Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * Copyright (c) 2008 Dave Chinner
  4 * All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it would be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write the Free Software Foundation,
 17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 18 */
 19#include "xfs.h"
 20#include "xfs_fs.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_mount.h"
 25#include "xfs_trans.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_trace.h"
 
 28#include "xfs_error.h"
 29#include "xfs_log.h"
 30
 31#ifdef DEBUG
 32/*
 33 * Check that the list is sorted as it should be.
 34 */
 35STATIC void
 36xfs_ail_check(
 37	struct xfs_ail	*ailp,
 38	xfs_log_item_t	*lip)
 39{
 40	xfs_log_item_t	*prev_lip;
 41
 42	if (list_empty(&ailp->xa_ail))
 43		return;
 44
 45	/*
 46	 * Check the next and previous entries are valid.
 47	 */
 48	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
 49	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
 50	if (&prev_lip->li_ail != &ailp->xa_ail)
 51		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
 52
 53	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
 54	if (&prev_lip->li_ail != &ailp->xa_ail)
 55		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
 56
 57
 58}
 59#else /* !DEBUG */
 60#define	xfs_ail_check(a,l)
 61#endif /* DEBUG */
 62
 63/*
 64 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 65 * return NULL.
 66 */
 67static xfs_log_item_t *
 68xfs_ail_max(
 69	struct xfs_ail  *ailp)
 70{
 71	if (list_empty(&ailp->xa_ail))
 72		return NULL;
 73
 74	return list_entry(ailp->xa_ail.prev, xfs_log_item_t, li_ail);
 75}
 76
 77/*
 78 * Return a pointer to the item which follows the given item in the AIL.  If
 79 * the given item is the last item in the list, then return NULL.
 80 */
 81static xfs_log_item_t *
 82xfs_ail_next(
 83	struct xfs_ail  *ailp,
 84	xfs_log_item_t  *lip)
 85{
 86	if (lip->li_ail.next == &ailp->xa_ail)
 87		return NULL;
 88
 89	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
 90}
 91
 92/*
 93 * This is called by the log manager code to determine the LSN of the tail of
 94 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
 95 * is empty, then this function returns 0.
 96 *
 97 * We need the AIL lock in order to get a coherent read of the lsn of the last
 98 * item in the AIL.
 99 */
100xfs_lsn_t
101xfs_ail_min_lsn(
102	struct xfs_ail	*ailp)
103{
104	xfs_lsn_t	lsn = 0;
105	xfs_log_item_t	*lip;
106
107	spin_lock(&ailp->xa_lock);
108	lip = xfs_ail_min(ailp);
109	if (lip)
110		lsn = lip->li_lsn;
111	spin_unlock(&ailp->xa_lock);
112
113	return lsn;
114}
115
116/*
117 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
118 */
119static xfs_lsn_t
120xfs_ail_max_lsn(
121	struct xfs_ail  *ailp)
122{
123	xfs_lsn_t       lsn = 0;
124	xfs_log_item_t  *lip;
125
126	spin_lock(&ailp->xa_lock);
127	lip = xfs_ail_max(ailp);
128	if (lip)
129		lsn = lip->li_lsn;
130	spin_unlock(&ailp->xa_lock);
131
132	return lsn;
133}
134
135/*
136 * The cursor keeps track of where our current traversal is up to by tracking
137 * the next item in the list for us. However, for this to be safe, removing an
138 * object from the AIL needs to invalidate any cursor that points to it. hence
139 * the traversal cursor needs to be linked to the struct xfs_ail so that
140 * deletion can search all the active cursors for invalidation.
141 */
142STATIC void
143xfs_trans_ail_cursor_init(
144	struct xfs_ail		*ailp,
145	struct xfs_ail_cursor	*cur)
146{
147	cur->item = NULL;
148	list_add_tail(&cur->list, &ailp->xa_cursors);
149}
150
151/*
152 * Get the next item in the traversal and advance the cursor.  If the cursor
153 * was invalidated (indicated by a lip of 1), restart the traversal.
154 */
155struct xfs_log_item *
156xfs_trans_ail_cursor_next(
157	struct xfs_ail		*ailp,
158	struct xfs_ail_cursor	*cur)
159{
160	struct xfs_log_item	*lip = cur->item;
161
162	if ((uintptr_t)lip & 1)
163		lip = xfs_ail_min(ailp);
164	if (lip)
165		cur->item = xfs_ail_next(ailp, lip);
166	return lip;
167}
168
169/*
170 * When the traversal is complete, we need to remove the cursor from the list
171 * of traversing cursors.
172 */
173void
174xfs_trans_ail_cursor_done(
175	struct xfs_ail_cursor	*cur)
176{
177	cur->item = NULL;
178	list_del_init(&cur->list);
179}
180
181/*
182 * Invalidate any cursor that is pointing to this item. This is called when an
183 * item is removed from the AIL. Any cursor pointing to this object is now
184 * invalid and the traversal needs to be terminated so it doesn't reference a
185 * freed object. We set the low bit of the cursor item pointer so we can
186 * distinguish between an invalidation and the end of the list when getting the
187 * next item from the cursor.
188 */
189STATIC void
190xfs_trans_ail_cursor_clear(
191	struct xfs_ail		*ailp,
192	struct xfs_log_item	*lip)
193{
194	struct xfs_ail_cursor	*cur;
195
196	list_for_each_entry(cur, &ailp->xa_cursors, list) {
197		if (cur->item == lip)
198			cur->item = (struct xfs_log_item *)
199					((uintptr_t)cur->item | 1);
200	}
201}
202
203/*
204 * Find the first item in the AIL with the given @lsn by searching in ascending
205 * LSN order and initialise the cursor to point to the next item for a
206 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
207 * first item in the AIL. Returns NULL if the list is empty.
208 */
209xfs_log_item_t *
210xfs_trans_ail_cursor_first(
211	struct xfs_ail		*ailp,
212	struct xfs_ail_cursor	*cur,
213	xfs_lsn_t		lsn)
214{
215	xfs_log_item_t		*lip;
216
217	xfs_trans_ail_cursor_init(ailp, cur);
218
219	if (lsn == 0) {
220		lip = xfs_ail_min(ailp);
221		goto out;
222	}
223
224	list_for_each_entry(lip, &ailp->xa_ail, li_ail) {
225		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
226			goto out;
227	}
228	return NULL;
229
230out:
231	if (lip)
232		cur->item = xfs_ail_next(ailp, lip);
233	return lip;
234}
235
236static struct xfs_log_item *
237__xfs_trans_ail_cursor_last(
238	struct xfs_ail		*ailp,
239	xfs_lsn_t		lsn)
240{
241	xfs_log_item_t		*lip;
242
243	list_for_each_entry_reverse(lip, &ailp->xa_ail, li_ail) {
244		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
245			return lip;
246	}
247	return NULL;
248}
249
250/*
251 * Find the last item in the AIL with the given @lsn by searching in descending
252 * LSN order and initialise the cursor to point to that item.  If there is no
253 * item with the value of @lsn, then it sets the cursor to the last item with an
254 * LSN lower than @lsn.  Returns NULL if the list is empty.
255 */
256struct xfs_log_item *
257xfs_trans_ail_cursor_last(
258	struct xfs_ail		*ailp,
259	struct xfs_ail_cursor	*cur,
260	xfs_lsn_t		lsn)
261{
262	xfs_trans_ail_cursor_init(ailp, cur);
263	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
264	return cur->item;
265}
266
267/*
268 * Splice the log item list into the AIL at the given LSN. We splice to the
269 * tail of the given LSN to maintain insert order for push traversals. The
270 * cursor is optional, allowing repeated updates to the same LSN to avoid
271 * repeated traversals.  This should not be called with an empty list.
272 */
273static void
