Loading...
1/*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/device.h>
29#include <linux/clocksource.h>
30#include <linux/init.h>
31#include <linux/module.h>
32#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33#include <linux/tick.h>
34#include <linux/kthread.h>
35
36#include "tick-internal.h"
37#include "timekeeping_internal.h"
38
39/**
40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41 * @mult: pointer to mult variable
42 * @shift: pointer to shift variable
43 * @from: frequency to convert from
44 * @to: frequency to convert to
45 * @maxsec: guaranteed runtime conversion range in seconds
46 *
47 * The function evaluates the shift/mult pair for the scaled math
48 * operations of clocksources and clockevents.
49 *
50 * @to and @from are frequency values in HZ. For clock sources @to is
51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
53 *
54 * The @maxsec conversion range argument controls the time frame in
55 * seconds which must be covered by the runtime conversion with the
56 * calculated mult and shift factors. This guarantees that no 64bit
57 * overflow happens when the input value of the conversion is
58 * multiplied with the calculated mult factor. Larger ranges may
59 * reduce the conversion accuracy by chosing smaller mult and shift
60 * factors.
61 */
62void
63clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64{
65 u64 tmp;
66 u32 sft, sftacc= 32;
67
68 /*
69 * Calculate the shift factor which is limiting the conversion
70 * range:
71 */
72 tmp = ((u64)maxsec * from) >> 32;
73 while (tmp) {
74 tmp >>=1;
75 sftacc--;
76 }
77
78 /*
79 * Find the conversion shift/mult pair which has the best
80 * accuracy and fits the maxsec conversion range:
81 */
82 for (sft = 32; sft > 0; sft--) {
83 tmp = (u64) to << sft;
84 tmp += from / 2;
85 do_div(tmp, from);
86 if ((tmp >> sftacc) == 0)
87 break;
88 }
89 *mult = tmp;
90 *shift = sft;
91}
92EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
93
94/*[Clocksource internal variables]---------
95 * curr_clocksource:
96 * currently selected clocksource.
97 * clocksource_list:
98 * linked list with the registered clocksources
99 * clocksource_mutex:
100 * protects manipulations to curr_clocksource and the clocksource_list
101 * override_name:
102 * Name of the user-specified clocksource.
103 */
104static struct clocksource *curr_clocksource;
105static LIST_HEAD(clocksource_list);
106static DEFINE_MUTEX(clocksource_mutex);
107static char override_name[CS_NAME_LEN];
108static int finished_booting;
109
110#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111static void clocksource_watchdog_work(struct work_struct *work);
112static void clocksource_select(void);
113
114static LIST_HEAD(watchdog_list);
115static struct clocksource *watchdog;
116static struct timer_list watchdog_timer;
117static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118static DEFINE_SPINLOCK(watchdog_lock);
119static int watchdog_running;
120static atomic_t watchdog_reset_pending;
121
122static int clocksource_watchdog_kthread(void *data);
123static void __clocksource_change_rating(struct clocksource *cs, int rating);
124
125/*
126 * Interval: 0.5sec Threshold: 0.0625s
127 */
128#define WATCHDOG_INTERVAL (HZ >> 1)
129#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
130
131static void clocksource_watchdog_work(struct work_struct *work)
132{
133 /*
134 * If kthread_run fails the next watchdog scan over the
135 * watchdog_list will find the unstable clock again.
136 */
137 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
138}
139
140static void __clocksource_unstable(struct clocksource *cs)
141{
142 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
143 cs->flags |= CLOCK_SOURCE_UNSTABLE;
144 if (finished_booting)
145 schedule_work(&watchdog_work);
146}
147
148/**
149 * clocksource_mark_unstable - mark clocksource unstable via watchdog
150 * @cs: clocksource to be marked unstable
151 *
152 * This function is called instead of clocksource_change_rating from
153 * cpu hotplug code to avoid a deadlock between the clocksource mutex
154 * and the cpu hotplug mutex. It defers the update of the clocksource
155 * to the watchdog thread.
156 */
157void clocksource_mark_unstable(struct clocksource *cs)
158{
159 unsigned long flags;
160
161 spin_lock_irqsave(&watchdog_lock, flags);
162 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
163 if (list_empty(&cs->wd_list))
164 list_add(&cs->wd_list, &watchdog_list);
165 __clocksource_unstable(cs);
166 }
167 spin_unlock_irqrestore(&watchdog_lock, flags);
168}
169
170static void clocksource_watchdog(unsigned long data)
171{
172 struct clocksource *cs;
173 u64 csnow, wdnow, cslast, wdlast, delta;
174 int64_t wd_nsec, cs_nsec;
175 int next_cpu, reset_pending;
176
177 spin_lock(&watchdog_lock);
178 if (!watchdog_running)
179 goto out;
180
181 reset_pending = atomic_read(&watchdog_reset_pending);
182
183 list_for_each_entry(cs, &watchdog_list, wd_list) {
184
185 /* Clocksource already marked unstable? */
186 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
187 if (finished_booting)
188 schedule_work(&watchdog_work);
189 continue;
190 }
191
192 local_irq_disable();
193 csnow = cs->read(cs);
194 wdnow = watchdog->read(watchdog);
195 local_irq_enable();
196
197 /* Clocksource initialized ? */
198 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
199 atomic_read(&watchdog_reset_pending)) {
200 cs->flags |= CLOCK_SOURCE_WATCHDOG;
201 cs->wd_last = wdnow;
202 cs->cs_last = csnow;
203 continue;
204 }
205
206 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
207 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
208 watchdog->shift);
209
210 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
211 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
212 wdlast = cs->wd_last; /* save these in case we print them */
213 cslast = cs->cs_last;
214 cs->cs_last = csnow;
215 cs->wd_last = wdnow;
216
217 if (atomic_read(&watchdog_reset_pending))
218 continue;
219
220 /* Check the deviation from the watchdog clocksource. */
221 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
222 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
223 smp_processor_id(), cs->name);
224 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
225 watchdog->name, wdnow, wdlast, watchdog->mask);
226 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
227 cs->name, csnow, cslast, cs->mask);
228 __clocksource_unstable(cs);
229 continue;
230 }
231
232 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
233 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
234 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
235 /* Mark it valid for high-res. */
236 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
237
238 /*
239 * clocksource_done_booting() will sort it if
240 * finished_booting is not set yet.
241 */
242 if (!finished_booting)
243 continue;
244
245 /*
246 * If this is not the current clocksource let
247 * the watchdog thread reselect it. Due to the
248 * change to high res this clocksource might
249 * be preferred now. If it is the current
250 * clocksource let the tick code know about
251 * that change.
252 */
253 if (cs != curr_clocksource) {
254 cs->flags |= CLOCK_SOURCE_RESELECT;
255 schedule_work(&watchdog_work);
256 } else {
257 tick_clock_notify();
258 }
259 }
260 }
261
262 /*
263 * We only clear the watchdog_reset_pending, when we did a
264 * full cycle through all clocksources.
265 */
266 if (reset_pending)
267 atomic_dec(&watchdog_reset_pending);
268
269 /*
270 * Cycle through CPUs to check if the CPUs stay synchronized
271 * to each other.
