Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
  40#include <trace/events/block.h>
  41#include "md.h"
  42#include "raid1.h"
  43#include "bitmap.h"
  44
  45#define UNSUPPORTED_MDDEV_FLAGS		\
  46	((1L << MD_HAS_JOURNAL) |	\
  47	 (1L << MD_JOURNAL_CLEAN))
  48
  49/*
  50 * Number of guaranteed r1bios in case of extreme VM load:
  51 */
  52#define	NR_RAID1_BIOS 256
  53
  54/* when we get a read error on a read-only array, we redirect to another
  55 * device without failing the first device, or trying to over-write to
  56 * correct the read error.  To keep track of bad blocks on a per-bio
  57 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  58 */
  59#define IO_BLOCKED ((struct bio *)1)
  60/* When we successfully write to a known bad-block, we need to remove the
  61 * bad-block marking which must be done from process context.  So we record
  62 * the success by setting devs[n].bio to IO_MADE_GOOD
  63 */
  64#define IO_MADE_GOOD ((struct bio *)2)
  65
  66#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  67
  68/* When there are this many requests queue to be written by
  69 * the raid1 thread, we become 'congested' to provide back-pressure
  70 * for writeback.
  71 */
  72static int max_queued_requests = 1024;
  73
  74static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  75			  sector_t bi_sector);
  76static void lower_barrier(struct r1conf *conf);
  77
  78#define raid1_log(md, fmt, args...)				\
  79	do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid1 " fmt, ##args); } while (0)
  80
  81static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  82{
  83	struct pool_info *pi = data;
  84	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  85
  86	/* allocate a r1bio with room for raid_disks entries in the bios array */
  87	return kzalloc(size, gfp_flags);
  88}
  89
  90static void r1bio_pool_free(void *r1_bio, void *data)
  91{
  92	kfree(r1_bio);
  93}
  94
  95#define RESYNC_BLOCK_SIZE (64*1024)
  96#define RESYNC_DEPTH 32
  97#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  98#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  99#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
 100#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
 101#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
 102#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
 103#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
 104
 105static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
 106{
 107	struct pool_info *pi = data;
 108	struct r1bio *r1_bio;
 109	struct bio *bio;
 110	int need_pages;
 111	int i, j;
 112
 113	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 114	if (!r1_bio)
 115		return NULL;
 116
 117	/*
 118	 * Allocate bios : 1 for reading, n-1 for writing
 119	 */
 120	for (j = pi->raid_disks ; j-- ; ) {
 121		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 122		if (!bio)
 123			goto out_free_bio;
 124		r1_bio->bios[j] = bio;
 125	}
 126	/*
 127	 * Allocate RESYNC_PAGES data pages and attach them to
 128	 * the first bio.
 129	 * If this is a user-requested check/repair, allocate
 130	 * RESYNC_PAGES for each bio.
 131	 */
 132	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 133		need_pages = pi->raid_disks;
 134	else
 135		need_pages = 1;
 136	for (j = 0; j < need_pages; j++) {
 137		bio = r1_bio->bios[j];
 138		bio->bi_vcnt = RESYNC_PAGES;
 139
 140		if (bio_alloc_pages(bio, gfp_flags))
 141			goto out_free_pages;
 142	}
 143	/* If not user-requests, copy the page pointers to all bios */
 144	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 145		for (i=0; i<RESYNC_PAGES ; i++)
 146			for (j=1; j<pi->raid_disks; j++)
 147				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 148					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 149	}
 150
 151	r1_bio->master_bio = NULL;
 152
 153	return r1_bio;
 154
 155out_free_pages:
 156	while (--j >= 0)
 157		bio_free_pages(r1_bio->bios[j]);
 
 
 
 
 158
 159out_free_bio:
 160	while (++j < pi->raid_disks)
 161		bio_put(r1_bio->bios[j]);
 162	r1bio_pool_free(r1_bio, data);
 163	return NULL;
 164}
 165
 166static void r1buf_pool_free(void *__r1_bio, void *data)
 167{
 168	struct pool_info *pi = data;
 169	int i,j;
 170	struct r1bio *r1bio = __r1_bio;
 171
 172	for (i = 0; i < RESYNC_PAGES; i++)
 173		for (j = pi->raid_disks; j-- ;) {
 174			if (j == 0 ||
 175			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 176			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 177				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 178		}
 179	for (i=0 ; i < pi->raid_disks; i++)
 180		bio_put(r1bio->bios[i]);
 181
 182	r1bio_pool_free(r1bio, data);
 183}
 184
 185static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 186{
 187	int i;
 188
 189	for (i = 0; i < conf->raid_disks * 2; i++) {
 190		struct bio **bio = r1_bio->bios + i;
 191		if (!BIO_SPECIAL(*bio))
 192			bio_put(*bio);
 193		*bio = NULL;
 194	}
 195}
 196
 197static void free_r1bio(struct r1bio *r1_bio)
 198{
 199	struct r1conf *conf = r1_bio->mddev->private;
 200
 201	put_all_bios(conf, r1_bio);
 202	mempool_free(r1_bio, conf->r1bio_pool);
 203}
 204
 205static void put_buf(struct r1bio *r1_bio)
 206{
 207	struct r1conf *conf = r1_bio->mddev->private;
 208	int i;
 209
 210	for (i = 0; i < conf->raid_disks * 2; i++) {
 211		struct bio *bio = r1_bio->bios[i];
 212		if (bio->bi_end_io)
 213			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 214	}
 215
 216	mempool_free(r1_bio, conf->r1buf_pool);
 217
 218	lower_barrier(conf);
 219}
 220
 221static void reschedule_retry(struct r1bio *r1_bio)
 222{
 223	unsigned long flags;
 224	struct mddev *mddev = r1_bio->mddev;
 225	struct r1conf *conf = mddev->private;
 226
 227	spin_lock_irqsave(&conf->device_lock, flags);
 228	list_add(&r1_bio->retry_list, &conf->retry_list);
 229	conf->nr_queued ++;
 230	spin_unlock_irqrestore(&conf->device_lock, flags);
 231
 232	wake_up(&conf->wait_barrier);
 233	md_wakeup_thread(mddev->thread);
 234}
 235
 236/*
 237 * raid_end_bio_io() is called when we have finished servicing a mirrored
 238 * operation and are ready to return a success/failure code to the buffer
 239 * cache layer.
 240 */
 241static void call_bio_endio(struct r1bio *r1_bio)
 242{
 243	struct bio *bio = r1_bio->master_bio;
 244	int done;
 245	struct r1conf *conf = r1_bio->mddev->private;
 246	sector_t start_next_window = r1_bio->start_next_window;
 247	sector_t bi_sector = bio->bi_iter.bi_sector;
 248
 249	if (bio->bi_phys_segments) {
 250		unsigned long flags;
 251		spin_lock_irqsave(&conf->device_lock, flags);
 252		bio->bi_phys_segments--;
 253		done = (bio->bi_phys_segments == 0);
 254		spin_unlock_irqrestore(&conf->device_lock, flags);
 255		/*
 256		 * make_request() might be waiting for
 257		 * bi_phys_segments to decrease
 258		 */
 259		wake_up(&conf->wait_barrier);
 260	} else
 261		done = 1;
 262
 263	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 264		bio->bi_error = -EIO;
 265
 266	if (done) {
 267		bio_endio(bio);
 268		/*
 269		 * Wake up any possible resync thread that waits for the device
 270		 * to go idle.
 271		 */
 272		allow_barrier(conf, start_next_window, bi_sector);
 273	}
 274}
 275
 276static void raid_end_bio_io(struct r1bio *r1_bio)
 277{
 278	struct bio *bio = r1_bio->master_bio;
 279
 280	/* if nobody has done the final endio yet, do it now */
 281	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 282		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 283			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 284			 (unsigned long long) bio->bi_iter.bi_sector,
 285			 (unsigned long long) bio_end_sector(bio) - 1);
 286
 287		call_bio_endio(r1_bio);
 288	}
 289	free_r1bio(r1_bio);
 290}
 291
 292/*
 293 * Update disk head position estimator based on IRQ completion info.
 294 */
 295static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 296{
 297	struct r1conf *conf = r1_bio->mddev->private;
 298
 299	conf->mirrors[disk].head_position =
 300		r1_bio->sector + (r1_bio->sectors);
 301}
 302
 303/*
 304 * Find the disk number which triggered given bio
 305 */
 306static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 307{
 308	int mirror;
 309	struct r1conf *conf = r1_bio->mddev->private;
 310	int raid_disks = conf->raid_disks;
 311
 312	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 313		if (r1_bio->bios[mirror] == bio)
 314			break;
 315
 316	BUG_ON(mirror == raid_disks * 2);
 317	update_head_pos(mirror, r1_bio);
 318
 319	return mirror;
 320}
 321
 322static void raid1_end_read_request(struct bio *bio)
 323{
 324	int uptodate = !bio->bi_error;
 325	struct r1bio *r1_bio = bio->bi_private;
 
 326	struct r1conf *conf = r1_bio->mddev->private;
 327	struct md_rdev *rdev = conf->mirrors[r1_bio->read_disk].rdev;
 328
 
 329	/*
 330	 * this branch is our 'one mirror IO has finished' event handler:
 331	 */
 332	update_head_pos(r1_bio->read_disk, r1_bio);
 333
 334	if (uptodate)
 335		set_bit(R1BIO_Uptodate, &r1_bio->state);
 336	else if (test_bit(FailFast, &rdev->flags) &&
 337		 test_bit(R1BIO_FailFast, &r1_bio->state))
 338		/* This was a fail-fast read so we definitely
 339		 * want to retry */
 340		;
 341	else {
 342		/* If all other devices have failed, we want to return
 343		 * the error upwards rather than fail the last device.
 344		 * Here we redefine "uptodate" to mean "Don't want to retry"
 345		 */
 346		unsigned long flags;
 347		spin_lock_irqsave(&conf->device_lock, flags);
 348		if (r1_bio->mddev->degraded == conf->raid_disks ||
 349		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 350		     test_bit(In_sync, &rdev->flags)))
 351			uptodate = 1;
 352		spin_unlock_irqrestore(&conf->device_lock, flags);
 353	}
 354
 355	if (uptodate) {
 356		raid_end_bio_io(r1_bio);
 357		rdev_dec_pending(rdev, conf->mddev);
 358	} else {
 359		/*
 360		 * oops, read error:
 361		 */
 362		char b[BDEVNAME_SIZE];
 363		pr_err_ratelimited("md/raid1:%s: %s: rescheduling sector %llu\n",
 364				   mdname(conf->mddev),
 365				   bdevname(rdev->bdev, b),
 366				   (unsigned long long)r1_bio->sector);
 
 
 
 367		set_bit(R1BIO_ReadError, &r1_bio->state);
 368		reschedule_retry(r1_bio);
 369		/* don't drop the reference on read_disk yet */
 370	}
 371}
 372
 373static void close_write(struct r1bio *r1_bio)
 374{
 375	/* it really is the end of this request */
 376	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 377		/* free extra copy of the data pages */
 378		int i = r1_bio->behind_page_count;
 379		while (i--)
 380			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 381		kfree(r1_bio->behind_bvecs);
 382		r1_bio->behind_bvecs = NULL;
 383	}
 384	/* clear the bitmap if all writes complete successfully */
 385	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 386			r1_bio->sectors,
 387			!test_bit(R1BIO_Degraded, &r1_bio->state),
 388			test_bit(R1BIO_BehindIO, &r1_bio->state));
 389	md_write_end(r1_bio->mddev);
 390}
 391
 392static void r1_bio_write_done(struct r1bio *r1_bio)
 393{
 394	if (!atomic_dec_and_test(&r1_bio->remaining))
 395		return;
 396
 397	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 398		reschedule_retry(r1_bio);
 399	else {
 400		close_write(r1_bio);
 401		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 402			reschedule_retry(r1_bio);
 403		else
 404			raid_end_bio_io(r1_bio);
 405	}
 406}
 407
 408static void raid1_end_write_request(struct bio *bio)
 409{
 410	struct r1bio *r1_bio = bio->bi_private;
 411	int behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 412	struct r1conf *conf = r1_bio->mddev->private;
 413	struct bio *to_put = NULL;
 414	int mirror = find_bio_disk(r1_bio, bio);
 415	struct md_rdev *rdev = conf->mirrors[mirror].rdev;
 416	bool discard_error;
 417
 418	discard_error = bio->bi_error && bio_op(bio) == REQ_OP_DISCARD;
 419
 420	/*
 421	 * 'one mirror IO has finished' event handler:
 422	 */
 423	if (bio->bi_error && !discard_error) {
 424		set_bit(WriteErrorSeen,	&rdev->flags);
 425		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
 426			set_bit(MD_RECOVERY_NEEDED, &
 427				conf->mddev->recovery);
 428
 429		if (test_bit(FailFast, &rdev->flags) &&
 430		    (bio->bi_opf & MD_FAILFAST) &&
 431		    /* We never try FailFast to WriteMostly devices */
 432		    !test_bit(WriteMostly, &rdev->flags)) {
 433			md_error(r1_bio->mddev, rdev);
 434			if (!test_bit(Faulty, &rdev->flags))
 435				/* This is the only remaining device,
 436				 * We need to retry the write without
 437				 * FailFast
 438				 */
 439				set_bit(R1BIO_WriteError, &r1_bio->state);
 440			else {
 441				/* Finished with this branch */
 442				r1_bio->bios[mirror] = NULL;
 443				to_put = bio;
 444			}
 445		} else
 446			set_bit(R1BIO_WriteError, &r1_bio->state);
 447	} else {
 448		/*
 449		 * Set R1BIO_Uptodate in our master bio, so that we
 450		 * will return a good error code for to the higher
 451		 * levels even if IO on some other mirrored buffer
 452		 * fails.
 453		 *
 454		 * The 'master' represents the composite IO operation
 455		 * to user-side. So if something waits for IO, then it
 456		 * will wait for the 'master' bio.
 457		 */
 458		sector_t first_bad;
 459		int bad_sectors;
 460
 461		r1_bio->bios[mirror] = NULL;
 462		to_put = bio;
 463		/*
 464		 * Do not set R1BIO_Uptodate if the current device is
 465		 * rebuilding or Faulty. This is because we cannot use
 466		 * such device for properly reading the data back (we could
 467		 * potentially use it, if the current write would have felt
 468		 * before rdev->recovery_offset, but for simplicity we don't
 469		 * check this here.
 470		 */
 471		if (test_bit(In_sync, &rdev->flags) &&
 472		    !test_bit(Faulty, &rdev->flags))
 473			set_bit(R1BIO_Uptodate, &r1_bio->state);
 474
 475		/* Maybe we can clear some bad blocks. */
 476		if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 477				&first_bad, &bad_sectors) && !discard_error) {
 
 478			r1_bio->bios[mirror] = IO_MADE_GOOD;
 479			set_bit(R1BIO_MadeGood, &r1_bio->state);
 480		}
 481	}
 482
 483	if (behind) {
 484		if (test_bit(WriteMostly, &rdev->flags))
 485			atomic_dec(&r1_bio->behind_remaining);
 486
 487		/*
 488		 * In behind mode, we ACK the master bio once the I/O
 489		 * has safely reached all non-writemostly
 490		 * disks. Setting the Returned bit ensures that this
 491		 * gets done only once -- we don't ever want to return
 492		 * -EIO here, instead we'll wait
 493		 */
 494		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 495		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 496			/* Maybe we can return now */
 497			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 498				struct bio *mbio = r1_bio->master_bio;
 499				pr_debug("raid1: behind end write sectors"
 500					 " %llu-%llu\n",
 501					 (unsigned long long) mbio->bi_iter.bi_sector,
 502					 (unsigned long long) bio_end_sector(mbio) - 1);
 503				call_bio_endio(r1_bio);
 504			}
 505		}
 506	}
 507	if (r1_bio->bios[mirror] == NULL)
 508		rdev_dec_pending(rdev, conf->mddev);
 
 509
 510	/*
 511	 * Let's see if all mirrored write operations have finished
 512	 * already.
 513	 */
 514	r1_bio_write_done(r1_bio);
 515
 516	if (to_put)
 517		bio_put(to_put);
 518}
 519
 520/*
 521 * This routine returns the disk from which the requested read should
 522 * be done. There is a per-array 'next expected sequential IO' sector
 523 * number - if this matches on the next IO then we use the last disk.
 524 * There is also a per-disk 'last know head position' sector that is
 525 * maintained from IRQ contexts, both the normal and the resync IO
 526 * completion handlers update this position correctly. If there is no
 527 * perfect sequential match then we pick the disk whose head is closest.
 528 *
 529 * If there are 2 mirrors in the same 2 devices, performance degrades
 530 * because position is mirror, not device based.
 531 *
 532 * The rdev for the device selected will have nr_pending incremented.
 533 */
 534static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 535{
 536	const sector_t this_sector = r1_bio->sector;
 537	int sectors;
 538	int best_good_sectors;
 539	int best_disk, best_dist_disk, best_pending_disk;
 540	int has_nonrot_disk;
 541	int disk;
 542	sector_t best_dist;
 543	unsigned int min_pending;
 544	struct md_rdev *rdev;
 545	int choose_first;
 546	int choose_next_idle;
 547
 548	rcu_read_lock();
 549	/*
 550	 * Check if we can balance. We can balance on the whole
 551	 * device if no resync is going on, or below the resync window.
 552	 * We take the first readable disk when above the resync window.
 553	 */
 554 retry:
 555	sectors = r1_bio->sectors;
 556	best_disk = -1;
 557	best_dist_disk = -1;
 558	best_dist = MaxSector;
 559	best_pending_disk = -1;
 560	min_pending = UINT_MAX;
 561	best_good_sectors = 0;
 562	has_nonrot_disk = 0;
 563	choose_next_idle = 0;
 564	clear_bit(R1BIO_FailFast, &r1_bio->state);
 565
 566	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 567	    (mddev_is_clustered(conf->mddev) &&
 568	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 569		    this_sector + sectors)))
 570		choose_first = 1;
 571	else
 572		choose_first = 0;
 573
 574	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 575		sector_t dist;
 576		sector_t first_bad;
 577		int bad_sectors;
 578		unsigned int pending;
 579		bool nonrot;
 580
 581		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 582		if (r1_bio->bios[disk] == IO_BLOCKED
 583		    || rdev == NULL
 584		    || test_bit(Faulty, &rdev->flags))
 585			continue;
 586		if (!test_bit(In_sync, &rdev->flags) &&
 587		    rdev->recovery_offset < this_sector + sectors)
 588			continue;
 589		if (test_bit(WriteMostly, &rdev->flags)) {
 590			/* Don't balance among write-mostly, just
 591			 * use the first as a last resort */
 592			if (best_dist_disk < 0) {
 593				if (is_badblock(rdev, this_sector, sectors,
 594						&first_bad, &bad_sectors)) {
 595					if (first_bad <= this_sector)
 596						/* Cannot use this */
 597						continue;
 598					best_good_sectors = first_bad - this_sector;
 599				} else
 600					best_good_sectors = sectors;
 601				best_dist_disk = disk;
 602				best_pending_disk = disk;
 603			}
 604			continue;
 605		}
 606		/* This is a reasonable device to use.  It might
 607		 * even be best.
 608		 */
 609		if (is_badblock(rdev, this_sector, sectors,
 610				&first_bad, &bad_sectors)) {
 611			if (best_dist < MaxSector)
 612				/* already have a better device */
 613				continue;
 614			if (first_bad <= this_sector) {
 615				/* cannot read here. If this is the 'primary'
 616				 * device, then we must not read beyond
 617				 * bad_sectors from another device..
 618				 */
 619				bad_sectors -= (this_sector - first_bad);
 620				if (choose_first && sectors > bad_sectors)
 621					sectors = bad_sectors;
 622				if (best_good_sectors > sectors)
 623					best_good_sectors = sectors;
 624
 625			} else {
 626				sector_t good_sectors = first_bad - this_sector;
 627				if (good_sectors > best_good_sectors) {
 628					best_good_sectors = good_sectors;
 629					best_disk = disk;
 630				}
 631				if (choose_first)
 632					break;
 633			}
 634			continue;
 635		} else
 636			best_good_sectors = sectors;
 637
 638		if (best_disk >= 0)
 639			/* At least two disks to choose from so failfast is OK */
 640			set_bit(R1BIO_FailFast, &r1_bio->state);
 641
 642		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 643		has_nonrot_disk |= nonrot;
 644		pending = atomic_read(&rdev->nr_pending);
 645		dist = abs(this_sector - conf->mirrors[disk].head_position);
 646		if (choose_first) {
 647			best_disk = disk;
 648			break;
 649		}
 650		/* Don't change to another disk for sequential reads */
 651		if (conf->mirrors[disk].next_seq_sect == this_sector
 652		    || dist == 0) {
 653			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 654			struct raid1_info *mirror = &conf->mirrors[disk];
 655
 656			best_disk = disk;
 657			/*
 658			 * If buffered sequential IO size exceeds optimal
 659			 * iosize, check if there is idle disk. If yes, choose
 660			 * the idle disk. read_balance could already choose an
 661			 * idle disk before noticing it's a sequential IO in
 662			 * this disk. This doesn't matter because this disk
 663			 * will idle, next time it will be utilized after the
 664			 * first disk has IO size exceeds optimal iosize. In
 665			 * this way, iosize of the first disk will be optimal
 666			 * iosize at least. iosize of the second disk might be
 667			 * small, but not a big deal since when the second disk
 668			 * starts IO, the first disk is likely still busy.
 669			 */
 670			if (nonrot && opt_iosize > 0 &&
 671			    mirror->seq_start != MaxSector &&
 672			    mirror->next_seq_sect > opt_iosize &&
 673			    mirror->next_seq_sect - opt_iosize >=
 674			    mirror->seq_start) {
 675				choose_next_idle = 1;
 676				continue;
 677			}
 678			break;
 679		}
 
 
 
 
 
 680
 681		if (choose_next_idle)
 682			continue;
 683
 684		if (min_pending > pending) {
 685			min_pending = pending;
 686			best_pending_disk = disk;
 687		}
 688
 689		if (dist < best_dist) {
 690			best_dist = dist;
 691			best_dist_disk = disk;
 692		}
 693	}
 694
 695	/*
 696	 * If all disks are rotational, choose the closest disk. If any disk is
 697	 * non-rotational, choose the disk with less pending request even the
 698	 * disk is rotational, which might/might not be optimal for raids with
 699	 * mixed ratation/non-rotational disks depending on workload.
 700	 */
 701	if (best_disk == -1) {
 702		if (has_nonrot_disk || min_pending == 0)
 703			best_disk = best_pending_disk;
 704		else
 705			best_disk = best_dist_disk;
 706	}
 707
 708	if (best_disk >= 0) {
 709		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 710		if (!rdev)
 711			goto retry;
 712		atomic_inc(&rdev->nr_pending);
 
 
 
 
 
 
 