274xfs_ail_splice(
275	struct xfs_ail		*ailp,
276	struct xfs_ail_cursor	*cur,
277	struct list_head	*list,
278	xfs_lsn_t		lsn)
279{
280	struct xfs_log_item	*lip;
281
282	ASSERT(!list_empty(list));
283
284	/*
285	 * Use the cursor to determine the insertion point if one is
286	 * provided.  If not, or if the one we got is not valid,
287	 * find the place in the AIL where the items belong.
288	 */
289	lip = cur ? cur->item : NULL;
290	if (!lip || (uintptr_t)lip & 1)
291		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
292
293	/*
294	 * If a cursor is provided, we know we're processing the AIL
295	 * in lsn order, and future items to be spliced in will
296	 * follow the last one being inserted now.  Update the
297	 * cursor to point to that last item, now while we have a
298	 * reliable pointer to it.
299	 */
300	if (cur)
301		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
302
303	/*
304	 * Finally perform the splice.  Unless the AIL was empty,
305	 * lip points to the item in the AIL _after_ which the new
306	 * items should go.  If lip is null the AIL was empty, so
307	 * the new items go at the head of the AIL.
308	 */
309	if (lip)
310		list_splice(list, &lip->li_ail);
311	else
312		list_splice(list, &ailp->xa_ail);
313}
314
315/*
316 * Delete the given item from the AIL.  Return a pointer to the item.
317 */
318static void
319xfs_ail_delete(
320	struct xfs_ail  *ailp,
321	xfs_log_item_t  *lip)
322{
323	xfs_ail_check(ailp, lip);
324	list_del(&lip->li_ail);
325	xfs_trans_ail_cursor_clear(ailp, lip);
326}
327
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328static long
329xfsaild_push(
330	struct xfs_ail		*ailp)
331{
332	xfs_mount_t		*mp = ailp->xa_mount;
333	struct xfs_ail_cursor	cur;
334	xfs_log_item_t		*lip;
335	xfs_lsn_t		lsn;
336	xfs_lsn_t		target;
337	long			tout;
338	int			stuck = 0;
339	int			flushing = 0;
340	int			count = 0;
341
342	/*
343	 * If we encountered pinned items or did not finish writing out all
344	 * buffers the last time we ran, force the log first and wait for it
345	 * before pushing again.
346	 */
347	if (ailp->xa_log_flush && ailp->xa_last_pushed_lsn == 0 &&
348	    (!list_empty_careful(&ailp->xa_buf_list) ||
349	     xfs_ail_min_lsn(ailp))) {
350		ailp->xa_log_flush = 0;
351
352		XFS_STATS_INC(mp, xs_push_ail_flush);
353		xfs_log_force(mp, XFS_LOG_SYNC);
354	}
355
356	spin_lock(&ailp->xa_lock);
357
358	/* barrier matches the xa_target update in xfs_ail_push() */
359	smp_rmb();
360	target = ailp->xa_target;
361	ailp->xa_target_prev = target;
362
363	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->xa_last_pushed_lsn);
364	if (!lip) {
365		/*
366		 * If the AIL is empty or our push has reached the end we are
367		 * done now.
368		 */
369		xfs_trans_ail_cursor_done(&cur);
370		spin_unlock(&ailp->xa_lock);
371		goto out_done;
372	}
373
374	XFS_STATS_INC(mp, xs_push_ail);
375
376	lsn = lip->li_lsn;
377	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
378		int	lock_result;
379
380		/*
381		 * Note that iop_push may unlock and reacquire the AIL lock.  We
382		 * rely on the AIL cursor implementation to be able to deal with
383		 * the dropped lock.
384		 */
385		lock_result = lip->li_ops->iop_push(lip, &ailp->xa_buf_list);
386		switch (lock_result) {
387		case XFS_ITEM_SUCCESS:
388			XFS_STATS_INC(mp, xs_push_ail_success);
389			trace_xfs_ail_push(lip);
390
391			ailp->xa_last_pushed_lsn = lsn;
392			break;
393
394		case XFS_ITEM_FLUSHING:
395			/*
396			 * The item or its backing buffer is already beeing
397			 * flushed.  The typical reason for that is that an
398			 * inode buffer is locked because we already pushed the
399			 * updates to it as part of inode clustering.
400			 *
401			 * We do not want to to stop flushing just because lots
402			 * of items are already beeing flushed, but we need to
403			 * re-try the flushing relatively soon if most of the
404			 * AIL is beeing flushed.
405			 */
406			XFS_STATS_INC(mp, xs_push_ail_flushing);
407			trace_xfs_ail_flushing(lip);
408
409			flushing++;
410			ailp->xa_last_pushed_lsn = lsn;
411			break;
412
413		case XFS_ITEM_PINNED:
414			XFS_STATS_INC(mp, xs_push_ail_pinned);
415			trace_xfs_ail_pinned(lip);
416
417			stuck++;
418			ailp->xa_log_flush++;
419			break;
420		case XFS_ITEM_LOCKED:
421			XFS_STATS_INC(mp, xs_push_ail_locked);
422			trace_xfs_ail_locked(lip);
423
424			stuck++;
425			break;
426		default:
427			ASSERT(0);
428			break;
429		}
430
431		count++;
432
433		/*
434		 * Are there too many items we can't do anything with?
435		 *
436		 * If we we are skipping too many items because we can't flush
437		 * them or they are already being flushed, we back off and
438		 * given them time to complete whatever operation is being
439		 * done. i.e. remove pressure from the AIL while we can't make
440		 * progress so traversals don't slow down further inserts and
441		 * removals to/from the AIL.
442		 *
443		 * The value of 100 is an arbitrary magic number based on
444		 * observation.
445		 */
446		if (stuck > 100)
447			break;
448
449		lip = xfs_trans_ail_cursor_next(ailp, &cur);
450		if (lip == NULL)
451			break;
452		lsn = lip->li_lsn;
453	}
454	xfs_trans_ail_cursor_done(&cur);
455	spin_unlock(&ailp->xa_lock);
456
457	if (xfs_buf_delwri_submit_nowait(&ailp->xa_buf_list))
458		ailp->xa_log_flush++;
459
460	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
461out_done:
462		/*
463		 * We reached the target or the AIL is empty, so wait a bit
464		 * longer for I/O to complete and remove pushed items from the
465		 * AIL before we start the next scan from the start of the AIL.
466		 */
467		tout = 50;
468		ailp->xa_last_pushed_lsn = 0;
469	} else if (((stuck + flushing) * 100) / count > 90) {
470		/*
471		 * Either there is a lot of contention on the AIL or we are
472		 * stuck due to operations in progress. "Stuck" in this case
473		 * is defined as >90% of the items we tried to push were stuck.
474		 *
475		 * Backoff a bit more to allow some I/O to complete before
476		 * restarting from the start of the AIL. This prevents us from
477		 * spinning on the same items, and if they are pinned will all
478		 * the restart to issue a log force to unpin the stuck items.
479		 */
480		tout = 20;
481		ailp->xa_last_pushed_lsn = 0;
482	} else {
483		/*
484		 * Assume we have more work to do in a short while.
485		 */
486		tout = 10;
487	}
488
489	return tout;
490}
491
492static int
493xfsaild(
494	void		*data)
495{
496	struct xfs_ail	*ailp = data;
497	long		tout = 0;	/* milliseconds */
498
499	current->flags |= PF_MEMALLOC;
500	set_freezable();
501
502	while (!kthread_should_stop()) {
503		if (tout && tout <= 20)
504			__set_current_state(TASK_KILLABLE);
505		else
506			__set_current_state(TASK_INTERRUPTIBLE);
507
508		spin_lock(&ailp->xa_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
510		/*
511		 * Idle if the AIL is empty and we are not racing with a target
512		 * update. We check the AIL after we set the task to a sleep
513		 * state to guarantee that we either catch an xa_target update
514		 * or that a wake_up resets the state to TASK_RUNNING.
515		 * Otherwise, we run the risk of sleeping indefinitely.
