Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
 
  18#include <linux/slab.h>
  19#include <linux/vmalloc.h>
  20
  21#define DM_MSG_PREFIX "cache"
  22
  23DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  24	"A percentage of time allocated for copying to and/or from cache");
  25
  26/*----------------------------------------------------------------*/
  27
  28#define IOT_RESOLUTION 4
 
 
 
 
 
 
 
 
 
 
 
  29
  30struct io_tracker {
  31	spinlock_t lock;
  32
  33	/*
  34	 * Sectors of in-flight IO.
  35	 */
  36	sector_t in_flight;
  37
  38	/*
  39	 * The time, in jiffies, when this device became idle (if it is
  40	 * indeed idle).
  41	 */
  42	unsigned long idle_time;
  43	unsigned long last_update_time;
  44};
  45
  46static void iot_init(struct io_tracker *iot)
  47{
  48	spin_lock_init(&iot->lock);
  49	iot->in_flight = 0ul;
  50	iot->idle_time = 0ul;
  51	iot->last_update_time = jiffies;
  52}
  53
  54static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  55{
  56	if (iot->in_flight)
  57		return false;
  58
  59	return time_after(jiffies, iot->idle_time + jifs);
  60}
  61
  62static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  63{
  64	bool r;
  65	unsigned long flags;
  66
  67	spin_lock_irqsave(&iot->lock, flags);
  68	r = __iot_idle_for(iot, jifs);
  69	spin_unlock_irqrestore(&iot->lock, flags);
  70
  71	return r;
  72}
  73
  74static void iot_io_begin(struct io_tracker *iot, sector_t len)
  75{
  76	unsigned long flags;
  77
  78	spin_lock_irqsave(&iot->lock, flags);
  79	iot->in_flight += len;
  80	spin_unlock_irqrestore(&iot->lock, flags);
  81}
  82
  83static void __iot_io_end(struct io_tracker *iot, sector_t len)
  84{
 
 
 
  85	iot->in_flight -= len;
  86	if (!iot->in_flight)
  87		iot->idle_time = jiffies;
  88}
  89
  90static void iot_io_end(struct io_tracker *iot, sector_t len)
  91{
  92	unsigned long flags;
  93
  94	spin_lock_irqsave(&iot->lock, flags);
  95	__iot_io_end(iot, len);
  96	spin_unlock_irqrestore(&iot->lock, flags);
  97}
  98
  99/*----------------------------------------------------------------*/
 100
 101/*
 102 * Glossary:
 103 *
 104 * oblock: index of an origin block
 105 * cblock: index of a cache block
 106 * promotion: movement of a block from origin to cache
 107 * demotion: movement of a block from cache to origin
 108 * migration: movement of a block between the origin and cache device,
 109 *	      either direction
 110 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 111
 112/*----------------------------------------------------------------*/
 113
 114/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115 * There are a couple of places where we let a bio run, but want to do some
 116 * work before calling its endio function.  We do this by temporarily
 117 * changing the endio fn.
 118 */
 119struct dm_hook_info {
 120	bio_end_io_t *bi_end_io;
 121};
 122
 123static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 124			bio_end_io_t *bi_end_io, void *bi_private)
 125{
 126	h->bi_end_io = bio->bi_end_io;
 127
 128	bio->bi_end_io = bi_end_io;
 129	bio->bi_private = bi_private;
 130}
 131
 132static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 133{
 134	bio->bi_end_io = h->bi_end_io;
 135}
 136
 137/*----------------------------------------------------------------*/
 138
 139#define MIGRATION_POOL_SIZE 128
 140#define COMMIT_PERIOD HZ
 141#define MIGRATION_COUNT_WINDOW 10
 142
 143/*
 144 * The block size of the device holding cache data must be
 145 * between 32KB and 1GB.
 146 */
 147#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 148#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 149
 150enum cache_metadata_mode {
 151	CM_WRITE,		/* metadata may be changed */
 152	CM_READ_ONLY,		/* metadata may not be changed */
 153	CM_FAIL
 154};
 155
 156enum cache_io_mode {
 157	/*
 158	 * Data is written to cached blocks only.  These blocks are marked
 159	 * dirty.  If you lose the cache device you will lose data.
 160	 * Potential performance increase for both reads and writes.
 161	 */
 162	CM_IO_WRITEBACK,
 163
 164	/*
 165	 * Data is written to both cache and origin.  Blocks are never
 166	 * dirty.  Potential performance benfit for reads only.
 167	 */
 168	CM_IO_WRITETHROUGH,
 169
 170	/*
 171	 * A degraded mode useful for various cache coherency situations
 172	 * (eg, rolling back snapshots).  Reads and writes always go to the
 173	 * origin.  If a write goes to a cached oblock, then the cache
 174	 * block is invalidated.
 175	 */
 176	CM_IO_PASSTHROUGH
 177};
 178
 179struct cache_features {
 180	enum cache_metadata_mode mode;
 181	enum cache_io_mode io_mode;
 
 182};
 183
 184struct cache_stats {
 185	atomic_t read_hit;
 186	atomic_t read_miss;
 187	atomic_t write_hit;
 188	atomic_t write_miss;
 189	atomic_t demotion;
 190	atomic_t promotion;
 
 191	atomic_t copies_avoided;
 192	atomic_t cache_cell_clash;
 193	atomic_t commit_count;
 194	atomic_t discard_count;
 195};
 196
 197/*
 198 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 199 * the one-past-the-end value.
 200 */
 201struct cblock_range {
 202	dm_cblock_t begin;
 203	dm_cblock_t end;
 204};
 205
 206struct invalidation_request {
 207	struct list_head list;
 208	struct cblock_range *cblocks;
 209
 210	atomic_t complete;
 211	int err;
 212
 213	wait_queue_head_t result_wait;
 214};
 215
 216struct cache {
 217	struct dm_target *ti;
 218	struct dm_target_callbacks callbacks;
 219
 220	struct dm_cache_metadata *cmd;
 221
 222	/*
 223	 * Metadata is written to this device.
 224	 */
 225	struct dm_dev *metadata_dev;
 226
 227	/*
 228	 * The slower of the two data devices.  Typically a spindle.
 229	 */
 230	struct dm_dev *origin_dev;
 231
 232	/*
 233	 * The faster of the two data devices.  Typically an SSD.
 234	 */
 235	struct dm_dev *cache_dev;
 236
 237	/*
 238	 * Size of the origin device in _complete_ blocks and native sectors.
 239	 */
 240	dm_oblock_t origin_blocks;
 241	sector_t origin_sectors;
 242
 243	/*
 244	 * Size of the cache device in blocks.
 245	 */
 246	dm_cblock_t cache_size;
 247
 248	/*
 249	 * Fields for converting from sectors to blocks.
 250	 */
 251	sector_t sectors_per_block;
 252	int sectors_per_block_shift;
 253
 254	spinlock_t lock;
 255	struct list_head deferred_cells;
 256	struct bio_list deferred_bios;
 257	struct bio_list deferred_flush_bios;
 258	struct bio_list deferred_writethrough_bios;
 259	struct list_head quiesced_migrations;
 260	struct list_head completed_migrations;
 261	struct list_head need_commit_migrations;
 262	sector_t migration_threshold;
 263	wait_queue_head_t migration_wait;
 264	atomic_t nr_allocated_migrations;
 265
 266	/*
 267	 * The number of in flight migrations that are performing
 268	 * background io. eg, promotion, writeback.
 269	 */
 270	atomic_t nr_io_migrations;
 271
 272	wait_queue_head_t quiescing_wait;
 273	atomic_t quiescing;
 274	atomic_t quiescing_ack;
 275
 276	/*
 277	 * cache_size entries, dirty if set
 278	 */
 279	atomic_t nr_dirty;
 280	unsigned long *dirty_bitset;
 281
 282	/*
 283	 * origin_blocks entries, discarded if set.
 284	 */
 285	dm_dblock_t discard_nr_blocks;
 286	unsigned long *discard_bitset;
 287	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 288
 289	/*
 290	 * Rather than reconstructing the table line for the status we just
 291	 * save it and regurgitate.
 292	 */
 293	unsigned nr_ctr_args;
 294	const char **ctr_args;
 295
 296	struct dm_kcopyd_client *copier;
 297	struct workqueue_struct *wq;
 298	struct work_struct worker;
 299
 300	struct delayed_work waker;
 301	unsigned long last_commit_jiffies;
 302
 303	struct dm_bio_prison *prison;
 304	struct dm_deferred_set *all_io_ds;
 305
 306	mempool_t *migration_pool;
 307
 308	struct dm_cache_policy *policy;
 309	unsigned policy_nr_args;
 310
 311	bool need_tick_bio:1;
 312	bool sized:1;
 313	bool invalidate:1;
 314	bool commit_requested:1;
 315	bool loaded_mappings:1;
 316	bool loaded_discards:1;
 317
 318	/*
 319	 * Cache features such as write-through.
 320	 */
 321	struct cache_features features;
 322
 323	struct cache_stats stats;
 324
 325	/*
 326	 * Invalidation fields.
 327	 */
 328	spinlock_t invalidation_lock;
 329	struct list_head invalidation_requests;
 330
 331	struct io_tracker origin_tracker;
 
 
 
 
 
 332};
 333
 334struct per_bio_data {
 335	bool tick:1;
 336	unsigned req_nr:2;
 337	struct dm_deferred_entry *all_io_entry;
 338	struct dm_hook_info hook_info;
 339	sector_t len;
 340
 341	/*
 342	 * writethrough fields.  These MUST remain at the end of this
 343	 * structure and the 'cache' member must be the first as it
 344	 * is used to determine the offset of the writethrough fields.
 345	 */
 346	struct cache *cache;
 347	dm_cblock_t cblock;
 348	struct dm_bio_details bio_details;
 349};
 350
 351struct dm_cache_migration {
 352	struct list_head list;
 353	struct cache *cache;
 354
 355	unsigned long start_jiffies;
 356	dm_oblock_t old_oblock;
 357	dm_oblock_t new_oblock;
 358	dm_cblock_t cblock;
 359
 360	bool err:1;
 361	bool discard:1;
 362	bool writeback:1;
 363	bool demote:1;
 364	bool promote:1;
 365	bool requeue_holder:1;
 366	bool invalidate:1;
 367
 368	struct dm_bio_prison_cell *old_ocell;
 369	struct dm_bio_prison_cell *new_ocell;
 370};
 371
 372/*
 373 * Processing a bio in the worker thread may require these memory
 374 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 375 * frees them back to the mempool).
 376 */
 377struct prealloc {
 378	struct dm_cache_migration *mg;
 379	struct dm_bio_prison_cell *cell1;
 380	struct dm_bio_prison_cell *cell2;
 381};
 
 
 
 
 
 
 
 
 382
 383static enum cache_metadata_mode get_cache_mode(struct cache *cache);
 
 
 
 384
 385static void wake_worker(struct cache *cache)
 386{
 387	queue_work(cache->wq, &cache->worker);
 
 
 
 388}
 389
 390/*----------------------------------------------------------------*/
 391
 392static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 393{
 394	/* FIXME: change to use a local slab. */
 395	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 396}
 397
 398static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 399{
 400	dm_bio_prison_free_cell(cache->prison, cell);
 401}
 402
 403static struct dm_cache_migration *alloc_migration(struct cache *cache)
 404{
 405	struct dm_cache_migration *mg;
 406
 407	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 408	if (mg) {
 409		mg->cache = cache;
 410		atomic_inc(&mg->cache->nr_allocated_migrations);
 411	}
 
 
 
 412
 413	return mg;
 414}
 415
 416static void free_migration(struct dm_cache_migration *mg)
 417{
 418	struct cache *cache = mg->cache;
 419
 420	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 421		wake_up(&cache->migration_wait);
 422
 423	mempool_free(mg, cache->migration_pool);
 424}
 425
 426static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 427{
 428	if (!p->mg) {
 429		p->mg = alloc_migration(cache);
 430		if (!p->mg)
 431			return -ENOMEM;
 432	}
 433
 434	if (!p->cell1) {
 435		p->cell1 = alloc_prison_cell(cache);
 436		if (!p->cell1)
 437			return -ENOMEM;
 438	}
 439
 440	if (!p->cell2) {
 441		p->cell2 = alloc_prison_cell(cache);
 442		if (!p->cell2)
 443			return -ENOMEM;
 444	}
 445
 446	return 0;
 447}
 448
 449static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 450{
 451	if (p->cell2)
 452		free_prison_cell(cache, p->cell2);
 453
 454	if (p->cell1)
 455		free_prison_cell(cache, p->cell1);
 456
 457	if (p->mg)
 458		free_migration(p->mg);
 459}
 460
 461static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 462{
 463	struct dm_cache_migration *mg = p->mg;
 464
 465	BUG_ON(!mg);
 466	p->mg = NULL;
 467
 468	return mg;
 469}
 470
 471/*
 472 * You must have a cell within the prealloc struct to return.  If not this
 473 * function will BUG() rather than returning NULL.
 474 */
 475static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 476{
 477	struct dm_bio_prison_cell *r = NULL;
 478
 479	if (p->cell1) {
 480		r = p->cell1;
 481		p->cell1 = NULL;
 
 
 
 482
 483	} else if (p->cell2) {
 484		r = p->cell2;
 485		p->cell2 = NULL;
 486	} else
 487		BUG();
 488
 489	return r;
 
 
 
 
 490}
 491
 492/*
 493 * You can't have more than two cells in a prealloc struct.  BUG() will be
 494 * called if you try and overfill.
 495 */
 496static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 497{
 498	if (!p->cell2)
 499		p->cell2 = cell;
 500
 501	else if (!p->cell1)
 502		p->cell1 = cell;
 
 
 503
 504	else
 505		BUG();
 506}
 507
 508/*----------------------------------------------------------------*/
 509
 510static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key *key)
 511{
 512	key->virtual = 0;
 513	key->dev = 0;
 514	key->block_begin = from_oblock(begin);
 515	key->block_end = from_oblock(end);
 516}
 517
 518/*
 519 * The caller hands in a preallocated cell, and a free function for it.
 520 * The cell will be freed if there's an error, or if it wasn't used because
 521 * a cell with that key already exists.
 522 */
 523typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 524
 525static int bio_detain_range(struct cache *cache, dm_oblock_t oblock_begin, dm_oblock_t oblock_end,
 526			    struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 527			    cell_free_fn free_fn, void *free_context,
 528			    struct dm_bio_prison_cell **cell_result)
 529{
 530	int r;
 531	struct dm_cell_key key;
 532
 533	build_key(oblock_begin, oblock_end, &key);
 534	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 535	if (r)
 536		free_fn(free_context, cell_prealloc);
 537
 538	return r;
 539}
 540
 541static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 542		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 543		      cell_free_fn free_fn, void *free_context,
 544		      struct dm_bio_prison_cell **cell_result)
 545{
 
 
 
 546	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 547	return bio_detain_range(cache, oblock, end, bio,
 548				cell_prealloc, free_fn, free_context, cell_result);
 549}
 550
 551static int get_cell(struct cache *cache,
 552		    dm_oblock_t oblock,
 553		    struct prealloc *structs,
 554		    struct dm_bio_prison_cell **cell_result)
 555{
 556	int r;
 557	struct dm_cell_key key;
 558	struct dm_bio_prison_cell *cell_prealloc;
 559
 560	cell_prealloc = prealloc_get_cell(structs);
 
 
 
 
 
 
 
 
 561
 562	build_key(oblock, to_oblock(from_oblock(oblock) + 1ULL), &key);
 563	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 564	if (r)
 565		prealloc_put_cell(structs, cell_prealloc);
 
 566
 567	return r;
 568}
 569
 570/*----------------------------------------------------------------*/
 571
 572static bool is_dirty(struct cache *cache, dm_cblock_t b)
 573{
 574	return test_bit(from_cblock(b), cache->dirty_bitset);
 575}
 576
 577static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 578{
 579	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 580		atomic_inc(&cache->nr_dirty);
 581		policy_set_dirty(cache->policy, oblock);
 582	}
 583}
 584
 585static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 
 
 
 
 
 
 
 
 
 
 
 586{
 587	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 588		policy_clear_dirty(cache->policy, oblock);
 589		if (atomic_dec_return(&cache->nr_dirty) == 0)
 590			dm_table_event(cache->ti->table);
 591	}
 
 
 592}
 593
 594/*----------------------------------------------------------------*/
 595
 596static bool block_size_is_power_of_two(struct cache *cache)
 597{
 598	return cache->sectors_per_block_shift >= 0;
 599}
 600
 601/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 602#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 603__always_inline
 604#endif
 605static dm_block_t block_div(dm_block_t b, uint32_t n)
 606{
 607	do_div(b, n);
 608
 609	return b;
 610}
 611
 612static dm_block_t oblocks_per_dblock(struct cache *cache)
 613{
 614	dm_block_t oblocks = cache->discard_block_size;
 615
 616	if (block_size_is_power_of_two(cache))
 617		oblocks >>= cache->sectors_per_block_shift;
 618	else
 619		oblocks = block_div(oblocks, cache->sectors_per_block);
 620
 621	return oblocks;
 622}
 623
 624static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 625{
 626	return to_dblock(block_div(from_oblock(oblock),
 627				   oblocks_per_dblock(cache)));
 628}
 629
 630static dm_oblock_t dblock_to_oblock(struct cache *cache, dm_dblock_t dblock)
 631{
 632	return to_oblock(from_dblock(dblock) * oblocks_per_dblock(cache));
 633}
 634
 635static void set_discard(struct cache *cache, dm_dblock_t b)
 636{
 637	unsigned long flags;
 638
 639	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 640	atomic_inc(&cache->stats.discard_count);
 641
 642	spin_lock_irqsave(&cache->lock, flags);
 643	set_bit(from_dblock(b), cache->discard_bitset);
 644	spin_unlock_irqrestore(&cache->lock, flags);
 645}
 646
 647static void clear_discard(struct cache *cache, dm_dblock_t b)
 648{
 649	unsigned long flags;
 650
 651	spin_lock_irqsave(&cache->lock, flags);
 652	clear_bit(from_dblock(b), cache->discard_bitset);
 653	spin_unlock_irqrestore(&cache->lock, flags);
 654}
 655
 656static bool is_discarded(struct cache *cache, dm_dblock_t b)
 657{
 658	int r;
 659	unsigned long flags;
 660
 661	spin_lock_irqsave(&cache->lock, flags);
 662	r = test_bit(from_dblock(b), cache->discard_bitset);
 663	spin_unlock_irqrestore(&cache->lock, flags);
 664
 665	return r;
 666}
 667
 668static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 669{
 670	int r;
 671	unsigned long flags;
 672
 673	spin_lock_irqsave(&cache->lock, flags);
 674	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 675		     cache->discard_bitset);
 676	spin_unlock_irqrestore(&cache->lock, flags);
 677
 678	return r;
 679}
 680
 681/*----------------------------------------------------------------*/
 682
 683static void load_stats(struct cache *cache)
 684{
 685	struct dm_cache_statistics stats;
 686
 687	dm_cache_metadata_get_stats(cache->cmd, &stats);
 688	atomic_set(&cache->stats.read_hit, stats.read_hits);
 689	atomic_set(&cache->stats.read_miss, stats.read_misses);
 690	atomic_set(&cache->stats.write_hit, stats.write_hits);
 691	atomic_set(&cache->stats.write_miss, stats.write_misses);
 692}
 693
 694static void save_stats(struct cache *cache)
 695{
 696	struct dm_cache_statistics stats;
 697
 698	if (get_cache_mode(cache) >= CM_READ_ONLY)
 699		return;
 700
 701	stats.read_hits = atomic_read(&cache->stats.read_hit);
 702	stats.read_misses = atomic_read(&cache->stats.read_miss);
 703	stats.write_hits = atomic_read(&cache->stats.write_hit);
 704	stats.write_misses = atomic_read(&cache->stats.write_miss);
 705
 706	dm_cache_metadata_set_stats(cache->cmd, &stats);
 707}
 708
 709/*----------------------------------------------------------------
 710 * Per bio data
 711 *--------------------------------------------------------------*/
 712
 713/*
 714 * If using writeback, leave out struct per_bio_data's writethrough fields.
 715 */
 716#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 717#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 718
 719static bool writethrough_mode(struct cache_features *f)
 720{
 721	return f->io_mode == CM_IO_WRITETHROUGH;
 722}
 723
 724static bool writeback_mode(struct cache_features *f)
 725{
 726	return f->io_mode == CM_IO_WRITEBACK;
 727}
 728
 729static bool passthrough_mode(struct cache_features *f)
 730{
 731	return f->io_mode == CM_IO_PASSTHROUGH;
 732}
 733
 734static size_t get_per_bio_data_size(struct cache *cache)
 735{
 736	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 737}
 738
 739static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 740{
 741	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 742	BUG_ON(!pb);
 743	return pb;
 744}
 745
 746static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 747{
 748	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 749
 750	pb->tick = false;
 751	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 752	pb->all_io_entry = NULL;
 753	pb->len = 0;
 754
 755	return pb;
 756}
 757
 758/*----------------------------------------------------------------
 759 * Remapping
 760 *--------------------------------------------------------------*/
 761static void remap_to_origin(struct cache *cache, struct bio *bio)
 762{
 763	bio->bi_bdev = cache->origin_dev->bdev;
 764}
 765
 766static void remap_to_cache(struct cache *cache, struct bio *bio,
 767			   dm_cblock_t cblock)
 768{
 769	sector_t bi_sector = bio->bi_iter.bi_sector;
 770	sector_t block = from_cblock(cblock);
 771
 772	bio->bi_bdev = cache->cache_dev->bdev;
 773	if (!block_size_is_power_of_two(cache))
 774		bio->bi_iter.bi_sector =
 775			(block * cache->sectors_per_block) +
 776			sector_div(bi_sector, cache->sectors_per_block);
 777	else
 778		bio->bi_iter.bi_sector =
 779			(block << cache->sectors_per_block_shift) |
 780			(bi_sector & (cache->sectors_per_block - 1));
 781}
 782
 783static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 784{
 785	unsigned long flags;
 786	size_t pb_data_size = get_per_bio_data_size(cache);
 787	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 788
 789	spin_lock_irqsave(&cache->lock, flags);
 790	if (cache->need_tick_bio &&
 791	    !(bio->bi_opf & (REQ_FUA | REQ_PREFLUSH)) &&
 792	    bio_op(bio) != REQ_OP_DISCARD) {
 