 713		sectors = best_good_sectors;
 714
 715		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 716			conf->mirrors[best_disk].seq_start = this_sector;
 717
 718		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 719	}
 720	rcu_read_unlock();
 721	*max_sectors = sectors;
 722
 723	return best_disk;
 724}
 725
 726static int raid1_congested(struct mddev *mddev, int bits)
 727{
 728	struct r1conf *conf = mddev->private;
 729	int i, ret = 0;
 730
 731	if ((bits & (1 << WB_async_congested)) &&
 732	    conf->pending_count >= max_queued_requests)
 733		return 1;
 734
 735	rcu_read_lock();
 736	for (i = 0; i < conf->raid_disks * 2; i++) {
 737		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 738		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 739			struct request_queue *q = bdev_get_queue(rdev->bdev);
 740
 741			BUG_ON(!q);
 742
 743			/* Note the '|| 1' - when read_balance prefers
 744			 * non-congested targets, it can be removed
 745			 */
 746			if ((bits & (1 << WB_async_congested)) || 1)
 747				ret |= bdi_congested(&q->backing_dev_info, bits);
 748			else
 749				ret &= bdi_congested(&q->backing_dev_info, bits);
 750		}
 751	}
 752	rcu_read_unlock();
 753	return ret;
 754}
 755
 756static void flush_pending_writes(struct r1conf *conf)
 757{
 758	/* Any writes that have been queued but are awaiting
 759	 * bitmap updates get flushed here.
 760	 */
 761	spin_lock_irq(&conf->device_lock);
 762
 763	if (conf->pending_bio_list.head) {
 764		struct bio *bio;
 765		bio = bio_list_get(&conf->pending_bio_list);
 766		conf->pending_count = 0;
 767		spin_unlock_irq(&conf->device_lock);
 768		/* flush any pending bitmap writes to
 769		 * disk before proceeding w/ I/O */
 770		bitmap_unplug(conf->mddev->bitmap);
 771		wake_up(&conf->wait_barrier);
 772
 773		while (bio) { /* submit pending writes */
 774			struct bio *next = bio->bi_next;
 775			struct md_rdev *rdev = (void*)bio->bi_bdev;
 776			bio->bi_next = NULL;
 777			bio->bi_bdev = rdev->bdev;
 778			if (test_bit(Faulty, &rdev->flags)) {
 779				bio->bi_error = -EIO;
 780				bio_endio(bio);
 781			} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
 782					    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 783				/* Just ignore it */
 784				bio_endio(bio);
 785			else
 786				generic_make_request(bio);
 787			bio = next;
 788		}
 789	} else
 790		spin_unlock_irq(&conf->device_lock);
 791}
 792
 793/* Barriers....
 794 * Sometimes we need to suspend IO while we do something else,
 795 * either some resync/recovery, or reconfigure the array.
 796 * To do this we raise a 'barrier'.
 797 * The 'barrier' is a counter that can be raised multiple times
 798 * to count how many activities are happening which preclude
 799 * normal IO.
 800 * We can only raise the barrier if there is no pending IO.
 801 * i.e. if nr_pending == 0.
 802 * We choose only to raise the barrier if no-one is waiting for the
 803 * barrier to go down.  This means that as soon as an IO request
 804 * is ready, no other operations which require a barrier will start
 805 * until the IO request has had a chance.
 806 *
 807 * So: regular IO calls 'wait_barrier'.  When that returns there
 808 *    is no backgroup IO happening,  It must arrange to call
 809 *    allow_barrier when it has finished its IO.
 810 * backgroup IO calls must call raise_barrier.  Once that returns
 811 *    there is no normal IO happeing.  It must arrange to call
 812 *    lower_barrier when the particular background IO completes.
 813 */
 814static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 815{
 816	spin_lock_irq(&conf->resync_lock);
 817
 818	/* Wait until no block IO is waiting */
 819	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 820			    conf->resync_lock);
 821
 822	/* block any new IO from starting */
 823	conf->barrier++;
 824	conf->next_resync = sector_nr;
 825
 826	/* For these conditions we must wait:
 827	 * A: while the array is in frozen state
 828	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 829	 *    the max count which allowed.
 830	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 831	 *    next resync will reach to the window which normal bios are
 832	 *    handling.
 833	 * D: while there are any active requests in the current window.
 834	 */
 835	wait_event_lock_irq(conf->wait_barrier,
 836			    !conf->array_frozen &&
 837			    conf->barrier < RESYNC_DEPTH &&
 838			    conf->current_window_requests == 0 &&
 839			    (conf->start_next_window >=
 840			     conf->next_resync + RESYNC_SECTORS),
 841			    conf->resync_lock);
 842
 843	conf->nr_pending++;
 844	spin_unlock_irq(&conf->resync_lock);
 845}
 846
 847static void lower_barrier(struct r1conf *conf)
 848{
 849	unsigned long flags;
 850	BUG_ON(conf->barrier <= 0);
 851	spin_lock_irqsave(&conf->resync_lock, flags);
 852	conf->barrier--;
 853	conf->nr_pending--;
 854	spin_unlock_irqrestore(&conf->resync_lock, flags);
 855	wake_up(&conf->wait_barrier);
 856}
 857
 858static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 859{
 860	bool wait = false;
 861
 862	if (conf->array_frozen || !bio)
 863		wait = true;
 864	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 865		if ((conf->mddev->curr_resync_completed
 866		     >= bio_end_sector(bio)) ||
 867		    (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 868		     <= bio->bi_iter.bi_sector))
 869			wait = false;
 870		else
 871			wait = true;
 872	}
 873
 874	return wait;
 875}
 876
 877static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 878{
 879	sector_t sector = 0;
 880
 881	spin_lock_irq(&conf->resync_lock);
 882	if (need_to_wait_for_sync(conf, bio)) {
 883		conf->nr_waiting++;
 884		/* Wait for the barrier to drop.
 885		 * However if there are already pending
 886		 * requests (preventing the barrier from
 887		 * rising completely), and the
 888		 * per-process bio queue isn't empty,
 889		 * then don't wait, as we need to empty
 890		 * that queue to allow conf->start_next_window
 891		 * to increase.
 892		 */
 893		raid1_log(conf->mddev, "wait barrier");
 894		wait_event_lock_irq(conf->wait_barrier,
 895				    !conf->array_frozen &&
 896				    (!conf->barrier ||
 897				     ((conf->start_next_window <
 898				       conf->next_resync + RESYNC_SECTORS) &&
 899				      current->bio_list &&
 900				      !bio_list_empty(current->bio_list))),
 901				    conf->resync_lock);
 902		conf->nr_waiting--;
 903	}
 904
 905	if (bio && bio_data_dir(bio) == WRITE) {
 906		if (bio->bi_iter.bi_sector >= conf->next_resync) {
 907			if (conf->start_next_window == MaxSector)
 908				conf->start_next_window =
 909					conf->next_resync +
 910					NEXT_NORMALIO_DISTANCE;
 911
 912			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 913			    <= bio->bi_iter.bi_sector)
 914				conf->next_window_requests++;
 915			else
 916				conf->current_window_requests++;
 917			sector = conf->start_next_window;
 918		}
 919	}
 920
 921	conf->nr_pending++;
 922	spin_unlock_irq(&conf->resync_lock);
 923	return sector;
 924}
 925
 926static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 927			  sector_t bi_sector)
 928{
 929	unsigned long flags;
 930
 931	spin_lock_irqsave(&conf->resync_lock, flags);
 932	conf->nr_pending--;
 933	if (start_next_window) {
 934		if (start_next_window == conf->start_next_window) {
 935			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 936			    <= bi_sector)
 937				conf->next_window_requests--;
 938			else
 939				conf->current_window_requests--;
 940		} else
 941			conf->current_window_requests--;
 942
 943		if (!conf->current_window_requests) {
 944			if (conf->next_window_requests) {
 945				conf->current_window_requests =
 946					conf->next_window_requests;
 947				conf->next_window_requests = 0;
 948				conf->start_next_window +=
 949					NEXT_NORMALIO_DISTANCE;
 950			} else
 951				conf->start_next_window = MaxSector;
 952		}
 953	}
 954	spin_unlock_irqrestore(&conf->resync_lock, flags);
 955	wake_up(&conf->wait_barrier);
 956}
 957
 958static void freeze_array(struct r1conf *conf, int extra)
 959{
 960	/* stop syncio and normal IO and wait for everything to
 961	 * go quite.
 962	 * We wait until nr_pending match nr_queued+extra
 963	 * This is called in the context of one normal IO request
 964	 * that has failed. Thus any sync request that might be pending
 965	 * will be blocked by nr_pending, and we need to wait for
 966	 * pending IO requests to complete or be queued for re-try.
 967	 * Thus the number queued (nr_queued) plus this request (extra)
 968	 * must match the number of pending IOs (nr_pending) before
 969	 * we continue.
 970	 */
 971	spin_lock_irq(&conf->resync_lock);
 972	conf->array_frozen = 1;
 973	raid1_log(conf->mddev, "wait freeze");
 974	wait_event_lock_irq_cmd(conf->wait_barrier,
 975				conf->nr_pending == conf->nr_queued+extra,
 976				conf->resync_lock,
 977				flush_pending_writes(conf));
 978	spin_unlock_irq(&conf->resync_lock);
 979}
 980static void unfreeze_array(struct r1conf *conf)
 981{
 982	/* reverse the effect of the freeze */
 983	spin_lock_irq(&conf->resync_lock);
 984	conf->array_frozen = 0;
 985	wake_up(&conf->wait_barrier);
 986	spin_unlock_irq(&conf->resync_lock);
 987}
 988
 989/* duplicate the data pages for behind I/O
 990 */
 991static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 992{
 993	int i;
 994	struct bio_vec *bvec;
 995	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 996					GFP_NOIO);
 997	if (unlikely(!bvecs))
 998		return;
 999
1000	bio_for_each_segment_all(bvec, bio, i) {
1001		bvecs[i] = *bvec;
1002		bvecs[i].bv_page = alloc_page(GFP_NOIO);
1003		if (unlikely(!bvecs[i].bv_page))
1004			goto do_sync_io;
1005		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
1006		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
1007		kunmap(bvecs[i].bv_page);
1008		kunmap(bvec->bv_page);
1009	}
1010	r1_bio->behind_bvecs = bvecs;
1011	r1_bio->behind_page_count = bio->bi_vcnt;
1012	set_bit(R1BIO_BehindIO, &r1_bio->state);
1013	return;
1014
1015do_sync_io:
1016	for (i = 0; i < bio->bi_vcnt; i++)
1017		if (bvecs[i].bv_page)
1018			put_page(bvecs[i].bv_page);
1019	kfree(bvecs);
1020	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1021		 bio->bi_iter.bi_size);
1022}
1023
1024struct raid1_plug_cb {
1025	struct blk_plug_cb	cb;
1026	struct bio_list		pending;
1027	int			pending_cnt;
1028};
1029
1030static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1031{
1032	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1033						  cb);
1034	struct mddev *mddev = plug->cb.data;
1035	struct r1conf *conf = mddev->private;
1036	struct bio *bio;
1037
1038	if (from_schedule || current->bio_list) {
1039		spin_lock_irq(&conf->device_lock);
1040		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1041		conf->pending_count += plug->pending_cnt;
1042		spin_unlock_irq(&conf->device_lock);
1043		wake_up(&conf->wait_barrier);
1044		md_wakeup_thread(mddev->thread);
1045		kfree(plug);
1046		return;
1047	}
1048
1049	/* we aren't scheduling, so we can do the write-out directly. */
1050	bio = bio_list_get(&plug->pending);
1051	bitmap_unplug(mddev->bitmap);
1052	wake_up(&conf->wait_barrier);
1053
1054	while (bio) { /* submit pending writes */
1055		struct bio *next = bio->bi_next;
1056		struct md_rdev *rdev = (void*)bio->bi_bdev;
1057		bio->bi_next = NULL;
1058		bio->bi_bdev = rdev->bdev;
1059		if (test_bit(Faulty, &rdev->flags)) {
1060			bio->bi_error = -EIO;
1061			bio_endio(bio);
1062		} else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1063				    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1064			/* Just ignore it */
1065			bio_endio(bio);
1066		else
1067			generic_make_request(bio);
1068		bio = next;
1069	}
1070	kfree(plug);
1071}
1072
1073static void raid1_read_request(struct mddev *mddev, struct bio *bio,
1074				 struct r1bio *r1_bio)
1075{
1076	struct r1conf *conf = mddev->private;
1077	struct raid1_info *mirror;
 
1078	struct bio *read_bio;
1079	struct bitmap *bitmap = mddev->bitmap;
1080	const int op = bio_op(bio);
1081	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1082	int sectors_handled;
1083	int max_sectors;
1084	int rdisk;
1085
1086	wait_barrier(conf, bio);
1087
1088read_again:
1089	rdisk = read_balance(conf, r1_bio, &max_sectors);
1090
1091	if (rdisk < 0) {
1092		/* couldn't find anywhere to read from */
1093		raid_end_bio_io(r1_bio);
1094		return;
1095	}
1096	mirror = conf->mirrors + rdisk;
1097
1098	if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1099	    bitmap) {
1100		/*
1101		 * Reading from a write-mostly device must take care not to
1102		 * over-take any writes that are 'behind'
1103		 */
1104		raid1_log(mddev, "wait behind writes");
1105		wait_event(bitmap->behind_wait,
1106			   atomic_read(&bitmap->behind_writes) == 0);
1107	}
1108	r1_bio->read_disk = rdisk;
1109	r1_bio->start_next_window = 0;
1110
1111	read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1112	bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1113		 max_sectors);
1114
1115	r1_bio->bios[rdisk] = read_bio;
1116
1117	read_bio->bi_iter.bi_sector = r1_bio->sector +
1118		mirror->rdev->data_offset;
1119	read_bio->bi_bdev = mirror->rdev->bdev;
1120	read_bio->bi_end_io = raid1_end_read_request;
1121	bio_set_op_attrs(read_bio, op, do_sync);
1122	if (test_bit(FailFast, &mirror->rdev->flags) &&
1123	    test_bit(R1BIO_FailFast, &r1_bio->state))
1124	        read_bio->bi_opf |= MD_FAILFAST;
1125	read_bio->bi_private = r1_bio;
1126
1127	if (mddev->gendisk)
1128	        trace_block_bio_remap(bdev_get_queue(read_bio->bi_bdev),
1129	                              read_bio, disk_devt(mddev->gendisk),
1130	                              r1_bio->sector);
1131
1132	if (max_sectors < r1_bio->sectors) {
1133		/*
1134		 * could not read all from this device, so we will need another
1135		 * r1_bio.
1136		 */
1137		sectors_handled = (r1_bio->sector + max_sectors
1138				   - bio->bi_iter.bi_sector);
1139		r1_bio->sectors = max_sectors;
1140		spin_lock_irq(&conf->device_lock);
1141		if (bio->bi_phys_segments == 0)
1142			bio->bi_phys_segments = 2;
1143		else
1144			bio->bi_phys_segments++;
1145		spin_unlock_irq(&conf->device_lock);
1146
1147		/*
1148		 * Cannot call generic_make_request directly as that will be
1149		 * queued in __make_request and subsequent mempool_alloc might
1150		 * block waiting for it.  So hand bio over to raid1d.
1151		 */
1152		reschedule_retry(r1_bio);
1153
1154		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1155
1156		r1_bio->master_bio = bio;
1157		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1158		r1_bio->state = 0;
1159		r1_bio->mddev = mddev;
1160		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1161		goto read_again;
1162	} else
1163		generic_make_request(read_bio);
1164}
1165
1166static void raid1_write_request(struct mddev *mddev, struct bio *bio,
1167				struct r1bio *r1_bio)
1168{
1169	struct r1conf *conf = mddev->private;
1170	int i, disks;
1171	struct bitmap *bitmap = mddev->bitmap;
1172	unsigned long flags;
1173	const int op = bio_op(bio);
1174	const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1175	const unsigned long do_flush_fua = (bio->bi_opf &
1176						(REQ_PREFLUSH | REQ_FUA));
 
 
1177	struct md_rdev *blocked_rdev;
1178	struct blk_plug_cb *cb;
1179	struct raid1_plug_cb *plug = NULL;
1180	int first_clone;
1181	int sectors_handled;
1182	int max_sectors;
1183	sector_t start_next_window;
1184
1185	/*
1186	 * Register the new request and wait if the reconstruction
1187	 * thread has put up a bar for new requests.
1188	 * Continue immediately if no resync is active currently.
1189	 */
1190
1191	md_write_start(mddev, bio); /* wait on superblock update early */
1192
1193	if ((bio_end_sector(bio) > mddev->suspend_lo &&
 
1194	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1195	    (mddev_is_clustered(mddev) &&
1196	     md_cluster_ops->area_resyncing(mddev, WRITE,
1197		     bio->bi_iter.bi_sector, bio_end_sector(bio)))) {
1198
1199		/*
1200		 * As the suspend_* range is controlled by userspace, we want
1201		 * an interruptible wait.
1202		 */
1203		DEFINE_WAIT(w);
1204		for (;;) {
1205			flush_signals(current);
1206			prepare_to_wait(&conf->wait_barrier,
1207					&w, TASK_INTERRUPTIBLE);
1208			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1209			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1210			    (mddev_is_clustered(mddev) &&
1211			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1212				     bio->bi_iter.bi_sector,
1213				     bio_end_sector(bio))))
1214				break;
1215			schedule();
1216		}
1217		finish_wait(&conf->wait_barrier, &w);
1218	}
 
1219	start_next_window = wait_barrier(conf, bio);
1220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1221	if (conf->pending_count >= max_queued_requests) {
1222		md_wakeup_thread(mddev->thread);
1223		raid1_log(mddev, "wait queued");
1224		wait_event(conf->wait_barrier,
1225			   conf->pending_count < max_queued_requests);
1226	}
1227	/* first select target devices under rcu_lock and
1228	 * inc refcount on their rdev.  Record them by setting
1229	 * bios[x] to bio
1230	 * If there are known/acknowledged bad blocks on any device on
1231	 * which we have seen a write error, we want to avoid writing those
1232	 * blocks.
1233	 * This potentially requires several writes to write around
1234	 * the bad blocks.  Each set of writes gets it's own r1bio
1235	 * with a set of bios attached.
1236	 */
1237
1238	disks = conf->raid_disks * 2;
1239 retry_write:
1240	r1_bio->start_next_window = start_next_window;
1241	blocked_rdev = NULL;
1242	rcu_read_lock();
1243	max_sectors = r1_bio->sectors;
1244	for (i = 0;  i < disks; i++) {
1245		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1246		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1247			atomic_inc(&rdev->nr_pending);
1248			blocked_rdev = rdev;
1249			break;
1250		}
1251		r1_bio->bios[i] = NULL;
1252		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1253			if (i < conf->raid_disks)
1254				set_bit(R1BIO_Degraded, &r1_bio->state);
1255			continue;
1256		}
1257
1258		atomic_inc(&rdev->nr_pending);
1259		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1260			sector_t first_bad;
1261			int bad_sectors;
1262			int is_bad;
1263
1264			is_bad = is_badblock(rdev, r1_bio->sector, max_sectors,
 
1265					     &first_bad, &bad_sectors);
1266			if (is_bad < 0) {
1267				/* mustn't write here until the bad block is
1268				 * acknowledged*/
1269				set_bit(BlockedBadBlocks, &rdev->flags);
1270				blocked_rdev = rdev;
1271				break;
1272			}
1273			if (is_bad && first_bad <= r1_bio->sector) {
1274				/* Cannot write here at all */
1275				bad_sectors -= (r1_bio->sector - first_bad);
1276				if (bad_sectors < max_sectors)
1277					/* mustn't write more than bad_sectors
1278					 * to other devices yet
1279					 */
1280					max_sectors = bad_sectors;
1281				rdev_dec_pending(rdev, mddev);
1282				/* We don't set R1BIO_Degraded as that
1283				 * only applies if the disk is
1284				 * missing, so it might be re-added,
1285				 * and we want to know to recover this
1286				 * chunk.
1287				 * In this case the device is here,
1288				 * and the fact that this chunk is not
1289				 * in-sync is recorded in the bad
1290				 * block log
1291				 */
1292				continue;
1293			}
1294			if (is_bad) {
1295				int good_sectors = first_bad - r1_bio->sector;
1296				if (good_sectors < max_sectors)
1297					max_sectors = good_sectors;
1298			}
1299		}
1300		r1_bio->bios[i] = bio;
1301	}
1302	rcu_read_unlock();
1303
1304	if (unlikely(blocked_rdev)) {
1305		/* Wait for this device to become unblocked */
1306		int j;
1307		sector_t old = start_next_window;
1308
1309		for (j = 0; j < i; j++)
1310			if (r1_bio->bios[j])
1311				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1312		r1_bio->state = 0;
1313		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
1314		raid1_log(mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1315		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1316		start_next_window = wait_barrier(conf, bio);
1317		/*
1318		 * We must make sure the multi r1bios of bio have
1319		 * the same value of bi_phys_segments
1320		 */
1321		if (bio->bi_phys_segments && old &&
1322		    old != start_next_window)
1323			/* Wait for the former r1bio(s) to complete */
1324			wait_event(conf->wait_barrier,
1325				   bio->bi_phys_segments == 1);
1326		goto retry_write;
1327	}
1328
1329	if (max_sectors < r1_bio->sectors) {
1330		/* We are splitting this write into multiple parts, so
1331		 * we need to prepare for allocating another r1_bio.
1332		 */
1333		r1_bio->sectors = max_sectors;
1334		spin_lock_irq(&conf->device_lock);
1335		if (bio->bi_phys_segments == 0)
1336			bio->bi_phys_segments = 2;
1337		else
1338			bio->bi_phys_segments++;
1339		spin_unlock_irq(&conf->device_lock);
1340	}
1341	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1342
1343	atomic_set(&r1_bio->remaining, 1);
1344	atomic_set(&r1_bio->behind_remaining, 0);
1345
1346	first_clone = 1;
1347	for (i = 0; i < disks; i++) {
1348		struct bio *mbio;
1349		if (!r1_bio->bios[i])
1350			continue;
1351
1352		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1353		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector,
1354			 max_sectors);
1355
1356		if (first_clone) {
1357			/* do behind I/O ?
1358			 * Not if there are too many, or cannot
1359			 * allocate memory, or a reader on WriteMostly
1360			 * is waiting for behind writes to flush */
1361			if (bitmap &&
1362			    (atomic_read(&bitmap->behind_writes)
1363			     < mddev->bitmap_info.max_write_behind) &&
1364			    !waitqueue_active(&bitmap->behind_wait))
1365				alloc_behind_pages(mbio, r1_bio);
1366
1367			bitmap_startwrite(bitmap, r1_bio->sector,
1368					  r1_bio->sectors,
1369					  test_bit(R1BIO_BehindIO,
1370						   &r1_bio->state));
1371			first_clone = 0;
1372		}
1373		if (r1_bio->behind_bvecs) {
1374			struct bio_vec *bvec;
1375			int j;
1376
1377			/*
1378			 * We trimmed the bio, so _all is legit
1379			 */
1380			bio_for_each_segment_all(bvec, mbio, j)
1381				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1382			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1383				atomic_inc(&r1_bio->behind_remaining);
1384		}
1385
1386		r1_bio->bios[i] = mbio;
1387
1388		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1389				   conf->mirrors[i].rdev->data_offset);
1390		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1391		mbio->bi_end_io	= raid1_end_write_request;
1392		bio_set_op_attrs(mbio, op, do_flush_fua | do_sync);
1393		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags) &&
1394		    !test_bit(WriteMostly, &conf->mirrors[i].rdev->flags) &&
1395		    conf->raid_disks - mddev->degraded > 1)
1396			mbio->bi_opf |= MD_FAILFAST;
1397		mbio->bi_private = r1_bio;
1398
1399		atomic_inc(&r1_bio->remaining);
1400
1401		if (mddev->gendisk)
1402			trace_block_bio_remap(bdev_get_queue(mbio->bi_bdev),
1403					      mbio, disk_devt(mddev->gendisk),
1404					      r1_bio->sector);
1405		/* flush_pending_writes() needs access to the rdev so...*/
1406		mbio->bi_bdev = (void*)conf->mirrors[i].rdev;
1407
1408		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1409		if (cb)
1410			plug = container_of(cb, struct raid1_plug_cb, cb);
1411		else
1412			plug = NULL;
1413		spin_lock_irqsave(&conf->device_lock, flags);
1414		if (plug) {
1415			bio_list_add(&plug->pending, mbio);
1416			plug->pending_cnt++;
1417		} else {
1418			bio_list_add(&conf->pending_bio_list, mbio);
1419			conf->pending_count++;
1420		}
1421		spin_unlock_irqrestore(&conf->device_lock, flags);
1422		if (!plug)
1423			md_wakeup_thread(mddev->thread);
1424	}
1425	/* Mustn't call r1_bio_write_done before this next test,
1426	 * as it could result in the bio being freed.
1427	 */
1428	if (sectors_handled < bio_sectors(bio)) {
1429		r1_bio_write_done(r1_bio);
1430		/* We need another r1_bio.  It has already been counted
1431		 * in bio->bi_phys_segments
1432		 */
1433		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1434		r1_bio->master_bio = bio;
1435		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1436		r1_bio->state = 0;
1437		r1_bio->mddev = mddev;
1438		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1439		goto retry_write;
1440	}
1441
1442	r1_bio_write_done(r1_bio);
1443
1444	/* In case raid1d snuck in to freeze_array */
1445	wake_up(&conf->wait_barrier);
1446}
1447
1448static void raid1_make_request(struct mddev *mddev, struct bio *bio)
1449{
1450	struct r1conf *conf = mddev->private;
1451	struct r1bio *r1_bio;
1452
1453	/*
1454	 * make_request() can abort the operation when read-ahead is being
1455	 * used and no empty request is available.
1456	 *
1457	 */
1458	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1459
1460	r1_bio->master_bio = bio;
1461	r1_bio->sectors = bio_sectors(bio);
1462	r1_bio->state = 0;
1463	r1_bio->mddev = mddev;
1464	r1_bio->sector = bio->bi_iter.bi_sector;
1465
1466	/*
1467	 * We might need to issue multiple reads to different devices if there
1468	 * are bad blocks around, so we keep track of the number of reads in
1469	 * bio->bi_phys_segments.  If this is 0, there is only one r1_bio and
1470	 * no locking will be needed when requests complete.  If it is
1471	 * non-zero, then it is the number of not-completed requests.
1472	 */
1473	bio->bi_phys_segments = 0;
1474	bio_clear_flag(bio, BIO_SEG_VALID);
1475
1476	if (bio_data_dir(bio) == READ)
1477		raid1_read_request(mddev, bio, r1_bio);
1478	else
1479		raid1_write_request(mddev, bio, r1_bio);
1480}
1481
1482static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1483{
1484	struct r1conf *conf = mddev->private;
1485	int i;
1486
1487	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1488		   conf->raid_disks - mddev->degraded);
1489	rcu_read_lock();
1490	for (i = 0; i < conf->raid_disks; i++) {
1491		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1492		seq_printf(seq, "%s",
1493			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1494	}
1495	rcu_read_unlock();
1496	seq_printf(seq, "]");
1497}
1498
1499static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1500{
1501	char b[BDEVNAME_SIZE];
1502	struct r1conf *conf = mddev->private;
1503	unsigned long flags;
1504
1505	/*
1506	 * If it is not operational, then we have already marked it as dead
1507	 * else if it is the last working disks, ignore the error, let the
1508	 * next level up know.
1509	 * else mark the drive as failed
1510	 */
1511	spin_lock_irqsave(&conf->device_lock, flags);
1512	if (test_bit(In_sync, &rdev->flags)
1513	    && (conf->raid_disks - mddev->degraded) == 1) {
1514		/*
1515		 * Don't fail the drive, act as though we were just a
1516		 * normal single drive.
1517		 * However don't try a recovery from this drive as
1518		 * it is very likely to fail.
1519		 */
1520		conf->recovery_disabled = mddev->recovery_disabled;
1521		spin_unlock_irqrestore(&conf->device_lock, flags);
1522		return;
1523	}
1524	set_bit(Blocked, &rdev->flags);
 
1525	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1526		mddev->degraded++;
1527		set_bit(Faulty, &rdev->flags);
1528	} else
1529		set_bit(Faulty, &rdev->flags);
1530	spin_unlock_irqrestore(&conf->device_lock, flags);
1531	/*
1532	 * if recovery is running, make sure it aborts.
1533	 */
1534	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1535	set_mask_bits(&mddev->sb_flags, 0,
1536		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1537	pr_crit("md/raid1:%s: Disk failure on %s, disabling device.\n"
1538		"md/raid1:%s: Operation continuing on %d devices.\n",
1539		mdname(mddev), bdevname(rdev->bdev, b),
1540		mdname(mddev), conf->raid_disks - mddev->degraded);
 
