Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Generic waiting primitives.
  3 *
  4 * (C) 2004 Nadia Yvette Chambers, Oracle
  5 */
  6#include <linux/init.h>
  7#include <linux/export.h>
  8#include <linux/sched.h>
  9#include <linux/mm.h>
 10#include <linux/wait.h>
 11#include <linux/hash.h>
 12#include <linux/kthread.h>
 13
 14void __init_waitqueue_head(wait_queue_head_t *q, const char *name, struct lock_class_key *key)
 15{
 16	spin_lock_init(&q->lock);
 17	lockdep_set_class_and_name(&q->lock, key, name);
 18	INIT_LIST_HEAD(&q->task_list);
 19}
 20
 21EXPORT_SYMBOL(__init_waitqueue_head);
 22
 23void add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 24{
 25	unsigned long flags;
 26
 27	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
 28	spin_lock_irqsave(&q->lock, flags);
 29	__add_wait_queue(q, wait);
 30	spin_unlock_irqrestore(&q->lock, flags);
 31}
 32EXPORT_SYMBOL(add_wait_queue);
 33
 34void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait)
 35{
 36	unsigned long flags;
 37
 38	wait->flags |= WQ_FLAG_EXCLUSIVE;
 39	spin_lock_irqsave(&q->lock, flags);
 40	__add_wait_queue_tail(q, wait);
 41	spin_unlock_irqrestore(&q->lock, flags);
 42}
 43EXPORT_SYMBOL(add_wait_queue_exclusive);
 44
 45void remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 46{
 47	unsigned long flags;
 48
 49	spin_lock_irqsave(&q->lock, flags);
 50	__remove_wait_queue(q, wait);
 51	spin_unlock_irqrestore(&q->lock, flags);
 52}
 53EXPORT_SYMBOL(remove_wait_queue);
 54
 
 
 
 
 
 
 55
 56/*
 57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 59 * number) then we wake all the non-exclusive tasks and one exclusive task.
 60 *
 61 * There are circumstances in which we can try to wake a task which has already
 62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 64 */
 65static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
 66			int nr_exclusive, int wake_flags, void *key)
 
 67{
 68	wait_queue_t *curr, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 69
 70	list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
 71		unsigned flags = curr->flags;
 
 72
 73		if (curr->func(curr, mode, wake_flags, key) &&
 74				(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 
 
 
 
 
 
 
 
 
 
 
 75			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76	}
 77}
 78
 79/**
 80 * __wake_up - wake up threads blocked on a waitqueue.
 81 * @q: the waitqueue
 82 * @mode: which threads
 83 * @nr_exclusive: how many wake-one or wake-many threads to wake up
 84 * @key: is directly passed to the wakeup function
 85 *
 86 * It may be assumed that this function implies a write memory barrier before
 87 * changing the task state if and only if any tasks are woken up.
 88 */
 89void __wake_up(wait_queue_head_t *q, unsigned int mode,
 90			int nr_exclusive, void *key)
 91{
 92	unsigned long flags;
 93
 94	spin_lock_irqsave(&q->lock, flags);
 95	__wake_up_common(q, mode, nr_exclusive, 0, key);
 96	spin_unlock_irqrestore(&q->lock, flags);
 97}
 98EXPORT_SYMBOL(__wake_up);
 99
100/*
101 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
102 */
103void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
104{
105	__wake_up_common(q, mode, nr, 0, NULL);
106}
107EXPORT_SYMBOL_GPL(__wake_up_locked);
108
109void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
110{
111	__wake_up_common(q, mode, 1, 0, key);
112}
113EXPORT_SYMBOL_GPL(__wake_up_locked_key);
114
 
 
 
 
 
 
 
