Loading...
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 *
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20 *
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
24 *
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
27 *
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 *
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare())
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
70 */
71
72#include <linux/slab.h>
73#include <linux/spinlock.h>
74#include <linux/init.h>
75#include <linux/proc_fs.h>
76#include <linux/time.h>
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/audit.h>
80#include <linux/capability.h>
81#include <linux/seq_file.h>
82#include <linux/rwsem.h>
83#include <linux/nsproxy.h>
84#include <linux/ipc_namespace.h>
85
86#include <linux/uaccess.h>
87#include "util.h"
88
89/* One semaphore structure for each semaphore in the system. */
90struct sem {
91 int semval; /* current value */
92 /*
93 * PID of the process that last modified the semaphore. For
94 * Linux, specifically these are:
95 * - semop
96 * - semctl, via SETVAL and SETALL.
97 * - at task exit when performing undo adjustments (see exit_sem).
98 */
99 int sempid;
100 spinlock_t lock; /* spinlock for fine-grained semtimedop */
101 struct list_head pending_alter; /* pending single-sop operations */
102 /* that alter the semaphore */
103 struct list_head pending_const; /* pending single-sop operations */
104 /* that do not alter the semaphore*/
105 time_t sem_otime; /* candidate for sem_otime */
106} ____cacheline_aligned_in_smp;
107
108/* One queue for each sleeping process in the system. */
109struct sem_queue {
110 struct list_head list; /* queue of pending operations */
111 struct task_struct *sleeper; /* this process */
112 struct sem_undo *undo; /* undo structure */
113 int pid; /* process id of requesting process */
114 int status; /* completion status of operation */
115 struct sembuf *sops; /* array of pending operations */
116 struct sembuf *blocking; /* the operation that blocked */
117 int nsops; /* number of operations */
118 bool alter; /* does *sops alter the array? */
119 bool dupsop; /* sops on more than one sem_num */
120};
121
122/* Each task has a list of undo requests. They are executed automatically
123 * when the process exits.
124 */
125struct sem_undo {
126 struct list_head list_proc; /* per-process list: *
127 * all undos from one process
128 * rcu protected */
129 struct rcu_head rcu; /* rcu struct for sem_undo */
130 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
131 struct list_head list_id; /* per semaphore array list:
132 * all undos for one array */
133 int semid; /* semaphore set identifier */
134 short *semadj; /* array of adjustments */
135 /* one per semaphore */
136};
137
138/* sem_undo_list controls shared access to the list of sem_undo structures
139 * that may be shared among all a CLONE_SYSVSEM task group.
140 */
141struct sem_undo_list {
142 atomic_t refcnt;
143 spinlock_t lock;
144 struct list_head list_proc;
145};
146
147
148#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
149
150#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
151
152static int newary(struct ipc_namespace *, struct ipc_params *);
153static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
154#ifdef CONFIG_PROC_FS
155static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
156#endif
157
158#define SEMMSL_FAST 256 /* 512 bytes on stack */
159#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
160
161/*
162 * Locking:
163 * a) global sem_lock() for read/write
164 * sem_undo.id_next,
165 * sem_array.complex_count,
166 * sem_array.complex_mode
167 * sem_array.pending{_alter,_const},
168 * sem_array.sem_undo
169 *
170 * b) global or semaphore sem_lock() for read/write:
171 * sem_array.sem_base[i].pending_{const,alter}:
172 * sem_array.complex_mode (for read)
173 *
174 * c) special:
175 * sem_undo_list.list_proc:
176 * * undo_list->lock for write
177 * * rcu for read
178 */
179
180#define sc_semmsl sem_ctls[0]
181#define sc_semmns sem_ctls[1]
182#define sc_semopm sem_ctls[2]
183#define sc_semmni sem_ctls[3]
184
185void sem_init_ns(struct ipc_namespace *ns)
186{
187 ns->sc_semmsl = SEMMSL;
188 ns->sc_semmns = SEMMNS;
189 ns->sc_semopm = SEMOPM;
190 ns->sc_semmni = SEMMNI;
191 ns->used_sems = 0;
192 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
193}
194
195#ifdef CONFIG_IPC_NS
196void sem_exit_ns(struct ipc_namespace *ns)
197{
198 free_ipcs(ns, &sem_ids(ns), freeary);
199 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
200}
201#endif
202
203void __init sem_init(void)
204{
205 sem_init_ns(&init_ipc_ns);
206 ipc_init_proc_interface("sysvipc/sem",
207 " key semid perms nsems uid gid cuid cgid otime ctime\n",
208 IPC_SEM_IDS, sysvipc_sem_proc_show);
209}
210
211/**
212 * unmerge_queues - unmerge queues, if possible.
213 * @sma: semaphore array
214 *
215 * The function unmerges the wait queues if complex_count is 0.
216 * It must be called prior to dropping the global semaphore array lock.
217 */
218static void unmerge_queues(struct sem_array *sma)
219{
220 struct sem_queue *q, *tq;
221
222 /* complex operations still around? */
223 if (sma->complex_count)
224 return;
225 /*
226 * We will switch back to simple mode.
227 * Move all pending operation back into the per-semaphore
228 * queues.
229 */
230 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
231 struct sem *curr;
232 curr = &sma->sem_base[q->sops[0].sem_num];
233
234 list_add_tail(&q->list, &curr->pending_alter);
235 }
236 INIT_LIST_HEAD(&sma->pending_alter);
237}
238
239/**
240 * merge_queues - merge single semop queues into global queue
241 * @sma: semaphore array
242 *
243 * This function merges all per-semaphore queues into the global queue.
244 * It is necessary to achieve FIFO ordering for the pending single-sop
245 * operations when a multi-semop operation must sleep.
246 * Only the alter operations must be moved, the const operations can stay.
247 */
248static void merge_queues(struct sem_array *sma)
249{
250 int i;
251 for (i = 0; i < sma->sem_nsems; i++) {
252 struct sem *sem = sma->sem_base + i;
253
254 list_splice_init(&sem->pending_alter, &sma->pending_alter);
255 }
256}
257
258static void sem_rcu_free(struct rcu_head *head)
259{
260 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
261 struct sem_array *sma = ipc_rcu_to_struct(p);
262
263 security_sem_free(sma);
264 ipc_rcu_free(head);
265}
266
267/*
268 * Enter the mode suitable for non-simple operations:
269 * Caller must own sem_perm.lock.
270 */
271static void complexmode_enter(struct sem_array *sma)
272{
273 int i;
274 struct sem *sem;
275
276 if (sma->complex_mode) {
277 /* We are already in complex_mode. Nothing to do */
278 return;
279 }
280
281 /* We need a full barrier after seting complex_mode:
282 * The write to complex_mode must be visible
283 * before we read the first sem->lock spinlock state.
284 */
285 smp_store_mb(sma->complex_mode, true);
286
287 for (i = 0; i < sma->sem_nsems; i++) {
288 sem = sma->sem_base + i;
289 spin_unlock_wait(&sem->lock);
290 }
291 /*
292 * spin_unlock_wait() is not a memory barriers, it is only a
293 * control barrier. The code must pair with spin_unlock(&sem->lock),
294 * thus just the control barrier is insufficient.
295 *
296 * smp_rmb() is sufficient, as writes cannot pass the control barrier.
297 */
298 smp_rmb();
299}
300
301/*
302 * Try to leave the mode that disallows simple operations:
303 * Caller must own sem_perm.lock.
304 */
305static void complexmode_tryleave(struct sem_array *sma)
306{
307 if (sma->complex_count) {
308 /* Complex ops are sleeping.
309 * We must stay in complex mode
310 */
311 return;
312 }
313 /*
314 * Immediately after setting complex_mode to false,
315 * a simple op can start. Thus: all memory writes
316 * performed by the current operation must be visible
317 * before we set complex_mode to false.
318 */
319 smp_store_release(&sma->complex_mode, false);
320}
321
322#define SEM_GLOBAL_LOCK (-1)
323/*
324 * If the request contains only one semaphore operation, and there are
325 * no complex transactions pending, lock only the semaphore involved.
326 * Otherwise, lock the entire semaphore array, since we either have
327 * multiple semaphores in our own semops, or we need to look at
328 * semaphores from other pending complex operations.
329 */
330static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
331 int nsops)
332{
333 struct sem *sem;
334
335 if (nsops != 1) {
336 /* Complex operation - acquire a full lock */
337 ipc_lock_object(&sma->sem_perm);
338
339 /* Prevent parallel simple ops */
340 complexmode_enter(sma);
341 return SEM_GLOBAL_LOCK;
342 }
343
344 /*
345 * Only one semaphore affected - try to optimize locking.
346 * Optimized locking is possible if no complex operation
347 * is either enqueued or processed right now.
348 *
349 * Both facts are tracked by complex_mode.
350 */
351 sem = sma->sem_base + sops->sem_num;
352
353 /*
354 * Initial check for complex_mode. Just an optimization,
355 * no locking, no memory barrier.
356 */
357 if (!sma->complex_mode) {
358 /*
359 * It appears that no complex operation is around.
360 * Acquire the per-semaphore lock.
361 */
362 spin_lock(&sem->lock);
363
364 /*
365 * See 51d7d5205d33
366 * ("powerpc: Add smp_mb() to arch_spin_is_locked()"):
367 * A full barrier is required: the write of sem->lock
368 * must be visible before the read is executed
369 */
370 smp_mb();
371
372 if (!smp_load_acquire(&sma->complex_mode)) {
373 /* fast path successful! */
374 return sops->sem_num;
375 }
376 spin_unlock(&sem->lock);
377 }
378
379 /* slow path: acquire the full lock */
380 ipc_lock_object(&sma->sem_perm);
381
382 if (sma->complex_count == 0) {
383 /* False alarm:
384 * There is no complex operation, thus we can switch
385 * back to the fast path.
386 */
387 spin_lock(&sem->lock);
388 ipc_unlock_object(&sma->sem_perm);
389 return sops->sem_num;
390 } else {
391 /* Not a false alarm, thus complete the sequence for a
392 * full lock.
393 */
394 complexmode_enter(sma);
395 return SEM_GLOBAL_LOCK;
396 }
397}
398
399static inline void sem_unlock(struct sem_array *sma, int locknum)
400{
401 if (locknum == SEM_GLOBAL_LOCK) {
402 unmerge_queues(sma);
403 complexmode_tryleave(sma);
404 ipc_unlock_object(&sma->sem_perm);
405 } else {
406 struct sem *sem = sma->sem_base + locknum;
407 spin_unlock(&sem->lock);
408 }
409}
410
411/*
412 * sem_lock_(check_) routines are called in the paths where the rwsem
413 * is not held.
414 *
415 * The caller holds the RCU read lock.
416 */
417static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
418{
419 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
420
421 if (IS_ERR(ipcp))
422 return ERR_CAST(ipcp);
423
424 return container_of(ipcp, struct sem_array, sem_perm);
425}
426
427static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
428 int id)
429{
430 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
431
432 if (IS_ERR(ipcp))
433 return ERR_CAST(ipcp);
434
435 return container_of(ipcp, struct sem_array, sem_perm);
436}
437
438static inline void sem_lock_and_putref(struct sem_array *sma)
439{
440 sem_lock(sma, NULL, -1);
441 ipc_rcu_putref(sma, sem_rcu_free);
442}
443
444static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
445{
446 ipc_rmid(&sem_ids(ns), &s->sem_perm);
447}
448
449/**
450 * newary - Create a new semaphore set
451 * @ns: namespace
452 * @params: ptr to the structure that contains key, semflg and nsems
453 *
454 * Called with sem_ids.rwsem held (as a writer)
455 */
456static int newary(struct ipc_namespace *ns, struct ipc_params *params)
457{
458 int id;
459 int retval;
460 struct sem_array *sma;
461 int size;
462 key_t key = params->key;
463 int nsems = params->u.nsems;
464 int semflg = params->flg;
465 int i;
466
467 if (!nsems)
468 return -EINVAL;
469 if (ns->used_sems + nsems > ns->sc_semmns)
470 return -ENOSPC;
471
472 size = sizeof(*sma) + nsems * sizeof(struct sem);
473 sma = ipc_rcu_alloc(size);
474 if (!sma)
475 return -ENOMEM;
476
477 memset(sma, 0, size);
478
479 sma->sem_perm.mode = (semflg & S_IRWXUGO);
480 sma->sem_perm.key = key;
481
482 sma->sem_perm.security = NULL;
483 retval = security_sem_alloc(sma);
484 if (retval) {
485 ipc_rcu_putref(sma, ipc_rcu_free);
486 return retval;
487 }
488
489 sma->sem_base = (struct sem *) &sma[1];
490
491 for (i = 0; i < nsems; i++) {
492 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
493 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
494 spin_lock_init(&sma->sem_base[i].lock);
495 }
496
497 sma->complex_count = 0;
498 sma->complex_mode = true; /* dropped by sem_unlock below */
499 INIT_LIST_HEAD(&sma->pending_alter);
500 INIT_LIST_HEAD(&sma->pending_const);
501 INIT_LIST_HEAD(&sma->list_id);
502 sma->sem_nsems = nsems;
503 sma->sem_ctime = get_seconds();
504
505 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
506 if (id < 0) {
507 ipc_rcu_putref(sma, sem_rcu_free);
508 return id;
509 }
510 ns->used_sems += nsems;
511
512 sem_unlock(sma, -1);
513 rcu_read_unlock();
514
515 return sma->sem_perm.id;
516}
517
518
519/*
520 * Called with sem_ids.rwsem and ipcp locked.
521 */
522static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
523{
524 struct sem_array *sma;
525
526 sma = container_of(ipcp, struct sem_array, sem_perm);
527 return security_sem_associate(sma, semflg);
528}
529
530/*
531 * Called with sem_ids.rwsem and ipcp locked.
532 */
533static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
534 struct ipc_params *params)
535{
536 struct sem_array *sma;
537
538 sma = container_of(ipcp, struct sem_array, sem_perm);
539 if (params->u.nsems > sma->sem_nsems)
540 return -EINVAL;
541
542 return 0;
543}
544
545SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
546{
547 struct ipc_namespace *ns;
548 static const struct ipc_ops sem_ops = {
549 .getnew = newary,
550 .associate = sem_security,
551 .more_checks = sem_more_checks,
552 };
553 struct ipc_params sem_params;
554
555 ns = current->nsproxy->ipc_ns;
556
557 if (nsems < 0 || nsems > ns->sc_semmsl)
558 return -EINVAL;
559
560 sem_params.key = key;
561 sem_params.flg = semflg;
562 sem_params.u.nsems = nsems;
563
564 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
565}
566
567/**
568 * perform_atomic_semop[_slow] - Attempt to perform semaphore
569 * operations on a given array.
570 * @sma: semaphore array
571 * @q: struct sem_queue that describes the operation
572 *
573 * Caller blocking are as follows, based the value
574 * indicated by the semaphore operation (sem_op):
575 *
576 * (1) >0 never blocks.
577 * (2) 0 (wait-for-zero operation): semval is non-zero.
578 * (3) <0 attempting to decrement semval to a value smaller than zero.
579 *
580 * Returns 0 if the operation was possible.
581 * Returns 1 if the operation is impossible, the caller must sleep.
582 * Returns <0 for error codes.
583 */
584static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
585{
586 int result, sem_op, nsops, pid;
587 struct sembuf *sop;
588 struct sem *curr;
589 struct sembuf *sops;
590 struct sem_undo *un;
591
592 sops = q->sops;
593 nsops = q->nsops;
594 un = q->undo;
595
596 for (sop = sops; sop < sops + nsops; sop++) {
597 curr = sma->sem_base + sop->sem_num;
598 sem_op = sop->sem_op;
599 result = curr->semval;
600
601 if (!sem_op && result)
602 goto would_block;
603
604 result += sem_op;
605 if (result < 0)
606 goto would_block;
607 if (result > SEMVMX)
608 goto out_of_range;
609
610 if (sop->sem_flg & SEM_UNDO) {
611 int undo = un->semadj[sop->sem_num] - sem_op;
612 /* Exceeding the undo range is an error. */
613 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
614 goto out_of_range;
615 un->semadj[sop->sem_num] = undo;
616 }
617
618 curr->semval = result;
619 }
620
621 sop--;
622 pid = q->pid;
623 while (sop >= sops) {
624 sma->sem_base[sop->sem_num].sempid = pid;
625 sop--;
626 }
627
628 return 0;
629
630out_of_range:
631 result = -ERANGE;
632 goto undo;
633
634would_block:
635 q->blocking = sop;
636
637 if (sop->sem_flg & IPC_NOWAIT)
638 result = -EAGAIN;
639 else
640 result = 1;
641
642undo:
643 sop--;
644 while (sop >= sops) {
645 sem_op = sop->sem_op;
646 sma->sem_base[sop->sem_num].semval -= sem_op;
647 if (sop->sem_flg & SEM_UNDO)
648 un->semadj[sop->sem_num] += sem_op;
649 sop--;
650 }
651
652 return result;
653}
654
655static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
656{
657 int result, sem_op, nsops;
658 struct sembuf *sop;
659 struct sem *curr;
660 struct sembuf *sops;
661 struct sem_undo *un;
662
663 sops = q->sops;
664 nsops = q->nsops;
665 un = q->undo;
666
667 if (unlikely(q->dupsop))
668 return perform_atomic_semop_slow(sma, q);
669
670 /*
671 * We scan the semaphore set twice, first to ensure that the entire
672 * operation can succeed, therefore avoiding any pointless writes
673 * to shared memory and having to undo such changes in order to block
674 * until the operations can go through.