1541}
1542
1543static void print_conf(struct r1conf *conf)
1544{
1545	int i;
1546
1547	pr_debug("RAID1 conf printout:\n");
1548	if (!conf) {
1549		pr_debug("(!conf)\n");
1550		return;
1551	}
1552	pr_debug(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1553		 conf->raid_disks);
1554
1555	rcu_read_lock();
1556	for (i = 0; i < conf->raid_disks; i++) {
1557		char b[BDEVNAME_SIZE];
1558		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1559		if (rdev)
1560			pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1561				 i, !test_bit(In_sync, &rdev->flags),
1562				 !test_bit(Faulty, &rdev->flags),
1563				 bdevname(rdev->bdev,b));
1564	}
1565	rcu_read_unlock();
1566}
1567
1568static void close_sync(struct r1conf *conf)
1569{
1570	wait_barrier(conf, NULL);
1571	allow_barrier(conf, 0, 0);
1572
1573	mempool_destroy(conf->r1buf_pool);
1574	conf->r1buf_pool = NULL;
1575
1576	spin_lock_irq(&conf->resync_lock);
1577	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1578	conf->start_next_window = MaxSector;
1579	conf->current_window_requests +=
1580		conf->next_window_requests;
1581	conf->next_window_requests = 0;
1582	spin_unlock_irq(&conf->resync_lock);
1583}
1584
1585static int raid1_spare_active(struct mddev *mddev)
1586{
1587	int i;
1588	struct r1conf *conf = mddev->private;
1589	int count = 0;
1590	unsigned long flags;
1591
1592	/*
1593	 * Find all failed disks within the RAID1 configuration
1594	 * and mark them readable.
1595	 * Called under mddev lock, so rcu protection not needed.
1596	 * device_lock used to avoid races with raid1_end_read_request
1597	 * which expects 'In_sync' flags and ->degraded to be consistent.
1598	 */
1599	spin_lock_irqsave(&conf->device_lock, flags);
1600	for (i = 0; i < conf->raid_disks; i++) {
1601		struct md_rdev *rdev = conf->mirrors[i].rdev;
1602		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1603		if (repl
1604		    && !test_bit(Candidate, &repl->flags)
1605		    && repl->recovery_offset == MaxSector
1606		    && !test_bit(Faulty, &repl->flags)
1607		    && !test_and_set_bit(In_sync, &repl->flags)) {
1608			/* replacement has just become active */
1609			if (!rdev ||
1610			    !test_and_clear_bit(In_sync, &rdev->flags))
1611				count++;
1612			if (rdev) {
1613				/* Replaced device not technically
1614				 * faulty, but we need to be sure
1615				 * it gets removed and never re-added
1616				 */
1617				set_bit(Faulty, &rdev->flags);
1618				sysfs_notify_dirent_safe(
1619					rdev->sysfs_state);
1620			}
1621		}
1622		if (rdev
1623		    && rdev->recovery_offset == MaxSector
1624		    && !test_bit(Faulty, &rdev->flags)
1625		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1626			count++;
1627			sysfs_notify_dirent_safe(rdev->sysfs_state);
1628		}
1629	}
1630	mddev->degraded -= count;
1631	spin_unlock_irqrestore(&conf->device_lock, flags);
1632
1633	print_conf(conf);
1634	return count;
1635}
1636
1637static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1638{
1639	struct r1conf *conf = mddev->private;
1640	int err = -EEXIST;
1641	int mirror = 0;
1642	struct raid1_info *p;
1643	int first = 0;
1644	int last = conf->raid_disks - 1;
1645
1646	if (mddev->recovery_disabled == conf->recovery_disabled)
1647		return -EBUSY;
1648
1649	if (md_integrity_add_rdev(rdev, mddev))
1650		return -ENXIO;
1651
1652	if (rdev->raid_disk >= 0)
1653		first = last = rdev->raid_disk;
1654
1655	/*
1656	 * find the disk ... but prefer rdev->saved_raid_disk
1657	 * if possible.
1658	 */
1659	if (rdev->saved_raid_disk >= 0 &&
1660	    rdev->saved_raid_disk >= first &&
1661	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1662		first = last = rdev->saved_raid_disk;
1663
1664	for (mirror = first; mirror <= last; mirror++) {
1665		p = conf->mirrors+mirror;
1666		if (!p->rdev) {
1667
1668			if (mddev->gendisk)
1669				disk_stack_limits(mddev->gendisk, rdev->bdev,
1670						  rdev->data_offset << 9);
1671
1672			p->head_position = 0;
1673			rdev->raid_disk = mirror;
1674			err = 0;
1675			/* As all devices are equivalent, we don't need a full recovery
1676			 * if this was recently any drive of the array
1677			 */
1678			if (rdev->saved_raid_disk < 0)
1679				conf->fullsync = 1;
1680			rcu_assign_pointer(p->rdev, rdev);
1681			break;
1682		}
1683		if (test_bit(WantReplacement, &p->rdev->flags) &&
1684		    p[conf->raid_disks].rdev == NULL) {
1685			/* Add this device as a replacement */
1686			clear_bit(In_sync, &rdev->flags);
1687			set_bit(Replacement, &rdev->flags);
1688			rdev->raid_disk = mirror;
1689			err = 0;
1690			conf->fullsync = 1;
1691			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1692			break;
1693		}
1694	}
1695	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1696		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1697	print_conf(conf);
1698	return err;
1699}
1700
1701static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1702{
1703	struct r1conf *conf = mddev->private;
1704	int err = 0;
1705	int number = rdev->raid_disk;
1706	struct raid1_info *p = conf->mirrors + number;
1707
1708	if (rdev != p->rdev)
1709		p = conf->mirrors + conf->raid_disks + number;
1710
1711	print_conf(conf);
1712	if (rdev == p->rdev) {
1713		if (test_bit(In_sync, &rdev->flags) ||
1714		    atomic_read(&rdev->nr_pending)) {
1715			err = -EBUSY;
1716			goto abort;
1717		}
1718		/* Only remove non-faulty devices if recovery
1719		 * is not possible.
1720		 */
1721		if (!test_bit(Faulty, &rdev->flags) &&
1722		    mddev->recovery_disabled != conf->recovery_disabled &&
1723		    mddev->degraded < conf->raid_disks) {
1724			err = -EBUSY;
1725			goto abort;
1726		}
1727		p->rdev = NULL;
1728		if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1729			synchronize_rcu();
1730			if (atomic_read(&rdev->nr_pending)) {
1731				/* lost the race, try later */
1732				err = -EBUSY;
1733				p->rdev = rdev;
1734				goto abort;
1735			}
1736		}
1737		if (conf->mirrors[conf->raid_disks + number].rdev) {
1738			/* We just removed a device that is being replaced.
1739			 * Move down the replacement.  We drain all IO before
1740			 * doing this to avoid confusion.
1741			 */
1742			struct md_rdev *repl =
1743				conf->mirrors[conf->raid_disks + number].rdev;
1744			freeze_array(conf, 0);
1745			clear_bit(Replacement, &repl->flags);
1746			p->rdev = repl;
1747			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1748			unfreeze_array(conf);
1749			clear_bit(WantReplacement, &rdev->flags);
1750		} else
1751			clear_bit(WantReplacement, &rdev->flags);
1752		err = md_integrity_register(mddev);
1753	}
1754abort:
1755
1756	print_conf(conf);
1757	return err;
1758}
1759
1760static void end_sync_read(struct bio *bio)
1761{
1762	struct r1bio *r1_bio = bio->bi_private;
1763
1764	update_head_pos(r1_bio->read_disk, r1_bio);
1765
1766	/*
1767	 * we have read a block, now it needs to be re-written,
1768	 * or re-read if the read failed.
1769	 * We don't do much here, just schedule handling by raid1d
1770	 */
1771	if (!bio->bi_error)
1772		set_bit(R1BIO_Uptodate, &r1_bio->state);
1773
1774	if (atomic_dec_and_test(&r1_bio->remaining))
1775		reschedule_retry(r1_bio);
1776}
1777
1778static void end_sync_write(struct bio *bio)
1779{
1780	int uptodate = !bio->bi_error;
1781	struct r1bio *r1_bio = bio->bi_private;
1782	struct mddev *mddev = r1_bio->mddev;
1783	struct r1conf *conf = mddev->private;
 
1784	sector_t first_bad;
1785	int bad_sectors;
1786	struct md_rdev *rdev = conf->mirrors[find_bio_disk(r1_bio, bio)].rdev;
 
1787
1788	if (!uptodate) {
1789		sector_t sync_blocks = 0;
1790		sector_t s = r1_bio->sector;
1791		long sectors_to_go = r1_bio->sectors;
1792		/* make sure these bits doesn't get cleared. */
1793		do {
1794			bitmap_end_sync(mddev->bitmap, s,
1795					&sync_blocks, 1);
1796			s += sync_blocks;
1797			sectors_to_go -= sync_blocks;
1798		} while (sectors_to_go > 0);
1799		set_bit(WriteErrorSeen, &rdev->flags);
1800		if (!test_and_set_bit(WantReplacement, &rdev->flags))
 
 
1801			set_bit(MD_RECOVERY_NEEDED, &
1802				mddev->recovery);
1803		set_bit(R1BIO_WriteError, &r1_bio->state);
1804	} else if (is_badblock(rdev, r1_bio->sector, r1_bio->sectors,
 
 
1805			       &first_bad, &bad_sectors) &&
1806		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1807				r1_bio->sector,
1808				r1_bio->sectors,
1809				&first_bad, &bad_sectors)
1810		)
1811		set_bit(R1BIO_MadeGood, &r1_bio->state);
1812
1813	if (atomic_dec_and_test(&r1_bio->remaining)) {
1814		int s = r1_bio->sectors;
1815		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1816		    test_bit(R1BIO_WriteError, &r1_bio->state))
1817			reschedule_retry(r1_bio);
1818		else {
1819			put_buf(r1_bio);
1820			md_done_sync(mddev, s, uptodate);
1821		}
1822	}
1823}
1824
1825static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1826			    int sectors, struct page *page, int rw)
1827{
1828	if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
1829		/* success */
1830		return 1;
1831	if (rw == WRITE) {
1832		set_bit(WriteErrorSeen, &rdev->flags);
1833		if (!test_and_set_bit(WantReplacement,
1834				      &rdev->flags))
1835			set_bit(MD_RECOVERY_NEEDED, &
1836				rdev->mddev->recovery);
1837	}
1838	/* need to record an error - either for the block or the device */
1839	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1840		md_error(rdev->mddev, rdev);
1841	return 0;
1842}
1843
1844static int fix_sync_read_error(struct r1bio *r1_bio)
1845{
1846	/* Try some synchronous reads of other devices to get
1847	 * good data, much like with normal read errors.  Only
1848	 * read into the pages we already have so we don't
1849	 * need to re-issue the read request.
1850	 * We don't need to freeze the array, because being in an
1851	 * active sync request, there is no normal IO, and
1852	 * no overlapping syncs.
1853	 * We don't need to check is_badblock() again as we
1854	 * made sure that anything with a bad block in range
1855	 * will have bi_end_io clear.
1856	 */
1857	struct mddev *mddev = r1_bio->mddev;
1858	struct r1conf *conf = mddev->private;
1859	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1860	sector_t sect = r1_bio->sector;
1861	int sectors = r1_bio->sectors;
1862	int idx = 0;
1863	struct md_rdev *rdev;
1864
1865	rdev = conf->mirrors[r1_bio->read_disk].rdev;
1866	if (test_bit(FailFast, &rdev->flags)) {
1867		/* Don't try recovering from here - just fail it
1868		 * ... unless it is the last working device of course */
1869		md_error(mddev, rdev);
1870		if (test_bit(Faulty, &rdev->flags))
1871			/* Don't try to read from here, but make sure
1872			 * put_buf does it's thing
1873			 */
1874			bio->bi_end_io = end_sync_write;
1875	}
1876
1877	while(sectors) {
1878		int s = sectors;
1879		int d = r1_bio->read_disk;
1880		int success = 0;
 
1881		int start;
1882
1883		if (s > (PAGE_SIZE>>9))
1884			s = PAGE_SIZE >> 9;
1885		do {
1886			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1887				/* No rcu protection needed here devices
1888				 * can only be removed when no resync is
1889				 * active, and resync is currently active
1890				 */
1891				rdev = conf->mirrors[d].rdev;
1892				if (sync_page_io(rdev, sect, s<<9,
1893						 bio->bi_io_vec[idx].bv_page,
1894						 REQ_OP_READ, 0, false)) {
1895					success = 1;
1896					break;
1897				}
1898			}
1899			d++;
1900			if (d == conf->raid_disks * 2)
1901				d = 0;
1902		} while (!success && d != r1_bio->read_disk);
1903
1904		if (!success) {
1905			char b[BDEVNAME_SIZE];
1906			int abort = 0;
1907			/* Cannot read from anywhere, this block is lost.
1908			 * Record a bad block on each device.  If that doesn't
1909			 * work just disable and interrupt the recovery.
1910			 * Don't fail devices as that won't really help.
1911			 */
1912			pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
1913					    mdname(mddev),
1914					    bdevname(bio->bi_bdev, b),
1915					    (unsigned long long)r1_bio->sector);
 
1916			for (d = 0; d < conf->raid_disks * 2; d++) {
1917				rdev = conf->mirrors[d].rdev;
1918				if (!rdev || test_bit(Faulty, &rdev->flags))
1919					continue;
1920				if (!rdev_set_badblocks(rdev, sect, s, 0))
1921					abort = 1;
1922			}
1923			if (abort) {
1924				conf->recovery_disabled =
1925					mddev->recovery_disabled;
1926				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1927				md_done_sync(mddev, r1_bio->sectors, 0);
1928				put_buf(r1_bio);
1929				return 0;
1930			}
1931			/* Try next page */
1932			sectors -= s;
1933			sect += s;
1934			idx++;
1935			continue;
1936		}
1937
1938		start = d;
1939		/* write it back and re-read */
1940		while (d != r1_bio->read_disk) {
1941			if (d == 0)
1942				d = conf->raid_disks * 2;
1943			d--;
1944			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1945				continue;
1946			rdev = conf->mirrors[d].rdev;
1947			if (r1_sync_page_io(rdev, sect, s,
1948					    bio->bi_io_vec[idx].bv_page,
1949					    WRITE) == 0) {
1950				r1_bio->bios[d]->bi_end_io = NULL;
1951				rdev_dec_pending(rdev, mddev);
1952			}
1953		}
1954		d = start;
1955		while (d != r1_bio->read_disk) {
1956			if (d == 0)
1957				d = conf->raid_disks * 2;
1958			d--;
1959			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1960				continue;
1961			rdev = conf->mirrors[d].rdev;
1962			if (r1_sync_page_io(rdev, sect, s,
1963					    bio->bi_io_vec[idx].bv_page,
1964					    READ) != 0)
1965				atomic_add(s, &rdev->corrected_errors);
1966		}
1967		sectors -= s;
1968		sect += s;
1969		idx ++;
1970	}
1971	set_bit(R1BIO_Uptodate, &r1_bio->state);
1972	bio->bi_error = 0;
1973	return 1;
1974}
1975
1976static void process_checks(struct r1bio *r1_bio)
1977{
1978	/* We have read all readable devices.  If we haven't
1979	 * got the block, then there is no hope left.
1980	 * If we have, then we want to do a comparison
1981	 * and skip the write if everything is the same.
1982	 * If any blocks failed to read, then we need to
1983	 * attempt an over-write
1984	 */
1985	struct mddev *mddev = r1_bio->mddev;
1986	struct r1conf *conf = mddev->private;
1987	int primary;
1988	int i;
1989	int vcnt;
1990
1991	/* Fix variable parts of all bios */
1992	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1993	for (i = 0; i < conf->raid_disks * 2; i++) {
1994		int j;
1995		int size;
1996		int error;
1997		struct bio *b = r1_bio->bios[i];
1998		if (b->bi_end_io != end_sync_read)
1999			continue;
2000		/* fixup the bio for reuse, but preserve errno */
2001		error = b->bi_error;
2002		bio_reset(b);
2003		b->bi_error = error;
2004		b->bi_vcnt = vcnt;
2005		b->bi_iter.bi_size = r1_bio->sectors << 9;
2006		b->bi_iter.bi_sector = r1_bio->sector +
2007			conf->mirrors[i].rdev->data_offset;
2008		b->bi_bdev = conf->mirrors[i].rdev->bdev;
2009		b->bi_end_io = end_sync_read;
2010		b->bi_private = r1_bio;
2011
2012		size = b->bi_iter.bi_size;
2013		for (j = 0; j < vcnt ; j++) {
2014			struct bio_vec *bi;
2015			bi = &b->bi_io_vec[j];
2016			bi->bv_offset = 0;
2017			if (size > PAGE_SIZE)
2018				bi->bv_len = PAGE_SIZE;
2019			else
2020				bi->bv_len = size;
2021			size -= PAGE_SIZE;
2022		}
2023	}
2024	for (primary = 0; primary < conf->raid_disks * 2; primary++)
2025		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
2026		    !r1_bio->bios[primary]->bi_error) {
2027			r1_bio->bios[primary]->bi_end_io = NULL;
2028			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
2029			break;
2030		}
2031	r1_bio->read_disk = primary;
2032	for (i = 0; i < conf->raid_disks * 2; i++) {
2033		int j;
2034		struct bio *pbio = r1_bio->bios[primary];
2035		struct bio *sbio = r1_bio->bios[i];
2036		int error = sbio->bi_error;
2037
2038		if (sbio->bi_end_io != end_sync_read)
2039			continue;
2040		/* Now we can 'fixup' the error value */
2041		sbio->bi_error = 0;
2042
2043		if (!error) {
2044			for (j = vcnt; j-- ; ) {
2045				struct page *p, *s;
2046				p = pbio->bi_io_vec[j].bv_page;
2047				s = sbio->bi_io_vec[j].bv_page;
2048				if (memcmp(page_address(p),
2049					   page_address(s),
2050					   sbio->bi_io_vec[j].bv_len))
2051					break;
2052			}
2053		} else
2054			j = 0;
2055		if (j >= 0)
2056			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
2057		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
2058			      && !error)) {
2059			/* No need to write to this device. */
2060			sbio->bi_end_io = NULL;
2061			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
2062			continue;
2063		}
2064
2065		bio_copy_data(sbio, pbio);
2066	}
2067}
2068
2069static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2070{
2071	struct r1conf *conf = mddev->private;
2072	int i;
2073	int disks = conf->raid_disks * 2;
2074	struct bio *bio, *wbio;
2075
2076	bio = r1_bio->bios[r1_bio->read_disk];
2077
2078	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2079		/* ouch - failed to read all of that. */
2080		if (!fix_sync_read_error(r1_bio))
2081			return;
2082
2083	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2084		process_checks(r1_bio);
2085
2086	/*
2087	 * schedule writes
2088	 */
2089	atomic_set(&r1_bio->remaining, 1);
2090	for (i = 0; i < disks ; i++) {
2091		wbio = r1_bio->bios[i];
2092		if (wbio->bi_end_io == NULL ||
2093		    (wbio->bi_end_io == end_sync_read &&
2094		     (i == r1_bio->read_disk ||
2095		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2096			continue;
2097
2098		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2099		if (test_bit(FailFast, &conf->mirrors[i].rdev->flags))
2100			wbio->bi_opf |= MD_FAILFAST;
2101
2102		wbio->bi_end_io = end_sync_write;
2103		atomic_inc(&r1_bio->remaining);
2104		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2105
2106		generic_make_request(wbio);
2107	}
2108
2109	if (atomic_dec_and_test(&r1_bio->remaining)) {
2110		/* if we're here, all write(s) have completed, so clean up */
2111		int s = r1_bio->sectors;
2112		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2113		    test_bit(R1BIO_WriteError, &r1_bio->state))
2114			reschedule_retry(r1_bio);
2115		else {
2116			put_buf(r1_bio);
2117			md_done_sync(mddev, s, 1);
2118		}
2119	}
2120}
2121
2122/*
2123 * This is a kernel thread which:
2124 *
2125 *	1.	Retries failed read operations on working mirrors.
2126 *	2.	Updates the raid superblock when problems encounter.
2127 *	3.	Performs writes following reads for array synchronising.
2128 */
2129
2130static void fix_read_error(struct r1conf *conf, int read_disk,
2131			   sector_t sect, int sectors)
2132{
2133	struct mddev *mddev = conf->mddev;
2134	while(sectors) {
2135		int s = sectors;
2136		int d = read_disk;
2137		int success = 0;
2138		int start;
2139		struct md_rdev *rdev;
2140
2141		if (s > (PAGE_SIZE>>9))
2142			s = PAGE_SIZE >> 9;
2143
2144		do {
 
 
 
 
 
2145			sector_t first_bad;
2146			int bad_sectors;
2147
2148			rcu_read_lock();
2149			rdev = rcu_dereference(conf->mirrors[d].rdev);
2150			if (rdev &&
2151			    (test_bit(In_sync, &rdev->flags) ||
2152			     (!test_bit(Faulty, &rdev->flags) &&
2153			      rdev->recovery_offset >= sect + s)) &&
2154			    is_badblock(rdev, sect, s,
2155					&first_bad, &bad_sectors) == 0) {
2156				atomic_inc(&rdev->nr_pending);
2157				rcu_read_unlock();
2158				if (sync_page_io(rdev, sect, s<<9,
2159					 conf->tmppage, REQ_OP_READ, 0, false))
2160					success = 1;
2161				rdev_dec_pending(rdev, mddev);
2162				if (success)
2163					break;
2164			} else
2165				rcu_read_unlock();
2166			d++;
2167			if (d == conf->raid_disks * 2)
2168				d = 0;
2169		} while (!success && d != read_disk);
2170
2171		if (!success) {
2172			/* Cannot read from anywhere - mark it bad */
2173			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2174			if (!rdev_set_badblocks(rdev, sect, s, 0))
2175				md_error(mddev, rdev);
2176			break;
2177		}
2178		/* write it back and re-read */
2179		start = d;
2180		while (d != read_disk) {
2181			if (d==0)
2182				d = conf->raid_disks * 2;
2183			d--;
2184			rcu_read_lock();
2185			rdev = rcu_dereference(conf->mirrors[d].rdev);
2186			if (rdev &&
2187			    !test_bit(Faulty, &rdev->flags)) {
2188				atomic_inc(&rdev->nr_pending);
2189				rcu_read_unlock();
2190				r1_sync_page_io(rdev, sect, s,
2191						conf->tmppage, WRITE);
2192				rdev_dec_pending(rdev, mddev);
2193			} else
2194				rcu_read_unlock();
2195		}
2196		d = start;
2197		while (d != read_disk) {
2198			char b[BDEVNAME_SIZE];
2199			if (d==0)
2200				d = conf->raid_disks * 2;
2201			d--;
2202			rcu_read_lock();
2203			rdev = rcu_dereference(conf->mirrors[d].rdev);
2204			if (rdev &&
2205			    !test_bit(Faulty, &rdev->flags)) {
2206				atomic_inc(&rdev->nr_pending);
2207				rcu_read_unlock();
2208				if (r1_sync_page_io(rdev, sect, s,
2209						    conf->tmppage, READ)) {
2210					atomic_add(s, &rdev->corrected_errors);
2211					pr_info("md/raid1:%s: read error corrected (%d sectors at %llu on %s)\n",
2212						mdname(mddev), s,
2213						(unsigned long long)(sect +
2214								     rdev->data_offset),
2215						bdevname(rdev->bdev, b));
 
 
2216				}
2217				rdev_dec_pending(rdev, mddev);
2218			} else
2219				rcu_read_unlock();
2220		}
2221		sectors -= s;
2222		sect += s;
2223	}
2224}
2225
2226static int narrow_write_error(struct r1bio *r1_bio, int i)
2227{
2228	struct mddev *mddev = r1_bio->mddev;
2229	struct r1conf *conf = mddev->private;
2230	struct md_rdev *rdev = conf->mirrors[i].rdev;
2231
2232	/* bio has the data to be written to device 'i' where
2233	 * we just recently had a write error.
2234	 * We repeatedly clone the bio and trim down to one block,
2235	 * then try the write.  Where the write fails we record
2236	 * a bad block.
2237	 * It is conceivable that the bio doesn't exactly align with
2238	 * blocks.  We must handle this somehow.
2239	 *
2240	 * We currently own a reference on the rdev.
2241	 */
2242
2243	int block_sectors;
2244	sector_t sector;
2245	int sectors;
2246	int sect_to_write = r1_bio->sectors;
2247	int ok = 1;
2248
2249	if (rdev->badblocks.shift < 0)
2250		return 0;
2251
2252	block_sectors = roundup(1 << rdev->badblocks.shift,
2253				bdev_logical_block_size(rdev->bdev) >> 9);
2254	sector = r1_bio->sector;
2255	sectors = ((sector + block_sectors)
2256		   & ~(sector_t)(block_sectors - 1))
2257		- sector;
2258
2259	while (sect_to_write) {
2260		struct bio *wbio;
2261		if (sectors > sect_to_write)
2262			sectors = sect_to_write;
2263		/* Write at 'sector' for 'sectors'*/
2264
2265		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2266			unsigned vcnt = r1_bio->behind_page_count;
2267			struct bio_vec *vec = r1_bio->behind_bvecs;
2268
2269			while (!vec->bv_page) {
2270				vec++;
2271				vcnt--;
2272			}
2273
2274			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2275			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2276
2277			wbio->bi_vcnt = vcnt;
2278		} else {
2279			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2280		}
2281
2282		bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2283		wbio->bi_iter.bi_sector = r1_bio->sector;
2284		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2285
2286		bio_trim(wbio, sector - r1_bio->sector, sectors);
2287		wbio->bi_iter.bi_sector += rdev->data_offset;
2288		wbio->bi_bdev = rdev->bdev;
2289
2290		if (submit_bio_wait(wbio) < 0)
2291			/* failure! */
2292			ok = rdev_set_badblocks(rdev, sector,
2293						sectors, 0)
2294				&& ok;
2295
2296		bio_put(wbio);
2297		sect_to_write -= sectors;
2298		sector += sectors;
2299		sectors = block_sectors;
2300	}
2301	return ok;
2302}
2303
2304static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2305{
2306	int m;
2307	int s = r1_bio->sectors;
2308	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2309		struct md_rdev *rdev = conf->mirrors[m].rdev;
2310		struct bio *bio = r1_bio->bios[m];
2311		if (bio->bi_end_io == NULL)
2312			continue;
2313		if (!bio->bi_error &&
2314		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2315			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2316		}
2317		if (bio->bi_error &&
2318		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2319			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2320				md_error(conf->mddev, rdev);
2321		}
2322	}
2323	put_buf(r1_bio);
2324	md_done_sync(conf->mddev, s, 1);
2325}
2326
2327static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2328{
2329	int m;
2330	bool fail = false;
2331	for (m = 0; m < conf->raid_disks * 2 ; m++)
2332		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2333			struct md_rdev *rdev = conf->mirrors[m].rdev;
2334			rdev_clear_badblocks(rdev,
2335					     r1_bio->sector,
2336					     r1_bio->sectors, 0);
2337			rdev_dec_pending(rdev, conf->mddev);
2338		} else if (r1_bio->bios[m] != NULL) {
2339			/* This drive got a write error.  We need to
2340			 * narrow down and record precise write
2341			 * errors.
2342			 */
2343			fail = true;
2344			if (!narrow_write_error(r1_bio, m)) {
2345				md_error(conf->mddev,
2346					 conf->mirrors[m].rdev);
2347				/* an I/O failed, we can't clear the bitmap */
2348				set_bit(R1BIO_Degraded, &r1_bio->state);
2349			}
2350			rdev_dec_pending(conf->mirrors[m].rdev,
2351					 conf->mddev);
2352		}
2353	if (fail) {
2354		spin_lock_irq(&conf->device_lock);
2355		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2356		conf->nr_queued++;
2357		spin_unlock_irq(&conf->device_lock);
2358		md_wakeup_thread(conf->mddev->thread);
2359	} else {
2360		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2361			close_write(r1_bio);
2362		raid_end_bio_io(r1_bio);
2363	}
2364}
2365
2366static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2367{
2368	int disk;
2369	int max_sectors;
2370	struct mddev *mddev = conf->mddev;
2371	struct bio *bio;
2372	char b[BDEVNAME_SIZE];
2373	struct md_rdev *rdev;
2374	dev_t bio_dev;
2375	sector_t bio_sector;
2376
2377	clear_bit(R1BIO_ReadError, &r1_bio->state);
2378	/* we got a read error. Maybe the drive is bad.  Maybe just
2379	 * the block and we can fix it.
2380	 * We freeze all other IO, and try reading the block from
2381	 * other devices.  When we find one, we re-write
2382	 * and check it that fixes the read error.
2383	 * This is all done synchronously while the array is
2384	 * frozen
2385	 */
2386
2387	bio = r1_bio->bios[r1_bio->read_disk];
2388	bdevname(bio->bi_bdev, b);
2389	bio_dev = bio->bi_bdev->bd_dev;
2390	bio_sector = conf->mirrors[r1_bio->read_disk].rdev->data_offset + r1_bio->sector;
2391	bio_put(bio);
2392	r1_bio->bios[r1_bio->read_disk] = NULL;
2393
2394	rdev = conf->mirrors[r1_bio->read_disk].rdev;
2395	if (mddev->ro == 0
2396	    && !test_bit(FailFast, &rdev->flags)) {
2397		freeze_array(conf, 1);
2398		fix_read_error(conf, r1_bio->read_disk,
2399			       r1_bio->sector, r1_bio->sectors);
2400		unfreeze_array(conf);
2401	} else {
2402		r1_bio->bios[r1_bio->read_disk] = IO_BLOCKED;
2403	}
2404
2405	rdev_dec_pending(rdev, conf->mddev);
2406
 
 
2407read_more:
2408	disk = read_balance(conf, r1_bio, &max_sectors);
2409	if (disk == -1) {
2410		pr_crit_ratelimited("md/raid1:%s: %s: unrecoverable I/O read error for block %llu\n",
2411				    mdname(mddev), b, (unsigned long long)r1_bio->sector);
 
2412		raid_end_bio_io(r1_bio);
2413	} else {
2414		const unsigned long do_sync
2415			= r1_bio->master_bio->bi_opf & REQ_SYNC;
 
 
 
 
 
2416		r1_bio->read_disk = disk;
2417		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2418		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2419			 max_sectors);
2420		r1_bio->bios[r1_bio->read_disk] = bio;
2421		rdev = conf->mirrors[disk].rdev;
2422		pr_info_ratelimited("md/raid1:%s: redirecting sector %llu to other mirror: %s\n",
2423				    mdname(mddev),
2424				    (unsigned long long)r1_bio->sector,
2425				    bdevname(rdev->bdev, b));
 
