Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/pr.h>
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
  52
  53static void do_deferred_remove(struct work_struct *w);
  54
  55static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  56
  57static struct workqueue_struct *deferred_remove_workqueue;
  58
 
 
 
 
 
 
 
 
 
  59/*
  60 * One of these is allocated per bio.
  61 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62struct dm_io {
 
  63	struct mapped_device *md;
  64	int error;
  65	atomic_t io_count;
  66	struct bio *bio;
  67	unsigned long start_time;
  68	spinlock_t endio_lock;
  69	struct dm_stats_aux stats_aux;
 
 
  70};
  71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72#define MINOR_ALLOCED ((void *)-1)
  73
  74/*
  75 * Bits for the md->flags field.
  76 */
  77#define DMF_BLOCK_IO_FOR_SUSPEND 0
  78#define DMF_SUSPENDED 1
  79#define DMF_FROZEN 2
  80#define DMF_FREEING 3
  81#define DMF_DELETING 4
  82#define DMF_NOFLUSH_SUSPENDING 5
  83#define DMF_DEFERRED_REMOVE 6
  84#define DMF_SUSPENDED_INTERNALLY 7
  85
  86#define DM_NUMA_NODE NUMA_NO_NODE
  87static int dm_numa_node = DM_NUMA_NODE;
  88
  89/*
  90 * For mempools pre-allocation at the table loading time.
  91 */
  92struct dm_md_mempools {
  93	mempool_t *io_pool;
  94	mempool_t *rq_pool;
  95	struct bio_set *bs;
 
  96};
  97
  98struct table_device {
  99	struct list_head list;
 100	atomic_t count;
 101	struct dm_dev dm_dev;
 102};
 103
 104static struct kmem_cache *_io_cache;
 105static struct kmem_cache *_rq_tio_cache;
 106static struct kmem_cache *_rq_cache;
 107
 108/*
 109 * Bio-based DM's mempools' reserved IOs set by the user.
 110 */
 111#define RESERVED_BIO_BASED_IOS		16
 112static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 113
 114static int __dm_get_module_param_int(int *module_param, int min, int max)
 115{
 116	int param = ACCESS_ONCE(*module_param);
 117	int modified_param = 0;
 118	bool modified = true;
 119
 120	if (param < min)
 121		modified_param = min;
 122	else if (param > max)
 123		modified_param = max;
 124	else
 125		modified = false;
 126
 127	if (modified) {
 128		(void)cmpxchg(module_param, param, modified_param);
 129		param = modified_param;
 130	}
 131
 132	return param;
 133}
 134
 135unsigned __dm_get_module_param(unsigned *module_param,
 136			       unsigned def, unsigned max)
 137{
 138	unsigned param = ACCESS_ONCE(*module_param);
 139	unsigned modified_param = 0;
 140
 141	if (!param)
 142		modified_param = def;
 143	else if (param > max)
 144		modified_param = max;
 145
 146	if (modified_param) {
 147		(void)cmpxchg(module_param, param, modified_param);
 148		param = modified_param;
 149	}
 150
 151	return param;
 152}
 153
 154unsigned dm_get_reserved_bio_based_ios(void)
 155{
 156	return __dm_get_module_param(&reserved_bio_based_ios,
 157				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 158}
 159EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 160
 161static unsigned dm_get_numa_node(void)
 162{
 163	return __dm_get_module_param_int(&dm_numa_node,
 164					 DM_NUMA_NODE, num_online_nodes() - 1);
 165}
 166
 167static int __init local_init(void)
 168{
 169	int r = -ENOMEM;
 170
 171	/* allocate a slab for the dm_ios */
 172	_io_cache = KMEM_CACHE(dm_io, 0);
 173	if (!_io_cache)
 174		return r;
 175
 176	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 177	if (!_rq_tio_cache)
 178		goto out_free_io_cache;
 179
 180	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 181				      __alignof__(struct request), 0, NULL);
 182	if (!_rq_cache)
 183		goto out_free_rq_tio_cache;
 184
 185	r = dm_uevent_init();
 186	if (r)
 187		goto out_free_rq_cache;
 188
 189	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 190	if (!deferred_remove_workqueue) {
 191		r = -ENOMEM;
 192		goto out_uevent_exit;
 193	}
 194
 195	_major = major;
 196	r = register_blkdev(_major, _name);
 197	if (r < 0)
 198		goto out_free_workqueue;
 199
 200	if (!_major)
 201		_major = r;
 202
 203	return 0;
 204
 205out_free_workqueue:
 206	destroy_workqueue(deferred_remove_workqueue);
 207out_uevent_exit:
 208	dm_uevent_exit();
 209out_free_rq_cache:
 210	kmem_cache_destroy(_rq_cache);
 211out_free_rq_tio_cache:
 212	kmem_cache_destroy(_rq_tio_cache);
 213out_free_io_cache:
 214	kmem_cache_destroy(_io_cache);
 215
 216	return r;
 217}
 218
 219static void local_exit(void)
 220{
 221	flush_scheduled_work();
 222	destroy_workqueue(deferred_remove_workqueue);
 223
 224	kmem_cache_destroy(_rq_cache);
 225	kmem_cache_destroy(_rq_tio_cache);
 226	kmem_cache_destroy(_io_cache);
 227	unregister_blkdev(_major, _name);
 228	dm_uevent_exit();
 229
 230	_major = 0;
 231
 232	DMINFO("cleaned up");
 233}
 234
 235static int (*_inits[])(void) __initdata = {
 236	local_init,
 237	dm_target_init,
 238	dm_linear_init,
 239	dm_stripe_init,
 240	dm_io_init,
 241	dm_kcopyd_init,
 242	dm_interface_init,
 243	dm_statistics_init,
 244};
 245
 246static void (*_exits[])(void) = {
 247	local_exit,
 248	dm_target_exit,
 249	dm_linear_exit,
 250	dm_stripe_exit,
 251	dm_io_exit,
 252	dm_kcopyd_exit,
 253	dm_interface_exit,
 254	dm_statistics_exit,
 255};
 256
 257static int __init dm_init(void)
 258{
 259	const int count = ARRAY_SIZE(_inits);
 260
 261	int r, i;
 262
 263	for (i = 0; i < count; i++) {
 264		r = _inits[i]();
 265		if (r)
 266			goto bad;
 267	}
 268
 269	return 0;
 270
 271      bad:
 272	while (i--)
 273		_exits[i]();
 274
 275	return r;
 276}
 277
 278static void __exit dm_exit(void)
 279{
 280	int i = ARRAY_SIZE(_exits);
 281
 282	while (i--)
 283		_exits[i]();
 284
 285	/*
 286	 * Should be empty by this point.
 287	 */
 288	idr_destroy(&_minor_idr);
 289}
 290
 291/*
 292 * Block device functions
 293 */
 294int dm_deleting_md(struct mapped_device *md)
 295{
 296	return test_bit(DMF_DELETING, &md->flags);
 297}
 298
 299static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 300{
 301	struct mapped_device *md;
 302
 303	spin_lock(&_minor_lock);
 304
 305	md = bdev->bd_disk->private_data;
 306	if (!md)
 307		goto out;
 308
 309	if (test_bit(DMF_FREEING, &md->flags) ||
 310	    dm_deleting_md(md)) {
 311		md = NULL;
 312		goto out;
 313	}
 314
 315	dm_get(md);
 316	atomic_inc(&md->open_count);
 317out:
 318	spin_unlock(&_minor_lock);
 319
 320	return md ? 0 : -ENXIO;
 321}
 322
 323static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 324{
 325	struct mapped_device *md;
 326
 327	spin_lock(&_minor_lock);
 328
 329	md = disk->private_data;
 330	if (WARN_ON(!md))
 331		goto out;
 332
 333	if (atomic_dec_and_test(&md->open_count) &&
 334	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 335		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 336
 337	dm_put(md);
 338out:
 339	spin_unlock(&_minor_lock);
 340}
 341
 342int dm_open_count(struct mapped_device *md)
 343{
 344	return atomic_read(&md->open_count);
 345}
 346
 347/*
 348 * Guarantees nothing is using the device before it's deleted.
 349 */
 350int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 351{
 352	int r = 0;
 353
 354	spin_lock(&_minor_lock);
 355
 356	if (dm_open_count(md)) {
 357		r = -EBUSY;
 358		if (mark_deferred)
 359			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 360	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 361		r = -EEXIST;
 362	else
 363		set_bit(DMF_DELETING, &md->flags);
 364
 365	spin_unlock(&_minor_lock);
 366
 367	return r;
 368}
 369
 370int dm_cancel_deferred_remove(struct mapped_device *md)
 371{
 372	int r = 0;
 373
 374	spin_lock(&_minor_lock);
 375
 376	if (test_bit(DMF_DELETING, &md->flags))
 377		r = -EBUSY;
 378	else
 379		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 380
 381	spin_unlock(&_minor_lock);
 382
 383	return r;
 384}
 385
 386static void do_deferred_remove(struct work_struct *w)
 387{
 388	dm_deferred_remove();
 389}
 390
 391sector_t dm_get_size(struct mapped_device *md)
 392{
 393	return get_capacity(md->disk);
 394}
 395
 396struct request_queue *dm_get_md_queue(struct mapped_device *md)
 397{
 398	return md->queue;
 399}
 400
 401struct dm_stats *dm_get_stats(struct mapped_device *md)
 402{
 403	return &md->stats;
 404}
 405
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 414				  struct block_device **bdev,
 415				  fmode_t *mode)
 416{
 417	struct dm_target *tgt;
 418	struct dm_table *map;
 419	int srcu_idx, r;
 420
 421retry:
 422	r = -ENOTTY;
 423	map = dm_get_live_table(md, &srcu_idx);
 424	if (!map || !dm_table_get_size(map))
 425		goto out;
 426
 427	/* We only support devices that have a single target */
 428	if (dm_table_get_num_targets(map) != 1)
 429		goto out;
 430
 431	tgt = dm_table_get_target(map, 0);
 432	if (!tgt->type->prepare_ioctl)
 433		goto out;
 434
 435	if (dm_suspended_md(md)) {
 436		r = -EAGAIN;
 437		goto out;
 438	}
 439
 440	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 441	if (r < 0)
 442		goto out;
 443
 444	bdgrab(*bdev);
 445	dm_put_live_table(md, srcu_idx);
 446	return r;
 447
 448out:
 449	dm_put_live_table(md, srcu_idx);
 450	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 
 451		msleep(10);
 452		goto retry;
 453	}
 
 454	return r;
 455}
 456
 
 
 
 
 
 
 457static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 458			unsigned int cmd, unsigned long arg)
 459{
 460	struct mapped_device *md = bdev->bd_disk->private_data;
 461	int r;
 462
 463	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 464	if (r < 0)
 465		return r;
 466
 467	if (r > 0) {
 468		/*
 469		 * Target determined this ioctl is being issued against
 470		 * a logical partition of the parent bdev; so extra
 471		 * validation is needed.
 472		 */
 473		r = scsi_verify_blk_ioctl(NULL, cmd);
 474		if (r)
 
 
 
 475			goto out;
 
 476	}
 477
 478	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 479out:
 480	bdput(bdev);
 481	return r;
 482}
 483
 484static struct dm_io *alloc_io(struct mapped_device *md)
 
 
 485{
 486	return mempool_alloc(md->io_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487}
 488
 489static void free_io(struct mapped_device *md, struct dm_io *io)
 490{
 491	mempool_free(io, md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492}
 493
 494static void free_tio(struct dm_target_io *tio)
 495{
 
 
 496	bio_put(&tio->clone);
 497}
 498
 499int md_in_flight(struct mapped_device *md)
 500{
 501	return atomic_read(&md->pending[READ]) +
 502	       atomic_read(&md->pending[WRITE]);
 503}
 504
 505static void start_io_acct(struct dm_io *io)
 506{
 507	struct mapped_device *md = io->md;
 508	struct bio *bio = io->bio;
 509	int cpu;
 510	int rw = bio_data_dir(bio);
 511
 512	io->start_time = jiffies;
 513
 514	cpu = part_stat_lock();
 515	part_round_stats(cpu, &dm_disk(md)->part0);
 516	part_stat_unlock();
 517	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 518		atomic_inc_return(&md->pending[rw]));
 519
 520	if (unlikely(dm_stats_used(&md->stats)))
 521		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 522				    bio->bi_iter.bi_sector, bio_sectors(bio),
 523				    false, 0, &io->stats_aux);
 524}
 525
 526static void end_io_acct(struct dm_io *io)
 527{
 528	struct mapped_device *md = io->md;
 529	struct bio *bio = io->bio;
 530	unsigned long duration = jiffies - io->start_time;
 531	int pending;
 532	int rw = bio_data_dir(bio);
 533
 534	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 535
 536	if (unlikely(dm_stats_used(&md->stats)))
 537		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 538				    bio->bi_iter.bi_sector, bio_sectors(bio),
 539				    true, duration, &io->stats_aux);
 540
 541	/*
 542	 * After this is decremented the bio must not be touched if it is
 543	 * a flush.
 544	 */
 545	pending = atomic_dec_return(&md->pending[rw]);
 546	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 547	pending += atomic_read(&md->pending[rw^0x1]);
 548
 549	/* nudge anyone waiting on suspend queue */
 550	if (!pending)
 551		wake_up(&md->wait);
 552}
 553
 554/*
 555 * Add the bio to the list of deferred io.
 556 */
 557static void queue_io(struct mapped_device *md, struct bio *bio)
 558{
 559	unsigned long flags;
 560
 561	spin_lock_irqsave(&md->deferred_lock, flags);
 562	bio_list_add(&md->deferred, bio);
 563	spin_unlock_irqrestore(&md->deferred_lock, flags);
 564	queue_work(md->wq, &md->work);
 565}
 566
 567/*
 568 * Everyone (including functions in this file), should use this
 569 * function to access the md->map field, and make sure they call
 570 * dm_put_live_table() when finished.
 571 */
 572struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 573{
 574	*srcu_idx = srcu_read_lock(&md->io_barrier);
 575
 576	return srcu_dereference(md->map, &md->io_barrier);
 577}
 578
 579void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 580{
 581	srcu_read_unlock(&md->io_barrier, srcu_idx);
 582}
 583
 584void dm_sync_table(struct mapped_device *md)
 585{
 586	synchronize_srcu(&md->io_barrier);
 587	synchronize_rcu_expedited();
 588}
 589
 590/*
 591 * A fast alternative to dm_get_live_table/dm_put_live_table.
 592 * The caller must not block between these two functions.
 593 */
 594static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 595{
 596	rcu_read_lock();
 597	return rcu_dereference(md->map);
 598}
 599
 600static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 601{
 602	rcu_read_unlock();
 603}
 604
 
 
 605/*
 606 * Open a table device so we can use it as a map destination.
 607 */
 608static int open_table_device(struct table_device *td, dev_t dev,
 609			     struct mapped_device *md)
 610{
 611	static char *_claim_ptr = "I belong to device-mapper";
 612	struct block_device *bdev;
 613
 614	int r;
 615
 616	BUG_ON(td->dm_dev.bdev);
 617
 618	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 619	if (IS_ERR(bdev))
 620		return PTR_ERR(bdev);
 621
 622	r = bd_link_disk_holder(bdev, dm_disk(md));
 623	if (r) {
 624		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 625		return r;
 626	}
 627
 628	td->dm_dev.bdev = bdev;
 
 629	return 0;
 630}
 631
 632/*
 633 * Close a table device that we've been using.
 634 */
 635static void close_table_device(struct table_device *td, struct mapped_device *md)
 636{
 637	if (!td->dm_dev.bdev)
 638		return;
 639
 640	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 641	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 
 642	td->dm_dev.bdev = NULL;
 
 643}
 644
 645static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 646					      fmode_t mode) {
 647	struct table_device *td;
 648
 649	list_for_each_entry(td, l, list)
 650		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 651			return td;
 652
 653	return NULL;
 654}
 655
 656int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 657			struct dm_dev **result) {
 658	int r;
 659	struct table_device *td;
 660
 661	mutex_lock(&md->table_devices_lock);
 662	td = find_table_device(&md->table_devices, dev, mode);
 663	if (!td) {
 664		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 665		if (!td) {
 666			mutex_unlock(&md->table_devices_lock);
 667			return -ENOMEM;
 668		}
 669
 670		td->dm_dev.mode = mode;
 671		td->dm_dev.bdev = NULL;
 672
 673		if ((r = open_table_device(td, dev, md))) {
 674			mutex_unlock(&md->table_devices_lock);
 675			kfree(td);
 676			return r;
 677		}
 678
 679		format_dev_t(td->dm_dev.name, dev);
 680
 681		atomic_set(&td->count, 0);
 682		list_add(&td->list, &md->table_devices);
 
 
 683	}
 684	atomic_inc(&td->count);
 685	mutex_unlock(&md->table_devices_lock);
 686
 687	*result = &td->dm_dev;
 688	return 0;
 689}
 690EXPORT_SYMBOL_GPL(dm_get_table_device);
 691
 692void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 693{
 694	struct table_device *td = container_of(d, struct table_device, dm_dev);
 695
 696	mutex_lock(&md->table_devices_lock);
 697	if (atomic_dec_and_test(&td->count)) {
 698		close_table_device(td, md);
 699		list_del(&td->list);
 700		kfree(td);
 701	}
 702	mutex_unlock(&md->table_devices_lock);
 703}
 704EXPORT_SYMBOL(dm_put_table_device);
 705
 706static void free_table_devices(struct list_head *devices)
 707{
 708	struct list_head *tmp, *next;
 709
 710	list_for_each_safe(tmp, next, devices) {
 711		struct table_device *td = list_entry(tmp, struct table_device, list);
 712
 713		DMWARN("dm_destroy: %s still exists with %d references",
 714		       td->dm_dev.name, atomic_read(&td->count));
 715		kfree(td);
 716	}
 717}
 718
 719/*
 720 * Get the geometry associated with a dm device
 721 */
 722int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 723{
 724	*geo = md->geometry;
 725
 726	return 0;
 727}
 728
 729/*
 730 * Set the geometry of a device.
 731 */
 732int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 733{
 734	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 735
 736	if (geo->start > sz) {
 737		DMWARN("Start sector is beyond the geometry limits.");
 738		return -EINVAL;
 739	}
 740
 741	md->geometry = *geo;
 742
 743	return 0;
 744}
 745
 746/*-----------------------------------------------------------------
 747 * CRUD START:
 748 *   A more elegant soln is in the works that uses the queue
 749 *   merge fn, unfortunately there are a couple of changes to
 750 *   the block layer that I want to make for this.  So in the
 751 *   interests of getting something for people to use I give
 752 *   you this clearly demarcated crap.
 753 *---------------------------------------------------------------*/
 754
 755static int __noflush_suspending(struct mapped_device *md)
 756{
 757	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 758}
 759
 760/*
 761 * Decrements the number of outstanding ios that a bio has been
 762 * cloned into, completing the original io if necc.
 763 */
 764static void dec_pending(struct dm_io *io, int error)
 765{
 766	unsigned long flags;
 767	int io_error;
 768	struct bio *bio;
 769	struct mapped_device *md = io->md;
 770
 771	/* Push-back supersedes any I/O errors */
 772	if (unlikely(error)) {
 773		spin_lock_irqsave(&io->endio_lock, flags);
 774		if (!(io->error > 0 && __noflush_suspending(md)))
 775			io->error = error;
 776		spin_unlock_irqrestore(&io->endio_lock, flags);
 777	}
 778
 779	if (atomic_dec_and_test(&io->io_count)) {
 780		if (io->error == DM_ENDIO_REQUEUE) {
 781			/*
 782			 * Target requested pushing back the I/O.
 783			 */
 784			spin_lock_irqsave(&md->deferred_lock, flags);
 785			if (__noflush_suspending(md))
 786				bio_list_add_head(&md->deferred, io->bio);
 