675 */
676 for (sop = sops; sop < sops + nsops; sop++) {
677 curr = sma->sem_base + sop->sem_num;
678 sem_op = sop->sem_op;
679 result = curr->semval;
680
681 if (!sem_op && result)
682 goto would_block; /* wait-for-zero */
683
684 result += sem_op;
685 if (result < 0)
686 goto would_block;
687
688 if (result > SEMVMX)
689 return -ERANGE;
690
691 if (sop->sem_flg & SEM_UNDO) {
692 int undo = un->semadj[sop->sem_num] - sem_op;
693
694 /* Exceeding the undo range is an error. */
695 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
696 return -ERANGE;
697 }
698 }
699
700 for (sop = sops; sop < sops + nsops; sop++) {
701 curr = sma->sem_base + sop->sem_num;
702 sem_op = sop->sem_op;
703 result = curr->semval;
704
705 if (sop->sem_flg & SEM_UNDO) {
706 int undo = un->semadj[sop->sem_num] - sem_op;
707
708 un->semadj[sop->sem_num] = undo;
709 }
710 curr->semval += sem_op;
711 curr->sempid = q->pid;
712 }
713
714 return 0;
715
716would_block:
717 q->blocking = sop;
718 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
719}
720
721static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
722 struct wake_q_head *wake_q)
723{
724 wake_q_add(wake_q, q->sleeper);
725 /*
726 * Rely on the above implicit barrier, such that we can
727 * ensure that we hold reference to the task before setting
728 * q->status. Otherwise we could race with do_exit if the
729 * task is awoken by an external event before calling
730 * wake_up_process().
731 */
732 WRITE_ONCE(q->status, error);
733}
734
735static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
736{
737 list_del(&q->list);
738 if (q->nsops > 1)
739 sma->complex_count--;
740}
741
742/** check_restart(sma, q)
743 * @sma: semaphore array
744 * @q: the operation that just completed
745 *
746 * update_queue is O(N^2) when it restarts scanning the whole queue of
747 * waiting operations. Therefore this function checks if the restart is
748 * really necessary. It is called after a previously waiting operation
749 * modified the array.
750 * Note that wait-for-zero operations are handled without restart.
751 */
752static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
753{
754 /* pending complex alter operations are too difficult to analyse */
755 if (!list_empty(&sma->pending_alter))
756 return 1;
757
758 /* we were a sleeping complex operation. Too difficult */
759 if (q->nsops > 1)
760 return 1;
761
762 /* It is impossible that someone waits for the new value:
763 * - complex operations always restart.
764 * - wait-for-zero are handled seperately.
765 * - q is a previously sleeping simple operation that
766 * altered the array. It must be a decrement, because
767 * simple increments never sleep.
768 * - If there are older (higher priority) decrements
769 * in the queue, then they have observed the original
770 * semval value and couldn't proceed. The operation
771 * decremented to value - thus they won't proceed either.
772 */
773 return 0;
774}
775
776/**
777 * wake_const_ops - wake up non-alter tasks
778 * @sma: semaphore array.
779 * @semnum: semaphore that was modified.
780 * @wake_q: lockless wake-queue head.
781 *
782 * wake_const_ops must be called after a semaphore in a semaphore array
783 * was set to 0. If complex const operations are pending, wake_const_ops must
784 * be called with semnum = -1, as well as with the number of each modified
785 * semaphore.
786 * The tasks that must be woken up are added to @wake_q. The return code
787 * is stored in q->pid.
788 * The function returns 1 if at least one operation was completed successfully.
789 */
790static int wake_const_ops(struct sem_array *sma, int semnum,
791 struct wake_q_head *wake_q)
792{
793 struct sem_queue *q, *tmp;
794 struct list_head *pending_list;
795 int semop_completed = 0;
796
797 if (semnum == -1)
798 pending_list = &sma->pending_const;
799 else
800 pending_list = &sma->sem_base[semnum].pending_const;
801
802 list_for_each_entry_safe(q, tmp, pending_list, list) {
803 int error = perform_atomic_semop(sma, q);
804
805 if (error > 0)
806 continue;
807 /* operation completed, remove from queue & wakeup */
808 unlink_queue(sma, q);
809
810 wake_up_sem_queue_prepare(q, error, wake_q);
811 if (error == 0)
812 semop_completed = 1;
813 }
814
815 return semop_completed;
816}
817
818/**
819 * do_smart_wakeup_zero - wakeup all wait for zero tasks
820 * @sma: semaphore array
821 * @sops: operations that were performed
822 * @nsops: number of operations
823 * @wake_q: lockless wake-queue head
824 *
825 * Checks all required queue for wait-for-zero operations, based
826 * on the actual changes that were performed on the semaphore array.
827 * The function returns 1 if at least one operation was completed successfully.
828 */
829static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
830 int nsops, struct wake_q_head *wake_q)
831{
832 int i;
833 int semop_completed = 0;
834 int got_zero = 0;
835
836 /* first: the per-semaphore queues, if known */
837 if (sops) {
838 for (i = 0; i < nsops; i++) {
839 int num = sops[i].sem_num;
840
841 if (sma->sem_base[num].semval == 0) {
842 got_zero = 1;
843 semop_completed |= wake_const_ops(sma, num, wake_q);
844 }
845 }
846 } else {
847 /*
848 * No sops means modified semaphores not known.
849 * Assume all were changed.
850 */
851 for (i = 0; i < sma->sem_nsems; i++) {
852 if (sma->sem_base[i].semval == 0) {
853 got_zero = 1;
854 semop_completed |= wake_const_ops(sma, i, wake_q);
855 }
856 }
857 }
858 /*
859 * If one of the modified semaphores got 0,
860 * then check the global queue, too.
861 */
862 if (got_zero)
863 semop_completed |= wake_const_ops(sma, -1, wake_q);
864
865 return semop_completed;
866}
867
868
869/**
870 * update_queue - look for tasks that can be completed.
871 * @sma: semaphore array.
872 * @semnum: semaphore that was modified.
873 * @wake_q: lockless wake-queue head.
874 *
875 * update_queue must be called after a semaphore in a semaphore array
876 * was modified. If multiple semaphores were modified, update_queue must
877 * be called with semnum = -1, as well as with the number of each modified
878 * semaphore.
879 * The tasks that must be woken up are added to @wake_q. The return code
880 * is stored in q->pid.
881 * The function internally checks if const operations can now succeed.
882 *
883 * The function return 1 if at least one semop was completed successfully.
884 */
885static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
886{
887 struct sem_queue *q, *tmp;
888 struct list_head *pending_list;
889 int semop_completed = 0;
890
891 if (semnum == -1)
892 pending_list = &sma->pending_alter;
893 else
894 pending_list = &sma->sem_base[semnum].pending_alter;
895
896again:
897 list_for_each_entry_safe(q, tmp, pending_list, list) {
898 int error, restart;
899
900 /* If we are scanning the single sop, per-semaphore list of
901 * one semaphore and that semaphore is 0, then it is not
902 * necessary to scan further: simple increments
903 * that affect only one entry succeed immediately and cannot
904 * be in the per semaphore pending queue, and decrements
905 * cannot be successful if the value is already 0.
906 */
907 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
908 break;
909
910 error = perform_atomic_semop(sma, q);
911
912 /* Does q->sleeper still need to sleep? */
913 if (error > 0)
914 continue;
915
916 unlink_queue(sma, q);
917
918 if (error) {
919 restart = 0;
920 } else {
921 semop_completed = 1;
922 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
923 restart = check_restart(sma, q);
924 }
925
926 wake_up_sem_queue_prepare(q, error, wake_q);
927 if (restart)
928 goto again;
929 }
930 return semop_completed;
931}
932
933/**
934 * set_semotime - set sem_otime
935 * @sma: semaphore array
936 * @sops: operations that modified the array, may be NULL
937 *
938 * sem_otime is replicated to avoid cache line trashing.
939 * This function sets one instance to the current time.
940 */
941static void set_semotime(struct sem_array *sma, struct sembuf *sops)
942{
943 if (sops == NULL) {
944 sma->sem_base[0].sem_otime = get_seconds();
945 } else {
946 sma->sem_base[sops[0].sem_num].sem_otime =
947 get_seconds();
948 }
949}
950
951/**
952 * do_smart_update - optimized update_queue
953 * @sma: semaphore array
954 * @sops: operations that were performed
955 * @nsops: number of operations
956 * @otime: force setting otime
957 * @wake_q: lockless wake-queue head
958 *
959 * do_smart_update() does the required calls to update_queue and wakeup_zero,
960 * based on the actual changes that were performed on the semaphore array.
961 * Note that the function does not do the actual wake-up: the caller is
962 * responsible for calling wake_up_q().
963 * It is safe to perform this call after dropping all locks.
964 */
965static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
966 int otime, struct wake_q_head *wake_q)
967{
968 int i;
969
970 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
971
972 if (!list_empty(&sma->pending_alter)) {
973 /* semaphore array uses the global queue - just process it. */
974 otime |= update_queue(sma, -1, wake_q);
975 } else {
976 if (!sops) {
977 /*
978 * No sops, thus the modified semaphores are not
979 * known. Check all.
980 */
981 for (i = 0; i < sma->sem_nsems; i++)
982 otime |= update_queue(sma, i, wake_q);
983 } else {
984 /*
985 * Check the semaphores that were increased:
986 * - No complex ops, thus all sleeping ops are
987 * decrease.
988 * - if we decreased the value, then any sleeping
989 * semaphore ops wont be able to run: If the
990 * previous value was too small, then the new
991 * value will be too small, too.
992 */
993 for (i = 0; i < nsops; i++) {
994 if (sops[i].sem_op > 0) {
995 otime |= update_queue(sma,
996 sops[i].sem_num, wake_q);
997 }
998 }
999 }
1000 }
1001 if (otime)
1002 set_semotime(sma, sops);
1003}
1004
1005/*
1006 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1007 */
1008static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1009 bool count_zero)
1010{
1011 struct sembuf *sop = q->blocking;
1012
1013 /*
1014 * Linux always (since 0.99.10) reported a task as sleeping on all
1015 * semaphores. This violates SUS, therefore it was changed to the
1016 * standard compliant behavior.
1017 * Give the administrators a chance to notice that an application
1018 * might misbehave because it relies on the Linux behavior.
1019 */
1020 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1021 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1022 current->comm, task_pid_nr(current));
1023
1024 if (sop->sem_num != semnum)
1025 return 0;
1026
1027 if (count_zero && sop->sem_op == 0)
1028 return 1;
1029 if (!count_zero && sop->sem_op < 0)
1030 return 1;
1031
1032 return 0;
1033}
1034
1035/* The following counts are associated to each semaphore:
1036 * semncnt number of tasks waiting on semval being nonzero
1037 * semzcnt number of tasks waiting on semval being zero
1038 *
1039 * Per definition, a task waits only on the semaphore of the first semop
1040 * that cannot proceed, even if additional operation would block, too.
1041 */
1042static int count_semcnt(struct sem_array *sma, ushort semnum,
1043 bool count_zero)
1044{
1045 struct list_head *l;
1046 struct sem_queue *q;
1047 int semcnt;
1048
1049 semcnt = 0;
1050 /* First: check the simple operations. They are easy to evaluate */
1051 if (count_zero)
1052 l = &sma->sem_base[semnum].pending_const;
1053 else
1054 l = &sma->sem_base[semnum].pending_alter;
1055
1056 list_for_each_entry(q, l, list) {
1057 /* all task on a per-semaphore list sleep on exactly
1058 * that semaphore
1059 */
1060 semcnt++;
1061 }
1062
1063 /* Then: check the complex operations. */
1064 list_for_each_entry(q, &sma->pending_alter, list) {
1065 semcnt += check_qop(sma, semnum, q, count_zero);
1066 }
1067 if (count_zero) {
1068 list_for_each_entry(q, &sma->pending_const, list) {
1069 semcnt += check_qop(sma, semnum, q, count_zero);
1070 }
1071 }
1072 return semcnt;
1073}
1074
1075/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1076 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1077 * remains locked on exit.