 
2426		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2427		bio->bi_bdev = rdev->bdev;
2428		bio->bi_end_io = raid1_end_read_request;
2429		bio_set_op_attrs(bio, REQ_OP_READ, do_sync);
2430		if (test_bit(FailFast, &rdev->flags) &&
2431		    test_bit(R1BIO_FailFast, &r1_bio->state))
2432			bio->bi_opf |= MD_FAILFAST;
2433		bio->bi_private = r1_bio;
2434		if (max_sectors < r1_bio->sectors) {
2435			/* Drat - have to split this up more */
2436			struct bio *mbio = r1_bio->master_bio;
2437			int sectors_handled = (r1_bio->sector + max_sectors
2438					       - mbio->bi_iter.bi_sector);
2439			r1_bio->sectors = max_sectors;
2440			spin_lock_irq(&conf->device_lock);
2441			if (mbio->bi_phys_segments == 0)
2442				mbio->bi_phys_segments = 2;
2443			else
2444				mbio->bi_phys_segments++;
2445			spin_unlock_irq(&conf->device_lock);
2446			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2447					      bio, bio_dev, bio_sector);
2448			generic_make_request(bio);
2449			bio = NULL;
2450
2451			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2452
2453			r1_bio->master_bio = mbio;
2454			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2455			r1_bio->state = 0;
2456			set_bit(R1BIO_ReadError, &r1_bio->state);
2457			r1_bio->mddev = mddev;
2458			r1_bio->sector = mbio->bi_iter.bi_sector +
2459				sectors_handled;
2460
2461			goto read_more;
2462		} else {
2463			trace_block_bio_remap(bdev_get_queue(bio->bi_bdev),
2464					      bio, bio_dev, bio_sector);
2465			generic_make_request(bio);
2466		}
2467	}
2468}
2469
2470static void raid1d(struct md_thread *thread)
2471{
2472	struct mddev *mddev = thread->mddev;
2473	struct r1bio *r1_bio;
2474	unsigned long flags;
2475	struct r1conf *conf = mddev->private;
2476	struct list_head *head = &conf->retry_list;
2477	struct blk_plug plug;
2478
2479	md_check_recovery(mddev);
2480
2481	if (!list_empty_careful(&conf->bio_end_io_list) &&
2482	    !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2483		LIST_HEAD(tmp);
2484		spin_lock_irqsave(&conf->device_lock, flags);
2485		if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2486			while (!list_empty(&conf->bio_end_io_list)) {
2487				list_move(conf->bio_end_io_list.prev, &tmp);
2488				conf->nr_queued--;
2489			}
2490		}
2491		spin_unlock_irqrestore(&conf->device_lock, flags);
2492		while (!list_empty(&tmp)) {
2493			r1_bio = list_first_entry(&tmp, struct r1bio,
2494						  retry_list);
2495			list_del(&r1_bio->retry_list);
2496			if (mddev->degraded)
2497				set_bit(R1BIO_Degraded, &r1_bio->state);
2498			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2499				close_write(r1_bio);
2500			raid_end_bio_io(r1_bio);
2501		}
2502	}
2503
2504	blk_start_plug(&plug);
2505	for (;;) {
2506
2507		flush_pending_writes(conf);
2508
2509		spin_lock_irqsave(&conf->device_lock, flags);
2510		if (list_empty(head)) {
2511			spin_unlock_irqrestore(&conf->device_lock, flags);
2512			break;
2513		}
2514		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2515		list_del(head->prev);
2516		conf->nr_queued--;
2517		spin_unlock_irqrestore(&conf->device_lock, flags);
2518
2519		mddev = r1_bio->mddev;
2520		conf = mddev->private;
2521		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2522			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2523			    test_bit(R1BIO_WriteError, &r1_bio->state))
2524				handle_sync_write_finished(conf, r1_bio);
2525			else
2526				sync_request_write(mddev, r1_bio);
2527		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2528			   test_bit(R1BIO_WriteError, &r1_bio->state))
2529			handle_write_finished(conf, r1_bio);
2530		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2531			handle_read_error(conf, r1_bio);
2532		else
2533			/* just a partial read to be scheduled from separate
2534			 * context
2535			 */
2536			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2537
2538		cond_resched();
2539		if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2540			md_check_recovery(mddev);
2541	}
2542	blk_finish_plug(&plug);
2543}
2544
2545static int init_resync(struct r1conf *conf)
2546{
2547	int buffs;
2548
2549	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2550	BUG_ON(conf->r1buf_pool);
2551	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2552					  conf->poolinfo);
2553	if (!conf->r1buf_pool)
2554		return -ENOMEM;
2555	conf->next_resync = 0;
2556	return 0;
2557}
2558
2559/*
2560 * perform a "sync" on one "block"
2561 *
2562 * We need to make sure that no normal I/O request - particularly write
2563 * requests - conflict with active sync requests.
2564 *
2565 * This is achieved by tracking pending requests and a 'barrier' concept
2566 * that can be installed to exclude normal IO requests.
2567 */
2568
2569static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2570				   int *skipped)
2571{
2572	struct r1conf *conf = mddev->private;
2573	struct r1bio *r1_bio;
2574	struct bio *bio;
2575	sector_t max_sector, nr_sectors;
2576	int disk = -1;
2577	int i;
2578	int wonly = -1;
2579	int write_targets = 0, read_targets = 0;
2580	sector_t sync_blocks;
2581	int still_degraded = 0;
2582	int good_sectors = RESYNC_SECTORS;
2583	int min_bad = 0; /* number of sectors that are bad in all devices */
2584
2585	if (!conf->r1buf_pool)
2586		if (init_resync(conf))
2587			return 0;
2588
2589	max_sector = mddev->dev_sectors;
2590	if (sector_nr >= max_sector) {
2591		/* If we aborted, we need to abort the
2592		 * sync on the 'current' bitmap chunk (there will
2593		 * only be one in raid1 resync.
2594		 * We can find the current addess in mddev->curr_resync
2595		 */
2596		if (mddev->curr_resync < max_sector) /* aborted */
2597			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2598						&sync_blocks, 1);
2599		else /* completed sync */
2600			conf->fullsync = 0;
2601
2602		bitmap_close_sync(mddev->bitmap);
2603		close_sync(conf);
2604
2605		if (mddev_is_clustered(mddev)) {
2606			conf->cluster_sync_low = 0;
2607			conf->cluster_sync_high = 0;
2608		}
2609		return 0;
2610	}
2611
2612	if (mddev->bitmap == NULL &&
2613	    mddev->recovery_cp == MaxSector &&
2614	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2615	    conf->fullsync == 0) {
2616		*skipped = 1;
2617		return max_sector - sector_nr;
2618	}
2619	/* before building a request, check if we can skip these blocks..
2620	 * This call the bitmap_start_sync doesn't actually record anything
2621	 */
2622	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2623	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2624		/* We can skip this block, and probably several more */
2625		*skipped = 1;
2626		return sync_blocks;
2627	}
2628
2629	/*
2630	 * If there is non-resync activity waiting for a turn, then let it
2631	 * though before starting on this new sync request.
2632	 */
2633	if (conf->nr_waiting)
2634		schedule_timeout_uninterruptible(1);
2635
2636	/* we are incrementing sector_nr below. To be safe, we check against
2637	 * sector_nr + two times RESYNC_SECTORS
2638	 */
2639
2640	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2641		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2642	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2643
2644	raise_barrier(conf, sector_nr);
2645
2646	rcu_read_lock();
2647	/*
2648	 * If we get a correctably read error during resync or recovery,
2649	 * we might want to read from a different device.  So we
2650	 * flag all drives that could conceivably be read from for READ,
2651	 * and any others (which will be non-In_sync devices) for WRITE.
2652	 * If a read fails, we try reading from something else for which READ
2653	 * is OK.
2654	 */
2655
2656	r1_bio->mddev = mddev;
2657	r1_bio->sector = sector_nr;
2658	r1_bio->state = 0;
2659	set_bit(R1BIO_IsSync, &r1_bio->state);
2660
2661	for (i = 0; i < conf->raid_disks * 2; i++) {
2662		struct md_rdev *rdev;
2663		bio = r1_bio->bios[i];
2664		bio_reset(bio);
2665
2666		rdev = rcu_dereference(conf->mirrors[i].rdev);
2667		if (rdev == NULL ||
2668		    test_bit(Faulty, &rdev->flags)) {
2669			if (i < conf->raid_disks)
2670				still_degraded = 1;
2671		} else if (!test_bit(In_sync, &rdev->flags)) {
2672			bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2673			bio->bi_end_io = end_sync_write;
2674			write_targets ++;
2675		} else {
2676			/* may need to read from here */
2677			sector_t first_bad = MaxSector;
2678			int bad_sectors;
2679
2680			if (is_badblock(rdev, sector_nr, good_sectors,
2681					&first_bad, &bad_sectors)) {
2682				if (first_bad > sector_nr)
2683					good_sectors = first_bad - sector_nr;
2684				else {
2685					bad_sectors -= (sector_nr - first_bad);
2686					if (min_bad == 0 ||
2687					    min_bad > bad_sectors)
2688						min_bad = bad_sectors;
2689				}
2690			}
2691			if (sector_nr < first_bad) {
2692				if (test_bit(WriteMostly, &rdev->flags)) {
2693					if (wonly < 0)
2694						wonly = i;
2695				} else {
2696					if (disk < 0)
2697						disk = i;
2698				}
2699				bio_set_op_attrs(bio, REQ_OP_READ, 0);
2700				bio->bi_end_io = end_sync_read;
2701				read_targets++;
2702			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2703				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2704				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2705				/*
2706				 * The device is suitable for reading (InSync),
2707				 * but has bad block(s) here. Let's try to correct them,
2708				 * if we are doing resync or repair. Otherwise, leave
2709				 * this device alone for this sync request.
2710				 */
2711				bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
2712				bio->bi_end_io = end_sync_write;
2713				write_targets++;
2714			}
2715		}
2716		if (bio->bi_end_io) {
2717			atomic_inc(&rdev->nr_pending);
2718			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2719			bio->bi_bdev = rdev->bdev;
2720			bio->bi_private = r1_bio;
2721			if (test_bit(FailFast, &rdev->flags))
2722				bio->bi_opf |= MD_FAILFAST;
2723		}
2724	}
2725	rcu_read_unlock();
2726	if (disk < 0)
2727		disk = wonly;
2728	r1_bio->read_disk = disk;
2729
2730	if (read_targets == 0 && min_bad > 0) {
2731		/* These sectors are bad on all InSync devices, so we
2732		 * need to mark them bad on all write targets
2733		 */
2734		int ok = 1;
2735		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2736			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2737				struct md_rdev *rdev = conf->mirrors[i].rdev;
2738				ok = rdev_set_badblocks(rdev, sector_nr,
2739							min_bad, 0
2740					) && ok;
2741			}
2742		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2743		*skipped = 1;
2744		put_buf(r1_bio);
2745
2746		if (!ok) {
2747			/* Cannot record the badblocks, so need to
2748			 * abort the resync.
2749			 * If there are multiple read targets, could just
2750			 * fail the really bad ones ???
2751			 */
2752			conf->recovery_disabled = mddev->recovery_disabled;
2753			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2754			return 0;
2755		} else
2756			return min_bad;
2757
2758	}
2759	if (min_bad > 0 && min_bad < good_sectors) {
2760		/* only resync enough to reach the next bad->good
2761		 * transition */
2762		good_sectors = min_bad;
2763	}
2764
2765	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2766		/* extra read targets are also write targets */
2767		write_targets += read_targets-1;
2768
2769	if (write_targets == 0 || read_targets == 0) {
2770		/* There is nowhere to write, so all non-sync
2771		 * drives must be failed - so we are finished
2772		 */
2773		sector_t rv;
2774		if (min_bad > 0)
2775			max_sector = sector_nr + min_bad;
2776		rv = max_sector - sector_nr;
2777		*skipped = 1;
2778		put_buf(r1_bio);
2779		return rv;
2780	}
2781
2782	if (max_sector > mddev->resync_max)
2783		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2784	if (max_sector > sector_nr + good_sectors)
2785		max_sector = sector_nr + good_sectors;
2786	nr_sectors = 0;
2787	sync_blocks = 0;
2788	do {
2789		struct page *page;
2790		int len = PAGE_SIZE;
2791		if (sector_nr + (len>>9) > max_sector)
2792			len = (max_sector - sector_nr) << 9;
2793		if (len == 0)
2794			break;
2795		if (sync_blocks == 0) {
2796			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2797					       &sync_blocks, still_degraded) &&
2798			    !conf->fullsync &&
2799			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2800				break;
2801			if ((len >> 9) > sync_blocks)
2802				len = sync_blocks<<9;
2803		}
2804
2805		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2806			bio = r1_bio->bios[i];
2807			if (bio->bi_end_io) {
2808				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2809				if (bio_add_page(bio, page, len, 0) == 0) {
2810					/* stop here */
2811					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2812					while (i > 0) {
2813						i--;
2814						bio = r1_bio->bios[i];
2815						if (bio->bi_end_io==NULL)
2816							continue;
2817						/* remove last page from this bio */
2818						bio->bi_vcnt--;
2819						bio->bi_iter.bi_size -= len;
2820						bio_clear_flag(bio, BIO_SEG_VALID);
2821					}
2822					goto bio_full;
2823				}
2824			}
2825		}
2826		nr_sectors += len>>9;
2827		sector_nr += len>>9;
2828		sync_blocks -= (len>>9);
2829	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2830 bio_full:
2831	r1_bio->sectors = nr_sectors;
2832
2833	if (mddev_is_clustered(mddev) &&
2834			conf->cluster_sync_high < sector_nr + nr_sectors) {
2835		conf->cluster_sync_low = mddev->curr_resync_completed;
2836		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2837		/* Send resync message */
2838		md_cluster_ops->resync_info_update(mddev,
2839				conf->cluster_sync_low,
2840				conf->cluster_sync_high);
2841	}
2842
2843	/* For a user-requested sync, we read all readable devices and do a
2844	 * compare
2845	 */
2846	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2847		atomic_set(&r1_bio->remaining, read_targets);
2848		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2849			bio = r1_bio->bios[i];
2850			if (bio->bi_end_io == end_sync_read) {
2851				read_targets--;
2852				md_sync_acct(bio->bi_bdev, nr_sectors);
2853				if (read_targets == 1)
2854					bio->bi_opf &= ~MD_FAILFAST;
2855				generic_make_request(bio);
2856			}
2857		}
2858	} else {
2859		atomic_set(&r1_bio->remaining, 1);
2860		bio = r1_bio->bios[r1_bio->read_disk];
2861		md_sync_acct(bio->bi_bdev, nr_sectors);
2862		if (read_targets == 1)
2863			bio->bi_opf &= ~MD_FAILFAST;
2864		generic_make_request(bio);
2865
2866	}
2867	return nr_sectors;
2868}
2869
2870static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2871{
2872	if (sectors)
2873		return sectors;
2874
2875	return mddev->dev_sectors;
2876}
2877
2878static struct r1conf *setup_conf(struct mddev *mddev)
2879{
2880	struct r1conf *conf;
2881	int i;
2882	struct raid1_info *disk;
2883	struct md_rdev *rdev;
2884	int err = -ENOMEM;
2885
2886	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2887	if (!conf)
2888		goto abort;
2889
2890	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2891				* mddev->raid_disks * 2,
2892				 GFP_KERNEL);
2893	if (!conf->mirrors)
2894		goto abort;
2895
2896	conf->tmppage = alloc_page(GFP_KERNEL);
2897	if (!conf->tmppage)
2898		goto abort;
2899
2900	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2901	if (!conf->poolinfo)
2902		goto abort;
2903	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2904	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2905					  r1bio_pool_free,
2906					  conf->poolinfo);
2907	if (!conf->r1bio_pool)
2908		goto abort;
2909
2910	conf->poolinfo->mddev = mddev;
2911
2912	err = -EINVAL;
2913	spin_lock_init(&conf->device_lock);
2914	rdev_for_each(rdev, mddev) {
2915		struct request_queue *q;
2916		int disk_idx = rdev->raid_disk;
2917		if (disk_idx >= mddev->raid_disks
2918		    || disk_idx < 0)
2919			continue;
2920		if (test_bit(Replacement, &rdev->flags))
2921			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2922		else
2923			disk = conf->mirrors + disk_idx;
2924
2925		if (disk->rdev)
2926			goto abort;
2927		disk->rdev = rdev;
2928		q = bdev_get_queue(rdev->bdev);
2929
2930		disk->head_position = 0;
2931		disk->seq_start = MaxSector;
2932	}
2933	conf->raid_disks = mddev->raid_disks;
2934	conf->mddev = mddev;
2935	INIT_LIST_HEAD(&conf->retry_list);
2936	INIT_LIST_HEAD(&conf->bio_end_io_list);
2937
2938	spin_lock_init(&conf->resync_lock);
2939	init_waitqueue_head(&conf->wait_barrier);
2940
2941	bio_list_init(&conf->pending_bio_list);
2942	conf->pending_count = 0;
2943	conf->recovery_disabled = mddev->recovery_disabled - 1;
2944
2945	conf->start_next_window = MaxSector;
2946	conf->current_window_requests = conf->next_window_requests = 0;
2947
2948	err = -EIO;
2949	for (i = 0; i < conf->raid_disks * 2; i++) {
2950
2951		disk = conf->mirrors + i;
2952
2953		if (i < conf->raid_disks &&
2954		    disk[conf->raid_disks].rdev) {
2955			/* This slot has a replacement. */
2956			if (!disk->rdev) {
2957				/* No original, just make the replacement
2958				 * a recovering spare
2959				 */
2960				disk->rdev =
2961					disk[conf->raid_disks].rdev;
2962				disk[conf->raid_disks].rdev = NULL;
2963			} else if (!test_bit(In_sync, &disk->rdev->flags))
2964				/* Original is not in_sync - bad */
2965				goto abort;
2966		}
2967
2968		if (!disk->rdev ||
2969		    !test_bit(In_sync, &disk->rdev->flags)) {
2970			disk->head_position = 0;
2971			if (disk->rdev &&
2972			    (disk->rdev->saved_raid_disk < 0))
2973				conf->fullsync = 1;
2974		}
2975	}
2976
2977	err = -ENOMEM;
2978	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2979	if (!conf->thread)
 
 
 
2980		goto abort;
 
2981
2982	return conf;
2983
2984 abort:
2985	if (conf) {
2986		mempool_destroy(conf->r1bio_pool);
2987		kfree(conf->mirrors);
2988		safe_put_page(conf->tmppage);
2989		kfree(conf->poolinfo);
2990		kfree(conf);
2991	}
2992	return ERR_PTR(err);
2993}
2994
2995static void raid1_free(struct mddev *mddev, void *priv);
2996static int raid1_run(struct mddev *mddev)
2997{
2998	struct r1conf *conf;
2999	int i;
3000	struct md_rdev *rdev;
3001	int ret;
3002	bool discard_supported = false;
3003
3004	if (mddev->level != 1) {
3005		pr_warn("md/raid1:%s: raid level not set to mirroring (%d)\n",
3006			mdname(mddev), mddev->level);
3007		return -EIO;
3008	}
3009	if (mddev->reshape_position != MaxSector) {
3010		pr_warn("md/raid1:%s: reshape_position set but not supported\n",
3011			mdname(mddev));
3012		return -EIO;
3013	}
3014	/*
3015	 * copy the already verified devices into our private RAID1
3016	 * bookkeeping area. [whatever we allocate in run(),
3017	 * should be freed in raid1_free()]
3018	 */
3019	if (mddev->private == NULL)
3020		conf = setup_conf(mddev);
3021	else
3022		conf = mddev->private;
3023
3024	if (IS_ERR(conf))
3025		return PTR_ERR(conf);
3026
3027	if (mddev->queue)
3028		blk_queue_max_write_same_sectors(mddev->queue, 0);
3029
3030	rdev_for_each(rdev, mddev) {
3031		if (!mddev->gendisk)
3032			continue;
3033		disk_stack_limits(mddev->gendisk, rdev->bdev,
3034				  rdev->data_offset << 9);
3035		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3036			discard_supported = true;
3037	}
3038
3039	mddev->degraded = 0;
3040	for (i=0; i < conf->raid_disks; i++)
3041		if (conf->mirrors[i].rdev == NULL ||
3042		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
3043		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
3044			mddev->degraded++;
3045
3046	if (conf->raid_disks - mddev->degraded == 1)
3047		mddev->recovery_cp = MaxSector;
3048
3049	if (mddev->recovery_cp != MaxSector)
3050		pr_info("md/raid1:%s: not clean -- starting background reconstruction\n",
3051			mdname(mddev));
3052	pr_info("md/raid1:%s: active with %d out of %d mirrors\n",
 
 
3053		mdname(mddev), mddev->raid_disks - mddev->degraded,
3054		mddev->raid_disks);
3055
3056	/*
3057	 * Ok, everything is just fine now
3058	 */
3059	mddev->thread = conf->thread;
3060	conf->thread = NULL;
3061	mddev->private = conf;
3062	set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3063
3064	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
3065
3066	if (mddev->queue) {
3067		if (discard_supported)
3068			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3069						mddev->queue);
3070		else
3071			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3072						  mddev->queue);
3073	}
3074
3075	ret =  md_integrity_register(mddev);
3076	if (ret) {
3077		md_unregister_thread(&mddev->thread);
3078		raid1_free(mddev, conf);
3079	}
3080	return ret;
3081}
3082
3083static void raid1_free(struct mddev *mddev, void *priv)
3084{
3085	struct r1conf *conf = priv;
3086
3087	mempool_destroy(conf->r1bio_pool);
3088	kfree(conf->mirrors);
3089	safe_put_page(conf->tmppage);
3090	kfree(conf->poolinfo);
3091	kfree(conf);
3092}
3093
3094static int raid1_resize(struct mddev *mddev, sector_t sectors)
3095{
3096	/* no resync is happening, and there is enough space
3097	 * on all devices, so we can resize.
3098	 * We need to make sure resync covers any new space.
3099	 * If the array is shrinking we should possibly wait until
3100	 * any io in the removed space completes, but it hardly seems
3101	 * worth it.
3102	 */
3103	sector_t newsize = raid1_size(mddev, sectors, 0);
3104	if (mddev->external_size &&
3105	    mddev->array_sectors > newsize)
3106		return -EINVAL;
3107	if (mddev->bitmap) {
3108		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3109		if (ret)
3110			return ret;
3111	}
3112	md_set_array_sectors(mddev, newsize);
3113	set_capacity(mddev->gendisk, mddev->array_sectors);
3114	revalidate_disk(mddev->gendisk);
3115	if (sectors > mddev->dev_sectors &&
3116	    mddev->recovery_cp > mddev->dev_sectors) {
3117		mddev->recovery_cp = mddev->dev_sectors;
3118		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3119	}
3120	mddev->dev_sectors = sectors;
3121	mddev->resync_max_sectors = sectors;
3122	return 0;
3123}
3124
3125static int raid1_reshape(struct mddev *mddev)
3126{
3127	/* We need to:
3128	 * 1/ resize the r1bio_pool
3129	 * 2/ resize conf->mirrors
3130	 *
3131	 * We allocate a new r1bio_pool if we can.
3132	 * Then raise a device barrier and wait until all IO stops.
3133	 * Then resize conf->mirrors and swap in the new r1bio pool.
3134	 *
3135	 * At the same time, we "pack" the devices so that all the missing
3136	 * devices have the higher raid_disk numbers.
3137	 */
3138	mempool_t *newpool, *oldpool;
3139	struct pool_info *newpoolinfo;
3140	struct raid1_info *newmirrors;
3141	struct r1conf *conf = mddev->private;
3142	int cnt, raid_disks;
3143	unsigned long flags;
3144	int d, d2, err;
3145
3146	/* Cannot change chunk_size, layout, or level */
3147	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3148	    mddev->layout != mddev->new_layout ||
3149	    mddev->level != mddev->new_level) {
3150		mddev->new_chunk_sectors = mddev->chunk_sectors;
3151		mddev->new_layout = mddev->layout;
3152		mddev->new_level = mddev->level;
3153		return -EINVAL;
3154	}
3155
3156	if (!mddev_is_clustered(mddev)) {
3157		err = md_allow_write(mddev);
3158		if (err)
3159			return err;
3160	}
3161
3162	raid_disks = mddev->raid_disks + mddev->delta_disks;
3163
3164	if (raid_disks < conf->raid_disks) {
3165		cnt=0;
3166		for (d= 0; d < conf->raid_disks; d++)
3167			if (conf->mirrors[d].rdev)
3168				cnt++;
3169		if (cnt > raid_disks)
3170			return -EBUSY;
3171	}
3172
3173	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3174	if (!newpoolinfo)
3175		return -ENOMEM;
3176	newpoolinfo->mddev = mddev;
3177	newpoolinfo->raid_disks = raid_disks * 2;
3178
3179	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3180				 r1bio_pool_free, newpoolinfo);
3181	if (!newpool) {
3182		kfree(newpoolinfo);
3183		return -ENOMEM;
3184	}
3185	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3186			     GFP_KERNEL);
3187	if (!newmirrors) {
3188		kfree(newpoolinfo);
3189		mempool_destroy(newpool);
3190		return -ENOMEM;
3191	}
3192
3193	freeze_array(conf, 0);
3194
3195	/* ok, everything is stopped */
3196	oldpool = conf->r1bio_pool;
3197	conf->r1bio_pool = newpool;
3198
3199	for (d = d2 = 0; d < conf->raid_disks; d++) {
3200		struct md_rdev *rdev = conf->mirrors[d].rdev;
3201		if (rdev && rdev->raid_disk != d2) {
3202			sysfs_unlink_rdev(mddev, rdev);
3203			rdev->raid_disk = d2;
3204			sysfs_unlink_rdev(mddev, rdev);
3205			if (sysfs_link_rdev(mddev, rdev))
3206				pr_warn("md/raid1:%s: cannot register rd%d\n",
3207					mdname(mddev), rdev->raid_disk);
 