 793		pb->tick = true;
 794		cache->need_tick_bio = false;
 795	}
 796	spin_unlock_irqrestore(&cache->lock, flags);
 797}
 798
 799static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 800				  dm_oblock_t oblock)
 801{
 802	check_if_tick_bio_needed(cache, bio);
 
 803	remap_to_origin(cache, bio);
 804	if (bio_data_dir(bio) == WRITE)
 805		clear_discard(cache, oblock_to_dblock(cache, oblock));
 806}
 807
 
 
 
 
 
 
 
 808static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 809				 dm_oblock_t oblock, dm_cblock_t cblock)
 810{
 811	check_if_tick_bio_needed(cache, bio);
 812	remap_to_cache(cache, bio, cblock);
 813	if (bio_data_dir(bio) == WRITE) {
 814		set_dirty(cache, oblock, cblock);
 815		clear_discard(cache, oblock_to_dblock(cache, oblock));
 816	}
 817}
 818
 819static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 820{
 821	sector_t block_nr = bio->bi_iter.bi_sector;
 822
 823	if (!block_size_is_power_of_two(cache))
 824		(void) sector_div(block_nr, cache->sectors_per_block);
 825	else
 826		block_nr >>= cache->sectors_per_block_shift;
 827
 828	return to_oblock(block_nr);
 829}
 830
 831static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 832{
 833	return bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
 834}
 835
 836/*
 837 * You must increment the deferred set whilst the prison cell is held.  To
 838 * encourage this, we ask for 'cell' to be passed in.
 839 */
 840static void inc_ds(struct cache *cache, struct bio *bio,
 841		   struct dm_bio_prison_cell *cell)
 842{
 843	size_t pb_data_size = get_per_bio_data_size(cache);
 844	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 845
 846	BUG_ON(!cell);
 847	BUG_ON(pb->all_io_entry);
 848
 849	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
 850}
 851
 852static bool accountable_bio(struct cache *cache, struct bio *bio)
 853{
 854	return ((bio->bi_bdev == cache->origin_dev->bdev) &&
 855		bio_op(bio) != REQ_OP_DISCARD);
 856}
 857
 858static void accounted_begin(struct cache *cache, struct bio *bio)
 859{
 860	size_t pb_data_size = get_per_bio_data_size(cache);
 861	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 862
 863	if (accountable_bio(cache, bio)) {
 
 864		pb->len = bio_sectors(bio);
 865		iot_io_begin(&cache->origin_tracker, pb->len);
 866	}
 867}
 868
 869static void accounted_complete(struct cache *cache, struct bio *bio)
 870{
 871	size_t pb_data_size = get_per_bio_data_size(cache);
 872	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 873
 874	iot_io_end(&cache->origin_tracker, pb->len);
 875}
 876
 877static void accounted_request(struct cache *cache, struct bio *bio)
 878{
 879	accounted_begin(cache, bio);
 880	generic_make_request(bio);
 881}
 882
 883static void issue(struct cache *cache, struct bio *bio)
 884{
 885	unsigned long flags;
 886
 887	if (!bio_triggers_commit(cache, bio)) {
 888		accounted_request(cache, bio);
 889		return;
 890	}
 891
 892	/*
 893	 * Batch together any bios that trigger commits and then issue a
 894	 * single commit for them in do_worker().
 895	 */
 896	spin_lock_irqsave(&cache->lock, flags);
 897	cache->commit_requested = true;
 898	bio_list_add(&cache->deferred_flush_bios, bio);
 899	spin_unlock_irqrestore(&cache->lock, flags);
 900}
 901
 902static void inc_and_issue(struct cache *cache, struct bio *bio, struct dm_bio_prison_cell *cell)
 903{
 904	inc_ds(cache, bio, cell);
 905	issue(cache, bio);
 906}
 907
 908static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 909{
 910	unsigned long flags;
 911
 912	spin_lock_irqsave(&cache->lock, flags);
 913	bio_list_add(&cache->deferred_writethrough_bios, bio);
 914	spin_unlock_irqrestore(&cache->lock, flags);
 915
 916	wake_worker(cache);
 917}
 918
 919static void writethrough_endio(struct bio *bio)
 920{
 921	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 922
 923	dm_unhook_bio(&pb->hook_info, bio);
 924
 925	if (bio->bi_error) {
 926		bio_endio(bio);
 927		return;
 928	}
 929
 930	dm_bio_restore(&pb->bio_details, bio);
 931	remap_to_cache(pb->cache, bio, pb->cblock);
 932
 933	/*
 934	 * We can't issue this bio directly, since we're in interrupt
 935	 * context.  So it gets put on a bio list for processing by the
 936	 * worker thread.
 937	 */
 938	defer_writethrough_bio(pb->cache, bio);
 939}
 940
 941/*
 942 * When running in writethrough mode we need to send writes to clean blocks
 943 * to both the cache and origin devices.  In future we'd like to clone the
 944 * bio and send them in parallel, but for now we're doing them in
 945 * series as this is easier.
 946 */
 947static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 948				       dm_oblock_t oblock, dm_cblock_t cblock)
 949{
 950	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 951
 952	pb->cache = cache;
 953	pb->cblock = cblock;
 954	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 955	dm_bio_record(&pb->bio_details, bio);
 956
 957	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 
 
 
 
 
 
 
 
 958}
 959
 960/*----------------------------------------------------------------
 961 * Failure modes
 962 *--------------------------------------------------------------*/
 963static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 964{
 965	return cache->features.mode;
 966}
 967
 968static const char *cache_device_name(struct cache *cache)
 969{
 970	return dm_device_name(dm_table_get_md(cache->ti->table));
 971}
 972
 973static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 974{
 975	const char *descs[] = {
 976		"write",
 977		"read-only",
 978		"fail"
 979	};
 980
 981	dm_table_event(cache->ti->table);
 982	DMINFO("%s: switching cache to %s mode",
 983	       cache_device_name(cache), descs[(int)mode]);
 984}
 985
 986static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 987{
 988	bool needs_check;
 989	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 990
 991	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 992		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 993		      cache_device_name(cache));
 994		new_mode = CM_FAIL;
 995	}
 996
 997	if (new_mode == CM_WRITE && needs_check) {
 998		DMERR("%s: unable to switch cache to write mode until repaired.",
 999		      cache_device_name(cache));
1000		if (old_mode != new_mode)
1001			new_mode = old_mode;
1002		else
1003			new_mode = CM_READ_ONLY;
1004	}
1005
1006	/* Never move out of fail mode */
1007	if (old_mode == CM_FAIL)
1008		new_mode = CM_FAIL;
1009
1010	switch (new_mode) {
1011	case CM_FAIL:
1012	case CM_READ_ONLY:
1013		dm_cache_metadata_set_read_only(cache->cmd);
1014		break;
1015
1016	case CM_WRITE:
1017		dm_cache_metadata_set_read_write(cache->cmd);
1018		break;
1019	}
1020
1021	cache->features.mode = new_mode;
1022
1023	if (new_mode != old_mode)
1024		notify_mode_switch(cache, new_mode);
1025}
1026
1027static void abort_transaction(struct cache *cache)
1028{
1029	const char *dev_name = cache_device_name(cache);
1030
1031	if (get_cache_mode(cache) >= CM_READ_ONLY)
1032		return;
1033
1034	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1035		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1036		set_cache_mode(cache, CM_FAIL);
1037	}
1038
1039	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1040	if (dm_cache_metadata_abort(cache->cmd)) {
1041		DMERR("%s: failed to abort metadata transaction", dev_name);
1042		set_cache_mode(cache, CM_FAIL);
1043	}
1044}
1045
1046static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1047{
1048	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1049		    cache_device_name(cache), op, r);
1050	abort_transaction(cache);
1051	set_cache_mode(cache, CM_READ_ONLY);
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054/*----------------------------------------------------------------
1055 * Migration processing
1056 *
1057 * Migration covers moving data from the origin device to the cache, or
1058 * vice versa.
1059 *--------------------------------------------------------------*/
 
1060static void inc_io_migrations(struct cache *cache)
1061{
1062	atomic_inc(&cache->nr_io_migrations);
1063}
1064
1065static void dec_io_migrations(struct cache *cache)
1066{
1067	atomic_dec(&cache->nr_io_migrations);
1068}
1069
1070static bool discard_or_flush(struct bio *bio)
1071{
1072	return bio_op(bio) == REQ_OP_DISCARD ||
1073	       bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1074}
1075
1076static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell)
1077{
1078	if (discard_or_flush(cell->holder)) {
1079		/*
1080		 * We have to handle these bios individually.
1081		 */
1082		dm_cell_release(cache->prison, cell, &cache->deferred_bios);
1083		free_prison_cell(cache, cell);
1084	} else
1085		list_add_tail(&cell->user_list, &cache->deferred_cells);
1086}
1087
1088static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell, bool holder)
 
1089{
1090	unsigned long flags;
1091
1092	if (!holder && dm_cell_promote_or_release(cache->prison, cell)) {
1093		/*
1094		 * There was no prisoner to promote to holder, the
1095		 * cell has been released.
1096		 */
1097		free_prison_cell(cache, cell);
1098		return;
1099	}
1100
1101	spin_lock_irqsave(&cache->lock, flags);
1102	__cell_defer(cache, cell);
1103	spin_unlock_irqrestore(&cache->lock, flags);
1104
1105	wake_worker(cache);
 
 
 
1106}
1107
1108static void cell_error_with_code(struct cache *cache, struct dm_bio_prison_cell *cell, int err)
1109{
1110	dm_cell_error(cache->prison, cell, err);
1111	free_prison_cell(cache, cell);
1112}
1113
1114static void cell_requeue(struct cache *cache, struct dm_bio_prison_cell *cell)
1115{
1116	cell_error_with_code(cache, cell, DM_ENDIO_REQUEUE);
 
 
1117}
1118
1119static void free_io_migration(struct dm_cache_migration *mg)
1120{
1121	struct cache *cache = mg->cache;
1122
1123	dec_io_migrations(cache);
1124	free_migration(mg);
1125	wake_worker(cache);
1126}
1127
1128static void migration_failure(struct dm_cache_migration *mg)
1129{
1130	struct cache *cache = mg->cache;
1131	const char *dev_name = cache_device_name(cache);
1132
1133	if (mg->writeback) {
1134		DMERR_LIMIT("%s: writeback failed; couldn't copy block", dev_name);
1135		set_dirty(cache, mg->old_oblock, mg->cblock);
1136		cell_defer(cache, mg->old_ocell, false);
1137
1138	} else if (mg->demote) {
1139		DMERR_LIMIT("%s: demotion failed; couldn't copy block", dev_name);
1140		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
1141
1142		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1143		if (mg->promote)
1144			cell_defer(cache, mg->new_ocell, true);
1145	} else {
1146		DMERR_LIMIT("%s: promotion failed; couldn't copy block", dev_name);
1147		policy_remove_mapping(cache->policy, mg->new_oblock);
1148		cell_defer(cache, mg->new_ocell, true);
1149	}
1150
1151	free_io_migration(mg);
1152}
1153
1154static void migration_success_pre_commit(struct dm_cache_migration *mg)
1155{
1156	int r;
1157	unsigned long flags;
1158	struct cache *cache = mg->cache;
1159
1160	if (mg->writeback) {
1161		clear_dirty(cache, mg->old_oblock, mg->cblock);
1162		cell_defer(cache, mg->old_ocell, false);
1163		free_io_migration(mg);
1164		return;
1165
1166	} else if (mg->demote) {
1167		r = dm_cache_remove_mapping(cache->cmd, mg->cblock);
1168		if (r) {
1169			DMERR_LIMIT("%s: demotion failed; couldn't update on disk metadata",
1170				    cache_device_name(cache));
1171			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1172			policy_force_mapping(cache->policy, mg->new_oblock,
1173					     mg->old_oblock);
1174			if (mg->promote)
1175				cell_defer(cache, mg->new_ocell, true);
1176			free_io_migration(mg);
1177			return;
1178		}
1179	} else {
1180		r = dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock);
1181		if (r) {
1182			DMERR_LIMIT("%s: promotion failed; couldn't update on disk metadata",
1183				    cache_device_name(cache));
1184			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1185			policy_remove_mapping(cache->policy, mg->new_oblock);
1186			free_io_migration(mg);
1187			return;
1188		}
1189	}
1190
1191	spin_lock_irqsave(&cache->lock, flags);
1192	list_add_tail(&mg->list, &cache->need_commit_migrations);
1193	cache->commit_requested = true;
1194	spin_unlock_irqrestore(&cache->lock, flags);
1195}
1196
1197static void migration_success_post_commit(struct dm_cache_migration *mg)
1198{
1199	unsigned long flags;
1200	struct cache *cache = mg->cache;
1201
1202	if (mg->writeback) {
1203		DMWARN_LIMIT("%s: writeback unexpectedly triggered commit",
1204			     cache_device_name(cache));
1205		return;
1206
1207	} else if (mg->demote) {
1208		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
1209
1210		if (mg->promote) {
1211			mg->demote = false;
1212
1213			spin_lock_irqsave(&cache->lock, flags);
1214			list_add_tail(&mg->list, &cache->quiesced_migrations);
1215			spin_unlock_irqrestore(&cache->lock, flags);
1216
1217		} else {
1218			if (mg->invalidate)
1219				policy_remove_mapping(cache->policy, mg->old_oblock);
1220			free_io_migration(mg);
1221		}
 
1222
1223	} else {
1224		if (mg->requeue_holder) {
1225			clear_dirty(cache, mg->new_oblock, mg->cblock);
1226			cell_defer(cache, mg->new_ocell, true);
1227		} else {
1228			/*
1229			 * The block was promoted via an overwrite, so it's dirty.
1230			 */
1231			set_dirty(cache, mg->new_oblock, mg->cblock);
1232			bio_endio(mg->new_ocell->holder);
1233			cell_defer(cache, mg->new_ocell, false);
1234		}
1235		free_io_migration(mg);
1236	}
1237}
1238
1239static void copy_complete(int read_err, unsigned long write_err, void *context)
1240{
1241	unsigned long flags;
1242	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
1243	struct cache *cache = mg->cache;
1244
1245	if (read_err || write_err)
1246		mg->err = true;
1247
1248	spin_lock_irqsave(&cache->lock, flags);
1249	list_add_tail(&mg->list, &cache->completed_migrations);
1250	spin_unlock_irqrestore(&cache->lock, flags);
1251
1252	wake_worker(cache);
1253}
1254
1255static void issue_copy(struct dm_cache_migration *mg)
1256{
1257	int r;
1258	struct dm_io_region o_region, c_region;
1259	struct cache *cache = mg->cache;
1260	sector_t cblock = from_cblock(mg->cblock);
1261
1262	o_region.bdev = cache->origin_dev->bdev;
 
1263	o_region.count = cache->sectors_per_block;
1264
1265	c_region.bdev = cache->cache_dev->bdev;
1266	c_region.sector = cblock * cache->sectors_per_block;
1267	c_region.count = cache->sectors_per_block;
1268
1269	if (mg->writeback || mg->demote) {
1270		/* demote */
1271		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
1272		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
1273	} else {
1274		/* promote */
1275		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
1276		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
1277	}
1278
1279	if (r < 0) {
1280		DMERR_LIMIT("%s: issuing migration failed", cache_device_name(cache));
1281		migration_failure(mg);
1282	}
 
 
 
 
 
 
1283}
1284
1285static void overwrite_endio(struct bio *bio)
1286{
1287	struct dm_cache_migration *mg = bio->bi_private;
1288	struct cache *cache = mg->cache;
1289	size_t pb_data_size = get_per_bio_data_size(cache);
1290	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1291	unsigned long flags;
1292
1293	dm_unhook_bio(&pb->hook_info, bio);
1294
1295	if (bio->bi_error)
1296		mg->err = true;
1297
1298	mg->requeue_holder = false;
1299
1300	spin_lock_irqsave(&cache->lock, flags);
1301	list_add_tail(&mg->list, &cache->completed_migrations);
1302	spin_unlock_irqrestore(&cache->lock, flags);
1303
1304	wake_worker(cache);
1305}
1306
1307static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
 
1308{
1309	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1310	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1311
1312	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1313	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1314
1315	/*
1316	 * No need to inc_ds() here, since the cell will be held for the
1317	 * duration of the io.
1318	 */
1319	accounted_request(mg->cache, bio);
1320}
 
 
1321
1322static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1323{
1324	return (bio_data_dir(bio) == WRITE) &&
1325		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1326}
1327
1328static void avoid_copy(struct dm_cache_migration *mg)
 
 
 
 
 
 
 
 
 
 
 
1329{
1330	atomic_inc(&mg->cache->stats.copies_avoided);
1331	migration_success_pre_commit(mg);
1332}
 
1333
1334static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1335				     dm_dblock_t *b, dm_dblock_t *e)
1336{
1337	sector_t sb = bio->bi_iter.bi_sector;
1338	sector_t se = bio_end_sector(bio);
1339
1340	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341
1342	if (se - sb < cache->discard_block_size)
1343		*e = *b;
1344	else
1345		*e = to_dblock(block_div(se, cache->discard_block_size));
1346}
 
 
 
 
1347
1348static void issue_discard(struct dm_cache_migration *mg)
1349{
1350	dm_dblock_t b, e;
1351	struct bio *bio = mg->new_ocell->holder;
1352	struct cache *cache = mg->cache;
 
 
1353
1354	calc_discard_block_range(cache, bio, &b, &e);
1355	while (b != e) {
1356		set_discard(cache, b);
1357		b = to_dblock(from_dblock(b) + 1);
1358	}
1359
1360	bio_endio(bio);
1361	cell_defer(cache, mg->new_ocell, false);
1362	free_migration(mg);
1363	wake_worker(cache);
 
 
 
 
 
 
 
 
 
1364}
1365
1366static void issue_copy_or_discard(struct dm_cache_migration *mg)
1367{
1368	bool avoid;
 
1369	struct cache *cache = mg->cache;
 
1370
1371	if (mg->discard) {
1372		issue_discard(mg);
1373		return;
1374	}
 
 
 
1375
1376	if (mg->writeback || mg->demote)
1377		avoid = !is_dirty(cache, mg->cblock) ||
1378			is_discarded_oblock(cache, mg->old_oblock);
1379	else {
1380		struct bio *bio = mg->new_ocell->holder;
1381
1382		avoid = is_discarded_oblock(cache, mg->new_oblock);
 
 
 
 
 
1383
1384		if (writeback_mode(&cache->features) &&
1385		    !avoid && bio_writes_complete_block(cache, bio)) {
1386			issue_overwrite(mg, bio);
1387			return;
1388		}
1389	}
1390
1391	avoid ? avoid_copy(mg) : issue_copy(mg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392}
1393
1394static void complete_migration(struct dm_cache_migration *mg)
1395{
1396	if (mg->err)
1397		migration_failure(mg);
 
 
 
 
 
1398	else
1399		migration_success_pre_commit(mg);
1400}
1401
1402static void process_migrations(struct cache *cache, struct list_head *head,
1403			       void (*fn)(struct dm_cache_migration *))
1404{
1405	unsigned long flags;
1406	struct list_head list;
1407	struct dm_cache_migration *mg, *tmp;
1408
1409	INIT_LIST_HEAD(&list);
1410	spin_lock_irqsave(&cache->lock, flags);
1411	list_splice_init(head, &list);
1412	spin_unlock_irqrestore(&cache->lock, flags);
 
1413
1414	list_for_each_entry_safe(mg, tmp, &list, list)
1415		fn(mg);
1416}
 
 
 
 
 
1417
1418static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1419{
1420	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
 
 
 
1421}
1422
1423static void queue_quiesced_migration(struct dm_cache_migration *mg)
1424{
1425	unsigned long flags;
1426	struct cache *cache = mg->cache;
 
 
1427
1428	spin_lock_irqsave(&cache->lock, flags);
1429	__queue_quiesced_migration(mg);
1430	spin_unlock_irqrestore(&cache->lock, flags);
1431
1432	wake_worker(cache);
1433}
1434
1435static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1436{
1437	unsigned long flags;
1438	struct dm_cache_migration *mg, *tmp;
1439
1440	spin_lock_irqsave(&cache->lock, flags);
1441	list_for_each_entry_safe(mg, tmp, work, list)
1442		__queue_quiesced_migration(mg);
1443	spin_unlock_irqrestore(&cache->lock, flags);
1444
1445	wake_worker(cache);
 
 
 
 
1446}
1447
1448static void check_for_quiesced_migrations(struct cache *cache,
1449					  struct per_bio_data *pb)
1450{
1451	struct list_head work;
1452
1453	if (!pb->all_io_entry)
1454		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455
1456	INIT_LIST_HEAD(&work);
1457	dm_deferred_entry_dec(pb->all_io_entry, &work);
 
 
 
 
 
 
1458
1459	if (!list_empty(&work))
1460		queue_quiesced_migrations(cache, &work);
1461}
1462
1463static void quiesce_migration(struct dm_cache_migration *mg)
1464{
1465	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1466		queue_quiesced_migration(mg);
1467}
 
1468
1469static void promote(struct cache *cache, struct prealloc *structs,
1470		    dm_oblock_t oblock, dm_cblock_t cblock,
1471		    struct dm_bio_prison_cell *cell)
1472{
1473	struct dm_cache_migration *mg = prealloc_get_migration(structs);
 