1078 */
1079static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1080{
1081 struct sem_undo *un, *tu;
1082 struct sem_queue *q, *tq;
1083 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1084 int i;
1085 DEFINE_WAKE_Q(wake_q);
1086
1087 /* Free the existing undo structures for this semaphore set. */
1088 ipc_assert_locked_object(&sma->sem_perm);
1089 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1090 list_del(&un->list_id);
1091 spin_lock(&un->ulp->lock);
1092 un->semid = -1;
1093 list_del_rcu(&un->list_proc);
1094 spin_unlock(&un->ulp->lock);
1095 kfree_rcu(un, rcu);
1096 }
1097
1098 /* Wake up all pending processes and let them fail with EIDRM. */
1099 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1100 unlink_queue(sma, q);
1101 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1102 }
1103
1104 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1105 unlink_queue(sma, q);
1106 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1107 }
1108 for (i = 0; i < sma->sem_nsems; i++) {
1109 struct sem *sem = sma->sem_base + i;
1110 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1111 unlink_queue(sma, q);
1112 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1113 }
1114 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1115 unlink_queue(sma, q);
1116 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1117 }
1118 }
1119
1120 /* Remove the semaphore set from the IDR */
1121 sem_rmid(ns, sma);
1122 sem_unlock(sma, -1);
1123 rcu_read_unlock();
1124
1125 wake_up_q(&wake_q);
1126 ns->used_sems -= sma->sem_nsems;
1127 ipc_rcu_putref(sma, sem_rcu_free);
1128}
1129
1130static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1131{
1132 switch (version) {
1133 case IPC_64:
1134 return copy_to_user(buf, in, sizeof(*in));
1135 case IPC_OLD:
1136 {
1137 struct semid_ds out;
1138
1139 memset(&out, 0, sizeof(out));
1140
1141 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1142
1143 out.sem_otime = in->sem_otime;
1144 out.sem_ctime = in->sem_ctime;
1145 out.sem_nsems = in->sem_nsems;
1146
1147 return copy_to_user(buf, &out, sizeof(out));
1148 }
1149 default:
1150 return -EINVAL;
1151 }
1152}
1153
1154static time_t get_semotime(struct sem_array *sma)
1155{
1156 int i;
1157 time_t res;
1158
1159 res = sma->sem_base[0].sem_otime;
1160 for (i = 1; i < sma->sem_nsems; i++) {
1161 time_t to = sma->sem_base[i].sem_otime;
1162
1163 if (to > res)
1164 res = to;
1165 }
1166 return res;
1167}
1168
1169static int semctl_nolock(struct ipc_namespace *ns, int semid,
1170 int cmd, int version, void __user *p)
1171{
1172 int err;
1173 struct sem_array *sma;
1174
1175 switch (cmd) {
1176 case IPC_INFO:
1177 case SEM_INFO:
1178 {
1179 struct seminfo seminfo;
1180 int max_id;
1181
1182 err = security_sem_semctl(NULL, cmd);
1183 if (err)
1184 return err;
1185
1186 memset(&seminfo, 0, sizeof(seminfo));
1187 seminfo.semmni = ns->sc_semmni;
1188 seminfo.semmns = ns->sc_semmns;
1189 seminfo.semmsl = ns->sc_semmsl;
1190 seminfo.semopm = ns->sc_semopm;
1191 seminfo.semvmx = SEMVMX;
1192 seminfo.semmnu = SEMMNU;
1193 seminfo.semmap = SEMMAP;
1194 seminfo.semume = SEMUME;
1195 down_read(&sem_ids(ns).rwsem);
1196 if (cmd == SEM_INFO) {
1197 seminfo.semusz = sem_ids(ns).in_use;
1198 seminfo.semaem = ns->used_sems;
1199 } else {
1200 seminfo.semusz = SEMUSZ;
1201 seminfo.semaem = SEMAEM;
1202 }
1203 max_id = ipc_get_maxid(&sem_ids(ns));
1204 up_read(&sem_ids(ns).rwsem);
1205 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1206 return -EFAULT;
1207 return (max_id < 0) ? 0 : max_id;
1208 }
1209 case IPC_STAT:
1210 case SEM_STAT:
1211 {
1212 struct semid64_ds tbuf;
1213 int id = 0;
1214
1215 memset(&tbuf, 0, sizeof(tbuf));
1216
1217 rcu_read_lock();
1218 if (cmd == SEM_STAT) {
1219 sma = sem_obtain_object(ns, semid);
1220 if (IS_ERR(sma)) {
1221 err = PTR_ERR(sma);
1222 goto out_unlock;
1223 }
1224 id = sma->sem_perm.id;
1225 } else {
1226 sma = sem_obtain_object_check(ns, semid);
1227 if (IS_ERR(sma)) {
1228 err = PTR_ERR(sma);
1229 goto out_unlock;
1230 }
1231 }
1232
1233 err = -EACCES;
1234 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1235 goto out_unlock;
1236
1237 err = security_sem_semctl(sma, cmd);
1238 if (err)
1239 goto out_unlock;
1240
1241 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
1242 tbuf.sem_otime = get_semotime(sma);
1243 tbuf.sem_ctime = sma->sem_ctime;
1244 tbuf.sem_nsems = sma->sem_nsems;
1245 rcu_read_unlock();
1246 if (copy_semid_to_user(p, &tbuf, version))
1247 return -EFAULT;
1248 return id;
1249 }
1250 default:
1251 return -EINVAL;
1252 }
1253out_unlock:
1254 rcu_read_unlock();
1255 return err;
1256}
1257
1258static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1259 unsigned long arg)
1260{
1261 struct sem_undo *un;
1262 struct sem_array *sma;
1263 struct sem *curr;
1264 int err, val;
1265 DEFINE_WAKE_Q(wake_q);
1266
1267#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1268 /* big-endian 64bit */
1269 val = arg >> 32;
1270#else
1271 /* 32bit or little-endian 64bit */
1272 val = arg;
1273#endif
1274
1275 if (val > SEMVMX || val < 0)
1276 return -ERANGE;
1277
1278 rcu_read_lock();
1279 sma = sem_obtain_object_check(ns, semid);
1280 if (IS_ERR(sma)) {
1281 rcu_read_unlock();
1282 return PTR_ERR(sma);
1283 }
1284
1285 if (semnum < 0 || semnum >= sma->sem_nsems) {
1286 rcu_read_unlock();
1287 return -EINVAL;
1288 }
1289
1290
1291 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1292 rcu_read_unlock();
1293 return -EACCES;
1294 }
1295
1296 err = security_sem_semctl(sma, SETVAL);
1297 if (err) {
1298 rcu_read_unlock();
1299 return -EACCES;
1300 }
1301
1302 sem_lock(sma, NULL, -1);
1303
1304 if (!ipc_valid_object(&sma->sem_perm)) {
1305 sem_unlock(sma, -1);
1306 rcu_read_unlock();
1307 return -EIDRM;
1308 }
1309
1310 curr = &sma->sem_base[semnum];
1311
1312 ipc_assert_locked_object(&sma->sem_perm);
1313 list_for_each_entry(un, &sma->list_id, list_id)
1314 un->semadj[semnum] = 0;
1315
1316 curr->semval = val;
1317 curr->sempid = task_tgid_vnr(current);
1318 sma->sem_ctime = get_seconds();
1319 /* maybe some queued-up processes were waiting for this */
1320 do_smart_update(sma, NULL, 0, 0, &wake_q);
1321 sem_unlock(sma, -1);
1322 rcu_read_unlock();
1323 wake_up_q(&wake_q);
1324 return 0;
1325}
1326
1327static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1328 int cmd, void __user *p)
1329{
1330 struct sem_array *sma;
1331 struct sem *curr;
1332 int err, nsems;
1333 ushort fast_sem_io[SEMMSL_FAST];
1334 ushort *sem_io = fast_sem_io;
1335 DEFINE_WAKE_Q(wake_q);
1336
1337 rcu_read_lock();
1338 sma = sem_obtain_object_check(ns, semid);
1339 if (IS_ERR(sma)) {
1340 rcu_read_unlock();
1341 return PTR_ERR(sma);
1342 }
1343
1344 nsems = sma->sem_nsems;
1345
1346 err = -EACCES;
1347 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1348 goto out_rcu_wakeup;
1349
1350 err = security_sem_semctl(sma, cmd);
1351 if (err)
1352 goto out_rcu_wakeup;
1353
1354 err = -EACCES;
1355 switch (cmd) {
1356 case GETALL:
1357 {
1358 ushort __user *array = p;
1359 int i;
1360
1361 sem_lock(sma, NULL, -1);
1362 if (!ipc_valid_object(&sma->sem_perm)) {
1363 err = -EIDRM;
1364 goto out_unlock;
1365 }
1366 if (nsems > SEMMSL_FAST) {
1367 if (!ipc_rcu_getref(sma)) {
1368 err = -EIDRM;
1369 goto out_unlock;
1370 }
1371 sem_unlock(sma, -1);
1372 rcu_read_unlock();
1373 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1374 if (sem_io == NULL) {
1375 ipc_rcu_putref(sma, sem_rcu_free);
1376 return -ENOMEM;
1377 }
1378
1379 rcu_read_lock();
1380 sem_lock_and_putref(sma);
1381 if (!ipc_valid_object(&sma->sem_perm)) {
1382 err = -EIDRM;
1383 goto out_unlock;
1384 }
1385 }
1386 for (i = 0; i < sma->sem_nsems; i++)
1387 sem_io[i] = sma->sem_base[i].semval;
1388 sem_unlock(sma, -1);
1389 rcu_read_unlock();
1390 err = 0;
1391 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1392 err = -EFAULT;
1393 goto out_free;
1394 }
1395 case SETALL:
1396 {
1397 int i;
1398 struct sem_undo *un;
1399
1400 if (!ipc_rcu_getref(sma)) {
1401 err = -EIDRM;
1402 goto out_rcu_wakeup;
1403 }
1404 rcu_read_unlock();
1405
1406 if (nsems > SEMMSL_FAST) {
1407 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1408 if (sem_io == NULL) {
1409 ipc_rcu_putref(sma, sem_rcu_free);
1410 return -ENOMEM;
1411 }
1412 }
1413
1414 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1415 ipc_rcu_putref(sma, sem_rcu_free);
1416 err = -EFAULT;
1417 goto out_free;
1418 }
1419
1420 for (i = 0; i < nsems; i++) {
1421 if (sem_io[i] > SEMVMX) {
1422 ipc_rcu_putref(sma, sem_rcu_free);
1423 err = -ERANGE;
1424 goto out_free;
1425 }
1426 }
1427 rcu_read_lock();
1428 sem_lock_and_putref(sma);
1429 if (!ipc_valid_object(&sma->sem_perm)) {
1430 err = -EIDRM;
1431 goto out_unlock;
1432 }
1433
1434 for (i = 0; i < nsems; i++) {
1435 sma->sem_base[i].semval = sem_io[i];
1436 sma->sem_base[i].sempid = task_tgid_vnr(current);
1437 }
1438
1439 ipc_assert_locked_object(&sma->sem_perm);
1440 list_for_each_entry(un, &sma->list_id, list_id) {
1441 for (i = 0; i < nsems; i++)
1442 un->semadj[i] = 0;
1443 }
1444 sma->sem_ctime = get_seconds();
1445 /* maybe some queued-up processes were waiting for this */
1446 do_smart_update(sma, NULL, 0, 0, &wake_q);
1447 err = 0;
1448 goto out_unlock;
1449 }
1450 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1451 }
1452 err = -EINVAL;
1453 if (semnum < 0 || semnum >= nsems)
1454 goto out_rcu_wakeup;
1455
1456 sem_lock(sma, NULL, -1);
1457 if (!ipc_valid_object(&sma->sem_perm)) {
1458 err = -EIDRM;
1459 goto out_unlock;
1460 }
1461 curr = &sma->sem_base[semnum];
1462
1463 switch (cmd) {
1464 case GETVAL:
1465 err = curr->semval;
1466 goto out_unlock;
1467 case GETPID:
1468 err = curr->sempid;
1469 goto out_unlock;
1470 case GETNCNT:
1471 err = count_semcnt(sma, semnum, 0);
1472 goto out_unlock;
1473 case GETZCNT:
1474 err = count_semcnt(sma, semnum, 1);
1475 goto out_unlock;
1476 }
1477
1478out_unlock:
1479 sem_unlock(sma, -1);
1480out_rcu_wakeup:
1481 rcu_read_unlock();
1482 wake_up_q(&wake_q);
1483out_free:
1484 if (sem_io != fast_sem_io)
1485 ipc_free(sem_io);
1486 return err;
1487}
1488
1489static inline unsigned long
1490copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1491{
1492 switch (version) {
1493 case IPC_64:
1494 if (copy_from_user(out, buf, sizeof(*out)))
1495 return -EFAULT;
1496 return 0;
1497 case IPC_OLD:
1498 {
1499 struct semid_ds tbuf_old;
1500
1501 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1502 return -EFAULT;
1503
1504 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1505 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1506 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1507
1508 return 0;
1509 }
1510 default:
1511 return -EINVAL;
1512 }
1513}
1514
1515/*
1516 * This function handles some semctl commands which require the rwsem
1517 * to be held in write mode.
1518 * NOTE: no locks must be held, the rwsem is taken inside this function.
1519 */
1520static int semctl_down(struct ipc_namespace *ns, int semid,
1521 int cmd, int version, void __user *p)
1522{
1523 struct sem_array *sma;
1524 int err;
1525 struct semid64_ds semid64;
1526 struct kern_ipc_perm *ipcp;
1527
1528 if (cmd == IPC_SET) {
1529 if (copy_semid_from_user(&semid64, p, version))
1530 return -EFAULT;
1531 }
1532
1533 down_write(&sem_ids(ns).rwsem);
1534 rcu_read_lock();
1535
1536 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1537 &semid64.sem_perm, 0);
1538 if (IS_ERR(ipcp)) {
1539 err = PTR_ERR(ipcp);
1540 goto out_unlock1;
1541 }
1542
1543 sma = container_of(ipcp, struct sem_array, sem_perm);
1544
1545 err = security_sem_semctl(sma, cmd);
1546 if (err)
1547 goto out_unlock1;
1548
1549 switch (cmd) {
1550 case IPC_RMID:
1551 sem_lock(sma, NULL, -1);
1552 /* freeary unlocks the ipc object and rcu */
1553 freeary(ns, ipcp);
1554 goto out_up;
1555 case IPC_SET:
1556 sem_lock(sma, NULL, -1);
1557 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1558 if (err)
1559 goto out_unlock0;
1560 sma->sem_ctime = get_seconds();
1561 break;
1562 default:
1563 err = -EINVAL;
1564 goto out_unlock1;
1565 }
1566
1567out_unlock0:
1568 sem_unlock(sma, -1);
1569out_unlock1:
1570 rcu_read_unlock();
1571out_up:
1572 up_write(&sem_ids(ns).rwsem);
1573 return err;
1574}
1575
1576SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1577{
1578 int version;
1579 struct ipc_namespace *ns;
1580 void __user *p = (void __user *)arg;
1581
1582 if (semid < 0)
1583 return -EINVAL;
1584
1585 version = ipc_parse_version(&cmd);
1586 ns = current->nsproxy->ipc_ns;
1587
1588 switch (cmd) {
1589 case IPC_INFO:
1590 case SEM_INFO:
1591 case IPC_STAT:
1592 case SEM_STAT:
1593 return semctl_nolock(ns, semid, cmd, version, p);
1594 case GETALL:
1595 case GETVAL:
1596 case GETPID:
1597 case GETNCNT:
1598 case GETZCNT:
1599 case SETALL:
1600 return semctl_main(ns, semid, semnum, cmd, p);
1601 case SETVAL:
1602 return semctl_setval(ns, semid, semnum, arg);
1603 case IPC_RMID:
1604 case IPC_SET:
1605 return semctl_down(ns, semid, cmd, version, p);
1606 default:
1607 return -EINVAL;
1608 }
1609}
1610
1611/* If the task doesn't already have a undo_list, then allocate one
1612 * here. We guarantee there is only one thread using this undo list,
1613 * and current is THE ONE
1614 *
1615 * If this allocation and assignment succeeds, but later
1616 * portions of this code fail, there is no need to free the sem_undo_list.
1617 * Just let it stay associated with the task, and it'll be freed later
1618 * at exit time.
1619 *
1620 * This can block, so callers must hold no locks.
1621 */
1622static inline int get_undo_list(struct sem_undo_list **undo_listp)
1623{
1624 struct sem_undo_list *undo_list;
1625
1626 undo_list = current->sysvsem.undo_list;
1627 if (!undo_list) {
1628 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1629 if (undo_list == NULL)
1630 return -ENOMEM;
1631 spin_lock_init(&undo_list->lock);
1632 atomic_set(&undo_list->refcnt, 1);
1633 INIT_LIST_HEAD(&undo_list->list_proc);
1634
1635 current->sysvsem.undo_list = undo_list;
1636 }
1637 *undo_listp = undo_list;
1638 return 0;
1639}
1640
1641static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1642{
1643 struct sem_undo *un;
1644
1645 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1646 if (un->semid == semid)
1647 return un;
1648 }
1649 return NULL;
1650}
1651
1652static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1653{
1654 struct sem_undo *un;
1655
1656 assert_spin_locked(&ulp->lock);
1657
1658 un = __lookup_undo(ulp, semid);
1659 if (un) {
1660 list_del_rcu(&un->list_proc);
1661 list_add_rcu(&un->list_proc, &ulp->list_proc);
1662 }
1663 return un;
1664}
1665
1666/**
1667 * find_alloc_undo - lookup (and if not present create) undo array
1668 * @ns: namespace
1669 * @semid: semaphore array id
1670 *
1671 * The function looks up (and if not present creates) the undo structure.
1672 * The size of the undo structure depends on the size of the semaphore
1673 * array, thus the alloc path is not that straightforward.
1674 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1675 * performs a rcu_read_lock().
1676 */
1677static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1678{
1679 struct sem_array *sma;
1680 struct sem_undo_list *ulp;
1681 struct sem_undo *un, *new;
1682 int nsems, error;
1683
1684 error = get_undo_list(&ulp);
1685 if (error)
1686 return ERR_PTR(error);
1687
1688 rcu_read_lock();
1689 spin_lock(&ulp->lock);
1690 un = lookup_undo(ulp, semid);
1691 spin_unlock(&ulp->lock);
1692 if (likely(un != NULL))
1693 goto out;
1694
1695 /* no undo structure around - allocate one. */
1696 /* step 1: figure out the size of the semaphore array */
1697 sma = sem_obtain_object_check(ns, semid);
1698 if (IS_ERR(sma)) {
1699 rcu_read_unlock();
1700 return ERR_CAST(sma);
1701 }
1702
1703 nsems = sma->sem_nsems;
1704 if (!ipc_rcu_getref(sma)) {
1705 rcu_read_unlock();
1706 un = ERR_PTR(-EIDRM);
1707 goto out;
1708 }
1709 rcu_read_unlock();
1710
1711 /* step 2: allocate new undo structure */
1712 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1713 if (!new) {
1714 ipc_rcu_putref(sma, sem_rcu_free);
1715 return ERR_PTR(-ENOMEM);
1716 }
1717
1718 /* step 3: Acquire the lock on semaphore array */
1719 rcu_read_lock();
1720 sem_lock_and_putref(sma);
1721 if (!ipc_valid_object(&sma->sem_perm)) {
1722 sem_unlock(sma, -1);
1723 rcu_read_unlock();
1724 kfree(new);
1725 un = ERR_PTR(-EIDRM);
1726 goto out;
1727 }
1728 spin_lock(&ulp->lock);
1729
1730 /*
1731 * step 4: check for races: did someone else allocate the undo struct?