516		 *
517		 * The barrier matches the xa_target update in xfs_ail_push().
518		 */
519		smp_rmb();
520		if (!xfs_ail_min(ailp) &&
521		    ailp->xa_target == ailp->xa_target_prev) {
522			spin_unlock(&ailp->xa_lock);
523			freezable_schedule();
524			tout = 0;
525			continue;
526		}
527		spin_unlock(&ailp->xa_lock);
528
529		if (tout)
530			freezable_schedule_timeout(msecs_to_jiffies(tout));
531
532		__set_current_state(TASK_RUNNING);
533
534		try_to_freeze();
535
536		tout = xfsaild_push(ailp);
537	}
538
539	return 0;
540}
541
542/*
543 * This routine is called to move the tail of the AIL forward.  It does this by
544 * trying to flush items in the AIL whose lsns are below the given
545 * threshold_lsn.
546 *
547 * The push is run asynchronously in a workqueue, which means the caller needs
548 * to handle waiting on the async flush for space to become available.
549 * We don't want to interrupt any push that is in progress, hence we only queue
550 * work if we set the pushing bit approriately.
551 *
552 * We do this unlocked - we only need to know whether there is anything in the
553 * AIL at the time we are called. We don't need to access the contents of
554 * any of the objects, so the lock is not needed.
555 */
556void
557xfs_ail_push(
558	struct xfs_ail	*ailp,
559	xfs_lsn_t	threshold_lsn)
560{
561	xfs_log_item_t	*lip;
562
563	lip = xfs_ail_min(ailp);
564	if (!lip || XFS_FORCED_SHUTDOWN(ailp->xa_mount) ||
565	    XFS_LSN_CMP(threshold_lsn, ailp->xa_target) <= 0)
566		return;
567
568	/*
569	 * Ensure that the new target is noticed in push code before it clears
570	 * the XFS_AIL_PUSHING_BIT.
571	 */
572	smp_wmb();
573	xfs_trans_ail_copy_lsn(ailp, &ailp->xa_target, &threshold_lsn);
574	smp_wmb();
575
576	wake_up_process(ailp->xa_task);
577}
578
579/*
580 * Push out all items in the AIL immediately
581 */
582void
583xfs_ail_push_all(
584	struct xfs_ail  *ailp)
585{
586	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
587
588	if (threshold_lsn)
589		xfs_ail_push(ailp, threshold_lsn);
590}
591
592/*
593 * Push out all items in the AIL immediately and wait until the AIL is empty.
594 */
595void
596xfs_ail_push_all_sync(
597	struct xfs_ail  *ailp)
598{
599	struct xfs_log_item	*lip;
600	DEFINE_WAIT(wait);
601
602	spin_lock(&ailp->xa_lock);
603	while ((lip = xfs_ail_max(ailp)) != NULL) {
604		prepare_to_wait(&ailp->xa_empty, &wait, TASK_UNINTERRUPTIBLE);
605		ailp->xa_target = lip->li_lsn;
606		wake_up_process(ailp->xa_task);
607		spin_unlock(&ailp->xa_lock);
608		schedule();
609		spin_lock(&ailp->xa_lock);
610	}
611	spin_unlock(&ailp->xa_lock);
612
613	finish_wait(&ailp->xa_empty, &wait);
614}
615
616/*
617 * xfs_trans_ail_update - bulk AIL insertion operation.
618 *
619 * @xfs_trans_ail_update takes an array of log items that all need to be
620 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
621 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
622 * it to the AIL. If we move the first item in the AIL, update the log tail to
623 * match the new minimum LSN in the AIL.
624 *
625 * This function takes the AIL lock once to execute the update operations on
626 * all the items in the array, and as such should not be called with the AIL
627 * lock held. As a result, once we have the AIL lock, we need to check each log
628 * item LSN to confirm it needs to be moved forward in the AIL.
629 *
630 * To optimise the insert operation, we delete all the items from the AIL in
631 * the first pass, moving them into a temporary list, then splice the temporary
632 * list into the correct position in the AIL. This avoids needing to do an
633 * insert operation on every item.
634 *
635 * This function must be called with the AIL lock held.  The lock is dropped
636 * before returning.
637 */
638void
639xfs_trans_ail_update_bulk(
640	struct xfs_ail		*ailp,
641	struct xfs_ail_cursor	*cur,
642	struct xfs_log_item	**log_items,
643	int			nr_items,
644	xfs_lsn_t		lsn) __releases(ailp->xa_lock)
645{
646	xfs_log_item_t		*mlip;
647	int			mlip_changed = 0;
648	int			i;
649	LIST_HEAD(tmp);
650
651	ASSERT(nr_items > 0);		/* Not required, but true. */
652	mlip = xfs_ail_min(ailp);
653
654	for (i = 0; i < nr_items; i++) {
655		struct xfs_log_item *lip = log_items[i];
656		if (lip->li_flags & XFS_LI_IN_AIL) {
657			/* check if we really need to move the item */
658			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
659				continue;
660
661			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
662			xfs_ail_delete(ailp, lip);
663			if (mlip == lip)
664				mlip_changed = 1;
665		} else {
666			lip->li_flags |= XFS_LI_IN_AIL;
667			trace_xfs_ail_insert(lip, 0, lsn);
668		}
669		lip->li_lsn = lsn;
670		list_add(&lip->li_ail, &tmp);
671	}
672
673	if (!list_empty(&tmp))
674		xfs_ail_splice(ailp, cur, &tmp, lsn);
675
676	if (mlip_changed) {
677		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
678			xlog_assign_tail_lsn_locked(ailp->xa_mount);
679		spin_unlock(&ailp->xa_lock);
680
681		xfs_log_space_wake(ailp->xa_mount);
682	} else {
683		spin_unlock(&ailp->xa_lock);
684	}
685}
686
687/*
688 * xfs_trans_ail_delete_bulk - remove multiple log items from the AIL
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689 *
690 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
691 * removed from the AIL. The caller is already holding the AIL lock, and done
692 * all the checks necessary to ensure the items passed in via @log_items are
693 * ready for deletion. This includes checking that the items are in the AIL.
694 *
695 * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
696 * flag from the item and reset the item's lsn to 0. If we remove the first
697 * item in the AIL, update the log tail to match the new minimum LSN in the
698 * AIL.
699 *
700 * This function will not drop the AIL lock until all items are removed from
701 * the AIL to minimise the amount of lock traffic on the AIL. This does not
702 * greatly increase the AIL hold time, but does significantly reduce the amount
703 * of traffic on the lock, especially during IO completion.
704 *
705 * This function must be called with the AIL lock held.  The lock is dropped
706 * before returning.
707 */
708void
709xfs_trans_ail_delete_bulk(
710	struct xfs_ail		*ailp,
711	struct xfs_log_item	**log_items,
712	int			nr_items,
713	int			shutdown_type) __releases(ailp->xa_lock)
714{
715	xfs_log_item_t		*mlip;
716	int			mlip_changed = 0;
717	int			i;
718
719	mlip = xfs_ail_min(ailp);
720
721	for (i = 0; i < nr_items; i++) {
722		struct xfs_log_item *lip = log_items[i];
723		if (!(lip->li_flags & XFS_LI_IN_AIL)) {
724			struct xfs_mount	*mp = ailp->xa_mount;
725
726			spin_unlock(&ailp->xa_lock);
727			if (!XFS_FORCED_SHUTDOWN(mp)) {
728				xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
729		"%s: attempting to delete a log item that is not in the AIL",
730						__func__);
731				xfs_force_shutdown(mp, shutdown_type);
732			}
733			return;
734		}
735
736		trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
737		xfs_ail_delete(ailp, lip);
738		lip->li_flags &= ~XFS_LI_IN_AIL;
739		lip->li_lsn = 0;
740		if (mlip == lip)
741			mlip_changed = 1;
742	}
743
 