 787			else
 788				/* noflush suspend was interrupted. */
 789				io->error = -EIO;
 790			spin_unlock_irqrestore(&md->deferred_lock, flags);
 791		}
 792
 793		io_error = io->error;
 794		bio = io->bio;
 795		end_io_acct(io);
 796		free_io(md, io);
 797
 798		if (io_error == DM_ENDIO_REQUEUE)
 799			return;
 800
 801		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 802			/*
 803			 * Preflush done for flush with data, reissue
 804			 * without REQ_PREFLUSH.
 805			 */
 806			bio->bi_opf &= ~REQ_PREFLUSH;
 807			queue_io(md, bio);
 808		} else {
 809			/* done with normal IO or empty flush */
 810			trace_block_bio_complete(md->queue, bio, io_error);
 811			bio->bi_error = io_error;
 812			bio_endio(bio);
 813		}
 814	}
 815}
 816
 817void disable_write_same(struct mapped_device *md)
 818{
 819	struct queue_limits *limits = dm_get_queue_limits(md);
 820
 821	/* device doesn't really support WRITE SAME, disable it */
 822	limits->max_write_same_sectors = 0;
 823}
 824
 
 
 
 
 
 
 
 
 825static void clone_endio(struct bio *bio)
 826{
 827	int error = bio->bi_error;
 828	int r = error;
 829	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 830	struct dm_io *io = tio->io;
 831	struct mapped_device *md = tio->io->md;
 832	dm_endio_fn endio = tio->ti->type->end_io;
 833
 
 
 
 
 
 
 
 
 
 834	if (endio) {
 835		r = endio(tio->ti, bio, error);
 836		if (r < 0 || r == DM_ENDIO_REQUEUE)
 837			/*
 838			 * error and requeue request are handled
 839			 * in dec_pending().
 840			 */
 841			error = r;
 842		else if (r == DM_ENDIO_INCOMPLETE)
 843			/* The target will handle the io */
 844			return;
 845		else if (r) {
 846			DMWARN("unimplemented target endio return value: %d", r);
 847			BUG();
 848		}
 849	}
 850
 851	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
 852		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
 853		disable_write_same(md);
 854
 855	free_tio(tio);
 856	dec_pending(io, error);
 857}
 858
 859/*
 860 * Return maximum size of I/O possible at the supplied sector up to the current
 861 * target boundary.
 862 */
 863static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 864{
 865	sector_t target_offset = dm_target_offset(ti, sector);
 866
 867	return ti->len - target_offset;
 868}
 869
 870static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 871{
 872	sector_t len = max_io_len_target_boundary(sector, ti);
 873	sector_t offset, max_len;
 874
 875	/*
 876	 * Does the target need to split even further?
 877	 */
 878	if (ti->max_io_len) {
 879		offset = dm_target_offset(ti, sector);
 880		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 881			max_len = sector_div(offset, ti->max_io_len);
 882		else
 883			max_len = offset & (ti->max_io_len - 1);
 884		max_len = ti->max_io_len - max_len;
 885
 886		if (len > max_len)
 887			len = max_len;
 888	}
 889
 890	return len;
 891}
 892
 893int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 894{
 895	if (len > UINT_MAX) {
 896		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 897		      (unsigned long long)len, UINT_MAX);
 898		ti->error = "Maximum size of target IO is too large";
 899		return -EINVAL;
 900	}
 901
 902	ti->max_io_len = (uint32_t) len;
 
 
 
 
 
 
 
 
 903
 904	return 0;
 905}
 906EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 907
 908static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
 909				 void **kaddr, pfn_t *pfn, long size)
 
 910{
 911	struct mapped_device *md = bdev->bd_disk->private_data;
 912	struct dm_table *map;
 913	struct dm_target *ti;
 914	int srcu_idx;
 915	long len, ret = -EIO;
 916
 917	map = dm_get_live_table(md, &srcu_idx);
 918	if (!map)
 919		goto out;
 920
 921	ti = dm_table_find_target(map, sector);
 922	if (!dm_target_is_valid(ti))
 923		goto out;
 924
 925	len = max_io_len(sector, ti) << SECTOR_SHIFT;
 926	size = min(len, size);
 927
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	if (ti->type->direct_access)
 929		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
 930out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931	dm_put_live_table(md, srcu_idx);
 932	return min(ret, size);
 
 933}
 934
 935/*
 936 * A target may call dm_accept_partial_bio only from the map routine.  It is
 937 * allowed for all bio types except REQ_PREFLUSH.
 938 *
 939 * dm_accept_partial_bio informs the dm that the target only wants to process
 940 * additional n_sectors sectors of the bio and the rest of the data should be
 941 * sent in a next bio.
 942 *
 943 * A diagram that explains the arithmetics:
 944 * +--------------------+---------------+-------+
 945 * |         1          |       2       |   3   |
 946 * +--------------------+---------------+-------+
 947 *
 948 * <-------------- *tio->len_ptr --------------->
 949 *                      <------- bi_size ------->
 950 *                      <-- n_sectors -->
 951 *
 952 * Region 1 was already iterated over with bio_advance or similar function.
 953 *	(it may be empty if the target doesn't use bio_advance)
 954 * Region 2 is the remaining bio size that the target wants to process.
 955 *	(it may be empty if region 1 is non-empty, although there is no reason
 956 *	 to make it empty)
 957 * The target requires that region 3 is to be sent in the next bio.
 958 *
 959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
 960 * the partially processed part (the sum of regions 1+2) must be the same for all
 961 * copies of the bio.
 962 */
 963void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
 964{
 965	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 966	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
 967	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
 968	BUG_ON(bi_size > *tio->len_ptr);
 969	BUG_ON(n_sectors > bi_size);
 970	*tio->len_ptr -= bi_size - n_sectors;
 971	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 972}
 973EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
 974
 975/*
 976 * Flush current->bio_list when the target map method blocks.
 977 * This fixes deadlocks in snapshot and possibly in other targets.
 
 
 
 
 978 */
 979struct dm_offload {
 980	struct blk_plug plug;
 981	struct blk_plug_cb cb;
 982};
 983
 984static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
 985{
 986	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
 987	struct bio_list list;
 988	struct bio *bio;
 989	int i;
 990
 991	INIT_LIST_HEAD(&o->cb.list);
 
 
 
 
 992
 993	if (unlikely(!current->bio_list))
 994		return;
 995
 996	for (i = 0; i < 2; i++) {
 997		list = current->bio_list[i];
 998		bio_list_init(&current->bio_list[i]);
 999
1000		while ((bio = bio_list_pop(&list))) {
1001			struct bio_set *bs = bio->bi_pool;
1002			if (unlikely(!bs) || bs == fs_bio_set) {
1003				bio_list_add(&current->bio_list[i], bio);
1004				continue;
1005			}
1006
1007			spin_lock(&bs->rescue_lock);
1008			bio_list_add(&bs->rescue_list, bio);
1009			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1010			spin_unlock(&bs->rescue_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011		}
 
 
 
 
 
 
1012	}
1013}
1014
1015static void dm_offload_start(struct dm_offload *o)
1016{
1017	blk_start_plug(&o->plug);
1018	o->cb.callback = flush_current_bio_list;
1019	list_add(&o->cb.list, &current->plug->cb_list);
1020}
1021
1022static void dm_offload_end(struct dm_offload *o)
1023{
1024	list_del(&o->cb.list);
1025	blk_finish_plug(&o->plug);
 
1026}
 
1027
1028static void __map_bio(struct dm_target_io *tio)
1029{
1030	int r;
1031	sector_t sector;
1032	struct dm_offload o;
1033	struct bio *clone = &tio->clone;
 
 
1034	struct dm_target *ti = tio->ti;
 
1035
1036	clone->bi_end_io = clone_endio;
1037
1038	/*
1039	 * Map the clone.  If r == 0 we don't need to do
1040	 * anything, the target has assumed ownership of
1041	 * this io.
1042	 */
1043	atomic_inc(&tio->io->io_count);
1044	sector = clone->bi_iter.bi_sector;
1045
1046	dm_offload_start(&o);
1047	r = ti->type->map(ti, clone);
1048	dm_offload_end(&o);
1049
1050	if (r == DM_MAPIO_REMAPPED) {
 
1051		/* the bio has been remapped so dispatch it */
1052
1053		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1054				      tio->io->bio->bi_bdev->bd_dev, sector);
1055
1056		generic_make_request(clone);
1057	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1058		/* error the io and bail out, or requeue it if needed */
1059		dec_pending(tio->io, r);
1060		free_tio(tio);
1061	} else if (r != DM_MAPIO_SUBMITTED) {
 
 
 
 
 
 
1062		DMWARN("unimplemented target map return value: %d", r);
1063		BUG();
1064	}
1065}
1066
1067struct clone_info {
1068	struct mapped_device *md;
1069	struct dm_table *map;
1070	struct bio *bio;
1071	struct dm_io *io;
1072	sector_t sector;
1073	unsigned sector_count;
1074};
1075
1076static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077{
1078	bio->bi_iter.bi_sector = sector;
1079	bio->bi_iter.bi_size = to_bytes(len);
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1086		     sector_t sector, unsigned len)
1087{
1088	struct bio *clone = &tio->clone;
1089
1090	__bio_clone_fast(clone, bio);
1091
1092	if (bio_integrity(bio)) {
1093		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
1094		if (r < 0)
1095			return r;
1096	}
1097
1098	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
 
1099	clone->bi_iter.bi_size = to_bytes(len);
1100
1101	if (bio_integrity(bio))
1102		bio_integrity_trim(clone, 0, len);
1103
1104	return 0;
1105}
1106
1107static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108				      struct dm_target *ti,
1109				      unsigned target_bio_nr)
1110{
1111	struct dm_target_io *tio;
1112	struct bio *clone;
1113
1114	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1115	tio = container_of(clone, struct dm_target_io, clone);
1116
1117	tio->io = ci->io;
1118	tio->ti = ti;
1119	tio->target_bio_nr = target_bio_nr;
 
 
1120
1121	return tio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122}
1123
1124static void __clone_and_map_simple_bio(struct clone_info *ci,
1125				       struct dm_target *ti,
1126				       unsigned target_bio_nr, unsigned *len)
1127{
1128	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1129	struct bio *clone = &tio->clone;
1130
1131	tio->len_ptr = len;
1132
1133	__bio_clone_fast(clone, ci->bio);
1134	if (len)
1135		bio_setup_sector(clone, ci->sector, *len);
1136
1137	__map_bio(tio);
1138}
1139
1140static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1141				  unsigned num_bios, unsigned *len)
1142{
1143	unsigned target_bio_nr;
 
 
 
 
1144
1145	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1146		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
 
 
1147}
1148
1149static int __send_empty_flush(struct clone_info *ci)
1150{
1151	unsigned target_nr = 0;
1152	struct dm_target *ti;
1153
1154	BUG_ON(bio_has_data(ci->bio));
1155	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1156		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1157
1158	return 0;
1159}
1160
1161static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1162				     sector_t sector, unsigned *len)
1163{
1164	struct bio *bio = ci->bio;
1165	struct dm_target_io *tio;
1166	unsigned target_bio_nr;
1167	unsigned num_target_bios = 1;
1168	int r = 0;
1169
1170	/*
1171	 * Does the target want to receive duplicate copies of the bio?
1172	 */
1173	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1174		num_target_bios = ti->num_write_bios(ti, bio);
1175
1176	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1177		tio = alloc_tio(ci, ti, target_bio_nr);
1178		tio->len_ptr = len;
1179		r = clone_bio(tio, bio, sector, *len);
1180		if (r < 0) {
1181			free_tio(tio);
1182			break;
1183		}
1184		__map_bio(tio);
1185	}
 
1186
1187	return r;
1188}
1189
1190typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1191
1192static unsigned get_num_discard_bios(struct dm_target *ti)
1193{
1194	return ti->num_discard_bios;
1195}
1196
 
 
 
 
 
1197static unsigned get_num_write_same_bios(struct dm_target *ti)
1198{
1199	return ti->num_write_same_bios;
1200}
1201
 
 
 
 
 
1202typedef bool (*is_split_required_fn)(struct dm_target *ti);
1203
1204static bool is_split_required_for_discard(struct dm_target *ti)
1205{
1206	return ti->split_discard_bios;
1207}
1208
1209static int __send_changing_extent_only(struct clone_info *ci,
1210				       get_num_bios_fn get_num_bios,
1211				       is_split_required_fn is_split_required)
1212{
1213	struct dm_target *ti;
1214	unsigned len;
1215	unsigned num_bios;
1216
1217	do {
1218		ti = dm_table_find_target(ci->map, ci->sector);
1219		if (!dm_target_is_valid(ti))
1220			return -EIO;
1221
1222		/*
1223		 * Even though the device advertised support for this type of
1224		 * request, that does not mean every target supports it, and
1225		 * reconfiguration might also have changed that since the
1226		 * check was performed.
1227		 */
1228		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1229		if (!num_bios)
1230			return -EOPNOTSUPP;
1231
1232		if (is_split_required && !is_split_required(ti))
1233			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1234		else
1235			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1236
1237		__send_duplicate_bios(ci, ti, num_bios, &len);
1238
1239		ci->sector += len;
1240	} while (ci->sector_count -= len);
1241
1242	return 0;
1243}
1244
1245static int __send_discard(struct clone_info *ci)
1246{
1247	return __send_changing_extent_only(ci, get_num_discard_bios,
1248					   is_split_required_for_discard);
1249}
1250
1251static int __send_write_same(struct clone_info *ci)
 
 
 
 
 
 
 
 
 
 
1252{
1253	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254}
1255
1256/*
1257 * Select the correct strategy for processing a non-flush bio.
1258 */
1259static int __split_and_process_non_flush(struct clone_info *ci)
1260{
1261	struct bio *bio = ci->bio;
1262	struct dm_target *ti;
1263	unsigned len;
1264	int r;
1265
1266	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1267		return __send_discard(ci);
1268	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1269		return __send_write_same(ci);
1270
1271	ti = dm_table_find_target(ci->map, ci->sector);
1272	if (!dm_target_is_valid(ti))
1273		return -EIO;
1274
1275	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
 
 
 
 
1276
1277	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1278	if (r < 0)
1279		return r;
1280
1281	ci->sector += len;
1282	ci->sector_count -= len;
1283
1284	return 0;
1285}
1286
 
 
 
 
 
 
 
 
1287/*
1288 * Entry point to split a bio into clones and submit them to the targets.
1289 */
1290static void __split_and_process_bio(struct mapped_device *md,
1291				    struct dm_table *map, struct bio *bio)
1292{
1293	struct clone_info ci;
 
1294	int error = 0;
1295
1296	if (unlikely(!map)) {
1297		bio_io_error(bio);
1298		return;
1299	}
1300
1301	ci.map = map;
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_iter.bi_sector;
1310
1311	start_io_acct(ci.io);
1312
1313	if (bio->bi_opf & REQ_PREFLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __send_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
 
 
 
 
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __split_and_process_non_flush(&ci);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
 
1327}
1328/*-----------------------------------------------------------------
1329 * CRUD END
1330 *---------------------------------------------------------------*/
1331
1332/*
1333 * The request function that just remaps the bio built up by
1334 * dm_merge_bvec.
1335 */
1336static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337{
1338	int rw = bio_data_dir(bio);
1339	struct mapped_device *md = q->queuedata;
 
1340	int srcu_idx;
1341	struct dm_table *map;
1342
1343	map = dm_get_live_table(md, &srcu_idx);
1344
1345	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
1346
1347	/* if we're suspended, we have to queue this io for later */
1348	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1349		dm_put_live_table(md, srcu_idx);
1350
1351		if (!(bio->bi_opf & REQ_RAHEAD))
1352			queue_io(md, bio);
1353		else
1354			bio_io_error(bio);
1355		return BLK_QC_T_NONE;
1356	}
1357
1358	__split_and_process_bio(md, map, bio);
 
1359	dm_put_live_table(md, srcu_idx);
1360	return BLK_QC_T_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361}
1362
1363static int dm_any_congested(void *congested_data, int bdi_bits)
1364{
1365	int r = bdi_bits;
1366	struct mapped_device *md = congested_data;
1367	struct dm_table *map;
1368
1369	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1370		if (dm_request_based(md)) {
1371			/*
1372			 * With request-based DM we only need to check the
1373			 * top-level queue for congestion.
1374			 */
1375			r = md->queue->backing_dev_info.wb.state & bdi_bits;
1376		} else {
1377			map = dm_get_live_table_fast(md);
1378			if (map)
1379				r = dm_table_any_congested(map, bdi_bits);
1380			dm_put_live_table_fast(md);
1381		}
1382	}
1383
1384	return r;
1385}
1386
1387/*-----------------------------------------------------------------
1388 * An IDR is used to keep track of allocated minor numbers.
1389 *---------------------------------------------------------------*/
1390static void free_minor(int minor)
1391{
1392	spin_lock(&_minor_lock);
1393	idr_remove(&_minor_idr, minor);
1394	spin_unlock(&_minor_lock);
1395}
1396
1397/*
1398 * See if the device with a specific minor # is free.
1399 */
1400static int specific_minor(int minor)
1401{
1402	int r;
1403
1404	if (minor >= (1 << MINORBITS))
1405		return -EINVAL;
1406
1407	idr_preload(GFP_KERNEL);
1408	spin_lock(&_minor_lock);
1409
1410	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1411
1412	spin_unlock(&_minor_lock);
1413	idr_preload_end();
1414	if (r < 0)
1415		return r == -ENOSPC ? -EBUSY : r;
1416	return 0;
1417}
1418
1419static int next_free_minor(int *minor)
1420{
1421	int r;
1422
1423	idr_preload(GFP_KERNEL);
1424	spin_lock(&_minor_lock);
1425
1426	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1427
1428	spin_unlock(&_minor_lock);
1429	idr_preload_end();
1430	if (r < 0)
1431		return r;
1432	*minor = r;
1433	return 0;
1434}
1435
1436static const struct block_device_operations dm_blk_dops;
 
1437
1438static void dm_wq_work(struct work_struct *work);
1439
1440void dm_init_md_queue(struct mapped_device *md)
1441{
1442	/*
1443	 * Request-based dm devices cannot be stacked on top of bio-based dm
1444	 * devices.  The type of this dm device may not have been decided yet.
1445	 * The type is decided at the first table loading time.
1446	 * To prevent problematic device stacking, clear the queue flag
1447	 * for request stacking support until then.
1448	 *
1449	 * This queue is new, so no concurrency on the queue_flags.
1450	 */
1451	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1452
1453	/*
1454	 * Initialize data that will only be used by a non-blk-mq DM queue
1455	 * - must do so here (in alloc_dev callchain) before queue is used
1456	 */
1457	md->queue->queuedata = md;
1458	md->queue->backing_dev_info.congested_data = md;
1459}
1460
1461void dm_init_normal_md_queue(struct mapped_device *md)
1462{
1463	md->use_blk_mq = false;
1464	dm_init_md_queue(md);
1465
1466	/*
1467	 * Initialize aspects of queue that aren't relevant for blk-mq
1468	 */
1469	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1470	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1471}
1472
1473static void cleanup_mapped_device(struct mapped_device *md)
1474{
1475	if (md->wq)
1476		destroy_workqueue(md->wq);
1477	if (md->kworker_task)
1478		kthread_stop(md->kworker_task);
1479	mempool_destroy(md->io_pool);
1480	mempool_destroy(md->rq_pool);
1481	if (md->bs)
1482		bioset_free(md->bs);
 
 
 
 
 
 
 
 
1483
1484	if (md->disk) {
1485		spin_lock(&_minor_lock);
1486		md->disk->private_data = NULL;
1487		spin_unlock(&_minor_lock);
1488		del_gendisk(md->disk);
1489		put_disk(md->disk);
1490	}
1491
1492	if (md->queue)
1493		blk_cleanup_queue(md->queue);
1494
1495	cleanup_srcu_struct(&md->io_barrier);
1496
1497	if (md->bdev) {
1498		bdput(md->bdev);
1499		md->bdev = NULL;
1500	}
1501
 
 
 
 
1502	dm_mq_cleanup_mapped_device(md);
1503}
1504
1505/*
1506 * Allocate and initialise a blank device with a given minor.
1507 */
1508static struct mapped_device *alloc_dev(int minor)
1509{
1510	int r, numa_node_id = dm_get_numa_node();
 