1732 */
1733 un = lookup_undo(ulp, semid);
1734 if (un) {
1735 kfree(new);
1736 goto success;
1737 }
1738 /* step 5: initialize & link new undo structure */
1739 new->semadj = (short *) &new[1];
1740 new->ulp = ulp;
1741 new->semid = semid;
1742 assert_spin_locked(&ulp->lock);
1743 list_add_rcu(&new->list_proc, &ulp->list_proc);
1744 ipc_assert_locked_object(&sma->sem_perm);
1745 list_add(&new->list_id, &sma->list_id);
1746 un = new;
1747
1748success:
1749 spin_unlock(&ulp->lock);
1750 sem_unlock(sma, -1);
1751out:
1752 return un;
1753}
1754
1755SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1756 unsigned, nsops, const struct timespec __user *, timeout)
1757{
1758 int error = -EINVAL;
1759 struct sem_array *sma;
1760 struct sembuf fast_sops[SEMOPM_FAST];
1761 struct sembuf *sops = fast_sops, *sop;
1762 struct sem_undo *un;
1763 int max, locknum;
1764 bool undos = false, alter = false, dupsop = false;
1765 struct sem_queue queue;
1766 unsigned long dup = 0, jiffies_left = 0;
1767 struct ipc_namespace *ns;
1768
1769 ns = current->nsproxy->ipc_ns;
1770
1771 if (nsops < 1 || semid < 0)
1772 return -EINVAL;
1773 if (nsops > ns->sc_semopm)
1774 return -E2BIG;
1775 if (nsops > SEMOPM_FAST) {
1776 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1777 if (sops == NULL)
1778 return -ENOMEM;
1779 }
1780
1781 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1782 error = -EFAULT;
1783 goto out_free;
1784 }
1785
1786 if (timeout) {
1787 struct timespec _timeout;
1788 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1789 error = -EFAULT;
1790 goto out_free;
1791 }
1792 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1793 _timeout.tv_nsec >= 1000000000L) {
1794 error = -EINVAL;
1795 goto out_free;
1796 }
1797 jiffies_left = timespec_to_jiffies(&_timeout);
1798 }
1799
1800 max = 0;
1801 for (sop = sops; sop < sops + nsops; sop++) {
1802 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1803
1804 if (sop->sem_num >= max)
1805 max = sop->sem_num;
1806 if (sop->sem_flg & SEM_UNDO)
1807 undos = true;
1808 if (dup & mask) {
1809 /*
1810 * There was a previous alter access that appears
1811 * to have accessed the same semaphore, thus use
1812 * the dupsop logic. "appears", because the detection
1813 * can only check % BITS_PER_LONG.
1814 */
1815 dupsop = true;
1816 }
1817 if (sop->sem_op != 0) {
1818 alter = true;
1819 dup |= mask;
1820 }
1821 }
1822
1823 if (undos) {
1824 /* On success, find_alloc_undo takes the rcu_read_lock */
1825 un = find_alloc_undo(ns, semid);
1826 if (IS_ERR(un)) {
1827 error = PTR_ERR(un);
1828 goto out_free;
1829 }
1830 } else {
1831 un = NULL;
1832 rcu_read_lock();
1833 }
1834
1835 sma = sem_obtain_object_check(ns, semid);
1836 if (IS_ERR(sma)) {
1837 rcu_read_unlock();
1838 error = PTR_ERR(sma);
1839 goto out_free;
1840 }
1841
1842 error = -EFBIG;
1843 if (max >= sma->sem_nsems) {
1844 rcu_read_unlock();
1845 goto out_free;
1846 }
1847
1848 error = -EACCES;
1849 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1850 rcu_read_unlock();
1851 goto out_free;
1852 }
1853
1854 error = security_sem_semop(sma, sops, nsops, alter);
1855 if (error) {
1856 rcu_read_unlock();
1857 goto out_free;
1858 }
1859
1860 error = -EIDRM;
1861 locknum = sem_lock(sma, sops, nsops);
1862 /*
1863 * We eventually might perform the following check in a lockless
1864 * fashion, considering ipc_valid_object() locking constraints.
1865 * If nsops == 1 and there is no contention for sem_perm.lock, then
1866 * only a per-semaphore lock is held and it's OK to proceed with the
1867 * check below. More details on the fine grained locking scheme
1868 * entangled here and why it's RMID race safe on comments at sem_lock()
1869 */
1870 if (!ipc_valid_object(&sma->sem_perm))
1871 goto out_unlock_free;
1872 /*
1873 * semid identifiers are not unique - find_alloc_undo may have
1874 * allocated an undo structure, it was invalidated by an RMID
1875 * and now a new array with received the same id. Check and fail.
1876 * This case can be detected checking un->semid. The existence of
1877 * "un" itself is guaranteed by rcu.
1878 */
1879 if (un && un->semid == -1)
1880 goto out_unlock_free;
1881
1882 queue.sops = sops;
1883 queue.nsops = nsops;
1884 queue.undo = un;
1885 queue.pid = task_tgid_vnr(current);
1886 queue.alter = alter;
1887 queue.dupsop = dupsop;
1888
1889 error = perform_atomic_semop(sma, &queue);
1890 if (error == 0) { /* non-blocking succesfull path */
1891 DEFINE_WAKE_Q(wake_q);
1892
1893 /*
1894 * If the operation was successful, then do
1895 * the required updates.
1896 */
1897 if (alter)
1898 do_smart_update(sma, sops, nsops, 1, &wake_q);
1899 else
1900 set_semotime(sma, sops);
1901
1902 sem_unlock(sma, locknum);
1903 rcu_read_unlock();
1904 wake_up_q(&wake_q);
1905
1906 goto out_free;
1907 }
1908 if (error < 0) /* non-blocking error path */
1909 goto out_unlock_free;
1910
1911 /*
1912 * We need to sleep on this operation, so we put the current
1913 * task into the pending queue and go to sleep.
1914 */
1915 if (nsops == 1) {
1916 struct sem *curr;
1917 curr = &sma->sem_base[sops->sem_num];
1918
1919 if (alter) {
1920 if (sma->complex_count) {
1921 list_add_tail(&queue.list,
1922 &sma->pending_alter);
1923 } else {
1924
1925 list_add_tail(&queue.list,
1926 &curr->pending_alter);
1927 }
1928 } else {
1929 list_add_tail(&queue.list, &curr->pending_const);
1930 }
1931 } else {
1932 if (!sma->complex_count)
1933 merge_queues(sma);
1934
1935 if (alter)
1936 list_add_tail(&queue.list, &sma->pending_alter);
1937 else
1938 list_add_tail(&queue.list, &sma->pending_const);
1939
1940 sma->complex_count++;
1941 }
1942
1943 do {
1944 queue.status = -EINTR;
1945 queue.sleeper = current;
1946
1947 __set_current_state(TASK_INTERRUPTIBLE);
1948 sem_unlock(sma, locknum);
1949 rcu_read_unlock();
1950
1951 if (timeout)
1952 jiffies_left = schedule_timeout(jiffies_left);
1953 else
1954 schedule();
1955
1956 /*
1957 * fastpath: the semop has completed, either successfully or
1958 * not, from the syscall pov, is quite irrelevant to us at this
1959 * point; we're done.
1960 *
1961 * We _do_ care, nonetheless, about being awoken by a signal or
1962 * spuriously. The queue.status is checked again in the
1963 * slowpath (aka after taking sem_lock), such that we can detect
1964 * scenarios where we were awakened externally, during the
1965 * window between wake_q_add() and wake_up_q().
1966 */
1967 error = READ_ONCE(queue.status);
1968 if (error != -EINTR) {
1969 /*
1970 * User space could assume that semop() is a memory
1971 * barrier: Without the mb(), the cpu could
1972 * speculatively read in userspace stale data that was
1973 * overwritten by the previous owner of the semaphore.
1974 */
1975 smp_mb();
1976 goto out_free;
1977 }
1978
1979 rcu_read_lock();
1980 locknum = sem_lock(sma, sops, nsops);
1981
1982 if (!ipc_valid_object(&sma->sem_perm))
1983 goto out_unlock_free;
1984
1985 error = READ_ONCE(queue.status);
1986
1987 /*
1988 * If queue.status != -EINTR we are woken up by another process.
1989 * Leave without unlink_queue(), but with sem_unlock().
1990 */
1991 if (error != -EINTR)
1992 goto out_unlock_free;
1993
1994 /*
1995 * If an interrupt occurred we have to clean up the queue.
1996 */
1997 if (timeout && jiffies_left == 0)
1998 error = -EAGAIN;
1999 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2000
2001 unlink_queue(sma, &queue);
2002
2003out_unlock_free:
2004 sem_unlock(sma, locknum);
2005 rcu_read_unlock();
2006out_free:
2007 if (sops != fast_sops)
2008 kfree(sops);
2009 return error;
2010}
2011
2012SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2013 unsigned, nsops)
2014{
2015 return sys_semtimedop(semid, tsops, nsops, NULL);
2016}
2017
2018/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2019 * parent and child tasks.
2020 */
2021
2022int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2023{
2024 struct sem_undo_list *undo_list;
2025 int error;
2026
2027 if (clone_flags & CLONE_SYSVSEM) {
2028 error = get_undo_list(&undo_list);
2029 if (error)
2030 return error;
2031 atomic_inc(&undo_list->refcnt);
2032 tsk->sysvsem.undo_list = undo_list;
2033 } else
2034 tsk->sysvsem.undo_list = NULL;
2035
2036 return 0;
2037}
2038
2039/*
2040 * add semadj values to semaphores, free undo structures.
2041 * undo structures are not freed when semaphore arrays are destroyed
2042 * so some of them may be out of date.
2043 * IMPLEMENTATION NOTE: There is some confusion over whether the
2044 * set of adjustments that needs to be done should be done in an atomic
2045 * manner or not. That is, if we are attempting to decrement the semval
2046 * should we queue up and wait until we can do so legally?
2047 * The original implementation attempted to do this (queue and wait).
2048 * The current implementation does not do so. The POSIX standard
2049 * and SVID should be consulted to determine what behavior is mandated.
2050 */
2051void exit_sem(struct task_struct *tsk)
2052{
2053 struct sem_undo_list *ulp;
2054
2055 ulp = tsk->sysvsem.undo_list;
2056 if (!ulp)
2057 return;
2058 tsk->sysvsem.undo_list = NULL;
2059
2060 if (!atomic_dec_and_test(&ulp->refcnt))
2061 return;
2062
2063 for (;;) {
2064 struct sem_array *sma;
2065 struct sem_undo *un;
2066 int semid, i;
2067 DEFINE_WAKE_Q(wake_q);
2068
2069 cond_resched();
2070
2071 rcu_read_lock();
2072 un = list_entry_rcu(ulp->list_proc.next,
2073 struct sem_undo, list_proc);
2074 if (&un->list_proc == &ulp->list_proc) {
2075 /*
2076 * We must wait for freeary() before freeing this ulp,
2077 * in case we raced with last sem_undo. There is a small
2078 * possibility where we exit while freeary() didn't
2079 * finish unlocking sem_undo_list.
2080 */
2081 spin_unlock_wait(&ulp->lock);
2082 rcu_read_unlock();
2083 break;
2084 }
2085 spin_lock(&ulp->lock);
2086 semid = un->semid;
2087 spin_unlock(&ulp->lock);
2088
2089 /* exit_sem raced with IPC_RMID, nothing to do */
2090 if (semid == -1) {
2091 rcu_read_unlock();
2092 continue;
2093 }
2094
2095 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2096 /* exit_sem raced with IPC_RMID, nothing to do */
2097 if (IS_ERR(sma)) {
2098 rcu_read_unlock();
2099 continue;
2100 }
2101
2102 sem_lock(sma, NULL, -1);
2103 /* exit_sem raced with IPC_RMID, nothing to do */
2104 if (!ipc_valid_object(&sma->sem_perm)) {
2105 sem_unlock(sma, -1);
2106 rcu_read_unlock();
2107 continue;
2108 }
2109 un = __lookup_undo(ulp, semid);
2110 if (un == NULL) {
2111 /* exit_sem raced with IPC_RMID+semget() that created
2112 * exactly the same semid. Nothing to do.
2113 */
2114 sem_unlock(sma, -1);
2115 rcu_read_unlock();
2116 continue;
2117 }
2118
2119 /* remove un from the linked lists */
2120 ipc_assert_locked_object(&sma->sem_perm);
2121 list_del(&un->list_id);
2122
2123 /* we are the last process using this ulp, acquiring ulp->lock
2124 * isn't required. Besides that, we are also protected against
2125 * IPC_RMID as we hold sma->sem_perm lock now
2126 */
2127 list_del_rcu(&un->list_proc);
2128
2129 /* perform adjustments registered in un */
2130 for (i = 0; i < sma->sem_nsems; i++) {
2131 struct sem *semaphore = &sma->sem_base[i];
2132 if (un->semadj[i]) {
2133 semaphore->semval += un->semadj[i];
2134 /*
2135 * Range checks of the new semaphore value,
2136 * not defined by sus:
2137 * - Some unices ignore the undo entirely
2138 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2139 * - some cap the value (e.g. FreeBSD caps
2140 * at 0, but doesn't enforce SEMVMX)
2141 *
2142 * Linux caps the semaphore value, both at 0
2143 * and at SEMVMX.
2144 *
2145 * Manfred <manfred@colorfullife.com>
2146 */
2147 if (semaphore->semval < 0)
2148 semaphore->semval = 0;
2149 if (semaphore->semval > SEMVMX)
2150 semaphore->semval = SEMVMX;
2151 semaphore->sempid = task_tgid_vnr(current);
2152 }
2153 }
2154 /* maybe some queued-up processes were waiting for this */
2155 do_smart_update(sma, NULL, 0, 1, &wake_q);
2156 sem_unlock(sma, -1);
2157 rcu_read_unlock();
2158 wake_up_q(&wake_q);
2159
2160 kfree_rcu(un, rcu);
2161 }
2162 kfree(ulp);
2163}
2164
2165#ifdef CONFIG_PROC_FS
2166static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2167{
2168 struct user_namespace *user_ns = seq_user_ns(s);
2169 struct sem_array *sma = it;
2170 time_t sem_otime;
2171
2172 /*
2173 * The proc interface isn't aware of sem_lock(), it calls
2174 * ipc_lock_object() directly (in sysvipc_find_ipc).
2175 * In order to stay compatible with sem_lock(), we must
2176 * enter / leave complex_mode.
2177 */
2178 complexmode_enter(sma);
2179
2180 sem_otime = get_semotime(sma);
2181
2182 seq_printf(s,
2183 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2184 sma->sem_perm.key,
2185 sma->sem_perm.id,
2186 sma->sem_perm.mode,
2187 sma->sem_nsems,
2188 from_kuid_munged(user_ns, sma->sem_perm.uid),
2189 from_kgid_munged(user_ns, sma->sem_perm.gid),
2190 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2191 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2192 sem_otime,
2193 sma->sem_ctime);
2194
2195 complexmode_tryleave(sma);
2196
2197 return 0;
2198}
2199#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
71 */
72
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/init.h>
76#include <linux/proc_fs.h>
77#include <linux/time.h>
78#include <linux/security.h>
79#include <linux/syscalls.h>
80#include <linux/audit.h>
81#include <linux/capability.h>
82#include <linux/seq_file.h>
83#include <linux/rwsem.h>
84#include <linux/nsproxy.h>
85#include <linux/ipc_namespace.h>
86#include <linux/sched/wake_q.h>
87
88#include <linux/uaccess.h>
89#include "util.h"
90
91/* One semaphore structure for each semaphore in the system. */
92struct sem {
93 int semval; /* current value */
94 /*
95 * PID of the process that last modified the semaphore. For
96 * Linux, specifically these are:
97 * - semop
98 * - semctl, via SETVAL and SETALL.
99 * - at task exit when performing undo adjustments (see exit_sem).
100 */
101 struct pid *sempid;
102 spinlock_t lock; /* spinlock for fine-grained semtimedop */
103 struct list_head pending_alter; /* pending single-sop operations */
104 /* that alter the semaphore */
105 struct list_head pending_const; /* pending single-sop operations */
106 /* that do not alter the semaphore*/
107 time_t sem_otime; /* candidate for sem_otime */
108} ____cacheline_aligned_in_smp;
109
110/* One sem_array data structure for each set of semaphores in the system. */
111struct sem_array {
112 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
113 time64_t sem_ctime; /* create/last semctl() time */
114 struct list_head pending_alter; /* pending operations */
115 /* that alter the array */
116 struct list_head pending_const; /* pending complex operations */
117 /* that do not alter semvals */
118 struct list_head list_id; /* undo requests on this array */
119 int sem_nsems; /* no. of semaphores in array */
120 int complex_count; /* pending complex operations */
121 unsigned int use_global_lock;/* >0: global lock required */
122
123 struct sem sems[];
124} __randomize_layout;
125
126/* One queue for each sleeping process in the system. */
127struct sem_queue {
128 struct list_head list; /* queue of pending operations */
129 struct task_struct *sleeper; /* this process */
130 struct sem_undo *undo; /* undo structure */
131 struct pid *pid; /* process id of requesting process */
132 int status; /* completion status of operation */
133 struct sembuf *sops; /* array of pending operations */
134 struct sembuf *blocking; /* the operation that blocked */
135 int nsops; /* number of operations */
136 bool alter; /* does *sops alter the array? */
137 bool dupsop; /* sops on more than one sem_num */
138};
139
140/* Each task has a list of undo requests. They are executed automatically
141 * when the process exits.
142 */
143struct sem_undo {
144 struct list_head list_proc; /* per-process list: *
145 * all undos from one process
146 * rcu protected */
147 struct rcu_head rcu; /* rcu struct for sem_undo */
148 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
149 struct list_head list_id; /* per semaphore array list:
150 * all undos for one array */
151 int semid; /* semaphore set identifier */
152 short *semadj; /* array of adjustments */
153 /* one per semaphore */
154};
155
156/* sem_undo_list controls shared access to the list of sem_undo structures
157 * that may be shared among all a CLONE_SYSVSEM task group.