3208		}
3209		if (rdev)
3210			newmirrors[d2++].rdev = rdev;
3211	}
3212	kfree(conf->mirrors);
3213	conf->mirrors = newmirrors;
3214	kfree(conf->poolinfo);
3215	conf->poolinfo = newpoolinfo;
3216
3217	spin_lock_irqsave(&conf->device_lock, flags);
3218	mddev->degraded += (raid_disks - conf->raid_disks);
3219	spin_unlock_irqrestore(&conf->device_lock, flags);
3220	conf->raid_disks = mddev->raid_disks = raid_disks;
3221	mddev->delta_disks = 0;
3222
3223	unfreeze_array(conf);
3224
3225	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3226	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3227	md_wakeup_thread(mddev->thread);
3228
3229	mempool_destroy(oldpool);
3230	return 0;
3231}
3232
3233static void raid1_quiesce(struct mddev *mddev, int state)
3234{
3235	struct r1conf *conf = mddev->private;
3236
3237	switch(state) {
3238	case 2: /* wake for suspend */
3239		wake_up(&conf->wait_barrier);
3240		break;
3241	case 1:
3242		freeze_array(conf, 0);
3243		break;
3244	case 0:
3245		unfreeze_array(conf);
3246		break;
3247	}
3248}
3249
3250static void *raid1_takeover(struct mddev *mddev)
3251{
3252	/* raid1 can take over:
3253	 *  raid5 with 2 devices, any layout or chunk size
3254	 */
3255	if (mddev->level == 5 && mddev->raid_disks == 2) {
3256		struct r1conf *conf;
3257		mddev->new_level = 1;
3258		mddev->new_layout = 0;
3259		mddev->new_chunk_sectors = 0;
3260		conf = setup_conf(mddev);
3261		if (!IS_ERR(conf)) {
3262			/* Array must appear to be quiesced */
3263			conf->array_frozen = 1;
3264			mddev_clear_unsupported_flags(mddev,
3265				UNSUPPORTED_MDDEV_FLAGS);
3266		}
3267		return conf;
3268	}
3269	return ERR_PTR(-EINVAL);
3270}
3271
3272static struct md_personality raid1_personality =
3273{
3274	.name		= "raid1",
3275	.level		= 1,
3276	.owner		= THIS_MODULE,
3277	.make_request	= raid1_make_request,
3278	.run		= raid1_run,
3279	.free		= raid1_free,
3280	.status		= raid1_status,
3281	.error_handler	= raid1_error,
3282	.hot_add_disk	= raid1_add_disk,
3283	.hot_remove_disk= raid1_remove_disk,
3284	.spare_active	= raid1_spare_active,
3285	.sync_request	= raid1_sync_request,
3286	.resize		= raid1_resize,
3287	.size		= raid1_size,
3288	.check_reshape	= raid1_reshape,
3289	.quiesce	= raid1_quiesce,
3290	.takeover	= raid1_takeover,
3291	.congested	= raid1_congested,
3292};
3293
3294static int __init raid_init(void)
3295{
3296	return register_md_personality(&raid1_personality);
3297}
3298
3299static void raid_exit(void)
3300{
3301	unregister_md_personality(&raid1_personality);
3302}
3303
3304module_init(raid_init);
3305module_exit(raid_exit);
3306MODULE_LICENSE("GPL");
3307MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3308MODULE_ALIAS("md-personality-3"); /* RAID1 */
3309MODULE_ALIAS("md-raid1");
3310MODULE_ALIAS("md-level-1");
3311
3312module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
v4.6
   1/*
   2 * raid1.c : Multiple Devices driver for Linux
   3 *
   4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
   5 *
   6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
   7 *
   8 * RAID-1 management functions.
   9 *
  10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
  11 *
  12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
  13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
  14 *
  15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
  16 * bitmapped intelligence in resync:
  17 *
  18 *      - bitmap marked during normal i/o
  19 *      - bitmap used to skip nondirty blocks during sync
  20 *
  21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
  22 * - persistent bitmap code
  23 *
  24 * This program is free software; you can redistribute it and/or modify
  25 * it under the terms of the GNU General Public License as published by
  26 * the Free Software Foundation; either version 2, or (at your option)
  27 * any later version.
  28 *
  29 * You should have received a copy of the GNU General Public License
  30 * (for example /usr/src/linux/COPYING); if not, write to the Free
  31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/slab.h>
  35#include <linux/delay.h>
  36#include <linux/blkdev.h>
  37#include <linux/module.h>
  38#include <linux/seq_file.h>
  39#include <linux/ratelimit.h>
 
  40#include "md.h"
  41#include "raid1.h"
  42#include "bitmap.h"
  43
 
 
 
 
  44/*
  45 * Number of guaranteed r1bios in case of extreme VM load:
  46 */
  47#define	NR_RAID1_BIOS 256
  48
  49/* when we get a read error on a read-only array, we redirect to another
  50 * device without failing the first device, or trying to over-write to
  51 * correct the read error.  To keep track of bad blocks on a per-bio
  52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
  53 */
  54#define IO_BLOCKED ((struct bio *)1)
  55/* When we successfully write to a known bad-block, we need to remove the
  56 * bad-block marking which must be done from process context.  So we record
  57 * the success by setting devs[n].bio to IO_MADE_GOOD
  58 */
  59#define IO_MADE_GOOD ((struct bio *)2)
  60
  61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
  62
  63/* When there are this many requests queue to be written by
  64 * the raid1 thread, we become 'congested' to provide back-pressure
  65 * for writeback.
  66 */
  67static int max_queued_requests = 1024;
  68
  69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
  70			  sector_t bi_sector);
  71static void lower_barrier(struct r1conf *conf);
  72
 
 
 
  73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
  74{
  75	struct pool_info *pi = data;
  76	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
  77
  78	/* allocate a r1bio with room for raid_disks entries in the bios array */
  79	return kzalloc(size, gfp_flags);
  80}
  81
  82static void r1bio_pool_free(void *r1_bio, void *data)
  83{
  84	kfree(r1_bio);
  85}
  86
  87#define RESYNC_BLOCK_SIZE (64*1024)
  88#define RESYNC_DEPTH 32
  89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
  90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
  91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
  92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
  93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
  94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
  95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
  96
  97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
  98{
  99	struct pool_info *pi = data;
 100	struct r1bio *r1_bio;
 101	struct bio *bio;
 102	int need_pages;
 103	int i, j;
 104
 105	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
 106	if (!r1_bio)
 107		return NULL;
 108
 109	/*
 110	 * Allocate bios : 1 for reading, n-1 for writing
 111	 */
 112	for (j = pi->raid_disks ; j-- ; ) {
 113		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
 114		if (!bio)
 115			goto out_free_bio;
 116		r1_bio->bios[j] = bio;
 117	}
 118	/*
 119	 * Allocate RESYNC_PAGES data pages and attach them to
 120	 * the first bio.
 121	 * If this is a user-requested check/repair, allocate
 122	 * RESYNC_PAGES for each bio.
 123	 */
 124	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
 125		need_pages = pi->raid_disks;
 126	else
 127		need_pages = 1;
 128	for (j = 0; j < need_pages; j++) {
 129		bio = r1_bio->bios[j];
 130		bio->bi_vcnt = RESYNC_PAGES;
 131
 132		if (bio_alloc_pages(bio, gfp_flags))
 133			goto out_free_pages;
 134	}
 135	/* If not user-requests, copy the page pointers to all bios */
 136	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
 137		for (i=0; i<RESYNC_PAGES ; i++)
 138			for (j=1; j<pi->raid_disks; j++)
 139				r1_bio->bios[j]->bi_io_vec[i].bv_page =
 140					r1_bio->bios[0]->bi_io_vec[i].bv_page;
 141	}
 142
 143	r1_bio->master_bio = NULL;
 144
 145	return r1_bio;
 146
 147out_free_pages:
 148	while (--j >= 0) {
 149		struct bio_vec *bv;
 150
 151		bio_for_each_segment_all(bv, r1_bio->bios[j], i)
 152			__free_page(bv->bv_page);
 153	}
 154
 155out_free_bio:
 156	while (++j < pi->raid_disks)
 157		bio_put(r1_bio->bios[j]);
 158	r1bio_pool_free(r1_bio, data);
 159	return NULL;
 160}
 161
 162static void r1buf_pool_free(void *__r1_bio, void *data)
 163{
 164	struct pool_info *pi = data;
 165	int i,j;
 166	struct r1bio *r1bio = __r1_bio;
 167
 168	for (i = 0; i < RESYNC_PAGES; i++)
 169		for (j = pi->raid_disks; j-- ;) {
 170			if (j == 0 ||
 171			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
 172			    r1bio->bios[0]->bi_io_vec[i].bv_page)
 173				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
 174		}
 175	for (i=0 ; i < pi->raid_disks; i++)
 176		bio_put(r1bio->bios[i]);
 177
 178	r1bio_pool_free(r1bio, data);
 179}
 180
 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
 182{
 183	int i;
 184
 185	for (i = 0; i < conf->raid_disks * 2; i++) {
 186		struct bio **bio = r1_bio->bios + i;
 187		if (!BIO_SPECIAL(*bio))
 188			bio_put(*bio);
 189		*bio = NULL;
 190	}
 191}
 192
 193static void free_r1bio(struct r1bio *r1_bio)
 194{
 195	struct r1conf *conf = r1_bio->mddev->private;
 196
 197	put_all_bios(conf, r1_bio);
 198	mempool_free(r1_bio, conf->r1bio_pool);
 199}
 200
 201static void put_buf(struct r1bio *r1_bio)
 202{
 203	struct r1conf *conf = r1_bio->mddev->private;
 204	int i;
 205
 206	for (i = 0; i < conf->raid_disks * 2; i++) {
 207		struct bio *bio = r1_bio->bios[i];
 208		if (bio->bi_end_io)
 209			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
 210	}
 211
 212	mempool_free(r1_bio, conf->r1buf_pool);
 213
 214	lower_barrier(conf);
 215}
 216
 217static void reschedule_retry(struct r1bio *r1_bio)
 218{
 219	unsigned long flags;
 220	struct mddev *mddev = r1_bio->mddev;
 221	struct r1conf *conf = mddev->private;
 222
 223	spin_lock_irqsave(&conf->device_lock, flags);
 224	list_add(&r1_bio->retry_list, &conf->retry_list);
 225	conf->nr_queued ++;
 226	spin_unlock_irqrestore(&conf->device_lock, flags);
 227
 228	wake_up(&conf->wait_barrier);
 229	md_wakeup_thread(mddev->thread);
 230}
 231
 232/*
 233 * raid_end_bio_io() is called when we have finished servicing a mirrored
 234 * operation and are ready to return a success/failure code to the buffer
 235 * cache layer.
 236 */
 237static void call_bio_endio(struct r1bio *r1_bio)
 238{
 239	struct bio *bio = r1_bio->master_bio;
 240	int done;
 241	struct r1conf *conf = r1_bio->mddev->private;
 242	sector_t start_next_window = r1_bio->start_next_window;
 243	sector_t bi_sector = bio->bi_iter.bi_sector;
 244
 245	if (bio->bi_phys_segments) {
 246		unsigned long flags;
 247		spin_lock_irqsave(&conf->device_lock, flags);
 248		bio->bi_phys_segments--;
 249		done = (bio->bi_phys_segments == 0);
 250		spin_unlock_irqrestore(&conf->device_lock, flags);
 251		/*
 252		 * make_request() might be waiting for
 253		 * bi_phys_segments to decrease
 254		 */
 255		wake_up(&conf->wait_barrier);
 256	} else
 257		done = 1;
 258
 259	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
 260		bio->bi_error = -EIO;
 261
 262	if (done) {
 263		bio_endio(bio);
 264		/*
 265		 * Wake up any possible resync thread that waits for the device
 266		 * to go idle.
 267		 */
 268		allow_barrier(conf, start_next_window, bi_sector);
 269	}
 270}
 271
 272static void raid_end_bio_io(struct r1bio *r1_bio)
 273{
 274	struct bio *bio = r1_bio->master_bio;
 275
 276	/* if nobody has done the final endio yet, do it now */
 277	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 278		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
 279			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
 280			 (unsigned long long) bio->bi_iter.bi_sector,
 281			 (unsigned long long) bio_end_sector(bio) - 1);
 282
 283		call_bio_endio(r1_bio);
 284	}
 285	free_r1bio(r1_bio);
 286}
 287
 288/*
 289 * Update disk head position estimator based on IRQ completion info.
 290 */
 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
 292{
 293	struct r1conf *conf = r1_bio->mddev->private;
 294
 295	conf->mirrors[disk].head_position =
 296		r1_bio->sector + (r1_bio->sectors);
 297}
 298
 299/*
 300 * Find the disk number which triggered given bio
 301 */
 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
 303{
 304	int mirror;
 305	struct r1conf *conf = r1_bio->mddev->private;
 306	int raid_disks = conf->raid_disks;
 307
 308	for (mirror = 0; mirror < raid_disks * 2; mirror++)
 309		if (r1_bio->bios[mirror] == bio)
 310			break;
 311
 312	BUG_ON(mirror == raid_disks * 2);
 313	update_head_pos(mirror, r1_bio);
 314
 315	return mirror;
 316}
 317
 318static void raid1_end_read_request(struct bio *bio)
 319{
 320	int uptodate = !bio->bi_error;
 321	struct r1bio *r1_bio = bio->bi_private;
 322	int mirror;
 323	struct r1conf *conf = r1_bio->mddev->private;
 
 324
 325	mirror = r1_bio->read_disk;
 326	/*
 327	 * this branch is our 'one mirror IO has finished' event handler:
 328	 */
 329	update_head_pos(mirror, r1_bio);
 330
 331	if (uptodate)
 332		set_bit(R1BIO_Uptodate, &r1_bio->state);
 
 
 
 
 
 333	else {
 334		/* If all other devices have failed, we want to return
 335		 * the error upwards rather than fail the last device.
 336		 * Here we redefine "uptodate" to mean "Don't want to retry"
 337		 */
 338		unsigned long flags;
 339		spin_lock_irqsave(&conf->device_lock, flags);
 340		if (r1_bio->mddev->degraded == conf->raid_disks ||
 341		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
 342		     test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
 343			uptodate = 1;
 344		spin_unlock_irqrestore(&conf->device_lock, flags);
 345	}
 346
 347	if (uptodate) {
 348		raid_end_bio_io(r1_bio);
 349		rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
 350	} else {
 351		/*
 352		 * oops, read error:
 353		 */
 354		char b[BDEVNAME_SIZE];
 355		printk_ratelimited(
 356			KERN_ERR "md/raid1:%s: %s: "
 357			"rescheduling sector %llu\n",
 358			mdname(conf->mddev),
 359			bdevname(conf->mirrors[mirror].rdev->bdev,
 360				 b),
 361			(unsigned long long)r1_bio->sector);
 362		set_bit(R1BIO_ReadError, &r1_bio->state);
 363		reschedule_retry(r1_bio);
 364		/* don't drop the reference on read_disk yet */
 365	}
 366}
 367
 368static void close_write(struct r1bio *r1_bio)
 369{
 370	/* it really is the end of this request */
 371	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
 372		/* free extra copy of the data pages */
 373		int i = r1_bio->behind_page_count;
 374		while (i--)
 375			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
 376		kfree(r1_bio->behind_bvecs);
 377		r1_bio->behind_bvecs = NULL;
 378	}
 379	/* clear the bitmap if all writes complete successfully */
 380	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
 381			r1_bio->sectors,
 382			!test_bit(R1BIO_Degraded, &r1_bio->state),
 383			test_bit(R1BIO_BehindIO, &r1_bio->state));
 384	md_write_end(r1_bio->mddev);
 385}
 386
 387static void r1_bio_write_done(struct r1bio *r1_bio)
 388{
 389	if (!atomic_dec_and_test(&r1_bio->remaining))
 390		return;
 391
 392	if (test_bit(R1BIO_WriteError, &r1_bio->state))
 393		reschedule_retry(r1_bio);
 394	else {
 395		close_write(r1_bio);
 396		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
 397			reschedule_retry(r1_bio);
 398		else
 399			raid_end_bio_io(r1_bio);
 400	}
 401}
 402
 403static void raid1_end_write_request(struct bio *bio)
 404{
 405	struct r1bio *r1_bio = bio->bi_private;
 406	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
 407	struct r1conf *conf = r1_bio->mddev->private;
 408	struct bio *to_put = NULL;
 
 
 
 409
 410	mirror = find_bio_disk(r1_bio, bio);
 411
 412	/*
 413	 * 'one mirror IO has finished' event handler:
 414	 */
 415	if (bio->bi_error) {
 416		set_bit(WriteErrorSeen,
 417			&conf->mirrors[mirror].rdev->flags);
 418		if (!test_and_set_bit(WantReplacement,
 419				      &conf->mirrors[mirror].rdev->flags))
 420			set_bit(MD_RECOVERY_NEEDED, &
 421				conf->mddev->recovery);
 422
 423		set_bit(R1BIO_WriteError, &r1_bio->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424	} else {
 425		/*
 426		 * Set R1BIO_Uptodate in our master bio, so that we
 427		 * will return a good error code for to the higher
 428		 * levels even if IO on some other mirrored buffer
 429		 * fails.
 430		 *
 431		 * The 'master' represents the composite IO operation
 432		 * to user-side. So if something waits for IO, then it
 433		 * will wait for the 'master' bio.
 434		 */
 435		sector_t first_bad;
 436		int bad_sectors;
 437
 438		r1_bio->bios[mirror] = NULL;
 439		to_put = bio;
 440		/*
 441		 * Do not set R1BIO_Uptodate if the current device is
 442		 * rebuilding or Faulty. This is because we cannot use
 443		 * such device for properly reading the data back (we could
 444		 * potentially use it, if the current write would have felt
 445		 * before rdev->recovery_offset, but for simplicity we don't
 446		 * check this here.
 447		 */
 448		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
 449		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
 450			set_bit(R1BIO_Uptodate, &r1_bio->state);
 451
 452		/* Maybe we can clear some bad blocks. */
 453		if (is_badblock(conf->mirrors[mirror].rdev,
 454				r1_bio->sector, r1_bio->sectors,
 455				&first_bad, &bad_sectors)) {
 456			r1_bio->bios[mirror] = IO_MADE_GOOD;
 457			set_bit(R1BIO_MadeGood, &r1_bio->state);
 458		}
 459	}
 460
 461	if (behind) {
 462		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
 463			atomic_dec(&r1_bio->behind_remaining);
 464
 465		/*
 466		 * In behind mode, we ACK the master bio once the I/O
 467		 * has safely reached all non-writemostly
 468		 * disks. Setting the Returned bit ensures that this
 469		 * gets done only once -- we don't ever want to return
 470		 * -EIO here, instead we'll wait
 471		 */
 472		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
 473		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
 474			/* Maybe we can return now */
 475			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
 476				struct bio *mbio = r1_bio->master_bio;
 477				pr_debug("raid1: behind end write sectors"
 478					 " %llu-%llu\n",
 479					 (unsigned long long) mbio->bi_iter.bi_sector,
 480					 (unsigned long long) bio_end_sector(mbio) - 1);
 481				call_bio_endio(r1_bio);
 482			}
 483		}
 484	}
 485	if (r1_bio->bios[mirror] == NULL)
 486		rdev_dec_pending(conf->mirrors[mirror].rdev,
 487				 conf->mddev);
 488
 489	/*
 490	 * Let's see if all mirrored write operations have finished
 491	 * already.
 492	 */
 493	r1_bio_write_done(r1_bio);
 494
 495	if (to_put)
 496		bio_put(to_put);
 497}
 498
 499/*
 500 * This routine returns the disk from which the requested read should
 501 * be done. There is a per-array 'next expected sequential IO' sector
 502 * number - if this matches on the next IO then we use the last disk.
 503 * There is also a per-disk 'last know head position' sector that is
 504 * maintained from IRQ contexts, both the normal and the resync IO
 505 * completion handlers update this position correctly. If there is no
 506 * perfect sequential match then we pick the disk whose head is closest.
 507 *
 508 * If there are 2 mirrors in the same 2 devices, performance degrades
 509 * because position is mirror, not device based.
 510 *
 511 * The rdev for the device selected will have nr_pending incremented.
 512 */
 513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
 514{
 515	const sector_t this_sector = r1_bio->sector;
 516	int sectors;
 517	int best_good_sectors;
 518	int best_disk, best_dist_disk, best_pending_disk;
 519	int has_nonrot_disk;
 520	int disk;
 521	sector_t best_dist;
 522	unsigned int min_pending;
 523	struct md_rdev *rdev;
 524	int choose_first;
 525	int choose_next_idle;
 526
 527	rcu_read_lock();
 528	/*
 529	 * Check if we can balance. We can balance on the whole
 530	 * device if no resync is going on, or below the resync window.
 531	 * We take the first readable disk when above the resync window.
 532	 */
 533 retry:
 534	sectors = r1_bio->sectors;
 535	best_disk = -1;
 536	best_dist_disk = -1;
 537	best_dist = MaxSector;
 538	best_pending_disk = -1;
 539	min_pending = UINT_MAX;
 540	best_good_sectors = 0;
 541	has_nonrot_disk = 0;
 542	choose_next_idle = 0;
 
 543
 544	if ((conf->mddev->recovery_cp < this_sector + sectors) ||
 545	    (mddev_is_clustered(conf->mddev) &&
 546	    md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
 547		    this_sector + sectors)))
 548		choose_first = 1;
 549	else
 550		choose_first = 0;
 551
 552	for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
 553		sector_t dist;
 554		sector_t first_bad;
 555		int bad_sectors;
 556		unsigned int pending;
 557		bool nonrot;
 558
 559		rdev = rcu_dereference(conf->mirrors[disk].rdev);
 560		if (r1_bio->bios[disk] == IO_BLOCKED
 561		    || rdev == NULL
 562		    || test_bit(Faulty, &rdev->flags))
 563			continue;
 564		if (!test_bit(In_sync, &rdev->flags) &&
 565		    rdev->recovery_offset < this_sector + sectors)
 566			continue;
 567		if (test_bit(WriteMostly, &rdev->flags)) {
 568			/* Don't balance among write-mostly, just
 569			 * use the first as a last resort */
 570			if (best_dist_disk < 0) {
 571				if (is_badblock(rdev, this_sector, sectors,
 572						&first_bad, &bad_sectors)) {
 573					if (first_bad <= this_sector)
 574						/* Cannot use this */
 575						continue;
 576					best_good_sectors = first_bad - this_sector;
 577				} else
 578					best_good_sectors = sectors;
 579				best_dist_disk = disk;
 580				best_pending_disk = disk;
 581			}
 582			continue;
 583		}
 584		/* This is a reasonable device to use.  It might
 585		 * even be best.
 586		 */
 587		if (is_badblock(rdev, this_sector, sectors,
 588				&first_bad, &bad_sectors)) {
 589			if (best_dist < MaxSector)
 590				/* already have a better device */
 591				continue;
 592			if (first_bad <= this_sector) {
 593				/* cannot read here. If this is the 'primary'
 594				 * device, then we must not read beyond
 595				 * bad_sectors from another device..
 596				 */
 597				bad_sectors -= (this_sector - first_bad);
 598				if (choose_first && sectors > bad_sectors)
 599					sectors = bad_sectors;
 600				if (best_good_sectors > sectors)
 601					best_good_sectors = sectors;
 602
 603			} else {
 604				sector_t good_sectors = first_bad - this_sector;
 605				if (good_sectors > best_good_sectors) {
 606					best_good_sectors = good_sectors;
 607					best_disk = disk;
 608				}
 609				if (choose_first)
 610					break;
 611			}
 612			continue;
 613		} else
 614			best_good_sectors = sectors;
 615
 
 
 
 
 616		nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
 617		has_nonrot_disk |= nonrot;
 618		pending = atomic_read(&rdev->nr_pending);
 619		dist = abs(this_sector - conf->mirrors[disk].head_position);
 620		if (choose_first) {
 621			best_disk = disk;
 622			break;
 623		}
 624		/* Don't change to another disk for sequential reads */
 625		if (conf->mirrors[disk].next_seq_sect == this_sector
 626		    || dist == 0) {
 627			int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
 628			struct raid1_info *mirror = &conf->mirrors[disk];
 629
 630			best_disk = disk;
 631			/*
 632			 * If buffered sequential IO size exceeds optimal
 633			 * iosize, check if there is idle disk. If yes, choose
 634			 * the idle disk. read_balance could already choose an
 635			 * idle disk before noticing it's a sequential IO in
 636			 * this disk. This doesn't matter because this disk
 637			 * will idle, next time it will be utilized after the
 638			 * first disk has IO size exceeds optimal iosize. In
 639			 * this way, iosize of the first disk will be optimal
 640			 * iosize at least. iosize of the second disk might be
 641			 * small, but not a big deal since when the second disk
 642			 * starts IO, the first disk is likely still busy.
 643			 */
 644			if (nonrot && opt_iosize > 0 &&
 645			    mirror->seq_start != MaxSector &&
 646			    mirror->next_seq_sect > opt_iosize &&
 647			    mirror->next_seq_sect - opt_iosize >=
 648			    mirror->seq_start) {
 649				choose_next_idle = 1;
 650				continue;
 651			}
 652			break;
 653		}
 654		/* If device is idle, use it */
 655		if (pending == 0) {
 656			best_disk = disk;
 657			break;
 658		}
 659
 660		if (choose_next_idle)
 661			continue;
 662
 663		if (min_pending > pending) {
 664			min_pending = pending;
 665			best_pending_disk = disk;
 666		}
 667
 668		if (dist < best_dist) {
 669			best_dist = dist;
 670			best_dist_disk = disk;
 671		}
 672	}
 673
 674	/*
 675	 * If all disks are rotational, choose the closest disk. If any disk is
 676	 * non-rotational, choose the disk with less pending request even the
 677	 * disk is rotational, which might/might not be optimal for raids with
 678	 * mixed ratation/non-rotational disks depending on workload.
 679	 */
 680	if (best_disk == -1) {
 681		if (has_nonrot_disk)
 682			best_disk = best_pending_disk;
 683		else
 684			best_disk = best_dist_disk;
 685	}
 686
 687	if (best_disk >= 0) {
 688		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
 689		if (!rdev)
 690			goto retry;
 691		atomic_inc(&rdev->nr_pending);
 692		if (test_bit(Faulty, &rdev->flags)) {
 693			/* cannot risk returning a device that failed
 694			 * before we inc'ed nr_pending
 695			 */
 696			rdev_dec_pending(rdev, conf->mddev);
 697			goto retry;
 698		}
 699		sectors = best_good_sectors;
 700
 701		if (conf->mirrors[best_disk].next_seq_sect != this_sector)
 702			conf->mirrors[best_disk].seq_start = this_sector;
 703
 704		conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
 705	}
 706	rcu_read_unlock();
 707	*max_sectors = sectors;
 708
 709	return best_disk;
 710}
 711
 712static int raid1_congested(struct mddev *mddev, int bits)
 713{
 714	struct r1conf *conf = mddev->private;
 715	int i, ret = 0;
 716
 717	if ((bits & (1 << WB_async_congested)) &&
 718	    conf->pending_count >= max_queued_requests)
 719		return 1;
 720
 721	rcu_read_lock();
 722	for (i = 0; i < conf->raid_disks * 2; i++) {
 723		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
 724		if (rdev && !test_bit(Faulty, &rdev->flags)) {
 725			struct request_queue *q = bdev_get_queue(rdev->bdev);
 726
 727			BUG_ON(!q);
 728
 729			/* Note the '|| 1' - when read_balance prefers
 730			 * non-congested targets, it can be removed
 731			 */
 732			if ((bits & (1 << WB_async_congested)) || 1)
 733				ret |= bdi_congested(&q->backing_dev_info, bits);
 734			else
 735				ret &= bdi_congested(&q->backing_dev_info, bits);
 736		}
 737	}
 738	rcu_read_unlock();
 739	return ret;
 740}
 741
 742static void flush_pending_writes(struct r1conf *conf)
 743{
 744	/* Any writes that have been queued but are awaiting
 745	 * bitmap updates get flushed here.
 746	 */
 747	spin_lock_irq(&conf->device_lock);
 748
 749	if (conf->pending_bio_list.head) {
 750		struct bio *bio;
 751		bio = bio_list_get(&conf->pending_bio_list);
 752		conf->pending_count = 0;
 753		spin_unlock_irq(&conf->device_lock);
 754		/* flush any pending bitmap writes to
 755		 * disk before proceeding w/ I/O */
 756		bitmap_unplug(conf->mddev->bitmap);
 757		wake_up(&conf->wait_barrier);
 758
 759		while (bio) { /* submit pending writes */
 760			struct bio *next = bio->bi_next;
 
 761			bio->bi_next = NULL;
 762			if (unlikely((bio->bi_rw & REQ_DISCARD) &&
 763			    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 
 
 
 