744	if (mlip_changed) {
745		if (!XFS_FORCED_SHUTDOWN(ailp->xa_mount))
746			xlog_assign_tail_lsn_locked(ailp->xa_mount);
747		if (list_empty(&ailp->xa_ail))
748			wake_up_all(&ailp->xa_empty);
749		spin_unlock(&ailp->xa_lock);
750
751		xfs_log_space_wake(ailp->xa_mount);
752	} else {
753		spin_unlock(&ailp->xa_lock);
754	}
 
 
 
 
755}
756
757int
758xfs_trans_ail_init(
759	xfs_mount_t	*mp)
760{
761	struct xfs_ail	*ailp;
762
763	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
764	if (!ailp)
765		return -ENOMEM;
766
767	ailp->xa_mount = mp;
768	INIT_LIST_HEAD(&ailp->xa_ail);
769	INIT_LIST_HEAD(&ailp->xa_cursors);
770	spin_lock_init(&ailp->xa_lock);
771	INIT_LIST_HEAD(&ailp->xa_buf_list);
772	init_waitqueue_head(&ailp->xa_empty);
773
774	ailp->xa_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
775			ailp->xa_mount->m_fsname);
776	if (IS_ERR(ailp->xa_task))
777		goto out_free_ailp;
778
779	mp->m_ail = ailp;
780	return 0;
781
782out_free_ailp:
783	kmem_free(ailp);
784	return -ENOMEM;
785}
786
787void
788xfs_trans_ail_destroy(
789	xfs_mount_t	*mp)
790{
791	struct xfs_ail	*ailp = mp->m_ail;
792
793	kthread_stop(ailp->xa_task);
794	kmem_free(ailp);
795}
v4.17
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * Copyright (c) 2008 Dave Chinner
  4 * All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or
  7 * modify it under the terms of the GNU General Public License as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it would be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write the Free Software Foundation,
 17 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 18 */
 19#include "xfs.h"
 20#include "xfs_fs.h"
 21#include "xfs_format.h"
 22#include "xfs_log_format.h"
 23#include "xfs_trans_resv.h"
 24#include "xfs_mount.h"
 25#include "xfs_trans.h"
 26#include "xfs_trans_priv.h"
 27#include "xfs_trace.h"
 28#include "xfs_errortag.h"
 29#include "xfs_error.h"
 30#include "xfs_log.h"
 31
 32#ifdef DEBUG
 33/*
 34 * Check that the list is sorted as it should be.
 35 */
 36STATIC void
 37xfs_ail_check(
 38	struct xfs_ail	*ailp,
 39	xfs_log_item_t	*lip)
 40{
 41	xfs_log_item_t	*prev_lip;
 42
 43	if (list_empty(&ailp->ail_head))
 44		return;
 45
 46	/*
 47	 * Check the next and previous entries are valid.
 48	 */
 49	ASSERT((lip->li_flags & XFS_LI_IN_AIL) != 0);
 50	prev_lip = list_entry(lip->li_ail.prev, xfs_log_item_t, li_ail);
 51	if (&prev_lip->li_ail != &ailp->ail_head)
 52		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) <= 0);
 53
 54	prev_lip = list_entry(lip->li_ail.next, xfs_log_item_t, li_ail);
 55	if (&prev_lip->li_ail != &ailp->ail_head)
 56		ASSERT(XFS_LSN_CMP(prev_lip->li_lsn, lip->li_lsn) >= 0);
 57
 58
 59}
 60#else /* !DEBUG */
 61#define	xfs_ail_check(a,l)
 62#endif /* DEBUG */
 63
 64/*
 65 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
 66 * return NULL.
 67 */
 68static xfs_log_item_t *
 69xfs_ail_max(
 70	struct xfs_ail  *ailp)
 71{
 72	if (list_empty(&ailp->ail_head))
 73		return NULL;
 74
 75	return list_entry(ailp->ail_head.prev, xfs_log_item_t, li_ail);
 76}
 77
 78/*
 79 * Return a pointer to the item which follows the given item in the AIL.  If
 80 * the given item is the last item in the list, then return NULL.
 81 */
 82static xfs_log_item_t *
 83xfs_ail_next(
 84	struct xfs_ail  *ailp,
 85	xfs_log_item_t  *lip)
 86{
 87	if (lip->li_ail.next == &ailp->ail_head)
 88		return NULL;
 89
 90	return list_first_entry(&lip->li_ail, xfs_log_item_t, li_ail);
 91}
 92
 93/*
 94 * This is called by the log manager code to determine the LSN of the tail of
 95 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
 96 * is empty, then this function returns 0.
 97 *
 98 * We need the AIL lock in order to get a coherent read of the lsn of the last
 99 * item in the AIL.
100 */
101xfs_lsn_t
102xfs_ail_min_lsn(
103	struct xfs_ail	*ailp)
104{
105	xfs_lsn_t	lsn = 0;
106	xfs_log_item_t	*lip;
107
108	spin_lock(&ailp->ail_lock);
109	lip = xfs_ail_min(ailp);
110	if (lip)
111		lsn = lip->li_lsn;
112	spin_unlock(&ailp->ail_lock);
113
114	return lsn;
115}
116
117/*
118 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
119 */
120static xfs_lsn_t
121xfs_ail_max_lsn(
122	struct xfs_ail  *ailp)
123{
124	xfs_lsn_t       lsn = 0;
125	xfs_log_item_t  *lip;
126
127	spin_lock(&ailp->ail_lock);
128	lip = xfs_ail_max(ailp);
129	if (lip)
130		lsn = lip->li_lsn;
131	spin_unlock(&ailp->ail_lock);
132
133	return lsn;
134}
135
136/*
137 * The cursor keeps track of where our current traversal is up to by tracking
138 * the next item in the list for us. However, for this to be safe, removing an
139 * object from the AIL needs to invalidate any cursor that points to it. hence
140 * the traversal cursor needs to be linked to the struct xfs_ail so that
141 * deletion can search all the active cursors for invalidation.
142 */
143STATIC void
144xfs_trans_ail_cursor_init(
145	struct xfs_ail		*ailp,
146	struct xfs_ail_cursor	*cur)
147{
148	cur->item = NULL;
149	list_add_tail(&cur->list, &ailp->ail_cursors);
150}
151
152/*
153 * Get the next item in the traversal and advance the cursor.  If the cursor
154 * was invalidated (indicated by a lip of 1), restart the traversal.
155 */
156struct xfs_log_item *
157xfs_trans_ail_cursor_next(
158	struct xfs_ail		*ailp,
159	struct xfs_ail_cursor	*cur)
160{
161	struct xfs_log_item	*lip = cur->item;
162
163	if ((uintptr_t)lip & 1)
164		lip = xfs_ail_min(ailp);
165	if (lip)
166		cur->item = xfs_ail_next(ailp, lip);
167	return lip;
168}
169
170/*
171 * When the traversal is complete, we need to remove the cursor from the list
172 * of traversing cursors.
173 */
174void
175xfs_trans_ail_cursor_done(
176	struct xfs_ail_cursor	*cur)
177{
178	cur->item = NULL;
179	list_del_init(&cur->list);
180}
181
182/*