158 */
159struct sem_undo_list {
160 refcount_t refcnt;
161 spinlock_t lock;
162 struct list_head list_proc;
163};
164
165
166#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
167
168static int newary(struct ipc_namespace *, struct ipc_params *);
169static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
170#ifdef CONFIG_PROC_FS
171static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
172#endif
173
174#define SEMMSL_FAST 256 /* 512 bytes on stack */
175#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
176
177/*
178 * Switching from the mode suitable for simple ops
179 * to the mode for complex ops is costly. Therefore:
180 * use some hysteresis
181 */
182#define USE_GLOBAL_LOCK_HYSTERESIS 10
183
184/*
185 * Locking:
186 * a) global sem_lock() for read/write
187 * sem_undo.id_next,
188 * sem_array.complex_count,
189 * sem_array.pending{_alter,_const},
190 * sem_array.sem_undo
191 *
192 * b) global or semaphore sem_lock() for read/write:
193 * sem_array.sems[i].pending_{const,alter}:
194 *
195 * c) special:
196 * sem_undo_list.list_proc:
197 * * undo_list->lock for write
198 * * rcu for read
199 * use_global_lock:
200 * * global sem_lock() for write
201 * * either local or global sem_lock() for read.
202 *
203 * Memory ordering:
204 * Most ordering is enforced by using spin_lock() and spin_unlock().
205 * The special case is use_global_lock:
206 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
207 * using smp_store_release().
208 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
209 * smp_load_acquire().
210 * Setting it from 0 to non-zero must be ordered with regards to
211 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
212 * is inside a spin_lock() and after a write from 0 to non-zero a
213 * spin_lock()+spin_unlock() is done.
214 */
215
216#define sc_semmsl sem_ctls[0]
217#define sc_semmns sem_ctls[1]
218#define sc_semopm sem_ctls[2]
219#define sc_semmni sem_ctls[3]
220
221int sem_init_ns(struct ipc_namespace *ns)
222{
223 ns->sc_semmsl = SEMMSL;
224 ns->sc_semmns = SEMMNS;
225 ns->sc_semopm = SEMOPM;
226 ns->sc_semmni = SEMMNI;
227 ns->used_sems = 0;
228 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
229}
230
231#ifdef CONFIG_IPC_NS
232void sem_exit_ns(struct ipc_namespace *ns)
233{
234 free_ipcs(ns, &sem_ids(ns), freeary);
235 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
236 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
237}
238#endif
239
240int __init sem_init(void)
241{
242 const int err = sem_init_ns(&init_ipc_ns);
243
244 ipc_init_proc_interface("sysvipc/sem",
245 " key semid perms nsems uid gid cuid cgid otime ctime\n",
246 IPC_SEM_IDS, sysvipc_sem_proc_show);
247 return err;
248}
249
250/**
251 * unmerge_queues - unmerge queues, if possible.
252 * @sma: semaphore array
253 *
254 * The function unmerges the wait queues if complex_count is 0.
255 * It must be called prior to dropping the global semaphore array lock.
256 */
257static void unmerge_queues(struct sem_array *sma)
258{
259 struct sem_queue *q, *tq;
260
261 /* complex operations still around? */
262 if (sma->complex_count)
263 return;
264 /*
265 * We will switch back to simple mode.
266 * Move all pending operation back into the per-semaphore
267 * queues.
268 */
269 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
270 struct sem *curr;
271 curr = &sma->sems[q->sops[0].sem_num];
272
273 list_add_tail(&q->list, &curr->pending_alter);
274 }
275 INIT_LIST_HEAD(&sma->pending_alter);
276}
277
278/**
279 * merge_queues - merge single semop queues into global queue
280 * @sma: semaphore array
281 *
282 * This function merges all per-semaphore queues into the global queue.
283 * It is necessary to achieve FIFO ordering for the pending single-sop
284 * operations when a multi-semop operation must sleep.
285 * Only the alter operations must be moved, the const operations can stay.
286 */
287static void merge_queues(struct sem_array *sma)
288{
289 int i;
290 for (i = 0; i < sma->sem_nsems; i++) {
291 struct sem *sem = &sma->sems[i];
292
293 list_splice_init(&sem->pending_alter, &sma->pending_alter);
294 }
295}
296
297static void sem_rcu_free(struct rcu_head *head)
298{
299 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
300 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
301
302 security_sem_free(&sma->sem_perm);
303 kvfree(sma);
304}
305
306/*
307 * Enter the mode suitable for non-simple operations:
308 * Caller must own sem_perm.lock.
309 */
310static void complexmode_enter(struct sem_array *sma)
311{
312 int i;
313 struct sem *sem;
314
315 if (sma->use_global_lock > 0) {
316 /*
317 * We are already in global lock mode.
318 * Nothing to do, just reset the
319 * counter until we return to simple mode.
320 */
321 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
322 return;
323 }
324 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
325
326 for (i = 0; i < sma->sem_nsems; i++) {
327 sem = &sma->sems[i];
328 spin_lock(&sem->lock);
329 spin_unlock(&sem->lock);
330 }
331}
332
333/*
334 * Try to leave the mode that disallows simple operations:
335 * Caller must own sem_perm.lock.
336 */
337static void complexmode_tryleave(struct sem_array *sma)
338{
339 if (sma->complex_count) {
340 /* Complex ops are sleeping.
341 * We must stay in complex mode
342 */
343 return;
344 }
345 if (sma->use_global_lock == 1) {
346 /*
347 * Immediately after setting use_global_lock to 0,
348 * a simple op can start. Thus: all memory writes
349 * performed by the current operation must be visible
350 * before we set use_global_lock to 0.
351 */
352 smp_store_release(&sma->use_global_lock, 0);
353 } else {
354 sma->use_global_lock--;
355 }
356}
357
358#define SEM_GLOBAL_LOCK (-1)
359/*
360 * If the request contains only one semaphore operation, and there are
361 * no complex transactions pending, lock only the semaphore involved.
362 * Otherwise, lock the entire semaphore array, since we either have
363 * multiple semaphores in our own semops, or we need to look at
364 * semaphores from other pending complex operations.
365 */
366static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
367 int nsops)
368{
369 struct sem *sem;
370
371 if (nsops != 1) {
372 /* Complex operation - acquire a full lock */
373 ipc_lock_object(&sma->sem_perm);
374
375 /* Prevent parallel simple ops */
376 complexmode_enter(sma);
377 return SEM_GLOBAL_LOCK;
378 }
379
380 /*
381 * Only one semaphore affected - try to optimize locking.
382 * Optimized locking is possible if no complex operation
383 * is either enqueued or processed right now.
384 *
385 * Both facts are tracked by use_global_mode.
386 */
387 sem = &sma->sems[sops->sem_num];
388
389 /*
390 * Initial check for use_global_lock. Just an optimization,
391 * no locking, no memory barrier.
392 */
393 if (!sma->use_global_lock) {
394 /*
395 * It appears that no complex operation is around.
396 * Acquire the per-semaphore lock.
397 */
398 spin_lock(&sem->lock);
399
400 /* pairs with smp_store_release() */
401 if (!smp_load_acquire(&sma->use_global_lock)) {
402 /* fast path successful! */
403 return sops->sem_num;
404 }
405 spin_unlock(&sem->lock);
406 }
407
408 /* slow path: acquire the full lock */
409 ipc_lock_object(&sma->sem_perm);
410
411 if (sma->use_global_lock == 0) {
412 /*
413 * The use_global_lock mode ended while we waited for
414 * sma->sem_perm.lock. Thus we must switch to locking
415 * with sem->lock.
416 * Unlike in the fast path, there is no need to recheck
417 * sma->use_global_lock after we have acquired sem->lock:
418 * We own sma->sem_perm.lock, thus use_global_lock cannot
419 * change.
420 */
421 spin_lock(&sem->lock);
422
423 ipc_unlock_object(&sma->sem_perm);
424 return sops->sem_num;
425 } else {
426 /*
427 * Not a false alarm, thus continue to use the global lock
428 * mode. No need for complexmode_enter(), this was done by
429 * the caller that has set use_global_mode to non-zero.
430 */
431 return SEM_GLOBAL_LOCK;
432 }
433}
434
435static inline void sem_unlock(struct sem_array *sma, int locknum)
436{
437 if (locknum == SEM_GLOBAL_LOCK) {
438 unmerge_queues(sma);
439 complexmode_tryleave(sma);
440 ipc_unlock_object(&sma->sem_perm);
441 } else {
442 struct sem *sem = &sma->sems[locknum];
443 spin_unlock(&sem->lock);
444 }
445}
446
447/*
448 * sem_lock_(check_) routines are called in the paths where the rwsem
449 * is not held.
450 *
451 * The caller holds the RCU read lock.
452 */
453static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
454{
455 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
456
457 if (IS_ERR(ipcp))
458 return ERR_CAST(ipcp);
459
460 return container_of(ipcp, struct sem_array, sem_perm);
461}
462
463static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
464 int id)
465{
466 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
467
468 if (IS_ERR(ipcp))
469 return ERR_CAST(ipcp);
470
471 return container_of(ipcp, struct sem_array, sem_perm);
472}
473
474static inline void sem_lock_and_putref(struct sem_array *sma)
475{
476 sem_lock(sma, NULL, -1);
477 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
478}
479
480static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
481{
482 ipc_rmid(&sem_ids(ns), &s->sem_perm);
483}
484
485static struct sem_array *sem_alloc(size_t nsems)
486{
487 struct sem_array *sma;
488 size_t size;
489
490 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
491 return NULL;
492
493 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
494 sma = kvmalloc(size, GFP_KERNEL);
495 if (unlikely(!sma))
496 return NULL;
497
498 memset(sma, 0, size);
499
500 return sma;
501}
502
503/**
504 * newary - Create a new semaphore set
505 * @ns: namespace
506 * @params: ptr to the structure that contains key, semflg and nsems
507 *
508 * Called with sem_ids.rwsem held (as a writer)
509 */
510static int newary(struct ipc_namespace *ns, struct ipc_params *params)
511{
512 int retval;
513 struct sem_array *sma;
514 key_t key = params->key;
515 int nsems = params->u.nsems;
516 int semflg = params->flg;
517 int i;
518
519 if (!nsems)
520 return -EINVAL;
521 if (ns->used_sems + nsems > ns->sc_semmns)
522 return -ENOSPC;
523
524 sma = sem_alloc(nsems);
525 if (!sma)
526 return -ENOMEM;
527
528 sma->sem_perm.mode = (semflg & S_IRWXUGO);
529 sma->sem_perm.key = key;
530
531 sma->sem_perm.security = NULL;
532 retval = security_sem_alloc(&sma->sem_perm);
533 if (retval) {
534 kvfree(sma);
535 return retval;
536 }
537
538 for (i = 0; i < nsems; i++) {
539 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
540 INIT_LIST_HEAD(&sma->sems[i].pending_const);
541 spin_lock_init(&sma->sems[i].lock);
542 }
543
544 sma->complex_count = 0;
545 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
546 INIT_LIST_HEAD(&sma->pending_alter);
547 INIT_LIST_HEAD(&sma->pending_const);
548 INIT_LIST_HEAD(&sma->list_id);
549 sma->sem_nsems = nsems;
550 sma->sem_ctime = ktime_get_real_seconds();
551
552 /* ipc_addid() locks sma upon success. */
553 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
554 if (retval < 0) {
555 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
556 return retval;
557 }
558 ns->used_sems += nsems;
559
560 sem_unlock(sma, -1);
561 rcu_read_unlock();
562
563 return sma->sem_perm.id;
564}
565
566
567/*
568 * Called with sem_ids.rwsem and ipcp locked.
569 */
570static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
571 struct ipc_params *params)
572{
573 struct sem_array *sma;
574
575 sma = container_of(ipcp, struct sem_array, sem_perm);
576 if (params->u.nsems > sma->sem_nsems)
577 return -EINVAL;
578
579 return 0;
580}
581
582long ksys_semget(key_t key, int nsems, int semflg)
583{
584 struct ipc_namespace *ns;
585 static const struct ipc_ops sem_ops = {
586 .getnew = newary,
587 .associate = security_sem_associate,
588 .more_checks = sem_more_checks,
589 };
590 struct ipc_params sem_params;
591
592 ns = current->nsproxy->ipc_ns;
593
594 if (nsems < 0 || nsems > ns->sc_semmsl)
595 return -EINVAL;
596
597 sem_params.key = key;
598 sem_params.flg = semflg;
599 sem_params.u.nsems = nsems;
600
601 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
602}
603
604SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
605{
606 return ksys_semget(key, nsems, semflg);
607}
608
609/**
610 * perform_atomic_semop[_slow] - Attempt to perform semaphore
611 * operations on a given array.
612 * @sma: semaphore array
613 * @q: struct sem_queue that describes the operation
614 *
615 * Caller blocking are as follows, based the value
616 * indicated by the semaphore operation (sem_op):
617 *
618 * (1) >0 never blocks.
619 * (2) 0 (wait-for-zero operation): semval is non-zero.
620 * (3) <0 attempting to decrement semval to a value smaller than zero.
621 *
622 * Returns 0 if the operation was possible.
623 * Returns 1 if the operation is impossible, the caller must sleep.
624 * Returns <0 for error codes.
625 */
626static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
627{
628 int result, sem_op, nsops;
629 struct pid *pid;
630 struct sembuf *sop;
631 struct sem *curr;
632 struct sembuf *sops;
633 struct sem_undo *un;
634
635 sops = q->sops;
636 nsops = q->nsops;
637 un = q->undo;
638
639 for (sop = sops; sop < sops + nsops; sop++) {
640 curr = &sma->sems[sop->sem_num];
641 sem_op = sop->sem_op;
642 result = curr->semval;
643
644 if (!sem_op && result)
645 goto would_block;
646
647 result += sem_op;
648 if (result < 0)
649 goto would_block;
650 if (result > SEMVMX)
651 goto out_of_range;
652
653 if (sop->sem_flg & SEM_UNDO) {
654 int undo = un->semadj[sop->sem_num] - sem_op;
655 /* Exceeding the undo range is an error. */
656 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
657 goto out_of_range;
658 un->semadj[sop->sem_num] = undo;
659 }
660
661 curr->semval = result;
662 }
663
664 sop--;
665 pid = q->pid;
666 while (sop >= sops) {
667 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
668 sop--;
669 }
670
671 return 0;
672
673out_of_range:
674 result = -ERANGE;
675 goto undo;
676
677would_block:
678 q->blocking = sop;
679
680 if (sop->sem_flg & IPC_NOWAIT)
681 result = -EAGAIN;
682 else
683 result = 1;
684
685undo:
686 sop--;
687 while (sop >= sops) {
688 sem_op = sop->sem_op;
689 sma->sems[sop->sem_num].semval -= sem_op;
690 if (sop->sem_flg & SEM_UNDO)
691 un->semadj[sop->sem_num] += sem_op;
692 sop--;
693 }
694
695 return result;
696}
697
698static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
699{
700 int result, sem_op, nsops;
701 struct sembuf *sop;
702 struct sem *curr;
703 struct sembuf *sops;
704 struct sem_undo *un;
705
706 sops = q->sops;
707 nsops = q->nsops;
708 un = q->undo;
709
710 if (unlikely(q->dupsop))
711 return perform_atomic_semop_slow(sma, q);
712
713 /*
714 * We scan the semaphore set twice, first to ensure that the entire
715 * operation can succeed, therefore avoiding any pointless writes
716 * to shared memory and having to undo such changes in order to block
717 * until the operations can go through.
718 */
719 for (sop = sops; sop < sops + nsops; sop++) {
720 curr = &sma->sems[sop->sem_num];
721 sem_op = sop->sem_op;
722 result = curr->semval;
723
724 if (!sem_op && result)
725 goto would_block; /* wait-for-zero */
726
727 result += sem_op;
728 if (result < 0)
729 goto would_block;
730
731 if (result > SEMVMX)
732 return -ERANGE;
733
734 if (sop->sem_flg & SEM_UNDO) {
735 int undo = un->semadj[sop->sem_num] - sem_op;
736
737 /* Exceeding the undo range is an error. */
738 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
739 return -ERANGE;
740 }
741 }
742
743 for (sop = sops; sop < sops + nsops; sop++) {
744 curr = &sma->sems[sop->sem_num];
745 sem_op = sop->sem_op;
746 result = curr->semval;
747
748 if (sop->sem_flg & SEM_UNDO) {
749 int undo = un->semadj[sop->sem_num] - sem_op;
750
751 un->semadj[sop->sem_num] = undo;
752 }
753 curr->semval += sem_op;
754 ipc_update_pid(&curr->sempid, q->pid);
755 }
756
757 return 0;
758
759would_block:
760 q->blocking = sop;
761 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
762}
763
764static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
765 struct wake_q_head *wake_q)
766{
767 wake_q_add(wake_q, q->sleeper);
768 /*
769 * Rely on the above implicit barrier, such that we can
770 * ensure that we hold reference to the task before setting
771 * q->status. Otherwise we could race with do_exit if the
772 * task is awoken by an external event before calling
773 * wake_up_process().