272 */
273 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
274 if (next_cpu >= nr_cpu_ids)
275 next_cpu = cpumask_first(cpu_online_mask);
276 watchdog_timer.expires += WATCHDOG_INTERVAL;
277 add_timer_on(&watchdog_timer, next_cpu);
278out:
279 spin_unlock(&watchdog_lock);
280}
281
282static inline void clocksource_start_watchdog(void)
283{
284 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
285 return;
286 init_timer(&watchdog_timer);
287 watchdog_timer.function = clocksource_watchdog;
288 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
289 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
290 watchdog_running = 1;
291}
292
293static inline void clocksource_stop_watchdog(void)
294{
295 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
296 return;
297 del_timer(&watchdog_timer);
298 watchdog_running = 0;
299}
300
301static inline void clocksource_reset_watchdog(void)
302{
303 struct clocksource *cs;
304
305 list_for_each_entry(cs, &watchdog_list, wd_list)
306 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
307}
308
309static void clocksource_resume_watchdog(void)
310{
311 atomic_inc(&watchdog_reset_pending);
312}
313
314static void clocksource_enqueue_watchdog(struct clocksource *cs)
315{
316 unsigned long flags;
317
318 spin_lock_irqsave(&watchdog_lock, flags);
319 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
320 /* cs is a clocksource to be watched. */
321 list_add(&cs->wd_list, &watchdog_list);
322 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
323 } else {
324 /* cs is a watchdog. */
325 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
326 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
327 }
328 spin_unlock_irqrestore(&watchdog_lock, flags);
329}
330
331static void clocksource_select_watchdog(bool fallback)
332{
333 struct clocksource *cs, *old_wd;
334 unsigned long flags;
335
336 spin_lock_irqsave(&watchdog_lock, flags);
337 /* save current watchdog */
338 old_wd = watchdog;
339 if (fallback)
340 watchdog = NULL;
341
342 list_for_each_entry(cs, &clocksource_list, list) {
343 /* cs is a clocksource to be watched. */
344 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
345 continue;
346
347 /* Skip current if we were requested for a fallback. */
348 if (fallback && cs == old_wd)
349 continue;
350
351 /* Pick the best watchdog. */
352 if (!watchdog || cs->rating > watchdog->rating)
353 watchdog = cs;
354 }
355 /* If we failed to find a fallback restore the old one. */
356 if (!watchdog)
357 watchdog = old_wd;
358
359 /* If we changed the watchdog we need to reset cycles. */
360 if (watchdog != old_wd)
361 clocksource_reset_watchdog();
362
363 /* Check if the watchdog timer needs to be started. */
364 clocksource_start_watchdog();
365 spin_unlock_irqrestore(&watchdog_lock, flags);
366}
367
368static void clocksource_dequeue_watchdog(struct clocksource *cs)
369{
370 unsigned long flags;
371
372 spin_lock_irqsave(&watchdog_lock, flags);
373 if (cs != watchdog) {
374 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
375 /* cs is a watched clocksource. */
376 list_del_init(&cs->wd_list);
377 /* Check if the watchdog timer needs to be stopped. */
378 clocksource_stop_watchdog();
379 }
380 }
381 spin_unlock_irqrestore(&watchdog_lock, flags);
382}
383
384static int __clocksource_watchdog_kthread(void)
385{
386 struct clocksource *cs, *tmp;
387 unsigned long flags;
388 LIST_HEAD(unstable);
389 int select = 0;
390
391 spin_lock_irqsave(&watchdog_lock, flags);
392 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
393 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
394 list_del_init(&cs->wd_list);
395 list_add(&cs->wd_list, &unstable);
396 select = 1;
397 }
398 if (cs->flags & CLOCK_SOURCE_RESELECT) {
399 cs->flags &= ~CLOCK_SOURCE_RESELECT;
400 select = 1;
401 }
402 }
403 /* Check if the watchdog timer needs to be stopped. */
404 clocksource_stop_watchdog();
405 spin_unlock_irqrestore(&watchdog_lock, flags);
406
407 /* Needs to be done outside of watchdog lock */
408 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
409 list_del_init(&cs->wd_list);
410 __clocksource_change_rating(cs, 0);
411 }
412 return select;
413}
414
415static int clocksource_watchdog_kthread(void *data)
416{
417 mutex_lock(&clocksource_mutex);
418 if (__clocksource_watchdog_kthread())
419 clocksource_select();
420 mutex_unlock(&clocksource_mutex);
421 return 0;
422}
423
424static bool clocksource_is_watchdog(struct clocksource *cs)
425{
426 return cs == watchdog;
427}
428
429#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
430
431static void clocksource_enqueue_watchdog(struct clocksource *cs)
432{
433 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
434 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
435}
436
437static void clocksource_select_watchdog(bool fallback) { }
438static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
439static inline void clocksource_resume_watchdog(void) { }
440static inline int __clocksource_watchdog_kthread(void) { return 0; }
441static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
442void clocksource_mark_unstable(struct clocksource *cs) { }
443
444#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
445
446/**
447 * clocksource_suspend - suspend the clocksource(s)
448 */
449void clocksource_suspend(void)
450{
451 struct clocksource *cs;
452
453 list_for_each_entry_reverse(cs, &clocksource_list, list)
454 if (cs->suspend)
455 cs->suspend(cs);
456}
457
458/**
459 * clocksource_resume - resume the clocksource(s)
460 */
461void clocksource_resume(void)
462{
463 struct clocksource *cs;
464
465 list_for_each_entry(cs, &clocksource_list, list)
466 if (cs->resume)
467 cs->resume(cs);
468
469 clocksource_resume_watchdog();
470}
471
472/**
473 * clocksource_touch_watchdog - Update watchdog
474 *
475 * Update the watchdog after exception contexts such as kgdb so as not
476 * to incorrectly trip the watchdog. This might fail when the kernel
477 * was stopped in code which holds watchdog_lock.
478 */
479void clocksource_touch_watchdog(void)
480{
481 clocksource_resume_watchdog();
482}
483
484/**
485 * clocksource_max_adjustment- Returns max adjustment amount
486 * @cs: Pointer to clocksource
487 *
488 */
489static u32 clocksource_max_adjustment(struct clocksource *cs)
490{
491 u64 ret;
492 /*
493 * We won't try to correct for more than 11% adjustments (110,000 ppm),
494 */
495 ret = (u64)cs->mult * 11;
496 do_div(ret,100);
497 return (u32)ret;
498}
499
500/**
501 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
502 * @mult: cycle to nanosecond multiplier
503 * @shift: cycle to nanosecond divisor (power of two)
504 * @maxadj: maximum adjustment value to mult (~11%)
505 * @mask: bitmask for two's complement subtraction of non 64 bit counters
506 * @max_cyc: maximum cycle value before potential overflow (does not include
507 * any safety margin)
508 *
509 * NOTE: This function includes a safety margin of 50%, in other words, we
510 * return half the number of nanoseconds the hardware counter can technically
511 * cover. This is done so that we can potentially detect problems caused by
512 * delayed timers or bad hardware, which might result in time intervals that
513 * are larger than what the math used can handle without overflows.
514 */
515u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
516{
517 u64 max_nsecs, max_cycles;
518
519 /*
520 * Calculate the maximum number of cycles that we can pass to the
521 * cyc2ns() function without overflowing a 64-bit result.
522 */
523 max_cycles = ULLONG_MAX;
524 do_div(max_cycles, mult+maxadj);
525
526 /*
527 * The actual maximum number of cycles we can defer the clocksource is
528 * determined by the minimum of max_cycles and mask.
529 * Note: Here we subtract the maxadj to make sure we don't sleep for
530 * too long if there's a large negative adjustment.