1474
1475	mg->err = false;
1476	mg->discard = false;
1477	mg->writeback = false;
1478	mg->demote = false;
1479	mg->promote = true;
1480	mg->requeue_holder = true;
1481	mg->invalidate = false;
1482	mg->cache = cache;
1483	mg->new_oblock = oblock;
1484	mg->cblock = cblock;
1485	mg->old_ocell = NULL;
1486	mg->new_ocell = cell;
1487	mg->start_jiffies = jiffies;
1488
1489	inc_io_migrations(cache);
1490	quiesce_migration(mg);
1491}
1492
1493static void writeback(struct cache *cache, struct prealloc *structs,
1494		      dm_oblock_t oblock, dm_cblock_t cblock,
1495		      struct dm_bio_prison_cell *cell)
1496{
1497	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1498
1499	mg->err = false;
1500	mg->discard = false;
1501	mg->writeback = true;
1502	mg->demote = false;
1503	mg->promote = false;
1504	mg->requeue_holder = true;
1505	mg->invalidate = false;
1506	mg->cache = cache;
1507	mg->old_oblock = oblock;
1508	mg->cblock = cblock;
1509	mg->old_ocell = cell;
1510	mg->new_ocell = NULL;
1511	mg->start_jiffies = jiffies;
1512
1513	inc_io_migrations(cache);
1514	quiesce_migration(mg);
1515}
1516
1517static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1518				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1519				dm_cblock_t cblock,
1520				struct dm_bio_prison_cell *old_ocell,
1521				struct dm_bio_prison_cell *new_ocell)
1522{
1523	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1524
1525	mg->err = false;
1526	mg->discard = false;
1527	mg->writeback = false;
1528	mg->demote = true;
1529	mg->promote = true;
1530	mg->requeue_holder = true;
1531	mg->invalidate = false;
1532	mg->cache = cache;
1533	mg->old_oblock = old_oblock;
1534	mg->new_oblock = new_oblock;
1535	mg->cblock = cblock;
1536	mg->old_ocell = old_ocell;
1537	mg->new_ocell = new_ocell;
1538	mg->start_jiffies = jiffies;
1539
1540	inc_io_migrations(cache);
1541	quiesce_migration(mg);
1542}
1543
1544/*
1545 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1546 * block are thrown away.
1547 */
1548static void invalidate(struct cache *cache, struct prealloc *structs,
1549		       dm_oblock_t oblock, dm_cblock_t cblock,
1550		       struct dm_bio_prison_cell *cell)
1551{
1552	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1553
1554	mg->err = false;
1555	mg->discard = false;
1556	mg->writeback = false;
1557	mg->demote = true;
1558	mg->promote = false;
1559	mg->requeue_holder = true;
1560	mg->invalidate = true;
1561	mg->cache = cache;
1562	mg->old_oblock = oblock;
1563	mg->cblock = cblock;
1564	mg->old_ocell = cell;
1565	mg->new_ocell = NULL;
1566	mg->start_jiffies = jiffies;
1567
1568	inc_io_migrations(cache);
1569	quiesce_migration(mg);
1570}
1571
1572static void discard(struct cache *cache, struct prealloc *structs,
1573		    struct dm_bio_prison_cell *cell)
1574{
1575	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1576
1577	mg->err = false;
1578	mg->discard = true;
1579	mg->writeback = false;
1580	mg->demote = false;
1581	mg->promote = false;
1582	mg->requeue_holder = false;
1583	mg->invalidate = false;
1584	mg->cache = cache;
1585	mg->old_ocell = NULL;
1586	mg->new_ocell = cell;
1587	mg->start_jiffies = jiffies;
1588
1589	quiesce_migration(mg);
1590}
1591
1592/*----------------------------------------------------------------
1593 * bio processing
1594 *--------------------------------------------------------------*/
1595static void defer_bio(struct cache *cache, struct bio *bio)
1596{
1597	unsigned long flags;
1598
1599	spin_lock_irqsave(&cache->lock, flags);
1600	bio_list_add(&cache->deferred_bios, bio);
1601	spin_unlock_irqrestore(&cache->lock, flags);
 
1602
1603	wake_worker(cache);
1604}
 
 
 
 
1605
1606static void process_flush_bio(struct cache *cache, struct bio *bio)
1607{
1608	size_t pb_data_size = get_per_bio_data_size(cache);
1609	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1610
1611	BUG_ON(bio->bi_iter.bi_size);
1612	if (!pb->req_nr)
1613		remap_to_origin(cache, bio);
1614	else
1615		remap_to_cache(cache, bio, 0);
1616
1617	/*
1618	 * REQ_PREFLUSH is not directed at any particular block so we don't
1619	 * need to inc_ds().  REQ_FUA's are split into a write + REQ_PREFLUSH
1620	 * by dm-core.
1621	 */
1622	issue(cache, bio);
1623}
1624
1625static void process_discard_bio(struct cache *cache, struct prealloc *structs,
1626				struct bio *bio)
 
 
 
1627{
1628	int r;
1629	dm_dblock_t b, e;
1630	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
1631
1632	calc_discard_block_range(cache, bio, &b, &e);
1633	if (b == e) {
1634		bio_endio(bio);
1635		return;
1636	}
1637
1638	cell_prealloc = prealloc_get_cell(structs);
1639	r = bio_detain_range(cache, dblock_to_oblock(cache, b), dblock_to_oblock(cache, e), bio, cell_prealloc,
1640			     (cell_free_fn) prealloc_put_cell,
1641			     structs, &new_ocell);
1642	if (r > 0)
1643		return;
1644
1645	discard(cache, structs, new_ocell);
1646}
1647
1648static bool spare_migration_bandwidth(struct cache *cache)
1649{
1650	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1651		cache->sectors_per_block;
1652	return current_volume < cache->migration_threshold;
1653}
1654
1655static void inc_hit_counter(struct cache *cache, struct bio *bio)
1656{
1657	atomic_inc(bio_data_dir(bio) == READ ?
1658		   &cache->stats.read_hit : &cache->stats.write_hit);
1659}
1660
1661static void inc_miss_counter(struct cache *cache, struct bio *bio)
1662{
1663	atomic_inc(bio_data_dir(bio) == READ ?
1664		   &cache->stats.read_miss : &cache->stats.write_miss);
1665}
1666
1667/*----------------------------------------------------------------*/
1668
1669struct inc_detail {
1670	struct cache *cache;
1671	struct bio_list bios_for_issue;
1672	struct bio_list unhandled_bios;
1673	bool any_writes;
1674};
1675
1676static void inc_fn(void *context, struct dm_bio_prison_cell *cell)
1677{
1678	struct bio *bio;
1679	struct inc_detail *detail = context;
1680	struct cache *cache = detail->cache;
1681
1682	inc_ds(cache, cell->holder, cell);
1683	if (bio_data_dir(cell->holder) == WRITE)
1684		detail->any_writes = true;
1685
1686	while ((bio = bio_list_pop(&cell->bios))) {
1687		if (discard_or_flush(bio)) {
1688			bio_list_add(&detail->unhandled_bios, bio);
1689			continue;
1690		}
1691
1692		if (bio_data_dir(bio) == WRITE)
1693			detail->any_writes = true;
 
 
 
1694
1695		bio_list_add(&detail->bios_for_issue, bio);
1696		inc_ds(cache, bio, cell);
 
 
1697	}
 
 
 
 
 
 
1698}
1699
1700// FIXME: refactor these two
1701static void remap_cell_to_origin_clear_discard(struct cache *cache,
1702					       struct dm_bio_prison_cell *cell,
1703					       dm_oblock_t oblock, bool issue_holder)
1704{
1705	struct bio *bio;
1706	unsigned long flags;
1707	struct inc_detail detail;
 
1708
1709	detail.cache = cache;
1710	bio_list_init(&detail.bios_for_issue);
1711	bio_list_init(&detail.unhandled_bios);
1712	detail.any_writes = false;
 
1713
1714	spin_lock_irqsave(&cache->lock, flags);
1715	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1716	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1717	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
1718
1719	remap_to_origin(cache, cell->holder);
1720	if (issue_holder)
1721		issue(cache, cell->holder);
1722	else
1723		accounted_begin(cache, cell->holder);
1724
1725	if (detail.any_writes)
1726		clear_discard(cache, oblock_to_dblock(cache, oblock));
1727
1728	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1729		remap_to_origin(cache, bio);
1730		issue(cache, bio);
 
 
 
 
1731	}
1732
1733	free_prison_cell(cache, cell);
1734}
1735
1736static void remap_cell_to_cache_dirty(struct cache *cache, struct dm_bio_prison_cell *cell,
1737				      dm_oblock_t oblock, dm_cblock_t cblock, bool issue_holder)
1738{
1739	struct bio *bio;
1740	unsigned long flags;
1741	struct inc_detail detail;
1742
1743	detail.cache = cache;
1744	bio_list_init(&detail.bios_for_issue);
1745	bio_list_init(&detail.unhandled_bios);
1746	detail.any_writes = false;
1747
1748	spin_lock_irqsave(&cache->lock, flags);
1749	dm_cell_visit_release(cache->prison, inc_fn, &detail, cell);
1750	bio_list_merge(&cache->deferred_bios, &detail.unhandled_bios);
1751	spin_unlock_irqrestore(&cache->lock, flags);
1752
1753	remap_to_cache(cache, cell->holder, cblock);
1754	if (issue_holder)
1755		issue(cache, cell->holder);
1756	else
1757		accounted_begin(cache, cell->holder);
1758
1759	if (detail.any_writes) {
1760		set_dirty(cache, oblock, cblock);
1761		clear_discard(cache, oblock_to_dblock(cache, oblock));
 
1762	}
1763
1764	while ((bio = bio_list_pop(&detail.bios_for_issue))) {
1765		remap_to_cache(cache, bio, cblock);
1766		issue(cache, bio);
1767	}
1768
1769	free_prison_cell(cache, cell);
1770}
1771
1772/*----------------------------------------------------------------*/
 
 
1773
1774struct old_oblock_lock {
1775	struct policy_locker locker;
1776	struct cache *cache;
1777	struct prealloc *structs;
1778	struct dm_bio_prison_cell *cell;
1779};
1780
1781static int null_locker(struct policy_locker *locker, dm_oblock_t b)
1782{
1783	/* This should never be called */
1784	BUG();
1785	return 0;
 
 
 
 
 
1786}
1787
1788static int cell_locker(struct policy_locker *locker, dm_oblock_t b)
1789{
1790	struct old_oblock_lock *l = container_of(locker, struct old_oblock_lock, locker);
1791	struct dm_bio_prison_cell *cell_prealloc = prealloc_get_cell(l->structs);
1792
1793	return bio_detain(l->cache, b, NULL, cell_prealloc,
1794			  (cell_free_fn) prealloc_put_cell,
1795			  l->structs, &l->cell);
1796}
1797
1798static void process_cell(struct cache *cache, struct prealloc *structs,
1799			 struct dm_bio_prison_cell *new_ocell)
1800{
1801	int r;
1802	bool release_cell = true;
1803	struct bio *bio = new_ocell->holder;
1804	dm_oblock_t block = get_bio_block(cache, bio);
1805	struct policy_result lookup_result;
1806	bool passthrough = passthrough_mode(&cache->features);
1807	bool fast_promotion, can_migrate;
1808	struct old_oblock_lock ool;
1809
1810	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
1811	can_migrate = !passthrough && (fast_promotion || spare_migration_bandwidth(cache));
1812
1813	ool.locker.fn = cell_locker;
1814	ool.cache = cache;
1815	ool.structs = structs;
1816	ool.cell = NULL;
1817	r = policy_map(cache->policy, block, true, can_migrate, fast_promotion,
1818		       bio, &ool.locker, &lookup_result);
1819
1820	if (r == -EWOULDBLOCK)
1821		/* migration has been denied */
1822		lookup_result.op = POLICY_MISS;
1823
1824	switch (lookup_result.op) {
1825	case POLICY_HIT:
1826		if (passthrough) {
1827			inc_miss_counter(cache, bio);
1828
1829			/*
1830			 * Passthrough always maps to the origin,
1831			 * invalidating any cache blocks that are written
1832			 * to.
1833			 */
1834
1835			if (bio_data_dir(bio) == WRITE) {
1836				atomic_inc(&cache->stats.demotion);
1837				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1838				release_cell = false;
1839
1840			} else {
1841				/* FIXME: factor out issue_origin() */
1842				remap_to_origin_clear_discard(cache, bio, block);
1843				inc_and_issue(cache, bio, new_ocell);
1844			}
1845		} else {
1846			inc_hit_counter(cache, bio);
1847
1848			if (bio_data_dir(bio) == WRITE &&
1849			    writethrough_mode(&cache->features) &&
1850			    !is_dirty(cache, lookup_result.cblock)) {
1851				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1852				inc_and_issue(cache, bio, new_ocell);
1853
1854			} else {
1855				remap_cell_to_cache_dirty(cache, new_ocell, block, lookup_result.cblock, true);
1856				release_cell = false;
1857			}
1858		}
1859
1860		break;
 
 
 
 
 
 
 
 
 
 
1861
1862	case POLICY_MISS:
1863		inc_miss_counter(cache, bio);
1864		remap_cell_to_origin_clear_discard(cache, new_ocell, block, true);
1865		release_cell = false;
1866		break;
1867
1868	case POLICY_NEW:
1869		atomic_inc(&cache->stats.promotion);
1870		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1871		release_cell = false;
1872		break;
1873
1874	case POLICY_REPLACE:
1875		atomic_inc(&cache->stats.demotion);
1876		atomic_inc(&cache->stats.promotion);
1877		demote_then_promote(cache, structs, lookup_result.old_oblock,
1878				    block, lookup_result.cblock,
1879				    ool.cell, new_ocell);
1880		release_cell = false;
1881		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882
1883	default:
1884		DMERR_LIMIT("%s: %s: erroring bio, unknown policy op: %u",
1885			    cache_device_name(cache), __func__,
1886			    (unsigned) lookup_result.op);
1887		bio_io_error(bio);
1888	}
1889
1890	if (release_cell)
1891		cell_defer(cache, new_ocell, false);
1892}
1893
1894static void process_bio(struct cache *cache, struct prealloc *structs,
1895			struct bio *bio)
1896{
1897	int r;
1898	dm_oblock_t block = get_bio_block(cache, bio);
1899	struct dm_bio_prison_cell *cell_prealloc, *new_ocell;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900
1901	/*
1902	 * Check to see if that block is currently migrating.
1903	 */
1904	cell_prealloc = prealloc_get_cell(structs);
1905	r = bio_detain(cache, block, bio, cell_prealloc,
1906		       (cell_free_fn) prealloc_put_cell,
1907		       structs, &new_ocell);
1908	if (r > 0)
1909		return;
 
 
 
 
1910
1911	process_cell(cache, structs, new_ocell);
1912}
1913
1914static int need_commit_due_to_time(struct cache *cache)
1915{
1916	return jiffies < cache->last_commit_jiffies ||
1917	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
 
 
 
 
1918}
1919
1920/*
1921 * A non-zero return indicates read_only or fail_io mode.
1922 */
1923static int commit(struct cache *cache, bool clean_shutdown)
1924{
1925	int r;
1926
1927	if (get_cache_mode(cache) >= CM_READ_ONLY)
1928		return -EINVAL;
1929
1930	atomic_inc(&cache->stats.commit_count);
1931	r = dm_cache_commit(cache->cmd, clean_shutdown);
1932	if (r)
1933		metadata_operation_failed(cache, "dm_cache_commit", r);
1934
1935	return r;
1936}
1937
1938static int commit_if_needed(struct cache *cache)
 
 
 
1939{
1940	int r = 0;
1941
1942	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1943	    dm_cache_changed_this_transaction(cache->cmd)) {
1944		r = commit(cache, false);
1945		cache->commit_requested = false;
1946		cache->last_commit_jiffies = jiffies;
1947	}
1948
1949	return r;
1950}
1951
1952static void process_deferred_bios(struct cache *cache)
1953{
1954	bool prealloc_used = false;
1955	unsigned long flags;
1956	struct bio_list bios;
1957	struct bio *bio;
1958	struct prealloc structs;
1959
1960	memset(&structs, 0, sizeof(structs));
1961	bio_list_init(&bios);
1962
1963	spin_lock_irqsave(&cache->lock, flags);
1964	bio_list_merge(&bios, &cache->deferred_bios);
1965	bio_list_init(&cache->deferred_bios);
1966	spin_unlock_irqrestore(&cache->lock, flags);
1967
1968	while (!bio_list_empty(&bios)) {
1969		/*
1970		 * If we've got no free migration structs, and processing
1971		 * this bio might require one, we pause until there are some
1972		 * prepared mappings to process.
1973		 */
1974		prealloc_used = true;
1975		if (prealloc_data_structs(cache, &structs)) {
1976			spin_lock_irqsave(&cache->lock, flags);
1977			bio_list_merge(&cache->deferred_bios, &bios);
1978			spin_unlock_irqrestore(&cache->lock, flags);
1979			break;
1980		}
1981
1982		bio = bio_list_pop(&bios);
1983
1984		if (bio->bi_opf & REQ_PREFLUSH)
1985			process_flush_bio(cache, bio);
1986		else if (bio_op(bio) == REQ_OP_DISCARD)
1987			process_discard_bio(cache, &structs, bio);
1988		else
1989			process_bio(cache, &structs, bio);
1990	}
1991
1992	if (prealloc_used)
1993		prealloc_free_structs(cache, &structs);
1994}
1995
1996static void process_deferred_cells(struct cache *cache)
1997{
1998	bool prealloc_used = false;
1999	unsigned long flags;
2000	struct dm_bio_prison_cell *cell, *tmp;
2001	struct list_head cells;
2002	struct prealloc structs;
2003
2004	memset(&structs, 0, sizeof(structs));
2005
2006	INIT_LIST_HEAD(&cells);
2007
2008	spin_lock_irqsave(&cache->lock, flags);
2009	list_splice_init(&cache->deferred_cells, &cells);
2010	spin_unlock_irqrestore(&cache->lock, flags);
2011
2012	list_for_each_entry_safe(cell, tmp, &cells, user_list) {
2013		/*
2014		 * If we've got no free migration structs, and processing
2015		 * this bio might require one, we pause until there are some
2016		 * prepared mappings to process.
2017		 */
2018		prealloc_used = true;
2019		if (prealloc_data_structs(cache, &structs)) {
2020			spin_lock_irqsave(&cache->lock, flags);
2021			list_splice(&cells, &cache->deferred_cells);
2022			spin_unlock_irqrestore(&cache->lock, flags);
2023			break;
2024		}
2025
2026		process_cell(cache, &structs, cell);
2027	}
2028
2029	if (prealloc_used)
2030		prealloc_free_structs(cache, &structs);
2031}
2032
2033static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
2034{
2035	unsigned long flags;
2036	struct bio_list bios;
2037	struct bio *bio;
2038
2039	bio_list_init(&bios);
 
 
 
 
 
 
 
2040
2041	spin_lock_irqsave(&cache->lock, flags);
2042	bio_list_merge(&bios, &cache->deferred_flush_bios);
2043	bio_list_init(&cache->deferred_flush_bios);
2044	spin_unlock_irqrestore(&cache->lock, flags);
2045
2046	/*
2047	 * These bios have already been through inc_ds()
2048	 */
2049	while ((bio = bio_list_pop(&bios)))
2050		submit_bios ? accounted_request(cache, bio) : bio_io_error(bio);
2051}
2052
2053static void process_deferred_writethrough_bios(struct cache *cache)
2054{
 
 
2055	unsigned long flags;
 
2056	struct bio_list bios;
2057	struct bio *bio;
2058
2059	bio_list_init(&bios);
2060
2061	spin_lock_irqsave(&cache->lock, flags);
2062	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
2063	bio_list_init(&cache->deferred_writethrough_bios);
2064	spin_unlock_irqrestore(&cache->lock, flags);
2065
2066	/*
2067	 * These bios have already been through inc_ds()
2068	 */
2069	while ((bio = bio_list_pop(&bios)))
2070		accounted_request(cache, bio);
2071}
2072
2073static void writeback_some_dirty_blocks(struct cache *cache)
2074{
2075	bool prealloc_used = false;
2076	dm_oblock_t oblock;
2077	dm_cblock_t cblock;
2078	struct prealloc structs;
2079	struct dm_bio_prison_cell *old_ocell;
2080	bool busy = !iot_idle_for(&cache->origin_tracker, HZ);
2081
2082	memset(&structs, 0, sizeof(structs));
2083
2084	while (spare_migration_bandwidth(cache)) {
2085		if (policy_writeback_work(cache->policy, &oblock, &cblock, busy))
2086			break; /* no work to do */
2087
2088		prealloc_used = true;
2089		if (prealloc_data_structs(cache, &structs) ||
2090		    get_cell(cache, oblock, &structs, &old_ocell)) {
2091			policy_set_dirty(cache->policy, oblock);
2092			break;
2093		}
2094
2095		writeback(cache, &structs, oblock, cblock, old_ocell);
 