115/**
116 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
117 * @q: the waitqueue
118 * @mode: which threads
119 * @nr_exclusive: how many wake-one or wake-many threads to wake up
120 * @key: opaque value to be passed to wakeup targets
121 *
122 * The sync wakeup differs that the waker knows that it will schedule
123 * away soon, so while the target thread will be woken up, it will not
124 * be migrated to another CPU - ie. the two threads are 'synchronized'
125 * with each other. This can prevent needless bouncing between CPUs.
126 *
127 * On UP it can prevent extra preemption.
128 *
129 * It may be assumed that this function implies a write memory barrier before
130 * changing the task state if and only if any tasks are woken up.
131 */
132void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
133			int nr_exclusive, void *key)
134{
135	unsigned long flags;
136	int wake_flags = 1; /* XXX WF_SYNC */
137
138	if (unlikely(!q))
139		return;
140
141	if (unlikely(nr_exclusive != 1))
142		wake_flags = 0;
143
144	spin_lock_irqsave(&q->lock, flags);
145	__wake_up_common(q, mode, nr_exclusive, wake_flags, key);
146	spin_unlock_irqrestore(&q->lock, flags);
147}
148EXPORT_SYMBOL_GPL(__wake_up_sync_key);
149
150/*
151 * __wake_up_sync - see __wake_up_sync_key()
152 */
153void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
154{
155	__wake_up_sync_key(q, mode, nr_exclusive, NULL);
156}
157EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
158
159/*
160 * Note: we use "set_current_state()" _after_ the wait-queue add,
161 * because we need a memory barrier there on SMP, so that any
162 * wake-function that tests for the wait-queue being active
163 * will be guaranteed to see waitqueue addition _or_ subsequent
164 * tests in this thread will see the wakeup having taken place.
165 *
166 * The spin_unlock() itself is semi-permeable and only protects
167 * one way (it only protects stuff inside the critical region and
168 * stops them from bleeding out - it would still allow subsequent
169 * loads to move into the critical region).
170 */
171void
172prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state)
173{
174	unsigned long flags;
175
176	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
177	spin_lock_irqsave(&q->lock, flags);
178	if (list_empty(&wait->task_list))
179		__add_wait_queue(q, wait);
180	set_current_state(state);
181	spin_unlock_irqrestore(&q->lock, flags);
182}
183EXPORT_SYMBOL(prepare_to_wait);
184
185void
186prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state)
187{
188	unsigned long flags;
189
190	wait->flags |= WQ_FLAG_EXCLUSIVE;
191	spin_lock_irqsave(&q->lock, flags);
192	if (list_empty(&wait->task_list))
193		__add_wait_queue_tail(q, wait);
194	set_current_state(state);
195	spin_unlock_irqrestore(&q->lock, flags);
196}
197EXPORT_SYMBOL(prepare_to_wait_exclusive);
198
199void init_wait_entry(wait_queue_t *wait, int flags)
200{
201	wait->flags = flags;
202	wait->private = current;
203	wait->func = autoremove_wake_function;
204	INIT_LIST_HEAD(&wait->task_list);
205}
206EXPORT_SYMBOL(init_wait_entry);
207
208long prepare_to_wait_event(wait_queue_head_t *q, wait_queue_t *wait, int state)
209{
210	unsigned long flags;
211	long ret = 0;
212
213	spin_lock_irqsave(&q->lock, flags);
214	if (unlikely(signal_pending_state(state, current))) {
215		/*
216		 * Exclusive waiter must not fail if it was selected by wakeup,
217		 * it should "consume" the condition we were waiting for.
218		 *
219		 * The caller will recheck the condition and return success if
220		 * we were already woken up, we can not miss the event because
221		 * wakeup locks/unlocks the same q->lock.
222		 *
223		 * But we need to ensure that set-condition + wakeup after that
224		 * can't see us, it should wake up another exclusive waiter if
225		 * we fail.
226		 */
227		list_del_init(&wait->task_list);
228		ret = -ERESTARTSYS;
229	} else {
230		if (list_empty(&wait->task_list)) {
231			if (wait->flags & WQ_FLAG_EXCLUSIVE)
232				__add_wait_queue_tail(q, wait);
233			else
234				__add_wait_queue(q, wait);
235		}
236		set_current_state(state);
237	}
238	spin_unlock_irqrestore(&q->lock, flags);
239
240	return ret;
241}
242EXPORT_SYMBOL(prepare_to_wait_event);
243
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
244/**
245 * finish_wait - clean up after waiting in a queue
246 * @q: waitqueue waited on
247 * @wait: wait descriptor
248 *
249 * Sets current thread back to running state and removes
250 * the wait descriptor from the given waitqueue if still
251 * queued.
252 */
253void finish_wait(wait_queue_head_t *q, wait_queue_t *wait)
254{
255	unsigned long flags;
256
257	__set_current_state(TASK_RUNNING);
258	/*
259	 * We can check for list emptiness outside the lock
260	 * IFF:
261	 *  - we use the "careful" check that verifies both
262	 *    the next and prev pointers, so that there cannot
263	 *    be any half-pending updates in progress on other
264	 *    CPU's that we haven't seen yet (and that might
265	 *    still change the stack area.
266	 * and
267	 *  - all other users take the lock (ie we can only
268	 *    have _one_ other CPU that looks at or modifies
269	 *    the list).
270	 */
271	if (!list_empty_careful(&wait->task_list)) {
272		spin_lock_irqsave(&q->lock, flags);
273		list_del_init(&wait->task_list);
274		spin_unlock_irqrestore(&q->lock, flags);
275	}
276}
277EXPORT_SYMBOL(finish_wait);
278
279int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
280{
281	int ret = default_wake_function(wait, mode, sync, key);
282
283	if (ret)
284		list_del_init(&wait->task_list);
 
