip) &&
1661 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1662 return -EINVAL;
1663 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1664 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1665 return -EINVAL;
1666 }
1667
1668 /* Reciprocal target->temp btree format checks */
1669 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1670 if (XFS_IFORK_BOFF(tip) &&
1671 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1672 return -EINVAL;
1673 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1674 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1675 return -EINVAL;
1676 }
1677
1678 return 0;
1679}
1680
1681static int
1682xfs_swap_extent_flush(
1683 struct xfs_inode *ip)
1684{
1685 int error;
1686
1687 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1688 if (error)
1689 return error;
1690 truncate_pagecache_range(VFS_I(ip), 0, -1);
1691
1692 /* Verify O_DIRECT for ftmp */
1693 if (VFS_I(ip)->i_mapping->nrpages)
1694 return -EINVAL;
1695 return 0;
1696}
1697
1698int
1699xfs_swap_extents(
1700 xfs_inode_t *ip, /* target inode */
1701 xfs_inode_t *tip, /* tmp inode */
1702 xfs_swapext_t *sxp)
1703{
1704 xfs_mount_t *mp = ip->i_mount;
1705 xfs_trans_t *tp;
1706 xfs_bstat_t *sbp = &sxp->sx_stat;
1707 xfs_ifork_t *tempifp, *ifp, *tifp;
1708 int src_log_flags, target_log_flags;
1709 int error = 0;
1710 int aforkblks = 0;
1711 int taforkblks = 0;
1712 __uint64_t tmp;
1713 int lock_flags;
1714
1715 tempifp = kmem_alloc(sizeof(xfs_ifork_t), KM_MAYFAIL);
1716 if (!tempifp) {
1717 error = -ENOMEM;
1718 goto out;
1719 }
1720
1721 /*
1722 * Lock the inodes against other IO, page faults and truncate to
1723 * begin with. Then we can ensure the inodes are flushed and have no
1724 * page cache safely. Once we have done this we can take the ilocks and
1725 * do the rest of the checks.
1726 */
1727 lock_flags = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
1728 xfs_lock_two_inodes(ip, tip, XFS_IOLOCK_EXCL);
1729 xfs_lock_two_inodes(ip, tip, XFS_MMAPLOCK_EXCL);
1730
1731 /* Verify that both files have the same format */
1732 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1733 error = -EINVAL;
1734 goto out_unlock;
1735 }
1736
1737 /* Verify both files are either real-time or non-realtime */
1738 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1739 error = -EINVAL;
1740 goto out_unlock;
1741 }
1742
1743 error = xfs_swap_extent_flush(ip);
1744 if (error)
1745 goto out_unlock;
1746 error = xfs_swap_extent_flush(tip);
1747 if (error)
1748 goto out_unlock;
1749
1750 tp = xfs_trans_alloc(mp, XFS_TRANS_SWAPEXT);
1751 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ichange, 0, 0);
1752 if (error) {
1753 xfs_trans_cancel(tp);
1754 goto out_unlock;
1755 }
1756
1757 /*
1758 * Lock and join the inodes to the tansaction so that transaction commit
1759 * or cancel will unlock the inodes from this point onwards.
1760 */
1761 xfs_lock_two_inodes(ip, tip, XFS_ILOCK_EXCL);
1762 lock_flags |= XFS_ILOCK_EXCL;
1763 xfs_trans_ijoin(tp, ip, lock_flags);
1764 xfs_trans_ijoin(tp, tip, lock_flags);
1765
1766
1767 /* Verify all data are being swapped */
1768 if (sxp->sx_offset != 0 ||
1769 sxp->sx_length != ip->i_d.di_size ||
1770 sxp->sx_length != tip->i_d.di_size) {
1771 error = -EFAULT;
1772 goto out_trans_cancel;
1773 }
1774
1775 trace_xfs_swap_extent_before(ip, 0);
1776 trace_xfs_swap_extent_before(tip, 1);
1777
1778 /* check inode formats now that data is flushed */
1779 error = xfs_swap_extents_check_format(ip, tip);
1780 if (error) {
1781 xfs_notice(mp,
1782 "%s: inode 0x%llx format is incompatible for exchanging.",
1783 __func__, ip->i_ino);
1784 goto out_trans_cancel;
1785 }
1786
1787 /*
1788 * Compare the current change & modify times with that
1789 * passed in. If they differ, we abort this swap.
1790 * This is the mechanism used to ensure the calling
1791 * process that the file was not changed out from
1792 * under it.
1793 */
1794 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1795 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1796 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1797 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1798 error = -EBUSY;
1799 goto out_trans_cancel;
1800 }
1801 /*
1802 * Count the number of extended attribute blocks
1803 */
1804 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1805 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1806 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &aforkblks);
1807 if (error)
1808 goto out_trans_cancel;
1809 }
1810 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1811 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1812 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK,
1813 &taforkblks);
1814 if (error)
1815 goto out_trans_cancel;
1816 }
1817
1818 /*
1819 * Before we've swapped the forks, lets set the owners of the forks
1820 * appropriately. We have to do this as we are demand paging the btree
1821 * buffers, and so the validation done on read will expect the owner
1822 * field to be correctly set. Once we change the owners, we can swap the
1823 * inode forks.