531 */
532 max_cycles = min(max_cycles, mask);
533 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
534
535 /* return the max_cycles value as well if requested */
536 if (max_cyc)
537 *max_cyc = max_cycles;
538
539 /* Return 50% of the actual maximum, so we can detect bad values */
540 max_nsecs >>= 1;
541
542 return max_nsecs;
543}
544
545/**
546 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
547 * @cs: Pointer to clocksource to be updated
548 *
549 */
550static inline void clocksource_update_max_deferment(struct clocksource *cs)
551{
552 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
553 cs->maxadj, cs->mask,
554 &cs->max_cycles);
555}
556
557#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
558
559static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
560{
561 struct clocksource *cs;
562
563 if (!finished_booting || list_empty(&clocksource_list))
564 return NULL;
565
566 /*
567 * We pick the clocksource with the highest rating. If oneshot
568 * mode is active, we pick the highres valid clocksource with
569 * the best rating.
570 */
571 list_for_each_entry(cs, &clocksource_list, list) {
572 if (skipcur && cs == curr_clocksource)
573 continue;
574 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
575 continue;
576 return cs;
577 }
578 return NULL;
579}
580
581static void __clocksource_select(bool skipcur)
582{
583 bool oneshot = tick_oneshot_mode_active();
584 struct clocksource *best, *cs;
585
586 /* Find the best suitable clocksource */
587 best = clocksource_find_best(oneshot, skipcur);
588 if (!best)
589 return;
590
591 /* Check for the override clocksource. */
592 list_for_each_entry(cs, &clocksource_list, list) {
593 if (skipcur && cs == curr_clocksource)
594 continue;
595 if (strcmp(cs->name, override_name) != 0)
596 continue;
597 /*
598 * Check to make sure we don't switch to a non-highres
599 * capable clocksource if the tick code is in oneshot
600 * mode (highres or nohz)
601 */
602 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
603 /* Override clocksource cannot be used. */
604 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
605 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
606 cs->name);
607 override_name[0] = 0;
608 } else {
609 /*
610 * The override cannot be currently verified.
611 * Deferring to let the watchdog check.
612 */
613 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
614 cs->name);
615 }
616 } else
617 /* Override clocksource can be used. */
618 best = cs;
619 break;
620 }
621
622 if (curr_clocksource != best && !timekeeping_notify(best)) {
623 pr_info("Switched to clocksource %s\n", best->name);
624 curr_clocksource = best;
625 }
626}
627
628/**
629 * clocksource_select - Select the best clocksource available
630 *
631 * Private function. Must hold clocksource_mutex when called.
632 *
633 * Select the clocksource with the best rating, or the clocksource,
634 * which is selected by userspace override.
635 */
636static void clocksource_select(void)
637{
638 __clocksource_select(false);
639}
640
641static void clocksource_select_fallback(void)
642{
643 __clocksource_select(true);
644}
645
646#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
647static inline void clocksource_select(void) { }
648static inline void clocksource_select_fallback(void) { }
649
650#endif
651
652/*
653 * clocksource_done_booting - Called near the end of core bootup
654 *
655 * Hack to avoid lots of clocksource churn at boot time.
656 * We use fs_initcall because we want this to start before
657 * device_initcall but after subsys_initcall.
658 */
659static int __init clocksource_done_booting(void)
660{
661 mutex_lock(&clocksource_mutex);
662 curr_clocksource = clocksource_default_clock();
663 finished_booting = 1;
664 /*
665 * Run the watchdog first to eliminate unstable clock sources
666 */
667 __clocksource_watchdog_kthread();
668 clocksource_select();
669 mutex_unlock(&clocksource_mutex);
670 return 0;
671}
672fs_initcall(clocksource_done_booting);
673
674/*
675 * Enqueue the clocksource sorted by rating
676 */
677static void clocksource_enqueue(struct clocksource *cs)
678{
679 struct list_head *entry = &clocksource_list;
680 struct clocksource *tmp;
681
682 list_for_each_entry(tmp, &clocksource_list, list) {
683 /* Keep track of the place, where to insert */
684 if (tmp->rating < cs->rating)
685 break;
686 entry = &tmp->list;
687 }
688 list_add(&cs->list, entry);
689}
690
691/**
692 * __clocksource_update_freq_scale - Used update clocksource with new freq
693 * @cs: clocksource to be registered
694 * @scale: Scale factor multiplied against freq to get clocksource hz
695 * @freq: clocksource frequency (cycles per second) divided by scale
696 *
697 * This should only be called from the clocksource->enable() method.
698 *
699 * This *SHOULD NOT* be called directly! Please use the
700 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
701 * functions.
702 */
703void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
704{
705 u64 sec;
706
707 /*
708 * Default clocksources are *special* and self-define their mult/shift.
709 * But, you're not special, so you should specify a freq value.
710 */
711 if (freq) {
712 /*
713 * Calc the maximum number of seconds which we can run before
714 * wrapping around. For clocksources which have a mask > 32-bit
715 * we need to limit the max sleep time to have a good
716 * conversion precision. 10 minutes is still a reasonable
717 * amount. That results in a shift value of 24 for a
718 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
719 * ~ 0.06ppm granularity for NTP.
720 */
721 sec = cs->mask;
722 do_div(sec, freq);
723 do_div(sec, scale);
724 if (!sec)
725 sec = 1;
726 else if (sec > 600 && cs->mask > UINT_MAX)
727 sec = 600;
728
729 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
730 NSEC_PER_SEC / scale, sec * scale);
731 }
732 /*
733 * Ensure clocksources that have large 'mult' values don't overflow
734 * when adjusted.
735 */
736 cs->maxadj = clocksource_max_adjustment(cs);
737 while (freq && ((cs->mult + cs->maxadj < cs->mult)
738 || (cs->mult - cs->maxadj > cs->mult))) {
739 cs->mult >>= 1;
740 cs->shift--;
741 cs->maxadj = clocksource_max_adjustment(cs);
742 }
743
744 /*
745 * Only warn for *special* clocksources that self-define
746 * their mult/shift values and don't specify a freq.
747 */
748 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
749 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
750 cs->name);
751
752 clocksource_update_max_deferment(cs);
753
754 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
755 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
756}
757EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
758
759/**
760 * __clocksource_register_scale - Used to install new clocksources
761 * @cs: clocksource to be registered
762 * @scale: Scale factor multiplied against freq to get clocksource hz
763 * @freq: clocksource frequency (cycles per second) divided by scale
764 *
765 * Returns -EBUSY if registration fails, zero otherwise.
766 *
767 * This *SHOULD NOT* be called directly! Please use the
768 * clocksource_register_hz() or clocksource_register_khz helper functions.