 764				/* Just ignore it */
 765				bio_endio(bio);
 766			else
 767				generic_make_request(bio);
 768			bio = next;
 769		}
 770	} else
 771		spin_unlock_irq(&conf->device_lock);
 772}
 773
 774/* Barriers....
 775 * Sometimes we need to suspend IO while we do something else,
 776 * either some resync/recovery, or reconfigure the array.
 777 * To do this we raise a 'barrier'.
 778 * The 'barrier' is a counter that can be raised multiple times
 779 * to count how many activities are happening which preclude
 780 * normal IO.
 781 * We can only raise the barrier if there is no pending IO.
 782 * i.e. if nr_pending == 0.
 783 * We choose only to raise the barrier if no-one is waiting for the
 784 * barrier to go down.  This means that as soon as an IO request
 785 * is ready, no other operations which require a barrier will start
 786 * until the IO request has had a chance.
 787 *
 788 * So: regular IO calls 'wait_barrier'.  When that returns there
 789 *    is no backgroup IO happening,  It must arrange to call
 790 *    allow_barrier when it has finished its IO.
 791 * backgroup IO calls must call raise_barrier.  Once that returns
 792 *    there is no normal IO happeing.  It must arrange to call
 793 *    lower_barrier when the particular background IO completes.
 794 */
 795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
 796{
 797	spin_lock_irq(&conf->resync_lock);
 798
 799	/* Wait until no block IO is waiting */
 800	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
 801			    conf->resync_lock);
 802
 803	/* block any new IO from starting */
 804	conf->barrier++;
 805	conf->next_resync = sector_nr;
 806
 807	/* For these conditions we must wait:
 808	 * A: while the array is in frozen state
 809	 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
 810	 *    the max count which allowed.
 811	 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
 812	 *    next resync will reach to the window which normal bios are
 813	 *    handling.
 814	 * D: while there are any active requests in the current window.
 815	 */
 816	wait_event_lock_irq(conf->wait_barrier,
 817			    !conf->array_frozen &&
 818			    conf->barrier < RESYNC_DEPTH &&
 819			    conf->current_window_requests == 0 &&
 820			    (conf->start_next_window >=
 821			     conf->next_resync + RESYNC_SECTORS),
 822			    conf->resync_lock);
 823
 824	conf->nr_pending++;
 825	spin_unlock_irq(&conf->resync_lock);
 826}
 827
 828static void lower_barrier(struct r1conf *conf)
 829{
 830	unsigned long flags;
 831	BUG_ON(conf->barrier <= 0);
 832	spin_lock_irqsave(&conf->resync_lock, flags);
 833	conf->barrier--;
 834	conf->nr_pending--;
 835	spin_unlock_irqrestore(&conf->resync_lock, flags);
 836	wake_up(&conf->wait_barrier);
 837}
 838
 839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
 840{
 841	bool wait = false;
 842
 843	if (conf->array_frozen || !bio)
 844		wait = true;
 845	else if (conf->barrier && bio_data_dir(bio) == WRITE) {
 846		if ((conf->mddev->curr_resync_completed
 847		     >= bio_end_sector(bio)) ||
 848		    (conf->next_resync + NEXT_NORMALIO_DISTANCE
 849		     <= bio->bi_iter.bi_sector))
 850			wait = false;
 851		else
 852			wait = true;
 853	}
 854
 855	return wait;
 856}
 857
 858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
 859{
 860	sector_t sector = 0;
 861
 862	spin_lock_irq(&conf->resync_lock);
 863	if (need_to_wait_for_sync(conf, bio)) {
 864		conf->nr_waiting++;
 865		/* Wait for the barrier to drop.
 866		 * However if there are already pending
 867		 * requests (preventing the barrier from
 868		 * rising completely), and the
 869		 * per-process bio queue isn't empty,
 870		 * then don't wait, as we need to empty
 871		 * that queue to allow conf->start_next_window
 872		 * to increase.
 873		 */
 
 874		wait_event_lock_irq(conf->wait_barrier,
 875				    !conf->array_frozen &&
 876				    (!conf->barrier ||
 877				     ((conf->start_next_window <
 878				       conf->next_resync + RESYNC_SECTORS) &&
 879				      current->bio_list &&
 880				      !bio_list_empty(current->bio_list))),
 881				    conf->resync_lock);
 882		conf->nr_waiting--;
 883	}
 884
 885	if (bio && bio_data_dir(bio) == WRITE) {
 886		if (bio->bi_iter.bi_sector >= conf->next_resync) {
 887			if (conf->start_next_window == MaxSector)
 888				conf->start_next_window =
 889					conf->next_resync +
 890					NEXT_NORMALIO_DISTANCE;
 891
 892			if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
 893			    <= bio->bi_iter.bi_sector)
 894				conf->next_window_requests++;
 895			else
 896				conf->current_window_requests++;
 897			sector = conf->start_next_window;
 898		}
 899	}
 900
 901	conf->nr_pending++;
 902	spin_unlock_irq(&conf->resync_lock);
 903	return sector;
 904}
 905
 906static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
 907			  sector_t bi_sector)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&conf->resync_lock, flags);
 912	conf->nr_pending--;
 913	if (start_next_window) {
 914		if (start_next_window == conf->start_next_window) {
 915			if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
 916			    <= bi_sector)
 917				conf->next_window_requests--;
 918			else
 919				conf->current_window_requests--;
 920		} else
 921			conf->current_window_requests--;
 922
 923		if (!conf->current_window_requests) {
 924			if (conf->next_window_requests) {
 925				conf->current_window_requests =
 926					conf->next_window_requests;
 927				conf->next_window_requests = 0;
 928				conf->start_next_window +=
 929					NEXT_NORMALIO_DISTANCE;
 930			} else
 931				conf->start_next_window = MaxSector;
 932		}
 933	}
 934	spin_unlock_irqrestore(&conf->resync_lock, flags);
 935	wake_up(&conf->wait_barrier);
 936}
 937
 938static void freeze_array(struct r1conf *conf, int extra)
 939{
 940	/* stop syncio and normal IO and wait for everything to
 941	 * go quite.
 942	 * We wait until nr_pending match nr_queued+extra
 943	 * This is called in the context of one normal IO request
 944	 * that has failed. Thus any sync request that might be pending
 945	 * will be blocked by nr_pending, and we need to wait for
 946	 * pending IO requests to complete or be queued for re-try.
 947	 * Thus the number queued (nr_queued) plus this request (extra)
 948	 * must match the number of pending IOs (nr_pending) before
 949	 * we continue.
 950	 */
 951	spin_lock_irq(&conf->resync_lock);
 952	conf->array_frozen = 1;
 
 953	wait_event_lock_irq_cmd(conf->wait_barrier,
 954				conf->nr_pending == conf->nr_queued+extra,
 955				conf->resync_lock,
 956				flush_pending_writes(conf));
 957	spin_unlock_irq(&conf->resync_lock);
 958}
 959static void unfreeze_array(struct r1conf *conf)
 960{
 961	/* reverse the effect of the freeze */
 962	spin_lock_irq(&conf->resync_lock);
 963	conf->array_frozen = 0;
 964	wake_up(&conf->wait_barrier);
 965	spin_unlock_irq(&conf->resync_lock);
 966}
 967
 968/* duplicate the data pages for behind I/O
 969 */
 970static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
 971{
 972	int i;
 973	struct bio_vec *bvec;
 974	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
 975					GFP_NOIO);
 976	if (unlikely(!bvecs))
 977		return;
 978
 979	bio_for_each_segment_all(bvec, bio, i) {
 980		bvecs[i] = *bvec;
 981		bvecs[i].bv_page = alloc_page(GFP_NOIO);
 982		if (unlikely(!bvecs[i].bv_page))
 983			goto do_sync_io;
 984		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
 985		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
 986		kunmap(bvecs[i].bv_page);
 987		kunmap(bvec->bv_page);
 988	}
 989	r1_bio->behind_bvecs = bvecs;
 990	r1_bio->behind_page_count = bio->bi_vcnt;
 991	set_bit(R1BIO_BehindIO, &r1_bio->state);
 992	return;
 993
 994do_sync_io:
 995	for (i = 0; i < bio->bi_vcnt; i++)
 996		if (bvecs[i].bv_page)
 997			put_page(bvecs[i].bv_page);
 998	kfree(bvecs);
 999	pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000		 bio->bi_iter.bi_size);
1001}
1002
1003struct raid1_plug_cb {
1004	struct blk_plug_cb	cb;
1005	struct bio_list		pending;
1006	int			pending_cnt;
1007};
1008
1009static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011	struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012						  cb);
1013	struct mddev *mddev = plug->cb.data;
1014	struct r1conf *conf = mddev->private;
1015	struct bio *bio;
1016
1017	if (from_schedule || current->bio_list) {
1018		spin_lock_irq(&conf->device_lock);
1019		bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020		conf->pending_count += plug->pending_cnt;
1021		spin_unlock_irq(&conf->device_lock);
1022		wake_up(&conf->wait_barrier);
1023		md_wakeup_thread(mddev->thread);
1024		kfree(plug);
1025		return;
1026	}
1027
1028	/* we aren't scheduling, so we can do the write-out directly. */
1029	bio = bio_list_get(&plug->pending);
1030	bitmap_unplug(mddev->bitmap);
1031	wake_up(&conf->wait_barrier);
1032
1033	while (bio) { /* submit pending writes */
1034		struct bio *next = bio->bi_next;
 
1035		bio->bi_next = NULL;
1036		if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037		    !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
 
 
 
 
1038			/* Just ignore it */
1039			bio_endio(bio);
1040		else
1041			generic_make_request(bio);
1042		bio = next;
1043	}
1044	kfree(plug);
1045}
1046
1047static void raid1_make_request(struct mddev *mddev, struct bio * bio)
 
1048{
1049	struct r1conf *conf = mddev->private;
1050	struct raid1_info *mirror;
1051	struct r1bio *r1_bio;
1052	struct bio *read_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053	int i, disks;
1054	struct bitmap *bitmap;
1055	unsigned long flags;
1056	const int rw = bio_data_dir(bio);
1057	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
1058	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
1059	const unsigned long do_discard = (bio->bi_rw
1060					  & (REQ_DISCARD | REQ_SECURE));
1061	const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
1062	struct md_rdev *blocked_rdev;
1063	struct blk_plug_cb *cb;
1064	struct raid1_plug_cb *plug = NULL;
1065	int first_clone;
1066	int sectors_handled;
1067	int max_sectors;
1068	sector_t start_next_window;
1069
1070	/*
1071	 * Register the new request and wait if the reconstruction
1072	 * thread has put up a bar for new requests.
1073	 * Continue immediately if no resync is active currently.
1074	 */
1075
1076	md_write_start(mddev, bio); /* wait on superblock update early */
1077
1078	if (bio_data_dir(bio) == WRITE &&
1079	    ((bio_end_sector(bio) > mddev->suspend_lo &&
1080	    bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081	    (mddev_is_clustered(mddev) &&
1082	     md_cluster_ops->area_resyncing(mddev, WRITE,
1083		     bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
1084		/* As the suspend_* range is controlled by
1085		 * userspace, we want an interruptible
1086		 * wait.
 
1087		 */
1088		DEFINE_WAIT(w);
1089		for (;;) {
1090			flush_signals(current);
1091			prepare_to_wait(&conf->wait_barrier,
1092					&w, TASK_INTERRUPTIBLE);
1093			if (bio_end_sector(bio) <= mddev->suspend_lo ||
1094			    bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095			    (mddev_is_clustered(mddev) &&
1096			     !md_cluster_ops->area_resyncing(mddev, WRITE,
1097				     bio->bi_iter.bi_sector, bio_end_sector(bio))))
 
1098				break;
1099			schedule();
1100		}
1101		finish_wait(&conf->wait_barrier, &w);
1102	}
1103
1104	start_next_window = wait_barrier(conf, bio);
1105
1106	bitmap = mddev->bitmap;
1107
1108	/*
1109	 * make_request() can abort the operation when READA is being
1110	 * used and no empty request is available.
1111	 *
1112	 */
1113	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114
1115	r1_bio->master_bio = bio;
1116	r1_bio->sectors = bio_sectors(bio);
1117	r1_bio->state = 0;
1118	r1_bio->mddev = mddev;
1119	r1_bio->sector = bio->bi_iter.bi_sector;
1120
1121	/* We might need to issue multiple reads to different
1122	 * devices if there are bad blocks around, so we keep
1123	 * track of the number of reads in bio->bi_phys_segments.
1124	 * If this is 0, there is only one r1_bio and no locking
1125	 * will be needed when requests complete.  If it is
1126	 * non-zero, then it is the number of not-completed requests.
1127	 */
1128	bio->bi_phys_segments = 0;
1129	bio_clear_flag(bio, BIO_SEG_VALID);
1130
1131	if (rw == READ) {
1132		/*
1133		 * read balancing logic:
1134		 */
1135		int rdisk;
1136
1137read_again:
1138		rdisk = read_balance(conf, r1_bio, &max_sectors);
1139
1140		if (rdisk < 0) {
1141			/* couldn't find anywhere to read from */
1142			raid_end_bio_io(r1_bio);
1143			return;
1144		}
1145		mirror = conf->mirrors + rdisk;
1146
1147		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148		    bitmap) {
1149			/* Reading from a write-mostly device must
1150			 * take care not to over-take any writes
1151			 * that are 'behind'
1152			 */
1153			wait_event(bitmap->behind_wait,
1154				   atomic_read(&bitmap->behind_writes) == 0);
1155		}
1156		r1_bio->read_disk = rdisk;
1157		r1_bio->start_next_window = 0;
1158
1159		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1160		bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
1161			 max_sectors);
1162
1163		r1_bio->bios[rdisk] = read_bio;
1164
1165		read_bio->bi_iter.bi_sector = r1_bio->sector +
1166			mirror->rdev->data_offset;
1167		read_bio->bi_bdev = mirror->rdev->bdev;
1168		read_bio->bi_end_io = raid1_end_read_request;
1169		read_bio->bi_rw = READ | do_sync;
1170		read_bio->bi_private = r1_bio;
1171
1172		if (max_sectors < r1_bio->sectors) {
1173			/* could not read all from this device, so we will
1174			 * need another r1_bio.
1175			 */
1176
1177			sectors_handled = (r1_bio->sector + max_sectors
1178					   - bio->bi_iter.bi_sector);
1179			r1_bio->sectors = max_sectors;
1180			spin_lock_irq(&conf->device_lock);
1181			if (bio->bi_phys_segments == 0)
1182				bio->bi_phys_segments = 2;
1183			else
1184				bio->bi_phys_segments++;
1185			spin_unlock_irq(&conf->device_lock);
1186			/* Cannot call generic_make_request directly
1187			 * as that will be queued in __make_request
1188			 * and subsequent mempool_alloc might block waiting
1189			 * for it.  So hand bio over to raid1d.
1190			 */
1191			reschedule_retry(r1_bio);
1192
1193			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1194
1195			r1_bio->master_bio = bio;
1196			r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1197			r1_bio->state = 0;
1198			r1_bio->mddev = mddev;
1199			r1_bio->sector = bio->bi_iter.bi_sector +
1200				sectors_handled;
1201			goto read_again;
1202		} else
1203			generic_make_request(read_bio);
1204		return;
1205	}
1206
1207	/*
1208	 * WRITE:
1209	 */
1210	if (conf->pending_count >= max_queued_requests) {
1211		md_wakeup_thread(mddev->thread);
 
1212		wait_event(conf->wait_barrier,
1213			   conf->pending_count < max_queued_requests);
1214	}
1215	/* first select target devices under rcu_lock and
1216	 * inc refcount on their rdev.  Record them by setting
1217	 * bios[x] to bio
1218	 * If there are known/acknowledged bad blocks on any device on
1219	 * which we have seen a write error, we want to avoid writing those
1220	 * blocks.
1221	 * This potentially requires several writes to write around
1222	 * the bad blocks.  Each set of writes gets it's own r1bio
1223	 * with a set of bios attached.
1224	 */
1225
1226	disks = conf->raid_disks * 2;
1227 retry_write:
1228	r1_bio->start_next_window = start_next_window;
1229	blocked_rdev = NULL;
1230	rcu_read_lock();
1231	max_sectors = r1_bio->sectors;
1232	for (i = 0;  i < disks; i++) {
1233		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1234		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235			atomic_inc(&rdev->nr_pending);
1236			blocked_rdev = rdev;
1237			break;
1238		}
1239		r1_bio->bios[i] = NULL;
1240		if (!rdev || test_bit(Faulty, &rdev->flags)) {
1241			if (i < conf->raid_disks)
1242				set_bit(R1BIO_Degraded, &r1_bio->state);
1243			continue;
1244		}
1245
1246		atomic_inc(&rdev->nr_pending);
1247		if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248			sector_t first_bad;
1249			int bad_sectors;
1250			int is_bad;
1251
1252			is_bad = is_badblock(rdev, r1_bio->sector,
1253					     max_sectors,
1254					     &first_bad, &bad_sectors);
1255			if (is_bad < 0) {
1256				/* mustn't write here until the bad block is
1257				 * acknowledged*/
1258				set_bit(BlockedBadBlocks, &rdev->flags);
1259				blocked_rdev = rdev;
1260				break;
1261			}
1262			if (is_bad && first_bad <= r1_bio->sector) {
1263				/* Cannot write here at all */
1264				bad_sectors -= (r1_bio->sector - first_bad);
1265				if (bad_sectors < max_sectors)
1266					/* mustn't write more than bad_sectors
1267					 * to other devices yet
1268					 */
1269					max_sectors = bad_sectors;
1270				rdev_dec_pending(rdev, mddev);
1271				/* We don't set R1BIO_Degraded as that
1272				 * only applies if the disk is
1273				 * missing, so it might be re-added,
1274				 * and we want to know to recover this
1275				 * chunk.
1276				 * In this case the device is here,
1277				 * and the fact that this chunk is not
1278				 * in-sync is recorded in the bad
1279				 * block log
1280				 */
1281				continue;
1282			}
1283			if (is_bad) {
1284				int good_sectors = first_bad - r1_bio->sector;
1285				if (good_sectors < max_sectors)
1286					max_sectors = good_sectors;
1287			}
1288		}
1289		r1_bio->bios[i] = bio;
1290	}
1291	rcu_read_unlock();
1292
1293	if (unlikely(blocked_rdev)) {
1294		/* Wait for this device to become unblocked */
1295		int j;
1296		sector_t old = start_next_window;
1297
1298		for (j = 0; j < i; j++)
1299			if (r1_bio->bios[j])
1300				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1301		r1_bio->state = 0;
1302		allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
 
1303		md_wait_for_blocked_rdev(blocked_rdev, mddev);
1304		start_next_window = wait_barrier(conf, bio);
1305		/*
1306		 * We must make sure the multi r1bios of bio have
1307		 * the same value of bi_phys_segments
1308		 */
1309		if (bio->bi_phys_segments && old &&
1310		    old != start_next_window)
1311			/* Wait for the former r1bio(s) to complete */
1312			wait_event(conf->wait_barrier,
1313				   bio->bi_phys_segments == 1);
1314		goto retry_write;
1315	}
1316
1317	if (max_sectors < r1_bio->sectors) {
1318		/* We are splitting this write into multiple parts, so
1319		 * we need to prepare for allocating another r1_bio.
1320		 */
1321		r1_bio->sectors = max_sectors;
1322		spin_lock_irq(&conf->device_lock);
1323		if (bio->bi_phys_segments == 0)
1324			bio->bi_phys_segments = 2;
1325		else
1326			bio->bi_phys_segments++;
1327		spin_unlock_irq(&conf->device_lock);
1328	}
1329	sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
1330
1331	atomic_set(&r1_bio->remaining, 1);
1332	atomic_set(&r1_bio->behind_remaining, 0);
1333
1334	first_clone = 1;
1335	for (i = 0; i < disks; i++) {
1336		struct bio *mbio;
1337		if (!r1_bio->bios[i])
1338			continue;
1339
1340		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1341		bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
 
1342
1343		if (first_clone) {
1344			/* do behind I/O ?
1345			 * Not if there are too many, or cannot
1346			 * allocate memory, or a reader on WriteMostly
1347			 * is waiting for behind writes to flush */
1348			if (bitmap &&
1349			    (atomic_read(&bitmap->behind_writes)
1350			     < mddev->bitmap_info.max_write_behind) &&
1351			    !waitqueue_active(&bitmap->behind_wait))
1352				alloc_behind_pages(mbio, r1_bio);
1353
1354			bitmap_startwrite(bitmap, r1_bio->sector,
1355					  r1_bio->sectors,
1356					  test_bit(R1BIO_BehindIO,
1357						   &r1_bio->state));
1358			first_clone = 0;
1359		}
1360		if (r1_bio->behind_bvecs) {
1361			struct bio_vec *bvec;
1362			int j;
1363
1364			/*
1365			 * We trimmed the bio, so _all is legit
1366			 */
1367			bio_for_each_segment_all(bvec, mbio, j)
1368				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
1369			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370				atomic_inc(&r1_bio->behind_remaining);
1371		}
1372
1373		r1_bio->bios[i] = mbio;
1374
1375		mbio->bi_iter.bi_sector	= (r1_bio->sector +
1376				   conf->mirrors[i].rdev->data_offset);
1377		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378		mbio->bi_end_io	= raid1_end_write_request;
1379		mbio->bi_rw =
1380			WRITE | do_flush_fua | do_sync | do_discard | do_same;
 
 
 
1381		mbio->bi_private = r1_bio;
1382
1383		atomic_inc(&r1_bio->remaining);
1384
 
 
 
 
 
 
 
1385		cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386		if (cb)
1387			plug = container_of(cb, struct raid1_plug_cb, cb);
1388		else
1389			plug = NULL;
1390		spin_lock_irqsave(&conf->device_lock, flags);
1391		if (plug) {
1392			bio_list_add(&plug->pending, mbio);
1393			plug->pending_cnt++;
1394		} else {
1395			bio_list_add(&conf->pending_bio_list, mbio);
1396			conf->pending_count++;
1397		}
1398		spin_unlock_irqrestore(&conf->device_lock, flags);
1399		if (!plug)
1400			md_wakeup_thread(mddev->thread);
1401	}
1402	/* Mustn't call r1_bio_write_done before this next test,
1403	 * as it could result in the bio being freed.
1404	 */
1405	if (sectors_handled < bio_sectors(bio)) {
1406		r1_bio_write_done(r1_bio);
1407		/* We need another r1_bio.  It has already been counted
1408		 * in bio->bi_phys_segments
1409		 */
1410		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411		r1_bio->master_bio = bio;
1412		r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1413		r1_bio->state = 0;
1414		r1_bio->mddev = mddev;
1415		r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1416		goto retry_write;
1417	}
1418
1419	r1_bio_write_done(r1_bio);
1420
1421	/* In case raid1d snuck in to freeze_array */
1422	wake_up(&conf->wait_barrier);
1423}
1424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1426{
1427	struct r1conf *conf = mddev->private;
1428	int i;
1429
1430	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1431		   conf->raid_disks - mddev->degraded);
1432	rcu_read_lock();
1433	for (i = 0; i < conf->raid_disks; i++) {
1434		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1435		seq_printf(seq, "%s",
1436			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437	}
1438	rcu_read_unlock();
1439	seq_printf(seq, "]");
1440}
1441
1442static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1443{
1444	char b[BDEVNAME_SIZE];
1445	struct r1conf *conf = mddev->private;
1446	unsigned long flags;
1447
1448	/*
1449	 * If it is not operational, then we have already marked it as dead
1450	 * else if it is the last working disks, ignore the error, let the
1451	 * next level up know.
1452	 * else mark the drive as failed
1453	 */
 
1454	if (test_bit(In_sync, &rdev->flags)
1455	    && (conf->raid_disks - mddev->degraded) == 1) {
1456		/*
1457		 * Don't fail the drive, act as though we were just a
1458		 * normal single drive.
1459		 * However don't try a recovery from this drive as
1460		 * it is very likely to fail.
1461		 */
1462		conf->recovery_disabled = mddev->recovery_disabled;
 
1463		return;
1464	}
1465	set_bit(Blocked, &rdev->flags);
1466	spin_lock_irqsave(&conf->device_lock, flags);
1467	if (test_and_clear_bit(In_sync, &rdev->flags)) {
1468		mddev->degraded++;
1469		set_bit(Faulty, &rdev->flags);
1470	} else
1471		set_bit(Faulty, &rdev->flags);
1472	spin_unlock_irqrestore(&conf->device_lock, flags);
1473	/*
1474	 * if recovery is running, make sure it aborts.
1475	 */
1476	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1477	set_bit(MD_CHANGE_DEVS, &mddev->flags);
1478	set_bit(MD_CHANGE_PENDING, &mddev->flags);
1479	printk(KERN_ALERT
1480	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481	       "md/raid1:%s: Operation continuing on %d devices.\n",
1482	       mdname(mddev), bdevname(rdev->bdev, b),
1483	       mdname(mddev), conf->raid_disks - mddev->degraded);
1484}
1485
1486static void print_conf(struct r1conf *conf)
1487{
1488	int i;
1489
1490	printk(KERN_DEBUG "RAID1 conf printout:\n");
1491	if (!conf) {
1492		printk(KERN_DEBUG "(!conf)\n");
1493		return;
1494	}
1495	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1496		conf->raid_disks);
1497
1498	rcu_read_lock();
1499	for (i = 0; i < conf->raid_disks; i++) {
1500		char b[BDEVNAME_SIZE];
1501		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1502		if (rdev)
1503			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1504			       i, !test_bit(In_sync, &rdev->flags),
1505			       !test_bit(Faulty, &rdev->flags),
1506			       bdevname(rdev->bdev,b));
1507	}
1508	rcu_read_unlock();
1509}
1510
1511static void close_sync(struct r1conf *conf)
1512{
1513	wait_barrier(conf, NULL);
1514	allow_barrier(conf, 0, 0);
1515
1516	mempool_destroy(conf->r1buf_pool);
1517	conf->r1buf_pool = NULL;
1518
1519	spin_lock_irq(&conf->resync_lock);
1520	conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
1521	conf->start_next_window = MaxSector;
1522	conf->current_window_requests +=
1523		conf->next_window_requests;
1524	conf->next_window_requests = 0;
1525	spin_unlock_irq(&conf->resync_lock);
1526}
1527
1528static int raid1_spare_active(struct mddev *mddev)
1529{
1530	int i;
1531	struct r1conf *conf = mddev->private;
1532	int count = 0;
1533	unsigned long flags;
1534
1535	/*
1536	 * Find all failed disks within the RAID1 configuration
1537	 * and mark them readable.
1538	 * Called under mddev lock, so rcu protection not needed.
1539	 * device_lock used to avoid races with raid1_end_read_request
1540	 * which expects 'In_sync' flags and ->degraded to be consistent.
1541	 */
1542	spin_lock_irqsave(&conf->device_lock, flags);
1543	for (i = 0; i < conf->raid_disks; i++) {
1544		struct md_rdev *rdev = conf->mirrors[i].rdev;
1545		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546		if (repl
1547		    && !test_bit(Candidate, &repl->flags)
1548		    && repl->recovery_offset == MaxSector
1549		    && !test_bit(Faulty, &repl->flags)
1550		    && !test_and_set_bit(In_sync, &repl->flags)) {
1551			/* replacement has just become active */
1552			if (!rdev ||
1553			    !test_and_clear_bit(In_sync, &rdev->flags))
1554				count++;
1555			if (rdev) {
1556				/* Replaced device not technically
1557				 * faulty, but we need to be sure
1558				 * it gets removed and never re-added
1559				 */
1560				set_bit(Faulty, &rdev->flags);
1561				sysfs_notify_dirent_safe(
1562					rdev->sysfs_state);
1563			}
1564		}
1565		if (rdev
1566		    && rdev->recovery_offset == MaxSector
1567		    && !test_bit(Faulty, &rdev->flags)
1568		    && !test_and_set_bit(In_sync, &rdev->flags)) {
1569			count++;
1570			sysfs_notify_dirent_safe(rdev->sysfs_state);
1571		}
1572	}
1573	mddev->degraded -= count;
1574	spin_unlock_irqrestore(&conf->device_lock, flags);
1575
1576	print_conf(conf);
1577	return count;
1578}
1579
1580static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1581{
1582	struct r1conf *conf = mddev->private;
1583	int err = -EEXIST;
1584	int mirror = 0;
1585	struct raid1_info *p;
1586	int first = 0;
1587	int last = conf->raid_disks - 1;
1588
1589	if (mddev->recovery_disabled == conf->recovery_disabled)
1590		return -EBUSY;
1591
1592	if (md_integrity_add_rdev(rdev, mddev))
1593		return -ENXIO;
1594
1595	if (rdev->raid_disk >= 0)
1596		first = last = rdev->raid_disk;
1597
1598	/*
1599	 * find the disk ... but prefer rdev->saved_raid_disk
1600	 * if possible.
1601	 */
1602	if (rdev->saved_raid_disk >= 0 &&
1603	    rdev->saved_raid_disk >= first &&
1604	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605		first = last = rdev->saved_raid_disk;
1606
1607	for (mirror = first; mirror <= last; mirror++) {
1608		p = conf->mirrors+mirror;
1609		if (!p->rdev) {
1610
1611			if (mddev->gendisk)
1612				disk_stack_limits(mddev->gendisk, rdev->bdev,
1613						  rdev->data_offset << 9);
1614
1615			p->head_position = 0;
1616			rdev->raid_disk = mirror;
1617			err = 0;
1618			/* As all devices are equivalent, we don't need a full recovery
1619			 * if this was recently any drive of the array
1620			 */
1621			if (rdev->saved_raid_disk < 0)
1622				conf->fullsync = 1;
1623			rcu_assign_pointer(p->rdev, rdev);
1624			break;
1625		}
1626		if (test_bit(WantReplacement, &p->rdev->flags) &&
1627		    p[conf->raid_disks].rdev == NULL) {
1628			/* Add this device as a replacement */
1629			clear_bit(In_sync, &rdev->flags);
1630			set_bit(Replacement, &rdev->flags);
1631			rdev->raid_disk = mirror;
1632			err = 0;
1633			conf->fullsync = 1;
1634			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635			break;
1636		}
1637	}
1638	if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1639		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1640	print_conf(conf);
1641	return err;
1642}
1643
1644static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1645{
1646	struct r1conf *conf = mddev->private;
1647	int err = 0;
1648	int number = rdev->raid_disk;
1649	struct raid1_info *p = conf->mirrors + number;
1650
1651	if (rdev != p->rdev)
1652		p = conf->mirrors + conf->raid_disks + number;
1653
1654	print_conf(conf);
1655	if (rdev == p->rdev) {
1656		if (test_bit(In_sync, &rdev->flags) ||
1657		    atomic_read(&rdev->nr_pending)) {
1658			err = -EBUSY;
1659			goto abort;
1660		}
1661		/* Only remove non-faulty devices if recovery
1662		 * is not possible.
1663		 */
1664		if (!test_bit(Faulty, &rdev->flags) &&
1665		    mddev->recovery_disabled != conf->recovery_disabled &&
1666		    mddev->degraded < conf->raid_disks) {
1667			err = -EBUSY;
1668			goto abort;
1669		}
1670		p->rdev = NULL;
1671		synchronize_rcu();
1672		if (atomic_read(&rdev->nr_pending)) {
1673			/* lost the race, try later */
1674			err = -EBUSY;
1675			p->rdev = rdev;
1676			goto abort;
1677		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
 