1511	struct mapped_device *md;
1512	void *old_md;
1513
1514	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1515	if (!md) {
1516		DMWARN("unable to allocate device, out of memory.");
1517		return NULL;
1518	}
1519
1520	if (!try_module_get(THIS_MODULE))
1521		goto bad_module_get;
1522
1523	/* get a minor number for the dev */
1524	if (minor == DM_ANY_MINOR)
1525		r = next_free_minor(&minor);
1526	else
1527		r = specific_minor(minor);
1528	if (r < 0)
1529		goto bad_minor;
1530
1531	r = init_srcu_struct(&md->io_barrier);
1532	if (r < 0)
1533		goto bad_io_barrier;
1534
1535	md->numa_node_id = numa_node_id;
1536	md->use_blk_mq = dm_use_blk_mq_default();
1537	md->init_tio_pdu = false;
1538	md->type = DM_TYPE_NONE;
1539	mutex_init(&md->suspend_lock);
1540	mutex_init(&md->type_lock);
1541	mutex_init(&md->table_devices_lock);
1542	spin_lock_init(&md->deferred_lock);
1543	atomic_set(&md->holders, 1);
1544	atomic_set(&md->open_count, 0);
1545	atomic_set(&md->event_nr, 0);
1546	atomic_set(&md->uevent_seq, 0);
1547	INIT_LIST_HEAD(&md->uevent_list);
1548	INIT_LIST_HEAD(&md->table_devices);
1549	spin_lock_init(&md->uevent_lock);
1550
1551	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1552	if (!md->queue)
1553		goto bad;
 
 
1554
1555	dm_init_md_queue(md);
1556
1557	md->disk = alloc_disk_node(1, numa_node_id);
1558	if (!md->disk)
1559		goto bad;
1560
1561	atomic_set(&md->pending[0], 0);
1562	atomic_set(&md->pending[1], 0);
1563	init_waitqueue_head(&md->wait);
1564	INIT_WORK(&md->work, dm_wq_work);
1565	init_waitqueue_head(&md->eventq);
1566	init_completion(&md->kobj_holder.completion);
1567	md->kworker_task = NULL;
1568
1569	md->disk->major = _major;
1570	md->disk->first_minor = minor;
1571	md->disk->fops = &dm_blk_dops;
1572	md->disk->queue = md->queue;
1573	md->disk->private_data = md;
1574	sprintf(md->disk->disk_name, "dm-%d", minor);
1575	add_disk(md->disk);
 
 
 
 
 
 
 
 
1576	format_dev_t(md->name, MKDEV(_major, minor));
1577
1578	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1579	if (!md->wq)
1580		goto bad;
1581
1582	md->bdev = bdget_disk(md->disk, 0);
1583	if (!md->bdev)
1584		goto bad;
1585
1586	bio_init(&md->flush_bio, NULL, 0);
1587	md->flush_bio.bi_bdev = md->bdev;
1588	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1589
1590	dm_stats_init(&md->stats);
1591
1592	/* Populate the mapping, nobody knows we exist yet */
1593	spin_lock(&_minor_lock);
1594	old_md = idr_replace(&_minor_idr, md, minor);
1595	spin_unlock(&_minor_lock);
1596
1597	BUG_ON(old_md != MINOR_ALLOCED);
1598
1599	return md;
1600
1601bad:
1602	cleanup_mapped_device(md);
1603bad_io_barrier:
1604	free_minor(minor);
1605bad_minor:
1606	module_put(THIS_MODULE);
1607bad_module_get:
1608	kfree(md);
1609	return NULL;
1610}
1611
1612static void unlock_fs(struct mapped_device *md);
1613
1614static void free_dev(struct mapped_device *md)
1615{
1616	int minor = MINOR(disk_devt(md->disk));
1617
1618	unlock_fs(md);
1619
1620	cleanup_mapped_device(md);
1621
1622	free_table_devices(&md->table_devices);
1623	dm_stats_cleanup(&md->stats);
1624	free_minor(minor);
1625
1626	module_put(THIS_MODULE);
1627	kfree(md);
1628}
1629
1630static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1631{
1632	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1633
1634	if (md->bs) {
1635		/* The md already has necessary mempools. */
1636		if (dm_table_bio_based(t)) {
1637			/*
1638			 * Reload bioset because front_pad may have changed
1639			 * because a different table was loaded.
1640			 */
1641			bioset_free(md->bs);
1642			md->bs = p->bs;
1643			p->bs = NULL;
1644		}
 
 
 
 
 
 
1645		/*
1646		 * There's no need to reload with request-based dm
1647		 * because the size of front_pad doesn't change.
1648		 * Note for future: If you are to reload bioset,
1649		 * prep-ed requests in the queue may refer
1650		 * to bio from the old bioset, so you must walk
1651		 * through the queue to unprep.
1652		 */
1653		goto out;
1654	}
1655
1656	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1657
1658	md->io_pool = p->io_pool;
1659	p->io_pool = NULL;
1660	md->rq_pool = p->rq_pool;
1661	p->rq_pool = NULL;
1662	md->bs = p->bs;
1663	p->bs = NULL;
1664
 
1665out:
1666	/* mempool bind completed, no longer need any mempools in the table */
1667	dm_table_free_md_mempools(t);
1668}
1669
1670/*
1671 * Bind a table to the device.
1672 */
1673static void event_callback(void *context)
1674{
1675	unsigned long flags;
1676	LIST_HEAD(uevents);
1677	struct mapped_device *md = (struct mapped_device *) context;
1678
1679	spin_lock_irqsave(&md->uevent_lock, flags);
1680	list_splice_init(&md->uevent_list, &uevents);
1681	spin_unlock_irqrestore(&md->uevent_lock, flags);
1682
1683	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1684
1685	atomic_inc(&md->event_nr);
1686	wake_up(&md->eventq);
 
1687}
1688
1689/*
1690 * Protected by md->suspend_lock obtained by dm_swap_table().
1691 */
1692static void __set_size(struct mapped_device *md, sector_t size)
1693{
 
 
1694	set_capacity(md->disk, size);
1695
1696	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1697}
1698
1699/*
1700 * Returns old map, which caller must destroy.
1701 */
1702static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1703			       struct queue_limits *limits)
1704{
1705	struct dm_table *old_map;
1706	struct request_queue *q = md->queue;
 
1707	sector_t size;
1708
1709	lockdep_assert_held(&md->suspend_lock);
1710
1711	size = dm_table_get_size(t);
1712
1713	/*
1714	 * Wipe any geometry if the size of the table changed.
1715	 */
1716	if (size != dm_get_size(md))
1717		memset(&md->geometry, 0, sizeof(md->geometry));
1718
1719	__set_size(md, size);
1720
1721	dm_table_event_callback(t, event_callback, md);
1722
1723	/*
1724	 * The queue hasn't been stopped yet, if the old table type wasn't
1725	 * for request-based during suspension.  So stop it to prevent
1726	 * I/O mapping before resume.
1727	 * This must be done before setting the queue restrictions,
1728	 * because request-based dm may be run just after the setting.
1729	 */
1730	if (dm_table_request_based(t)) {
1731		dm_stop_queue(q);
 
 
1732		/*
1733		 * Leverage the fact that request-based DM targets are
1734		 * immutable singletons and establish md->immutable_target
1735		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
 
1736		 */
1737		md->immutable_target = dm_table_get_immutable_target(t);
1738	}
1739
1740	__bind_mempools(md, t);
1741
1742	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1743	rcu_assign_pointer(md->map, (void *)t);
1744	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1745
1746	dm_table_set_restrictions(t, q, limits);
1747	if (old_map)
1748		dm_sync_table(md);
1749
1750	return old_map;
1751}
1752
1753/*
1754 * Returns unbound table for the caller to free.
1755 */
1756static struct dm_table *__unbind(struct mapped_device *md)
1757{
1758	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759
1760	if (!map)
1761		return NULL;
1762
1763	dm_table_event_callback(map, NULL, NULL);
1764	RCU_INIT_POINTER(md->map, NULL);
1765	dm_sync_table(md);
1766
1767	return map;
1768}
1769
1770/*
1771 * Constructor for a new device.
1772 */
1773int dm_create(int minor, struct mapped_device **result)
1774{
 
1775	struct mapped_device *md;
1776
1777	md = alloc_dev(minor);
1778	if (!md)
1779		return -ENXIO;
1780
1781	dm_sysfs_init(md);
 
 
 
 
1782
1783	*result = md;
1784	return 0;
1785}
1786
1787/*
1788 * Functions to manage md->type.
1789 * All are required to hold md->type_lock.
1790 */
1791void dm_lock_md_type(struct mapped_device *md)
1792{
1793	mutex_lock(&md->type_lock);
1794}
1795
1796void dm_unlock_md_type(struct mapped_device *md)
1797{
1798	mutex_unlock(&md->type_lock);
1799}
1800
1801void dm_set_md_type(struct mapped_device *md, unsigned type)
1802{
1803	BUG_ON(!mutex_is_locked(&md->type_lock));
1804	md->type = type;
1805}
1806
1807unsigned dm_get_md_type(struct mapped_device *md)
1808{
1809	return md->type;
1810}
1811
1812struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1813{
1814	return md->immutable_target_type;
1815}
1816
1817/*
1818 * The queue_limits are only valid as long as you have a reference
1819 * count on 'md'.
1820 */
1821struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1822{
1823	BUG_ON(!atomic_read(&md->holders));
1824	return &md->queue->limits;
1825}
1826EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1827
1828/*
1829 * Setup the DM device's queue based on md's type
1830 */
1831int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1832{
1833	int r;
1834	unsigned type = dm_get_md_type(md);
 
1835
1836	switch (type) {
1837	case DM_TYPE_REQUEST_BASED:
1838		r = dm_old_init_request_queue(md);
 
1839		if (r) {
1840			DMERR("Cannot initialize queue for request-based mapped device");
1841			return r;
1842		}
1843		break;
1844	case DM_TYPE_MQ_REQUEST_BASED:
1845		r = dm_mq_init_request_queue(md, t);
1846		if (r) {
1847			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1848			return r;
1849		}
1850		break;
1851	case DM_TYPE_BIO_BASED:
1852	case DM_TYPE_DAX_BIO_BASED:
1853		dm_init_normal_md_queue(md);
1854		blk_queue_make_request(md->queue, dm_make_request);
1855		/*
1856		 * DM handles splitting bios as needed.  Free the bio_split bioset
1857		 * since it won't be used (saves 1 process per bio-based DM device).
1858		 */
1859		bioset_free(md->queue->bio_split);
1860		md->queue->bio_split = NULL;
1861
1862		if (type == DM_TYPE_DAX_BIO_BASED)
1863			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1864		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	}
 
 
1866
1867	return 0;
1868}
1869
1870struct mapped_device *dm_get_md(dev_t dev)
1871{
1872	struct mapped_device *md;
1873	unsigned minor = MINOR(dev);
1874
1875	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1876		return NULL;
1877
1878	spin_lock(&_minor_lock);
1879
1880	md = idr_find(&_minor_idr, minor);
1881	if (md) {
1882		if ((md == MINOR_ALLOCED ||
1883		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1884		     dm_deleting_md(md) ||
1885		     test_bit(DMF_FREEING, &md->flags))) {
1886			md = NULL;
1887			goto out;
1888		}
1889		dm_get(md);
1890	}
1891
1892out:
1893	spin_unlock(&_minor_lock);
1894
1895	return md;
1896}
1897EXPORT_SYMBOL_GPL(dm_get_md);
1898
1899void *dm_get_mdptr(struct mapped_device *md)
1900{
1901	return md->interface_ptr;
1902}
1903
1904void dm_set_mdptr(struct mapped_device *md, void *ptr)
1905{
1906	md->interface_ptr = ptr;
1907}
1908
1909void dm_get(struct mapped_device *md)
1910{
1911	atomic_inc(&md->holders);
1912	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1913}
1914
1915int dm_hold(struct mapped_device *md)
1916{
1917	spin_lock(&_minor_lock);
1918	if (test_bit(DMF_FREEING, &md->flags)) {
1919		spin_unlock(&_minor_lock);
1920		return -EBUSY;
1921	}
1922	dm_get(md);
1923	spin_unlock(&_minor_lock);
1924	return 0;
1925}
1926EXPORT_SYMBOL_GPL(dm_hold);
1927
1928const char *dm_device_name(struct mapped_device *md)
1929{
1930	return md->name;
1931}
1932EXPORT_SYMBOL_GPL(dm_device_name);
1933
1934static void __dm_destroy(struct mapped_device *md, bool wait)
1935{
1936	struct request_queue *q = dm_get_md_queue(md);
1937	struct dm_table *map;
1938	int srcu_idx;
1939
1940	might_sleep();
1941
1942	spin_lock(&_minor_lock);
1943	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1944	set_bit(DMF_FREEING, &md->flags);
1945	spin_unlock(&_minor_lock);
1946
1947	blk_set_queue_dying(q);
1948
1949	if (dm_request_based(md) && md->kworker_task)
1950		kthread_flush_worker(&md->kworker);
1951
1952	/*
1953	 * Take suspend_lock so that presuspend and postsuspend methods
1954	 * do not race with internal suspend.
1955	 */
1956	mutex_lock(&md->suspend_lock);
1957	map = dm_get_live_table(md, &srcu_idx);
1958	if (!dm_suspended_md(md)) {
1959		dm_table_presuspend_targets(map);
1960		dm_table_postsuspend_targets(map);
1961	}
1962	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1963	dm_put_live_table(md, srcu_idx);
1964	mutex_unlock(&md->suspend_lock);
1965
1966	/*
1967	 * Rare, but there may be I/O requests still going to complete,
1968	 * for example.  Wait for all references to disappear.
1969	 * No one should increment the reference count of the mapped_device,
1970	 * after the mapped_device state becomes DMF_FREEING.
1971	 */
1972	if (wait)
1973		while (atomic_read(&md->holders))
1974			msleep(1);
1975	else if (atomic_read(&md->holders))
1976		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1977		       dm_device_name(md), atomic_read(&md->holders));
1978
1979	dm_sysfs_exit(md);
1980	dm_table_destroy(__unbind(md));
1981	free_dev(md);
1982}
1983
1984void dm_destroy(struct mapped_device *md)
1985{
1986	__dm_destroy(md, true);
1987}
1988
1989void dm_destroy_immediate(struct mapped_device *md)
1990{
1991	__dm_destroy(md, false);
1992}
1993
1994void dm_put(struct mapped_device *md)
1995{
1996	atomic_dec(&md->holders);
1997}
1998EXPORT_SYMBOL_GPL(dm_put);
1999
2000static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2001{
2002	int r = 0;
2003	DEFINE_WAIT(wait);
2004
2005	while (1) {
2006		prepare_to_wait(&md->wait, &wait, task_state);
2007
2008		if (!md_in_flight(md))
2009			break;
2010
2011		if (signal_pending_state(task_state, current)) {
2012			r = -EINTR;
2013			break;
2014		}
2015
2016		io_schedule();
2017	}
2018	finish_wait(&md->wait, &wait);
2019
2020	return r;
2021}
2022
2023/*
2024 * Process the deferred bios
2025 */
2026static void dm_wq_work(struct work_struct *work)
2027{
2028	struct mapped_device *md = container_of(work, struct mapped_device,
2029						work);
2030	struct bio *c;
2031	int srcu_idx;
2032	struct dm_table *map;
2033
2034	map = dm_get_live_table(md, &srcu_idx);
2035
2036	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2037		spin_lock_irq(&md->deferred_lock);
2038		c = bio_list_pop(&md->deferred);
2039		spin_unlock_irq(&md->deferred_lock);
2040
2041		if (!c)
2042			break;
2043
2044		if (dm_request_based(md))
2045			generic_make_request(c);
2046		else
2047			__split_and_process_bio(md, map, c);
2048	}
2049
2050	dm_put_live_table(md, srcu_idx);
2051}
2052
2053static void dm_queue_flush(struct mapped_device *md)
2054{
2055	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2056	smp_mb__after_atomic();
2057	queue_work(md->wq, &md->work);
2058}
2059
2060/*
2061 * Swap in a new table, returning the old one for the caller to destroy.
2062 */
2063struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2064{
2065	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2066	struct queue_limits limits;
2067	int r;
2068
2069	mutex_lock(&md->suspend_lock);
2070
2071	/* device must be suspended */
2072	if (!dm_suspended_md(md))
2073		goto out;
2074
2075	/*
2076	 * If the new table has no data devices, retain the existing limits.
2077	 * This helps multipath with queue_if_no_path if all paths disappear,
2078	 * then new I/O is queued based on these limits, and then some paths
2079	 * reappear.
2080	 */
2081	if (dm_table_has_no_data_devices(table)) {
2082		live_map = dm_get_live_table_fast(md);
2083		if (live_map)
2084			limits = md->queue->limits;
2085		dm_put_live_table_fast(md);
2086	}
2087
2088	if (!live_map) {
2089		r = dm_calculate_queue_limits(table, &limits);
2090		if (r) {
2091			map = ERR_PTR(r);
2092			goto out;
2093		}
2094	}
2095
2096	map = __bind(md, table, &limits);
 
2097
2098out:
2099	mutex_unlock(&md->suspend_lock);
2100	return map;
2101}
2102
2103/*
2104 * Functions to lock and unlock any filesystem running on the
2105 * device.
2106 */
2107static int lock_fs(struct mapped_device *md)
2108{
2109	int r;
2110
2111	WARN_ON(md->frozen_sb);
2112
2113	md->frozen_sb = freeze_bdev(md->bdev);
2114	if (IS_ERR(md->frozen_sb)) {
2115		r = PTR_ERR(md->frozen_sb);
2116		md->frozen_sb = NULL;
2117		return r;
2118	}
2119
2120	set_bit(DMF_FROZEN, &md->flags);
2121
2122	return 0;
2123}
2124
2125static void unlock_fs(struct mapped_device *md)
2126{
2127	if (!test_bit(DMF_FROZEN, &md->flags))
2128		return;
2129
2130	thaw_bdev(md->bdev, md->frozen_sb);
2131	md->frozen_sb = NULL;
2132	clear_bit(DMF_FROZEN, &md->flags);
2133}
2134
2135/*
2136 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2137 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2138 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2139 *
2140 * If __dm_suspend returns 0, the device is completely quiescent
2141 * now. There is no request-processing activity. All new requests
2142 * are being added to md->deferred list.
2143 *
2144 * Caller must hold md->suspend_lock
2145 */
2146static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2147			unsigned suspend_flags, long task_state,
2148			int dmf_suspended_flag)
2149{
2150	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2151	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2152	int r;
2153
2154	lockdep_assert_held(&md->suspend_lock);
2155
2156	/*
2157	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2158	 * This flag is cleared before dm_suspend returns.
2159	 */
2160	if (noflush)
2161		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2162
2163	/*
2164	 * This gets reverted if there's an error later and the targets
2165	 * provide the .presuspend_undo hook.
2166	 */
2167	dm_table_presuspend_targets(map);
2168
2169	/*
2170	 * Flush I/O to the device.
2171	 * Any I/O submitted after lock_fs() may not be flushed.
2172	 * noflush takes precedence over do_lockfs.
2173	 * (lock_fs() flushes I/Os and waits for them to complete.)
2174	 */
2175	if (!noflush && do_lockfs) {
2176		r = lock_fs(md);
2177		if (r) {
2178			dm_table_presuspend_undo_targets(map);
2179			return r;
2180		}
2181	}
2182
2183	/*
2184	 * Here we must make sure that no processes are submitting requests
2185	 * to target drivers i.e. no one may be executing
2186	 * __split_and_process_bio. This is called from dm_request and
2187	 * dm_wq_work.
2188	 *
2189	 * To get all processes out of __split_and_process_bio in dm_request,
2190	 * we take the write lock. To prevent any process from reentering
2191	 * __split_and_process_bio from dm_request and quiesce the thread
2192	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2193	 * flush_workqueue(md->wq).
2194	 */
2195	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2196	if (map)
2197		synchronize_srcu(&md->io_barrier);
2198
2199	/*
2200	 * Stop md->queue before flushing md->wq in case request-based
2201	 * dm defers requests to md->wq from md->queue.
2202	 */
2203	if (dm_request_based(md)) {
2204		dm_stop_queue(md->queue);
2205		if (md->kworker_task)
2206			kthread_flush_worker(&md->kworker);
2207	}
2208
2209	flush_workqueue(md->wq);
2210
2211	/*
2212	 * At this point no more requests are entering target request routines.
2213	 * We call dm_wait_for_completion to wait for all existing requests
2214	 * to finish.
2215	 */
2216	r = dm_wait_for_completion(md, task_state);
2217	if (!r)
2218		set_bit(dmf_suspended_flag, &md->flags);
2219
2220	if (noflush)
2221		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2222	if (map)
2223		synchronize_srcu(&md->io_barrier);
2224
2225	/* were we interrupted ? */
2226	if (r < 0) {
2227		dm_queue_flush(md);
2228
2229		if (dm_request_based(md))
2230			dm_start_queue(md->queue);
2231
2232		unlock_fs(md);
2233		dm_table_presuspend_undo_targets(map);
2234		/* pushback list is already flushed, so skip flush */
2235	}
2236
2237	return r;
2238}
2239
2240/*
2241 * We need to be able to change a mapping table under a mounted
2242 * filesystem.  For example we might want to move some data in
2243 * the background.  Before the table can be swapped with
2244 * dm_bind_table, dm_suspend must be called to flush any in
2245 * flight bios and ensure that any further io gets deferred.
2246 */
2247/*
2248 * Suspend mechanism in request-based dm.
2249 *
2250 * 1. Flush all I/Os by lock_fs() if needed.
2251 * 2. Stop dispatching any I/O by stopping the request_queue.
2252 * 3. Wait for all in-flight I/Os to be completed or requeued.
2253 *
2254 * To abort suspend, start the request_queue.
2255 */
2256int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2257{
2258	struct dm_table *map = NULL;
2259	int r = 0;
2260
2261retry:
2262	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2263
2264	if (dm_suspended_md(md)) {
2265		r = -EINVAL;
2266		goto out_unlock;
2267	}
2268
2269	if (dm_suspended_internally_md(md)) {
2270		/* already internally suspended, wait for internal resume */
2271		mutex_unlock(&md->suspend_lock);
2272		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2273		if (r)
2274			return r;
2275		goto retry;
2276	}
2277
2278	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2279
2280	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2281	if (r)
2282		goto out_unlock;
2283
2284	dm_table_postsuspend_targets(map);
2285
2286out_unlock:
2287	mutex_unlock(&md->suspend_lock);
2288	return r;
2289}
2290
2291static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2292{
2293	if (map) {
2294		int r = dm_table_resume_targets(map);
2295		if (r)
2296			return r;
2297	}
2298
2299	dm_queue_flush(md);
2300
2301	/*
2302	 * Flushing deferred I/Os must be done after targets are resumed
2303	 * so that mapping of targets can work correctly.
2304	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2305	 */
2306	if (dm_request_based(md))
2307		dm_start_queue(md->queue);
2308
2309	unlock_fs(md);
2310
2311	return 0;
2312}
2313
2314int dm_resume(struct mapped_device *md)
2315{
2316	int r;
2317	struct dm_table *map = NULL;
2318
2319retry:
2320	r = -EINVAL;
2321	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2322
2323	if (!dm_suspended_md(md))
2324		goto out;
2325
2326	if (dm_suspended_internally_md(md)) {
2327		/* already internally suspended, wait for internal resume */
2328		mutex_unlock(&md->suspend_lock);
2329		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2330		if (r)
2331			return r;
2332		goto retry;
2333	}
2334
2335	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2336	if (!map || !dm_table_get_size(map))
2337		goto out;
2338
2339	r = __dm_resume(md, map);
2340	if (r)
2341		goto out;
2342
2343	clear_bit(DMF_SUSPENDED, &md->flags);
2344out:
2345	mutex_unlock(&md->suspend_lock);
2346
2347	return r;
2348}
2349
2350/*
2351 * Internal suspend/resume works like userspace-driven suspend. It waits
2352 * until all bios finish and prevents issuing new bios to the target drivers.
2353 * It may be used only from the kernel.
2354 */
2355
2356static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2357{
2358	struct dm_table *map = NULL;
2359
 