2096	}
2097
2098	if (prealloc_used)
2099		prealloc_free_structs(cache, &structs);
2100}
2101
2102/*----------------------------------------------------------------
2103 * Invalidations.
2104 * Dropping something from the cache *without* writing back.
2105 *--------------------------------------------------------------*/
2106
2107static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
2108{
2109	int r = 0;
2110	uint64_t begin = from_cblock(req->cblocks->begin);
2111	uint64_t end = from_cblock(req->cblocks->end);
2112
2113	while (begin != end) {
2114		r = policy_remove_cblock(cache->policy, to_cblock(begin));
2115		if (!r) {
2116			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
2117			if (r) {
2118				metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
2119				break;
2120			}
2121
2122		} else if (r == -ENODATA) {
2123			/* harmless, already unmapped */
2124			r = 0;
2125
2126		} else {
2127			DMERR("%s: policy_remove_cblock failed", cache_device_name(cache));
2128			break;
2129		}
2130
2131		begin++;
2132        }
2133
2134	cache->commit_requested = true;
2135
2136	req->err = r;
2137	atomic_set(&req->complete, 1);
2138
2139	wake_up(&req->result_wait);
2140}
2141
2142static void process_invalidation_requests(struct cache *cache)
2143{
2144	struct list_head list;
2145	struct invalidation_request *req, *tmp;
2146
2147	INIT_LIST_HEAD(&list);
2148	spin_lock(&cache->invalidation_lock);
2149	list_splice_init(&cache->invalidation_requests, &list);
2150	spin_unlock(&cache->invalidation_lock);
2151
2152	list_for_each_entry_safe (req, tmp, &list, list)
2153		process_invalidation_request(cache, req);
2154}
2155
2156/*----------------------------------------------------------------
2157 * Main worker loop
2158 *--------------------------------------------------------------*/
2159static bool is_quiescing(struct cache *cache)
2160{
2161	return atomic_read(&cache->quiescing);
2162}
2163
2164static void ack_quiescing(struct cache *cache)
2165{
2166	if (is_quiescing(cache)) {
2167		atomic_inc(&cache->quiescing_ack);
2168		wake_up(&cache->quiescing_wait);
2169	}
2170}
2171
2172static void wait_for_quiescing_ack(struct cache *cache)
2173{
2174	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
2175}
2176
2177static void start_quiescing(struct cache *cache)
2178{
2179	atomic_inc(&cache->quiescing);
2180	wait_for_quiescing_ack(cache);
2181}
2182
2183static void stop_quiescing(struct cache *cache)
2184{
2185	atomic_set(&cache->quiescing, 0);
2186	atomic_set(&cache->quiescing_ack, 0);
2187}
2188
2189static void wait_for_migrations(struct cache *cache)
2190{
2191	wait_event(cache->migration_wait, !atomic_read(&cache->nr_allocated_migrations));
2192}
2193
2194static void stop_worker(struct cache *cache)
2195{
2196	cancel_delayed_work(&cache->waker);
2197	flush_workqueue(cache->wq);
2198}
2199
2200static void requeue_deferred_cells(struct cache *cache)
2201{
2202	unsigned long flags;
2203	struct list_head cells;
2204	struct dm_bio_prison_cell *cell, *tmp;
2205
2206	INIT_LIST_HEAD(&cells);
2207	spin_lock_irqsave(&cache->lock, flags);
2208	list_splice_init(&cache->deferred_cells, &cells);
2209	spin_unlock_irqrestore(&cache->lock, flags);
2210
2211	list_for_each_entry_safe(cell, tmp, &cells, user_list)
2212		cell_requeue(cache, cell);
2213}
2214
2215static void requeue_deferred_bios(struct cache *cache)
2216{
2217	struct bio *bio;
2218	struct bio_list bios;
2219
2220	bio_list_init(&bios);
2221	bio_list_merge(&bios, &cache->deferred_bios);
2222	bio_list_init(&cache->deferred_bios);
2223
2224	while ((bio = bio_list_pop(&bios))) {
2225		bio->bi_error = DM_ENDIO_REQUEUE;
2226		bio_endio(bio);
2227	}
2228}
2229
2230static int more_work(struct cache *cache)
2231{
2232	if (is_quiescing(cache))
2233		return !list_empty(&cache->quiesced_migrations) ||
2234			!list_empty(&cache->completed_migrations) ||
2235			!list_empty(&cache->need_commit_migrations);
2236	else
2237		return !bio_list_empty(&cache->deferred_bios) ||
2238			!list_empty(&cache->deferred_cells) ||
2239			!bio_list_empty(&cache->deferred_flush_bios) ||
2240			!bio_list_empty(&cache->deferred_writethrough_bios) ||
2241			!list_empty(&cache->quiesced_migrations) ||
2242			!list_empty(&cache->completed_migrations) ||
2243			!list_empty(&cache->need_commit_migrations) ||
2244			cache->invalidate;
2245}
2246
2247static void do_worker(struct work_struct *ws)
2248{
2249	struct cache *cache = container_of(ws, struct cache, worker);
2250
2251	do {
2252		if (!is_quiescing(cache)) {
2253			writeback_some_dirty_blocks(cache);
2254			process_deferred_writethrough_bios(cache);
2255			process_deferred_bios(cache);
2256			process_deferred_cells(cache);
2257			process_invalidation_requests(cache);
2258		}
2259
2260		process_migrations(cache, &cache->quiesced_migrations, issue_copy_or_discard);
2261		process_migrations(cache, &cache->completed_migrations, complete_migration);
2262
2263		if (commit_if_needed(cache)) {
2264			process_deferred_flush_bios(cache, false);
2265			process_migrations(cache, &cache->need_commit_migrations, migration_failure);
2266		} else {
2267			process_deferred_flush_bios(cache, true);
2268			process_migrations(cache, &cache->need_commit_migrations,
2269					   migration_success_post_commit);
2270		}
2271
2272		ack_quiescing(cache);
2273
2274	} while (more_work(cache));
2275}
2276
2277/*
2278 * We want to commit periodically so that not too much
2279 * unwritten metadata builds up.
2280 */
2281static void do_waker(struct work_struct *ws)
2282{
2283	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
 
2284	policy_tick(cache->policy, true);
2285	wake_worker(cache);
 
2286	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
2287}
2288
2289/*----------------------------------------------------------------*/
2290
2291static int is_congested(struct dm_dev *dev, int bdi_bits)
2292{
2293	struct request_queue *q = bdev_get_queue(dev->bdev);
2294	return bdi_congested(&q->backing_dev_info, bdi_bits);
2295}
 
2296
2297static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2298{
2299	struct cache *cache = container_of(cb, struct cache, callbacks);
2300
2301	return is_congested(cache->origin_dev, bdi_bits) ||
2302		is_congested(cache->cache_dev, bdi_bits);
 
 
 
 
 
 
 
 
 
 
 
 
2303}
2304
2305/*----------------------------------------------------------------
2306 * Target methods
2307 *--------------------------------------------------------------*/
2308
2309/*
2310 * This function gets called on the error paths of the constructor, so we
2311 * have to cope with a partially initialised struct.
2312 */
2313static void destroy(struct cache *cache)
2314{
2315	unsigned i;
2316
2317	mempool_destroy(cache->migration_pool);
2318
2319	if (cache->all_io_ds)
2320		dm_deferred_set_destroy(cache->all_io_ds);
2321
2322	if (cache->prison)
2323		dm_bio_prison_destroy(cache->prison);
2324
2325	if (cache->wq)
2326		destroy_workqueue(cache->wq);
2327
2328	if (cache->dirty_bitset)
2329		free_bitset(cache->dirty_bitset);
2330
2331	if (cache->discard_bitset)
2332		free_bitset(cache->discard_bitset);
2333
2334	if (cache->copier)
2335		dm_kcopyd_client_destroy(cache->copier);
2336
2337	if (cache->cmd)
2338		dm_cache_metadata_close(cache->cmd);
2339
2340	if (cache->metadata_dev)
2341		dm_put_device(cache->ti, cache->metadata_dev);
2342
2343	if (cache->origin_dev)
2344		dm_put_device(cache->ti, cache->origin_dev);
2345
2346	if (cache->cache_dev)
2347		dm_put_device(cache->ti, cache->cache_dev);
2348
2349	if (cache->policy)
2350		dm_cache_policy_destroy(cache->policy);
2351
2352	for (i = 0; i < cache->nr_ctr_args ; i++)
2353		kfree(cache->ctr_args[i]);
2354	kfree(cache->ctr_args);
2355
 
 
 
2356	kfree(cache);
2357}
2358
2359static void cache_dtr(struct dm_target *ti)
2360{
2361	struct cache *cache = ti->private;
2362
2363	destroy(cache);
2364}
2365
2366static sector_t get_dev_size(struct dm_dev *dev)
2367{
2368	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2369}
2370
2371/*----------------------------------------------------------------*/
2372
2373/*
2374 * Construct a cache device mapping.
2375 *
2376 * cache <metadata dev> <cache dev> <origin dev> <block size>
2377 *       <#feature args> [<feature arg>]*
2378 *       <policy> <#policy args> [<policy arg>]*
2379 *
2380 * metadata dev    : fast device holding the persistent metadata
2381 * cache dev	   : fast device holding cached data blocks
2382 * origin dev	   : slow device holding original data blocks
2383 * block size	   : cache unit size in sectors
2384 *
2385 * #feature args   : number of feature arguments passed
2386 * feature args    : writethrough.  (The default is writeback.)
2387 *
2388 * policy	   : the replacement policy to use
2389 * #policy args    : an even number of policy arguments corresponding
2390 *		     to key/value pairs passed to the policy
2391 * policy args	   : key/value pairs passed to the policy
2392 *		     E.g. 'sequential_threshold 1024'
2393 *		     See cache-policies.txt for details.
2394 *
2395 * Optional feature arguments are:
2396 *   writethrough  : write through caching that prohibits cache block
2397 *		     content from being different from origin block content.
2398 *		     Without this argument, the default behaviour is to write
2399 *		     back cache block contents later for performance reasons,
2400 *		     so they may differ from the corresponding origin blocks.
2401 */
2402struct cache_args {
2403	struct dm_target *ti;
2404
2405	struct dm_dev *metadata_dev;
2406
2407	struct dm_dev *cache_dev;
2408	sector_t cache_sectors;
2409
2410	struct dm_dev *origin_dev;
2411	sector_t origin_sectors;
2412
2413	uint32_t block_size;
2414
2415	const char *policy_name;
2416	int policy_argc;
2417	const char **policy_argv;
2418
2419	struct cache_features features;
2420};
2421
2422static void destroy_cache_args(struct cache_args *ca)
2423{
2424	if (ca->metadata_dev)
2425		dm_put_device(ca->ti, ca->metadata_dev);
2426
2427	if (ca->cache_dev)
2428		dm_put_device(ca->ti, ca->cache_dev);
2429
2430	if (ca->origin_dev)
2431		dm_put_device(ca->ti, ca->origin_dev);
2432
2433	kfree(ca);
2434}
2435
2436static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2437{
2438	if (!as->argc) {
2439		*error = "Insufficient args";
2440		return false;
2441	}
2442
2443	return true;
2444}
2445
2446static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2447			      char **error)
2448{
2449	int r;
2450	sector_t metadata_dev_size;
2451	char b[BDEVNAME_SIZE];
2452
2453	if (!at_least_one_arg(as, error))
2454		return -EINVAL;
2455
2456	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2457			  &ca->metadata_dev);
2458	if (r) {
2459		*error = "Error opening metadata device";
2460		return r;
2461	}
2462
2463	metadata_dev_size = get_dev_size(ca->metadata_dev);
2464	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2465		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2466		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2467
2468	return 0;
2469}
2470
2471static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2472			   char **error)
2473{
2474	int r;
2475
2476	if (!at_least_one_arg(as, error))
2477		return -EINVAL;
2478
2479	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2480			  &ca->cache_dev);
2481	if (r) {
2482		*error = "Error opening cache device";
2483		return r;
2484	}
2485	ca->cache_sectors = get_dev_size(ca->cache_dev);
2486
2487	return 0;
2488}
2489
2490static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2491			    char **error)
2492{
2493	int r;
2494
2495	if (!at_least_one_arg(as, error))
2496		return -EINVAL;
2497
2498	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2499			  &ca->origin_dev);
2500	if (r) {
2501		*error = "Error opening origin device";
2502		return r;
2503	}
2504
2505	ca->origin_sectors = get_dev_size(ca->origin_dev);
2506	if (ca->ti->len > ca->origin_sectors) {
2507		*error = "Device size larger than cached device";
2508		return -EINVAL;
2509	}
2510
2511	return 0;
2512}
2513
2514static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2515			    char **error)
2516{
2517	unsigned long block_size;
2518
2519	if (!at_least_one_arg(as, error))
2520		return -EINVAL;
2521
2522	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2523	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2524	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2525	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2526		*error = "Invalid data block size";
2527		return -EINVAL;
2528	}
2529
2530	if (block_size > ca->cache_sectors) {
2531		*error = "Data block size is larger than the cache device";
2532		return -EINVAL;
2533	}
2534
2535	ca->block_size = block_size;
2536
2537	return 0;
2538}
2539
2540static void init_features(struct cache_features *cf)
2541{
2542	cf->mode = CM_WRITE;
2543	cf->io_mode = CM_IO_WRITEBACK;
 
2544}
2545
2546static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2547			  char **error)
2548{
2549	static struct dm_arg _args[] = {
2550		{0, 1, "Invalid number of cache feature arguments"},
2551	};
2552
2553	int r;
2554	unsigned argc;
2555	const char *arg;
2556	struct cache_features *cf = &ca->features;
2557
2558	init_features(cf);
2559
2560	r = dm_read_arg_group(_args, as, &argc, error);
2561	if (r)
2562		return -EINVAL;
2563
2564	while (argc--) {
2565		arg = dm_shift_arg(as);
2566
2567		if (!strcasecmp(arg, "writeback"))
2568			cf->io_mode = CM_IO_WRITEBACK;
2569
2570		else if (!strcasecmp(arg, "writethrough"))
2571			cf->io_mode = CM_IO_WRITETHROUGH;
2572
2573		else if (!strcasecmp(arg, "passthrough"))
2574			cf->io_mode = CM_IO_PASSTHROUGH;
2575
 
 
 
2576		else {
2577			*error = "Unrecognised cache feature requested";
2578			return -EINVAL;
2579		}
2580	}
2581
2582	return 0;
2583}
2584
2585static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2586			char **error)
2587{
2588	static struct dm_arg _args[] = {
2589		{0, 1024, "Invalid number of policy arguments"},
2590	};
2591
2592	int r;
2593
2594	if (!at_least_one_arg(as, error))
2595		return -EINVAL;
2596
2597	ca->policy_name = dm_shift_arg(as);
2598
2599	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2600	if (r)
2601		return -EINVAL;
2602
2603	ca->policy_argv = (const char **)as->argv;
2604	dm_consume_args(as, ca->policy_argc);
2605
2606	return 0;
2607}
2608
2609static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2610			    char **error)
2611{
2612	int r;
2613	struct dm_arg_set as;
2614
2615	as.argc = argc;
2616	as.argv = argv;
2617
2618	r = parse_metadata_dev(ca, &as, error);
2619	if (r)
2620		return r;
2621
2622	r = parse_cache_dev(ca, &as, error);
2623	if (r)
2624		return r;
2625
2626	r = parse_origin_dev(ca, &as, error);
2627	if (r)
2628		return r;
2629
2630	r = parse_block_size(ca, &as, error);
2631	if (r)
2632		return r;
2633
2634	r = parse_features(ca, &as, error);
2635	if (r)
2636		return r;
2637
2638	r = parse_policy(ca, &as, error);
2639	if (r)
2640		return r;
2641
2642	return 0;
2643}
2644
2645/*----------------------------------------------------------------*/
2646
2647static struct kmem_cache *migration_cache;
2648
2649#define NOT_CORE_OPTION 1
2650
2651static int process_config_option(struct cache *cache, const char *key, const char *value)
2652{
2653	unsigned long tmp;
2654
2655	if (!strcasecmp(key, "migration_threshold")) {
2656		if (kstrtoul(value, 10, &tmp))
2657			return -EINVAL;
2658
2659		cache->migration_threshold = tmp;
2660		return 0;
2661	}
2662
2663	return NOT_CORE_OPTION;
2664}
2665
2666static int set_config_value(struct cache *cache, const char *key, const char *value)
2667{
2668	int r = process_config_option(cache, key, value);
2669
2670	if (r == NOT_CORE_OPTION)
2671		r = policy_set_config_value(cache->policy, key, value);
2672
2673	if (r)
2674		DMWARN("bad config value for %s: %s", key, value);
2675
2676	return r;
2677}
2678
2679static int set_config_values(struct cache *cache, int argc, const char **argv)
2680{
2681	int r = 0;
2682
2683	if (argc & 1) {
2684		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2685		return -EINVAL;
2686	}
2687
2688	while (argc) {
2689		r = set_config_value(cache, argv[0], argv[1]);
2690		if (r)
2691			break;
2692
2693		argc -= 2;
2694		argv += 2;
2695	}
2696
2697	return r;
2698}
2699
2700static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2701			       char **error)
2702{
2703	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2704							   cache->cache_size,
2705							   cache->origin_sectors,
2706							   cache->sectors_per_block);
2707	if (IS_ERR(p)) {
2708		*error = "Error creating cache's policy";
2709		return PTR_ERR(p);
2710	}
2711	cache->policy = p;
 
2712
2713	return 0;
2714}
2715
2716/*
2717 * We want the discard block size to be at least the size of the cache
2718 * block size and have no more than 2^14 discard blocks across the origin.
2719 */
2720#define MAX_DISCARD_BLOCKS (1 << 14)
2721
2722static bool too_many_discard_blocks(sector_t discard_block_size,
2723				    sector_t origin_size)
2724{
2725	(void) sector_div(origin_size, discard_block_size);
2726
2727	return origin_size > MAX_DISCARD_BLOCKS;
2728}
2729
2730static sector_t calculate_discard_block_size(sector_t cache_block_size,
2731					     sector_t origin_size)
2732{
2733	sector_t discard_block_size = cache_block_size;
2734
2735	if (origin_size)
2736		while (too_many_discard_blocks(discard_block_size, origin_size))
2737			discard_block_size *= 2;
2738
2739	return discard_block_size;
2740}
2741
2742static void set_cache_size(struct cache *cache, dm_cblock_t size)
2743{
2744	dm_block_t nr_blocks = from_cblock(size);
2745
2746	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2747		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2748			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2749			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2750			     (unsigned long long) nr_blocks);
2751
2752	cache->cache_size = size;
2753}
2754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2755#define DEFAULT_MIGRATION_THRESHOLD 2048
2756
2757static int cache_create(struct cache_args *ca, struct cache **result)
2758{
2759	int r = 0;
2760	char **error = &ca->ti->error;
2761	struct cache *cache;
2762	struct dm_target *ti = ca->ti;
2763	dm_block_t origin_blocks;
2764	struct dm_cache_metadata *cmd;
2765	bool may_format = ca->features.mode == CM_WRITE;
2766
2767	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2768	if (!cache)
2769		return -ENOMEM;
2770
2771	cache->ti = ca->ti;
2772	ti->private = cache;
2773	ti->num_flush_bios = 2;
2774	ti->flush_supported = true;
2775
2776	ti->num_discard_bios = 1;
2777	ti->discards_supported = true;
2778	ti->discard_zeroes_data_unsupported = true;
2779	ti->split_discard_bios = false;
2780
 
 
2781	cache->features = ca->features;
2782	ti->per_io_data_size = get_per_bio_data_size(cache);
 
 
 
 
 
2783
2784	cache->callbacks.congested_fn = cache_is_congested;
2785	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2786
2787	cache->metadata_dev = ca->metadata_dev;
2788	cache->origin_dev = ca->origin_dev;
2789	cache->cache_dev = ca->cache_dev;
2790
2791	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2792
2793	/* FIXME: factor out this whole section */
2794	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2795	origin_blocks = block_div(origin_blocks, ca->block_size);
2796	cache->origin_blocks = to_oblock(origin_blocks);
2797
2798	cache->sectors_per_block = ca->block_size;
2799	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2800		r = -EINVAL;
2801		goto bad;
2802	}
2803
2804	if (ca->block_size & (ca->block_size - 1)) {
2805		dm_block_t cache_size = ca->cache_sectors;
2806
2807		cache->sectors_per_block_shift = -1;
2808		cache_size = block_div(cache_size, ca->block_size);
2809		set_cache_size(cache, to_cblock(cache_size));
2810	} else {
2811		cache->sectors_per_block_shift = __ffs(ca->block_size);
2812		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2813	}
2814
2815	r = create_cache_policy(cache, ca, error);
2816	if (r)
2817		goto bad;
2818
2819	cache->policy_nr_args = ca->policy_argc;
2820	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2821
2822	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2823	if (r) {
2824		*error = "Error setting cache policy's config values";
2825		goto bad;
2826	}
2827
2828	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2829				     ca->block_size, may_format,
2830				     dm_cache_policy_get_hint_size(cache->policy));
 
2831	if (IS_ERR(cmd)) {
2832		*error = "Error creating metadata object";
2833		r = PTR_ERR(cmd);
2834		goto bad;
2835	}
2836	cache->cmd = cmd;
2837	set_cache_mode(cache, CM_WRITE);
2838	if (get_cache_mode(cache) != CM_WRITE) {
2839		*error = "Unable to get write access to metadata, please check/repair metadata.";
2840		r = -EINVAL;
2841		goto bad;
2842	}
2843
2844	if (passthrough_mode(&cache->features)) {
2845		bool all_clean;
2846
2847		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2848		if (r) {
2849			*error = "dm_cache_metadata_all_clean() failed";
2850			goto bad;
2851		}
2852
2853		if (!all_clean) {
2854			*error = "Cannot enter passthrough mode unless all blocks are clean";
2855			r = -EINVAL;
2856			goto bad;
2857		}
 
 
2858	}
2859
2860	spin_lock_init(&cache->lock);
2861	INIT_LIST_HEAD(&cache->deferred_cells);
2862	bio_list_init(&cache->deferred_bios);
2863	bio_list_init(&cache->deferred_flush_bios);
2864	bio_list_init(&cache->deferred_writethrough_bios);
2865	INIT_LIST_HEAD(&cache->quiesced_migrations);
2866	INIT_LIST_HEAD(&cache->completed_migrations);
2867	INIT_LIST_HEAD(&cache->need_commit_migrations);
2868	atomic_set(&cache->nr_allocated_migrations, 0);
2869	atomic_set(&cache->nr_io_migrations, 0);
2870	init_waitqueue_head(&cache->migration_wait);
2871
2872	init_waitqueue_head(&cache->quiescing_wait);
2873	atomic_set(&cache->quiescing, 0);
2874	atomic_set(&cache->quiescing_ack, 0);
2875
2876	r = -ENOMEM;
2877	atomic_set(&cache->nr_dirty, 0);
2878	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2879	if (!cache->dirty_bitset) {
2880		*error = "could not allocate dirty bitset";
2881		goto bad;
2882	}
2883	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2884
2885	cache->discard_block_size =
2886		calculate_discard_block_size(cache->sectors_per_block,
2887					     cache->origin_sectors);
2888	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2889							      cache->discard_block_size));
2890	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2891	if (!cache->discard_bitset) {
2892		*error = "could not allocate discard bitset";
2893		goto bad;
2894	}
2895	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2896
2897	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2898	if (IS_ERR(cache->copier)) {
2899		*error = "could not create kcopyd client";
2900		r = PTR_ERR(cache->copier);
2901		goto bad;
2902	}
2903
2904	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2905	if (!cache->wq) {
2906		*error = "could not create workqueue for metadata object";
2907		goto bad;
2908	}
2909	INIT_WORK(&cache->worker, do_worker);
 
2910	INIT_DELAYED_WORK(&cache->waker, do_waker);
2911	cache->last_commit_jiffies = jiffies;
2912
2913	cache->prison = dm_bio_prison_create();
2914	if (!cache->prison) {
2915		*error = "could not create bio prison";
2916		goto bad;
2917	}
2918
2919	cache->all_io_ds = dm_deferred_set_create();
2920	if (!cache->all_io_ds) {
2921		*error = "could not create all_io deferred set";
2922		goto bad;
2923	}
2924
2925	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2926							 migration_cache);
2927	if (!cache->migration_pool) {
2928		*error = "Error creating cache's migration mempool";
2929		goto bad;
2930	}
2931
2932	cache->need_tick_bio = true;
2933	cache->sized = false;
2934	cache->invalidate = false;
2935	cache->commit_requested = false;
2936	cache->loaded_mappings = false;
2937	cache->loaded_discards = false;
2938
2939	load_stats(cache);
2940
2941	atomic_set(&cache->stats.demotion, 0);
2942	atomic_set(&cache->stats.promotion, 0);
2943	atomic_set(&cache->stats.copies_avoided, 0);
2944	atomic_set(&cache->stats.cache_cell_clash, 0);
2945	atomic_set(&cache->stats.commit_count, 0);
2946	atomic_set(&cache->stats.discard_count, 0);
2947
2948	spin_lock_init(&cache->invalidation_lock);
2949	INIT_LIST_HEAD(&cache->invalidation_requests);
2950
2951	iot_init(&cache->origin_tracker);
 