769 */
770int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
771{
772
773 /* Initialize mult/shift and max_idle_ns */
774 __clocksource_update_freq_scale(cs, scale, freq);
775
776 /* Add clocksource to the clocksource list */
777 mutex_lock(&clocksource_mutex);
778 clocksource_enqueue(cs);
779 clocksource_enqueue_watchdog(cs);
780 clocksource_select();
781 clocksource_select_watchdog(false);
782 mutex_unlock(&clocksource_mutex);
783 return 0;
784}
785EXPORT_SYMBOL_GPL(__clocksource_register_scale);
786
787static void __clocksource_change_rating(struct clocksource *cs, int rating)
788{
789 list_del(&cs->list);
790 cs->rating = rating;
791 clocksource_enqueue(cs);
792}
793
794/**
795 * clocksource_change_rating - Change the rating of a registered clocksource
796 * @cs: clocksource to be changed
797 * @rating: new rating
798 */
799void clocksource_change_rating(struct clocksource *cs, int rating)
800{
801 mutex_lock(&clocksource_mutex);
802 __clocksource_change_rating(cs, rating);
803 clocksource_select();
804 clocksource_select_watchdog(false);
805 mutex_unlock(&clocksource_mutex);
806}
807EXPORT_SYMBOL(clocksource_change_rating);
808
809/*
810 * Unbind clocksource @cs. Called with clocksource_mutex held
811 */
812static int clocksource_unbind(struct clocksource *cs)
813{
814 if (clocksource_is_watchdog(cs)) {
815 /* Select and try to install a replacement watchdog. */
816 clocksource_select_watchdog(true);
817 if (clocksource_is_watchdog(cs))
818 return -EBUSY;
819 }
820
821 if (cs == curr_clocksource) {
822 /* Select and try to install a replacement clock source */
823 clocksource_select_fallback();
824 if (curr_clocksource == cs)
825 return -EBUSY;
826 }
827 clocksource_dequeue_watchdog(cs);
828 list_del_init(&cs->list);
829 return 0;
830}
831
832/**
833 * clocksource_unregister - remove a registered clocksource
834 * @cs: clocksource to be unregistered
835 */
836int clocksource_unregister(struct clocksource *cs)
837{
838 int ret = 0;
839
840 mutex_lock(&clocksource_mutex);
841 if (!list_empty(&cs->list))
842 ret = clocksource_unbind(cs);
843 mutex_unlock(&clocksource_mutex);
844 return ret;
845}
846EXPORT_SYMBOL(clocksource_unregister);
847
848#ifdef CONFIG_SYSFS
849/**
850 * sysfs_show_current_clocksources - sysfs interface for current clocksource
851 * @dev: unused
852 * @attr: unused
853 * @buf: char buffer to be filled with clocksource list
854 *
855 * Provides sysfs interface for listing current clocksource.
856 */
857static ssize_t
858sysfs_show_current_clocksources(struct device *dev,
859 struct device_attribute *attr, char *buf)
860{
861 ssize_t count = 0;
862
863 mutex_lock(&clocksource_mutex);
864 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
865 mutex_unlock(&clocksource_mutex);
866
867 return count;
868}
869
870ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
871{
872 size_t ret = cnt;
873
874 /* strings from sysfs write are not 0 terminated! */
875 if (!cnt || cnt >= CS_NAME_LEN)
876 return -EINVAL;
877
878 /* strip of \n: */
879 if (buf[cnt-1] == '\n')
880 cnt--;
881 if (cnt > 0)
882 memcpy(dst, buf, cnt);
883 dst[cnt] = 0;
884 return ret;
885}
886
887/**
888 * sysfs_override_clocksource - interface for manually overriding clocksource
889 * @dev: unused
890 * @attr: unused
891 * @buf: name of override clocksource
892 * @count: length of buffer
893 *
894 * Takes input from sysfs interface for manually overriding the default
895 * clocksource selection.
896 */
897static ssize_t sysfs_override_clocksource(struct device *dev,
898 struct device_attribute *attr,
899 const char *buf, size_t count)
900{
901 ssize_t ret;
902
903 mutex_lock(&clocksource_mutex);
904
905 ret = sysfs_get_uname(buf, override_name, count);
906 if (ret >= 0)
907 clocksource_select();
908
909 mutex_unlock(&clocksource_mutex);
910
911 return ret;
912}
913
914/**
915 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
916 * @dev: unused
917 * @attr: unused
918 * @buf: unused
919 * @count: length of buffer
920 *
921 * Takes input from sysfs interface for manually unbinding a clocksource.
922 */
923static ssize_t sysfs_unbind_clocksource(struct device *dev,
924 struct device_attribute *attr,
925 const char *buf, size_t count)
926{
927 struct clocksource *cs;
928 char name[CS_NAME_LEN];
929 ssize_t ret;
930
931 ret = sysfs_get_uname(buf, name, count);
932 if (ret < 0)
933 return ret;
934
935 ret = -ENODEV;
936 mutex_lock(&clocksource_mutex);
937 list_for_each_entry(cs, &clocksource_list, list) {
938 if (strcmp(cs->name, name))
939 continue;
940 ret = clocksource_unbind(cs);
941 break;
942 }
943 mutex_unlock(&clocksource_mutex);
944
945 return ret ? ret : count;
946}
947
948/**
949 * sysfs_show_available_clocksources - sysfs interface for listing clocksource
950 * @dev: unused
951 * @attr: unused
952 * @buf: char buffer to be filled with clocksource list
953 *
954 * Provides sysfs interface for listing registered clocksources
955 */
956static ssize_t
957sysfs_show_available_clocksources(struct device *dev,
958 struct device_attribute *attr,
959 char *buf)
960{
961 struct clocksource *src;
962 ssize_t count = 0;
963
964 mutex_lock(&clocksource_mutex);
965 list_for_each_entry(src, &clocksource_list, list) {
966 /*
967 * Don't show non-HRES clocksource if the tick code is
968 * in one shot mode (highres=on or nohz=on)
969 */
970 if (!tick_oneshot_mode_active() ||
971 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
972 count += snprintf(buf + count,
973 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
974 "%s ", src->name);
975 }
976 mutex_unlock(&clocksource_mutex);
977
978 count += snprintf(buf + count,
979 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
980
981 return count;
982}
983
984/*
985 * Sysfs setup bits:
986 */
987static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
988 sysfs_override_clocksource);
989
990static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
991
992static DEVICE_ATTR(available_clocksource, 0444,
993 sysfs_show_available_clocksources, NULL);
994
995static struct bus_type clocksource_subsys = {
996 .name = "clocksource",
997 .dev_name = "clocksource",
998};
999
1000static struct device device_clocksource = {
1001 .id = 0,
1002 .bus = &clocksource_subsys,
1003};
1004
1005static int __init init_clocksource_sysfs(void)
1006{
1007 int error = subsys_system_register(&clocksource_subsys, NULL);
1008
1009 if (!error)
1010 error = device_register(&device_clocksource);
1011 if (!error)
1012 error = device_create_file(
1013 &device_clocksource,
1014 &dev_attr_current_clocksource);
1015 if (!error)
1016 error = device_create_file(&device_clocksource,
1017 &dev_attr_unbind_clocksource);
1018 if (!error)
1019 error = device_create_file(
1020 &device_clocksource,
1021 &dev_attr_available_clocksource);
1022 return error;
1023}
1024
1025device_initcall(init_clocksource_sysfs);
1026#endif /* CONFIG_SYSFS */
1027
1028/**
1029 * boot_override_clocksource - boot clock override
1030 * @str: override name
1031 *
1032 * Takes a clocksource= boot argument and uses it
1033 * as the clocksource override name.
1034 */
1035static int __init boot_override_clocksource(char* str)
1036{
1037 mutex_lock(&clocksource_mutex);
1038 if (str)
1039 strlcpy(override_name, str, sizeof(override_name));
1040 mutex_unlock(&clocksource_mutex);
1041 return 1;
1042}
1043
1044__setup("clocksource=", boot_override_clocksource);
1045
1046/**
1047 * boot_override_clock - Compatibility layer for deprecated boot option
1048 * @str: override name
1049 *
1050 * DEPRECATED! Takes a clock= boot argument and uses it
1051 * as the clocksource override name
1052 */
1053static int __init boot_override_clock(char* str)
1054{
1055 if (!strcmp(str, "pmtmr")) {
1056 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1057 return boot_override_clocksource("acpi_pm");
1058 }
1059 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1060 return boot_override_clocksource(str);
1061}
1062
1063__setup("clock=", boot_override_clock);
1/*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/device.h>
29#include <linux/clocksource.h>
30#include <linux/init.h>
31#include <linux/module.h>
32#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33#include <linux/tick.h>
34#include <linux/kthread.h>
35
36#include "tick-internal.h"
37#include "timekeeping_internal.h"
38
39/**
40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41 * @mult: pointer to mult variable
42 * @shift: pointer to shift variable
43 * @from: frequency to convert from
44 * @to: frequency to convert to
45 * @maxsec: guaranteed runtime conversion range in seconds
46 *
47 * The function evaluates the shift/mult pair for the scaled math
48 * operations of clocksources and clockevents.