 
2360	if (md->internal_suspend_count++)
2361		return; /* nested internal suspend */
2362
2363	if (dm_suspended_md(md)) {
2364		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2365		return; /* nest suspend */
2366	}
2367
2368	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2369
2370	/*
2371	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2372	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2373	 * would require changing .presuspend to return an error -- avoid this
2374	 * until there is a need for more elaborate variants of internal suspend.
2375	 */
2376	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2377			    DMF_SUSPENDED_INTERNALLY);
2378
2379	dm_table_postsuspend_targets(map);
2380}
2381
2382static void __dm_internal_resume(struct mapped_device *md)
2383{
2384	BUG_ON(!md->internal_suspend_count);
2385
2386	if (--md->internal_suspend_count)
2387		return; /* resume from nested internal suspend */
2388
2389	if (dm_suspended_md(md))
2390		goto done; /* resume from nested suspend */
2391
2392	/*
2393	 * NOTE: existing callers don't need to call dm_table_resume_targets
2394	 * (which may fail -- so best to avoid it for now by passing NULL map)
2395	 */
2396	(void) __dm_resume(md, NULL);
2397
2398done:
2399	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2400	smp_mb__after_atomic();
2401	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2402}
2403
2404void dm_internal_suspend_noflush(struct mapped_device *md)
2405{
2406	mutex_lock(&md->suspend_lock);
2407	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2408	mutex_unlock(&md->suspend_lock);
2409}
2410EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2411
2412void dm_internal_resume(struct mapped_device *md)
2413{
2414	mutex_lock(&md->suspend_lock);
2415	__dm_internal_resume(md);
2416	mutex_unlock(&md->suspend_lock);
2417}
2418EXPORT_SYMBOL_GPL(dm_internal_resume);
2419
2420/*
2421 * Fast variants of internal suspend/resume hold md->suspend_lock,
2422 * which prevents interaction with userspace-driven suspend.
2423 */
2424
2425void dm_internal_suspend_fast(struct mapped_device *md)
2426{
2427	mutex_lock(&md->suspend_lock);
2428	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2429		return;
2430
2431	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432	synchronize_srcu(&md->io_barrier);
2433	flush_workqueue(md->wq);
2434	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2435}
2436EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2437
2438void dm_internal_resume_fast(struct mapped_device *md)
2439{
2440	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441		goto done;
2442
2443	dm_queue_flush(md);
2444
2445done:
2446	mutex_unlock(&md->suspend_lock);
2447}
2448EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2449
2450/*-----------------------------------------------------------------
2451 * Event notification.
2452 *---------------------------------------------------------------*/
2453int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2454		       unsigned cookie)
2455{
2456	char udev_cookie[DM_COOKIE_LENGTH];
2457	char *envp[] = { udev_cookie, NULL };
2458
2459	if (!cookie)
2460		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2461	else {
2462		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2463			 DM_COOKIE_ENV_VAR_NAME, cookie);
2464		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465					  action, envp);
2466	}
2467}
2468
2469uint32_t dm_next_uevent_seq(struct mapped_device *md)
2470{
2471	return atomic_add_return(1, &md->uevent_seq);
2472}
2473
2474uint32_t dm_get_event_nr(struct mapped_device *md)
2475{
2476	return atomic_read(&md->event_nr);
2477}
2478
2479int dm_wait_event(struct mapped_device *md, int event_nr)
2480{
2481	return wait_event_interruptible(md->eventq,
2482			(event_nr != atomic_read(&md->event_nr)));
2483}
2484
2485void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2486{
2487	unsigned long flags;
2488
2489	spin_lock_irqsave(&md->uevent_lock, flags);
2490	list_add(elist, &md->uevent_list);
2491	spin_unlock_irqrestore(&md->uevent_lock, flags);
2492}
2493
2494/*
2495 * The gendisk is only valid as long as you have a reference
2496 * count on 'md'.
2497 */
2498struct gendisk *dm_disk(struct mapped_device *md)
2499{
2500	return md->disk;
2501}
2502EXPORT_SYMBOL_GPL(dm_disk);
2503
2504struct kobject *dm_kobject(struct mapped_device *md)
2505{
2506	return &md->kobj_holder.kobj;
2507}
2508
2509struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2510{
2511	struct mapped_device *md;
2512
2513	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2514
2515	if (test_bit(DMF_FREEING, &md->flags) ||
2516	    dm_deleting_md(md))
2517		return NULL;
2518
 
2519	dm_get(md);
 
 
 
2520	return md;
2521}
2522
2523int dm_suspended_md(struct mapped_device *md)
2524{
2525	return test_bit(DMF_SUSPENDED, &md->flags);
2526}
2527
2528int dm_suspended_internally_md(struct mapped_device *md)
2529{
2530	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2531}
2532
2533int dm_test_deferred_remove_flag(struct mapped_device *md)
2534{
2535	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2536}
2537
2538int dm_suspended(struct dm_target *ti)
2539{
2540	return dm_suspended_md(dm_table_get_md(ti->table));
2541}
2542EXPORT_SYMBOL_GPL(dm_suspended);
2543
2544int dm_noflush_suspending(struct dm_target *ti)
2545{
2546	return __noflush_suspending(dm_table_get_md(ti->table));
2547}
2548EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2549
2550struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2551					    unsigned integrity, unsigned per_io_data_size)
 
2552{
2553	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2554	struct kmem_cache *cachep = NULL;
2555	unsigned int pool_size = 0;
2556	unsigned int front_pad;
2557
2558	if (!pools)
2559		return NULL;
2560
2561	switch (type) {
2562	case DM_TYPE_BIO_BASED:
2563	case DM_TYPE_DAX_BIO_BASED:
2564		cachep = _io_cache;
2565		pool_size = dm_get_reserved_bio_based_ios();
2566		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
 
 
 
 
 
 
2567		break;
2568	case DM_TYPE_REQUEST_BASED:
2569		cachep = _rq_tio_cache;
2570		pool_size = dm_get_reserved_rq_based_ios();
2571		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2572		if (!pools->rq_pool)
2573			goto out;
2574		/* fall through to setup remaining rq-based pools */
2575	case DM_TYPE_MQ_REQUEST_BASED:
2576		if (!pool_size)
2577			pool_size = dm_get_reserved_rq_based_ios();
2578		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2579		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2580		break;
2581	default:
2582		BUG();
2583	}
2584
2585	if (cachep) {
2586		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2587		if (!pools->io_pool)
2588			goto out;
2589	}
2590
2591	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2592	if (!pools->bs)
2593		goto out;
2594
2595	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2596		goto out;
2597
2598	return pools;
2599
2600out:
2601	dm_free_md_mempools(pools);
2602
2603	return NULL;
2604}
2605
2606void dm_free_md_mempools(struct dm_md_mempools *pools)
2607{
2608	if (!pools)
2609		return;
2610
2611	mempool_destroy(pools->io_pool);
2612	mempool_destroy(pools->rq_pool);
2613
2614	if (pools->bs)
2615		bioset_free(pools->bs);
 
 
2616
2617	kfree(pools);
2618}
2619
2620struct dm_pr {
2621	u64	old_key;
2622	u64	new_key;
2623	u32	flags;
2624	bool	fail_early;
2625};
2626
2627static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2628		      void *data)
2629{
2630	struct mapped_device *md = bdev->bd_disk->private_data;
2631	struct dm_table *table;
2632	struct dm_target *ti;
2633	int ret = -ENOTTY, srcu_idx;
2634
2635	table = dm_get_live_table(md, &srcu_idx);
2636	if (!table || !dm_table_get_size(table))
2637		goto out;
2638
2639	/* We only support devices that have a single target */
2640	if (dm_table_get_num_targets(table) != 1)
2641		goto out;
2642	ti = dm_table_get_target(table, 0);
2643
2644	ret = -EINVAL;
2645	if (!ti->type->iterate_devices)
2646		goto out;
2647
2648	ret = ti->type->iterate_devices(ti, fn, data);
2649out:
2650	dm_put_live_table(md, srcu_idx);
2651	return ret;
2652}
2653
2654/*
2655 * For register / unregister we need to manually call out to every path.
2656 */
2657static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2658			    sector_t start, sector_t len, void *data)
2659{
2660	struct dm_pr *pr = data;
2661	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
2662
2663	if (!ops || !ops->pr_register)
2664		return -EOPNOTSUPP;
2665	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
2666}
2667
2668static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2669			  u32 flags)
2670{
2671	struct dm_pr pr = {
2672		.old_key	= old_key,
2673		.new_key	= new_key,
2674		.flags		= flags,
2675		.fail_early	= true,
2676	};
2677	int ret;
2678
2679	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2680	if (ret && new_key) {
2681		/* unregister all paths if we failed to register any path */
2682		pr.old_key = new_key;
2683		pr.new_key = 0;
2684		pr.flags = 0;
2685		pr.fail_early = false;
2686		dm_call_pr(bdev, __dm_pr_register, &pr);
2687	}
2688
2689	return ret;
2690}
2691
2692static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2693			 u32 flags)
2694{
2695	struct mapped_device *md = bdev->bd_disk->private_data;
2696	const struct pr_ops *ops;
2697	fmode_t mode;
2698	int r;
2699
2700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2701	if (r < 0)
2702		return r;
2703
2704	ops = bdev->bd_disk->fops->pr_ops;
2705	if (ops && ops->pr_reserve)
2706		r = ops->pr_reserve(bdev, key, type, flags);
2707	else
2708		r = -EOPNOTSUPP;
2709
2710	bdput(bdev);
2711	return r;
2712}
2713
2714static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2715{
2716	struct mapped_device *md = bdev->bd_disk->private_data;
2717	const struct pr_ops *ops;
2718	fmode_t mode;
2719	int r;
2720
2721	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2722	if (r < 0)
2723		return r;
2724
2725	ops = bdev->bd_disk->fops->pr_ops;
2726	if (ops && ops->pr_release)
2727		r = ops->pr_release(bdev, key, type);
2728	else
2729		r = -EOPNOTSUPP;
2730
2731	bdput(bdev);
2732	return r;
2733}
2734
2735static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2736			 enum pr_type type, bool abort)
2737{
2738	struct mapped_device *md = bdev->bd_disk->private_data;
2739	const struct pr_ops *ops;
2740	fmode_t mode;
2741	int r;
2742
2743	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2744	if (r < 0)
2745		return r;
2746
2747	ops = bdev->bd_disk->fops->pr_ops;
2748	if (ops && ops->pr_preempt)
2749		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2750	else
2751		r = -EOPNOTSUPP;
2752
2753	bdput(bdev);
2754	return r;
2755}
2756
2757static int dm_pr_clear(struct block_device *bdev, u64 key)
2758{
2759	struct mapped_device *md = bdev->bd_disk->private_data;
2760	const struct pr_ops *ops;
2761	fmode_t mode;
2762	int r;
2763
2764	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2765	if (r < 0)
2766		return r;
2767
2768	ops = bdev->bd_disk->fops->pr_ops;
2769	if (ops && ops->pr_clear)
2770		r = ops->pr_clear(bdev, key);
2771	else
2772		r = -EOPNOTSUPP;
2773
2774	bdput(bdev);
2775	return r;
2776}
2777
2778static const struct pr_ops dm_pr_ops = {
2779	.pr_register	= dm_pr_register,
2780	.pr_reserve	= dm_pr_reserve,
2781	.pr_release	= dm_pr_release,
2782	.pr_preempt	= dm_pr_preempt,
2783	.pr_clear	= dm_pr_clear,
2784};
2785
2786static const struct block_device_operations dm_blk_dops = {
2787	.open = dm_blk_open,
2788	.release = dm_blk_close,
2789	.ioctl = dm_blk_ioctl,
2790	.direct_access = dm_blk_direct_access,
2791	.getgeo = dm_blk_getgeo,
2792	.pr_ops = &dm_pr_ops,
2793	.owner = THIS_MODULE
 
 
 
 
 
2794};
2795
2796/*
2797 * module hooks
2798 */
2799module_init(dm_init);
2800module_exit(dm_exit);
2801
2802module_param(major, uint, 0);
2803MODULE_PARM_DESC(major, "The major number of the device mapper");
2804
2805module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2806MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2807
2808module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2809MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
2810
2811MODULE_DESCRIPTION(DM_NAME " driver");
2812MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2813MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
  28
  29#define DM_MSG_PREFIX "core"
  30
 
 
 
 
 
 
 
 
 
 
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
  62/*
  63 * One of these is allocated (on-stack) per original bio.
  64 */
  65struct clone_info {
  66	struct dm_table *map;
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 
 
 151	struct bio_set *bs;
 152	struct bio_set *io_bs;
 153};
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 160
 
 161static struct kmem_cache *_rq_tio_cache;
 162static struct kmem_cache *_rq_cache;
 163
 164/*
 165 * Bio-based DM's mempools' reserved IOs set by the user.
 166 */
 167#define RESERVED_BIO_BASED_IOS		16
 168static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 169
 170static int __dm_get_module_param_int(int *module_param, int min, int max)
 171{
 172	int param = READ_ONCE(*module_param);
 173	int modified_param = 0;
 174	bool modified = true;
 175
 176	if (param < min)
 177		modified_param = min;
 178	else if (param > max)
 179		modified_param = max;
 180	else
 181		modified = false;
 182
 183	if (modified) {
 184		(void)cmpxchg(module_param, param, modified_param);
 185		param = modified_param;
 186	}
 187
 188	return param;
 189}
 190
 191unsigned __dm_get_module_param(unsigned *module_param,
 192			       unsigned def, unsigned max)
 193{
 194	unsigned param = READ_ONCE(*module_param);
 195	unsigned modified_param = 0;
 196
 197	if (!param)
 198		modified_param = def;
 199	else if (param > max)
 200		modified_param = max;
 201
 202	if (modified_param) {
 203		(void)cmpxchg(module_param, param, modified_param);
 204		param = modified_param;
 205	}
 206
 207	return param;
 208}
 209
 210unsigned dm_get_reserved_bio_based_ios(void)
 211{
 212	return __dm_get_module_param(&reserved_bio_based_ios,
 213				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 214}
 215EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 216
 217static unsigned dm_get_numa_node(void)
 218{
 219	return __dm_get_module_param_int(&dm_numa_node,
 220					 DM_NUMA_NODE, num_online_nodes() - 1);
 221}
 222
 223static int __init local_init(void)
 224{
 225	int r = -ENOMEM;
 226
 
 
 
 
 
 227	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 228	if (!_rq_tio_cache)
 229		return r;
 230
 231	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 232				      __alignof__(struct request), 0, NULL);
 233	if (!_rq_cache)
 234		goto out_free_rq_tio_cache;
 235
 236	r = dm_uevent_init();
 237	if (r)
 238		goto out_free_rq_cache;
 239
 240	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 241	if (!deferred_remove_workqueue) {
 242		r = -ENOMEM;
 243		goto out_uevent_exit;
 244	}
 245
 246	_major = major;
 247	r = register_blkdev(_major, _name);
 248	if (r < 0)
 249		goto out_free_workqueue;
 250
 251	if (!_major)
 252		_major = r;
 253
 254	return 0;
 255
 256out_free_workqueue:
 257	destroy_workqueue(deferred_remove_workqueue);
 258out_uevent_exit:
 259	dm_uevent_exit();
 260out_free_rq_cache:
 261	kmem_cache_destroy(_rq_cache);
 262out_free_rq_tio_cache:
 263	kmem_cache_destroy(_rq_tio_cache);
 
 
 264
 265	return r;
 266}
 267
 268static void local_exit(void)
 269{
 270	flush_scheduled_work();
 271	destroy_workqueue(deferred_remove_workqueue);
 272
 273	kmem_cache_destroy(_rq_cache);
 274	kmem_cache_destroy(_rq_tio_cache);
 