183 * Invalidate any cursor that is pointing to this item. This is called when an
184 * item is removed from the AIL. Any cursor pointing to this object is now
185 * invalid and the traversal needs to be terminated so it doesn't reference a
186 * freed object. We set the low bit of the cursor item pointer so we can
187 * distinguish between an invalidation and the end of the list when getting the
188 * next item from the cursor.
189 */
190STATIC void
191xfs_trans_ail_cursor_clear(
192	struct xfs_ail		*ailp,
193	struct xfs_log_item	*lip)
194{
195	struct xfs_ail_cursor	*cur;
196
197	list_for_each_entry(cur, &ailp->ail_cursors, list) {
198		if (cur->item == lip)
199			cur->item = (struct xfs_log_item *)
200					((uintptr_t)cur->item | 1);
201	}
202}
203
204/*
205 * Find the first item in the AIL with the given @lsn by searching in ascending
206 * LSN order and initialise the cursor to point to the next item for a
207 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
208 * first item in the AIL. Returns NULL if the list is empty.
209 */
210xfs_log_item_t *
211xfs_trans_ail_cursor_first(
212	struct xfs_ail		*ailp,
213	struct xfs_ail_cursor	*cur,
214	xfs_lsn_t		lsn)
215{
216	xfs_log_item_t		*lip;
217
218	xfs_trans_ail_cursor_init(ailp, cur);
219
220	if (lsn == 0) {
221		lip = xfs_ail_min(ailp);
222		goto out;
223	}
224
225	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
226		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
227			goto out;
228	}
229	return NULL;
230
231out:
232	if (lip)
233		cur->item = xfs_ail_next(ailp, lip);
234	return lip;
235}
236
237static struct xfs_log_item *
238__xfs_trans_ail_cursor_last(
239	struct xfs_ail		*ailp,
240	xfs_lsn_t		lsn)
241{
242	xfs_log_item_t		*lip;
243
244	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
245		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
246			return lip;
247	}
248	return NULL;
249}
250
251/*
252 * Find the last item in the AIL with the given @lsn by searching in descending
253 * LSN order and initialise the cursor to point to that item.  If there is no
254 * item with the value of @lsn, then it sets the cursor to the last item with an
255 * LSN lower than @lsn.  Returns NULL if the list is empty.
256 */
257struct xfs_log_item *
258xfs_trans_ail_cursor_last(
259	struct xfs_ail		*ailp,
260	struct xfs_ail_cursor	*cur,
261	xfs_lsn_t		lsn)
262{
263	xfs_trans_ail_cursor_init(ailp, cur);
264	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
265	return cur->item;
266}
267
268/*
269 * Splice the log item list into the AIL at the given LSN. We splice to the
270 * tail of the given LSN to maintain insert order for push traversals. The
271 * cursor is optional, allowing repeated updates to the same LSN to avoid
272 * repeated traversals.  This should not be called with an empty list.
273 */
274static void
275xfs_ail_splice(
276	struct xfs_ail		*ailp,
277	struct xfs_ail_cursor	*cur,
278	struct list_head	*list,
279	xfs_lsn_t		lsn)
280{
281	struct xfs_log_item	*lip;
282
283	ASSERT(!list_empty(list));
284
285	/*
286	 * Use the cursor to determine the insertion point if one is
287	 * provided.  If not, or if the one we got is not valid,
288	 * find the place in the AIL where the items belong.
289	 */
290	lip = cur ? cur->item : NULL;
291	if (!lip || (uintptr_t)lip & 1)
292		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
293
294	/*
295	 * If a cursor is provided, we know we're processing the AIL
296	 * in lsn order, and future items to be spliced in will
297	 * follow the last one being inserted now.  Update the
298	 * cursor to point to that last item, now while we have a
299	 * reliable pointer to it.
300	 */
301	if (cur)
302		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
303
304	/*
305	 * Finally perform the splice.  Unless the AIL was empty,
306	 * lip points to the item in the AIL _after_ which the new
307	 * items should go.  If lip is null the AIL was empty, so
308	 * the new items go at the head of the AIL.
309	 */
310	if (lip)
311		list_splice(list, &lip->li_ail);
312	else
313		list_splice(list, &ailp->ail_head);
314}
315
316/*
317 * Delete the given item from the AIL.  Return a pointer to the item.
318 */
319static void
320xfs_ail_delete(
321	struct xfs_ail  *ailp,
322	xfs_log_item_t  *lip)
323{
324	xfs_ail_check(ailp, lip);
325	list_del(&lip->li_ail);
326	xfs_trans_ail_cursor_clear(ailp, lip);
327}
328
329static inline uint
330xfsaild_push_item(
331	struct xfs_ail		*ailp,
332	struct xfs_log_item	*lip)
333{
334	/*
335	 * If log item pinning is enabled, skip the push and track the item as
336	 * pinned. This can help induce head-behind-tail conditions.
337	 */
338	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
339		return XFS_ITEM_PINNED;
340
341	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
342}
343
344static long
345xfsaild_push(
346	struct xfs_ail		*ailp)
347{
348	xfs_mount_t		*mp = ailp->ail_mount;
349	struct xfs_ail_cursor	cur;
350	xfs_log_item_t		*lip;
351	xfs_lsn_t		lsn;
352	xfs_lsn_t		target;
353	long			tout;
354	int			stuck = 0;
355	int			flushing = 0;
356	int			count = 0;
357
358	/*
359	 * If we encountered pinned items or did not finish writing out all
360	 * buffers the last time we ran, force the log first and wait for it
361	 * before pushing again.
362	 */
363	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
364	    (!list_empty_careful(&ailp->ail_buf_list) ||
365	     xfs_ail_min_lsn(ailp))) {
366		ailp->ail_log_flush = 0;
367
368		XFS_STATS_INC(mp, xs_push_ail_flush);
369		xfs_log_force(mp, XFS_LOG_SYNC);
370	}
371
372	spin_lock(&ailp->ail_lock);
373
374	/* barrier matches the ail_target update in xfs_ail_push() */
375	smp_rmb();
376	target = ailp->ail_target;
377	ailp->ail_target_prev = target;
378
379	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
380	if (!lip) {
381		/*