774 */
775 WRITE_ONCE(q->status, error);
776}
777
778static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
779{
780 list_del(&q->list);
781 if (q->nsops > 1)
782 sma->complex_count--;
783}
784
785/** check_restart(sma, q)
786 * @sma: semaphore array
787 * @q: the operation that just completed
788 *
789 * update_queue is O(N^2) when it restarts scanning the whole queue of
790 * waiting operations. Therefore this function checks if the restart is
791 * really necessary. It is called after a previously waiting operation
792 * modified the array.
793 * Note that wait-for-zero operations are handled without restart.
794 */
795static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
796{
797 /* pending complex alter operations are too difficult to analyse */
798 if (!list_empty(&sma->pending_alter))
799 return 1;
800
801 /* we were a sleeping complex operation. Too difficult */
802 if (q->nsops > 1)
803 return 1;
804
805 /* It is impossible that someone waits for the new value:
806 * - complex operations always restart.
807 * - wait-for-zero are handled seperately.
808 * - q is a previously sleeping simple operation that
809 * altered the array. It must be a decrement, because
810 * simple increments never sleep.
811 * - If there are older (higher priority) decrements
812 * in the queue, then they have observed the original
813 * semval value and couldn't proceed. The operation
814 * decremented to value - thus they won't proceed either.
815 */
816 return 0;
817}
818
819/**
820 * wake_const_ops - wake up non-alter tasks
821 * @sma: semaphore array.
822 * @semnum: semaphore that was modified.
823 * @wake_q: lockless wake-queue head.
824 *
825 * wake_const_ops must be called after a semaphore in a semaphore array
826 * was set to 0. If complex const operations are pending, wake_const_ops must
827 * be called with semnum = -1, as well as with the number of each modified
828 * semaphore.
829 * The tasks that must be woken up are added to @wake_q. The return code
830 * is stored in q->pid.
831 * The function returns 1 if at least one operation was completed successfully.
832 */
833static int wake_const_ops(struct sem_array *sma, int semnum,
834 struct wake_q_head *wake_q)
835{
836 struct sem_queue *q, *tmp;
837 struct list_head *pending_list;
838 int semop_completed = 0;
839
840 if (semnum == -1)
841 pending_list = &sma->pending_const;
842 else
843 pending_list = &sma->sems[semnum].pending_const;
844
845 list_for_each_entry_safe(q, tmp, pending_list, list) {
846 int error = perform_atomic_semop(sma, q);
847
848 if (error > 0)
849 continue;
850 /* operation completed, remove from queue & wakeup */
851 unlink_queue(sma, q);
852
853 wake_up_sem_queue_prepare(q, error, wake_q);
854 if (error == 0)
855 semop_completed = 1;
856 }
857
858 return semop_completed;
859}
860
861/**
862 * do_smart_wakeup_zero - wakeup all wait for zero tasks
863 * @sma: semaphore array
864 * @sops: operations that were performed
865 * @nsops: number of operations
866 * @wake_q: lockless wake-queue head
867 *
868 * Checks all required queue for wait-for-zero operations, based
869 * on the actual changes that were performed on the semaphore array.
870 * The function returns 1 if at least one operation was completed successfully.
871 */
872static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
873 int nsops, struct wake_q_head *wake_q)
874{
875 int i;
876 int semop_completed = 0;
877 int got_zero = 0;
878
879 /* first: the per-semaphore queues, if known */
880 if (sops) {
881 for (i = 0; i < nsops; i++) {
882 int num = sops[i].sem_num;
883
884 if (sma->sems[num].semval == 0) {
885 got_zero = 1;
886 semop_completed |= wake_const_ops(sma, num, wake_q);
887 }
888 }
889 } else {
890 /*
891 * No sops means modified semaphores not known.
892 * Assume all were changed.
893 */
894 for (i = 0; i < sma->sem_nsems; i++) {
895 if (sma->sems[i].semval == 0) {
896 got_zero = 1;
897 semop_completed |= wake_const_ops(sma, i, wake_q);
898 }
899 }
900 }
901 /*
902 * If one of the modified semaphores got 0,
903 * then check the global queue, too.
904 */
905 if (got_zero)
906 semop_completed |= wake_const_ops(sma, -1, wake_q);
907
908 return semop_completed;
909}
910
911
912/**
913 * update_queue - look for tasks that can be completed.
914 * @sma: semaphore array.
915 * @semnum: semaphore that was modified.
916 * @wake_q: lockless wake-queue head.
917 *
918 * update_queue must be called after a semaphore in a semaphore array
919 * was modified. If multiple semaphores were modified, update_queue must
920 * be called with semnum = -1, as well as with the number of each modified
921 * semaphore.
922 * The tasks that must be woken up are added to @wake_q. The return code
923 * is stored in q->pid.
924 * The function internally checks if const operations can now succeed.
925 *
926 * The function return 1 if at least one semop was completed successfully.
927 */
928static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
929{
930 struct sem_queue *q, *tmp;
931 struct list_head *pending_list;
932 int semop_completed = 0;
933
934 if (semnum == -1)
935 pending_list = &sma->pending_alter;
936 else
937 pending_list = &sma->sems[semnum].pending_alter;
938
939again:
940 list_for_each_entry_safe(q, tmp, pending_list, list) {
941 int error, restart;
942
943 /* If we are scanning the single sop, per-semaphore list of
944 * one semaphore and that semaphore is 0, then it is not
945 * necessary to scan further: simple increments
946 * that affect only one entry succeed immediately and cannot
947 * be in the per semaphore pending queue, and decrements
948 * cannot be successful if the value is already 0.
949 */
950 if (semnum != -1 && sma->sems[semnum].semval == 0)
951 break;
952
953 error = perform_atomic_semop(sma, q);
954
955 /* Does q->sleeper still need to sleep? */
956 if (error > 0)
957 continue;
958
959 unlink_queue(sma, q);
960
961 if (error) {
962 restart = 0;
963 } else {
964 semop_completed = 1;
965 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
966 restart = check_restart(sma, q);
967 }
968
969 wake_up_sem_queue_prepare(q, error, wake_q);
970 if (restart)
971 goto again;
972 }
973 return semop_completed;
974}
975
976/**
977 * set_semotime - set sem_otime
978 * @sma: semaphore array
979 * @sops: operations that modified the array, may be NULL
980 *
981 * sem_otime is replicated to avoid cache line trashing.
982 * This function sets one instance to the current time.
983 */
984static void set_semotime(struct sem_array *sma, struct sembuf *sops)
985{
986 if (sops == NULL) {
987 sma->sems[0].sem_otime = get_seconds();
988 } else {
989 sma->sems[sops[0].sem_num].sem_otime =
990 get_seconds();
991 }
992}
993
994/**
995 * do_smart_update - optimized update_queue
996 * @sma: semaphore array
997 * @sops: operations that were performed
998 * @nsops: number of operations
999 * @otime: force setting otime
1000 * @wake_q: lockless wake-queue head
1001 *
1002 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1003 * based on the actual changes that were performed on the semaphore array.
1004 * Note that the function does not do the actual wake-up: the caller is
1005 * responsible for calling wake_up_q().
1006 * It is safe to perform this call after dropping all locks.
1007 */
1008static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
1009 int otime, struct wake_q_head *wake_q)
1010{
1011 int i;
1012
1013 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1014
1015 if (!list_empty(&sma->pending_alter)) {
1016 /* semaphore array uses the global queue - just process it. */
1017 otime |= update_queue(sma, -1, wake_q);
1018 } else {
1019 if (!sops) {
1020 /*
1021 * No sops, thus the modified semaphores are not
1022 * known. Check all.
1023 */
1024 for (i = 0; i < sma->sem_nsems; i++)
1025 otime |= update_queue(sma, i, wake_q);
1026 } else {
1027 /*
1028 * Check the semaphores that were increased:
1029 * - No complex ops, thus all sleeping ops are
1030 * decrease.
1031 * - if we decreased the value, then any sleeping
1032 * semaphore ops wont be able to run: If the
1033 * previous value was too small, then the new
1034 * value will be too small, too.
1035 */
1036 for (i = 0; i < nsops; i++) {
1037 if (sops[i].sem_op > 0) {
1038 otime |= update_queue(sma,
1039 sops[i].sem_num, wake_q);
1040 }
1041 }
1042 }
1043 }
1044 if (otime)
1045 set_semotime(sma, sops);
1046}
1047
1048/*
1049 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1050 */
1051static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1052 bool count_zero)
1053{
1054 struct sembuf *sop = q->blocking;
1055
1056 /*
1057 * Linux always (since 0.99.10) reported a task as sleeping on all
1058 * semaphores. This violates SUS, therefore it was changed to the
1059 * standard compliant behavior.
1060 * Give the administrators a chance to notice that an application
1061 * might misbehave because it relies on the Linux behavior.
1062 */
1063 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1064 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1065 current->comm, task_pid_nr(current));
1066
1067 if (sop->sem_num != semnum)
1068 return 0;
1069
1070 if (count_zero && sop->sem_op == 0)
1071 return 1;
1072 if (!count_zero && sop->sem_op < 0)
1073 return 1;
1074
1075 return 0;
1076}
1077
1078/* The following counts are associated to each semaphore:
1079 * semncnt number of tasks waiting on semval being nonzero
1080 * semzcnt number of tasks waiting on semval being zero
1081 *
1082 * Per definition, a task waits only on the semaphore of the first semop
1083 * that cannot proceed, even if additional operation would block, too.
1084 */
1085static int count_semcnt(struct sem_array *sma, ushort semnum,
1086 bool count_zero)
1087{
1088 struct list_head *l;
1089 struct sem_queue *q;
1090 int semcnt;
1091
1092 semcnt = 0;
1093 /* First: check the simple operations. They are easy to evaluate */
1094 if (count_zero)
1095 l = &sma->sems[semnum].pending_const;
1096 else
1097 l = &sma->sems[semnum].pending_alter;
1098
1099 list_for_each_entry(q, l, list) {
1100 /* all task on a per-semaphore list sleep on exactly
1101 * that semaphore
1102 */
1103 semcnt++;
1104 }
1105
1106 /* Then: check the complex operations. */
1107 list_for_each_entry(q, &sma->pending_alter, list) {
1108 semcnt += check_qop(sma, semnum, q, count_zero);
1109 }
1110 if (count_zero) {
1111 list_for_each_entry(q, &sma->pending_const, list) {
1112 semcnt += check_qop(sma, semnum, q, count_zero);
1113 }
1114 }
1115 return semcnt;
1116}
1117
1118/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1119 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1120 * remains locked on exit.
1121 */
1122static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1123{
1124 struct sem_undo *un, *tu;
1125 struct sem_queue *q, *tq;
1126 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1127 int i;
1128 DEFINE_WAKE_Q(wake_q);
1129
1130 /* Free the existing undo structures for this semaphore set. */
1131 ipc_assert_locked_object(&sma->sem_perm);
1132 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1133 list_del(&un->list_id);
1134 spin_lock(&un->ulp->lock);
1135 un->semid = -1;
1136 list_del_rcu(&un->list_proc);
1137 spin_unlock(&un->ulp->lock);
1138 kfree_rcu(un, rcu);
1139 }
1140
1141 /* Wake up all pending processes and let them fail with EIDRM. */
1142 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1143 unlink_queue(sma, q);
1144 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1145 }
1146
1147 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1148 unlink_queue(sma, q);
1149 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1150 }
1151 for (i = 0; i < sma->sem_nsems; i++) {
1152 struct sem *sem = &sma->sems[i];
1153 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1154 unlink_queue(sma, q);
1155 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1156 }
1157 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1158 unlink_queue(sma, q);
1159 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1160 }
1161 ipc_update_pid(&sem->sempid, NULL);
1162 }
1163
1164 /* Remove the semaphore set from the IDR */
1165 sem_rmid(ns, sma);
1166 sem_unlock(sma, -1);
1167 rcu_read_unlock();
1168
1169 wake_up_q(&wake_q);
1170 ns->used_sems -= sma->sem_nsems;
1171 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1172}
1173
1174static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1175{
1176 switch (version) {
1177 case IPC_64:
1178 return copy_to_user(buf, in, sizeof(*in));
1179 case IPC_OLD:
1180 {
1181 struct semid_ds out;
1182
1183 memset(&out, 0, sizeof(out));
1184
1185 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1186
1187 out.sem_otime = in->sem_otime;
1188 out.sem_ctime = in->sem_ctime;
1189 out.sem_nsems = in->sem_nsems;
1190
1191 return copy_to_user(buf, &out, sizeof(out));
1192 }
1193 default:
1194 return -EINVAL;
1195 }
1196}
1197
1198static time64_t get_semotime(struct sem_array *sma)
1199{
1200 int i;
1201 time64_t res;
1202
1203 res = sma->sems[0].sem_otime;
1204 for (i = 1; i < sma->sem_nsems; i++) {
1205 time64_t to = sma->sems[i].sem_otime;
1206
1207 if (to > res)
1208 res = to;
1209 }
1210 return res;
1211}
1212
1213static int semctl_stat(struct ipc_namespace *ns, int semid,
1214 int cmd, struct semid64_ds *semid64)
1215{
1216 struct sem_array *sma;
1217 int id = 0;
1218 int err;
1219
1220 memset(semid64, 0, sizeof(*semid64));
1221
1222 rcu_read_lock();
1223 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
1224 sma = sem_obtain_object(ns, semid);
1225 if (IS_ERR(sma)) {
1226 err = PTR_ERR(sma);
1227 goto out_unlock;
1228 }
1229 id = sma->sem_perm.id;
1230 } else { /* IPC_STAT */
1231 sma = sem_obtain_object_check(ns, semid);
1232 if (IS_ERR(sma)) {
1233 err = PTR_ERR(sma);
1234 goto out_unlock;
1235 }
1236 }
1237
1238 /* see comment for SHM_STAT_ANY */
1239 if (cmd == SEM_STAT_ANY)
1240 audit_ipc_obj(&sma->sem_perm);
1241 else {
1242 err = -EACCES;
1243 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1244 goto out_unlock;
1245 }
1246
1247 err = security_sem_semctl(&sma->sem_perm, cmd);
1248 if (err)
1249 goto out_unlock;
1250
1251 ipc_lock_object(&sma->sem_perm);
1252
1253 if (!ipc_valid_object(&sma->sem_perm)) {
1254 ipc_unlock_object(&sma->sem_perm);
1255 err = -EIDRM;
1256 goto out_unlock;
1257 }
1258
1259 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1260 semid64->sem_otime = get_semotime(sma);
1261 semid64->sem_ctime = sma->sem_ctime;
1262 semid64->sem_nsems = sma->sem_nsems;
1263
1264 ipc_unlock_object(&sma->sem_perm);
1265 rcu_read_unlock();
1266 return id;
1267
1268out_unlock:
1269 rcu_read_unlock();
1270 return err;
1271}
1272
1273static int semctl_info(struct ipc_namespace *ns, int semid,
1274 int cmd, void __user *p)
1275{
1276 struct seminfo seminfo;
1277 int max_id;
1278 int err;
1279
1280 err = security_sem_semctl(NULL, cmd);
1281 if (err)
1282 return err;
1283
1284 memset(&seminfo, 0, sizeof(seminfo));
1285 seminfo.semmni = ns->sc_semmni;
1286 seminfo.semmns = ns->sc_semmns;
1287 seminfo.semmsl = ns->sc_semmsl;
1288 seminfo.semopm = ns->sc_semopm;
1289 seminfo.semvmx = SEMVMX;
1290 seminfo.semmnu = SEMMNU;
1291 seminfo.semmap = SEMMAP;
1292 seminfo.semume = SEMUME;
1293 down_read(&sem_ids(ns).rwsem);
1294 if (cmd == SEM_INFO) {
1295 seminfo.semusz = sem_ids(ns).in_use;
1296 seminfo.semaem = ns->used_sems;
1297 } else {
1298 seminfo.semusz = SEMUSZ;