 275	unregister_blkdev(_major, _name);
 276	dm_uevent_exit();
 277
 278	_major = 0;
 279
 280	DMINFO("cleaned up");
 281}
 282
 283static int (*_inits[])(void) __initdata = {
 284	local_init,
 285	dm_target_init,
 286	dm_linear_init,
 287	dm_stripe_init,
 288	dm_io_init,
 289	dm_kcopyd_init,
 290	dm_interface_init,
 291	dm_statistics_init,
 292};
 293
 294static void (*_exits[])(void) = {
 295	local_exit,
 296	dm_target_exit,
 297	dm_linear_exit,
 298	dm_stripe_exit,
 299	dm_io_exit,
 300	dm_kcopyd_exit,
 301	dm_interface_exit,
 302	dm_statistics_exit,
 303};
 304
 305static int __init dm_init(void)
 306{
 307	const int count = ARRAY_SIZE(_inits);
 308
 309	int r, i;
 310
 311	for (i = 0; i < count; i++) {
 312		r = _inits[i]();
 313		if (r)
 314			goto bad;
 315	}
 316
 317	return 0;
 318
 319      bad:
 320	while (i--)
 321		_exits[i]();
 322
 323	return r;
 324}
 325
 326static void __exit dm_exit(void)
 327{
 328	int i = ARRAY_SIZE(_exits);
 329
 330	while (i--)
 331		_exits[i]();
 332
 333	/*
 334	 * Should be empty by this point.
 335	 */
 336	idr_destroy(&_minor_idr);
 337}
 338
 339/*
 340 * Block device functions
 341 */
 342int dm_deleting_md(struct mapped_device *md)
 343{
 344	return test_bit(DMF_DELETING, &md->flags);
 345}
 346
 347static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 348{
 349	struct mapped_device *md;
 350
 351	spin_lock(&_minor_lock);
 352
 353	md = bdev->bd_disk->private_data;
 354	if (!md)
 355		goto out;
 356
 357	if (test_bit(DMF_FREEING, &md->flags) ||
 358	    dm_deleting_md(md)) {
 359		md = NULL;
 360		goto out;
 361	}
 362
 363	dm_get(md);
 364	atomic_inc(&md->open_count);
 365out:
 366	spin_unlock(&_minor_lock);
 367
 368	return md ? 0 : -ENXIO;
 369}
 370
 371static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 372{
 373	struct mapped_device *md;
 374
 375	spin_lock(&_minor_lock);
 376
 377	md = disk->private_data;
 378	if (WARN_ON(!md))
 379		goto out;
 380
 381	if (atomic_dec_and_test(&md->open_count) &&
 382	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 383		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 384
 385	dm_put(md);
 386out:
 387	spin_unlock(&_minor_lock);
 388}
 389
 390int dm_open_count(struct mapped_device *md)
 391{
 392	return atomic_read(&md->open_count);
 393}
 394
 395/*
 396 * Guarantees nothing is using the device before it's deleted.
 397 */
 398int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 399{
 400	int r = 0;
 401
 402	spin_lock(&_minor_lock);
 403
 404	if (dm_open_count(md)) {
 405		r = -EBUSY;
 406		if (mark_deferred)
 407			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 408	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 409		r = -EEXIST;
 410	else
 411		set_bit(DMF_DELETING, &md->flags);
 412
 413	spin_unlock(&_minor_lock);
 414
 415	return r;
 416}
 417
 418int dm_cancel_deferred_remove(struct mapped_device *md)
 419{
 420	int r = 0;
 421
 422	spin_lock(&_minor_lock);
 423
 424	if (test_bit(DMF_DELETING, &md->flags))
 425		r = -EBUSY;
 426	else
 427		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 428
 429	spin_unlock(&_minor_lock);
 430
 431	return r;
 432}
 433
 434static void do_deferred_remove(struct work_struct *w)
 435{
 436	dm_deferred_remove();
 437}
 438
 439sector_t dm_get_size(struct mapped_device *md)
 440{
 441	return get_capacity(md->disk);
 442}
 443
 444struct request_queue *dm_get_md_queue(struct mapped_device *md)
 445{
 446	return md->queue;
 447}
 448
 449struct dm_stats *dm_get_stats(struct mapped_device *md)
 450{
 451	return &md->stats;
 452}
 453
 454static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 455{
 456	struct mapped_device *md = bdev->bd_disk->private_data;
 457
 458	return dm_get_geometry(md, geo);
 459}
 460
 461static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 462			    struct block_device **bdev)
 463	__acquires(md->io_barrier)
 464{
 465	struct dm_target *tgt;
 466	struct dm_table *map;
 467	int r;
 468
 469retry:
 470	r = -ENOTTY;
 471	map = dm_get_live_table(md, srcu_idx);
 472	if (!map || !dm_table_get_size(map))
 473		return r;
 474
 475	/* We only support devices that have a single target */
 476	if (dm_table_get_num_targets(map) != 1)
 477		return r;
 478
 479	tgt = dm_table_get_target(map, 0);
 480	if (!tgt->type->prepare_ioctl)
 481		return r;
 
 
 
 
 
 
 
 
 
 482
 483	if (dm_suspended_md(md))
 484		return -EAGAIN;
 
 485
 486	r = tgt->type->prepare_ioctl(tgt, bdev);
 
 487	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 488		dm_put_live_table(md, *srcu_idx);
 489		msleep(10);
 490		goto retry;
 491	}
 492
 493	return r;
 494}
 495
 496static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 497	__releases(md->io_barrier)
 498{
 499	dm_put_live_table(md, srcu_idx);
 500}
 501
 502static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 503			unsigned int cmd, unsigned long arg)
 504{
 505	struct mapped_device *md = bdev->bd_disk->private_data;
 506	int r, srcu_idx;
 507
 508	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 509	if (r < 0)
 510		goto out;
 511
 512	if (r > 0) {
 513		/*
 514		 * Target determined this ioctl is being issued against a
 515		 * subset of the parent bdev; require extra privileges.
 
 516		 */
 517		if (!capable(CAP_SYS_RAWIO)) {
 518			DMWARN_LIMIT(
 519	"%s: sending ioctl %x to DM device without required privilege.",
 520				current->comm, cmd);
 521			r = -ENOIOCTLCMD;
 522			goto out;
 523		}
 524	}
 525
 526	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 527out:
 528	dm_unprepare_ioctl(md, srcu_idx);
 529	return r;
 530}
 531
 532static void start_io_acct(struct dm_io *io);
 533
 534static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 535{
 536	struct dm_io *io;
 537	struct dm_target_io *tio;
 538	struct bio *clone;
 539
 540	clone = bio_alloc_bioset(GFP_NOIO, 0, md->io_bs);
 541	if (!clone)
 542		return NULL;
 543
 544	tio = container_of(clone, struct dm_target_io, clone);
 545	tio->inside_dm_io = true;
 546	tio->io = NULL;
 547
 548	io = container_of(tio, struct dm_io, tio);
 549	io->magic = DM_IO_MAGIC;
 550	io->status = 0;
 551	atomic_set(&io->io_count, 1);
 552	io->orig_bio = bio;
 553	io->md = md;
 554	spin_lock_init(&io->endio_lock);
 555
 556	start_io_acct(io);
 557
 558	return io;
 559}
 560
 561static void free_io(struct mapped_device *md, struct dm_io *io)
 562{
 563	bio_put(&io->tio.clone);
 564}
 565
 566static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 567				      unsigned target_bio_nr, gfp_t gfp_mask)
 568{
 569	struct dm_target_io *tio;
 570
 571	if (!ci->io->tio.io) {
 572		/* the dm_target_io embedded in ci->io is available */
 573		tio = &ci->io->tio;
 574	} else {
 575		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, ci->io->md->bs);
 576		if (!clone)
 577			return NULL;
 578
 579		tio = container_of(clone, struct dm_target_io, clone);
 580		tio->inside_dm_io = false;
 581	}
 582
 583	tio->magic = DM_TIO_MAGIC;
 584	tio->io = ci->io;
 585	tio->ti = ti;
 586	tio->target_bio_nr = target_bio_nr;
 587
 588	return tio;
 589}
 590
 591static void free_tio(struct dm_target_io *tio)
 592{
 593	if (tio->inside_dm_io)
 594		return;
 595	bio_put(&tio->clone);
 596}
 597
 598int md_in_flight(struct mapped_device *md)
 599{
 600	return atomic_read(&md->pending[READ]) +
 601	       atomic_read(&md->pending[WRITE]);
 602}
 603
 604static void start_io_acct(struct dm_io *io)
 605{
 606	struct mapped_device *md = io->md;
 607	struct bio *bio = io->orig_bio;
 
 608	int rw = bio_data_dir(bio);
 609
 610	io->start_time = jiffies;
 611
 612	generic_start_io_acct(md->queue, rw, bio_sectors(bio), &dm_disk(md)->part0);
 613
 
 614	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 615		   atomic_inc_return(&md->pending[rw]));
 616
 617	if (unlikely(dm_stats_used(&md->stats)))
 618		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 619				    bio->bi_iter.bi_sector, bio_sectors(bio),
 620				    false, 0, &io->stats_aux);
 621}
 622
 623static void end_io_acct(struct dm_io *io)
 624{
 625	struct mapped_device *md = io->md;
 626	struct bio *bio = io->orig_bio;
 627	unsigned long duration = jiffies - io->start_time;
 628	int pending;
 629	int rw = bio_data_dir(bio);
 630
 631	generic_end_io_acct(md->queue, rw, &dm_disk(md)->part0, io->start_time);
 632
 633	if (unlikely(dm_stats_used(&md->stats)))
 634		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 635				    bio->bi_iter.bi_sector, bio_sectors(bio),
 636				    true, duration, &io->stats_aux);
 637
 638	/*
 639	 * After this is decremented the bio must not be touched if it is
 640	 * a flush.
 641	 */
 642	pending = atomic_dec_return(&md->pending[rw]);
 643	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 644	pending += atomic_read(&md->pending[rw^0x1]);
 645
 646	/* nudge anyone waiting on suspend queue */
 647	if (!pending)
 648		wake_up(&md->wait);
 649}
 650
 651/*
 652 * Add the bio to the list of deferred io.
 653 */
 654static void queue_io(struct mapped_device *md, struct bio *bio)
 655{
 656	unsigned long flags;
 657
 658	spin_lock_irqsave(&md->deferred_lock, flags);
 659	bio_list_add(&md->deferred, bio);
 660	spin_unlock_irqrestore(&md->deferred_lock, flags);
 661	queue_work(md->wq, &md->work);
 662}
 663
 664/*
 665 * Everyone (including functions in this file), should use this
 666 * function to access the md->map field, and make sure they call
 667 * dm_put_live_table() when finished.
 668 */
 669struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 670{
 671	*srcu_idx = srcu_read_lock(&md->io_barrier);
 672
 673	return srcu_dereference(md->map, &md->io_barrier);
 674}
 675
 676void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 677{
 678	srcu_read_unlock(&md->io_barrier, srcu_idx);
 679}
 680
 681void dm_sync_table(struct mapped_device *md)
 682{
 683	synchronize_srcu(&md->io_barrier);
 684	synchronize_rcu_expedited();
 685}
 686
 687/*
 688 * A fast alternative to dm_get_live_table/dm_put_live_table.
 689 * The caller must not block between these two functions.
 690 */
 691static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 692{
 693	rcu_read_lock();
 694	return rcu_dereference(md->map);
 695}
 696
 697static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 698{
 699	rcu_read_unlock();
 700}
 701
 702static char *_dm_claim_ptr = "I belong to device-mapper";
 703
 704/*
 705 * Open a table device so we can use it as a map destination.
 706 */
 707static int open_table_device(struct table_device *td, dev_t dev,
 708			     struct mapped_device *md)
 709{
 
 710	struct block_device *bdev;
 711
 712	int r;
 713
 714	BUG_ON(td->dm_dev.bdev);
 715
 716	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 717	if (IS_ERR(bdev))
 718		return PTR_ERR(bdev);
 719
 720	r = bd_link_disk_holder(bdev, dm_disk(md));
 721	if (r) {
 722		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 723		return r;
 724	}
 725
 726	td->dm_dev.bdev = bdev;
 727	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 728	return 0;
 729}
 730
 731/*
 732 * Close a table device that we've been using.
 733 */
 734static void close_table_device(struct table_device *td, struct mapped_device *md)
 735{
 736	if (!td->dm_dev.bdev)
 737		return;
 738
 739	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 740	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 741	put_dax(td->dm_dev.dax_dev);
 742	td->dm_dev.bdev = NULL;
 743	td->dm_dev.dax_dev = NULL;
 744}
 745
 746static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 747					      fmode_t mode) {
 748	struct table_device *td;
 749
 750	list_for_each_entry(td, l, list)
 751		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 752			return td;
 753
 754	return NULL;
 755}
 756
 757int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 758			struct dm_dev **result) {
 759	int r;
 760	struct table_device *td;
 761
 762	mutex_lock(&md->table_devices_lock);
 763	td = find_table_device(&md->table_devices, dev, mode);
 764	if (!td) {
 765		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 766		if (!td) {
 767			mutex_unlock(&md->table_devices_lock);
 768			return -ENOMEM;
 769		}
 770
 771		td->dm_dev.mode = mode;
 772		td->dm_dev.bdev = NULL;
 773
 774		if ((r = open_table_device(td, dev, md))) {
 775			mutex_unlock(&md->table_devices_lock);
 776			kfree(td);
 777			return r;
 778		}
 779
 780		format_dev_t(td->dm_dev.name, dev);
 781
 782		refcount_set(&td->count, 1);
 783		list_add(&td->list, &md->table_devices);
 784	} else {
 785		refcount_inc(&td->count);
 786	}
 
 787	mutex_unlock(&md->table_devices_lock);
 788
 789	*result = &td->dm_dev;
 790	return 0;
 791}
 792EXPORT_SYMBOL_GPL(dm_get_table_device);
 793
 794void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 795{
 796	struct table_device *td = container_of(d, struct table_device, dm_dev);
 797
 798	mutex_lock(&md->table_devices_lock);
 799	if (refcount_dec_and_test(&td->count)) {
 800		close_table_device(td, md);
 801		list_del(&td->list);
 802		kfree(td);
 803	}
 804	mutex_unlock(&md->table_devices_lock);
 805}
 806EXPORT_SYMBOL(dm_put_table_device);
 807
 808static void free_table_devices(struct list_head *devices)
 809{
 810	struct list_head *tmp, *next;
 811
 812	list_for_each_safe(tmp, next, devices) {
 813		struct table_device *td = list_entry(tmp, struct table_device, list);
 814
 815		DMWARN("dm_destroy: %s still exists with %d references",
 816		       td->dm_dev.name, refcount_read(&td->count));
 817		kfree(td);
 818	}
 819}
 820
 821/*
 822 * Get the geometry associated with a dm device
 823 */
 824int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 825{
 826	*geo = md->geometry;
 827
 828	return 0;
 829}
 830
 831/*
 832 * Set the geometry of a device.
 833 */
 834int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 835{
 836	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 837
 838	if (geo->start > sz) {
 839		DMWARN("Start sector is beyond the geometry limits.");
 840		return -EINVAL;
 841	}
 842
 843	md->geometry = *geo;
 844
 845	return 0;
 846}
 847
 
 
 
 
 
 
 
 
 
 848static int __noflush_suspending(struct mapped_device *md)
 849{
 850	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 851}
 852
 853/*
 854 * Decrements the number of outstanding ios that a bio has been
 855 * cloned into, completing the original io if necc.
 856 */
 857static void dec_pending(struct dm_io *io, blk_status_t error)
 858{
 859	unsigned long flags;
 860	blk_status_t io_error;
 861	struct bio *bio;
 862	struct mapped_device *md = io->md;
 863
 864	/* Push-back supersedes any I/O errors */
 865	if (unlikely(error)) {
 866		spin_lock_irqsave(&io->endio_lock, flags);
 867		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 868			io->status = error;
 869		spin_unlock_irqrestore(&io->endio_lock, flags);
 870	}
 871
 872	if (atomic_dec_and_test(&io->io_count)) {
 873		if (io->status == BLK_STS_DM_REQUEUE) {
 874			/*
 875			 * Target requested pushing back the I/O.
 876			 */
 877			spin_lock_irqsave(&md->deferred_lock, flags);
 878			if (__noflush_suspending(md))
 879				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 880				bio_list_add_head(&md->deferred, io->orig_bio);
 881			else
 882				/* noflush suspend was interrupted. */
 883				io->status = BLK_STS_IOERR;
 884			spin_unlock_irqrestore(&md->deferred_lock, flags);
 885		}
 886
 887		io_error = io->status;
 888		bio = io->orig_bio;
 889		end_io_acct(io);
 890		free_io(md, io);
 891
 892		if (io_error == BLK_STS_DM_REQUEUE)
 893			return;
 894
 895		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 896			/*
 897			 * Preflush done for flush with data, reissue
 898			 * without REQ_PREFLUSH.
 899			 */
 900			bio->bi_opf &= ~REQ_PREFLUSH;
 901			queue_io(md, bio);
 902		} else {
 903			/* done with normal IO or empty flush */
 904			if (io_error)
 905				bio->bi_status = io_error;
 906			bio_endio(bio);
 907		}
 908	}
 909}
 910
 911void disable_write_same(struct mapped_device *md)
 912{
 913	struct queue_limits *limits = dm_get_queue_limits(md);
 914
 915	/* device doesn't really support WRITE SAME, disable it */
 916	limits->max_write_same_sectors = 0;
 917}
 918
 919void disable_write_zeroes(struct mapped_device *md)
 920{
 921	struct queue_limits *limits = dm_get_queue_limits(md);
 922
 923	/* device doesn't really support WRITE ZEROES, disable it */
 924	limits->max_write_zeroes_sectors = 0;
 925}
 926
 927static void clone_endio(struct bio *bio)
 928{
 929	blk_status_t error = bio->bi_status;
 
 930	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 931	struct dm_io *io = tio->io;
 932	struct mapped_device *md = tio->io->md;
 933	dm_endio_fn endio = tio->ti->type->end_io;
 934
 935	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 936		if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 937		    !bio->bi_disk->queue->limits.max_write_same_sectors)
 938			disable_write_same(md);
 939		if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 940		    !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 941			disable_write_zeroes(md);
 942	}
 943
 944	if (endio) {
 945		int r = endio(tio->ti, bio, &error);
 946		switch (r) {
 947		case DM_ENDIO_REQUEUE:
 948			error = BLK_STS_DM_REQUEUE;
 949			/*FALLTHRU*/
 950		case DM_ENDIO_DONE:
 951			break;
 952		case DM_ENDIO_INCOMPLETE:
 953			/* The target will handle the io */
 954			return;
 955		default:
 956			DMWARN("unimplemented target endio return value: %d", r);
 957			BUG();
 958		}
 959	}
 960
 
 
 
 
 961	free_tio(tio);
 962	dec_pending(io, error);
 963}
 964
 965/*
 966 * Return maximum size of I/O possible at the supplied sector up to the current
 967 * target boundary.
 968 */
 969static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 970{
 971	sector_t target_offset = dm_target_offset(ti, sector);
 972
 973	return ti->len - target_offset;
 974}
 975
 976static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 977{
 978	sector_t len = max_io_len_target_boundary(sector, ti);
 979	sector_t offset, max_len;
 980
 981	/*
 982	 * Does the target need to split even further?
 983	 */
 984	if (ti->max_io_len) {
 985		offset = dm_target_offset(ti, sector);
 986		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 987			max_len = sector_div(offset, ti->max_io_len);
 988		else
 989			max_len = offset & (ti->max_io_len - 1);
 990		max_len = ti->max_io_len - max_len;
 991
 992		if (len > max_len)
 993			len = max_len;
 994	}
 995
 996	return len;
 997}
 998
 999int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1000{
1001	if (len > UINT_MAX) {
1002		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1003		      (unsigned long long)len, UINT_MAX);
1004		ti->error = "Maximum size of target IO is too large";
1005		return -EINVAL;
1006	}
1007
1008	/*
1009	 * BIO based queue uses its own splitting. When multipage bvecs
1010	 * is switched on, size of the incoming bio may be too big to
1011	 * be handled in some targets, such as crypt.
1012	 *
1013	 * When these targets are ready for the big bio, we can remove
1014	 * the limit.
1015	 */
1016	ti->max_io_len = min_t(uint32_t, len, BIO_MAX_PAGES * PAGE_SIZE);
1017
1018	return 0;
1019}
1020EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1021
1022static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1023						sector_t sector, int *srcu_idx)
1024	__acquires(md->io_barrier)
1025{
 
1026	struct dm_table *map;
1027	struct dm_target *ti;
 