382		 * If the AIL is empty or our push has reached the end we are
383		 * done now.
384		 */
385		xfs_trans_ail_cursor_done(&cur);
386		spin_unlock(&ailp->ail_lock);
387		goto out_done;
388	}
389
390	XFS_STATS_INC(mp, xs_push_ail);
391
392	lsn = lip->li_lsn;
393	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
394		int	lock_result;
395
396		/*
397		 * Note that iop_push may unlock and reacquire the AIL lock.  We
398		 * rely on the AIL cursor implementation to be able to deal with
399		 * the dropped lock.
400		 */
401		lock_result = xfsaild_push_item(ailp, lip);
402		switch (lock_result) {
403		case XFS_ITEM_SUCCESS:
404			XFS_STATS_INC(mp, xs_push_ail_success);
405			trace_xfs_ail_push(lip);
406
407			ailp->ail_last_pushed_lsn = lsn;
408			break;
409
410		case XFS_ITEM_FLUSHING:
411			/*
412			 * The item or its backing buffer is already beeing
413			 * flushed.  The typical reason for that is that an
414			 * inode buffer is locked because we already pushed the
415			 * updates to it as part of inode clustering.
416			 *
417			 * We do not want to to stop flushing just because lots
418			 * of items are already beeing flushed, but we need to
419			 * re-try the flushing relatively soon if most of the
420			 * AIL is beeing flushed.
421			 */
422			XFS_STATS_INC(mp, xs_push_ail_flushing);
423			trace_xfs_ail_flushing(lip);
424
425			flushing++;
426			ailp->ail_last_pushed_lsn = lsn;
427			break;
428
429		case XFS_ITEM_PINNED:
430			XFS_STATS_INC(mp, xs_push_ail_pinned);
431			trace_xfs_ail_pinned(lip);
432
433			stuck++;
434			ailp->ail_log_flush++;
435			break;
436		case XFS_ITEM_LOCKED:
437			XFS_STATS_INC(mp, xs_push_ail_locked);
438			trace_xfs_ail_locked(lip);
439
440			stuck++;
441			break;
442		default:
443			ASSERT(0);
444			break;
445		}
446
447		count++;
448
449		/*
450		 * Are there too many items we can't do anything with?
451		 *
452		 * If we we are skipping too many items because we can't flush
453		 * them or they are already being flushed, we back off and
454		 * given them time to complete whatever operation is being
455		 * done. i.e. remove pressure from the AIL while we can't make
456		 * progress so traversals don't slow down further inserts and
457		 * removals to/from the AIL.
458		 *
459		 * The value of 100 is an arbitrary magic number based on
460		 * observation.
461		 */
462		if (stuck > 100)
463			break;
464
465		lip = xfs_trans_ail_cursor_next(ailp, &cur);
466		if (lip == NULL)
467			break;
468		lsn = lip->li_lsn;
469	}
470	xfs_trans_ail_cursor_done(&cur);
471	spin_unlock(&ailp->ail_lock);
472
473	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
474		ailp->ail_log_flush++;
475
476	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
477out_done:
478		/*
479		 * We reached the target or the AIL is empty, so wait a bit
480		 * longer for I/O to complete and remove pushed items from the
481		 * AIL before we start the next scan from the start of the AIL.
482		 */
483		tout = 50;
484		ailp->ail_last_pushed_lsn = 0;
485	} else if (((stuck + flushing) * 100) / count > 90) {
486		/*
487		 * Either there is a lot of contention on the AIL or we are
488		 * stuck due to operations in progress. "Stuck" in this case
489		 * is defined as >90% of the items we tried to push were stuck.
490		 *
491		 * Backoff a bit more to allow some I/O to complete before
492		 * restarting from the start of the AIL. This prevents us from
493		 * spinning on the same items, and if they are pinned will all
494		 * the restart to issue a log force to unpin the stuck items.
495		 */
496		tout = 20;
497		ailp->ail_last_pushed_lsn = 0;
498	} else {
499		/*
500		 * Assume we have more work to do in a short while.
501		 */
502		tout = 10;
503	}
504
505	return tout;
506}
507
508static int
509xfsaild(
510	void		*data)
511{
512	struct xfs_ail	*ailp = data;
513	long		tout = 0;	/* milliseconds */
514
515	current->flags |= PF_MEMALLOC;
516	set_freezable();
517
518	while (1) {
519		if (tout && tout <= 20)
520			set_current_state(TASK_KILLABLE);
521		else
522			set_current_state(TASK_INTERRUPTIBLE);
523
524		/*
525		 * Check kthread_should_stop() after we set the task state
526		 * to guarantee that we either see the stop bit and exit or
527		 * the task state is reset to runnable such that it's not
528		 * scheduled out indefinitely and detects the stop bit at
529		 * next iteration.
530		 *
531		 * A memory barrier is included in above task state set to
532		 * serialize again kthread_stop().
533		 */
534		if (kthread_should_stop()) {
535			__set_current_state(TASK_RUNNING);
536			break;
537		}
538
539		spin_lock(&ailp->ail_lock);
540
541		/*
542		 * Idle if the AIL is empty and we are not racing with a target
543		 * update. We check the AIL after we set the task to a sleep
544		 * state to guarantee that we either catch an ail_target update
545		 * or that a wake_up resets the state to TASK_RUNNING.
546		 * Otherwise, we run the risk of sleeping indefinitely.
547		 *
548		 * The barrier matches the ail_target update in xfs_ail_push().
549		 */
550		smp_rmb();
551		if (!xfs_ail_min(ailp) &&
552		    ailp->ail_target == ailp->ail_target_prev) {
553			spin_unlock(&ailp->ail_lock);
554			freezable_schedule();
555			tout = 0;
556			continue;
557		}
558		spin_unlock(&ailp->ail_lock);
559
560		if (tout)
561			freezable_schedule_timeout(msecs_to_jiffies(tout));
562
563		__set_current_state(TASK_RUNNING);
564
565		try_to_freeze();
566
567		tout = xfsaild_push(ailp);
568	}
569
570	return 0;
571}
572
573/*
574 * This routine is called to move the tail of the AIL forward.  It does this by
575 * trying to flush items in the AIL whose lsns are below the given
576 * threshold_lsn.
577 *
578 * The push is run asynchronously in a workqueue, which means the caller needs