49 *
50 * @to and @from are frequency values in HZ. For clock sources @to is
51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
53 *
54 * The @maxsec conversion range argument controls the time frame in
55 * seconds which must be covered by the runtime conversion with the
56 * calculated mult and shift factors. This guarantees that no 64bit
57 * overflow happens when the input value of the conversion is
58 * multiplied with the calculated mult factor. Larger ranges may
59 * reduce the conversion accuracy by chosing smaller mult and shift
60 * factors.
61 */
62void
63clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64{
65 u64 tmp;
66 u32 sft, sftacc= 32;
67
68 /*
69 * Calculate the shift factor which is limiting the conversion
70 * range:
71 */
72 tmp = ((u64)maxsec * from) >> 32;
73 while (tmp) {
74 tmp >>=1;
75 sftacc--;
76 }
77
78 /*
79 * Find the conversion shift/mult pair which has the best
80 * accuracy and fits the maxsec conversion range:
81 */
82 for (sft = 32; sft > 0; sft--) {
83 tmp = (u64) to << sft;
84 tmp += from / 2;
85 do_div(tmp, from);
86 if ((tmp >> sftacc) == 0)
87 break;
88 }
89 *mult = tmp;
90 *shift = sft;
91}
92EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
93
94/*[Clocksource internal variables]---------
95 * curr_clocksource:
96 * currently selected clocksource.
97 * clocksource_list:
98 * linked list with the registered clocksources
99 * clocksource_mutex:
100 * protects manipulations to curr_clocksource and the clocksource_list
101 * override_name:
102 * Name of the user-specified clocksource.
103 */
104static struct clocksource *curr_clocksource;
105static LIST_HEAD(clocksource_list);
106static DEFINE_MUTEX(clocksource_mutex);
107static char override_name[CS_NAME_LEN];
108static int finished_booting;
109
110#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111static void clocksource_watchdog_work(struct work_struct *work);
112static void clocksource_select(void);
113
114static LIST_HEAD(watchdog_list);
115static struct clocksource *watchdog;
116static struct timer_list watchdog_timer;
117static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118static DEFINE_SPINLOCK(watchdog_lock);
119static int watchdog_running;
120static atomic_t watchdog_reset_pending;
121
122static void inline clocksource_watchdog_lock(unsigned long *flags)
123{
124 spin_lock_irqsave(&watchdog_lock, *flags);
125}
126
127static void inline clocksource_watchdog_unlock(unsigned long *flags)
128{
129 spin_unlock_irqrestore(&watchdog_lock, *flags);
130}
131
132static int clocksource_watchdog_kthread(void *data);
133static void __clocksource_change_rating(struct clocksource *cs, int rating);
134
135/*
136 * Interval: 0.5sec Threshold: 0.0625s
137 */
138#define WATCHDOG_INTERVAL (HZ >> 1)
139#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
140
141static void clocksource_watchdog_work(struct work_struct *work)
142{
143 /*
144 * If kthread_run fails the next watchdog scan over the
145 * watchdog_list will find the unstable clock again.
146 */
147 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
148}
149
150static void __clocksource_unstable(struct clocksource *cs)
151{
152 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
153 cs->flags |= CLOCK_SOURCE_UNSTABLE;
154
155 /*
156 * If the clocksource is registered clocksource_watchdog_kthread() will
157 * re-rate and re-select.
158 */
159 if (list_empty(&cs->list)) {
160 cs->rating = 0;
161 return;
162 }
163
164 if (cs->mark_unstable)
165 cs->mark_unstable(cs);
166
167 /* kick clocksource_watchdog_kthread() */
168 if (finished_booting)
169 schedule_work(&watchdog_work);
170}
171
172/**
173 * clocksource_mark_unstable - mark clocksource unstable via watchdog
174 * @cs: clocksource to be marked unstable
175 *
176 * This function is called by the x86 TSC code to mark clocksources as unstable;
177 * it defers demotion and re-selection to a kthread.
178 */
179void clocksource_mark_unstable(struct clocksource *cs)
180{
181 unsigned long flags;
182
183 spin_lock_irqsave(&watchdog_lock, flags);
184 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
185 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
186 list_add(&cs->wd_list, &watchdog_list);
187 __clocksource_unstable(cs);
188 }
189 spin_unlock_irqrestore(&watchdog_lock, flags);
190}
191
192static void clocksource_watchdog(struct timer_list *unused)
193{
194 struct clocksource *cs;
195 u64 csnow, wdnow, cslast, wdlast, delta;
196 int64_t wd_nsec, cs_nsec;
197 int next_cpu, reset_pending;
198
199 spin_lock(&watchdog_lock);
200 if (!watchdog_running)
201 goto out;
202
203 reset_pending = atomic_read(&watchdog_reset_pending);
204
205 list_for_each_entry(cs, &watchdog_list, wd_list) {
206
207 /* Clocksource already marked unstable? */
208 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
209 if (finished_booting)
210 schedule_work(&watchdog_work);
211 continue;
212 }
213
214 local_irq_disable();
215 csnow = cs->read(cs);
216 wdnow = watchdog->read(watchdog);
217 local_irq_enable();
218
219 /* Clocksource initialized ? */
220 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
221 atomic_read(&watchdog_reset_pending)) {
222 cs->flags |= CLOCK_SOURCE_WATCHDOG;
223 cs->wd_last = wdnow;
224 cs->cs_last = csnow;
225 continue;
226 }
227
228 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
229 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
230 watchdog->shift);
231
232 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
233 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
234 wdlast = cs->wd_last; /* save these in case we print them */
235 cslast = cs->cs_last;
236 cs->cs_last = csnow;
237 cs->wd_last = wdnow;
238
239 if (atomic_read(&watchdog_reset_pending))
240 continue;
241
242 /* Check the deviation from the watchdog clocksource. */
243 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
244 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
245 smp_processor_id(), cs->name);
246 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
247 watchdog->name, wdnow, wdlast, watchdog->mask);
248 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
249 cs->name, csnow, cslast, cs->mask);
250 __clocksource_unstable(cs);
251 continue;
252 }
253
254 if (cs == curr_clocksource && cs->tick_stable)
255 cs->tick_stable(cs);
256
257 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
258 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
259 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
260 /* Mark it valid for high-res. */
261 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
262
263 /*
264 * clocksource_done_booting() will sort it if
265 * finished_booting is not set yet.
266 */
267 if (!finished_booting)
268 continue;
269
270 /*
271 * If this is not the current clocksource let
272 * the watchdog thread reselect it. Due to the
273 * change to high res this clocksource might
274 * be preferred now. If it is the current
275 * clocksource let the tick code know about
276 * that change.
277 */
278 if (cs != curr_clocksource) {
279 cs->flags |= CLOCK_SOURCE_RESELECT;
280 schedule_work(&watchdog_work);
281 } else {
282 tick_clock_notify();
283 }
284 }
285 }
286
287 /*
288 * We only clear the watchdog_reset_pending, when we did a
289 * full cycle through all clocksources.
290 */
291 if (reset_pending)
292 atomic_dec(&watchdog_reset_pending);
293
294 /*
295 * Cycle through CPUs to check if the CPUs stay synchronized
296 * to each other.