 
1028
1029	map = dm_get_live_table(md, srcu_idx);
1030	if (!map)
1031		return NULL;
1032
1033	ti = dm_table_find_target(map, sector);
1034	if (!dm_target_is_valid(ti))
1035		return NULL;
1036
1037	return ti;
1038}
1039
1040static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1041				 long nr_pages, void **kaddr, pfn_t *pfn)
1042{
1043	struct mapped_device *md = dax_get_private(dax_dev);
1044	sector_t sector = pgoff * PAGE_SECTORS;
1045	struct dm_target *ti;
1046	long len, ret = -EIO;
1047	int srcu_idx;
1048
1049	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1050
1051	if (!ti)
1052		goto out;
1053	if (!ti->type->direct_access)
1054		goto out;
1055	len = max_io_len(sector, ti) / PAGE_SECTORS;
1056	if (len < 1)
1057		goto out;
1058	nr_pages = min(len, nr_pages);
1059	if (ti->type->direct_access)
1060		ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1061
1062 out:
1063	dm_put_live_table(md, srcu_idx);
1064
1065	return ret;
1066}
1067
1068static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1069				    void *addr, size_t bytes, struct iov_iter *i)
1070{
1071	struct mapped_device *md = dax_get_private(dax_dev);
1072	sector_t sector = pgoff * PAGE_SECTORS;
1073	struct dm_target *ti;
1074	long ret = 0;
1075	int srcu_idx;
1076
1077	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1078
1079	if (!ti)
1080		goto out;
1081	if (!ti->type->dax_copy_from_iter) {
1082		ret = copy_from_iter(addr, bytes, i);
1083		goto out;
1084	}
1085	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1086 out:
1087	dm_put_live_table(md, srcu_idx);
1088
1089	return ret;
1090}
1091
1092/*
1093 * A target may call dm_accept_partial_bio only from the map routine.  It is
1094 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
1095 *
1096 * dm_accept_partial_bio informs the dm that the target only wants to process
1097 * additional n_sectors sectors of the bio and the rest of the data should be
1098 * sent in a next bio.
1099 *
1100 * A diagram that explains the arithmetics:
1101 * +--------------------+---------------+-------+
1102 * |         1          |       2       |   3   |
1103 * +--------------------+---------------+-------+
1104 *
1105 * <-------------- *tio->len_ptr --------------->
1106 *                      <------- bi_size ------->
1107 *                      <-- n_sectors -->
1108 *
1109 * Region 1 was already iterated over with bio_advance or similar function.
1110 *	(it may be empty if the target doesn't use bio_advance)
1111 * Region 2 is the remaining bio size that the target wants to process.
1112 *	(it may be empty if region 1 is non-empty, although there is no reason
1113 *	 to make it empty)
1114 * The target requires that region 3 is to be sent in the next bio.
1115 *
1116 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1117 * the partially processed part (the sum of regions 1+2) must be the same for all
1118 * copies of the bio.
1119 */
1120void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1121{
1122	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1123	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1124	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1125	BUG_ON(bi_size > *tio->len_ptr);
1126	BUG_ON(n_sectors > bi_size);
1127	*tio->len_ptr -= bi_size - n_sectors;
1128	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1129}
1130EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1131
1132/*
1133 * The zone descriptors obtained with a zone report indicate
1134 * zone positions within the target device. The zone descriptors
1135 * must be remapped to match their position within the dm device.
1136 * A target may call dm_remap_zone_report after completion of a
1137 * REQ_OP_ZONE_REPORT bio to remap the zone descriptors obtained
1138 * from the target device mapping to the dm device.
1139 */
1140void dm_remap_zone_report(struct dm_target *ti, struct bio *bio, sector_t start)
 
 
 
 
 
1141{
1142#ifdef CONFIG_BLK_DEV_ZONED
1143	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1144	struct bio *report_bio = tio->io->orig_bio;
1145	struct blk_zone_report_hdr *hdr = NULL;
1146	struct blk_zone *zone;
1147	unsigned int nr_rep = 0;
1148	unsigned int ofst;
1149	struct bio_vec bvec;
1150	struct bvec_iter iter;
1151	void *addr;
1152
1153	if (bio->bi_status)
1154		return;
1155
1156	/*
1157	 * Remap the start sector of the reported zones. For sequential zones,
1158	 * also remap the write pointer position.
1159	 */
1160	bio_for_each_segment(bvec, report_bio, iter) {
1161		addr = kmap_atomic(bvec.bv_page);
 
 
 
 
1162
1163		/* Remember the report header in the first page */
1164		if (!hdr) {
1165			hdr = addr;
1166			ofst = sizeof(struct blk_zone_report_hdr);
1167		} else
1168			ofst = 0;
1169
1170		/* Set zones start sector */
1171		while (hdr->nr_zones && ofst < bvec.bv_len) {
1172			zone = addr + ofst;
1173			if (zone->start >= start + ti->len) {
1174				hdr->nr_zones = 0;
1175				break;
1176			}
1177			zone->start = zone->start + ti->begin - start;
1178			if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
1179				if (zone->cond == BLK_ZONE_COND_FULL)
1180					zone->wp = zone->start + zone->len;
1181				else if (zone->cond == BLK_ZONE_COND_EMPTY)
1182					zone->wp = zone->start;
1183				else
1184					zone->wp = zone->wp + ti->begin - start;
1185			}
1186			ofst += sizeof(struct blk_zone);
1187			hdr->nr_zones--;
1188			nr_rep++;
1189		}
1190
1191		if (addr != hdr)
1192			kunmap_atomic(addr);
1193
1194		if (!hdr->nr_zones)
1195			break;
1196	}
 
1197
1198	if (hdr) {
1199		hdr->nr_zones = nr_rep;
1200		kunmap_atomic(hdr);
1201	}
 
 
1202
1203	bio_advance(report_bio, report_bio->bi_iter.bi_size);
1204
1205#else /* !CONFIG_BLK_DEV_ZONED */
1206	bio->bi_status = BLK_STS_NOTSUPP;
1207#endif
1208}
1209EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1210
1211static blk_qc_t __map_bio(struct dm_target_io *tio)
1212{
1213	int r;
1214	sector_t sector;
 
1215	struct bio *clone = &tio->clone;
1216	struct dm_io *io = tio->io;
1217	struct mapped_device *md = io->md;
1218	struct dm_target *ti = tio->ti;
1219	blk_qc_t ret = BLK_QC_T_NONE;
1220
1221	clone->bi_end_io = clone_endio;
1222
1223	/*
1224	 * Map the clone.  If r == 0 we don't need to do
1225	 * anything, the target has assumed ownership of
1226	 * this io.
1227	 */
1228	atomic_inc(&io->io_count);
1229	sector = clone->bi_iter.bi_sector;
1230
 
1231	r = ti->type->map(ti, clone);
1232	switch (r) {
1233	case DM_MAPIO_SUBMITTED:
1234		break;
1235	case DM_MAPIO_REMAPPED:
1236		/* the bio has been remapped so dispatch it */
1237		trace_block_bio_remap(clone->bi_disk->queue, clone,
1238				      bio_dev(io->orig_bio), sector);
1239		if (md->type == DM_TYPE_NVME_BIO_BASED)
1240			ret = direct_make_request(clone);
1241		else
1242			ret = generic_make_request(clone);
1243		break;
1244	case DM_MAPIO_KILL:
1245		free_tio(tio);
1246		dec_pending(io, BLK_STS_IOERR);
1247		break;
1248	case DM_MAPIO_REQUEUE:
1249		free_tio(tio);
1250		dec_pending(io, BLK_STS_DM_REQUEUE);
1251		break;
1252	default:
1253		DMWARN("unimplemented target map return value: %d", r);
1254		BUG();
1255	}
 
1256
1257	return ret;
1258}
 
 
 
 
 
 
1259
1260static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1261{
1262	bio->bi_iter.bi_sector = sector;
1263	bio->bi_iter.bi_size = to_bytes(len);
1264}
1265
1266/*
1267 * Creates a bio that consists of range of complete bvecs.
1268 */
1269static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1270		     sector_t sector, unsigned len)
1271{
1272	struct bio *clone = &tio->clone;
1273
1274	__bio_clone_fast(clone, bio);
1275
1276	if (unlikely(bio_integrity(bio) != NULL)) {
1277		int r;
1278
1279		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1280			     !dm_target_passes_integrity(tio->ti->type))) {
1281			DMWARN("%s: the target %s doesn't support integrity data.",
1282				dm_device_name(tio->io->md),
1283				tio->ti->type->name);
1284			return -EIO;
1285		}
1286
1287		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1288		if (r < 0)
1289			return r;
1290	}
1291
1292	if (bio_op(bio) != REQ_OP_ZONE_REPORT)
1293		bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1294	clone->bi_iter.bi_size = to_bytes(len);
1295
1296	if (unlikely(bio_integrity(bio) != NULL))
1297		bio_integrity_trim(clone);
1298
1299	return 0;
1300}
1301
1302static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1303				struct dm_target *ti, unsigned num_bios)
 
1304{
1305	struct dm_target_io *tio;
1306	int try;
1307
1308	if (!num_bios)
1309		return;
1310
1311	if (num_bios == 1) {
1312		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1313		bio_list_add(blist, &tio->clone);
1314		return;
1315	}
1316
1317	for (try = 0; try < 2; try++) {
1318		int bio_nr;
1319		struct bio *bio;
1320
1321		if (try)
1322			mutex_lock(&ci->io->md->table_devices_lock);
1323		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1324			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1325			if (!tio)
1326				break;
1327
1328			bio_list_add(blist, &tio->clone);
1329		}
1330		if (try)
1331			mutex_unlock(&ci->io->md->table_devices_lock);
1332		if (bio_nr == num_bios)
1333			return;
1334
1335		while ((bio = bio_list_pop(blist))) {
1336			tio = container_of(bio, struct dm_target_io, clone);
1337			free_tio(tio);
1338		}
1339	}
1340}
1341
1342static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1343					   struct dm_target_io *tio, unsigned *len)
 
1344{
 
1345	struct bio *clone = &tio->clone;
1346
1347	tio->len_ptr = len;
1348
1349	__bio_clone_fast(clone, ci->bio);
1350	if (len)
1351		bio_setup_sector(clone, ci->sector, *len);
1352
1353	return __map_bio(tio);
1354}
1355
1356static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1357				  unsigned num_bios, unsigned *len)
1358{
1359	struct bio_list blist = BIO_EMPTY_LIST;
1360	struct bio *bio;
1361	struct dm_target_io *tio;
1362
1363	alloc_multiple_bios(&blist, ci, ti, num_bios);
1364
1365	while ((bio = bio_list_pop(&blist))) {
1366		tio = container_of(bio, struct dm_target_io, clone);
1367		(void) __clone_and_map_simple_bio(ci, tio, len);
1368	}
1369}
1370
1371static int __send_empty_flush(struct clone_info *ci)
1372{
1373	unsigned target_nr = 0;
1374	struct dm_target *ti;
1375
1376	BUG_ON(bio_has_data(ci->bio));
1377	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1378		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1379
1380	return 0;
1381}
1382
1383static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1384				    sector_t sector, unsigned *len)
1385{
1386	struct bio *bio = ci->bio;
1387	struct dm_target_io *tio;
1388	int r;
 
 
 
 
 
 
 
 
1389
1390	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1391	tio->len_ptr = len;
1392	r = clone_bio(tio, bio, sector, *len);
1393	if (r < 0) {
1394		free_tio(tio);
1395		return r;
 
 
 
1396	}
1397	(void) __map_bio(tio);
1398
1399	return 0;
1400}
1401
1402typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1403
1404static unsigned get_num_discard_bios(struct dm_target *ti)
1405{
1406	return ti->num_discard_bios;
1407}
1408
1409static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1410{
1411	return ti->num_secure_erase_bios;
1412}
1413
1414static unsigned get_num_write_same_bios(struct dm_target *ti)
1415{
1416	return ti->num_write_same_bios;
1417}
1418
1419static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1420{
1421	return ti->num_write_zeroes_bios;
1422}
1423
1424typedef bool (*is_split_required_fn)(struct dm_target *ti);
1425
1426static bool is_split_required_for_discard(struct dm_target *ti)
1427{
1428	return ti->split_discard_bios;
1429}
1430
1431static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1432				       get_num_bios_fn get_num_bios,
1433				       is_split_required_fn is_split_required)
1434{
 
1435	unsigned len;
1436	unsigned num_bios;
1437
1438	/*
1439	 * Even though the device advertised support for this type of
1440	 * request, that does not mean every target supports it, and
1441	 * reconfiguration might also have changed that since the
1442	 * check was performed.
1443	 */
1444	num_bios = get_num_bios ? get_num_bios(ti) : 0;
1445	if (!num_bios)
1446		return -EOPNOTSUPP;
 
 
 
 
 
1447
1448	if (is_split_required && !is_split_required(ti))
1449		len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1450	else
1451		len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1452
1453	__send_duplicate_bios(ci, ti, num_bios, &len);
1454
1455	ci->sector += len;
1456	ci->sector_count -= len;
1457
1458	return 0;
1459}
1460
1461static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1462{
1463	return __send_changing_extent_only(ci, ti, get_num_discard_bios,
1464					   is_split_required_for_discard);
1465}
1466
1467static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1468{
1469	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios, NULL);
1470}
1471
1472static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1473{
1474	return __send_changing_extent_only(ci, ti, get_num_write_same_bios, NULL);
1475}
1476
1477static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1478{
1479	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios, NULL);
1480}
1481
1482static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1483				  int *result)
1484{
1485	struct bio *bio = ci->bio;
1486
1487	if (bio_op(bio) == REQ_OP_DISCARD)
1488		*result = __send_discard(ci, ti);
1489	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1490		*result = __send_secure_erase(ci, ti);
1491	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1492		*result = __send_write_same(ci, ti);
1493	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1494		*result = __send_write_zeroes(ci, ti);
1495	else
1496		return false;
1497
1498	return true;
1499}
1500
1501/*
1502 * Select the correct strategy for processing a non-flush bio.
1503 */
1504static int __split_and_process_non_flush(struct clone_info *ci)
1505{
1506	struct bio *bio = ci->bio;
1507	struct dm_target *ti;
1508	unsigned len;
1509	int r;
1510
 
 
 
 
 
1511	ti = dm_table_find_target(ci->map, ci->sector);
1512	if (!dm_target_is_valid(ti))
1513		return -EIO;
1514
1515	if (unlikely(__process_abnormal_io(ci, ti, &r)))
1516		return r;
1517
1518	if (bio_op(bio) == REQ_OP_ZONE_REPORT)
1519		len = ci->sector_count;
1520	else
1521		len = min_t(sector_t, max_io_len(ci->sector, ti),
1522			    ci->sector_count);
1523
1524	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1525	if (r < 0)
1526		return r;
1527
1528	ci->sector += len;
1529	ci->sector_count -= len;
1530
1531	return 0;
1532}
1533
1534static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1535			    struct dm_table *map, struct bio *bio)
1536{
1537	ci->map = map;
1538	ci->io = alloc_io(md, bio);
1539	ci->sector = bio->bi_iter.bi_sector;
1540}
1541
1542/*
1543 * Entry point to split a bio into clones and submit them to the targets.
1544 */
1545static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1546					struct dm_table *map, struct bio *bio)
1547{
1548	struct clone_info ci;
1549	blk_qc_t ret = BLK_QC_T_NONE;
1550	int error = 0;
1551
1552	if (unlikely(!map)) {
1553		bio_io_error(bio);
1554		return ret;
1555	}
1556
1557	init_clone_info(&ci, md, map, bio);
 
 
 
 
 
 
 
 
 
 
1558
1559	if (bio->bi_opf & REQ_PREFLUSH) {
1560		ci.bio = &ci.io->md->flush_bio;
1561		ci.sector_count = 0;
1562		error = __send_empty_flush(&ci);
1563		/* dec_pending submits any data associated with flush */
1564	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1565		ci.bio = bio;
1566		ci.sector_count = 0;
1567		error = __split_and_process_non_flush(&ci);
1568	} else {
1569		ci.bio = bio;
1570		ci.sector_count = bio_sectors(bio);
1571		while (ci.sector_count && !error) {
1572			error = __split_and_process_non_flush(&ci);
1573			if (current->bio_list && ci.sector_count && !error) {
1574				/*
1575				 * Remainder must be passed to generic_make_request()
1576				 * so that it gets handled *after* bios already submitted
1577				 * have been completely processed.
1578				 * We take a clone of the original to store in
1579				 * ci.io->orig_bio to be used by end_io_acct() and
1580				 * for dec_pending to use for completion handling.
1581				 * As this path is not used for REQ_OP_ZONE_REPORT,
1582				 * the usage of io->orig_bio in dm_remap_zone_report()
1583				 * won't be affected by this reassignment.
1584				 */
1585				struct bio *b = bio_clone_bioset(bio, GFP_NOIO,
1586								 md->queue->bio_split);
1587				ci.io->orig_bio = b;
1588				bio_advance(bio, (bio_sectors(bio) - ci.sector_count) << 9);
1589				bio_chain(b, bio);
1590				ret = generic_make_request(bio);
1591				break;
1592			}
1593		}
1594	}
1595
1596	/* drop the extra reference count */
1597	dec_pending(ci.io, errno_to_blk_status(error));
1598	return ret;
1599}
 
 
 
1600
1601/*
1602 * Optimized variant of __split_and_process_bio that leverages the
1603 * fact that targets that use it do _not_ have a need to split bios.
1604 */
1605static blk_qc_t __process_bio(struct mapped_device *md,
1606			      struct dm_table *map, struct bio *bio)
1607{
1608	struct clone_info ci;
1609	blk_qc_t ret = BLK_QC_T_NONE;
1610	int error = 0;
1611
1612	if (unlikely(!map)) {
1613		bio_io_error(bio);
1614		return ret;
1615	}
1616
1617	init_clone_info(&ci, md, map, bio);
1618
1619	if (bio->bi_opf & REQ_PREFLUSH) {
1620		ci.bio = &ci.io->md->flush_bio;
1621		ci.sector_count = 0;
1622		error = __send_empty_flush(&ci);
1623		/* dec_pending submits any data associated with flush */
1624	} else {
1625		struct dm_target *ti = md->immutable_target;
1626		struct dm_target_io *tio;
1627
1628		/*
1629		 * Defend against IO still getting in during teardown
1630		 * - as was seen for a time with nvme-fcloop
1631		 */
1632		if (unlikely(WARN_ON_ONCE(!ti || !dm_target_is_valid(ti)))) {
1633			error = -EIO;
1634			goto out;
1635		}
1636
1637		ci.bio = bio;
1638		ci.sector_count = bio_sectors(bio);
1639		if (unlikely(__process_abnormal_io(&ci, ti, &error)))
1640			goto out;
1641
1642		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1643		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1644	}
1645out:
1646	/* drop the extra reference count */
1647	dec_pending(ci.io, errno_to_blk_status(error));
1648	return ret;
1649}
1650
1651typedef blk_qc_t (process_bio_fn)(struct mapped_device *, struct dm_table *, struct bio *);
1652
1653static blk_qc_t __dm_make_request(struct request_queue *q, struct bio *bio,
1654				  process_bio_fn process_bio)
1655{
 
1656	struct mapped_device *md = q->queuedata;
1657	blk_qc_t ret = BLK_QC_T_NONE;
1658	int srcu_idx;
1659	struct dm_table *map;
1660
1661	map = dm_get_live_table(md, &srcu_idx);
1662
 
 
1663	/* if we're suspended, we have to queue this io for later */
1664	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1665		dm_put_live_table(md, srcu_idx);
1666
1667		if (!(bio->bi_opf & REQ_RAHEAD))
1668			queue_io(md, bio);
1669		else
1670			bio_io_error(bio);
1671		return ret;
1672	}
1673
1674	ret = process_bio(md, map, bio);
1675
1676	dm_put_live_table(md, srcu_idx);
1677	return ret;
1678}
1679
1680/*
1681 * The request function that remaps the bio to one target and
1682 * splits off any remainder.
1683 */
1684static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1685{
1686	return __dm_make_request(q, bio, __split_and_process_bio);
1687}
1688
1689static blk_qc_t dm_make_request_nvme(struct request_queue *q, struct bio *bio)
1690{
1691	return __dm_make_request(q, bio, __process_bio);
1692}
1693
1694static int dm_any_congested(void *congested_data, int bdi_bits)
1695{
1696	int r = bdi_bits;
1697	struct mapped_device *md = congested_data;
1698	struct dm_table *map;
1699
1700	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1701		if (dm_request_based(md)) {
1702			/*
1703			 * With request-based DM we only need to check the
1704			 * top-level queue for congestion.
1705			 */
1706			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1707		} else {
1708			map = dm_get_live_table_fast(md);
1709			if (map)
1710				r = dm_table_any_congested(map, bdi_bits);
1711			dm_put_live_table_fast(md);
1712		}
1713	}
1714
1715	return r;
1716}
1717
1718/*-----------------------------------------------------------------
1719 * An IDR is used to keep track of allocated minor numbers.
1720 *---------------------------------------------------------------*/
1721static void free_minor(int minor)
1722{
1723	spin_lock(&_minor_lock);
1724	idr_remove(&_minor_idr, minor);
1725	spin_unlock(&_minor_lock);
1726}
1727
1728/*
1729 * See if the device with a specific minor # is free.
1730 */
1731static int specific_minor(int minor)
1732{
1733	int r;
1734
1735	if (minor >= (1 << MINORBITS))
1736		return -EINVAL;
1737
1738	idr_preload(GFP_KERNEL);
1739	spin_lock(&_minor_lock);
1740
1741	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1742
1743	spin_unlock(&_minor_lock);
1744	idr_preload_end();
1745	if (r < 0)
1746		return r == -ENOSPC ? -EBUSY : r;
1747	return 0;
1748}
1749
1750static int next_free_minor(int *minor)
1751{
1752	int r;
1753
1754	idr_preload(GFP_KERNEL);
1755	spin_lock(&_minor_lock);
1756
1757	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1758
1759	spin_unlock(&_minor_lock);
1760	idr_preload_end();
1761	if (r < 0)
1762		return r;
1763	*minor = r;
1764	return 0;
1765}
1766
1767static const struct block_device_operations dm_blk_dops;
1768static const struct dax_operations dm_dax_ops;
1769
1770static void dm_wq_work(struct work_struct *work);
1771
1772static void dm_init_normal_md_queue(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1773{
1774	md->use_blk_mq = false;
 