579 * to handle waiting on the async flush for space to become available.
580 * We don't want to interrupt any push that is in progress, hence we only queue
581 * work if we set the pushing bit approriately.
582 *
583 * We do this unlocked - we only need to know whether there is anything in the
584 * AIL at the time we are called. We don't need to access the contents of
585 * any of the objects, so the lock is not needed.
586 */
587void
588xfs_ail_push(
589	struct xfs_ail	*ailp,
590	xfs_lsn_t	threshold_lsn)
591{
592	xfs_log_item_t	*lip;
593
594	lip = xfs_ail_min(ailp);
595	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
596	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
597		return;
598
599	/*
600	 * Ensure that the new target is noticed in push code before it clears
601	 * the XFS_AIL_PUSHING_BIT.
602	 */
603	smp_wmb();
604	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
605	smp_wmb();
606
607	wake_up_process(ailp->ail_task);
608}
609
610/*
611 * Push out all items in the AIL immediately
612 */
613void
614xfs_ail_push_all(
615	struct xfs_ail  *ailp)
616{
617	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
618
619	if (threshold_lsn)
620		xfs_ail_push(ailp, threshold_lsn);
621}
622
623/*
624 * Push out all items in the AIL immediately and wait until the AIL is empty.
625 */
626void
627xfs_ail_push_all_sync(
628	struct xfs_ail  *ailp)
629{
630	struct xfs_log_item	*lip;
631	DEFINE_WAIT(wait);
632
633	spin_lock(&ailp->ail_lock);
634	while ((lip = xfs_ail_max(ailp)) != NULL) {
635		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
636		ailp->ail_target = lip->li_lsn;
637		wake_up_process(ailp->ail_task);
638		spin_unlock(&ailp->ail_lock);
639		schedule();
640		spin_lock(&ailp->ail_lock);
641	}
642	spin_unlock(&ailp->ail_lock);
643
644	finish_wait(&ailp->ail_empty, &wait);
645}
646
647/*
648 * xfs_trans_ail_update - bulk AIL insertion operation.
649 *
650 * @xfs_trans_ail_update takes an array of log items that all need to be
651 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
652 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
653 * it to the AIL. If we move the first item in the AIL, update the log tail to
654 * match the new minimum LSN in the AIL.
655 *
656 * This function takes the AIL lock once to execute the update operations on
657 * all the items in the array, and as such should not be called with the AIL
658 * lock held. As a result, once we have the AIL lock, we need to check each log
659 * item LSN to confirm it needs to be moved forward in the AIL.
660 *
661 * To optimise the insert operation, we delete all the items from the AIL in
662 * the first pass, moving them into a temporary list, then splice the temporary
663 * list into the correct position in the AIL. This avoids needing to do an
664 * insert operation on every item.
665 *
666 * This function must be called with the AIL lock held.  The lock is dropped
667 * before returning.
668 */
669void
670xfs_trans_ail_update_bulk(
671	struct xfs_ail		*ailp,
672	struct xfs_ail_cursor	*cur,
673	struct xfs_log_item	**log_items,
674	int			nr_items,
675	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
676{
677	xfs_log_item_t		*mlip;
678	int			mlip_changed = 0;
679	int			i;
680	LIST_HEAD(tmp);
681
682	ASSERT(nr_items > 0);		/* Not required, but true. */
683	mlip = xfs_ail_min(ailp);
684
685	for (i = 0; i < nr_items; i++) {
686		struct xfs_log_item *lip = log_items[i];
687		if (lip->li_flags & XFS_LI_IN_AIL) {
688			/* check if we really need to move the item */
689			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
690				continue;
691
692			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
693			xfs_ail_delete(ailp, lip);
694			if (mlip == lip)
695				mlip_changed = 1;
696		} else {
697			lip->li_flags |= XFS_LI_IN_AIL;
698			trace_xfs_ail_insert(lip, 0, lsn);
699		}
700		lip->li_lsn = lsn;
701		list_add(&lip->li_ail, &tmp);
702	}
703
704	if (!list_empty(&tmp))
705		xfs_ail_splice(ailp, cur, &tmp, lsn);
706
707	if (mlip_changed) {
708		if (!XFS_FORCED_SHUTDOWN(ailp->ail_mount))
709			xlog_assign_tail_lsn_locked(ailp->ail_mount);
710		spin_unlock(&ailp->ail_lock);
711
712		xfs_log_space_wake(ailp->ail_mount);
713	} else {
714		spin_unlock(&ailp->ail_lock);
715	}
716}
717
718bool
719xfs_ail_delete_one(
720	struct xfs_ail		*ailp,
721	struct xfs_log_item	*lip)
722{
723	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
724
725	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
726	xfs_ail_delete(ailp, lip);
727	xfs_clear_li_failed(lip);
728	lip->li_flags &= ~XFS_LI_IN_AIL;
729	lip->li_lsn = 0;
730
731	return mlip == lip;
732}
733
734/**
735 * Remove a log items from the AIL
736 *
737 * @xfs_trans_ail_delete_bulk takes an array of log items that all need to
738 * removed from the AIL. The caller is already holding the AIL lock, and done
739 * all the checks necessary to ensure the items passed in via @log_items are
740 * ready for deletion. This includes checking that the items are in the AIL.
741 *
742 * For each log item to be removed, unlink it  from the AIL, clear the IN_AIL
743 * flag from the item and reset the item's lsn to 0. If we remove the first
744 * item in the AIL, update the log tail to match the new minimum LSN in the
745 * AIL.
746 *
747 * This function will not drop the AIL lock until all items are removed from
748 * the AIL to minimise the amount of lock traffic on the AIL. This does not
749 * greatly increase the AIL hold time, but does significantly reduce the amount
750 * of traffic on the lock, especially during IO completion.
751 *
752 * This function must be called with the AIL lock held.  The lock is dropped
753 * before returning.
754 */
755void
756xfs_trans_ail_delete(
757	struct xfs_ail		*ailp,
758	struct xfs_log_item	*lip,
759	int			shutdown_type) __releases(ailp->ail_lock)
 