 
 
 
 
2952
2953	*result = cache;
2954	return 0;
2955
2956bad:
2957	destroy(cache);
2958	return r;
2959}
2960
2961static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2962{
2963	unsigned i;
2964	const char **copy;
2965
2966	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2967	if (!copy)
2968		return -ENOMEM;
2969	for (i = 0; i < argc; i++) {
2970		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2971		if (!copy[i]) {
2972			while (i--)
2973				kfree(copy[i]);
2974			kfree(copy);
2975			return -ENOMEM;
2976		}
2977	}
2978
2979	cache->nr_ctr_args = argc;
2980	cache->ctr_args = copy;
2981
2982	return 0;
2983}
2984
2985static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2986{
2987	int r = -EINVAL;
2988	struct cache_args *ca;
2989	struct cache *cache = NULL;
2990
2991	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2992	if (!ca) {
2993		ti->error = "Error allocating memory for cache";
2994		return -ENOMEM;
2995	}
2996	ca->ti = ti;
2997
2998	r = parse_cache_args(ca, argc, argv, &ti->error);
2999	if (r)
3000		goto out;
3001
3002	r = cache_create(ca, &cache);
3003	if (r)
3004		goto out;
3005
3006	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
3007	if (r) {
3008		destroy(cache);
3009		goto out;
3010	}
3011
3012	ti->private = cache;
3013
3014out:
3015	destroy_cache_args(ca);
3016	return r;
3017}
3018
3019/*----------------------------------------------------------------*/
3020
3021static int cache_map(struct dm_target *ti, struct bio *bio)
3022{
3023	struct cache *cache = ti->private;
3024
3025	int r;
3026	struct dm_bio_prison_cell *cell = NULL;
3027	dm_oblock_t block = get_bio_block(cache, bio);
3028	size_t pb_data_size = get_per_bio_data_size(cache);
3029	bool can_migrate = false;
3030	bool fast_promotion;
3031	struct policy_result lookup_result;
3032	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
3033	struct old_oblock_lock ool;
3034
3035	ool.locker.fn = null_locker;
3036
 
3037	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
3038		/*
3039		 * This can only occur if the io goes to a partial block at
3040		 * the end of the origin device.  We don't cache these.
3041		 * Just remap to the origin and carry on.
3042		 */
3043		remap_to_origin(cache, bio);
3044		accounted_begin(cache, bio);
3045		return DM_MAPIO_REMAPPED;
3046	}
3047
3048	if (discard_or_flush(bio)) {
3049		defer_bio(cache, bio);
3050		return DM_MAPIO_SUBMITTED;
3051	}
3052
3053	/*
3054	 * Check to see if that block is currently migrating.
3055	 */
3056	cell = alloc_prison_cell(cache);
3057	if (!cell) {
3058		defer_bio(cache, bio);
3059		return DM_MAPIO_SUBMITTED;
3060	}
3061
3062	r = bio_detain(cache, block, bio, cell,
3063		       (cell_free_fn) free_prison_cell,
3064		       cache, &cell);
3065	if (r) {
3066		if (r < 0)
3067			defer_bio(cache, bio);
3068
3069		return DM_MAPIO_SUBMITTED;
3070	}
3071
3072	fast_promotion = is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio);
3073
3074	r = policy_map(cache->policy, block, false, can_migrate, fast_promotion,
3075		       bio, &ool.locker, &lookup_result);
3076	if (r == -EWOULDBLOCK) {
3077		cell_defer(cache, cell, true);
3078		return DM_MAPIO_SUBMITTED;
3079
3080	} else if (r) {
3081		DMERR_LIMIT("%s: Unexpected return from cache replacement policy: %d",
3082			    cache_device_name(cache), r);
3083		cell_defer(cache, cell, false);
3084		bio_io_error(bio);
3085		return DM_MAPIO_SUBMITTED;
3086	}
3087
3088	r = DM_MAPIO_REMAPPED;
3089	switch (lookup_result.op) {
3090	case POLICY_HIT:
3091		if (passthrough_mode(&cache->features)) {
3092			if (bio_data_dir(bio) == WRITE) {
3093				/*
3094				 * We need to invalidate this block, so
3095				 * defer for the worker thread.
3096				 */
3097				cell_defer(cache, cell, true);
3098				r = DM_MAPIO_SUBMITTED;
3099
3100			} else {
3101				inc_miss_counter(cache, bio);
3102				remap_to_origin_clear_discard(cache, bio, block);
3103				accounted_begin(cache, bio);
3104				inc_ds(cache, bio, cell);
3105				// FIXME: we want to remap hits or misses straight
3106				// away rather than passing over to the worker.
3107				cell_defer(cache, cell, false);
3108			}
3109
3110		} else {
3111			inc_hit_counter(cache, bio);
3112			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
3113			    !is_dirty(cache, lookup_result.cblock)) {
3114				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
3115				accounted_begin(cache, bio);
3116				inc_ds(cache, bio, cell);
3117				cell_defer(cache, cell, false);
3118
3119			} else
3120				remap_cell_to_cache_dirty(cache, cell, block, lookup_result.cblock, false);
3121		}
3122		break;
3123
3124	case POLICY_MISS:
3125		inc_miss_counter(cache, bio);
3126		if (pb->req_nr != 0) {
3127			/*
3128			 * This is a duplicate writethrough io that is no
3129			 * longer needed because the block has been demoted.
3130			 */
3131			bio_endio(bio);
3132			// FIXME: remap everything as a miss
3133			cell_defer(cache, cell, false);
3134			r = DM_MAPIO_SUBMITTED;
3135
3136		} else
3137			remap_cell_to_origin_clear_discard(cache, cell, block, false);
3138		break;
3139
3140	default:
3141		DMERR_LIMIT("%s: %s: erroring bio: unknown policy op: %u",
3142			    cache_device_name(cache), __func__,
3143			    (unsigned) lookup_result.op);
3144		cell_defer(cache, cell, false);
3145		bio_io_error(bio);
3146		r = DM_MAPIO_SUBMITTED;
3147	}
3148
3149	return r;
3150}
3151
3152static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
3153{
3154	struct cache *cache = ti->private;
3155	unsigned long flags;
3156	size_t pb_data_size = get_per_bio_data_size(cache);
3157	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
3158
3159	if (pb->tick) {
3160		policy_tick(cache->policy, false);
3161
3162		spin_lock_irqsave(&cache->lock, flags);
3163		cache->need_tick_bio = true;
3164		spin_unlock_irqrestore(&cache->lock, flags);
3165	}
3166
3167	check_for_quiesced_migrations(cache, pb);
3168	accounted_complete(cache, bio);
3169
3170	return 0;
3171}
3172
3173static int write_dirty_bitset(struct cache *cache)
3174{
3175	unsigned i, r;
3176
3177	if (get_cache_mode(cache) >= CM_READ_ONLY)
3178		return -EINVAL;
3179
3180	for (i = 0; i < from_cblock(cache->cache_size); i++) {
3181		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
3182				       is_dirty(cache, to_cblock(i)));
3183		if (r) {
3184			metadata_operation_failed(cache, "dm_cache_set_dirty", r);
3185			return r;
3186		}
3187	}
3188
3189	return 0;
3190}
3191
3192static int write_discard_bitset(struct cache *cache)
3193{
3194	unsigned i, r;
3195
3196	if (get_cache_mode(cache) >= CM_READ_ONLY)
3197		return -EINVAL;
3198
3199	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
3200					   cache->discard_nr_blocks);
3201	if (r) {
3202		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
3203		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
3204		return r;
3205	}
3206
3207	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
3208		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
3209					 is_discarded(cache, to_dblock(i)));
3210		if (r) {
3211			metadata_operation_failed(cache, "dm_cache_set_discard", r);
3212			return r;
3213		}
3214	}
3215
3216	return 0;
3217}
3218
3219static int write_hints(struct cache *cache)
3220{
3221	int r;
3222
3223	if (get_cache_mode(cache) >= CM_READ_ONLY)
3224		return -EINVAL;
3225
3226	r = dm_cache_write_hints(cache->cmd, cache->policy);
3227	if (r) {
3228		metadata_operation_failed(cache, "dm_cache_write_hints", r);
3229		return r;
3230	}
3231
3232	return 0;
3233}
3234
3235/*
3236 * returns true on success
3237 */
3238static bool sync_metadata(struct cache *cache)
3239{
3240	int r1, r2, r3, r4;
3241
3242	r1 = write_dirty_bitset(cache);
3243	if (r1)
3244		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
3245
3246	r2 = write_discard_bitset(cache);
3247	if (r2)
3248		DMERR("%s: could not write discard bitset", cache_device_name(cache));
3249
3250	save_stats(cache);
3251
3252	r3 = write_hints(cache);
3253	if (r3)
3254		DMERR("%s: could not write hints", cache_device_name(cache));
3255
3256	/*
3257	 * If writing the above metadata failed, we still commit, but don't
3258	 * set the clean shutdown flag.  This will effectively force every
3259	 * dirty bit to be set on reload.
3260	 */
3261	r4 = commit(cache, !r1 && !r2 && !r3);
3262	if (r4)
3263		DMERR("%s: could not write cache metadata", cache_device_name(cache));
3264
3265	return !r1 && !r2 && !r3 && !r4;
3266}
3267
3268static void cache_postsuspend(struct dm_target *ti)
3269{
3270	struct cache *cache = ti->private;
3271
3272	start_quiescing(cache);
3273	wait_for_migrations(cache);
3274	stop_worker(cache);
 
 
 
 
 
 
 
 
3275	requeue_deferred_bios(cache);
3276	requeue_deferred_cells(cache);
3277	stop_quiescing(cache);
3278
3279	if (get_cache_mode(cache) == CM_WRITE)
3280		(void) sync_metadata(cache);
3281}
3282
3283static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
3284			bool dirty, uint32_t hint, bool hint_valid)
3285{
3286	int r;
3287	struct cache *cache = context;
3288
3289	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
 
 
 
 
 
 
3290	if (r)
3291		return r;
3292
3293	if (dirty)
3294		set_dirty(cache, oblock, cblock);
3295	else
3296		clear_dirty(cache, oblock, cblock);
3297
3298	return 0;
3299}
3300
3301/*
3302 * The discard block size in the on disk metadata is not
3303 * neccessarily the same as we're currently using.  So we have to
3304 * be careful to only set the discarded attribute if we know it
3305 * covers a complete block of the new size.
3306 */
3307struct discard_load_info {
3308	struct cache *cache;
3309
3310	/*
3311	 * These blocks are sized using the on disk dblock size, rather
3312	 * than the current one.
3313	 */
3314	dm_block_t block_size;
3315	dm_block_t discard_begin, discard_end;
3316};
3317
3318static void discard_load_info_init(struct cache *cache,
3319				   struct discard_load_info *li)
3320{
3321	li->cache = cache;
3322	li->discard_begin = li->discard_end = 0;
3323}
3324
3325static void set_discard_range(struct discard_load_info *li)
3326{
3327	sector_t b, e;
3328
3329	if (li->discard_begin == li->discard_end)
3330		return;
3331
3332	/*
3333	 * Convert to sectors.
3334	 */
3335	b = li->discard_begin * li->block_size;
3336	e = li->discard_end * li->block_size;
3337
3338	/*
3339	 * Then convert back to the current dblock size.
3340	 */
3341	b = dm_sector_div_up(b, li->cache->discard_block_size);
3342	sector_div(e, li->cache->discard_block_size);
3343
3344	/*
3345	 * The origin may have shrunk, so we need to check we're still in
3346	 * bounds.
3347	 */
3348	if (e > from_dblock(li->cache->discard_nr_blocks))
3349		e = from_dblock(li->cache->discard_nr_blocks);
3350
3351	for (; b < e; b++)
3352		set_discard(li->cache, to_dblock(b));
3353}
3354
3355static int load_discard(void *context, sector_t discard_block_size,
3356			dm_dblock_t dblock, bool discard)
3357{
3358	struct discard_load_info *li = context;
3359
3360	li->block_size = discard_block_size;
3361
3362	if (discard) {
3363		if (from_dblock(dblock) == li->discard_end)
3364			/*
3365			 * We're already in a discard range, just extend it.
3366			 */
3367			li->discard_end = li->discard_end + 1ULL;
3368
3369		else {
3370			/*
3371			 * Emit the old range and start a new one.
3372			 */
3373			set_discard_range(li);
3374			li->discard_begin = from_dblock(dblock);
3375			li->discard_end = li->discard_begin + 1ULL;
3376		}
3377	} else {
3378		set_discard_range(li);
3379		li->discard_begin = li->discard_end = 0;
3380	}
3381
3382	return 0;
3383}
3384
3385static dm_cblock_t get_cache_dev_size(struct cache *cache)
3386{
3387	sector_t size = get_dev_size(cache->cache_dev);
3388	(void) sector_div(size, cache->sectors_per_block);
3389	return to_cblock(size);
3390}
3391
3392static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3393{
3394	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3395		return true;
3396
3397	/*
3398	 * We can't drop a dirty block when shrinking the cache.
3399	 */
3400	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3401		new_size = to_cblock(from_cblock(new_size) + 1);
3402		if (is_dirty(cache, new_size)) {
3403			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3404			      cache_device_name(cache),
3405			      (unsigned long long) from_cblock(new_size));
3406			return false;
3407		}
3408	}
3409
3410	return true;
3411}
3412
3413static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3414{
3415	int r;
3416
3417	r = dm_cache_resize(cache->cmd, new_size);
3418	if (r) {
3419		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3420		metadata_operation_failed(cache, "dm_cache_resize", r);
3421		return r;
3422	}
3423
3424	set_cache_size(cache, new_size);
3425
3426	return 0;
3427}
3428
3429static int cache_preresume(struct dm_target *ti)
3430{
3431	int r = 0;
3432	struct cache *cache = ti->private;
3433	dm_cblock_t csize = get_cache_dev_size(cache);
3434
3435	/*
3436	 * Check to see if the cache has resized.
3437	 */
3438	if (!cache->sized) {
3439		r = resize_cache_dev(cache, csize);
3440		if (r)
3441			return r;
3442
3443		cache->sized = true;
3444
3445	} else if (csize != cache->cache_size) {
3446		if (!can_resize(cache, csize))
3447			return -EINVAL;
3448
3449		r = resize_cache_dev(cache, csize);
3450		if (r)
3451			return r;
3452	}
3453
3454	if (!cache->loaded_mappings) {
3455		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3456					   load_mapping, cache);
3457		if (r) {
3458			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3459			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3460			return r;
3461		}
3462
3463		cache->loaded_mappings = true;
3464	}
3465
3466	if (!cache->loaded_discards) {
3467		struct discard_load_info li;
3468
3469		/*
3470		 * The discard bitset could have been resized, or the
3471		 * discard block size changed.  To be safe we start by
3472		 * setting every dblock to not discarded.
3473		 */
3474		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3475
3476		discard_load_info_init(cache, &li);
3477		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3478		if (r) {
3479			DMERR("%s: could not load origin discards", cache_device_name(cache));
3480			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3481			return r;
3482		}
3483		set_discard_range(&li);
3484
3485		cache->loaded_discards = true;
3486	}
3487
3488	return r;
3489}
3490
3491static void cache_resume(struct dm_target *ti)
3492{
3493	struct cache *cache = ti->private;
3494
3495	cache->need_tick_bio = true;
 
3496	do_waker(&cache->waker.work);
3497}
3498
3499/*
3500 * Status format:
3501 *
3502 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3503 * <cache block size> <#used cache blocks>/<#total cache blocks>
3504 * <#read hits> <#read misses> <#write hits> <#write misses>
3505 * <#demotions> <#promotions> <#dirty>
3506 * <#features> <features>*
3507 * <#core args> <core args>
3508 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3509 */
3510static void cache_status(struct dm_target *ti, status_type_t type,
3511			 unsigned status_flags, char *result, unsigned maxlen)
3512{
3513	int r = 0;
3514	unsigned i;
3515	ssize_t sz = 0;
3516	dm_block_t nr_free_blocks_metadata = 0;
3517	dm_block_t nr_blocks_metadata = 0;
3518	char buf[BDEVNAME_SIZE];
3519	struct cache *cache = ti->private;
3520	dm_cblock_t residency;
3521	bool needs_check;
3522
3523	switch (type) {
3524	case STATUSTYPE_INFO:
3525		if (get_cache_mode(cache) == CM_FAIL) {
3526			DMEMIT("Fail");
3527			break;
3528		}
3529
3530		/* Commit to ensure statistics aren't out-of-date */
3531		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3532			(void) commit(cache, false);
3533
3534		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3535		if (r) {
3536			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3537			      cache_device_name(cache), r);
3538			goto err;
3539		}
3540
3541		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3542		if (r) {
3543			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3544			      cache_device_name(cache), r);
3545			goto err;
3546		}
3547
3548		residency = policy_residency(cache->policy);
3549
3550		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3551		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3552		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3553		       (unsigned long long)nr_blocks_metadata,
3554		       (unsigned long long)cache->sectors_per_block,
3555		       (unsigned long long) from_cblock(residency),
3556		       (unsigned long long) from_cblock(cache->cache_size),
3557		       (unsigned) atomic_read(&cache->stats.read_hit),
3558		       (unsigned) atomic_read(&cache->stats.read_miss),
3559		       (unsigned) atomic_read(&cache->stats.write_hit),
3560		       (unsigned) atomic_read(&cache->stats.write_miss),
3561		       (unsigned) atomic_read(&cache->stats.demotion),
3562		       (unsigned) atomic_read(&cache->stats.promotion),
3563		       (unsigned long) atomic_read(&cache->nr_dirty));
3564
3565		if (writethrough_mode(&cache->features))
3566			DMEMIT("1 writethrough ");
 
 
 
 
 
3567
3568		else if (passthrough_mode(&cache->features))
3569			DMEMIT("1 passthrough ");
3570
3571		else if (writeback_mode(&cache->features))
3572			DMEMIT("1 writeback ");
3573
3574		else {
3575			DMERR("%s: internal error: unknown io mode: %d",
3576			      cache_device_name(cache), (int) cache->features.io_mode);
3577			goto err;
3578		}
3579
3580		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3581
3582		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3583		if (sz < maxlen) {
3584			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3585			if (r)
3586				DMERR("%s: policy_emit_config_values returned %d",
3587				      cache_device_name(cache), r);
3588		}
3589
3590		if (get_cache_mode(cache) == CM_READ_ONLY)
3591			DMEMIT("ro ");
3592		else
3593			DMEMIT("rw ");
3594
3595		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3596
3597		if (r || needs_check)
3598			DMEMIT("needs_check ");
3599		else
3600			DMEMIT("- ");
3601
3602		break;
3603
3604	case STATUSTYPE_TABLE:
3605		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3606		DMEMIT("%s ", buf);
3607		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3608		DMEMIT("%s ", buf);
3609		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3610		DMEMIT("%s", buf);
3611
3612		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3613			DMEMIT(" %s", cache->ctr_args[i]);
3614		if (cache->nr_ctr_args)
3615			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3616	}
3617
3618	return;
3619
3620err:
3621	DMEMIT("Error");
3622}
3623
3624/*
 
 
 
 
 
 
 
 
 
3625 * A cache block range can take two forms:
3626 *
3627 * i) A single cblock, eg. '3456'
3628 * ii) A begin and end cblock with dots between, eg. 123-234
3629 */
3630static int parse_cblock_range(struct cache *cache, const char *str,
3631			      struct cblock_range *result)
3632{
3633	char dummy;
3634	uint64_t b, e;
3635	int r;
3636
3637	/*
3638	 * Try and parse form (ii) first.
3639	 */
3640	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3641	if (r < 0)
3642		return r;
3643
3644	if (r == 2) {
3645		result->begin = to_cblock(b);
3646		result->end = to_cblock(e);
3647		return 0;
3648	}
3649
3650	/*
3651	 * That didn't work, try form (i).
3652	 */
3653	r = sscanf(str, "%llu%c", &b, &dummy);
3654	if (r < 0)
3655		return r;
3656
3657	if (r == 1) {
3658		result->begin = to_cblock(b);
3659		result->end = to_cblock(from_cblock(result->begin) + 1u);
3660		return 0;
3661	}
3662
3663	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3664	return -EINVAL;
3665}
3666
3667static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3668{
3669	uint64_t b = from_cblock(range->begin);
3670	uint64_t e = from_cblock(range->end);
3671	uint64_t n = from_cblock(cache->cache_size);
3672
3673	if (b >= n) {
3674		DMERR("%s: begin cblock out of range: %llu >= %llu",
3675		      cache_device_name(cache), b, n);
3676		return -EINVAL;
3677	}
3678
3679	if (e > n) {
3680		DMERR("%s: end cblock out of range: %llu > %llu",
3681		      cache_device_name(cache), e, n);
3682		return -EINVAL;
3683	}
3684
3685	if (b >= e) {
3686		DMERR("%s: invalid cblock range: %llu >= %llu",
3687		      cache_device_name(cache), b, e);
3688		return -EINVAL;
3689	}
3690
3691	return 0;
3692}
3693
 
 
 
 
 
3694static int request_invalidation(struct cache *cache, struct cblock_range *range)
3695{
3696	struct invalidation_request req;
3697
3698	INIT_LIST_HEAD(&req.list);
3699	req.cblocks = range;
3700	atomic_set(&req.complete, 0);
3701	req.err = 0;
3702	init_waitqueue_head(&req.result_wait);
3703
3704	spin_lock(&cache->invalidation_lock);
3705	list_add(&req.list, &cache->invalidation_requests);
3706	spin_unlock(&cache->invalidation_lock);
3707	wake_worker(cache);
3708
3709	wait_event(req.result_wait, atomic_read(&req.complete));
3710	return req.err;
 
 
 
3711}
3712
3713static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3714					      const char **cblock_ranges)
3715{
3716	int r = 0;
3717	unsigned i;
3718	struct cblock_range range;
3719
3720	if (!passthrough_mode(&cache->features)) {
3721		DMERR("%s: cache has to be in passthrough mode for invalidation",
3722		      cache_device_name(cache));
3723		return -EPERM;
3724	}
3725
3726	for (i = 0; i < count; i++) {
3727		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3728		if (r)
3729			break;
3730
3731		r = validate_cblock_range(cache, &range);
3732		if (r)
3733			break;
3734
3735		/*
3736		 * Pass begin and end origin blocks to the worker and wake it.
3737		 */
3738		r = request_invalidation(cache, &range);
3739		if (r)
3740			break;
3741	}
3742
3743	return r;
3744}
3745
3746/*
3747 * Supports
3748 *	"<key> <value>"
3749 * and
3750 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3751 *
3752 * The key migration_threshold is supported by the cache target core.
3753 */
3754static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
 