1775
1776	/*
1777	 * Initialize aspects of queue that aren't relevant for blk-mq
1778	 */
1779	md->queue->backing_dev_info->congested_fn = dm_any_congested;
 
1780}
1781
1782static void cleanup_mapped_device(struct mapped_device *md)
1783{
1784	if (md->wq)
1785		destroy_workqueue(md->wq);
1786	if (md->kworker_task)
1787		kthread_stop(md->kworker_task);
 
 
1788	if (md->bs)
1789		bioset_free(md->bs);
1790	if (md->io_bs)
1791		bioset_free(md->io_bs);
1792
1793	if (md->dax_dev) {
1794		kill_dax(md->dax_dev);
1795		put_dax(md->dax_dev);
1796		md->dax_dev = NULL;
1797	}
1798
1799	if (md->disk) {
1800		spin_lock(&_minor_lock);
1801		md->disk->private_data = NULL;
1802		spin_unlock(&_minor_lock);
1803		del_gendisk(md->disk);
1804		put_disk(md->disk);
1805	}
1806
1807	if (md->queue)
1808		blk_cleanup_queue(md->queue);
1809
1810	cleanup_srcu_struct(&md->io_barrier);
1811
1812	if (md->bdev) {
1813		bdput(md->bdev);
1814		md->bdev = NULL;
1815	}
1816
1817	mutex_destroy(&md->suspend_lock);
1818	mutex_destroy(&md->type_lock);
1819	mutex_destroy(&md->table_devices_lock);
1820
1821	dm_mq_cleanup_mapped_device(md);
1822}
1823
1824/*
1825 * Allocate and initialise a blank device with a given minor.
1826 */
1827static struct mapped_device *alloc_dev(int minor)
1828{
1829	int r, numa_node_id = dm_get_numa_node();
1830	struct dax_device *dax_dev = NULL;
1831	struct mapped_device *md;
1832	void *old_md;
1833
1834	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1835	if (!md) {
1836		DMWARN("unable to allocate device, out of memory.");
1837		return NULL;
1838	}
1839
1840	if (!try_module_get(THIS_MODULE))
1841		goto bad_module_get;
1842
1843	/* get a minor number for the dev */
1844	if (minor == DM_ANY_MINOR)
1845		r = next_free_minor(&minor);
1846	else
1847		r = specific_minor(minor);
1848	if (r < 0)
1849		goto bad_minor;
1850
1851	r = init_srcu_struct(&md->io_barrier);
1852	if (r < 0)
1853		goto bad_io_barrier;
1854
1855	md->numa_node_id = numa_node_id;
1856	md->use_blk_mq = dm_use_blk_mq_default();
1857	md->init_tio_pdu = false;
1858	md->type = DM_TYPE_NONE;
1859	mutex_init(&md->suspend_lock);
1860	mutex_init(&md->type_lock);
1861	mutex_init(&md->table_devices_lock);
1862	spin_lock_init(&md->deferred_lock);
1863	atomic_set(&md->holders, 1);
1864	atomic_set(&md->open_count, 0);
1865	atomic_set(&md->event_nr, 0);
1866	atomic_set(&md->uevent_seq, 0);
1867	INIT_LIST_HEAD(&md->uevent_list);
1868	INIT_LIST_HEAD(&md->table_devices);
1869	spin_lock_init(&md->uevent_lock);
1870
1871	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id, NULL);
1872	if (!md->queue)
1873		goto bad;
1874	md->queue->queuedata = md;
1875	md->queue->backing_dev_info->congested_data = md;
1876
1877	md->disk = alloc_disk_node(1, md->numa_node_id);
 
 
1878	if (!md->disk)
1879		goto bad;
1880
1881	atomic_set(&md->pending[0], 0);
1882	atomic_set(&md->pending[1], 0);
1883	init_waitqueue_head(&md->wait);
1884	INIT_WORK(&md->work, dm_wq_work);
1885	init_waitqueue_head(&md->eventq);
1886	init_completion(&md->kobj_holder.completion);
1887	md->kworker_task = NULL;
1888
1889	md->disk->major = _major;
1890	md->disk->first_minor = minor;
1891	md->disk->fops = &dm_blk_dops;
1892	md->disk->queue = md->queue;
1893	md->disk->private_data = md;
1894	sprintf(md->disk->disk_name, "dm-%d", minor);
1895
1896	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1897		dax_dev = alloc_dax(md, md->disk->disk_name, &dm_dax_ops);
1898		if (!dax_dev)
1899			goto bad;
1900	}
1901	md->dax_dev = dax_dev;
1902
1903	add_disk_no_queue_reg(md->disk);
1904	format_dev_t(md->name, MKDEV(_major, minor));
1905
1906	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1907	if (!md->wq)
1908		goto bad;
1909
1910	md->bdev = bdget_disk(md->disk, 0);
1911	if (!md->bdev)
1912		goto bad;
1913
1914	bio_init(&md->flush_bio, NULL, 0);
1915	bio_set_dev(&md->flush_bio, md->bdev);
1916	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1917
1918	dm_stats_init(&md->stats);
1919
1920	/* Populate the mapping, nobody knows we exist yet */
1921	spin_lock(&_minor_lock);
1922	old_md = idr_replace(&_minor_idr, md, minor);
1923	spin_unlock(&_minor_lock);
1924
1925	BUG_ON(old_md != MINOR_ALLOCED);
1926
1927	return md;
1928
1929bad:
1930	cleanup_mapped_device(md);
1931bad_io_barrier:
1932	free_minor(minor);
1933bad_minor:
1934	module_put(THIS_MODULE);
1935bad_module_get:
1936	kvfree(md);
1937	return NULL;
1938}
1939
1940static void unlock_fs(struct mapped_device *md);
1941
1942static void free_dev(struct mapped_device *md)
1943{
1944	int minor = MINOR(disk_devt(md->disk));
1945
1946	unlock_fs(md);
1947
1948	cleanup_mapped_device(md);
1949
1950	free_table_devices(&md->table_devices);
1951	dm_stats_cleanup(&md->stats);
1952	free_minor(minor);
1953
1954	module_put(THIS_MODULE);
1955	kvfree(md);
1956}
1957
1958static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1959{
1960	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1961
1962	if (dm_table_bio_based(t)) {
1963		/*
1964		 * The md may already have mempools that need changing.
1965		 * If so, reload bioset because front_pad may have changed
1966		 * because a different table was loaded.
1967		 */
1968		if (md->bs) {
1969			bioset_free(md->bs);
1970			md->bs = NULL;
 
1971		}
1972		if (md->io_bs) {
1973			bioset_free(md->io_bs);
1974			md->io_bs = NULL;
1975		}
1976
1977	} else if (md->bs) {
1978		/*
1979		 * There's no need to reload with request-based dm
1980		 * because the size of front_pad doesn't change.
1981		 * Note for future: If you are to reload bioset,
1982		 * prep-ed requests in the queue may refer
1983		 * to bio from the old bioset, so you must walk
1984		 * through the queue to unprep.
1985		 */
1986		goto out;
1987	}
1988
1989	BUG_ON(!p || md->bs || md->io_bs);
1990
 
 
 
 
1991	md->bs = p->bs;
1992	p->bs = NULL;
1993	md->io_bs = p->io_bs;
1994	p->io_bs = NULL;
1995out:
1996	/* mempool bind completed, no longer need any mempools in the table */
1997	dm_table_free_md_mempools(t);
1998}
1999
2000/*
2001 * Bind a table to the device.
2002 */
2003static void event_callback(void *context)
2004{
2005	unsigned long flags;
2006	LIST_HEAD(uevents);
2007	struct mapped_device *md = (struct mapped_device *) context;
2008
2009	spin_lock_irqsave(&md->uevent_lock, flags);
2010	list_splice_init(&md->uevent_list, &uevents);
2011	spin_unlock_irqrestore(&md->uevent_lock, flags);
2012
2013	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2014
2015	atomic_inc(&md->event_nr);
2016	wake_up(&md->eventq);
2017	dm_issue_global_event();
2018}
2019
2020/*
2021 * Protected by md->suspend_lock obtained by dm_swap_table().
2022 */
2023static void __set_size(struct mapped_device *md, sector_t size)
2024{
2025	lockdep_assert_held(&md->suspend_lock);
2026
2027	set_capacity(md->disk, size);
2028
2029	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2030}
2031
2032/*
2033 * Returns old map, which caller must destroy.
2034 */
2035static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2036			       struct queue_limits *limits)
2037{
2038	struct dm_table *old_map;
2039	struct request_queue *q = md->queue;
2040	bool request_based = dm_table_request_based(t);
2041	sector_t size;
2042
2043	lockdep_assert_held(&md->suspend_lock);
2044
2045	size = dm_table_get_size(t);
2046
2047	/*
2048	 * Wipe any geometry if the size of the table changed.
2049	 */
2050	if (size != dm_get_size(md))
2051		memset(&md->geometry, 0, sizeof(md->geometry));
2052
2053	__set_size(md, size);
2054
2055	dm_table_event_callback(t, event_callback, md);
2056
2057	/*
2058	 * The queue hasn't been stopped yet, if the old table type wasn't
2059	 * for request-based during suspension.  So stop it to prevent
2060	 * I/O mapping before resume.
2061	 * This must be done before setting the queue restrictions,
2062	 * because request-based dm may be run just after the setting.
2063	 */
2064	if (request_based)
2065		dm_stop_queue(q);
2066
2067	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2068		/*
2069		 * Leverage the fact that request-based DM targets and
2070		 * NVMe bio based targets are immutable singletons
2071		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2072		 *   and __process_bio.
2073		 */
2074		md->immutable_target = dm_table_get_immutable_target(t);
2075	}
2076
2077	__bind_mempools(md, t);
2078
2079	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2080	rcu_assign_pointer(md->map, (void *)t);
2081	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2082
2083	dm_table_set_restrictions(t, q, limits);
2084	if (old_map)
2085		dm_sync_table(md);
2086
2087	return old_map;
2088}
2089
2090/*
2091 * Returns unbound table for the caller to free.
2092 */
2093static struct dm_table *__unbind(struct mapped_device *md)
2094{
2095	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2096
2097	if (!map)
2098		return NULL;
2099
2100	dm_table_event_callback(map, NULL, NULL);
2101	RCU_INIT_POINTER(md->map, NULL);
2102	dm_sync_table(md);
2103
2104	return map;
2105}
2106
2107/*
2108 * Constructor for a new device.
2109 */
2110int dm_create(int minor, struct mapped_device **result)
2111{
2112	int r;
2113	struct mapped_device *md;
2114
2115	md = alloc_dev(minor);
2116	if (!md)
2117		return -ENXIO;
2118
2119	r = dm_sysfs_init(md);
2120	if (r) {
2121		free_dev(md);
2122		return r;
2123	}
2124
2125	*result = md;
2126	return 0;
2127}
2128
2129/*
2130 * Functions to manage md->type.
2131 * All are required to hold md->type_lock.
2132 */
2133void dm_lock_md_type(struct mapped_device *md)
2134{
2135	mutex_lock(&md->type_lock);
2136}
2137
2138void dm_unlock_md_type(struct mapped_device *md)
2139{
2140	mutex_unlock(&md->type_lock);
2141}
2142
2143void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2144{
2145	BUG_ON(!mutex_is_locked(&md->type_lock));
2146	md->type = type;
2147}
2148
2149enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2150{
2151	return md->type;
2152}
2153
2154struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2155{
2156	return md->immutable_target_type;
2157}
2158
2159/*
2160 * The queue_limits are only valid as long as you have a reference
2161 * count on 'md'.
2162 */
2163struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2164{
2165	BUG_ON(!atomic_read(&md->holders));
2166	return &md->queue->limits;
2167}
2168EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2169
2170/*
2171 * Setup the DM device's queue based on md's type
2172 */
2173int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2174{
2175	int r;
2176	struct queue_limits limits;
2177	enum dm_queue_mode type = dm_get_md_type(md);
2178
2179	switch (type) {
2180	case DM_TYPE_REQUEST_BASED:
2181		dm_init_normal_md_queue(md);
2182		r = dm_old_init_request_queue(md, t);
2183		if (r) {
2184			DMERR("Cannot initialize queue for request-based mapped device");
2185			return r;
2186		}
2187		break;
2188	case DM_TYPE_MQ_REQUEST_BASED:
2189		r = dm_mq_init_request_queue(md, t);
2190		if (r) {
2191			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2192			return r;
2193		}
2194		break;
2195	case DM_TYPE_BIO_BASED:
2196	case DM_TYPE_DAX_BIO_BASED:
2197		dm_init_normal_md_queue(md);
2198		blk_queue_make_request(md->queue, dm_make_request);
 
 
 
 
 
 
 
 
 
2199		break;
2200	case DM_TYPE_NVME_BIO_BASED:
2201		dm_init_normal_md_queue(md);
2202		blk_queue_make_request(md->queue, dm_make_request_nvme);
2203		break;
2204	case DM_TYPE_NONE:
2205		WARN_ON_ONCE(true);
2206		break;
2207	}
2208
2209	r = dm_calculate_queue_limits(t, &limits);
2210	if (r) {
2211		DMERR("Cannot calculate initial queue limits");
2212		return r;
2213	}
2214	dm_table_set_restrictions(t, md->queue, &limits);
2215	blk_register_queue(md->disk);
2216
2217	return 0;
2218}
2219
2220struct mapped_device *dm_get_md(dev_t dev)
2221{
2222	struct mapped_device *md;
2223	unsigned minor = MINOR(dev);
2224
2225	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2226		return NULL;
2227
2228	spin_lock(&_minor_lock);
2229
2230	md = idr_find(&_minor_idr, minor);
2231	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2232	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2233		md = NULL;
2234		goto out;
 
 
 
 
 
2235	}
2236	dm_get(md);
2237out:
2238	spin_unlock(&_minor_lock);
2239
2240	return md;
2241}
2242EXPORT_SYMBOL_GPL(dm_get_md);
2243
2244void *dm_get_mdptr(struct mapped_device *md)
2245{
2246	return md->interface_ptr;
2247}
2248
2249void dm_set_mdptr(struct mapped_device *md, void *ptr)
2250{
2251	md->interface_ptr = ptr;
2252}
2253
2254void dm_get(struct mapped_device *md)
2255{
2256	atomic_inc(&md->holders);
2257	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2258}
2259
2260int dm_hold(struct mapped_device *md)
2261{
2262	spin_lock(&_minor_lock);
2263	if (test_bit(DMF_FREEING, &md->flags)) {
2264		spin_unlock(&_minor_lock);
2265		return -EBUSY;
2266	}
2267	dm_get(md);
2268	spin_unlock(&_minor_lock);
2269	return 0;
2270}
2271EXPORT_SYMBOL_GPL(dm_hold);
2272
2273const char *dm_device_name(struct mapped_device *md)
2274{
2275	return md->name;
2276}
2277EXPORT_SYMBOL_GPL(dm_device_name);
2278
2279static void __dm_destroy(struct mapped_device *md, bool wait)
2280{
 
2281	struct dm_table *map;
2282	int srcu_idx;
2283
2284	might_sleep();
2285
2286	spin_lock(&_minor_lock);
2287	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2288	set_bit(DMF_FREEING, &md->flags);
2289	spin_unlock(&_minor_lock);
2290
2291	blk_set_queue_dying(md->queue);
2292
2293	if (dm_request_based(md) && md->kworker_task)
2294		kthread_flush_worker(&md->kworker);
2295
2296	/*
2297	 * Take suspend_lock so that presuspend and postsuspend methods
2298	 * do not race with internal suspend.
2299	 */
2300	mutex_lock(&md->suspend_lock);
2301	map = dm_get_live_table(md, &srcu_idx);
2302	if (!dm_suspended_md(md)) {
2303		dm_table_presuspend_targets(map);
2304		dm_table_postsuspend_targets(map);
2305	}
2306	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2307	dm_put_live_table(md, srcu_idx);
2308	mutex_unlock(&md->suspend_lock);
2309
2310	/*
2311	 * Rare, but there may be I/O requests still going to complete,
2312	 * for example.  Wait for all references to disappear.
2313	 * No one should increment the reference count of the mapped_device,
2314	 * after the mapped_device state becomes DMF_FREEING.
2315	 */
2316	if (wait)
2317		while (atomic_read(&md->holders))
2318			msleep(1);
2319	else if (atomic_read(&md->holders))
2320		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2321		       dm_device_name(md), atomic_read(&md->holders));
2322
2323	dm_sysfs_exit(md);
2324	dm_table_destroy(__unbind(md));
2325	free_dev(md);
2326}
2327
2328void dm_destroy(struct mapped_device *md)
2329{
2330	__dm_destroy(md, true);
2331}
2332
2333void dm_destroy_immediate(struct mapped_device *md)
2334{
2335	__dm_destroy(md, false);
2336}
2337
2338void dm_put(struct mapped_device *md)
2339{
2340	atomic_dec(&md->holders);
2341}
2342EXPORT_SYMBOL_GPL(dm_put);
2343
2344static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2345{
2346	int r = 0;
2347	DEFINE_WAIT(wait);
2348
2349	while (1) {
2350		prepare_to_wait(&md->wait, &wait, task_state);
2351
2352		if (!md_in_flight(md))
2353			break;
2354
2355		if (signal_pending_state(task_state, current)) {
2356			r = -EINTR;
2357			break;
2358		}
2359
2360		io_schedule();
2361	}
2362	finish_wait(&md->wait, &wait);
2363
2364	return r;
2365}
2366
2367/*
2368 * Process the deferred bios
2369 */
2370static void dm_wq_work(struct work_struct *work)
2371{
2372	struct mapped_device *md = container_of(work, struct mapped_device,
2373						work);
2374	struct bio *c;
2375	int srcu_idx;
2376	struct dm_table *map;
2377
2378	map = dm_get_live_table(md, &srcu_idx);
2379
2380	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2381		spin_lock_irq(&md->deferred_lock);
2382		c = bio_list_pop(&md->deferred);
2383		spin_unlock_irq(&md->deferred_lock);
2384
2385		if (!c)
2386			break;
2387
2388		if (dm_request_based(md))
2389			generic_make_request(c);
2390		else
2391			__split_and_process_bio(md, map, c);
2392	}
2393
2394	dm_put_live_table(md, srcu_idx);
2395}
2396
2397static void dm_queue_flush(struct mapped_device *md)
2398{
2399	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2400	smp_mb__after_atomic();
2401	queue_work(md->wq, &md->work);
2402}
2403
2404/*
2405 * Swap in a new table, returning the old one for the caller to destroy.
2406 */
2407struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2408{
2409	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2410	struct queue_limits limits;
2411	int r;
2412
2413	mutex_lock(&md->suspend_lock);
2414
2415	/* device must be suspended */
2416	if (!dm_suspended_md(md))
2417		goto out;
2418
2419	/*
2420	 * If the new table has no data devices, retain the existing limits.
2421	 * This helps multipath with queue_if_no_path if all paths disappear,
2422	 * then new I/O is queued based on these limits, and then some paths
2423	 * reappear.
2424	 */
2425	if (dm_table_has_no_data_devices(table)) {
2426		live_map = dm_get_live_table_fast(md);
2427		if (live_map)
2428			limits = md->queue->limits;
2429		dm_put_live_table_fast(md);
2430	}
2431
2432	if (!live_map) {
2433		r = dm_calculate_queue_limits(table, &limits);
2434		if (r) {
2435			map = ERR_PTR(r);
2436			goto out;
2437		}
2438	}
2439
2440	map = __bind(md, table, &limits);
2441	dm_issue_global_event();
2442
2443out:
2444	mutex_unlock(&md->suspend_lock);
2445	return map;
2446}
2447
2448/*
2449 * Functions to lock and unlock any filesystem running on the
2450 * device.
2451 */
2452static int lock_fs(struct mapped_device *md)
2453{
2454	int r;
2455
2456	WARN_ON(md->frozen_sb);
2457
2458	md->frozen_sb = freeze_bdev(md->bdev);
2459	if (IS_ERR(md->frozen_sb)) {
2460		r = PTR_ERR(md->frozen_sb);
2461		md->frozen_sb = NULL;
2462		return r;
2463	}
2464
2465	set_bit(DMF_FROZEN, &md->flags);
2466
2467	return 0;
2468}
2469
2470static void unlock_fs(struct mapped_device *md)
2471{
2472	if (!test_bit(DMF_FROZEN, &md->flags))
2473		return;
2474
2475	thaw_bdev(md->bdev, md->frozen_sb);
2476	md->frozen_sb = NULL;
2477	clear_bit(DMF_FROZEN, &md->flags);
2478}
2479
2480/*
2481 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2482 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2483 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2484 *
2485 * If __dm_suspend returns 0, the device is completely quiescent
2486 * now. There is no request-processing activity. All new requests
2487 * are being added to md->deferred list.
 