285	return ret;
286}
287EXPORT_SYMBOL(autoremove_wake_function);
288
289static inline bool is_kthread_should_stop(void)
290{
291	return (current->flags & PF_KTHREAD) && kthread_should_stop();
292}
293
294/*
295 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
296 *
297 * add_wait_queue(&wq, &wait);
298 * for (;;) {
299 *     if (condition)
300 *         break;
301 *
302 *     p->state = mode;				condition = true;
303 *     smp_mb(); // A				smp_wmb(); // C
304 *     if (!wait->flags & WQ_FLAG_WOKEN)	wait->flags |= WQ_FLAG_WOKEN;
305 *         schedule()				try_to_wake_up();
306 *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
307 *     wait->flags &= ~WQ_FLAG_WOKEN;		condition = true;
308 *     smp_mb() // B				smp_wmb(); // C
309 *						wait->flags |= WQ_FLAG_WOKEN;
310 * }
311 * remove_wait_queue(&wq, &wait);
312 *
313 */
314long wait_woken(wait_queue_t *wait, unsigned mode, long timeout)
315{
316	set_current_state(mode); /* A */
317	/*
318	 * The above implies an smp_mb(), which matches with the smp_wmb() from
319	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
320	 * also observe all state before the wakeup.
321	 */
322	if (!(wait->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
323		timeout = schedule_timeout(timeout);
324	__set_current_state(TASK_RUNNING);
325
326	/*
327	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
328	 * woken_wake_function() such that we must either observe the wait
329	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
330	 * an event.
331	 */
332	smp_store_mb(wait->flags, wait->flags & ~WQ_FLAG_WOKEN); /* B */
333
334	return timeout;
335}
336EXPORT_SYMBOL(wait_woken);
337
338int woken_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key)
339{
340	/*
341	 * Although this function is called under waitqueue lock, LOCK
342	 * doesn't imply write barrier and the users expects write
343	 * barrier semantics on wakeup functions.  The following
344	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
345	 * and is paired with smp_store_mb() in wait_woken().
346	 */
347	smp_wmb(); /* C */
348	wait->flags |= WQ_FLAG_WOKEN;
349
350	return default_wake_function(wait, mode, sync, key);
351}
352EXPORT_SYMBOL(woken_wake_function);
353
354int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
355{
356	struct wait_bit_key *key = arg;
357	struct wait_bit_queue *wait_bit
358		= container_of(wait, struct wait_bit_queue, wait);
359
360	if (wait_bit->key.flags != key->flags ||
361			wait_bit->key.bit_nr != key->bit_nr ||
362			test_bit(key->bit_nr, key->flags))
363		return 0;
364	else
365		return autoremove_wake_function(wait, mode, sync, key);
366}
367EXPORT_SYMBOL(wake_bit_function);
368
369/*
370 * To allow interruptible waiting and asynchronous (i.e. nonblocking)
371 * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are
372 * permitted return codes. Nonzero return codes halt waiting and return.
373 */
374int __sched
375__wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q,
376	      wait_bit_action_f *action, unsigned mode)
377{
378	int ret = 0;
379
380	do {
381		prepare_to_wait(wq, &q->wait, mode);
382		if (test_bit(q->key.bit_nr, q->key.flags))
383			ret = (*action)(&q->key, mode);
384	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret);
385	finish_wait(wq, &q->wait);
386	return ret;
387}
388EXPORT_SYMBOL(__wait_on_bit);
389
390int __sched out_of_line_wait_on_bit(void *word, int bit,
391				    wait_bit_action_f *action, unsigned mode)
392{
393	wait_queue_head_t *wq = bit_waitqueue(word, bit);
394	DEFINE_WAIT_BIT(wait, word, bit);
395