3755{
3756	struct cache *cache = ti->private;
3757
3758	if (!argc)
3759		return -EINVAL;
3760
3761	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3762		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3763		      cache_device_name(cache));
3764		return -EOPNOTSUPP;
3765	}
3766
3767	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3768		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3769
3770	if (argc != 2)
3771		return -EINVAL;
3772
3773	return set_config_value(cache, argv[0], argv[1]);
3774}
3775
3776static int cache_iterate_devices(struct dm_target *ti,
3777				 iterate_devices_callout_fn fn, void *data)
3778{
3779	int r = 0;
3780	struct cache *cache = ti->private;
3781
3782	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3783	if (!r)
3784		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3785
3786	return r;
3787}
3788
3789static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3790{
3791	/*
3792	 * FIXME: these limits may be incompatible with the cache device
3793	 */
3794	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3795					    cache->origin_sectors);
3796	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3797}
3798
3799static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3800{
3801	struct cache *cache = ti->private;
3802	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3803
3804	/*
3805	 * If the system-determined stacked limits are compatible with the
3806	 * cache's blocksize (io_opt is a factor) do not override them.
3807	 */
3808	if (io_opt_sectors < cache->sectors_per_block ||
3809	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3810		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3811		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3812	}
3813	set_discard_limits(cache, limits);
3814}
3815
3816/*----------------------------------------------------------------*/
3817
3818static struct target_type cache_target = {
3819	.name = "cache",
3820	.version = {1, 9, 0},
3821	.module = THIS_MODULE,
3822	.ctr = cache_ctr,
3823	.dtr = cache_dtr,
3824	.map = cache_map,
3825	.end_io = cache_end_io,
3826	.postsuspend = cache_postsuspend,
3827	.preresume = cache_preresume,
3828	.resume = cache_resume,
3829	.status = cache_status,
3830	.message = cache_message,
3831	.iterate_devices = cache_iterate_devices,
3832	.io_hints = cache_io_hints,
3833};
3834
3835static int __init dm_cache_init(void)
3836{
3837	int r;
3838
3839	r = dm_register_target(&cache_target);
3840	if (r) {
3841		DMERR("cache target registration failed: %d", r);
3842		return r;
3843	}
3844
3845	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3846	if (!migration_cache) {
3847		dm_unregister_target(&cache_target);
3848		return -ENOMEM;
 
 
 
 
 
 
3849	}
3850
3851	return 0;
3852}
3853
3854static void __exit dm_cache_exit(void)
3855{
3856	dm_unregister_target(&cache_target);
3857	kmem_cache_destroy(migration_cache);
3858}
3859
3860module_init(dm_cache_init);
3861module_exit(dm_cache_exit);
3862
3863MODULE_DESCRIPTION(DM_NAME " cache target");
3864MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3865MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
  14#include <linux/jiffies.h>
  15#include <linux/init.h>
  16#include <linux/mempool.h>
  17#include <linux/module.h>
  18#include <linux/rwsem.h>
  19#include <linux/slab.h>
  20#include <linux/vmalloc.h>
  21
  22#define DM_MSG_PREFIX "cache"
  23
  24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  25	"A percentage of time allocated for copying to and/or from cache");
  26
  27/*----------------------------------------------------------------*/
  28
  29/*
  30 * Glossary:
  31 *
  32 * oblock: index of an origin block
  33 * cblock: index of a cache block
  34 * promotion: movement of a block from origin to cache
  35 * demotion: movement of a block from cache to origin
  36 * migration: movement of a block between the origin and cache device,
  37 *	      either direction
  38 */
  39
  40/*----------------------------------------------------------------*/
  41
  42struct io_tracker {
  43	spinlock_t lock;
  44
  45	/*
  46	 * Sectors of in-flight IO.
  47	 */
  48	sector_t in_flight;
  49
  50	/*
  51	 * The time, in jiffies, when this device became idle (if it is
  52	 * indeed idle).
  53	 */
  54	unsigned long idle_time;
  55	unsigned long last_update_time;
  56};
  57
  58static void iot_init(struct io_tracker *iot)
  59{
  60	spin_lock_init(&iot->lock);
  61	iot->in_flight = 0ul;
  62	iot->idle_time = 0ul;
  63	iot->last_update_time = jiffies;
  64}
  65
  66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  67{
  68	if (iot->in_flight)
  69		return false;
  70
  71	return time_after(jiffies, iot->idle_time + jifs);
  72}
  73
  74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
  75{
  76	bool r;
  77	unsigned long flags;
  78
  79	spin_lock_irqsave(&iot->lock, flags);
  80	r = __iot_idle_for(iot, jifs);
  81	spin_unlock_irqrestore(&iot->lock, flags);
  82
  83	return r;
  84}
  85
  86static void iot_io_begin(struct io_tracker *iot, sector_t len)
  87{
  88	unsigned long flags;
  89
  90	spin_lock_irqsave(&iot->lock, flags);
  91	iot->in_flight += len;
  92	spin_unlock_irqrestore(&iot->lock, flags);
  93}
  94
  95static void __iot_io_end(struct io_tracker *iot, sector_t len)
  96{
  97	if (!len)
  98		return;
  99
 100	iot->in_flight -= len;
 101	if (!iot->in_flight)
 102		iot->idle_time = jiffies;
 103}
 104
 105static void iot_io_end(struct io_tracker *iot, sector_t len)
 106{
 107	unsigned long flags;
 108
 109	spin_lock_irqsave(&iot->lock, flags);
 110	__iot_io_end(iot, len);
 111	spin_unlock_irqrestore(&iot->lock, flags);
 112}
 113
 114/*----------------------------------------------------------------*/
 115
 116/*
 117 * Represents a chunk of future work.  'input' allows continuations to pass
 118 * values between themselves, typically error values.
 
 
 
 
 
 
 119 */
 120struct continuation {
 121	struct work_struct ws;
 122	blk_status_t input;
 123};
 124
 125static inline void init_continuation(struct continuation *k,
 126				     void (*fn)(struct work_struct *))
 127{
 128	INIT_WORK(&k->ws, fn);
 129	k->input = 0;
 130}
 131
 132static inline void queue_continuation(struct workqueue_struct *wq,
 133				      struct continuation *k)
 134{
 135	queue_work(wq, &k->ws);
 136}
 137
 138/*----------------------------------------------------------------*/
 139
 140/*
 141 * The batcher collects together pieces of work that need a particular
 142 * operation to occur before they can proceed (typically a commit).
 143 */
 144struct batcher {
 145	/*
 146	 * The operation that everyone is waiting for.
 147	 */
 148	blk_status_t (*commit_op)(void *context);
 149	void *commit_context;
 150
 151	/*
 152	 * This is how bios should be issued once the commit op is complete
 153	 * (accounted_request).
 154	 */
 155	void (*issue_op)(struct bio *bio, void *context);
 156	void *issue_context;
 157
 158	/*
 159	 * Queued work gets put on here after commit.
 160	 */
 161	struct workqueue_struct *wq;
 162
 163	spinlock_t lock;
 164	struct list_head work_items;
 165	struct bio_list bios;
 166	struct work_struct commit_work;
 167
 168	bool commit_scheduled;
 169};
 170
 171static void __commit(struct work_struct *_ws)
 172{
 173	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 174	blk_status_t r;
 175	unsigned long flags;
 176	struct list_head work_items;
 177	struct work_struct *ws, *tmp;
 178	struct continuation *k;
 179	struct bio *bio;
 180	struct bio_list bios;
 181
 182	INIT_LIST_HEAD(&work_items);
 183	bio_list_init(&bios);
 184
 185	/*
 186	 * We have to grab these before the commit_op to avoid a race
 187	 * condition.
 188	 */
 189	spin_lock_irqsave(&b->lock, flags);
 190	list_splice_init(&b->work_items, &work_items);
 191	bio_list_merge(&bios, &b->bios);
 192	bio_list_init(&b->bios);
 193	b->commit_scheduled = false;
 194	spin_unlock_irqrestore(&b->lock, flags);
 195
 196	r = b->commit_op(b->commit_context);
 197
 198	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 199		k = container_of(ws, struct continuation, ws);
 200		k->input = r;
 201		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 202		queue_work(b->wq, ws);
 203	}
 204
 205	while ((bio = bio_list_pop(&bios))) {
 206		if (r) {
 207			bio->bi_status = r;
 208			bio_endio(bio);
 209		} else
 210			b->issue_op(bio, b->issue_context);
 211	}
 212}
 213
 214static void batcher_init(struct batcher *b,
 215			 blk_status_t (*commit_op)(void *),
 216			 void *commit_context,
 217			 void (*issue_op)(struct bio *bio, void *),
 218			 void *issue_context,
 219			 struct workqueue_struct *wq)
 220{
 221	b->commit_op = commit_op;
 222	b->commit_context = commit_context;
 223	b->issue_op = issue_op;
 224	b->issue_context = issue_context;
 225	b->wq = wq;
 226
 227	spin_lock_init(&b->lock);
 228	INIT_LIST_HEAD(&b->work_items);
 229	bio_list_init(&b->bios);
 230	INIT_WORK(&b->commit_work, __commit);
 231	b->commit_scheduled = false;
 232}
 233
 234static void async_commit(struct batcher *b)
 235{
 236	queue_work(b->wq, &b->commit_work);
 237}
 238
 239static void continue_after_commit(struct batcher *b, struct continuation *k)
 240{
 241	unsigned long flags;
 242	bool commit_scheduled;
 243
 244	spin_lock_irqsave(&b->lock, flags);
 245	commit_scheduled = b->commit_scheduled;
 246	list_add_tail(&k->ws.entry, &b->work_items);
 247	spin_unlock_irqrestore(&b->lock, flags);
 248
 249	if (commit_scheduled)
 250		async_commit(b);
 251}
 252
 253/*
 254 * Bios are errored if commit failed.
 255 */
 256static void issue_after_commit(struct batcher *b, struct bio *bio)
 257{
 258       unsigned long flags;
 259       bool commit_scheduled;
 260
 261       spin_lock_irqsave(&b->lock, flags);
 262       commit_scheduled = b->commit_scheduled;
 263       bio_list_add(&b->bios, bio);
 264       spin_unlock_irqrestore(&b->lock, flags);
 265
 266       if (commit_scheduled)
 267	       async_commit(b);
 268}
 269
 270/*
 271 * Call this if some urgent work is waiting for the commit to complete.
 272 */
 273static void schedule_commit(struct batcher *b)
 274{
 275	bool immediate;
 276	unsigned long flags;
 277
 278	spin_lock_irqsave(&b->lock, flags);
 279	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 280	b->commit_scheduled = true;
 281	spin_unlock_irqrestore(&b->lock, flags);
 282
 283	if (immediate)
 284		async_commit(b);
 285}
 286
 287/*
 288 * There are a couple of places where we let a bio run, but want to do some
 289 * work before calling its endio function.  We do this by temporarily
 290 * changing the endio fn.
 291 */
 292struct dm_hook_info {
 293	bio_end_io_t *bi_end_io;
 294};
 295
 296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 297			bio_end_io_t *bi_end_io, void *bi_private)
 298{
 299	h->bi_end_io = bio->bi_end_io;
 300
 301	bio->bi_end_io = bi_end_io;
 302	bio->bi_private = bi_private;
 303}
 304
 305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 306{
 307	bio->bi_end_io = h->bi_end_io;
 308}
 309
 310/*----------------------------------------------------------------*/
 311
 312#define MIGRATION_POOL_SIZE 128
 313#define COMMIT_PERIOD HZ
 314#define MIGRATION_COUNT_WINDOW 10
 315
 316/*
 317 * The block size of the device holding cache data must be
 318 * between 32KB and 1GB.
 319 */
 320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 322
 323enum cache_metadata_mode {
 324	CM_WRITE,		/* metadata may be changed */
 325	CM_READ_ONLY,		/* metadata may not be changed */
 326	CM_FAIL
 327};
 328
 329enum cache_io_mode {
 330	/*
 331	 * Data is written to cached blocks only.  These blocks are marked
 332	 * dirty.  If you lose the cache device you will lose data.
 333	 * Potential performance increase for both reads and writes.
 334	 */
 335	CM_IO_WRITEBACK,
 336
 337	/*
 338	 * Data is written to both cache and origin.  Blocks are never
 339	 * dirty.  Potential performance benfit for reads only.
 340	 */
 341	CM_IO_WRITETHROUGH,
 342
 343	/*
 344	 * A degraded mode useful for various cache coherency situations
 345	 * (eg, rolling back snapshots).  Reads and writes always go to the
 346	 * origin.  If a write goes to a cached oblock, then the cache
 347	 * block is invalidated.
 348	 */
 349	CM_IO_PASSTHROUGH
 350};
 351
 352struct cache_features {
 353	enum cache_metadata_mode mode;
 354	enum cache_io_mode io_mode;
 355	unsigned metadata_version;
 356};
 357
 358struct cache_stats {
 359	atomic_t read_hit;
 360	atomic_t read_miss;
 361	atomic_t write_hit;
 362	atomic_t write_miss;
 363	atomic_t demotion;
 364	atomic_t promotion;
 365	atomic_t writeback;
 366	atomic_t copies_avoided;
 367	atomic_t cache_cell_clash;
 368	atomic_t commit_count;
 369	atomic_t discard_count;
 370};
 371
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 372struct cache {
 373	struct dm_target *ti;
 374	struct dm_target_callbacks callbacks;
 375
 376	struct dm_cache_metadata *cmd;
 377
 378	/*
 379	 * Metadata is written to this device.
 380	 */
 381	struct dm_dev *metadata_dev;
 382
 383	/*
 384	 * The slower of the two data devices.  Typically a spindle.
 385	 */
 386	struct dm_dev *origin_dev;
 387
 388	/*
 389	 * The faster of the two data devices.  Typically an SSD.
 390	 */
 391	struct dm_dev *cache_dev;
 392
 393	/*
 394	 * Size of the origin device in _complete_ blocks and native sectors.
 395	 */
 396	dm_oblock_t origin_blocks;
 397	sector_t origin_sectors;
 398
 399	/*
 400	 * Size of the cache device in blocks.
 401	 */
 402	dm_cblock_t cache_size;
 403
 404	/*
 405	 * Fields for converting from sectors to blocks.
 406	 */
 407	sector_t sectors_per_block;
 408	int sectors_per_block_shift;
 409
 410	spinlock_t lock;
 
 411	struct bio_list deferred_bios;
 
 
 
 
 
 412	sector_t migration_threshold;
 413	wait_queue_head_t migration_wait;
 414	atomic_t nr_allocated_migrations;
 415
 416	/*
 417	 * The number of in flight migrations that are performing
 418	 * background io. eg, promotion, writeback.
 419	 */
 420	atomic_t nr_io_migrations;
 421
 422	struct rw_semaphore quiesce_lock;
 
 
 423
 424	/*
 425	 * cache_size entries, dirty if set
 426	 */
 427	atomic_t nr_dirty;
 428	unsigned long *dirty_bitset;
 429
 430	/*
 431	 * origin_blocks entries, discarded if set.
 432	 */
 433	dm_dblock_t discard_nr_blocks;
 434	unsigned long *discard_bitset;
 435	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 436
 437	/*
 438	 * Rather than reconstructing the table line for the status we just
 439	 * save it and regurgitate.
 440	 */
 441	unsigned nr_ctr_args;
 442	const char **ctr_args;
 443
 444	struct dm_kcopyd_client *copier;
 445	struct workqueue_struct *wq;
 446	struct work_struct deferred_bio_worker;
 447	struct work_struct migration_worker;
 448	struct delayed_work waker;
 449	struct dm_bio_prison_v2 *prison;
 450	struct bio_set *bs;
 
 
 451
 452	mempool_t *migration_pool;
 453
 454	struct dm_cache_policy *policy;
 455	unsigned policy_nr_args;
 456
 457	bool need_tick_bio:1;
 458	bool sized:1;
 459	bool invalidate:1;
 460	bool commit_requested:1;
 461	bool loaded_mappings:1;
 462	bool loaded_discards:1;
 463
 464	/*
 465	 * Cache features such as write-through.
 466	 */
 467	struct cache_features features;
 468
 469	struct cache_stats stats;
 470
 471	/*
 472	 * Invalidation fields.
 473	 */
 474	spinlock_t invalidation_lock;
 475	struct list_head invalidation_requests;
 476
 477	struct io_tracker tracker;
 478
 479	struct work_struct commit_ws;
 480	struct batcher committer;
 481
 482	struct rw_semaphore background_work_lock;
 483};
 484
 485struct per_bio_data {
 486	bool tick:1;
 487	unsigned req_nr:2;
 488	struct dm_bio_prison_cell_v2 *cell;
 489	struct dm_hook_info hook_info;
 490	sector_t len;
 
 
 
 
 
 
 
 
 
 491};
 492
 493struct dm_cache_migration {
 494	struct continuation k;
 495	struct cache *cache;
 496
 497	struct policy_work *op;
 498	struct bio *overwrite_bio;
 499	struct dm_bio_prison_cell_v2 *cell;
 
 
 
 
 
 
 
 
 
 500
 501	dm_cblock_t invalidate_cblock;
 502	dm_oblock_t invalidate_oblock;
 503};
 504
 505/*----------------------------------------------------------------*/
 506
 507static bool writethrough_mode(struct cache *cache)
 508{
 509	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 510}
 511
 512static bool writeback_mode(struct cache *cache)
 513{
 514	return cache->features.io_mode == CM_IO_WRITEBACK;
 515}
 516
 517static inline bool passthrough_mode(struct cache *cache)
 518{
 519	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 520}
 521
 522/*----------------------------------------------------------------*/
 523
 524static void wake_deferred_bio_worker(struct cache *cache)
 525{
 526	queue_work(cache->wq, &cache->deferred_bio_worker);
 527}
 528
 529static void wake_migration_worker(struct cache *cache)
 530{
 531	if (passthrough_mode(cache))
 532		return;
 533
 534	queue_work(cache->wq, &cache->migration_worker);
 535}
 536
 537/*----------------------------------------------------------------*/
 538
 539static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 540{
 541	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
 
 542}
 543
 544static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 545{
 546	dm_bio_prison_free_cell_v2(cache->prison, cell);
 547}
 548
 549static struct dm_cache_migration *alloc_migration(struct cache *cache)
 550{
 551	struct dm_cache_migration *mg;
 552
 553	mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 554	if (!mg)
 555		return NULL;
 556
 557	memset(mg, 0, sizeof(*mg));
 558
 559	mg->cache = cache;
 560	atomic_inc(&cache->nr_allocated_migrations);
 561
 562	return mg;
 563}
 564
 565static void free_migration(struct dm_cache_migration *mg)
 566{
 567	struct cache *cache = mg->cache;
 568
 569	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 570		wake_up(&cache->migration_wait);
 571
 572	mempool_free(mg, cache->migration_pool);
 573}
 574
 575/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 578{
 579	return to_oblock(from_oblock(b) + 1ull);
 
 
 
 
 
 
 
 580}
 581
 582static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 583{
 584	key->virtual = 0;
 585	key->dev = 0;
 586	key->block_begin = from_oblock(begin);
 587	key->block_end = from_oblock(end);
 
 
 588}
 589
 590/*
 591 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 592 * level 1 which prevents *both* READs and WRITEs.
 593 */
 594#define WRITE_LOCK_LEVEL 0
 595#define READ_WRITE_LOCK_LEVEL 1
 
 596
 597static unsigned lock_level(struct bio *bio)
 598{
 599	return bio_data_dir(bio) == WRITE ?
 600		WRITE_LOCK_LEVEL :
 601		READ_WRITE_LOCK_LEVEL;
 602}
 603
 604/*----------------------------------------------------------------
 605 * Per bio data
 606 *--------------------------------------------------------------*/
 
 
 607
 608static struct per_bio_data *get_per_bio_data(struct bio *bio)
 609{
 610	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 611	BUG_ON(!pb);
 612	return pb;
 613}
 614
 615static struct per_bio_data *init_per_bio_data(struct bio *bio)
 
 
 
 
 616{
 617	struct per_bio_data *pb = get_per_bio_data(bio);
 
 618
 619	pb->tick = false;
 620	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 621	pb->cell = NULL;
 622	pb->len = 0;
 623
 624	return pb;
 
 625}
 626
 627/*----------------------------------------------------------------*/
 628
 629static void defer_bio(struct cache *cache, struct bio *bio)
 630{
 631	unsigned long flags;
 
 
 
 
 632
 633	spin_lock_irqsave(&cache->lock, flags);
 634	bio_list_add(&cache->deferred_bios, bio);
 635	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 636
 637	wake_deferred_bio_worker(cache);
 638}
 639
 640static void defer_bios(struct cache *cache, struct bio_list *bios)
 641{
 642	unsigned long flags;
 
 643
 644	spin_lock_irqsave(&cache->lock, flags);
 645	bio_list_merge(&cache->deferred_bios, bios);
 646	bio_list_init(bios);
 647	spin_unlock_irqrestore(&cache->lock, flags);
 648
 649	wake_deferred_bio_worker(cache);
 650}
 651
 652/*----------------------------------------------------------------*/
 653
 654static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 
 655{
 656	bool r;
 657	struct per_bio_data *pb;
 658	struct dm_cell_key_v2 key;
 659	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 660	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 
 
 661
 662	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 663	if (!cell_prealloc) {
 664		defer_bio(cache, bio);
 665		return false;
 666	}
 
 
 