 
 
1678			/* We just removed a device that is being replaced.
1679			 * Move down the replacement.  We drain all IO before
1680			 * doing this to avoid confusion.
1681			 */
1682			struct md_rdev *repl =
1683				conf->mirrors[conf->raid_disks + number].rdev;
1684			freeze_array(conf, 0);
1685			clear_bit(Replacement, &repl->flags);
1686			p->rdev = repl;
1687			conf->mirrors[conf->raid_disks + number].rdev = NULL;
1688			unfreeze_array(conf);
1689			clear_bit(WantReplacement, &rdev->flags);
1690		} else
1691			clear_bit(WantReplacement, &rdev->flags);
1692		err = md_integrity_register(mddev);
1693	}
1694abort:
1695
1696	print_conf(conf);
1697	return err;
1698}
1699
1700static void end_sync_read(struct bio *bio)
1701{
1702	struct r1bio *r1_bio = bio->bi_private;
1703
1704	update_head_pos(r1_bio->read_disk, r1_bio);
1705
1706	/*
1707	 * we have read a block, now it needs to be re-written,
1708	 * or re-read if the read failed.
1709	 * We don't do much here, just schedule handling by raid1d
1710	 */
1711	if (!bio->bi_error)
1712		set_bit(R1BIO_Uptodate, &r1_bio->state);
1713
1714	if (atomic_dec_and_test(&r1_bio->remaining))
1715		reschedule_retry(r1_bio);
1716}
1717
1718static void end_sync_write(struct bio *bio)
1719{
1720	int uptodate = !bio->bi_error;
1721	struct r1bio *r1_bio = bio->bi_private;
1722	struct mddev *mddev = r1_bio->mddev;
1723	struct r1conf *conf = mddev->private;
1724	int mirror=0;
1725	sector_t first_bad;
1726	int bad_sectors;
1727
1728	mirror = find_bio_disk(r1_bio, bio);
1729
1730	if (!uptodate) {
1731		sector_t sync_blocks = 0;
1732		sector_t s = r1_bio->sector;
1733		long sectors_to_go = r1_bio->sectors;
1734		/* make sure these bits doesn't get cleared. */
1735		do {
1736			bitmap_end_sync(mddev->bitmap, s,
1737					&sync_blocks, 1);
1738			s += sync_blocks;
1739			sectors_to_go -= sync_blocks;
1740		} while (sectors_to_go > 0);
1741		set_bit(WriteErrorSeen,
1742			&conf->mirrors[mirror].rdev->flags);
1743		if (!test_and_set_bit(WantReplacement,
1744				      &conf->mirrors[mirror].rdev->flags))
1745			set_bit(MD_RECOVERY_NEEDED, &
1746				mddev->recovery);
1747		set_bit(R1BIO_WriteError, &r1_bio->state);
1748	} else if (is_badblock(conf->mirrors[mirror].rdev,
1749			       r1_bio->sector,
1750			       r1_bio->sectors,
1751			       &first_bad, &bad_sectors) &&
1752		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753				r1_bio->sector,
1754				r1_bio->sectors,
1755				&first_bad, &bad_sectors)
1756		)
1757		set_bit(R1BIO_MadeGood, &r1_bio->state);
1758
1759	if (atomic_dec_and_test(&r1_bio->remaining)) {
1760		int s = r1_bio->sectors;
1761		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762		    test_bit(R1BIO_WriteError, &r1_bio->state))
1763			reschedule_retry(r1_bio);
1764		else {
1765			put_buf(r1_bio);
1766			md_done_sync(mddev, s, uptodate);
1767		}
1768	}
1769}
1770
1771static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
1772			    int sectors, struct page *page, int rw)
1773{
1774	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775		/* success */
1776		return 1;
1777	if (rw == WRITE) {
1778		set_bit(WriteErrorSeen, &rdev->flags);
1779		if (!test_and_set_bit(WantReplacement,
1780				      &rdev->flags))
1781			set_bit(MD_RECOVERY_NEEDED, &
1782				rdev->mddev->recovery);
1783	}
1784	/* need to record an error - either for the block or the device */
1785	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786		md_error(rdev->mddev, rdev);
1787	return 0;
1788}
1789
1790static int fix_sync_read_error(struct r1bio *r1_bio)
1791{
1792	/* Try some synchronous reads of other devices to get
1793	 * good data, much like with normal read errors.  Only
1794	 * read into the pages we already have so we don't
1795	 * need to re-issue the read request.
1796	 * We don't need to freeze the array, because being in an
1797	 * active sync request, there is no normal IO, and
1798	 * no overlapping syncs.
1799	 * We don't need to check is_badblock() again as we
1800	 * made sure that anything with a bad block in range
1801	 * will have bi_end_io clear.
1802	 */
1803	struct mddev *mddev = r1_bio->mddev;
1804	struct r1conf *conf = mddev->private;
1805	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806	sector_t sect = r1_bio->sector;
1807	int sectors = r1_bio->sectors;
1808	int idx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1809
1810	while(sectors) {
1811		int s = sectors;
1812		int d = r1_bio->read_disk;
1813		int success = 0;
1814		struct md_rdev *rdev;
1815		int start;
1816
1817		if (s > (PAGE_SIZE>>9))
1818			s = PAGE_SIZE >> 9;
1819		do {
1820			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821				/* No rcu protection needed here devices
1822				 * can only be removed when no resync is
1823				 * active, and resync is currently active
1824				 */
1825				rdev = conf->mirrors[d].rdev;
1826				if (sync_page_io(rdev, sect, s<<9,
1827						 bio->bi_io_vec[idx].bv_page,
1828						 READ, false)) {
1829					success = 1;
1830					break;
1831				}
1832			}
1833			d++;
1834			if (d == conf->raid_disks * 2)
1835				d = 0;
1836		} while (!success && d != r1_bio->read_disk);
1837
1838		if (!success) {
1839			char b[BDEVNAME_SIZE];
1840			int abort = 0;
1841			/* Cannot read from anywhere, this block is lost.
1842			 * Record a bad block on each device.  If that doesn't
1843			 * work just disable and interrupt the recovery.
1844			 * Don't fail devices as that won't really help.
1845			 */
1846			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847			       " for block %llu\n",
1848			       mdname(mddev),
1849			       bdevname(bio->bi_bdev, b),
1850			       (unsigned long long)r1_bio->sector);
1851			for (d = 0; d < conf->raid_disks * 2; d++) {
1852				rdev = conf->mirrors[d].rdev;
1853				if (!rdev || test_bit(Faulty, &rdev->flags))
1854					continue;
1855				if (!rdev_set_badblocks(rdev, sect, s, 0))
1856					abort = 1;
1857			}
1858			if (abort) {
1859				conf->recovery_disabled =
1860					mddev->recovery_disabled;
1861				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862				md_done_sync(mddev, r1_bio->sectors, 0);
1863				put_buf(r1_bio);
1864				return 0;
1865			}
1866			/* Try next page */
1867			sectors -= s;
1868			sect += s;
1869			idx++;
1870			continue;
1871		}
1872
1873		start = d;
1874		/* write it back and re-read */
1875		while (d != r1_bio->read_disk) {
1876			if (d == 0)
1877				d = conf->raid_disks * 2;
1878			d--;
1879			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880				continue;
1881			rdev = conf->mirrors[d].rdev;
1882			if (r1_sync_page_io(rdev, sect, s,
1883					    bio->bi_io_vec[idx].bv_page,
1884					    WRITE) == 0) {
1885				r1_bio->bios[d]->bi_end_io = NULL;
1886				rdev_dec_pending(rdev, mddev);
1887			}
1888		}
1889		d = start;
1890		while (d != r1_bio->read_disk) {
1891			if (d == 0)
1892				d = conf->raid_disks * 2;
1893			d--;
1894			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895				continue;
1896			rdev = conf->mirrors[d].rdev;
1897			if (r1_sync_page_io(rdev, sect, s,
1898					    bio->bi_io_vec[idx].bv_page,
1899					    READ) != 0)
1900				atomic_add(s, &rdev->corrected_errors);
1901		}
1902		sectors -= s;
1903		sect += s;
1904		idx ++;
1905	}
1906	set_bit(R1BIO_Uptodate, &r1_bio->state);
1907	bio->bi_error = 0;
1908	return 1;
1909}
1910
1911static void process_checks(struct r1bio *r1_bio)
1912{
1913	/* We have read all readable devices.  If we haven't
1914	 * got the block, then there is no hope left.
1915	 * If we have, then we want to do a comparison
1916	 * and skip the write if everything is the same.
1917	 * If any blocks failed to read, then we need to
1918	 * attempt an over-write
1919	 */
1920	struct mddev *mddev = r1_bio->mddev;
1921	struct r1conf *conf = mddev->private;
1922	int primary;
1923	int i;
1924	int vcnt;
1925
1926	/* Fix variable parts of all bios */
1927	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928	for (i = 0; i < conf->raid_disks * 2; i++) {
1929		int j;
1930		int size;
1931		int error;
1932		struct bio *b = r1_bio->bios[i];
1933		if (b->bi_end_io != end_sync_read)
1934			continue;
1935		/* fixup the bio for reuse, but preserve errno */
1936		error = b->bi_error;
1937		bio_reset(b);
1938		b->bi_error = error;
1939		b->bi_vcnt = vcnt;
1940		b->bi_iter.bi_size = r1_bio->sectors << 9;
1941		b->bi_iter.bi_sector = r1_bio->sector +
1942			conf->mirrors[i].rdev->data_offset;
1943		b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944		b->bi_end_io = end_sync_read;
1945		b->bi_private = r1_bio;
1946
1947		size = b->bi_iter.bi_size;
1948		for (j = 0; j < vcnt ; j++) {
1949			struct bio_vec *bi;
1950			bi = &b->bi_io_vec[j];
1951			bi->bv_offset = 0;
1952			if (size > PAGE_SIZE)
1953				bi->bv_len = PAGE_SIZE;
1954			else
1955				bi->bv_len = size;
1956			size -= PAGE_SIZE;
1957		}
1958	}
1959	for (primary = 0; primary < conf->raid_disks * 2; primary++)
1960		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1961		    !r1_bio->bios[primary]->bi_error) {
1962			r1_bio->bios[primary]->bi_end_io = NULL;
1963			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964			break;
1965		}
1966	r1_bio->read_disk = primary;
1967	for (i = 0; i < conf->raid_disks * 2; i++) {
1968		int j;
1969		struct bio *pbio = r1_bio->bios[primary];
1970		struct bio *sbio = r1_bio->bios[i];
1971		int error = sbio->bi_error;
1972
1973		if (sbio->bi_end_io != end_sync_read)
1974			continue;
1975		/* Now we can 'fixup' the error value */
1976		sbio->bi_error = 0;
1977
1978		if (!error) {
1979			for (j = vcnt; j-- ; ) {
1980				struct page *p, *s;
1981				p = pbio->bi_io_vec[j].bv_page;
1982				s = sbio->bi_io_vec[j].bv_page;
1983				if (memcmp(page_address(p),
1984					   page_address(s),
1985					   sbio->bi_io_vec[j].bv_len))
1986					break;
1987			}
1988		} else
1989			j = 0;
1990		if (j >= 0)
1991			atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
1992		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1993			      && !error)) {
1994			/* No need to write to this device. */
1995			sbio->bi_end_io = NULL;
1996			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997			continue;
1998		}
1999
2000		bio_copy_data(sbio, pbio);
2001	}
2002}
2003
2004static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
2005{
2006	struct r1conf *conf = mddev->private;
2007	int i;
2008	int disks = conf->raid_disks * 2;
2009	struct bio *bio, *wbio;
2010
2011	bio = r1_bio->bios[r1_bio->read_disk];
2012
2013	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014		/* ouch - failed to read all of that. */
2015		if (!fix_sync_read_error(r1_bio))
2016			return;
2017
2018	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2019		process_checks(r1_bio);
2020
2021	/*
2022	 * schedule writes
2023	 */
2024	atomic_set(&r1_bio->remaining, 1);
2025	for (i = 0; i < disks ; i++) {
2026		wbio = r1_bio->bios[i];
2027		if (wbio->bi_end_io == NULL ||
2028		    (wbio->bi_end_io == end_sync_read &&
2029		     (i == r1_bio->read_disk ||
2030		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
2031			continue;
2032
2033		wbio->bi_rw = WRITE;
 
 
 
2034		wbio->bi_end_io = end_sync_write;
2035		atomic_inc(&r1_bio->remaining);
2036		md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
2037
2038		generic_make_request(wbio);
2039	}
2040
2041	if (atomic_dec_and_test(&r1_bio->remaining)) {
2042		/* if we're here, all write(s) have completed, so clean up */
2043		int s = r1_bio->sectors;
2044		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045		    test_bit(R1BIO_WriteError, &r1_bio->state))
2046			reschedule_retry(r1_bio);
2047		else {
2048			put_buf(r1_bio);
2049			md_done_sync(mddev, s, 1);
2050		}
2051	}
2052}
2053
2054/*
2055 * This is a kernel thread which:
2056 *
2057 *	1.	Retries failed read operations on working mirrors.
2058 *	2.	Updates the raid superblock when problems encounter.
2059 *	3.	Performs writes following reads for array synchronising.
2060 */
2061
2062static void fix_read_error(struct r1conf *conf, int read_disk,
2063			   sector_t sect, int sectors)
2064{
2065	struct mddev *mddev = conf->mddev;
2066	while(sectors) {
2067		int s = sectors;
2068		int d = read_disk;
2069		int success = 0;
2070		int start;
2071		struct md_rdev *rdev;
2072
2073		if (s > (PAGE_SIZE>>9))
2074			s = PAGE_SIZE >> 9;
2075
2076		do {
2077			/* Note: no rcu protection needed here
2078			 * as this is synchronous in the raid1d thread
2079			 * which is the thread that might remove
2080			 * a device.  If raid1d ever becomes multi-threaded....
2081			 */
2082			sector_t first_bad;
2083			int bad_sectors;
2084
2085			rdev = conf->mirrors[d].rdev;
 
2086			if (rdev &&
2087			    (test_bit(In_sync, &rdev->flags) ||
2088			     (!test_bit(Faulty, &rdev->flags) &&
2089			      rdev->recovery_offset >= sect + s)) &&
2090			    is_badblock(rdev, sect, s,
2091					&first_bad, &bad_sectors) == 0 &&
2092			    sync_page_io(rdev, sect, s<<9,
2093					 conf->tmppage, READ, false))
2094				success = 1;
2095			else {
2096				d++;
2097				if (d == conf->raid_disks * 2)
2098					d = 0;
2099			}
 
 
 
 
 
2100		} while (!success && d != read_disk);
2101
2102		if (!success) {
2103			/* Cannot read from anywhere - mark it bad */
2104			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
2105			if (!rdev_set_badblocks(rdev, sect, s, 0))
2106				md_error(mddev, rdev);
2107			break;
2108		}
2109		/* write it back and re-read */
2110		start = d;
2111		while (d != read_disk) {
2112			if (d==0)
2113				d = conf->raid_disks * 2;
2114			d--;
2115			rdev = conf->mirrors[d].rdev;
 
2116			if (rdev &&
2117			    !test_bit(Faulty, &rdev->flags))
 
 
2118				r1_sync_page_io(rdev, sect, s,
2119						conf->tmppage, WRITE);
 
 
 
2120		}
2121		d = start;
2122		while (d != read_disk) {
2123			char b[BDEVNAME_SIZE];
2124			if (d==0)
2125				d = conf->raid_disks * 2;
2126			d--;
2127			rdev = conf->mirrors[d].rdev;
 
2128			if (rdev &&
2129			    !test_bit(Faulty, &rdev->flags)) {
 
 
2130				if (r1_sync_page_io(rdev, sect, s,
2131						    conf->tmppage, READ)) {
2132					atomic_add(s, &rdev->corrected_errors);
2133					printk(KERN_INFO
2134					       "md/raid1:%s: read error corrected "
2135					       "(%d sectors at %llu on %s)\n",
2136					       mdname(mddev), s,
2137					       (unsigned long long)(sect +
2138					           rdev->data_offset),
2139					       bdevname(rdev->bdev, b));
2140				}
2141			}
 
 
2142		}
2143		sectors -= s;
2144		sect += s;
2145	}
2146}
2147
2148static int narrow_write_error(struct r1bio *r1_bio, int i)
2149{
2150	struct mddev *mddev = r1_bio->mddev;
2151	struct r1conf *conf = mddev->private;
2152	struct md_rdev *rdev = conf->mirrors[i].rdev;
2153
2154	/* bio has the data to be written to device 'i' where
2155	 * we just recently had a write error.
2156	 * We repeatedly clone the bio and trim down to one block,
2157	 * then try the write.  Where the write fails we record
2158	 * a bad block.
2159	 * It is conceivable that the bio doesn't exactly align with
2160	 * blocks.  We must handle this somehow.
2161	 *
2162	 * We currently own a reference on the rdev.
2163	 */
2164
2165	int block_sectors;
2166	sector_t sector;
2167	int sectors;
2168	int sect_to_write = r1_bio->sectors;
2169	int ok = 1;
2170
2171	if (rdev->badblocks.shift < 0)
2172		return 0;
2173
2174	block_sectors = roundup(1 << rdev->badblocks.shift,
2175				bdev_logical_block_size(rdev->bdev) >> 9);
2176	sector = r1_bio->sector;
2177	sectors = ((sector + block_sectors)
2178		   & ~(sector_t)(block_sectors - 1))
2179		- sector;
2180
2181	while (sect_to_write) {
2182		struct bio *wbio;
2183		if (sectors > sect_to_write)
2184			sectors = sect_to_write;
2185		/* Write at 'sector' for 'sectors'*/
2186
2187		if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188			unsigned vcnt = r1_bio->behind_page_count;
2189			struct bio_vec *vec = r1_bio->behind_bvecs;
2190
2191			while (!vec->bv_page) {
2192				vec++;
2193				vcnt--;
2194			}
2195
2196			wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197			memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198
2199			wbio->bi_vcnt = vcnt;
2200		} else {
2201			wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2202		}
2203
2204		wbio->bi_rw = WRITE;
2205		wbio->bi_iter.bi_sector = r1_bio->sector;
2206		wbio->bi_iter.bi_size = r1_bio->sectors << 9;
2207
2208		bio_trim(wbio, sector - r1_bio->sector, sectors);
2209		wbio->bi_iter.bi_sector += rdev->data_offset;
2210		wbio->bi_bdev = rdev->bdev;
2211		if (submit_bio_wait(WRITE, wbio) < 0)
 
2212			/* failure! */
2213			ok = rdev_set_badblocks(rdev, sector,
2214						sectors, 0)
2215				&& ok;
2216
2217		bio_put(wbio);
2218		sect_to_write -= sectors;
2219		sector += sectors;
2220		sectors = block_sectors;
2221	}
2222	return ok;
2223}
2224
2225static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2226{
2227	int m;
2228	int s = r1_bio->sectors;
2229	for (m = 0; m < conf->raid_disks * 2 ; m++) {
2230		struct md_rdev *rdev = conf->mirrors[m].rdev;
2231		struct bio *bio = r1_bio->bios[m];
2232		if (bio->bi_end_io == NULL)
2233			continue;
2234		if (!bio->bi_error &&
2235		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
2236			rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
2237		}
2238		if (bio->bi_error &&
2239		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241				md_error(conf->mddev, rdev);
2242		}
2243	}
2244	put_buf(r1_bio);
2245	md_done_sync(conf->mddev, s, 1);
2246}
2247
2248static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
2249{
2250	int m;
2251	bool fail = false;
2252	for (m = 0; m < conf->raid_disks * 2 ; m++)
2253		if (r1_bio->bios[m] == IO_MADE_GOOD) {
2254			struct md_rdev *rdev = conf->mirrors[m].rdev;
2255			rdev_clear_badblocks(rdev,
2256					     r1_bio->sector,
2257					     r1_bio->sectors, 0);
2258			rdev_dec_pending(rdev, conf->mddev);
2259		} else if (r1_bio->bios[m] != NULL) {
2260			/* This drive got a write error.  We need to
2261			 * narrow down and record precise write
2262			 * errors.
2263			 */
2264			fail = true;
2265			if (!narrow_write_error(r1_bio, m)) {
2266				md_error(conf->mddev,
2267					 conf->mirrors[m].rdev);
2268				/* an I/O failed, we can't clear the bitmap */
2269				set_bit(R1BIO_Degraded, &r1_bio->state);
2270			}
2271			rdev_dec_pending(conf->mirrors[m].rdev,
2272					 conf->mddev);
2273		}
2274	if (fail) {
2275		spin_lock_irq(&conf->device_lock);
2276		list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
2277		conf->nr_queued++;
2278		spin_unlock_irq(&conf->device_lock);
2279		md_wakeup_thread(conf->mddev->thread);
2280	} else {
2281		if (test_bit(R1BIO_WriteError, &r1_bio->state))
2282			close_write(r1_bio);
2283		raid_end_bio_io(r1_bio);
2284	}
2285}
2286
2287static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
2288{
2289	int disk;
2290	int max_sectors;
2291	struct mddev *mddev = conf->mddev;
2292	struct bio *bio;
2293	char b[BDEVNAME_SIZE];
2294	struct md_rdev *rdev;
 
 
2295
2296	clear_bit(R1BIO_ReadError, &r1_bio->state);
2297	/* we got a read error. Maybe the drive is bad.  Maybe just
2298	 * the block and we can fix it.
2299	 * We freeze all other IO, and try reading the block from
2300	 * other devices.  When we find one, we re-write
2301	 * and check it that fixes the read error.
2302	 * This is all done synchronously while the array is
2303	 * frozen
2304	 */
2305	if (mddev->ro == 0) {
 
 
 
 
 
 
 
 
 
 
2306		freeze_array(conf, 1);
2307		fix_read_error(conf, r1_bio->read_disk,
2308			       r1_bio->sector, r1_bio->sectors);
2309		unfreeze_array(conf);
2310	} else
2311		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
2312	rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
 
 
2313
2314	bio = r1_bio->bios[r1_bio->read_disk];
2315	bdevname(bio->bi_bdev, b);
2316read_more:
2317	disk = read_balance(conf, r1_bio, &max_sectors);
2318	if (disk == -1) {
2319		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2320		       " read error for block %llu\n",
2321		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
2322		raid_end_bio_io(r1_bio);
2323	} else {
2324		const unsigned long do_sync
2325			= r1_bio->master_bio->bi_rw & REQ_SYNC;
2326		if (bio) {
2327			r1_bio->bios[r1_bio->read_disk] =
2328				mddev->ro ? IO_BLOCKED : NULL;
2329			bio_put(bio);
2330		}
2331		r1_bio->read_disk = disk;
2332		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2333		bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2334			 max_sectors);
2335		r1_bio->bios[r1_bio->read_disk] = bio;
2336		rdev = conf->mirrors[disk].rdev;
2337		printk_ratelimited(KERN_ERR
2338				   "md/raid1:%s: redirecting sector %llu"
2339				   " to other mirror: %s\n",
2340				   mdname(mddev),
2341				   (unsigned long long)r1_bio->sector,
2342				   bdevname(rdev->bdev, b));
2343		bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
2344		bio->bi_bdev = rdev->bdev;
2345		bio->bi_end_io = raid1_end_read_request;
2346		bio->bi_rw = READ | do_sync;
 
 
 
2347		bio->bi_private = r1_bio;
2348		if (max_sectors < r1_bio->sectors) {
2349			/* Drat - have to split this up more */
2350			struct bio *mbio = r1_bio->master_bio;
2351			int sectors_handled = (r1_bio->sector + max_sectors
2352					       - mbio->bi_iter.bi_sector);
2353			r1_bio->sectors = max_sectors;
2354			spin_lock_irq(&conf->device_lock);
2355			if (mbio->bi_phys_segments == 0)
2356				mbio->bi_phys_segments = 2;
2357			else
2358				mbio->bi_phys_segments++;
2359			spin_unlock_irq(&conf->device_lock);
 
 
2360			generic_make_request(bio);
2361			bio = NULL;
2362
2363			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2364
2365			r1_bio->master_bio = mbio;
2366			r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
2367			r1_bio->state = 0;
2368			set_bit(R1BIO_ReadError, &r1_bio->state);
2369			r1_bio->mddev = mddev;
2370			r1_bio->sector = mbio->bi_iter.bi_sector +
2371				sectors_handled;
2372
2373			goto read_more;
2374		} else
 