396	return __wait_on_bit(wq, &wait, action, mode);
397}
398EXPORT_SYMBOL(out_of_line_wait_on_bit);
399
400int __sched out_of_line_wait_on_bit_timeout(
401	void *word, int bit, wait_bit_action_f *action,
402	unsigned mode, unsigned long timeout)
403{
404	wait_queue_head_t *wq = bit_waitqueue(word, bit);
405	DEFINE_WAIT_BIT(wait, word, bit);
406
407	wait.key.timeout = jiffies + timeout;
408	return __wait_on_bit(wq, &wait, action, mode);
409}
410EXPORT_SYMBOL_GPL(out_of_line_wait_on_bit_timeout);
411
412int __sched
413__wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q,
414			wait_bit_action_f *action, unsigned mode)
415{
416	int ret = 0;
417
418	for (;;) {
419		prepare_to_wait_exclusive(wq, &q->wait, mode);
420		if (test_bit(q->key.bit_nr, q->key.flags)) {
421			ret = action(&q->key, mode);
422			/*
423			 * See the comment in prepare_to_wait_event().
424			 * finish_wait() does not necessarily takes wq->lock,
425			 * but test_and_set_bit() implies mb() which pairs with
426			 * smp_mb__after_atomic() before wake_up_page().
427			 */
428			if (ret)
429				finish_wait(wq, &q->wait);
430		}
431		if (!test_and_set_bit(q->key.bit_nr, q->key.flags)) {
432			if (!ret)
433				finish_wait(wq, &q->wait);
434			return 0;
435		} else if (ret) {
436			return ret;
437		}
438	}
439}
440EXPORT_SYMBOL(__wait_on_bit_lock);
441
442int __sched out_of_line_wait_on_bit_lock(void *word, int bit,
443					 wait_bit_action_f *action, unsigned mode)
444{
445	wait_queue_head_t *wq = bit_waitqueue(word, bit);
446	DEFINE_WAIT_BIT(wait, word, bit);
447
448	return __wait_on_bit_lock(wq, &wait, action, mode);
449}
450EXPORT_SYMBOL(out_of_line_wait_on_bit_lock);
451
452void __wake_up_bit(wait_queue_head_t *wq, void *word, int bit)
453{
454	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit);
455	if (waitqueue_active(wq))
456		__wake_up(wq, TASK_NORMAL, 1, &key);
457}
458EXPORT_SYMBOL(__wake_up_bit);
459
460/**
461 * wake_up_bit - wake up a waiter on a bit
462 * @word: the word being waited on, a kernel virtual address
463 * @bit: the bit of the word being waited on
464 *
465 * There is a standard hashed waitqueue table for generic use. This
466 * is the part of the hashtable's accessor API that wakes up waiters
467 * on a bit. For instance, if one were to have waiters on a bitflag,
468 * one would call wake_up_bit() after clearing the bit.
469 *
470 * In order for this to function properly, as it uses waitqueue_active()
471 * internally, some kind of memory barrier must be done prior to calling
472 * this. Typically, this will be smp_mb__after_atomic(), but in some
473 * cases where bitflags are manipulated non-atomically under a lock, one
474 * may need to use a less regular barrier, such fs/inode.c's smp_mb(),
475 * because spin_unlock() does not guarantee a memory barrier.
476 */
477void wake_up_bit(void *word, int bit)
478{
479	__wake_up_bit(bit_waitqueue(word, bit), word, bit);
480}
481EXPORT_SYMBOL(wake_up_bit);
482
483/*
484 * Manipulate the atomic_t address to produce a better bit waitqueue table hash
485 * index (we're keying off bit -1, but that would produce a horrible hash
486 * value).
487 */
488static inline wait_queue_head_t *atomic_t_waitqueue(atomic_t *p)
489{
490	if (BITS_PER_LONG == 64) {
491		unsigned long q = (unsigned long)p;
492		return bit_waitqueue((void *)(q & ~1), q & 1);
493	}
494	return bit_waitqueue(p, 0);
495}
496
497static int wake_atomic_t_function(wait_queue_t *wait, unsigned mode, int sync,
498				  void *arg)
499{
500	struct wait_bit_key *key = arg;
501	struct wait_bit_queue *wait_bit
502		= container_of(wait, struct wait_bit_queue, wait);