1824 *
1825 * Note the trickiness in setting the log flags - we set the owner log
1826 * flag on the opposite inode (i.e. the inode we are setting the new
1827 * owner to be) because once we swap the forks and log that, log
1828 * recovery is going to see the fork as owned by the swapped inode,
1829 * not the pre-swapped inodes.
1830 */
1831 src_log_flags = XFS_ILOG_CORE;
1832 target_log_flags = XFS_ILOG_CORE;
1833 if (ip->i_d.di_version == 3 &&
1834 ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1835 target_log_flags |= XFS_ILOG_DOWNER;
1836 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK,
1837 tip->i_ino, NULL);
1838 if (error)
1839 goto out_trans_cancel;
1840 }
1841
1842 if (tip->i_d.di_version == 3 &&
1843 tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1844 src_log_flags |= XFS_ILOG_DOWNER;
1845 error = xfs_bmbt_change_owner(tp, tip, XFS_DATA_FORK,
1846 ip->i_ino, NULL);
1847 if (error)
1848 goto out_trans_cancel;
1849 }
1850
1851 /*
1852 * Swap the data forks of the inodes
1853 */
1854 ifp = &ip->i_df;
1855 tifp = &tip->i_df;
1856 *tempifp = *ifp; /* struct copy */
1857 *ifp = *tifp; /* struct copy */
1858 *tifp = *tempifp; /* struct copy */
1859
1860 /*
1861 * Fix the on-disk inode values
1862 */
1863 tmp = (__uint64_t)ip->i_d.di_nblocks;
1864 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1865 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1866
1867 tmp = (__uint64_t) ip->i_d.di_nextents;
1868 ip->i_d.di_nextents = tip->i_d.di_nextents;
1869 tip->i_d.di_nextents = tmp;
1870
1871 tmp = (__uint64_t) ip->i_d.di_format;
1872 ip->i_d.di_format = tip->i_d.di_format;
1873 tip->i_d.di_format = tmp;
1874
1875 /*
1876 * The extents in the source inode could still contain speculative
1877 * preallocation beyond EOF (e.g. the file is open but not modified
1878 * while defrag is in progress). In that case, we need to copy over the
1879 * number of delalloc blocks the data fork in the source inode is
1880 * tracking beyond EOF so that when the fork is truncated away when the
1881 * temporary inode is unlinked we don't underrun the i_delayed_blks
1882 * counter on that inode.
1883 */
1884 ASSERT(tip->i_delayed_blks == 0);
1885 tip->i_delayed_blks = ip->i_delayed_blks;
1886 ip->i_delayed_blks = 0;
1887
1888 switch (ip->i_d.di_format) {
1889 case XFS_DINODE_FMT_EXTENTS:
1890 /* If the extents fit in the inode, fix the
1891 * pointer. Otherwise it's already NULL or
1892 * pointing to the extent.
1893 */
1894 if (ip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1895 ifp->if_u1.if_extents =
1896 ifp->if_u2.if_inline_ext;
1897 }
1898 src_log_flags |= XFS_ILOG_DEXT;
1899 break;
1900 case XFS_DINODE_FMT_BTREE:
1901 ASSERT(ip->i_d.di_version < 3 ||
1902 (src_log_flags & XFS_ILOG_DOWNER));
1903 src_log_flags |= XFS_ILOG_DBROOT;
1904 break;
1905 }
1906
1907 switch (tip->i_d.di_format) {
1908 case XFS_DINODE_FMT_EXTENTS:
1909 /* If the extents fit in the inode, fix the
1910 * pointer. Otherwise it's already NULL or
1911 * pointing to the extent.
1912 */
1913 if (tip->i_d.di_nextents <= XFS_INLINE_EXTS) {
1914 tifp->if_u1.if_extents =
1915 tifp->if_u2.if_inline_ext;
1916 }
1917 target_log_flags |= XFS_ILOG_DEXT;
1918 break;
1919 case XFS_DINODE_FMT_BTREE:
1920 target_log_flags |= XFS_ILOG_DBROOT;
1921 ASSERT(tip->i_d.di_version < 3 ||
1922 (target_log_flags & XFS_ILOG_DOWNER));
1923 break;
1924 }
1925
1926 xfs_trans_log_inode(tp, ip, src_log_flags);
1927 xfs_trans_log_inode(tp, tip, target_log_flags);
1928
1929 /*
1930 * If this is a synchronous mount, make sure that the
1931 * transaction goes to disk before returning to the user.
1932 */
1933 if (mp->m_flags & XFS_MOUNT_WSYNC)
1934 xfs_trans_set_sync(tp);
1935
1936 error = xfs_trans_commit(tp);
1937
1938 trace_xfs_swap_extent_after(ip, 0);
1939 trace_xfs_swap_extent_after(tip, 1);
1940out:
1941 kmem_free(tempifp);
1942 return error;
1943
1944out_unlock:
1945 xfs_iunlock(ip, lock_flags);
1946 xfs_iunlock(tip, lock_flags);
1947 goto out;
1948
1949out_trans_cancel:
1950 xfs_trans_cancel(tp);
1951 goto out;
1952}