 667
 668	build_key(oblock, end, &key);
 669	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 670	if (!r) {
 671		/*
 672		 * Failed to get the lock.
 673		 */
 674		free_prison_cell(cache, cell_prealloc);
 675		return r;
 676	}
 677
 678	if (cell != cell_prealloc)
 679		free_prison_cell(cache, cell_prealloc);
 680
 681	pb = get_per_bio_data(bio);
 682	pb->cell = cell;
 683
 684	return r;
 685}
 686
 687/*----------------------------------------------------------------*/
 688
 689static bool is_dirty(struct cache *cache, dm_cblock_t b)
 690{
 691	return test_bit(from_cblock(b), cache->dirty_bitset);
 692}
 693
 694static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 695{
 696	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 697		atomic_inc(&cache->nr_dirty);
 698		policy_set_dirty(cache->policy, cblock);
 699	}
 700}
 701
 702/*
 703 * These two are called when setting after migrations to force the policy
 704 * and dirty bitset to be in sync.
 705 */
 706static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 707{
 708	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 709		atomic_inc(&cache->nr_dirty);
 710	policy_set_dirty(cache->policy, cblock);
 711}
 712
 713static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 714{
 715	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 
 716		if (atomic_dec_return(&cache->nr_dirty) == 0)
 717			dm_table_event(cache->ti->table);
 718	}
 719
 720	policy_clear_dirty(cache->policy, cblock);
 721}
 722
 723/*----------------------------------------------------------------*/
 724
 725static bool block_size_is_power_of_two(struct cache *cache)
 726{
 727	return cache->sectors_per_block_shift >= 0;
 728}
 729
 730/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 731#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 732__always_inline
 733#endif
 734static dm_block_t block_div(dm_block_t b, uint32_t n)
 735{
 736	do_div(b, n);
 737
 738	return b;
 739}
 740
 741static dm_block_t oblocks_per_dblock(struct cache *cache)
 742{
 743	dm_block_t oblocks = cache->discard_block_size;
 744
 745	if (block_size_is_power_of_two(cache))
 746		oblocks >>= cache->sectors_per_block_shift;
 747	else
 748		oblocks = block_div(oblocks, cache->sectors_per_block);
 749
 750	return oblocks;
 751}
 752
 753static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 754{
 755	return to_dblock(block_div(from_oblock(oblock),
 756				   oblocks_per_dblock(cache)));
 757}
 758
 
 
 
 
 
 759static void set_discard(struct cache *cache, dm_dblock_t b)
 760{
 761	unsigned long flags;
 762
 763	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 764	atomic_inc(&cache->stats.discard_count);
 765
 766	spin_lock_irqsave(&cache->lock, flags);
 767	set_bit(from_dblock(b), cache->discard_bitset);
 768	spin_unlock_irqrestore(&cache->lock, flags);
 769}
 770
 771static void clear_discard(struct cache *cache, dm_dblock_t b)
 772{
 773	unsigned long flags;
 774
 775	spin_lock_irqsave(&cache->lock, flags);
 776	clear_bit(from_dblock(b), cache->discard_bitset);
 777	spin_unlock_irqrestore(&cache->lock, flags);
 778}
 779
 780static bool is_discarded(struct cache *cache, dm_dblock_t b)
 781{
 782	int r;
 783	unsigned long flags;
 784
 785	spin_lock_irqsave(&cache->lock, flags);
 786	r = test_bit(from_dblock(b), cache->discard_bitset);
 787	spin_unlock_irqrestore(&cache->lock, flags);
 788
 789	return r;
 790}
 791
 792static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 793{
 794	int r;
 795	unsigned long flags;
 796
 797	spin_lock_irqsave(&cache->lock, flags);
 798	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 799		     cache->discard_bitset);
 800	spin_unlock_irqrestore(&cache->lock, flags);
 801
 802	return r;
 803}
 804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 805/*----------------------------------------------------------------
 806 * Remapping
 807 *--------------------------------------------------------------*/
 808static void remap_to_origin(struct cache *cache, struct bio *bio)
 809{
 810	bio_set_dev(bio, cache->origin_dev->bdev);
 811}
 812
 813static void remap_to_cache(struct cache *cache, struct bio *bio,
 814			   dm_cblock_t cblock)
 815{
 816	sector_t bi_sector = bio->bi_iter.bi_sector;
 817	sector_t block = from_cblock(cblock);
 818
 819	bio_set_dev(bio, cache->cache_dev->bdev);
 820	if (!block_size_is_power_of_two(cache))
 821		bio->bi_iter.bi_sector =
 822			(block * cache->sectors_per_block) +
 823			sector_div(bi_sector, cache->sectors_per_block);
 824	else
 825		bio->bi_iter.bi_sector =
 826			(block << cache->sectors_per_block_shift) |
 827			(bi_sector & (cache->sectors_per_block - 1));
 828}
 829
 830static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 831{
 832	unsigned long flags;
 833	struct per_bio_data *pb;
 
 834
 835	spin_lock_irqsave(&cache->lock, flags);
 836	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 
 837	    bio_op(bio) != REQ_OP_DISCARD) {
 838		pb = get_per_bio_data(bio);
 839		pb->tick = true;
 840		cache->need_tick_bio = false;
 841	}
 842	spin_unlock_irqrestore(&cache->lock, flags);
 843}
 844
 845static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 846					    dm_oblock_t oblock, bool bio_has_pbd)
 847{
 848	if (bio_has_pbd)
 849		check_if_tick_bio_needed(cache, bio);
 850	remap_to_origin(cache, bio);
 851	if (bio_data_dir(bio) == WRITE)
 852		clear_discard(cache, oblock_to_dblock(cache, oblock));
 853}
 854
 855static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 856					  dm_oblock_t oblock)
 857{
 858	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 859	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 860}
 861
 862static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 863				 dm_oblock_t oblock, dm_cblock_t cblock)
 864{
 865	check_if_tick_bio_needed(cache, bio);
 866	remap_to_cache(cache, bio, cblock);
 867	if (bio_data_dir(bio) == WRITE) {
 868		set_dirty(cache, cblock);
 869		clear_discard(cache, oblock_to_dblock(cache, oblock));
 870	}
 871}
 872
 873static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 874{
 875	sector_t block_nr = bio->bi_iter.bi_sector;
 876
 877	if (!block_size_is_power_of_two(cache))
 878		(void) sector_div(block_nr, cache->sectors_per_block);
 879	else
 880		block_nr >>= cache->sectors_per_block_shift;
 881
 882	return to_oblock(block_nr);
 883}
 884
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885static bool accountable_bio(struct cache *cache, struct bio *bio)
 886{
 887	return bio_op(bio) != REQ_OP_DISCARD;
 
 888}
 889
 890static void accounted_begin(struct cache *cache, struct bio *bio)
 891{
 892	struct per_bio_data *pb;
 
 893
 894	if (accountable_bio(cache, bio)) {
 895		pb = get_per_bio_data(bio);
 896		pb->len = bio_sectors(bio);
 897		iot_io_begin(&cache->tracker, pb->len);
 898	}
 899}
 900
 901static void accounted_complete(struct cache *cache, struct bio *bio)
 902{
 903	struct per_bio_data *pb = get_per_bio_data(bio);
 
 904
 905	iot_io_end(&cache->tracker, pb->len);
 906}
 907
 908static void accounted_request(struct cache *cache, struct bio *bio)
 909{
 910	accounted_begin(cache, bio);
 911	generic_make_request(bio);
 912}
 913
 914static void issue_op(struct bio *bio, void *context)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915{
 916	struct cache *cache = context;
 917	accounted_request(cache, bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918}
 919
 920/*
 921 * When running in writethrough mode we need to send writes to clean blocks
 922 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 
 
 923 */
 924static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 925				      dm_oblock_t oblock, dm_cblock_t cblock)
 926{
 927	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, cache->bs);
 928
 929	BUG_ON(!origin_bio);
 
 
 
 930
 931	bio_chain(origin_bio, bio);
 932	/*
 933	 * Passing false to __remap_to_origin_clear_discard() skips
 934	 * all code that might use per_bio_data (since clone doesn't have it)
 935	 */
 936	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 937	submit_bio(origin_bio);
 938
 939	remap_to_cache(cache, bio, cblock);
 940}
 941
 942/*----------------------------------------------------------------
 943 * Failure modes
 944 *--------------------------------------------------------------*/
 945static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 946{
 947	return cache->features.mode;
 948}
 949
 950static const char *cache_device_name(struct cache *cache)
 951{
 952	return dm_device_name(dm_table_get_md(cache->ti->table));
 953}
 954
 955static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 956{
 957	const char *descs[] = {
 958		"write",
 959		"read-only",
 960		"fail"
 961	};
 962
 963	dm_table_event(cache->ti->table);
 964	DMINFO("%s: switching cache to %s mode",
 965	       cache_device_name(cache), descs[(int)mode]);
 966}
 967
 968static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 969{
 970	bool needs_check;
 971	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 972
 973	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 974		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 975		      cache_device_name(cache));
 976		new_mode = CM_FAIL;
 977	}
 978
 979	if (new_mode == CM_WRITE && needs_check) {
 980		DMERR("%s: unable to switch cache to write mode until repaired.",
 981		      cache_device_name(cache));
 982		if (old_mode != new_mode)
 983			new_mode = old_mode;
 984		else
 985			new_mode = CM_READ_ONLY;
 986	}
 987
 988	/* Never move out of fail mode */
 989	if (old_mode == CM_FAIL)
 990		new_mode = CM_FAIL;
 991
 992	switch (new_mode) {
 993	case CM_FAIL:
 994	case CM_READ_ONLY:
 995		dm_cache_metadata_set_read_only(cache->cmd);
 996		break;
 997
 998	case CM_WRITE:
 999		dm_cache_metadata_set_read_write(cache->cmd);
1000		break;
1001	}
1002
1003	cache->features.mode = new_mode;
1004
1005	if (new_mode != old_mode)
1006		notify_mode_switch(cache, new_mode);
1007}
1008
1009static void abort_transaction(struct cache *cache)
1010{
1011	const char *dev_name = cache_device_name(cache);
1012
1013	if (get_cache_mode(cache) >= CM_READ_ONLY)
1014		return;
1015
1016	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1017		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1018		set_cache_mode(cache, CM_FAIL);
1019	}
1020
1021	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1022	if (dm_cache_metadata_abort(cache->cmd)) {
1023		DMERR("%s: failed to abort metadata transaction", dev_name);
1024		set_cache_mode(cache, CM_FAIL);
1025	}
1026}
1027
1028static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1029{
1030	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1031		    cache_device_name(cache), op, r);
1032	abort_transaction(cache);
1033	set_cache_mode(cache, CM_READ_ONLY);
1034}
1035
1036/*----------------------------------------------------------------*/
1037
1038static void load_stats(struct cache *cache)
1039{
1040	struct dm_cache_statistics stats;
1041
1042	dm_cache_metadata_get_stats(cache->cmd, &stats);
1043	atomic_set(&cache->stats.read_hit, stats.read_hits);
1044	atomic_set(&cache->stats.read_miss, stats.read_misses);
1045	atomic_set(&cache->stats.write_hit, stats.write_hits);
1046	atomic_set(&cache->stats.write_miss, stats.write_misses);
1047}
1048
1049static void save_stats(struct cache *cache)
1050{
1051	struct dm_cache_statistics stats;
1052
1053	if (get_cache_mode(cache) >= CM_READ_ONLY)
1054		return;
1055
1056	stats.read_hits = atomic_read(&cache->stats.read_hit);
1057	stats.read_misses = atomic_read(&cache->stats.read_miss);
1058	stats.write_hits = atomic_read(&cache->stats.write_hit);
1059	stats.write_misses = atomic_read(&cache->stats.write_miss);
1060
1061	dm_cache_metadata_set_stats(cache->cmd, &stats);
1062}
1063
1064static void update_stats(struct cache_stats *stats, enum policy_operation op)
1065{
1066	switch (op) {
1067	case POLICY_PROMOTE:
1068		atomic_inc(&stats->promotion);
1069		break;
1070
1071	case POLICY_DEMOTE:
1072		atomic_inc(&stats->demotion);
1073		break;
1074
1075	case POLICY_WRITEBACK:
1076		atomic_inc(&stats->writeback);
1077		break;
1078	}
1079}
1080
1081/*----------------------------------------------------------------
1082 * Migration processing
1083 *
1084 * Migration covers moving data from the origin device to the cache, or
1085 * vice versa.
1086 *--------------------------------------------------------------*/
1087
1088static void inc_io_migrations(struct cache *cache)
1089{
1090	atomic_inc(&cache->nr_io_migrations);
1091}
1092
1093static void dec_io_migrations(struct cache *cache)
1094{
1095	atomic_dec(&cache->nr_io_migrations);
1096}
1097
1098static bool discard_or_flush(struct bio *bio)
1099{
1100	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
 
 
 
 
 
 
 
 
 
 
 
 
 
1101}
1102
1103static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1104				     dm_dblock_t *b, dm_dblock_t *e)
1105{
1106	sector_t sb = bio->bi_iter.bi_sector;
1107	sector_t se = bio_end_sector(bio);
 
 
 
 
 
 
 
 
1108
1109	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
 
1110
1111	if (se - sb < cache->discard_block_size)
1112		*e = *b;
1113	else
1114		*e = to_dblock(block_div(se, cache->discard_block_size));
1115}
1116
1117/*----------------------------------------------------------------*/
 
 
 
 
1118
1119static void prevent_background_work(struct cache *cache)
1120{
1121	lockdep_off();
1122	down_write(&cache->background_work_lock);
1123	lockdep_on();
1124}
1125
1126static void allow_background_work(struct cache *cache)
1127{
1128	lockdep_off();
1129	up_write(&cache->background_work_lock);
1130	lockdep_on();
 
 
1131}
1132
1133static bool background_work_begin(struct cache *cache)
1134{
1135	bool r;
 
1136
1137	lockdep_off();
1138	r = down_read_trylock(&cache->background_work_lock);
1139	lockdep_on();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140
1141	return r;
1142}
1143
1144static void background_work_end(struct cache *cache)
1145{
1146	lockdep_off();
1147	up_read(&cache->background_work_lock);
1148	lockdep_on();
1149}
 
 
 
 
 
1150
1151/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152
1153static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1154{
1155	return (bio_data_dir(bio) == WRITE) &&
1156		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1157}
1158
1159static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1160{
1161	return writeback_mode(cache) &&
1162		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1163}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164
1165static void quiesce(struct dm_cache_migration *mg,
1166		    void (*continuation)(struct work_struct *))
1167{
1168	init_continuation(&mg->k, continuation);
1169	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1170}
1171
1172static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1173{
1174	struct continuation *k = container_of(ws, struct continuation, ws);
1175	return container_of(k, struct dm_cache_migration, k);
 
 
 
 
 
 
 
 
 
 
1176}
1177
1178static void copy_complete(int read_err, unsigned long write_err, void *context)
1179{
1180	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
 
 
1181
1182	if (read_err || write_err)
1183		mg->k.input = BLK_STS_IOERR;
 
 
 
 
1184
1185	queue_continuation(mg->cache->wq, &mg->k);
1186}
1187
1188static int copy(struct dm_cache_migration *mg, bool promote)
1189{
1190	int r;
1191	struct dm_io_region o_region, c_region;
1192	struct cache *cache = mg->cache;
 
1193
1194	o_region.bdev = cache->origin_dev->bdev;
1195	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1196	o_region.count = cache->sectors_per_block;
1197
1198	c_region.bdev = cache->cache_dev->bdev;
1199	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1200	c_region.count = cache->sectors_per_block;
1201
1202	if (promote)
1203		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1204	else
1205		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
 
 
 
 
 
1206
1207	return r;
1208}
1209
1210static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1211{
1212	struct per_bio_data *pb = get_per_bio_data(bio);
1213
1214	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1215		free_prison_cell(cache, pb->cell);
1216	pb->cell = NULL;
1217}
1218
1219static void overwrite_endio(struct bio *bio)
1220{
1221	struct dm_cache_migration *mg = bio->bi_private;
1222	struct cache *cache = mg->cache;
1223	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
1224
1225	dm_unhook_bio(&pb->hook_info, bio);
1226
1227	if (bio->bi_status)
1228		mg->k.input = bio->bi_status;
1229
1230	queue_continuation(cache->wq, &mg->k);
 
 
 
 
 
 
1231}
1232
1233static void overwrite(struct dm_cache_migration *mg,
1234		      void (*continuation)(struct work_struct *))
1235{
1236	struct bio *bio = mg->overwrite_bio;
1237	struct per_bio_data *pb = get_per_bio_data(bio);
1238
1239	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
 
1240
1241	/*
1242	 * The overwrite bio is part of the copy operation, as such it does
1243	 * not set/clear discard or dirty flags.
1244	 */
1245	if (mg->op->op == POLICY_PROMOTE)
1246		remap_to_cache(mg->cache, bio, mg->op->cblock);
1247	else
1248		remap_to_origin(mg->cache, bio);
1249
1250	init_continuation(&mg->k, continuation);
1251	accounted_request(mg->cache, bio);
 
 
1252}
1253
1254/*
1255 * Migration steps:
1256 *
1257 * 1) exclusive lock preventing WRITEs
1258 * 2) quiesce
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1261 * 5) quiesce
1262 * 6) update metadata and commit
1263 * 7) unlock
1264 */
1265static void mg_complete(struct dm_cache_migration *mg, bool success)
1266{
1267	struct bio_list bios;
1268	struct cache *cache = mg->cache;
1269	struct policy_work *op = mg->op;
1270	dm_cblock_t cblock = op->cblock;
1271
1272	if (success)
1273		update_stats(&cache->stats, op->op);
 
 
 
1274
1275	switch (op->op) {
1276	case POLICY_PROMOTE:
1277		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1278		policy_complete_background_work(cache->policy, op, success);
1279
1280		if (mg->overwrite_bio) {
1281			if (success)
1282				force_set_dirty(cache, cblock);
1283			else if (mg->k.input)
1284				mg->overwrite_bio->bi_status = mg->k.input;
1285			else
1286				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1287			bio_endio(mg->overwrite_bio);
1288		} else {
1289			if (success)
1290				force_clear_dirty(cache, cblock);
1291			dec_io_migrations(cache);
1292		}
1293		break;
1294
1295	case POLICY_DEMOTE:
1296		/*
1297		 * We clear dirty here to update the nr_dirty counter.
1298		 */
1299		if (success)
1300			force_clear_dirty(cache, cblock);
1301		policy_complete_background_work(cache->policy, op, success);
1302		dec_io_migrations(cache);
1303		break;
1304
1305	case POLICY_WRITEBACK:
1306		if (success)
1307			force_clear_dirty(cache, cblock);
1308		policy_complete_background_work(cache->policy, op, success);
1309		dec_io_migrations(cache);
1310		break;
1311	}
1312
1313	bio_list_init(&bios);
1314	if (mg->cell) {
1315		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1316			free_prison_cell(cache, mg->cell);
1317	}
1318
 
 
1319	free_migration(mg);
1320	defer_bios(cache, &bios);
1321	wake_migration_worker(cache);
1322
1323	background_work_end(cache);
1324}
1325
1326static void mg_success(struct work_struct *ws)
1327{
1328	struct dm_cache_migration *mg = ws_to_mg(ws);
1329	mg_complete(mg, mg->k.input == 0);
1330}
1331
1332static void mg_update_metadata(struct work_struct *ws)
1333{
1334	int r;
1335	struct dm_cache_migration *mg = ws_to_mg(ws);
1336	struct cache *cache = mg->cache;
1337	struct policy_work *op = mg->op;
1338
1339	switch (op->op) {
1340	case POLICY_PROMOTE:
1341		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1342		if (r) {
1343			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344				    cache_device_name(cache));
1345			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1346
1347			mg_complete(mg, false);
1348			return;
1349		}
1350		mg_complete(mg, true);
1351		break;
1352
1353	case POLICY_DEMOTE:
1354		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1355		if (r) {
1356			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357				    cache_device_name(cache));
1358			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1359
1360			mg_complete(mg, false);
 
 
1361			return;
1362		}
 
1363
1364		/*
1365		 * It would be nice if we only had to commit when a REQ_FLUSH
1366		 * comes through.  But there's one scenario that we have to
1367		 * look out for:
1368		 *
1369		 * - vblock x in a cache block
1370		 * - domotion occurs
1371		 * - cache block gets reallocated and over written
1372		 * - crash
1373		 *
1374		 * When we recover, because there was no commit the cache will
1375		 * rollback to having the data for vblock x in the cache block.
1376		 * But the cache block has since been overwritten, so it'll end
1377		 * up pointing to data that was never in 'x' during the history
1378		 * of the device.
1379		 *
1380		 * To avoid this issue we require a commit as part of the
1381		 * demotion operation.
1382		 */
1383		init_continuation(&mg->k, mg_success);
1384		continue_after_commit(&cache->committer, &mg->k);
1385		schedule_commit(&cache->committer);
1386		break;
1387
1388	case POLICY_WRITEBACK:
1389		mg_complete(mg, true);
1390		break;
1391	}
1392}
1393
1394static void mg_update_metadata_after_copy(struct work_struct *ws)
1395{
1396	struct dm_cache_migration *mg = ws_to_mg(ws);
1397
1398	/*
1399	 * Did the copy succeed?
1400	 */
1401	if (mg->k.input)
1402		mg_complete(mg, false);
1403	else
1404		mg_update_metadata(ws);
1405}
1406
1407static void mg_upgrade_lock(struct work_struct *ws)
 
1408{
1409	int r;
1410	struct dm_cache_migration *mg = ws_to_mg(ws);
 
1411
1412	/*
1413	 * Did the copy succeed?
1414	 */
1415	if (mg->k.input)
1416		mg_complete(mg, false);
1417
1418	else {
1419		/*
1420		 * Now we want the lock to prevent both reads and writes.
1421		 */
1422		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1423					    READ_WRITE_LOCK_LEVEL);
1424		if (r < 0)
1425			mg_complete(mg, false);
1426
1427		else if (r)
1428			quiesce(mg, mg_update_metadata);
1429
1430		else
1431			mg_update_metadata(ws);
1432	}
1433}
1434
1435static void mg_full_copy(struct work_struct *ws)
1436{
1437	struct dm_cache_migration *mg = ws_to_mg(ws);
1438	struct cache *cache = mg->cache;
1439	struct policy_work *op = mg->op;
1440	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1441
1442	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1443	    is_discarded_oblock(cache, op->oblock)) {
1444		mg_upgrade_lock(ws);
1445		return;
1446	}
 
 
 
 
 
 
1447
1448	init_continuation(&mg->k, mg_upgrade_lock);
 
 
 
1449
1450	if (copy(mg, is_policy_promote)) {
1451		DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1452		mg->k.input = BLK_STS_IOERR;
1453		mg_complete(mg, false);
1454	}
1455}
1456
1457static void mg_copy(struct work_struct *ws)
 