503	atomic_t *val = key->flags;
504
505	if (wait_bit->key.flags != key->flags ||
506	    wait_bit->key.bit_nr != key->bit_nr ||
507	    atomic_read(val) != 0)
508		return 0;
509	return autoremove_wake_function(wait, mode, sync, key);
510}
511
512/*
513 * To allow interruptible waiting and asynchronous (i.e. nonblocking) waiting,
514 * the actions of __wait_on_atomic_t() are permitted return codes.  Nonzero
515 * return codes halt waiting and return.
516 */
517static __sched
518int __wait_on_atomic_t(wait_queue_head_t *wq, struct wait_bit_queue *q,
519		       int (*action)(atomic_t *), unsigned mode)
520{
521	atomic_t *val;
522	int ret = 0;
523
524	do {
525		prepare_to_wait(wq, &q->wait, mode);
526		val = q->key.flags;
527		if (atomic_read(val) == 0)
528			break;
529		ret = (*action)(val);
530	} while (!ret && atomic_read(val) != 0);
531	finish_wait(wq, &q->wait);
532	return ret;
533}
534
535#define DEFINE_WAIT_ATOMIC_T(name, p)					\
536	struct wait_bit_queue name = {					\
537		.key = __WAIT_ATOMIC_T_KEY_INITIALIZER(p),		\
538		.wait	= {						\
539			.private	= current,			\
540			.func		= wake_atomic_t_function,	\
541			.task_list	=				\
542				LIST_HEAD_INIT((name).wait.task_list),	\
543		},							\
544	}
545
546__sched int out_of_line_wait_on_atomic_t(atomic_t *p, int (*action)(atomic_t *),
547					 unsigned mode)
548{
549	wait_queue_head_t *wq = atomic_t_waitqueue(p);
550	DEFINE_WAIT_ATOMIC_T(wait, p);
551
552	return __wait_on_atomic_t(wq, &wait, action, mode);
553}
554EXPORT_SYMBOL(out_of_line_wait_on_atomic_t);
555
556/**
557 * wake_up_atomic_t - Wake up a waiter on a atomic_t
558 * @p: The atomic_t being waited on, a kernel virtual address
559 *
560 * Wake up anyone waiting for the atomic_t to go to zero.
561 *
562 * Abuse the bit-waker function and its waitqueue hash table set (the atomic_t
563 * check is done by the waiter's wake function, not the by the waker itself).
564 */
565void wake_up_atomic_t(atomic_t *p)
566{
567	__wake_up_bit(atomic_t_waitqueue(p), p, WAIT_ATOMIC_T_BIT_NR);
568}
569EXPORT_SYMBOL(wake_up_atomic_t);
570
571__sched int bit_wait(struct wait_bit_key *word, int mode)
572{
573	schedule();
574	if (signal_pending_state(mode, current))
575		return -EINTR;
576	return 0;
577}
578EXPORT_SYMBOL(bit_wait);
579
580__sched int bit_wait_io(struct wait_bit_key *word, int mode)
581{
582	io_schedule();
583	if (signal_pending_state(mode, current))
584		return -EINTR;
585	return 0;
586}
587EXPORT_SYMBOL(bit_wait_io);
588
589__sched int bit_wait_timeout(struct wait_bit_key *word, int mode)
590{
591	unsigned long now = READ_ONCE(jiffies);
592	if (time_after_eq(now, word->timeout))
593		return -EAGAIN;
594	schedule_timeout(word->timeout - now);
595	if (signal_pending_state(mode, current))
596		return -EINTR;
597	return 0;
598}
599EXPORT_SYMBOL_GPL(bit_wait_timeout);
600
601__sched int bit_wait_io_timeout(struct wait_bit_key *word, int mode)
602{
603	unsigned long now = READ_ONCE(jiffies);
604	if (time_after_eq(now, word->timeout))
605		return -EAGAIN;
606	io_schedule_timeout(word->timeout - now);
607	if (signal_pending_state(mode, current))
608		return -EINTR;
609	return 0;
610}
611EXPORT_SYMBOL_GPL(bit_wait_io_timeout);
v4.17
  1/*
  2 * Generic waiting primitives.
  3 *
  4 * (C) 2004 Nadia Yvette Chambers, Oracle
  5 */
  6#include "sched.h"
  7
  8void __init_waitqueue_head(struct wait_queue_head *wq_head, const char *name, struct lock_class_key *key)
  9{
 10	spin_lock_init(&wq_head->lock);
 11	lockdep_set_class_and_name(&wq_head->lock, key, name);
 12	INIT_LIST_HEAD(&wq_head->head);
 