1299 seminfo.semaem = SEMAEM;
1300 }
1301 max_id = ipc_get_maxid(&sem_ids(ns));
1302 up_read(&sem_ids(ns).rwsem);
1303 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1304 return -EFAULT;
1305 return (max_id < 0) ? 0 : max_id;
1306}
1307
1308static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1309 int val)
1310{
1311 struct sem_undo *un;
1312 struct sem_array *sma;
1313 struct sem *curr;
1314 int err;
1315 DEFINE_WAKE_Q(wake_q);
1316
1317 if (val > SEMVMX || val < 0)
1318 return -ERANGE;
1319
1320 rcu_read_lock();
1321 sma = sem_obtain_object_check(ns, semid);
1322 if (IS_ERR(sma)) {
1323 rcu_read_unlock();
1324 return PTR_ERR(sma);
1325 }
1326
1327 if (semnum < 0 || semnum >= sma->sem_nsems) {
1328 rcu_read_unlock();
1329 return -EINVAL;
1330 }
1331
1332
1333 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1334 rcu_read_unlock();
1335 return -EACCES;
1336 }
1337
1338 err = security_sem_semctl(&sma->sem_perm, SETVAL);
1339 if (err) {
1340 rcu_read_unlock();
1341 return -EACCES;
1342 }
1343
1344 sem_lock(sma, NULL, -1);
1345
1346 if (!ipc_valid_object(&sma->sem_perm)) {
1347 sem_unlock(sma, -1);
1348 rcu_read_unlock();
1349 return -EIDRM;
1350 }
1351
1352 curr = &sma->sems[semnum];
1353
1354 ipc_assert_locked_object(&sma->sem_perm);
1355 list_for_each_entry(un, &sma->list_id, list_id)
1356 un->semadj[semnum] = 0;
1357
1358 curr->semval = val;
1359 ipc_update_pid(&curr->sempid, task_tgid(current));
1360 sma->sem_ctime = ktime_get_real_seconds();
1361 /* maybe some queued-up processes were waiting for this */
1362 do_smart_update(sma, NULL, 0, 0, &wake_q);
1363 sem_unlock(sma, -1);
1364 rcu_read_unlock();
1365 wake_up_q(&wake_q);
1366 return 0;
1367}
1368
1369static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1370 int cmd, void __user *p)
1371{
1372 struct sem_array *sma;
1373 struct sem *curr;
1374 int err, nsems;
1375 ushort fast_sem_io[SEMMSL_FAST];
1376 ushort *sem_io = fast_sem_io;
1377 DEFINE_WAKE_Q(wake_q);
1378
1379 rcu_read_lock();
1380 sma = sem_obtain_object_check(ns, semid);
1381 if (IS_ERR(sma)) {
1382 rcu_read_unlock();
1383 return PTR_ERR(sma);
1384 }
1385
1386 nsems = sma->sem_nsems;
1387
1388 err = -EACCES;
1389 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1390 goto out_rcu_wakeup;
1391
1392 err = security_sem_semctl(&sma->sem_perm, cmd);
1393 if (err)
1394 goto out_rcu_wakeup;
1395
1396 err = -EACCES;
1397 switch (cmd) {
1398 case GETALL:
1399 {
1400 ushort __user *array = p;
1401 int i;
1402
1403 sem_lock(sma, NULL, -1);
1404 if (!ipc_valid_object(&sma->sem_perm)) {
1405 err = -EIDRM;
1406 goto out_unlock;
1407 }
1408 if (nsems > SEMMSL_FAST) {
1409 if (!ipc_rcu_getref(&sma->sem_perm)) {
1410 err = -EIDRM;
1411 goto out_unlock;
1412 }
1413 sem_unlock(sma, -1);
1414 rcu_read_unlock();
1415 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1416 GFP_KERNEL);
1417 if (sem_io == NULL) {
1418 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1419 return -ENOMEM;
1420 }
1421
1422 rcu_read_lock();
1423 sem_lock_and_putref(sma);
1424 if (!ipc_valid_object(&sma->sem_perm)) {
1425 err = -EIDRM;
1426 goto out_unlock;
1427 }
1428 }
1429 for (i = 0; i < sma->sem_nsems; i++)
1430 sem_io[i] = sma->sems[i].semval;
1431 sem_unlock(sma, -1);
1432 rcu_read_unlock();
1433 err = 0;
1434 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1435 err = -EFAULT;
1436 goto out_free;
1437 }
1438 case SETALL:
1439 {
1440 int i;
1441 struct sem_undo *un;
1442
1443 if (!ipc_rcu_getref(&sma->sem_perm)) {
1444 err = -EIDRM;
1445 goto out_rcu_wakeup;
1446 }
1447 rcu_read_unlock();
1448
1449 if (nsems > SEMMSL_FAST) {
1450 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1451 GFP_KERNEL);
1452 if (sem_io == NULL) {
1453 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1454 return -ENOMEM;
1455 }
1456 }
1457
1458 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1459 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1460 err = -EFAULT;
1461 goto out_free;
1462 }
1463
1464 for (i = 0; i < nsems; i++) {
1465 if (sem_io[i] > SEMVMX) {
1466 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1467 err = -ERANGE;
1468 goto out_free;
1469 }
1470 }
1471 rcu_read_lock();
1472 sem_lock_and_putref(sma);
1473 if (!ipc_valid_object(&sma->sem_perm)) {
1474 err = -EIDRM;
1475 goto out_unlock;
1476 }
1477
1478 for (i = 0; i < nsems; i++) {
1479 sma->sems[i].semval = sem_io[i];
1480 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
1481 }
1482
1483 ipc_assert_locked_object(&sma->sem_perm);
1484 list_for_each_entry(un, &sma->list_id, list_id) {
1485 for (i = 0; i < nsems; i++)
1486 un->semadj[i] = 0;
1487 }
1488 sma->sem_ctime = ktime_get_real_seconds();
1489 /* maybe some queued-up processes were waiting for this */
1490 do_smart_update(sma, NULL, 0, 0, &wake_q);
1491 err = 0;
1492 goto out_unlock;
1493 }
1494 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1495 }
1496 err = -EINVAL;
1497 if (semnum < 0 || semnum >= nsems)
1498 goto out_rcu_wakeup;
1499
1500 sem_lock(sma, NULL, -1);
1501 if (!ipc_valid_object(&sma->sem_perm)) {
1502 err = -EIDRM;
1503 goto out_unlock;
1504 }
1505 curr = &sma->sems[semnum];
1506
1507 switch (cmd) {
1508 case GETVAL:
1509 err = curr->semval;
1510 goto out_unlock;
1511 case GETPID:
1512 err = pid_vnr(curr->sempid);
1513 goto out_unlock;
1514 case GETNCNT:
1515 err = count_semcnt(sma, semnum, 0);
1516 goto out_unlock;
1517 case GETZCNT:
1518 err = count_semcnt(sma, semnum, 1);
1519 goto out_unlock;
1520 }
1521
1522out_unlock:
1523 sem_unlock(sma, -1);
1524out_rcu_wakeup:
1525 rcu_read_unlock();
1526 wake_up_q(&wake_q);
1527out_free:
1528 if (sem_io != fast_sem_io)
1529 kvfree(sem_io);
1530 return err;
1531}
1532
1533static inline unsigned long
1534copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1535{
1536 switch (version) {
1537 case IPC_64:
1538 if (copy_from_user(out, buf, sizeof(*out)))
1539 return -EFAULT;
1540 return 0;
1541 case IPC_OLD:
1542 {
1543 struct semid_ds tbuf_old;
1544
1545 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1546 return -EFAULT;
1547
1548 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1549 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1550 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1551
1552 return 0;
1553 }
1554 default:
1555 return -EINVAL;
1556 }
1557}
1558
1559/*
1560 * This function handles some semctl commands which require the rwsem
1561 * to be held in write mode.
1562 * NOTE: no locks must be held, the rwsem is taken inside this function.
1563 */
1564static int semctl_down(struct ipc_namespace *ns, int semid,
1565 int cmd, struct semid64_ds *semid64)
1566{
1567 struct sem_array *sma;
1568 int err;
1569 struct kern_ipc_perm *ipcp;
1570
1571 down_write(&sem_ids(ns).rwsem);
1572 rcu_read_lock();
1573
1574 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1575 &semid64->sem_perm, 0);
1576 if (IS_ERR(ipcp)) {
1577 err = PTR_ERR(ipcp);
1578 goto out_unlock1;
1579 }
1580
1581 sma = container_of(ipcp, struct sem_array, sem_perm);
1582
1583 err = security_sem_semctl(&sma->sem_perm, cmd);
1584 if (err)
1585 goto out_unlock1;
1586
1587 switch (cmd) {
1588 case IPC_RMID:
1589 sem_lock(sma, NULL, -1);
1590 /* freeary unlocks the ipc object and rcu */
1591 freeary(ns, ipcp);
1592 goto out_up;
1593 case IPC_SET:
1594 sem_lock(sma, NULL, -1);
1595 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1596 if (err)
1597 goto out_unlock0;
1598 sma->sem_ctime = ktime_get_real_seconds();
1599 break;
1600 default:
1601 err = -EINVAL;
1602 goto out_unlock1;
1603 }
1604
1605out_unlock0:
1606 sem_unlock(sma, -1);
1607out_unlock1:
1608 rcu_read_unlock();
1609out_up:
1610 up_write(&sem_ids(ns).rwsem);
1611 return err;
1612}
1613
1614long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg)
1615{
1616 int version;
1617 struct ipc_namespace *ns;
1618 void __user *p = (void __user *)arg;
1619 struct semid64_ds semid64;
1620 int err;
1621
1622 if (semid < 0)
1623 return -EINVAL;
1624
1625 version = ipc_parse_version(&cmd);
1626 ns = current->nsproxy->ipc_ns;
1627
1628 switch (cmd) {
1629 case IPC_INFO:
1630 case SEM_INFO:
1631 return semctl_info(ns, semid, cmd, p);
1632 case IPC_STAT:
1633 case SEM_STAT:
1634 case SEM_STAT_ANY:
1635 err = semctl_stat(ns, semid, cmd, &semid64);
1636 if (err < 0)
1637 return err;
1638 if (copy_semid_to_user(p, &semid64, version))
1639 err = -EFAULT;
1640 return err;
1641 case GETALL:
1642 case GETVAL:
1643 case GETPID:
1644 case GETNCNT:
1645 case GETZCNT:
1646 case SETALL:
1647 return semctl_main(ns, semid, semnum, cmd, p);
1648 case SETVAL: {
1649 int val;
1650#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1651 /* big-endian 64bit */
1652 val = arg >> 32;
1653#else
1654 /* 32bit or little-endian 64bit */
1655 val = arg;
1656#endif
1657 return semctl_setval(ns, semid, semnum, val);
1658 }
1659 case IPC_SET:
1660 if (copy_semid_from_user(&semid64, p, version))
1661 return -EFAULT;
1662 case IPC_RMID:
1663 return semctl_down(ns, semid, cmd, &semid64);
1664 default:
1665 return -EINVAL;
1666 }
1667}
1668
1669SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1670{
1671 return ksys_semctl(semid, semnum, cmd, arg);
1672}
1673
1674#ifdef CONFIG_COMPAT
1675
1676struct compat_semid_ds {
1677 struct compat_ipc_perm sem_perm;
1678 compat_time_t sem_otime;
1679 compat_time_t sem_ctime;
1680 compat_uptr_t sem_base;
1681 compat_uptr_t sem_pending;
1682 compat_uptr_t sem_pending_last;
1683 compat_uptr_t undo;
1684 unsigned short sem_nsems;
1685};
1686
1687static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1688 int version)
1689{
1690 memset(out, 0, sizeof(*out));
1691 if (version == IPC_64) {
1692 struct compat_semid64_ds __user *p = buf;
1693 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1694 } else {
1695 struct compat_semid_ds __user *p = buf;
1696 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1697 }
1698}
1699
1700static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1701 int version)
1702{
1703 if (version == IPC_64) {
1704 struct compat_semid64_ds v;
1705 memset(&v, 0, sizeof(v));
1706 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1707 v.sem_otime = in->sem_otime;
1708 v.sem_ctime = in->sem_ctime;
1709 v.sem_nsems = in->sem_nsems;
1710 return copy_to_user(buf, &v, sizeof(v));
1711 } else {
1712 struct compat_semid_ds v;
1713 memset(&v, 0, sizeof(v));
1714 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1715 v.sem_otime = in->sem_otime;
1716 v.sem_ctime = in->sem_ctime;
1717 v.sem_nsems = in->sem_nsems;
1718 return copy_to_user(buf, &v, sizeof(v));
1719 }
1720}
1721
1722long compat_ksys_semctl(int semid, int semnum, int cmd, int arg)
1723{
1724 void __user *p = compat_ptr(arg);
1725 struct ipc_namespace *ns;
1726 struct semid64_ds semid64;
1727 int version = compat_ipc_parse_version(&cmd);
1728 int err;
1729
1730 ns = current->nsproxy->ipc_ns;
1731
1732 if (semid < 0)
1733 return -EINVAL;
1734
1735 switch (cmd & (~IPC_64)) {
1736 case IPC_INFO:
1737 case SEM_INFO:
1738 return semctl_info(ns, semid, cmd, p);
1739 case IPC_STAT:
1740 case SEM_STAT:
1741 case SEM_STAT_ANY:
1742 err = semctl_stat(ns, semid, cmd, &semid64);
1743 if (err < 0)
1744 return err;
1745 if (copy_compat_semid_to_user(p, &semid64, version))
1746 err = -EFAULT;
1747 return err;
1748 case GETVAL:
1749 case GETPID:
1750 case GETNCNT:
1751 case GETZCNT:
1752 case GETALL:
1753 case SETALL:
1754 return semctl_main(ns, semid, semnum, cmd, p);
1755 case SETVAL:
1756 return semctl_setval(ns, semid, semnum, arg);
1757 case IPC_SET:
1758 if (copy_compat_semid_from_user(&semid64, p, version))
1759 return -EFAULT;
1760 /* fallthru */
1761 case IPC_RMID:
1762 return semctl_down(ns, semid, cmd, &semid64);
1763 default:
1764 return -EINVAL;
1765 }
1766}
1767
1768COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1769{
1770 return compat_ksys_semctl(semid, semnum, cmd, arg);
1771}
1772#endif
1773
1774/* If the task doesn't already have a undo_list, then allocate one
1775 * here. We guarantee there is only one thread using this undo list,
1776 * and current is THE ONE
1777 *
1778 * If this allocation and assignment succeeds, but later
1779 * portions of this code fail, there is no need to free the sem_undo_list.
1780 * Just let it stay associated with the task, and it'll be freed later
1781 * at exit time.
1782 *
1783 * This can block, so callers must hold no locks.
1784 */
1785static inline int get_undo_list(struct sem_undo_list **undo_listp)
1786{
1787 struct sem_undo_list *undo_list;
1788
1789 undo_list = current->sysvsem.undo_list;
1790 if (!undo_list) {
1791 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1792 if (undo_list == NULL)
1793 return -ENOMEM;
1794 spin_lock_init(&undo_list->lock);
1795 refcount_set(&undo_list->refcnt, 1);
1796 INIT_LIST_HEAD(&undo_list->list_proc);
1797
1798 current->sysvsem.undo_list = undo_list;
1799 }
1800 *undo_listp = undo_list;
1801 return 0;
1802}
1803
1804static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1805{
1806 struct sem_undo *un;
1807
1808 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1809 if (un->semid == semid)
1810 return un;
1811 }
1812 return NULL;
1813}
1814
1815static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1816{
1817 struct sem_undo *un;
1818
1819 assert_spin_locked(&ulp->lock);
1820
1821 un = __lookup_undo(ulp, semid);
1822 if (un) {
1823 list_del_rcu(&un->list_proc);
1824 list_add_rcu(&un->list_proc, &ulp->list_proc);
1825 }
1826 return un;
1827}
1828
1829/**
1830 * find_alloc_undo - lookup (and if not present create) undo array
1831 * @ns: namespace
1832 * @semid: semaphore array id
1833 *
1834 * The function looks up (and if not present creates) the undo structure.
1835 * The size of the undo structure depends on the size of the semaphore
1836 * array, thus the alloc path is not that straightforward.
1837 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1838 * performs a rcu_read_lock().
1839 */
1840static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1841{
1842 struct sem_array *sma;
1843 struct sem_undo_list *ulp;
1844 struct sem_undo *un, *new;
1845 int nsems, error;
1846
1847 error = get_undo_list(&ulp);
1848 if (error)
1849 return ERR_PTR(error);
1850
1851 rcu_read_lock();
1852 spin_lock(&ulp->lock);
1853 un = lookup_undo(ulp, semid);
1854 spin_unlock(&ulp->lock);
1855 if (likely(un != NULL))
1856 goto out;
1857
1858 /* no undo structure around - allocate one. */
1859 /* step 1: figure out the size of the semaphore array */
1860 sma = sem_obtain_object_check(ns, semid);
1861 if (IS_ERR(sma)) {
1862 rcu_read_unlock();
1863 return ERR_CAST(sma);
1864 }
1865
1866 nsems = sma->sem_nsems;
1867 if (!ipc_rcu_getref(&sma->sem_perm)) {
1868 rcu_read_unlock();
1869 un = ERR_PTR(-EIDRM);
1870 goto out;
1871 }
1872 rcu_read_unlock();
1873
1874 /* step 2: allocate new undo structure */
1875 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1876 if (!new) {
1877 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1878 return ERR_PTR(-ENOMEM);
1879 }
1880
1881 /* step 3: Acquire the lock on semaphore array */
1882 rcu_read_lock();
1883 sem_lock_and_putref(sma);
1884 if (!ipc_valid_object(&sma->sem_perm)) {
1885 sem_unlock(sma, -1);
1886 rcu_read_unlock();
1887 kfree(new);
1888 un = ERR_PTR(-EIDRM);
1889 goto out;
1890 }
1891 spin_lock(&ulp->lock);
1892
1893 /*
1894 * step 4: check for races: did someone else allocate the undo struct?