760{
761	struct xfs_mount	*mp = ailp->ail_mount;
762	bool			mlip_changed;
 
 
 
763
764	if (!(lip->li_flags & XFS_LI_IN_AIL)) {
765		spin_unlock(&ailp->ail_lock);
766		if (!XFS_FORCED_SHUTDOWN(mp)) {
767			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
768	"%s: attempting to delete a log item that is not in the AIL",
769					__func__);
770			xfs_force_shutdown(mp, shutdown_type);
 
 
 
 
 
 
771		}
772		return;
 
 
 
 
 
 
773	}
774
775	mlip_changed = xfs_ail_delete_one(ailp, lip);
776	if (mlip_changed) {
777		if (!XFS_FORCED_SHUTDOWN(mp))
778			xlog_assign_tail_lsn_locked(mp);
779		if (list_empty(&ailp->ail_head))
780			wake_up_all(&ailp->ail_empty);
 
 
 
 
 
781	}
782
783	spin_unlock(&ailp->ail_lock);
784	if (mlip_changed)
785		xfs_log_space_wake(ailp->ail_mount);
786}
787
788int
789xfs_trans_ail_init(
790	xfs_mount_t	*mp)
791{
792	struct xfs_ail	*ailp;
793
794	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
795	if (!ailp)
796		return -ENOMEM;
797
798	ailp->ail_mount = mp;
799	INIT_LIST_HEAD(&ailp->ail_head);
800	INIT_LIST_HEAD(&ailp->ail_cursors);
801	spin_lock_init(&ailp->ail_lock);
802	INIT_LIST_HEAD(&ailp->ail_buf_list);
803	init_waitqueue_head(&ailp->ail_empty);
804
805	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
806			ailp->ail_mount->m_fsname);
807	if (IS_ERR(ailp->ail_task))
808		goto out_free_ailp;
809
810	mp->m_ail = ailp;
811	return 0;
812
813out_free_ailp:
814	kmem_free(ailp);
815	return -ENOMEM;
816}
817
818void
819xfs_trans_ail_destroy(
820	xfs_mount_t	*mp)
821{
822	struct xfs_ail	*ailp = mp->m_ail;
823
824	kthread_stop(ailp->ail_task);
825	kmem_free(ailp);
826}