 
 
 
 
 
 13}
 14
 15EXPORT_SYMBOL(__init_waitqueue_head);
 16
 17void add_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 18{
 19	unsigned long flags;
 20
 21	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 22	spin_lock_irqsave(&wq_head->lock, flags);
 23	__add_wait_queue(wq_head, wq_entry);
 24	spin_unlock_irqrestore(&wq_head->lock, flags);
 25}
 26EXPORT_SYMBOL(add_wait_queue);
 27
 28void add_wait_queue_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 29{
 30	unsigned long flags;
 31
 32	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 33	spin_lock_irqsave(&wq_head->lock, flags);
 34	__add_wait_queue_entry_tail(wq_head, wq_entry);
 35	spin_unlock_irqrestore(&wq_head->lock, flags);
 36}
 37EXPORT_SYMBOL(add_wait_queue_exclusive);
 38
 39void remove_wait_queue(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
 40{
 41	unsigned long flags;
 42
 43	spin_lock_irqsave(&wq_head->lock, flags);
 44	__remove_wait_queue(wq_head, wq_entry);
 45	spin_unlock_irqrestore(&wq_head->lock, flags);
 46}
 47EXPORT_SYMBOL(remove_wait_queue);
 48
 49/*
 50 * Scan threshold to break wait queue walk.
 51 * This allows a waker to take a break from holding the
 52 * wait queue lock during the wait queue walk.
 53 */
 54#define WAITQUEUE_WALK_BREAK_CNT 64
 55
 56/*
 57 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
 58 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
 59 * number) then we wake all the non-exclusive tasks and one exclusive task.
 60 *
 61 * There are circumstances in which we can try to wake a task which has already
 62 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
 63 * zero in this (rare) case, and we handle it by continuing to scan the queue.
 64 */
 65static int __wake_up_common(struct wait_queue_head *wq_head, unsigned int mode,
 66			int nr_exclusive, int wake_flags, void *key,
 67			wait_queue_entry_t *bookmark)
 68{
 69	wait_queue_entry_t *curr, *next;
 70	int cnt = 0;
 71
 72	if (bookmark && (bookmark->flags & WQ_FLAG_BOOKMARK)) {
 73		curr = list_next_entry(bookmark, entry);
 74
 75		list_del(&bookmark->entry);
 76		bookmark->flags = 0;
 77	} else
 78		curr = list_first_entry(&wq_head->head, wait_queue_entry_t, entry);
 79
 80	if (&curr->entry == &wq_head->head)
 81		return nr_exclusive;
 82
 83	list_for_each_entry_safe_from(curr, next, &wq_head->head, entry) {
 84		unsigned flags = curr->flags;
 85		int ret;
 86
 87		if (flags & WQ_FLAG_BOOKMARK)
 88			continue;
 89
 90		ret = curr->func(curr, mode, wake_flags, key);
 91		if (ret < 0)
 92			break;
 93		if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 94			break;
 95
 96		if (bookmark && (++cnt > WAITQUEUE_WALK_BREAK_CNT) &&
 97				(&next->entry != &wq_head->head)) {
 98			bookmark->flags = WQ_FLAG_BOOKMARK;
 99			list_add_tail(&bookmark->entry, &next->entry);
100			break;
101		}
102	}
103
104	return nr_exclusive;
105}
106
107static void __wake_up_common_lock(struct wait_queue_head *wq_head, unsigned int mode,
108			int nr_exclusive, int wake_flags, void *key)
109{
110	unsigned long flags;
111	wait_queue_entry_t bookmark;
112
113	bookmark.flags = 0;
114	bookmark.private = NULL;
115	bookmark.func = NULL;
116	INIT_LIST_HEAD(&bookmark.entry);
117
118	spin_lock_irqsave(&wq_head->lock, flags);
119	nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive, wake_flags, key, &bookmark);
120	spin_unlock_irqrestore(&wq_head->lock, flags);
121
122	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
123		spin_lock_irqsave(&wq_head->lock, flags);
124		nr_exclusive = __wake_up_common(wq_head, mode, nr_exclusive,
125						wake_flags, key, &bookmark);
126		spin_unlock_irqrestore(&wq_head->lock, flags);
127	}
128}
129
130/**
131 * __wake_up - wake up threads blocked on a waitqueue.
132 * @wq_head: the waitqueue
133 * @mode: which threads
134 * @nr_exclusive: how many wake-one or wake-many threads to wake up
135 * @key: is directly passed to the wakeup function
136 *
137 * It may be assumed that this function implies a write memory barrier before
138 * changing the task state if and only if any tasks are woken up.
139 */
140void __wake_up(struct wait_queue_head *wq_head, unsigned int mode,
141			int nr_exclusive, void *key)
142{
143	__wake_up_common_lock(wq_head, mode, nr_exclusive, 0, key);
 
 
 
 
144}
145EXPORT_SYMBOL(__wake_up);
146
147/*
148 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
149 */
150void __wake_up_locked(struct wait_queue_head *wq_head, unsigned int mode, int nr)
151{
152	__wake_up_common(wq_head, mode, nr, 0, NULL, NULL);
153}
154EXPORT_SYMBOL_GPL(__wake_up_locked);
155
156void __wake_up_locked_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)
157{
158	__wake_up_common(wq_head, mode, 1, 0, key, NULL);
159}
160EXPORT_SYMBOL_GPL(__wake_up_locked_key);
161
162void __wake_up_locked_key_bookmark(struct wait_queue_head *wq_head,
163		unsigned int mode, void *key, wait_queue_entry_t *bookmark)
164{
165	__wake_up_common(wq_head, mode, 1, 0, key, bookmark);
166}
167EXPORT_SYMBOL_GPL(__wake_up_locked_key_bookmark);
168
169/**
170 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
171 * @wq_head: the waitqueue
172 * @mode: which threads
173 * @nr_exclusive: how many wake-one or wake-many threads to wake up
174 * @key: opaque value to be passed to wakeup targets
175 *
176 * The sync wakeup differs that the waker knows that it will schedule
177 * away soon, so while the target thread will be woken up, it will not
178 * be migrated to another CPU - ie. the two threads are 'synchronized'
179 * with each other. This can prevent needless bouncing between CPUs.
180 *
181 * On UP it can prevent extra preemption.
182 *
183 * It may be assumed that this function implies a write memory barrier before
184 * changing the task state if and only if any tasks are woken up.
185 */
186void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode,
187			int nr_exclusive, void *key)
188{
 