297 */
298 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
299 if (next_cpu >= nr_cpu_ids)
300 next_cpu = cpumask_first(cpu_online_mask);
301 watchdog_timer.expires += WATCHDOG_INTERVAL;
302 add_timer_on(&watchdog_timer, next_cpu);
303out:
304 spin_unlock(&watchdog_lock);
305}
306
307static inline void clocksource_start_watchdog(void)
308{
309 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
310 return;
311 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
312 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
313 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
314 watchdog_running = 1;
315}
316
317static inline void clocksource_stop_watchdog(void)
318{
319 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
320 return;
321 del_timer(&watchdog_timer);
322 watchdog_running = 0;
323}
324
325static inline void clocksource_reset_watchdog(void)
326{
327 struct clocksource *cs;
328
329 list_for_each_entry(cs, &watchdog_list, wd_list)
330 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
331}
332
333static void clocksource_resume_watchdog(void)
334{
335 atomic_inc(&watchdog_reset_pending);
336}
337
338static void clocksource_enqueue_watchdog(struct clocksource *cs)
339{
340 INIT_LIST_HEAD(&cs->wd_list);
341
342 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
343 /* cs is a clocksource to be watched. */
344 list_add(&cs->wd_list, &watchdog_list);
345 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
346 } else {
347 /* cs is a watchdog. */
348 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
349 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
350 }
351}
352
353static void clocksource_select_watchdog(bool fallback)
354{
355 struct clocksource *cs, *old_wd;
356 unsigned long flags;
357
358 spin_lock_irqsave(&watchdog_lock, flags);
359 /* save current watchdog */
360 old_wd = watchdog;
361 if (fallback)
362 watchdog = NULL;
363
364 list_for_each_entry(cs, &clocksource_list, list) {
365 /* cs is a clocksource to be watched. */
366 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
367 continue;
368
369 /* Skip current if we were requested for a fallback. */
370 if (fallback && cs == old_wd)
371 continue;
372
373 /* Pick the best watchdog. */
374 if (!watchdog || cs->rating > watchdog->rating)
375 watchdog = cs;
376 }
377 /* If we failed to find a fallback restore the old one. */
378 if (!watchdog)
379 watchdog = old_wd;
380
381 /* If we changed the watchdog we need to reset cycles. */
382 if (watchdog != old_wd)
383 clocksource_reset_watchdog();
384
385 /* Check if the watchdog timer needs to be started. */
386 clocksource_start_watchdog();
387 spin_unlock_irqrestore(&watchdog_lock, flags);
388}
389
390static void clocksource_dequeue_watchdog(struct clocksource *cs)
391{
392 if (cs != watchdog) {
393 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
394 /* cs is a watched clocksource. */
395 list_del_init(&cs->wd_list);
396 /* Check if the watchdog timer needs to be stopped. */
397 clocksource_stop_watchdog();
398 }
399 }
400}
401
402static int __clocksource_watchdog_kthread(void)
403{
404 struct clocksource *cs, *tmp;
405 unsigned long flags;
406 int select = 0;
407
408 spin_lock_irqsave(&watchdog_lock, flags);
409 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
410 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
411 list_del_init(&cs->wd_list);
412 __clocksource_change_rating(cs, 0);
413 select = 1;
414 }
415 if (cs->flags & CLOCK_SOURCE_RESELECT) {
416 cs->flags &= ~CLOCK_SOURCE_RESELECT;
417 select = 1;
418 }
419 }
420 /* Check if the watchdog timer needs to be stopped. */
421 clocksource_stop_watchdog();
422 spin_unlock_irqrestore(&watchdog_lock, flags);
423
424 return select;
425}
426
427static int clocksource_watchdog_kthread(void *data)
428{
429 mutex_lock(&clocksource_mutex);
430 if (__clocksource_watchdog_kthread())
431 clocksource_select();
432 mutex_unlock(&clocksource_mutex);
433 return 0;
434}
435
436static bool clocksource_is_watchdog(struct clocksource *cs)
437{
438 return cs == watchdog;
439}
440
441#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
442
443static void clocksource_enqueue_watchdog(struct clocksource *cs)
444{
445 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447}
448
449static void clocksource_select_watchdog(bool fallback) { }
450static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
451static inline void clocksource_resume_watchdog(void) { }
452static inline int __clocksource_watchdog_kthread(void) { return 0; }
453static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
454void clocksource_mark_unstable(struct clocksource *cs) { }
455
456static void inline clocksource_watchdog_lock(unsigned long *flags) { }
457static void inline clocksource_watchdog_unlock(unsigned long *flags) { }
458
459#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
460
461/**
462 * clocksource_suspend - suspend the clocksource(s)
463 */
464void clocksource_suspend(void)
465{
466 struct clocksource *cs;
467
468 list_for_each_entry_reverse(cs, &clocksource_list, list)
469 if (cs->suspend)
470 cs->suspend(cs);
471}
472
473/**
474 * clocksource_resume - resume the clocksource(s)
475 */
476void clocksource_resume(void)
477{
478 struct clocksource *cs;
479
480 list_for_each_entry(cs, &clocksource_list, list)
481 if (cs->resume)
482 cs->resume(cs);
483
484 clocksource_resume_watchdog();
485}
486
487/**
488 * clocksource_touch_watchdog - Update watchdog
489 *
490 * Update the watchdog after exception contexts such as kgdb so as not
491 * to incorrectly trip the watchdog. This might fail when the kernel
492 * was stopped in code which holds watchdog_lock.
493 */
494void clocksource_touch_watchdog(void)
495{
496 clocksource_resume_watchdog();
497}
498
499/**
500 * clocksource_max_adjustment- Returns max adjustment amount
501 * @cs: Pointer to clocksource
502 *
503 */
504static u32 clocksource_max_adjustment(struct clocksource *cs)
505{
506 u64 ret;
507 /*
508 * We won't try to correct for more than 11% adjustments (110,000 ppm),
509 */
510 ret = (u64)cs->mult * 11;
511 do_div(ret,100);
512 return (u32)ret;
513}
514
515/**
516 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
517 * @mult: cycle to nanosecond multiplier
518 * @shift: cycle to nanosecond divisor (power of two)
519 * @maxadj: maximum adjustment value to mult (~11%)
520 * @mask: bitmask for two's complement subtraction of non 64 bit counters
521 * @max_cyc: maximum cycle value before potential overflow (does not include
522 * any safety margin)
523 *
524 * NOTE: This function includes a safety margin of 50%, in other words, we
525 * return half the number of nanoseconds the hardware counter can technically
526 * cover. This is done so that we can potentially detect problems caused by
527 * delayed timers or bad hardware, which might result in time intervals that
528 * are larger than what the math used can handle without overflows.
529 */
530u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
531{
532 u64 max_nsecs, max_cycles;
533
534 /*
535 * Calculate the maximum number of cycles that we can pass to the
536 * cyc2ns() function without overflowing a 64-bit result.
537 */
538 max_cycles = ULLONG_MAX;
539 do_div(max_cycles, mult+maxadj);
540
541 /*
542 * The actual maximum number of cycles we can defer the clocksource is
543 * determined by the minimum of max_cycles and mask.
544 * Note: Here we subtract the maxadj to make sure we don't sleep for
545 * too long if there's a large negative adjustment.
546 */
547 max_cycles = min(max_cycles, mask);
548 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
549
550 /* return the max_cycles value as well if requested */
551 if (max_cyc)
552 *max_cyc = max_cycles;
553
554 /* Return 50% of the actual maximum, so we can detect bad values */
555 max_nsecs >>= 1;
556
557 return max_nsecs;
558}
559
560/**
561 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
562 * @cs: Pointer to clocksource to be updated
563 *
564 */
565static inline void clocksource_update_max_deferment(struct clocksource *cs)
566{
567 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
568 cs->maxadj, cs->mask,
569 &cs->max_cycles);
570}
571
572#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
573
574static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
575{
576 struct clocksource *cs;
577
578 if (!finished_booting || list_empty(&clocksource_list))
579 return NULL;
580
581 /*
582 * We pick the clocksource with the highest rating. If oneshot
583 * mode is active, we pick the highres valid clocksource with
584 * the best rating.