 
2375			generic_make_request(bio);
 
2376	}
2377}
2378
2379static void raid1d(struct md_thread *thread)
2380{
2381	struct mddev *mddev = thread->mddev;
2382	struct r1bio *r1_bio;
2383	unsigned long flags;
2384	struct r1conf *conf = mddev->private;
2385	struct list_head *head = &conf->retry_list;
2386	struct blk_plug plug;
2387
2388	md_check_recovery(mddev);
2389
2390	if (!list_empty_careful(&conf->bio_end_io_list) &&
2391	    !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2392		LIST_HEAD(tmp);
2393		spin_lock_irqsave(&conf->device_lock, flags);
2394		if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2395			while (!list_empty(&conf->bio_end_io_list)) {
2396				list_move(conf->bio_end_io_list.prev, &tmp);
2397				conf->nr_queued--;
2398			}
2399		}
2400		spin_unlock_irqrestore(&conf->device_lock, flags);
2401		while (!list_empty(&tmp)) {
2402			r1_bio = list_first_entry(&tmp, struct r1bio,
2403						  retry_list);
2404			list_del(&r1_bio->retry_list);
2405			if (mddev->degraded)
2406				set_bit(R1BIO_Degraded, &r1_bio->state);
2407			if (test_bit(R1BIO_WriteError, &r1_bio->state))
2408				close_write(r1_bio);
2409			raid_end_bio_io(r1_bio);
2410		}
2411	}
2412
2413	blk_start_plug(&plug);
2414	for (;;) {
2415
2416		flush_pending_writes(conf);
2417
2418		spin_lock_irqsave(&conf->device_lock, flags);
2419		if (list_empty(head)) {
2420			spin_unlock_irqrestore(&conf->device_lock, flags);
2421			break;
2422		}
2423		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
2424		list_del(head->prev);
2425		conf->nr_queued--;
2426		spin_unlock_irqrestore(&conf->device_lock, flags);
2427
2428		mddev = r1_bio->mddev;
2429		conf = mddev->private;
2430		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
2431			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2432			    test_bit(R1BIO_WriteError, &r1_bio->state))
2433				handle_sync_write_finished(conf, r1_bio);
2434			else
2435				sync_request_write(mddev, r1_bio);
2436		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2437			   test_bit(R1BIO_WriteError, &r1_bio->state))
2438			handle_write_finished(conf, r1_bio);
2439		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2440			handle_read_error(conf, r1_bio);
2441		else
2442			/* just a partial read to be scheduled from separate
2443			 * context
2444			 */
2445			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
2446
2447		cond_resched();
2448		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2449			md_check_recovery(mddev);
2450	}
2451	blk_finish_plug(&plug);
2452}
2453
2454static int init_resync(struct r1conf *conf)
2455{
2456	int buffs;
2457
2458	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2459	BUG_ON(conf->r1buf_pool);
2460	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2461					  conf->poolinfo);
2462	if (!conf->r1buf_pool)
2463		return -ENOMEM;
2464	conf->next_resync = 0;
2465	return 0;
2466}
2467
2468/*
2469 * perform a "sync" on one "block"
2470 *
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2473 *
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2476 */
2477
2478static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2479				   int *skipped)
2480{
2481	struct r1conf *conf = mddev->private;
2482	struct r1bio *r1_bio;
2483	struct bio *bio;
2484	sector_t max_sector, nr_sectors;
2485	int disk = -1;
2486	int i;
2487	int wonly = -1;
2488	int write_targets = 0, read_targets = 0;
2489	sector_t sync_blocks;
2490	int still_degraded = 0;
2491	int good_sectors = RESYNC_SECTORS;
2492	int min_bad = 0; /* number of sectors that are bad in all devices */
2493
2494	if (!conf->r1buf_pool)
2495		if (init_resync(conf))
2496			return 0;
2497
2498	max_sector = mddev->dev_sectors;
2499	if (sector_nr >= max_sector) {
2500		/* If we aborted, we need to abort the
2501		 * sync on the 'current' bitmap chunk (there will
2502		 * only be one in raid1 resync.
2503		 * We can find the current addess in mddev->curr_resync
2504		 */
2505		if (mddev->curr_resync < max_sector) /* aborted */
2506			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2507						&sync_blocks, 1);
2508		else /* completed sync */
2509			conf->fullsync = 0;
2510
2511		bitmap_close_sync(mddev->bitmap);
2512		close_sync(conf);
2513
2514		if (mddev_is_clustered(mddev)) {
2515			conf->cluster_sync_low = 0;
2516			conf->cluster_sync_high = 0;
2517		}
2518		return 0;
2519	}
2520
2521	if (mddev->bitmap == NULL &&
2522	    mddev->recovery_cp == MaxSector &&
2523	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2524	    conf->fullsync == 0) {
2525		*skipped = 1;
2526		return max_sector - sector_nr;
2527	}
2528	/* before building a request, check if we can skip these blocks..
2529	 * This call the bitmap_start_sync doesn't actually record anything
2530	 */
2531	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
2532	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2533		/* We can skip this block, and probably several more */
2534		*skipped = 1;
2535		return sync_blocks;
2536	}
2537
 
 
 
 
 
 
 
2538	/* we are incrementing sector_nr below. To be safe, we check against
2539	 * sector_nr + two times RESYNC_SECTORS
2540	 */
2541
2542	bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2543		mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
2544	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
2545
2546	raise_barrier(conf, sector_nr);
2547
2548	rcu_read_lock();
2549	/*
2550	 * If we get a correctably read error during resync or recovery,
2551	 * we might want to read from a different device.  So we
2552	 * flag all drives that could conceivably be read from for READ,
2553	 * and any others (which will be non-In_sync devices) for WRITE.
2554	 * If a read fails, we try reading from something else for which READ
2555	 * is OK.
2556	 */
2557
2558	r1_bio->mddev = mddev;
2559	r1_bio->sector = sector_nr;
2560	r1_bio->state = 0;
2561	set_bit(R1BIO_IsSync, &r1_bio->state);
2562
2563	for (i = 0; i < conf->raid_disks * 2; i++) {
2564		struct md_rdev *rdev;
2565		bio = r1_bio->bios[i];
2566		bio_reset(bio);
2567
2568		rdev = rcu_dereference(conf->mirrors[i].rdev);
2569		if (rdev == NULL ||
2570		    test_bit(Faulty, &rdev->flags)) {
2571			if (i < conf->raid_disks)
2572				still_degraded = 1;
2573		} else if (!test_bit(In_sync, &rdev->flags)) {
2574			bio->bi_rw = WRITE;
2575			bio->bi_end_io = end_sync_write;
2576			write_targets ++;
2577		} else {
2578			/* may need to read from here */
2579			sector_t first_bad = MaxSector;
2580			int bad_sectors;
2581
2582			if (is_badblock(rdev, sector_nr, good_sectors,
2583					&first_bad, &bad_sectors)) {
2584				if (first_bad > sector_nr)
2585					good_sectors = first_bad - sector_nr;
2586				else {
2587					bad_sectors -= (sector_nr - first_bad);
2588					if (min_bad == 0 ||
2589					    min_bad > bad_sectors)
2590						min_bad = bad_sectors;
2591				}
2592			}
2593			if (sector_nr < first_bad) {
2594				if (test_bit(WriteMostly, &rdev->flags)) {
2595					if (wonly < 0)
2596						wonly = i;
2597				} else {
2598					if (disk < 0)
2599						disk = i;
2600				}
2601				bio->bi_rw = READ;
2602				bio->bi_end_io = end_sync_read;
2603				read_targets++;
2604			} else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605				test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606				!test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607				/*
2608				 * The device is suitable for reading (InSync),
2609				 * but has bad block(s) here. Let's try to correct them,
2610				 * if we are doing resync or repair. Otherwise, leave
2611				 * this device alone for this sync request.
2612				 */
2613				bio->bi_rw = WRITE;
2614				bio->bi_end_io = end_sync_write;
2615				write_targets++;
2616			}
2617		}
2618		if (bio->bi_end_io) {
2619			atomic_inc(&rdev->nr_pending);
2620			bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
2621			bio->bi_bdev = rdev->bdev;
2622			bio->bi_private = r1_bio;
 
 
2623		}
2624	}
2625	rcu_read_unlock();
2626	if (disk < 0)
2627		disk = wonly;
2628	r1_bio->read_disk = disk;
2629
2630	if (read_targets == 0 && min_bad > 0) {
2631		/* These sectors are bad on all InSync devices, so we
2632		 * need to mark them bad on all write targets
2633		 */
2634		int ok = 1;
2635		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
2636			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
2637				struct md_rdev *rdev = conf->mirrors[i].rdev;
2638				ok = rdev_set_badblocks(rdev, sector_nr,
2639							min_bad, 0
2640					) && ok;
2641			}
2642		set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643		*skipped = 1;
2644		put_buf(r1_bio);
2645
2646		if (!ok) {
2647			/* Cannot record the badblocks, so need to
2648			 * abort the resync.
2649			 * If there are multiple read targets, could just
2650			 * fail the really bad ones ???
2651			 */
2652			conf->recovery_disabled = mddev->recovery_disabled;
2653			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654			return 0;
2655		} else
2656			return min_bad;
2657
2658	}
2659	if (min_bad > 0 && min_bad < good_sectors) {
2660		/* only resync enough to reach the next bad->good
2661		 * transition */
2662		good_sectors = min_bad;
2663	}
2664
2665	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666		/* extra read targets are also write targets */
2667		write_targets += read_targets-1;
2668
2669	if (write_targets == 0 || read_targets == 0) {
2670		/* There is nowhere to write, so all non-sync
2671		 * drives must be failed - so we are finished
2672		 */
2673		sector_t rv;
2674		if (min_bad > 0)
2675			max_sector = sector_nr + min_bad;
2676		rv = max_sector - sector_nr;
2677		*skipped = 1;
2678		put_buf(r1_bio);
2679		return rv;
2680	}
2681
2682	if (max_sector > mddev->resync_max)
2683		max_sector = mddev->resync_max; /* Don't do IO beyond here */
2684	if (max_sector > sector_nr + good_sectors)
2685		max_sector = sector_nr + good_sectors;
2686	nr_sectors = 0;
2687	sync_blocks = 0;
2688	do {
2689		struct page *page;
2690		int len = PAGE_SIZE;
2691		if (sector_nr + (len>>9) > max_sector)
2692			len = (max_sector - sector_nr) << 9;
2693		if (len == 0)
2694			break;
2695		if (sync_blocks == 0) {
2696			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2697					       &sync_blocks, still_degraded) &&
2698			    !conf->fullsync &&
2699			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
2700				break;
2701			if ((len >> 9) > sync_blocks)
2702				len = sync_blocks<<9;
2703		}
2704
2705		for (i = 0 ; i < conf->raid_disks * 2; i++) {
2706			bio = r1_bio->bios[i];
2707			if (bio->bi_end_io) {
2708				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2709				if (bio_add_page(bio, page, len, 0) == 0) {
2710					/* stop here */
2711					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2712					while (i > 0) {
2713						i--;
2714						bio = r1_bio->bios[i];
2715						if (bio->bi_end_io==NULL)
2716							continue;
2717						/* remove last page from this bio */
2718						bio->bi_vcnt--;
2719						bio->bi_iter.bi_size -= len;
2720						bio_clear_flag(bio, BIO_SEG_VALID);
2721					}
2722					goto bio_full;
2723				}
2724			}
2725		}
2726		nr_sectors += len>>9;
2727		sector_nr += len>>9;
2728		sync_blocks -= (len>>9);
2729	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730 bio_full:
2731	r1_bio->sectors = nr_sectors;
2732
2733	if (mddev_is_clustered(mddev) &&
2734			conf->cluster_sync_high < sector_nr + nr_sectors) {
2735		conf->cluster_sync_low = mddev->curr_resync_completed;
2736		conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2737		/* Send resync message */
2738		md_cluster_ops->resync_info_update(mddev,
2739				conf->cluster_sync_low,
2740				conf->cluster_sync_high);
2741	}
2742
2743	/* For a user-requested sync, we read all readable devices and do a
2744	 * compare
2745	 */
2746	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2747		atomic_set(&r1_bio->remaining, read_targets);
2748		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
2749			bio = r1_bio->bios[i];
2750			if (bio->bi_end_io == end_sync_read) {
2751				read_targets--;
2752				md_sync_acct(bio->bi_bdev, nr_sectors);
 
 
2753				generic_make_request(bio);
2754			}
2755		}
2756	} else {
2757		atomic_set(&r1_bio->remaining, 1);
2758		bio = r1_bio->bios[r1_bio->read_disk];
2759		md_sync_acct(bio->bi_bdev, nr_sectors);
 
 
2760		generic_make_request(bio);
2761
2762	}
2763	return nr_sectors;
2764}
2765
2766static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
2767{
2768	if (sectors)
2769		return sectors;
2770
2771	return mddev->dev_sectors;
2772}
2773
2774static struct r1conf *setup_conf(struct mddev *mddev)
2775{
2776	struct r1conf *conf;
2777	int i;
2778	struct raid1_info *disk;
2779	struct md_rdev *rdev;
2780	int err = -ENOMEM;
2781
2782	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
2783	if (!conf)
2784		goto abort;
2785
2786	conf->mirrors = kzalloc(sizeof(struct raid1_info)
2787				* mddev->raid_disks * 2,
2788				 GFP_KERNEL);
2789	if (!conf->mirrors)
2790		goto abort;
2791
2792	conf->tmppage = alloc_page(GFP_KERNEL);
2793	if (!conf->tmppage)
2794		goto abort;
2795
2796	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
2797	if (!conf->poolinfo)
2798		goto abort;
2799	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
2800	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2801					  r1bio_pool_free,
2802					  conf->poolinfo);
2803	if (!conf->r1bio_pool)
2804		goto abort;
2805
2806	conf->poolinfo->mddev = mddev;
2807
2808	err = -EINVAL;
2809	spin_lock_init(&conf->device_lock);
2810	rdev_for_each(rdev, mddev) {
2811		struct request_queue *q;
2812		int disk_idx = rdev->raid_disk;
2813		if (disk_idx >= mddev->raid_disks
2814		    || disk_idx < 0)
2815			continue;
2816		if (test_bit(Replacement, &rdev->flags))
2817			disk = conf->mirrors + mddev->raid_disks + disk_idx;
2818		else
2819			disk = conf->mirrors + disk_idx;
2820
2821		if (disk->rdev)
2822			goto abort;
2823		disk->rdev = rdev;
2824		q = bdev_get_queue(rdev->bdev);
2825
2826		disk->head_position = 0;
2827		disk->seq_start = MaxSector;
2828	}
2829	conf->raid_disks = mddev->raid_disks;
2830	conf->mddev = mddev;
2831	INIT_LIST_HEAD(&conf->retry_list);
2832	INIT_LIST_HEAD(&conf->bio_end_io_list);
2833
2834	spin_lock_init(&conf->resync_lock);
2835	init_waitqueue_head(&conf->wait_barrier);
2836
2837	bio_list_init(&conf->pending_bio_list);
2838	conf->pending_count = 0;
2839	conf->recovery_disabled = mddev->recovery_disabled - 1;
2840
2841	conf->start_next_window = MaxSector;
2842	conf->current_window_requests = conf->next_window_requests = 0;
2843
2844	err = -EIO;
2845	for (i = 0; i < conf->raid_disks * 2; i++) {
2846
2847		disk = conf->mirrors + i;
2848
2849		if (i < conf->raid_disks &&
2850		    disk[conf->raid_disks].rdev) {
2851			/* This slot has a replacement. */
2852			if (!disk->rdev) {
2853				/* No original, just make the replacement
2854				 * a recovering spare
2855				 */
2856				disk->rdev =
2857					disk[conf->raid_disks].rdev;
2858				disk[conf->raid_disks].rdev = NULL;
2859			} else if (!test_bit(In_sync, &disk->rdev->flags))
2860				/* Original is not in_sync - bad */
2861				goto abort;
2862		}
2863
2864		if (!disk->rdev ||
2865		    !test_bit(In_sync, &disk->rdev->flags)) {
2866			disk->head_position = 0;
2867			if (disk->rdev &&
2868			    (disk->rdev->saved_raid_disk < 0))
2869				conf->fullsync = 1;
2870		}
2871	}
2872
2873	err = -ENOMEM;
2874	conf->thread = md_register_thread(raid1d, mddev, "raid1");
2875	if (!conf->thread) {
2876		printk(KERN_ERR
2877		       "md/raid1:%s: couldn't allocate thread\n",
2878		       mdname(mddev));
2879		goto abort;
2880	}
2881
2882	return conf;
2883
2884 abort:
2885	if (conf) {
2886		mempool_destroy(conf->r1bio_pool);
2887		kfree(conf->mirrors);
2888		safe_put_page(conf->tmppage);
2889		kfree(conf->poolinfo);
2890		kfree(conf);
2891	}
2892	return ERR_PTR(err);
2893}
2894
2895static void raid1_free(struct mddev *mddev, void *priv);
2896static int raid1_run(struct mddev *mddev)
2897{
2898	struct r1conf *conf;
2899	int i;
2900	struct md_rdev *rdev;
2901	int ret;
2902	bool discard_supported = false;
2903
2904	if (mddev->level != 1) {
2905		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
2906		       mdname(mddev), mddev->level);
2907		return -EIO;
2908	}
2909	if (mddev->reshape_position != MaxSector) {
2910		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
2911		       mdname(mddev));
2912		return -EIO;
2913	}
2914	/*
2915	 * copy the already verified devices into our private RAID1
2916	 * bookkeeping area. [whatever we allocate in run(),
2917	 * should be freed in raid1_free()]
2918	 */
2919	if (mddev->private == NULL)
2920		conf = setup_conf(mddev);
2921	else
2922		conf = mddev->private;
2923
2924	if (IS_ERR(conf))
2925		return PTR_ERR(conf);
2926
2927	if (mddev->queue)
2928		blk_queue_max_write_same_sectors(mddev->queue, 0);
2929
2930	rdev_for_each(rdev, mddev) {
2931		if (!mddev->gendisk)
2932			continue;
2933		disk_stack_limits(mddev->gendisk, rdev->bdev,
2934				  rdev->data_offset << 9);
2935		if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936			discard_supported = true;
2937	}
2938
2939	mddev->degraded = 0;
2940	for (i=0; i < conf->raid_disks; i++)
2941		if (conf->mirrors[i].rdev == NULL ||
2942		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944			mddev->degraded++;
2945
2946	if (conf->raid_disks - mddev->degraded == 1)
2947		mddev->recovery_cp = MaxSector;
2948
2949	if (mddev->recovery_cp != MaxSector)
2950		printk(KERN_NOTICE "md/raid1:%s: not clean"
2951		       " -- starting background reconstruction\n",
2952		       mdname(mddev));
2953	printk(KERN_INFO
2954		"md/raid1:%s: active with %d out of %d mirrors\n",
2955		mdname(mddev), mddev->raid_disks - mddev->degraded,
2956		mddev->raid_disks);
2957
2958	/*
2959	 * Ok, everything is just fine now
2960	 */
2961	mddev->thread = conf->thread;
2962	conf->thread = NULL;
2963	mddev->private = conf;
 
2964
2965	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2966
2967	if (mddev->queue) {
2968		if (discard_supported)
2969			queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2970						mddev->queue);
2971		else
2972			queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2973						  mddev->queue);
2974	}
2975
2976	ret =  md_integrity_register(mddev);
2977	if (ret) {
2978		md_unregister_thread(&mddev->thread);
2979		raid1_free(mddev, conf);
2980	}
2981	return ret;
2982}
2983
2984static void raid1_free(struct mddev *mddev, void *priv)
2985{
2986	struct r1conf *conf = priv;
2987
2988	mempool_destroy(conf->r1bio_pool);
2989	kfree(conf->mirrors);
2990	safe_put_page(conf->tmppage);
2991	kfree(conf->poolinfo);
2992	kfree(conf);
2993}
2994
2995static int raid1_resize(struct mddev *mddev, sector_t sectors)
2996{
2997	/* no resync is happening, and there is enough space
2998	 * on all devices, so we can resize.
2999	 * We need to make sure resync covers any new space.
3000	 * If the array is shrinking we should possibly wait until
3001	 * any io in the removed space completes, but it hardly seems
3002	 * worth it.
3003	 */
3004	sector_t newsize = raid1_size(mddev, sectors, 0);
3005	if (mddev->external_size &&
3006	    mddev->array_sectors > newsize)
3007		return -EINVAL;
3008	if (mddev->bitmap) {
3009		int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3010		if (ret)
3011			return ret;
3012	}
3013	md_set_array_sectors(mddev, newsize);
3014	set_capacity(mddev->gendisk, mddev->array_sectors);
3015	revalidate_disk(mddev->gendisk);
3016	if (sectors > mddev->dev_sectors &&
3017	    mddev->recovery_cp > mddev->dev_sectors) {
3018		mddev->recovery_cp = mddev->dev_sectors;
3019		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020	}
3021	mddev->dev_sectors = sectors;
3022	mddev->resync_max_sectors = sectors;
3023	return 0;
3024}
3025
3026static int raid1_reshape(struct mddev *mddev)
3027{
3028	/* We need to:
3029	 * 1/ resize the r1bio_pool
3030	 * 2/ resize conf->mirrors
3031	 *
3032	 * We allocate a new r1bio_pool if we can.
3033	 * Then raise a device barrier and wait until all IO stops.
3034	 * Then resize conf->mirrors and swap in the new r1bio pool.
3035	 *
3036	 * At the same time, we "pack" the devices so that all the missing
3037	 * devices have the higher raid_disk numbers.
3038	 */
3039	mempool_t *newpool, *oldpool;
3040	struct pool_info *newpoolinfo;
3041	struct raid1_info *newmirrors;
3042	struct r1conf *conf = mddev->private;
3043	int cnt, raid_disks;
3044	unsigned long flags;
3045	int d, d2, err;
3046
3047	/* Cannot change chunk_size, layout, or level */
3048	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
3049	    mddev->layout != mddev->new_layout ||
3050	    mddev->level != mddev->new_level) {
3051		mddev->new_chunk_sectors = mddev->chunk_sectors;
3052		mddev->new_layout = mddev->layout;
3053		mddev->new_level = mddev->level;
3054		return -EINVAL;
3055	}
3056
3057	if (!mddev_is_clustered(mddev)) {
3058		err = md_allow_write(mddev);
3059		if (err)
3060			return err;
3061	}
3062
3063	raid_disks = mddev->raid_disks + mddev->delta_disks;
3064
3065	if (raid_disks < conf->raid_disks) {
3066		cnt=0;
3067		for (d= 0; d < conf->raid_disks; d++)
3068			if (conf->mirrors[d].rdev)
3069				cnt++;
3070		if (cnt > raid_disks)
3071			return -EBUSY;
3072	}
3073
3074	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3075	if (!newpoolinfo)
3076		return -ENOMEM;
3077	newpoolinfo->mddev = mddev;
3078	newpoolinfo->raid_disks = raid_disks * 2;
3079
3080	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3081				 r1bio_pool_free, newpoolinfo);
3082	if (!newpool) {
3083		kfree(newpoolinfo);
3084		return -ENOMEM;
3085	}
3086	newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
3087			     GFP_KERNEL);
3088	if (!newmirrors) {
3089		kfree(newpoolinfo);
3090		mempool_destroy(newpool);
3091		return -ENOMEM;
3092	}
3093
3094	freeze_array(conf, 0);
3095
3096	/* ok, everything is stopped */
3097	oldpool = conf->r1bio_pool;
3098	conf->r1bio_pool = newpool;
3099
3100	for (d = d2 = 0; d < conf->raid_disks; d++) {
3101		struct md_rdev *rdev = conf->mirrors[d].rdev;
3102		if (rdev && rdev->raid_disk != d2) {
3103			sysfs_unlink_rdev(mddev, rdev);
3104			rdev->raid_disk = d2;
3105			sysfs_unlink_rdev(mddev, rdev);
3106			if (sysfs_link_rdev(mddev, rdev))
3107				printk(KERN_WARNING
3108				       "md/raid1:%s: cannot register rd%d\n",
3109				       mdname(mddev), rdev->raid_disk);
3110		}
3111		if (rdev)
3112			newmirrors[d2++].rdev = rdev;
3113	}
3114	kfree(conf->mirrors);
3115	conf->mirrors = newmirrors;
3116	kfree(conf->poolinfo);
3117	conf->poolinfo = newpoolinfo;
3118
3119	spin_lock_irqsave(&conf->device_lock, flags);
3120	mddev->degraded += (raid_disks - conf->raid_disks);
3121	spin_unlock_irqrestore(&conf->device_lock, flags);
3122	conf->raid_disks = mddev->raid_disks = raid_disks;
3123	mddev->delta_disks = 0;
3124
3125	unfreeze_array(conf);
3126
3127	set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
3128	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129	md_wakeup_thread(mddev->thread);
3130
3131	mempool_destroy(oldpool);
3132	return 0;
3133}
3134
3135static void raid1_quiesce(struct mddev *mddev, int state)
3136{
3137	struct r1conf *conf = mddev->private;
3138
3139	switch(state) {
3140	case 2: /* wake for suspend */
3141		wake_up(&conf->wait_barrier);
3142		break;
3143	case 1:
3144		freeze_array(conf, 0);
3145		break;
3146	case 0:
3147		unfreeze_array(conf);
3148		break;
3149	}
3150}
3151
3152static void *raid1_takeover(struct mddev *mddev)
3153{
3154	/* raid1 can take over:
3155	 *  raid5 with 2 devices, any layout or chunk size
3156	 */
3157	if (mddev->level == 5 && mddev->raid_disks == 2) {
3158		struct r1conf *conf;
3159		mddev->new_level = 1;
3160		mddev->new_layout = 0;
3161		mddev->new_chunk_sectors = 0;
3162		conf = setup_conf(mddev);
3163		if (!IS_ERR(conf))
3164			/* Array must appear to be quiesced */
3165			conf->array_frozen = 1;
 
 
 
3166		return conf;
3167	}
3168	return ERR_PTR(-EINVAL);
3169}
3170
3171static struct md_personality raid1_personality =
3172{
3173	.name		= "raid1",
3174	.level		= 1,
3175	.owner		= THIS_MODULE,
3176	.make_request	= raid1_make_request,
3177	.run		= raid1_run,
3178	.free		= raid1_free,
3179	.status		= raid1_status,
3180	.error_handler	= raid1_error,
3181	.hot_add_disk	= raid1_add_disk,
3182	.hot_remove_disk= raid1_remove_disk,
3183	.spare_active	= raid1_spare_active,
3184	.sync_request	= raid1_sync_request,
3185	.resize		= raid1_resize,
3186	.size		= raid1_size,
3187	.check_reshape	= raid1_reshape,
3188	.quiesce	= raid1_quiesce,
3189	.takeover	= raid1_takeover,
3190	.congested	= raid1_congested,
3191};
3192
3193static int __init raid_init(void)
3194{
3195	return register_md_personality(&raid1_personality);
3196}
3197
3198static void raid_exit(void)
3199{
3200	unregister_md_personality(&raid1_personality);
3201}
3202
3203module_init(raid_init);
3204module_exit(raid_exit);
3205MODULE_LICENSE("GPL");
3206MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
3207MODULE_ALIAS("md-personality-3"); /* RAID1 */
3208MODULE_ALIAS("md-raid1");
3209MODULE_ALIAS("md-level-1");
3210
3211module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);