189	int wake_flags = 1; /* XXX WF_SYNC */
190
191	if (unlikely(!wq_head))
192		return;
193
194	if (unlikely(nr_exclusive != 1))
195		wake_flags = 0;
196
197	__wake_up_common_lock(wq_head, mode, nr_exclusive, wake_flags, key);
 
 
198}
199EXPORT_SYMBOL_GPL(__wake_up_sync_key);
200
201/*
202 * __wake_up_sync - see __wake_up_sync_key()
203 */
204void __wake_up_sync(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive)
205{
206	__wake_up_sync_key(wq_head, mode, nr_exclusive, NULL);
207}
208EXPORT_SYMBOL_GPL(__wake_up_sync);	/* For internal use only */
209
210/*
211 * Note: we use "set_current_state()" _after_ the wait-queue add,
212 * because we need a memory barrier there on SMP, so that any
213 * wake-function that tests for the wait-queue being active
214 * will be guaranteed to see waitqueue addition _or_ subsequent
215 * tests in this thread will see the wakeup having taken place.
216 *
217 * The spin_unlock() itself is semi-permeable and only protects
218 * one way (it only protects stuff inside the critical region and
219 * stops them from bleeding out - it would still allow subsequent
220 * loads to move into the critical region).
221 */
222void
223prepare_to_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
224{
225	unsigned long flags;
226
227	wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
228	spin_lock_irqsave(&wq_head->lock, flags);
229	if (list_empty(&wq_entry->entry))
230		__add_wait_queue(wq_head, wq_entry);
231	set_current_state(state);
232	spin_unlock_irqrestore(&wq_head->lock, flags);
233}
234EXPORT_SYMBOL(prepare_to_wait);
235
236void
237prepare_to_wait_exclusive(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
238{
239	unsigned long flags;
240
241	wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
242	spin_lock_irqsave(&wq_head->lock, flags);
243	if (list_empty(&wq_entry->entry))
244		__add_wait_queue_entry_tail(wq_head, wq_entry);
245	set_current_state(state);
246	spin_unlock_irqrestore(&wq_head->lock, flags);
247}
248EXPORT_SYMBOL(prepare_to_wait_exclusive);
249
250void init_wait_entry(struct wait_queue_entry *wq_entry, int flags)
251{
252	wq_entry->flags = flags;
253	wq_entry->private = current;
254	wq_entry->func = autoremove_wake_function;
255	INIT_LIST_HEAD(&wq_entry->entry);
256}
257EXPORT_SYMBOL(init_wait_entry);
258
259long prepare_to_wait_event(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry, int state)
260{
261	unsigned long flags;
262	long ret = 0;
263
264	spin_lock_irqsave(&wq_head->lock, flags);
265	if (unlikely(signal_pending_state(state, current))) {
266		/*
267		 * Exclusive waiter must not fail if it was selected by wakeup,
268		 * it should "consume" the condition we were waiting for.
269		 *
270		 * The caller will recheck the condition and return success if
271		 * we were already woken up, we can not miss the event because
272		 * wakeup locks/unlocks the same wq_head->lock.
273		 *
274		 * But we need to ensure that set-condition + wakeup after that
275		 * can't see us, it should wake up another exclusive waiter if
276		 * we fail.
277		 */
278		list_del_init(&wq_entry->entry);
279		ret = -ERESTARTSYS;
280	} else {
281		if (list_empty(&wq_entry->entry)) {
282			if (wq_entry->flags & WQ_FLAG_EXCLUSIVE)
283				__add_wait_queue_entry_tail(wq_head, wq_entry);
284			else
285				__add_wait_queue(wq_head, wq_entry);
286		}
287		set_current_state(state);
288	}
289	spin_unlock_irqrestore(&wq_head->lock, flags);
290
291	return ret;
292}
293EXPORT_SYMBOL(prepare_to_wait_event);
294
295/*
296 * Note! These two wait functions are entered with the
297 * wait-queue lock held (and interrupts off in the _irq
298 * case), so there is no race with testing the wakeup
299 * condition in the caller before they add the wait
300 * entry to the wake queue.
301 */
302int do_wait_intr(wait_queue_head_t *wq, wait_queue_entry_t *wait)
303{
304	if (likely(list_empty(&wait->entry)))
305		__add_wait_queue_entry_tail(wq, wait);
306
307	set_current_state(TASK_INTERRUPTIBLE);
308	if (signal_pending(current))
309		return -ERESTARTSYS;
310
311	spin_unlock(&wq->lock);
312	schedule();
313	spin_lock(&wq->lock);
314
315	return 0;