585 */
586 list_for_each_entry(cs, &clocksource_list, list) {
587 if (skipcur && cs == curr_clocksource)
588 continue;
589 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
590 continue;
591 return cs;
592 }
593 return NULL;
594}
595
596static void __clocksource_select(bool skipcur)
597{
598 bool oneshot = tick_oneshot_mode_active();
599 struct clocksource *best, *cs;
600
601 /* Find the best suitable clocksource */
602 best = clocksource_find_best(oneshot, skipcur);
603 if (!best)
604 return;
605
606 if (!strlen(override_name))
607 goto found;
608
609 /* Check for the override clocksource. */
610 list_for_each_entry(cs, &clocksource_list, list) {
611 if (skipcur && cs == curr_clocksource)
612 continue;
613 if (strcmp(cs->name, override_name) != 0)
614 continue;
615 /*
616 * Check to make sure we don't switch to a non-highres
617 * capable clocksource if the tick code is in oneshot
618 * mode (highres or nohz)
619 */
620 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
621 /* Override clocksource cannot be used. */
622 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
623 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
624 cs->name);
625 override_name[0] = 0;
626 } else {
627 /*
628 * The override cannot be currently verified.
629 * Deferring to let the watchdog check.
630 */
631 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
632 cs->name);
633 }
634 } else
635 /* Override clocksource can be used. */
636 best = cs;
637 break;
638 }
639
640found:
641 if (curr_clocksource != best && !timekeeping_notify(best)) {
642 pr_info("Switched to clocksource %s\n", best->name);
643 curr_clocksource = best;
644 }
645}
646
647/**
648 * clocksource_select - Select the best clocksource available
649 *
650 * Private function. Must hold clocksource_mutex when called.
651 *
652 * Select the clocksource with the best rating, or the clocksource,
653 * which is selected by userspace override.
654 */
655static void clocksource_select(void)
656{
657 __clocksource_select(false);
658}
659
660static void clocksource_select_fallback(void)
661{
662 __clocksource_select(true);
663}
664
665#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
666static inline void clocksource_select(void) { }
667static inline void clocksource_select_fallback(void) { }
668
669#endif
670
671/*
672 * clocksource_done_booting - Called near the end of core bootup
673 *
674 * Hack to avoid lots of clocksource churn at boot time.
675 * We use fs_initcall because we want this to start before
676 * device_initcall but after subsys_initcall.
677 */
678static int __init clocksource_done_booting(void)
679{
680 mutex_lock(&clocksource_mutex);
681 curr_clocksource = clocksource_default_clock();
682 finished_booting = 1;
683 /*
684 * Run the watchdog first to eliminate unstable clock sources
685 */
686 __clocksource_watchdog_kthread();
687 clocksource_select();
688 mutex_unlock(&clocksource_mutex);
689 return 0;
690}
691fs_initcall(clocksource_done_booting);
692
693/*
694 * Enqueue the clocksource sorted by rating
695 */
696static void clocksource_enqueue(struct clocksource *cs)
697{
698 struct list_head *entry = &clocksource_list;
699 struct clocksource *tmp;
700
701 list_for_each_entry(tmp, &clocksource_list, list) {
702 /* Keep track of the place, where to insert */
703 if (tmp->rating < cs->rating)
704 break;
705 entry = &tmp->list;
706 }
707 list_add(&cs->list, entry);
708}
709
710/**
711 * __clocksource_update_freq_scale - Used update clocksource with new freq
712 * @cs: clocksource to be registered
713 * @scale: Scale factor multiplied against freq to get clocksource hz
714 * @freq: clocksource frequency (cycles per second) divided by scale
715 *
716 * This should only be called from the clocksource->enable() method.
717 *
718 * This *SHOULD NOT* be called directly! Please use the
719 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
720 * functions.
721 */
722void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
723{
724 u64 sec;
725
726 /*
727 * Default clocksources are *special* and self-define their mult/shift.
728 * But, you're not special, so you should specify a freq value.
729 */
730 if (freq) {
731 /*
732 * Calc the maximum number of seconds which we can run before
733 * wrapping around. For clocksources which have a mask > 32-bit
734 * we need to limit the max sleep time to have a good
735 * conversion precision. 10 minutes is still a reasonable
736 * amount. That results in a shift value of 24 for a
737 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
738 * ~ 0.06ppm granularity for NTP.
739 */
740 sec = cs->mask;
741 do_div(sec, freq);
742 do_div(sec, scale);
743 if (!sec)
744 sec = 1;
745 else if (sec > 600 && cs->mask > UINT_MAX)
746 sec = 600;
747
748 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
749 NSEC_PER_SEC / scale, sec * scale);
750 }
751 /*
752 * Ensure clocksources that have large 'mult' values don't overflow
753 * when adjusted.
754 */
755 cs->maxadj = clocksource_max_adjustment(cs);
756 while (freq && ((cs->mult + cs->maxadj < cs->mult)
757 || (cs->mult - cs->maxadj > cs->mult))) {
758 cs->mult >>= 1;
759 cs->shift--;
760 cs->maxadj = clocksource_max_adjustment(cs);
761 }
762
763 /*
764 * Only warn for *special* clocksources that self-define
765 * their mult/shift values and don't specify a freq.
766 */
767 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
768 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
769 cs->name);
770
771 clocksource_update_max_deferment(cs);
772
773 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
774 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
775}
776EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
777
778/**
779 * __clocksource_register_scale - Used to install new clocksources
780 * @cs: clocksource to be registered
781 * @scale: Scale factor multiplied against freq to get clocksource hz
782 * @freq: clocksource frequency (cycles per second) divided by scale
783 *
784 * Returns -EBUSY if registration fails, zero otherwise.
785 *
786 * This *SHOULD NOT* be called directly! Please use the
787 * clocksource_register_hz() or clocksource_register_khz helper functions.