1895 */
1896 un = lookup_undo(ulp, semid);
1897 if (un) {
1898 kfree(new);
1899 goto success;
1900 }
1901 /* step 5: initialize & link new undo structure */
1902 new->semadj = (short *) &new[1];
1903 new->ulp = ulp;
1904 new->semid = semid;
1905 assert_spin_locked(&ulp->lock);
1906 list_add_rcu(&new->list_proc, &ulp->list_proc);
1907 ipc_assert_locked_object(&sma->sem_perm);
1908 list_add(&new->list_id, &sma->list_id);
1909 un = new;
1910
1911success:
1912 spin_unlock(&ulp->lock);
1913 sem_unlock(sma, -1);
1914out:
1915 return un;
1916}
1917
1918static long do_semtimedop(int semid, struct sembuf __user *tsops,
1919 unsigned nsops, const struct timespec64 *timeout)
1920{
1921 int error = -EINVAL;
1922 struct sem_array *sma;
1923 struct sembuf fast_sops[SEMOPM_FAST];
1924 struct sembuf *sops = fast_sops, *sop;
1925 struct sem_undo *un;
1926 int max, locknum;
1927 bool undos = false, alter = false, dupsop = false;
1928 struct sem_queue queue;
1929 unsigned long dup = 0, jiffies_left = 0;
1930 struct ipc_namespace *ns;
1931
1932 ns = current->nsproxy->ipc_ns;
1933
1934 if (nsops < 1 || semid < 0)
1935 return -EINVAL;
1936 if (nsops > ns->sc_semopm)
1937 return -E2BIG;
1938 if (nsops > SEMOPM_FAST) {
1939 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1940 if (sops == NULL)
1941 return -ENOMEM;
1942 }
1943
1944 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1945 error = -EFAULT;
1946 goto out_free;
1947 }
1948
1949 if (timeout) {
1950 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1951 timeout->tv_nsec >= 1000000000L) {
1952 error = -EINVAL;
1953 goto out_free;
1954 }
1955 jiffies_left = timespec64_to_jiffies(timeout);
1956 }
1957
1958 max = 0;
1959 for (sop = sops; sop < sops + nsops; sop++) {
1960 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1961
1962 if (sop->sem_num >= max)
1963 max = sop->sem_num;
1964 if (sop->sem_flg & SEM_UNDO)
1965 undos = true;
1966 if (dup & mask) {
1967 /*
1968 * There was a previous alter access that appears
1969 * to have accessed the same semaphore, thus use
1970 * the dupsop logic. "appears", because the detection
1971 * can only check % BITS_PER_LONG.
1972 */
1973 dupsop = true;
1974 }
1975 if (sop->sem_op != 0) {
1976 alter = true;
1977 dup |= mask;
1978 }
1979 }
1980
1981 if (undos) {
1982 /* On success, find_alloc_undo takes the rcu_read_lock */
1983 un = find_alloc_undo(ns, semid);
1984 if (IS_ERR(un)) {
1985 error = PTR_ERR(un);
1986 goto out_free;
1987 }
1988 } else {
1989 un = NULL;
1990 rcu_read_lock();
1991 }
1992
1993 sma = sem_obtain_object_check(ns, semid);
1994 if (IS_ERR(sma)) {
1995 rcu_read_unlock();
1996 error = PTR_ERR(sma);
1997 goto out_free;
1998 }
1999
2000 error = -EFBIG;
2001 if (max >= sma->sem_nsems) {
2002 rcu_read_unlock();
2003 goto out_free;
2004 }
2005
2006 error = -EACCES;
2007 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2008 rcu_read_unlock();
2009 goto out_free;
2010 }
2011
2012 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
2013 if (error) {
2014 rcu_read_unlock();
2015 goto out_free;
2016 }
2017
2018 error = -EIDRM;
2019 locknum = sem_lock(sma, sops, nsops);
2020 /*
2021 * We eventually might perform the following check in a lockless
2022 * fashion, considering ipc_valid_object() locking constraints.
2023 * If nsops == 1 and there is no contention for sem_perm.lock, then
2024 * only a per-semaphore lock is held and it's OK to proceed with the
2025 * check below. More details on the fine grained locking scheme
2026 * entangled here and why it's RMID race safe on comments at sem_lock()
2027 */
2028 if (!ipc_valid_object(&sma->sem_perm))
2029 goto out_unlock_free;
2030 /*
2031 * semid identifiers are not unique - find_alloc_undo may have
2032 * allocated an undo structure, it was invalidated by an RMID
2033 * and now a new array with received the same id. Check and fail.
2034 * This case can be detected checking un->semid. The existence of
2035 * "un" itself is guaranteed by rcu.
2036 */
2037 if (un && un->semid == -1)
2038 goto out_unlock_free;
2039
2040 queue.sops = sops;
2041 queue.nsops = nsops;
2042 queue.undo = un;
2043 queue.pid = task_tgid(current);
2044 queue.alter = alter;
2045 queue.dupsop = dupsop;
2046
2047 error = perform_atomic_semop(sma, &queue);
2048 if (error == 0) { /* non-blocking succesfull path */
2049 DEFINE_WAKE_Q(wake_q);
2050
2051 /*
2052 * If the operation was successful, then do
2053 * the required updates.
2054 */
2055 if (alter)
2056 do_smart_update(sma, sops, nsops, 1, &wake_q);
2057 else
2058 set_semotime(sma, sops);
2059
2060 sem_unlock(sma, locknum);
2061 rcu_read_unlock();
2062 wake_up_q(&wake_q);
2063
2064 goto out_free;
2065 }
2066 if (error < 0) /* non-blocking error path */
2067 goto out_unlock_free;
2068
2069 /*
2070 * We need to sleep on this operation, so we put the current
2071 * task into the pending queue and go to sleep.
2072 */
2073 if (nsops == 1) {
2074 struct sem *curr;
2075 curr = &sma->sems[sops->sem_num];
2076
2077 if (alter) {
2078 if (sma->complex_count) {
2079 list_add_tail(&queue.list,
2080 &sma->pending_alter);
2081 } else {
2082
2083 list_add_tail(&queue.list,
2084 &curr->pending_alter);
2085 }
2086 } else {
2087 list_add_tail(&queue.list, &curr->pending_const);
2088 }
2089 } else {
2090 if (!sma->complex_count)
2091 merge_queues(sma);
2092
2093 if (alter)
2094 list_add_tail(&queue.list, &sma->pending_alter);
2095 else
2096 list_add_tail(&queue.list, &sma->pending_const);
2097
2098 sma->complex_count++;
2099 }
2100
2101 do {
2102 queue.status = -EINTR;
2103 queue.sleeper = current;
2104
2105 __set_current_state(TASK_INTERRUPTIBLE);
2106 sem_unlock(sma, locknum);
2107 rcu_read_unlock();
2108
2109 if (timeout)
2110 jiffies_left = schedule_timeout(jiffies_left);
2111 else
2112 schedule();
2113
2114 /*
2115 * fastpath: the semop has completed, either successfully or
2116 * not, from the syscall pov, is quite irrelevant to us at this
2117 * point; we're done.
2118 *
2119 * We _do_ care, nonetheless, about being awoken by a signal or
2120 * spuriously. The queue.status is checked again in the
2121 * slowpath (aka after taking sem_lock), such that we can detect
2122 * scenarios where we were awakened externally, during the
2123 * window between wake_q_add() and wake_up_q().
2124 */
2125 error = READ_ONCE(queue.status);
2126 if (error != -EINTR) {
2127 /*
2128 * User space could assume that semop() is a memory
2129 * barrier: Without the mb(), the cpu could
2130 * speculatively read in userspace stale data that was
2131 * overwritten by the previous owner of the semaphore.
2132 */
2133 smp_mb();
2134 goto out_free;
2135 }
2136
2137 rcu_read_lock();
2138 locknum = sem_lock(sma, sops, nsops);
2139
2140 if (!ipc_valid_object(&sma->sem_perm))
2141 goto out_unlock_free;
2142
2143 error = READ_ONCE(queue.status);
2144
2145 /*
2146 * If queue.status != -EINTR we are woken up by another process.
2147 * Leave without unlink_queue(), but with sem_unlock().
2148 */
2149 if (error != -EINTR)
2150 goto out_unlock_free;
2151
2152 /*
2153 * If an interrupt occurred we have to clean up the queue.
2154 */
2155 if (timeout && jiffies_left == 0)
2156 error = -EAGAIN;
2157 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2158
2159 unlink_queue(sma, &queue);
2160
2161out_unlock_free:
2162 sem_unlock(sma, locknum);
2163 rcu_read_unlock();
2164out_free:
2165 if (sops != fast_sops)
2166 kvfree(sops);
2167 return error;
2168}
2169
2170long ksys_semtimedop(int semid, struct sembuf __user *tsops,
2171 unsigned int nsops, const struct timespec __user *timeout)
2172{
2173 if (timeout) {
2174 struct timespec64 ts;
2175 if (get_timespec64(&ts, timeout))
2176 return -EFAULT;
2177 return do_semtimedop(semid, tsops, nsops, &ts);
2178 }
2179 return do_semtimedop(semid, tsops, nsops, NULL);
2180}
2181
2182SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2183 unsigned int, nsops, const struct timespec __user *, timeout)
2184{
2185 return ksys_semtimedop(semid, tsops, nsops, timeout);
2186}
2187
2188#ifdef CONFIG_COMPAT
2189long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2190 unsigned int nsops,
2191 const struct compat_timespec __user *timeout)
2192{
2193 if (timeout) {
2194 struct timespec64 ts;
2195 if (compat_get_timespec64(&ts, timeout))
2196 return -EFAULT;
2197 return do_semtimedop(semid, tsems, nsops, &ts);
2198 }
2199 return do_semtimedop(semid, tsems, nsops, NULL);
2200}
2201
2202COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2203 unsigned int, nsops,
2204 const struct compat_timespec __user *, timeout)
2205{
2206 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2207}
2208#endif
2209
2210SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2211 unsigned, nsops)
2212{
2213 return do_semtimedop(semid, tsops, nsops, NULL);
2214}
2215
2216/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2217 * parent and child tasks.
2218 */
2219
2220int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2221{
2222 struct sem_undo_list *undo_list;
2223 int error;
2224
2225 if (clone_flags & CLONE_SYSVSEM) {
2226 error = get_undo_list(&undo_list);
2227 if (error)
2228 return error;
2229 refcount_inc(&undo_list->refcnt);
2230 tsk->sysvsem.undo_list = undo_list;
2231 } else
2232 tsk->sysvsem.undo_list = NULL;
2233
2234 return 0;
2235}
2236
2237/*
2238 * add semadj values to semaphores, free undo structures.
2239 * undo structures are not freed when semaphore arrays are destroyed
2240 * so some of them may be out of date.
2241 * IMPLEMENTATION NOTE: There is some confusion over whether the
2242 * set of adjustments that needs to be done should be done in an atomic
2243 * manner or not. That is, if we are attempting to decrement the semval
2244 * should we queue up and wait until we can do so legally?
2245 * The original implementation attempted to do this (queue and wait).
2246 * The current implementation does not do so. The POSIX standard
2247 * and SVID should be consulted to determine what behavior is mandated.
2248 */
2249void exit_sem(struct task_struct *tsk)
2250{
2251 struct sem_undo_list *ulp;
2252
2253 ulp = tsk->sysvsem.undo_list;
2254 if (!ulp)
2255 return;
2256 tsk->sysvsem.undo_list = NULL;
2257
2258 if (!refcount_dec_and_test(&ulp->refcnt))
2259 return;
2260
2261 for (;;) {
2262 struct sem_array *sma;
2263 struct sem_undo *un;
2264 int semid, i;
2265 DEFINE_WAKE_Q(wake_q);
2266
2267 cond_resched();
2268
2269 rcu_read_lock();
2270 un = list_entry_rcu(ulp->list_proc.next,
2271 struct sem_undo, list_proc);
2272 if (&un->list_proc == &ulp->list_proc) {
2273 /*
2274 * We must wait for freeary() before freeing this ulp,
2275 * in case we raced with last sem_undo. There is a small
2276 * possibility where we exit while freeary() didn't
2277 * finish unlocking sem_undo_list.
2278 */
2279 spin_lock(&ulp->lock);
2280 spin_unlock(&ulp->lock);
2281 rcu_read_unlock();
2282 break;
2283 }
2284 spin_lock(&ulp->lock);
2285 semid = un->semid;
2286 spin_unlock(&ulp->lock);
2287
2288 /* exit_sem raced with IPC_RMID, nothing to do */
2289 if (semid == -1) {
2290 rcu_read_unlock();
2291 continue;
2292 }
2293
2294 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2295 /* exit_sem raced with IPC_RMID, nothing to do */
2296 if (IS_ERR(sma)) {
2297 rcu_read_unlock();
2298 continue;
2299 }
2300
2301 sem_lock(sma, NULL, -1);
2302 /* exit_sem raced with IPC_RMID, nothing to do */
2303 if (!ipc_valid_object(&sma->sem_perm)) {
2304 sem_unlock(sma, -1);
2305 rcu_read_unlock();
2306 continue;
2307 }
2308 un = __lookup_undo(ulp, semid);
2309 if (un == NULL) {
2310 /* exit_sem raced with IPC_RMID+semget() that created
2311 * exactly the same semid. Nothing to do.
2312 */
2313 sem_unlock(sma, -1);
2314 rcu_read_unlock();
2315 continue;
2316 }
2317
2318 /* remove un from the linked lists */
2319 ipc_assert_locked_object(&sma->sem_perm);
2320 list_del(&un->list_id);
2321
2322 /* we are the last process using this ulp, acquiring ulp->lock
2323 * isn't required. Besides that, we are also protected against
2324 * IPC_RMID as we hold sma->sem_perm lock now
2325 */
2326 list_del_rcu(&un->list_proc);
2327
2328 /* perform adjustments registered in un */
2329 for (i = 0; i < sma->sem_nsems; i++) {
2330 struct sem *semaphore = &sma->sems[i];
2331 if (un->semadj[i]) {
2332 semaphore->semval += un->semadj[i];
2333 /*
2334 * Range checks of the new semaphore value,
2335 * not defined by sus:
2336 * - Some unices ignore the undo entirely
2337 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2338 * - some cap the value (e.g. FreeBSD caps
2339 * at 0, but doesn't enforce SEMVMX)
2340 *
2341 * Linux caps the semaphore value, both at 0
2342 * and at SEMVMX.
2343 *
2344 * Manfred <manfred@colorfullife.com>
2345 */
2346 if (semaphore->semval < 0)
2347 semaphore->semval = 0;
2348 if (semaphore->semval > SEMVMX)
2349 semaphore->semval = SEMVMX;
2350 ipc_update_pid(&semaphore->sempid, task_tgid(current));
2351 }
2352 }
2353 /* maybe some queued-up processes were waiting for this */
2354 do_smart_update(sma, NULL, 0, 1, &wake_q);
2355 sem_unlock(sma, -1);
2356 rcu_read_unlock();
2357 wake_up_q(&wake_q);
2358
2359 kfree_rcu(un, rcu);
2360 }
2361 kfree(ulp);
2362}
2363
2364#ifdef CONFIG_PROC_FS
2365static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2366{
2367 struct user_namespace *user_ns = seq_user_ns(s);
2368 struct kern_ipc_perm *ipcp = it;
2369 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2370 time64_t sem_otime;
2371
2372 /*
2373 * The proc interface isn't aware of sem_lock(), it calls
2374 * ipc_lock_object() directly (in sysvipc_find_ipc).
2375 * In order to stay compatible with sem_lock(), we must
2376 * enter / leave complex_mode.
2377 */
2378 complexmode_enter(sma);
2379
2380 sem_otime = get_semotime(sma);
2381
2382 seq_printf(s,
2383 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2384 sma->sem_perm.key,
2385 sma->sem_perm.id,
2386 sma->sem_perm.mode,
2387 sma->sem_nsems,
2388 from_kuid_munged(user_ns, sma->sem_perm.uid),
2389 from_kgid_munged(user_ns, sma->sem_perm.gid),
2390 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2391 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2392 sem_otime,
2393 sma->sem_ctime);
2394
2395 complexmode_tryleave(sma);
2396
2397 return 0;
2398}
2399#endif