316}
317EXPORT_SYMBOL(do_wait_intr);
318
319int do_wait_intr_irq(wait_queue_head_t *wq, wait_queue_entry_t *wait)
320{
321	if (likely(list_empty(&wait->entry)))
322		__add_wait_queue_entry_tail(wq, wait);
323
324	set_current_state(TASK_INTERRUPTIBLE);
325	if (signal_pending(current))
326		return -ERESTARTSYS;
327
328	spin_unlock_irq(&wq->lock);
329	schedule();
330	spin_lock_irq(&wq->lock);
331
332	return 0;
333}
334EXPORT_SYMBOL(do_wait_intr_irq);
335
336/**
337 * finish_wait - clean up after waiting in a queue
338 * @wq_head: waitqueue waited on
339 * @wq_entry: wait descriptor
340 *
341 * Sets current thread back to running state and removes
342 * the wait descriptor from the given waitqueue if still
343 * queued.
344 */
345void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)
346{
347	unsigned long flags;
348
349	__set_current_state(TASK_RUNNING);
350	/*
351	 * We can check for list emptiness outside the lock
352	 * IFF:
353	 *  - we use the "careful" check that verifies both
354	 *    the next and prev pointers, so that there cannot
355	 *    be any half-pending updates in progress on other
356	 *    CPU's that we haven't seen yet (and that might
357	 *    still change the stack area.
358	 * and
359	 *  - all other users take the lock (ie we can only
360	 *    have _one_ other CPU that looks at or modifies
361	 *    the list).
362	 */
363	if (!list_empty_careful(&wq_entry->entry)) {
364		spin_lock_irqsave(&wq_head->lock, flags);
365		list_del_init(&wq_entry->entry);
366		spin_unlock_irqrestore(&wq_head->lock, flags);
367	}
368}
369EXPORT_SYMBOL(finish_wait);
370
371int autoremove_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
372{
373	int ret = default_wake_function(wq_entry, mode, sync, key);
374
375	if (ret)
376		list_del_init(&wq_entry->entry);
377
378	return ret;
379}
380EXPORT_SYMBOL(autoremove_wake_function);
381
382static inline bool is_kthread_should_stop(void)
383{
384	return (current->flags & PF_KTHREAD) && kthread_should_stop();
385}
386
387/*
388 * DEFINE_WAIT_FUNC(wait, woken_wake_func);
389 *
390 * add_wait_queue(&wq_head, &wait);
391 * for (;;) {
392 *     if (condition)
393 *         break;
394 *
395 *     p->state = mode;				condition = true;
396 *     smp_mb(); // A				smp_wmb(); // C
397 *     if (!wq_entry->flags & WQ_FLAG_WOKEN)	wq_entry->flags |= WQ_FLAG_WOKEN;
398 *         schedule()				try_to_wake_up();
399 *     p->state = TASK_RUNNING;		    ~~~~~~~~~~~~~~~~~~
400 *     wq_entry->flags &= ~WQ_FLAG_WOKEN;		condition = true;
401 *     smp_mb() // B				smp_wmb(); // C
402 *						wq_entry->flags |= WQ_FLAG_WOKEN;
403 * }
404 * remove_wait_queue(&wq_head, &wait);
405 *
406 */
407long wait_woken(struct wait_queue_entry *wq_entry, unsigned mode, long timeout)
408{
409	set_current_state(mode); /* A */
410	/*
411	 * The above implies an smp_mb(), which matches with the smp_wmb() from
412	 * woken_wake_function() such that if we observe WQ_FLAG_WOKEN we must
413	 * also observe all state before the wakeup.
414	 */
415	if (!(wq_entry->flags & WQ_FLAG_WOKEN) && !is_kthread_should_stop())
416		timeout = schedule_timeout(timeout);
417	__set_current_state(TASK_RUNNING);
418
419	/*
420	 * The below implies an smp_mb(), it too pairs with the smp_wmb() from
421	 * woken_wake_function() such that we must either observe the wait
422	 * condition being true _OR_ WQ_FLAG_WOKEN such that we will not miss
423	 * an event.
424	 */
425	smp_store_mb(wq_entry->flags, wq_entry->flags & ~WQ_FLAG_WOKEN); /* B */
426
427	return timeout;
428}
429EXPORT_SYMBOL(wait_woken);
430
431int woken_wake_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key)
432{
433	/*
434	 * Although this function is called under waitqueue lock, LOCK
435	 * doesn't imply write barrier and the users expects write
436	 * barrier semantics on wakeup functions.  The following
437	 * smp_wmb() is equivalent to smp_wmb() in try_to_wake_up()
438	 * and is paired with smp_store_mb() in wait_woken().
439	 */
440	smp_wmb(); /* C */
441	wq_entry->flags |= WQ_FLAG_WOKEN;
442
443	return default_wake_function(wq_entry, mode, sync, key);
444}
445EXPORT_SYMBOL(woken_wake_function);