788 */
789int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
790{
791 unsigned long flags;
792
793 /* Initialize mult/shift and max_idle_ns */
794 __clocksource_update_freq_scale(cs, scale, freq);
795
796 /* Add clocksource to the clocksource list */
797 mutex_lock(&clocksource_mutex);
798
799 clocksource_watchdog_lock(&flags);
800 clocksource_enqueue(cs);
801 clocksource_enqueue_watchdog(cs);
802 clocksource_watchdog_unlock(&flags);
803
804 clocksource_select();
805 clocksource_select_watchdog(false);
806 mutex_unlock(&clocksource_mutex);
807 return 0;
808}
809EXPORT_SYMBOL_GPL(__clocksource_register_scale);
810
811static void __clocksource_change_rating(struct clocksource *cs, int rating)
812{
813 list_del(&cs->list);
814 cs->rating = rating;
815 clocksource_enqueue(cs);
816}
817
818/**
819 * clocksource_change_rating - Change the rating of a registered clocksource
820 * @cs: clocksource to be changed
821 * @rating: new rating
822 */
823void clocksource_change_rating(struct clocksource *cs, int rating)
824{
825 unsigned long flags;
826
827 mutex_lock(&clocksource_mutex);
828 clocksource_watchdog_lock(&flags);
829 __clocksource_change_rating(cs, rating);
830 clocksource_watchdog_unlock(&flags);
831
832 clocksource_select();
833 clocksource_select_watchdog(false);
834 mutex_unlock(&clocksource_mutex);
835}
836EXPORT_SYMBOL(clocksource_change_rating);
837
838/*
839 * Unbind clocksource @cs. Called with clocksource_mutex held
840 */
841static int clocksource_unbind(struct clocksource *cs)
842{
843 unsigned long flags;
844
845 if (clocksource_is_watchdog(cs)) {
846 /* Select and try to install a replacement watchdog. */
847 clocksource_select_watchdog(true);
848 if (clocksource_is_watchdog(cs))
849 return -EBUSY;
850 }
851
852 if (cs == curr_clocksource) {
853 /* Select and try to install a replacement clock source */
854 clocksource_select_fallback();
855 if (curr_clocksource == cs)
856 return -EBUSY;
857 }
858
859 clocksource_watchdog_lock(&flags);
860 clocksource_dequeue_watchdog(cs);
861 list_del_init(&cs->list);
862 clocksource_watchdog_unlock(&flags);
863
864 return 0;
865}
866
867/**
868 * clocksource_unregister - remove a registered clocksource
869 * @cs: clocksource to be unregistered
870 */
871int clocksource_unregister(struct clocksource *cs)
872{
873 int ret = 0;
874
875 mutex_lock(&clocksource_mutex);
876 if (!list_empty(&cs->list))
877 ret = clocksource_unbind(cs);
878 mutex_unlock(&clocksource_mutex);
879 return ret;
880}
881EXPORT_SYMBOL(clocksource_unregister);
882
883#ifdef CONFIG_SYSFS
884/**
885 * current_clocksource_show - sysfs interface for current clocksource
886 * @dev: unused
887 * @attr: unused
888 * @buf: char buffer to be filled with clocksource list
889 *
890 * Provides sysfs interface for listing current clocksource.
891 */
892static ssize_t current_clocksource_show(struct device *dev,
893 struct device_attribute *attr,
894 char *buf)
895{
896 ssize_t count = 0;
897
898 mutex_lock(&clocksource_mutex);
899 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
900 mutex_unlock(&clocksource_mutex);
901
902 return count;
903}
904
905ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
906{
907 size_t ret = cnt;
908
909 /* strings from sysfs write are not 0 terminated! */
910 if (!cnt || cnt >= CS_NAME_LEN)
911 return -EINVAL;
912
913 /* strip of \n: */
914 if (buf[cnt-1] == '\n')
915 cnt--;
916 if (cnt > 0)
917 memcpy(dst, buf, cnt);
918 dst[cnt] = 0;
919 return ret;
920}
921
922/**
923 * current_clocksource_store - interface for manually overriding clocksource
924 * @dev: unused
925 * @attr: unused
926 * @buf: name of override clocksource
927 * @count: length of buffer
928 *
929 * Takes input from sysfs interface for manually overriding the default
930 * clocksource selection.
931 */
932static ssize_t current_clocksource_store(struct device *dev,
933 struct device_attribute *attr,
934 const char *buf, size_t count)
935{
936 ssize_t ret;
937
938 mutex_lock(&clocksource_mutex);
939
940 ret = sysfs_get_uname(buf, override_name, count);
941 if (ret >= 0)
942 clocksource_select();
943
944 mutex_unlock(&clocksource_mutex);
945
946 return ret;
947}
948static DEVICE_ATTR_RW(current_clocksource);
949
950/**
951 * unbind_clocksource_store - interface for manually unbinding clocksource
952 * @dev: unused
953 * @attr: unused
954 * @buf: unused
955 * @count: length of buffer
956 *
957 * Takes input from sysfs interface for manually unbinding a clocksource.
958 */
959static ssize_t unbind_clocksource_store(struct device *dev,
960 struct device_attribute *attr,
961 const char *buf, size_t count)
962{
963 struct clocksource *cs;
964 char name[CS_NAME_LEN];
965 ssize_t ret;
966
967 ret = sysfs_get_uname(buf, name, count);
968 if (ret < 0)
969 return ret;
970
971 ret = -ENODEV;
972 mutex_lock(&clocksource_mutex);
973 list_for_each_entry(cs, &clocksource_list, list) {
974 if (strcmp(cs->name, name))
975 continue;
976 ret = clocksource_unbind(cs);
977 break;
978 }
979 mutex_unlock(&clocksource_mutex);
980
981 return ret ? ret : count;
982}
983static DEVICE_ATTR_WO(unbind_clocksource);
984
985/**
986 * available_clocksource_show - sysfs interface for listing clocksource
987 * @dev: unused
988 * @attr: unused
989 * @buf: char buffer to be filled with clocksource list
990 *
991 * Provides sysfs interface for listing registered clocksources
992 */
993static ssize_t available_clocksource_show(struct device *dev,
994 struct device_attribute *attr,
995 char *buf)
996{
997 struct clocksource *src;
998 ssize_t count = 0;
999
1000 mutex_lock(&clocksource_mutex);
1001 list_for_each_entry(src, &clocksource_list, list) {
1002 /*
1003 * Don't show non-HRES clocksource if the tick code is
1004 * in one shot mode (highres=on or nohz=on)
1005 */
1006 if (!tick_oneshot_mode_active() ||
1007 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1008 count += snprintf(buf + count,
1009 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1010 "%s ", src->name);
1011 }
1012 mutex_unlock(&clocksource_mutex);
1013
1014 count += snprintf(buf + count,
1015 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1016
1017 return count;
1018}
1019static DEVICE_ATTR_RO(available_clocksource);
1020
1021static struct attribute *clocksource_attrs[] = {
1022 &dev_attr_current_clocksource.attr,
1023 &dev_attr_unbind_clocksource.attr,
1024 &dev_attr_available_clocksource.attr,
1025 NULL
1026};
1027ATTRIBUTE_GROUPS(clocksource);
1028
1029static struct bus_type clocksource_subsys = {
1030 .name = "clocksource",
1031 .dev_name = "clocksource",
1032};
1033
1034static struct device device_clocksource = {
1035 .id = 0,
1036 .bus = &clocksource_subsys,
1037 .groups = clocksource_groups,
1038};
1039
1040static int __init init_clocksource_sysfs(void)
1041{
1042 int error = subsys_system_register(&clocksource_subsys, NULL);
1043
1044 if (!error)
1045 error = device_register(&device_clocksource);
1046
1047 return error;
1048}
1049
1050device_initcall(init_clocksource_sysfs);
1051#endif /* CONFIG_SYSFS */
1052
1053/**
1054 * boot_override_clocksource - boot clock override
1055 * @str: override name
1056 *
1057 * Takes a clocksource= boot argument and uses it
1058 * as the clocksource override name.
1059 */
1060static int __init boot_override_clocksource(char* str)
1061{
1062 mutex_lock(&clocksource_mutex);
1063 if (str)
1064 strlcpy(override_name, str, sizeof(override_name));
1065 mutex_unlock(&clocksource_mutex);
1066 return 1;
1067}
1068
1069__setup("clocksource=", boot_override_clocksource);
1070
1071/**
1072 * boot_override_clock - Compatibility layer for deprecated boot option
1073 * @str: override name
1074 *
1075 * DEPRECATED! Takes a clock= boot argument and uses it
1076 * as the clocksource override name
1077 */
1078static int __init boot_override_clock(char* str)
1079{
1080 if (!strcmp(str, "pmtmr")) {
1081 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1082 return boot_override_clocksource("acpi_pm");
1083 }
1084 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1085 return boot_override_clocksource(str);
1086}
1087
1088__setup("clock=", boot_override_clock);