 
2488 */
2489static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2490			unsigned suspend_flags, long task_state,
2491			int dmf_suspended_flag)
2492{
2493	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2494	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2495	int r;
2496
2497	lockdep_assert_held(&md->suspend_lock);
2498
2499	/*
2500	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2501	 * This flag is cleared before dm_suspend returns.
2502	 */
2503	if (noflush)
2504		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2505	else
2506		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2507
2508	/*
2509	 * This gets reverted if there's an error later and the targets
2510	 * provide the .presuspend_undo hook.
2511	 */
2512	dm_table_presuspend_targets(map);
2513
2514	/*
2515	 * Flush I/O to the device.
2516	 * Any I/O submitted after lock_fs() may not be flushed.
2517	 * noflush takes precedence over do_lockfs.
2518	 * (lock_fs() flushes I/Os and waits for them to complete.)
2519	 */
2520	if (!noflush && do_lockfs) {
2521		r = lock_fs(md);
2522		if (r) {
2523			dm_table_presuspend_undo_targets(map);
2524			return r;
2525		}
2526	}
2527
2528	/*
2529	 * Here we must make sure that no processes are submitting requests
2530	 * to target drivers i.e. no one may be executing
2531	 * __split_and_process_bio. This is called from dm_request and
2532	 * dm_wq_work.
2533	 *
2534	 * To get all processes out of __split_and_process_bio in dm_request,
2535	 * we take the write lock. To prevent any process from reentering
2536	 * __split_and_process_bio from dm_request and quiesce the thread
2537	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2538	 * flush_workqueue(md->wq).
2539	 */
2540	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2541	if (map)
2542		synchronize_srcu(&md->io_barrier);
2543
2544	/*
2545	 * Stop md->queue before flushing md->wq in case request-based
2546	 * dm defers requests to md->wq from md->queue.
2547	 */
2548	if (dm_request_based(md)) {
2549		dm_stop_queue(md->queue);
2550		if (md->kworker_task)
2551			kthread_flush_worker(&md->kworker);
2552	}
2553
2554	flush_workqueue(md->wq);
2555
2556	/*
2557	 * At this point no more requests are entering target request routines.
2558	 * We call dm_wait_for_completion to wait for all existing requests
2559	 * to finish.
2560	 */
2561	r = dm_wait_for_completion(md, task_state);
2562	if (!r)
2563		set_bit(dmf_suspended_flag, &md->flags);
2564
2565	if (noflush)
2566		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2567	if (map)
2568		synchronize_srcu(&md->io_barrier);
2569
2570	/* were we interrupted ? */
2571	if (r < 0) {
2572		dm_queue_flush(md);
2573
2574		if (dm_request_based(md))
2575			dm_start_queue(md->queue);
2576
2577		unlock_fs(md);
2578		dm_table_presuspend_undo_targets(map);
2579		/* pushback list is already flushed, so skip flush */
2580	}
2581
2582	return r;
2583}
2584
2585/*
2586 * We need to be able to change a mapping table under a mounted
2587 * filesystem.  For example we might want to move some data in
2588 * the background.  Before the table can be swapped with
2589 * dm_bind_table, dm_suspend must be called to flush any in
2590 * flight bios and ensure that any further io gets deferred.
2591 */
2592/*
2593 * Suspend mechanism in request-based dm.
2594 *
2595 * 1. Flush all I/Os by lock_fs() if needed.
2596 * 2. Stop dispatching any I/O by stopping the request_queue.
2597 * 3. Wait for all in-flight I/Os to be completed or requeued.
2598 *
2599 * To abort suspend, start the request_queue.
2600 */
2601int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2602{
2603	struct dm_table *map = NULL;
2604	int r = 0;
2605
2606retry:
2607	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2608
2609	if (dm_suspended_md(md)) {
2610		r = -EINVAL;
2611		goto out_unlock;
2612	}
2613
2614	if (dm_suspended_internally_md(md)) {
2615		/* already internally suspended, wait for internal resume */
2616		mutex_unlock(&md->suspend_lock);
2617		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2618		if (r)
2619			return r;
2620		goto retry;
2621	}
2622
2623	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2624
2625	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2626	if (r)
2627		goto out_unlock;
2628
2629	dm_table_postsuspend_targets(map);
2630
2631out_unlock:
2632	mutex_unlock(&md->suspend_lock);
2633	return r;
2634}
2635
2636static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2637{
2638	if (map) {
2639		int r = dm_table_resume_targets(map);
2640		if (r)
2641			return r;
2642	}
2643
2644	dm_queue_flush(md);
2645
2646	/*
2647	 * Flushing deferred I/Os must be done after targets are resumed
2648	 * so that mapping of targets can work correctly.
2649	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2650	 */
2651	if (dm_request_based(md))
2652		dm_start_queue(md->queue);
2653
2654	unlock_fs(md);
2655
2656	return 0;
2657}
2658
2659int dm_resume(struct mapped_device *md)
2660{
2661	int r;
2662	struct dm_table *map = NULL;
2663
2664retry:
2665	r = -EINVAL;
2666	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2667
2668	if (!dm_suspended_md(md))
2669		goto out;
2670
2671	if (dm_suspended_internally_md(md)) {
2672		/* already internally suspended, wait for internal resume */
2673		mutex_unlock(&md->suspend_lock);
2674		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2675		if (r)
2676			return r;
2677		goto retry;
2678	}
2679
2680	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2681	if (!map || !dm_table_get_size(map))
2682		goto out;
2683
2684	r = __dm_resume(md, map);
2685	if (r)
2686		goto out;
2687
2688	clear_bit(DMF_SUSPENDED, &md->flags);
2689out:
2690	mutex_unlock(&md->suspend_lock);
2691
2692	return r;
2693}
2694
2695/*
2696 * Internal suspend/resume works like userspace-driven suspend. It waits
2697 * until all bios finish and prevents issuing new bios to the target drivers.
2698 * It may be used only from the kernel.
2699 */
2700
2701static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2702{
2703	struct dm_table *map = NULL;
2704
2705	lockdep_assert_held(&md->suspend_lock);
2706
2707	if (md->internal_suspend_count++)
2708		return; /* nested internal suspend */
2709
2710	if (dm_suspended_md(md)) {
2711		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2712		return; /* nest suspend */
2713	}
2714
2715	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2716
2717	/*
2718	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2719	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2720	 * would require changing .presuspend to return an error -- avoid this
2721	 * until there is a need for more elaborate variants of internal suspend.
2722	 */
2723	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2724			    DMF_SUSPENDED_INTERNALLY);
2725
2726	dm_table_postsuspend_targets(map);
2727}
2728
2729static void __dm_internal_resume(struct mapped_device *md)
2730{
2731	BUG_ON(!md->internal_suspend_count);
2732
2733	if (--md->internal_suspend_count)
2734		return; /* resume from nested internal suspend */
2735
2736	if (dm_suspended_md(md))
2737		goto done; /* resume from nested suspend */
2738
2739	/*
2740	 * NOTE: existing callers don't need to call dm_table_resume_targets
2741	 * (which may fail -- so best to avoid it for now by passing NULL map)
2742	 */
2743	(void) __dm_resume(md, NULL);
2744
2745done:
2746	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2747	smp_mb__after_atomic();
2748	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2749}
2750
2751void dm_internal_suspend_noflush(struct mapped_device *md)
2752{
2753	mutex_lock(&md->suspend_lock);
2754	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2755	mutex_unlock(&md->suspend_lock);
2756}
2757EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2758
2759void dm_internal_resume(struct mapped_device *md)
2760{
2761	mutex_lock(&md->suspend_lock);
2762	__dm_internal_resume(md);
2763	mutex_unlock(&md->suspend_lock);
2764}
2765EXPORT_SYMBOL_GPL(dm_internal_resume);
2766
2767/*
2768 * Fast variants of internal suspend/resume hold md->suspend_lock,
2769 * which prevents interaction with userspace-driven suspend.
2770 */
2771
2772void dm_internal_suspend_fast(struct mapped_device *md)
2773{
2774	mutex_lock(&md->suspend_lock);
2775	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2776		return;
2777
2778	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2779	synchronize_srcu(&md->io_barrier);
2780	flush_workqueue(md->wq);
2781	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2782}
2783EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2784
2785void dm_internal_resume_fast(struct mapped_device *md)
2786{
2787	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2788		goto done;
2789
2790	dm_queue_flush(md);
2791
2792done:
2793	mutex_unlock(&md->suspend_lock);
2794}
2795EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2796
2797/*-----------------------------------------------------------------
2798 * Event notification.
2799 *---------------------------------------------------------------*/
2800int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2801		       unsigned cookie)
2802{
2803	char udev_cookie[DM_COOKIE_LENGTH];
2804	char *envp[] = { udev_cookie, NULL };
2805
2806	if (!cookie)
2807		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2808	else {
2809		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2810			 DM_COOKIE_ENV_VAR_NAME, cookie);
2811		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2812					  action, envp);
2813	}
2814}
2815
2816uint32_t dm_next_uevent_seq(struct mapped_device *md)
2817{
2818	return atomic_add_return(1, &md->uevent_seq);
2819}
2820
2821uint32_t dm_get_event_nr(struct mapped_device *md)
2822{
2823	return atomic_read(&md->event_nr);
2824}
2825
2826int dm_wait_event(struct mapped_device *md, int event_nr)
2827{
2828	return wait_event_interruptible(md->eventq,
2829			(event_nr != atomic_read(&md->event_nr)));
2830}
2831
2832void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2833{
2834	unsigned long flags;
2835
2836	spin_lock_irqsave(&md->uevent_lock, flags);
2837	list_add(elist, &md->uevent_list);
2838	spin_unlock_irqrestore(&md->uevent_lock, flags);
2839}
2840
2841/*
2842 * The gendisk is only valid as long as you have a reference
2843 * count on 'md'.
2844 */
2845struct gendisk *dm_disk(struct mapped_device *md)
2846{
2847	return md->disk;
2848}
2849EXPORT_SYMBOL_GPL(dm_disk);
2850
2851struct kobject *dm_kobject(struct mapped_device *md)
2852{
2853	return &md->kobj_holder.kobj;
2854}
2855
2856struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2857{
2858	struct mapped_device *md;
2859
2860	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2861
2862	spin_lock(&_minor_lock);
2863	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2864		md = NULL;
2865		goto out;
2866	}
2867	dm_get(md);
2868out:
2869	spin_unlock(&_minor_lock);
2870
2871	return md;
2872}
2873
2874int dm_suspended_md(struct mapped_device *md)
2875{
2876	return test_bit(DMF_SUSPENDED, &md->flags);
2877}
2878
2879int dm_suspended_internally_md(struct mapped_device *md)
2880{
2881	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2882}
2883
2884int dm_test_deferred_remove_flag(struct mapped_device *md)
2885{
2886	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2887}
2888
2889int dm_suspended(struct dm_target *ti)
2890{
2891	return dm_suspended_md(dm_table_get_md(ti->table));
2892}
2893EXPORT_SYMBOL_GPL(dm_suspended);
2894
2895int dm_noflush_suspending(struct dm_target *ti)
2896{
2897	return __noflush_suspending(dm_table_get_md(ti->table));
2898}
2899EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2900
2901struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2902					    unsigned integrity, unsigned per_io_data_size,
2903					    unsigned min_pool_size)
2904{
2905	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
 
2906	unsigned int pool_size = 0;
2907	unsigned int front_pad, io_front_pad;
2908
2909	if (!pools)
2910		return NULL;
2911
2912	switch (type) {
2913	case DM_TYPE_BIO_BASED:
2914	case DM_TYPE_DAX_BIO_BASED:
2915	case DM_TYPE_NVME_BIO_BASED:
2916		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2917		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2918		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
2919		pools->io_bs = bioset_create(pool_size, io_front_pad, 0);
2920		if (!pools->io_bs)
2921			goto out;
2922		if (integrity && bioset_integrity_create(pools->io_bs, pool_size))
2923			goto out;
2924		break;
2925	case DM_TYPE_REQUEST_BASED:
 
 
 
 
 
 
2926	case DM_TYPE_MQ_REQUEST_BASED:
2927		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
 
2928		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2929		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2930		break;
2931	default:
2932		BUG();
2933	}
2934
2935	pools->bs = bioset_create(pool_size, front_pad, 0);
 
 
 
 
 
 
2936	if (!pools->bs)
2937		goto out;
2938
2939	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2940		goto out;
2941
2942	return pools;
2943
2944out:
2945	dm_free_md_mempools(pools);
2946
2947	return NULL;
2948}
2949
2950void dm_free_md_mempools(struct dm_md_mempools *pools)
2951{
2952	if (!pools)
2953		return;
2954
 
 
 
2955	if (pools->bs)
2956		bioset_free(pools->bs);
2957	if (pools->io_bs)
2958		bioset_free(pools->io_bs);
2959
2960	kfree(pools);
2961}
2962
2963struct dm_pr {
2964	u64	old_key;
2965	u64	new_key;
2966	u32	flags;
2967	bool	fail_early;
2968};
2969
2970static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2971		      void *data)
2972{
2973	struct mapped_device *md = bdev->bd_disk->private_data;
2974	struct dm_table *table;
2975	struct dm_target *ti;
2976	int ret = -ENOTTY, srcu_idx;
2977
2978	table = dm_get_live_table(md, &srcu_idx);
2979	if (!table || !dm_table_get_size(table))
2980		goto out;
2981
2982	/* We only support devices that have a single target */
2983	if (dm_table_get_num_targets(table) != 1)
2984		goto out;
2985	ti = dm_table_get_target(table, 0);
2986
2987	ret = -EINVAL;
2988	if (!ti->type->iterate_devices)
2989		goto out;
2990
2991	ret = ti->type->iterate_devices(ti, fn, data);
2992out:
2993	dm_put_live_table(md, srcu_idx);
2994	return ret;
2995}
2996
2997/*
2998 * For register / unregister we need to manually call out to every path.
2999 */
3000static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3001			    sector_t start, sector_t len, void *data)
3002{
3003	struct dm_pr *pr = data;
3004	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3005
3006	if (!ops || !ops->pr_register)
3007		return -EOPNOTSUPP;
3008	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3009}
3010
3011static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3012			  u32 flags)
3013{
3014	struct dm_pr pr = {
3015		.old_key	= old_key,
3016		.new_key	= new_key,
3017		.flags		= flags,
3018		.fail_early	= true,
3019	};
3020	int ret;
3021
3022	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3023	if (ret && new_key) {
3024		/* unregister all paths if we failed to register any path */
3025		pr.old_key = new_key;
3026		pr.new_key = 0;
3027		pr.flags = 0;
3028		pr.fail_early = false;
3029		dm_call_pr(bdev, __dm_pr_register, &pr);
3030	}
3031
3032	return ret;
3033}
3034
3035static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3036			 u32 flags)
3037{
3038	struct mapped_device *md = bdev->bd_disk->private_data;
3039	const struct pr_ops *ops;
3040	int r, srcu_idx;
 
3041
3042	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3043	if (r < 0)
3044		goto out;
3045
3046	ops = bdev->bd_disk->fops->pr_ops;
3047	if (ops && ops->pr_reserve)
3048		r = ops->pr_reserve(bdev, key, type, flags);
3049	else
3050		r = -EOPNOTSUPP;
3051out:
3052	dm_unprepare_ioctl(md, srcu_idx);
3053	return r;
3054}
3055
3056static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3057{
3058	struct mapped_device *md = bdev->bd_disk->private_data;
3059	const struct pr_ops *ops;
3060	int r, srcu_idx;
 
3061
3062	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3063	if (r < 0)
3064		goto out;
3065
3066	ops = bdev->bd_disk->fops->pr_ops;
3067	if (ops && ops->pr_release)
3068		r = ops->pr_release(bdev, key, type);
3069	else
3070		r = -EOPNOTSUPP;
3071out:
3072	dm_unprepare_ioctl(md, srcu_idx);
3073	return r;
3074}
3075
3076static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3077			 enum pr_type type, bool abort)
3078{
3079	struct mapped_device *md = bdev->bd_disk->private_data;
3080	const struct pr_ops *ops;
3081	int r, srcu_idx;
 
3082
3083	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3084	if (r < 0)
3085		goto out;
3086
3087	ops = bdev->bd_disk->fops->pr_ops;
3088	if (ops && ops->pr_preempt)
3089		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3090	else
3091		r = -EOPNOTSUPP;
3092out:
3093	dm_unprepare_ioctl(md, srcu_idx);
3094	return r;
3095}
3096
3097static int dm_pr_clear(struct block_device *bdev, u64 key)
3098{
3099	struct mapped_device *md = bdev->bd_disk->private_data;
3100	const struct pr_ops *ops;
3101	int r, srcu_idx;
 
3102
3103	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3104	if (r < 0)
3105		goto out;
3106
3107	ops = bdev->bd_disk->fops->pr_ops;
3108	if (ops && ops->pr_clear)
3109		r = ops->pr_clear(bdev, key);
3110	else
3111		r = -EOPNOTSUPP;
3112out:
3113	dm_unprepare_ioctl(md, srcu_idx);
3114	return r;
3115}
3116
3117static const struct pr_ops dm_pr_ops = {
3118	.pr_register	= dm_pr_register,
3119	.pr_reserve	= dm_pr_reserve,
3120	.pr_release	= dm_pr_release,
3121	.pr_preempt	= dm_pr_preempt,
3122	.pr_clear	= dm_pr_clear,
3123};
3124
3125static const struct block_device_operations dm_blk_dops = {
3126	.open = dm_blk_open,
3127	.release = dm_blk_close,
3128	.ioctl = dm_blk_ioctl,
 
3129	.getgeo = dm_blk_getgeo,
3130	.pr_ops = &dm_pr_ops,
3131	.owner = THIS_MODULE
3132};
3133
3134static const struct dax_operations dm_dax_ops = {
3135	.direct_access = dm_dax_direct_access,
3136	.copy_from_iter = dm_dax_copy_from_iter,
3137};
3138
3139/*
3140 * module hooks
3141 */
3142module_init(dm_init);
3143module_exit(dm_exit);
3144
3145module_param(major, uint, 0);
3146MODULE_PARM_DESC(major, "The major number of the device mapper");
3147
3148module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3149MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3150
3151module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3152MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3153
3154MODULE_DESCRIPTION(DM_NAME " driver");
3155MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3156MODULE_LICENSE("GPL");