1458{
1459	struct dm_cache_migration *mg = ws_to_mg(ws);
1460
1461	if (mg->overwrite_bio) {
1462		/*
1463		 * No exclusive lock was held when we last checked if the bio
1464		 * was optimisable.  So we have to check again in case things
1465		 * have changed (eg, the block may no longer be discarded).
1466		 */
1467		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1468			/*
1469			 * Fallback to a real full copy after doing some tidying up.
1470			 */
1471			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1472			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1473			mg->overwrite_bio = NULL;
1474			inc_io_migrations(mg->cache);
1475			mg_full_copy(ws);
1476			return;
1477		}
1478
1479		/*
1480		 * It's safe to do this here, even though it's new data
1481		 * because all IO has been locked out of the block.
1482		 *
1483		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1484		 * so _not_ using mg_upgrade_lock() as continutation.
1485		 */
1486		overwrite(mg, mg_update_metadata_after_copy);
1487
1488	} else
1489		mg_full_copy(ws);
1490}
1491
1492static int mg_lock_writes(struct dm_cache_migration *mg)
1493{
1494	int r;
1495	struct dm_cell_key_v2 key;
1496	struct cache *cache = mg->cache;
1497	struct dm_bio_prison_cell_v2 *prealloc;
1498
1499	prealloc = alloc_prison_cell(cache);
1500	if (!prealloc) {
1501		DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1502		mg_complete(mg, false);
1503		return -ENOMEM;
1504	}
1505
1506	/*
1507	 * Prevent writes to the block, but allow reads to continue.
1508	 * Unless we're using an overwrite bio, in which case we lock
1509	 * everything.
1510	 */
1511	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1512	r = dm_cell_lock_v2(cache->prison, &key,
1513			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1514			    prealloc, &mg->cell);
1515	if (r < 0) {
1516		free_prison_cell(cache, prealloc);
1517		mg_complete(mg, false);
1518		return r;
1519	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520
1521	if (mg->cell != prealloc)
1522		free_prison_cell(cache, prealloc);
1523
1524	if (r == 0)
1525		mg_copy(&mg->k.ws);
1526	else
1527		quiesce(mg, mg_copy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528
1529	return 0;
1530}
1531
1532static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
 
 
 
1533{
1534	struct dm_cache_migration *mg;
1535
1536	if (!background_work_begin(cache)) {
1537		policy_complete_background_work(cache->policy, op, false);
1538		return -EPERM;
1539	}
1540
1541	mg = alloc_migration(cache);
1542	if (!mg) {
1543		policy_complete_background_work(cache->policy, op, false);
1544		background_work_end(cache);
1545		return -ENOMEM;
1546	}
1547
1548	mg->op = op;
1549	mg->overwrite_bio = bio;
 
 
1550
1551	if (!bio)
1552		inc_io_migrations(cache);
 
 
 
1553
1554	return mg_lock_writes(mg);
 
 
 
 
 
1555}
1556
1557/*----------------------------------------------------------------
1558 * invalidation processing
1559 *--------------------------------------------------------------*/
1560
1561static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1562{
1563	struct bio_list bios;
1564	struct cache *cache = mg->cache;
 
1565
1566	bio_list_init(&bios);
1567	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1568		free_prison_cell(cache, mg->cell);
 
 
1569
1570	if (!success && mg->overwrite_bio)
1571		bio_io_error(mg->overwrite_bio);
 
 
 
 
1572
1573	free_migration(mg);
1574	defer_bios(cache, &bios);
1575
1576	background_work_end(cache);
 
 
 
 
1577}
1578
1579static void invalidate_completed(struct work_struct *ws)
1580{
1581	struct dm_cache_migration *mg = ws_to_mg(ws);
1582	invalidate_complete(mg, !mg->k.input);
1583}
1584
1585static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1586{
1587	int r = policy_invalidate_mapping(cache->policy, cblock);
1588	if (!r) {
1589		r = dm_cache_remove_mapping(cache->cmd, cblock);
1590		if (r) {
1591			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1592				    cache_device_name(cache));
1593			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1594		}
 
 
 
 
1595
1596	} else if (r == -ENODATA) {
1597		/*
1598		 * Harmless, already unmapped.
1599		 */
1600		r = 0;
1601
1602	} else
1603		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
 
1604
1605	return r;
1606}
 
 
 
1607
1608static void invalidate_remove(struct work_struct *ws)
1609{
1610	int r;
1611	struct dm_cache_migration *mg = ws_to_mg(ws);
1612	struct cache *cache = mg->cache;
1613
1614	r = invalidate_cblock(cache, mg->invalidate_cblock);
1615	if (r) {
1616		invalidate_complete(mg, false);
1617		return;
1618	}
1619
1620	init_continuation(&mg->k, invalidate_completed);
1621	continue_after_commit(&cache->committer, &mg->k);
1622	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1623	mg->overwrite_bio = NULL;
1624	schedule_commit(&cache->committer);
1625}
1626
1627static int invalidate_lock(struct dm_cache_migration *mg)
 
 
 
1628{
1629	int r;
1630	struct dm_cell_key_v2 key;
1631	struct cache *cache = mg->cache;
1632	struct dm_bio_prison_cell_v2 *prealloc;
1633
1634	prealloc = alloc_prison_cell(cache);
1635	if (!prealloc) {
1636		invalidate_complete(mg, false);
1637		return -ENOMEM;
1638	}
1639
1640	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1641	r = dm_cell_lock_v2(cache->prison, &key,
1642			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1643	if (r < 0) {
1644		free_prison_cell(cache, prealloc);
1645		invalidate_complete(mg, false);
1646		return r;
1647	}
1648
1649	if (mg->cell != prealloc)
1650		free_prison_cell(cache, prealloc);
 
 
 
1651
1652	if (r)
1653		quiesce(mg, invalidate_remove);
1654
1655	else {
1656		/*
1657		 * We can't call invalidate_remove() directly here because we
1658		 * might still be in request context.
1659		 */
1660		init_continuation(&mg->k, invalidate_remove);
1661		queue_work(cache->wq, &mg->k.ws);
1662	}
1663
1664	return 0;
1665}
1666
1667static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1668			    dm_oblock_t oblock, struct bio *bio)
1669{
1670	struct dm_cache_migration *mg;
 
 
 
 
 
 
 
 
 
 
 
 
1671
1672	if (!background_work_begin(cache))
1673		return -EPERM;
 
 
 
1674
1675	mg = alloc_migration(cache);
1676	if (!mg) {
1677		background_work_end(cache);
1678		return -ENOMEM;
1679	}
1680
1681	mg->overwrite_bio = bio;
1682	mg->invalidate_cblock = cblock;
1683	mg->invalidate_oblock = oblock;
 
1684
1685	return invalidate_lock(mg);
1686}
1687
1688/*----------------------------------------------------------------
1689 * bio processing
1690 *--------------------------------------------------------------*/
1691
1692enum busy {
1693	IDLE,
1694	BUSY
 
 
1695};
1696
1697static enum busy spare_migration_bandwidth(struct cache *cache)
1698{
1699	bool idle = iot_idle_for(&cache->tracker, HZ);
1700	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1701		cache->sectors_per_block;
1702
1703	if (idle && current_volume <= cache->migration_threshold)
1704		return IDLE;
1705	else
1706		return BUSY;
1707}
1708
1709static void inc_hit_counter(struct cache *cache, struct bio *bio)
1710{
1711	atomic_inc(bio_data_dir(bio) == READ ?
1712		   &cache->stats.read_hit : &cache->stats.write_hit);
 
 
 
 
1713}
1714
1715static void inc_miss_counter(struct cache *cache, struct bio *bio)
 
1716{
1717	atomic_inc(bio_data_dir(bio) == READ ?
1718		   &cache->stats.read_miss : &cache->stats.write_miss);
1719}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1720
1721/*----------------------------------------------------------------*/
 
 
 
1722
1723static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1724		   bool *commit_needed)
1725{
1726	int r, data_dir;
1727	bool rb, background_queued;
1728	dm_cblock_t cblock;
 
1729
1730	*commit_needed = false;
 
 
 
 
 
 
 
 
 
 
1731
1732	rb = bio_detain_shared(cache, block, bio);
1733	if (!rb) {
1734		/*
1735		 * An exclusive lock is held for this block, so we have to
1736		 * wait.  We set the commit_needed flag so the current
1737		 * transaction will be committed asap, allowing this lock
1738		 * to be dropped.
1739		 */
1740		*commit_needed = true;
1741		return DM_MAPIO_SUBMITTED;
1742	}
1743
1744	data_dir = bio_data_dir(bio);
 
 
 
 
1745
1746	if (optimisable_bio(cache, bio, block)) {
1747		struct policy_work *op = NULL;
 
 
 
1748
1749		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1750		if (unlikely(r && r != -ENOENT)) {
1751			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1752				    cache_device_name(cache), r);
1753			bio_io_error(bio);
1754			return DM_MAPIO_SUBMITTED;
1755		}
1756
1757		if (r == -ENOENT && op) {
1758			bio_drop_shared_lock(cache, bio);
1759			BUG_ON(op->op != POLICY_PROMOTE);
1760			mg_start(cache, op, bio);
1761			return DM_MAPIO_SUBMITTED;
1762		}
1763	} else {
1764		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1765		if (unlikely(r && r != -ENOENT)) {
1766			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1767				    cache_device_name(cache), r);
1768			bio_io_error(bio);
1769			return DM_MAPIO_SUBMITTED;
1770		}
1771
1772		if (background_queued)
1773			wake_migration_worker(cache);
 
 
 
1774	}
1775
1776	if (r == -ENOENT) {
1777		struct per_bio_data *pb = get_per_bio_data(bio);
 
1778
1779		/*
1780		 * Miss.
1781		 */
1782		inc_miss_counter(cache, bio);
1783		if (pb->req_nr == 0) {
1784			accounted_begin(cache, bio);
1785			remap_to_origin_clear_discard(cache, bio, block);
1786		} else {
1787			/*
1788			 * This is a duplicate writethrough io that is no
1789			 * longer needed because the block has been demoted.
1790			 */
1791			bio_endio(bio);
1792			return DM_MAPIO_SUBMITTED;
1793		}
1794	} else {
1795		/*
1796		 * Hit.
1797		 */
1798		inc_hit_counter(cache, bio);
1799
1800		/*
1801		 * Passthrough always maps to the origin, invalidating any
1802		 * cache blocks that are written to.
1803		 */
1804		if (passthrough_mode(cache)) {
1805			if (bio_data_dir(bio) == WRITE) {
1806				bio_drop_shared_lock(cache, bio);
1807				atomic_inc(&cache->stats.demotion);
1808				invalidate_start(cache, cblock, block, bio);
1809			} else
1810				remap_to_origin_clear_discard(cache, bio, block);
1811		} else {
1812			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1813			    !is_dirty(cache, cblock)) {
1814				remap_to_origin_and_cache(cache, bio, block, cblock);
1815				accounted_begin(cache, bio);
1816			} else
1817				remap_to_cache_dirty(cache, bio, block, cblock);
1818		}
1819	}
1820
1821	/*
1822	 * dm core turns FUA requests into a separate payload and FLUSH req.
1823	 */
1824	if (bio->bi_opf & REQ_FUA) {
1825		/*
1826		 * issue_after_commit will call accounted_begin a second time.  So
1827		 * we call accounted_complete() to avoid double accounting.
1828		 */
1829		accounted_complete(cache, bio);
1830		issue_after_commit(&cache->committer, bio);
1831		*commit_needed = true;
1832		return DM_MAPIO_SUBMITTED;
1833	}
1834
1835	return DM_MAPIO_REMAPPED;
1836}
1837
1838static bool process_bio(struct cache *cache, struct bio *bio)
1839{
1840	bool commit_needed;
1841
1842	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1843		generic_make_request(bio);
1844
1845	return commit_needed;
1846}
1847
1848/*
1849 * A non-zero return indicates read_only or fail_io mode.
1850 */
1851static int commit(struct cache *cache, bool clean_shutdown)
1852{
1853	int r;
1854
1855	if (get_cache_mode(cache) >= CM_READ_ONLY)
1856		return -EINVAL;
1857
1858	atomic_inc(&cache->stats.commit_count);
1859	r = dm_cache_commit(cache->cmd, clean_shutdown);
1860	if (r)
1861		metadata_operation_failed(cache, "dm_cache_commit", r);
1862
1863	return r;
1864}
1865
1866/*
1867 * Used by the batcher.
1868 */
1869static blk_status_t commit_op(void *context)
1870{
1871	struct cache *cache = context;
1872
1873	if (dm_cache_changed_this_transaction(cache->cmd))
1874		return errno_to_blk_status(commit(cache, false));
 
 
 
 
1875
1876	return 0;
1877}
1878
1879/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1880
1881static bool process_flush_bio(struct cache *cache, struct bio *bio)
1882{
1883	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
 
 
 
 
 
 
1884
1885	if (!pb->req_nr)
1886		remap_to_origin(cache, bio);
1887	else
1888		remap_to_cache(cache, bio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889
1890	issue_after_commit(&cache->committer, bio);
1891	return true;
1892}
1893
1894static bool process_discard_bio(struct cache *cache, struct bio *bio)
1895{
1896	dm_dblock_t b, e;
 
 
1897
1898	// FIXME: do we need to lock the region?  Or can we just assume the
1899	// user wont be so foolish as to issue discard concurrently with
1900	// other IO?
1901	calc_discard_block_range(cache, bio, &b, &e);
1902	while (b != e) {
1903		set_discard(cache, b);
1904		b = to_dblock(from_dblock(b) + 1);
1905	}
1906
1907	bio_endio(bio);
 
 
 
1908
1909	return false;
 
 
 
 
1910}
1911
1912static void process_deferred_bios(struct work_struct *ws)
1913{
1914	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1915
1916	unsigned long flags;
1917	bool commit_needed = false;
1918	struct bio_list bios;
1919	struct bio *bio;
1920
1921	bio_list_init(&bios);
1922
1923	spin_lock_irqsave(&cache->lock, flags);
1924	bio_list_merge(&bios, &cache->deferred_bios);
1925	bio_list_init(&cache->deferred_bios);
1926	spin_unlock_irqrestore(&cache->lock, flags);
1927
1928	while ((bio = bio_list_pop(&bios))) {
1929		if (bio->bi_opf & REQ_PREFLUSH)
1930			commit_needed = process_flush_bio(cache, bio) || commit_needed;
 
 
 
1931
1932		else if (bio_op(bio) == REQ_OP_DISCARD)
1933			commit_needed = process_discard_bio(cache, bio) || commit_needed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934
1935		else
1936			commit_needed = process_bio(cache, bio) || commit_needed;
1937	}
1938
1939	if (commit_needed)
1940		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941}
1942
1943/*----------------------------------------------------------------
1944 * Main worker loop
1945 *--------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947static void requeue_deferred_bios(struct cache *cache)
1948{
1949	struct bio *bio;
1950	struct bio_list bios;
1951
1952	bio_list_init(&bios);
1953	bio_list_merge(&bios, &cache->deferred_bios);
1954	bio_list_init(&cache->deferred_bios);
1955
1956	while ((bio = bio_list_pop(&bios))) {
1957		bio->bi_status = BLK_STS_DM_REQUEUE;
1958		bio_endio(bio);
1959	}
1960}
1961
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1962/*
1963 * We want to commit periodically so that not too much
1964 * unwritten metadata builds up.
1965 */
1966static void do_waker(struct work_struct *ws)
1967{
1968	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1969
1970	policy_tick(cache->policy, true);
1971	wake_migration_worker(cache);
1972	schedule_commit(&cache->committer);
1973	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1974}
1975
1976static void check_migrations(struct work_struct *ws)
 
 
1977{
1978	int r;
1979	struct policy_work *op;
1980	struct cache *cache = container_of(ws, struct cache, migration_worker);
1981	enum busy b;
1982
1983	for (;;) {
1984		b = spare_migration_bandwidth(cache);
 
1985
1986		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1987		if (r == -ENODATA)
1988			break;
1989
1990		if (r) {
1991			DMERR_LIMIT("%s: policy_background_work failed",
1992				    cache_device_name(cache));
1993			break;
1994		}
1995
1996		r = mg_start(cache, op, NULL);
1997		if (r)
1998			break;
1999	}
2000}
2001
2002/*----------------------------------------------------------------
2003 * Target methods
2004 *--------------------------------------------------------------*/
2005
2006/*
2007 * This function gets called on the error paths of the constructor, so we
2008 * have to cope with a partially initialised struct.
2009 */
2010static void destroy(struct cache *cache)
2011{
2012	unsigned i;
2013
2014	mempool_destroy(cache->migration_pool);
2015
 
 
 
2016	if (cache->prison)
2017		dm_bio_prison_destroy_v2(cache->prison);
2018
2019	if (cache->wq)
2020		destroy_workqueue(cache->wq);
2021
2022	if (cache->dirty_bitset)
2023		free_bitset(cache->dirty_bitset);
2024
2025	if (cache->discard_bitset)
2026		free_bitset(cache->discard_bitset);
2027
2028	if (cache->copier)
2029		dm_kcopyd_client_destroy(cache->copier);
2030
2031	if (cache->cmd)
2032		dm_cache_metadata_close(cache->cmd);
2033
2034	if (cache->metadata_dev)
2035		dm_put_device(cache->ti, cache->metadata_dev);
2036
2037	if (cache->origin_dev)
2038		dm_put_device(cache->ti, cache->origin_dev);
2039
2040	if (cache->cache_dev)
2041		dm_put_device(cache->ti, cache->cache_dev);
2042
2043	if (cache->policy)
2044		dm_cache_policy_destroy(cache->policy);
2045
2046	for (i = 0; i < cache->nr_ctr_args ; i++)
2047		kfree(cache->ctr_args[i]);
2048	kfree(cache->ctr_args);
2049
2050	if (cache->bs)
2051		bioset_free(cache->bs);
2052
2053	kfree(cache);
2054}
2055
2056static void cache_dtr(struct dm_target *ti)
2057{
2058	struct cache *cache = ti->private;
2059
2060	destroy(cache);
2061}
2062
2063static sector_t get_dev_size(struct dm_dev *dev)
2064{
2065	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2066}
2067
2068/*----------------------------------------------------------------*/
2069
2070/*
2071 * Construct a cache device mapping.
2072 *
2073 * cache <metadata dev> <cache dev> <origin dev> <block size>
2074 *       <#feature args> [<feature arg>]*
2075 *       <policy> <#policy args> [<policy arg>]*
2076 *
2077 * metadata dev    : fast device holding the persistent metadata
2078 * cache dev	   : fast device holding cached data blocks
2079 * origin dev	   : slow device holding original data blocks
2080 * block size	   : cache unit size in sectors
2081 *
2082 * #feature args   : number of feature arguments passed
2083 * feature args    : writethrough.  (The default is writeback.)
2084 *
2085 * policy	   : the replacement policy to use
2086 * #policy args    : an even number of policy arguments corresponding
2087 *		     to key/value pairs passed to the policy
2088 * policy args	   : key/value pairs passed to the policy
2089 *		     E.g. 'sequential_threshold 1024'
2090 *		     See cache-policies.txt for details.
2091 *
2092 * Optional feature arguments are:
2093 *   writethrough  : write through caching that prohibits cache block
2094 *		     content from being different from origin block content.
2095 *		     Without this argument, the default behaviour is to write
2096 *		     back cache block contents later for performance reasons,
2097 *		     so they may differ from the corresponding origin blocks.
2098 */
2099struct cache_args {
2100	struct dm_target *ti;
2101
2102	struct dm_dev *metadata_dev;
2103
2104	struct dm_dev *cache_dev;
2105	sector_t cache_sectors;
2106
2107	struct dm_dev *origin_dev;
2108	sector_t origin_sectors;
2109
2110	uint32_t block_size;
2111
2112	const char *policy_name;
2113	int policy_argc;
2114	const char **policy_argv;
2115
2116	struct cache_features features;
2117};
2118
2119static void destroy_cache_args(struct cache_args *ca)
2120{
2121	if (ca->metadata_dev)
2122		dm_put_device(ca->ti, ca->metadata_dev);
2123
2124	if (ca->cache_dev)
2125		dm_put_device(ca->ti, ca->cache_dev);
2126
2127	if (ca->origin_dev)
2128		dm_put_device(ca->ti, ca->origin_dev);
2129
2130	kfree(ca);
2131}
2132
2133static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2134{
2135	if (!as->argc) {
2136		*error = "Insufficient args";
2137		return false;
2138	}
2139
2140	return true;
2141}
2142
2143static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2144			      char **error)
2145{
2146	int r;
2147	sector_t metadata_dev_size;
2148	char b[BDEVNAME_SIZE];
2149
2150	if (!at_least_one_arg(as, error))
2151		return -EINVAL;
2152
2153	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2154			  &ca->metadata_dev);
2155	if (r) {
2156		*error = "Error opening metadata device";
2157		return r;
2158	}
2159
2160	metadata_dev_size = get_dev_size(ca->metadata_dev);
2161	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2162		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2163		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2164
2165	return 0;
2166}
2167
2168static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2169			   char **error)
2170{
2171	int r;
2172
2173	if (!at_least_one_arg(as, error))
2174		return -EINVAL;
2175
2176	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2177			  &ca->cache_dev);
2178	if (r) {
2179		*error = "Error opening cache device";
2180		return r;
2181	}
2182	ca->cache_sectors = get_dev_size(ca->cache_dev);
2183
2184	return 0;
2185}
2186
2187static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2188			    char **error)
2189{
2190	int r;
2191
2192	if (!at_least_one_arg(as, error))
2193		return -EINVAL;
2194
2195	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2196			  &ca->origin_dev);
2197	if (r) {
2198		*error = "Error opening origin device";
2199		return r;
2200	}
2201
2202	ca->origin_sectors = get_dev_size(ca->origin_dev);
2203	if (ca->ti->len > ca->origin_sectors) {
2204		*error = "Device size larger than cached device";
2205		return -EINVAL;
2206	}
2207
2208	return 0;
2209}
2210
2211static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2212			    char **error)
2213{
2214	unsigned long block_size;
2215
2216	if (!at_least_one_arg(as, error))
2217		return -EINVAL;
2218
2219	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2220	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2221	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2222	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2223		*error = "Invalid data block size";
2224		return -EINVAL;
2225	}
2226
2227	if (block_size > ca->cache_sectors) {
2228		*error = "Data block size is larger than the cache device";
2229		return -EINVAL;
2230	}
2231
2232	ca->block_size = block_size;
2233
2234	return 0;
2235}
2236
2237static void init_features(struct cache_features *cf)
2238{
2239	cf->mode = CM_WRITE;
2240	cf->io_mode = CM_IO_WRITEBACK;
2241	cf->metadata_version = 1;
2242}
2243
2244static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2245			  char **error)
2246{
2247	static const struct dm_arg _args[] = {
2248		{0, 2, "Invalid number of cache feature arguments"},
2249	};
2250
2251	int r;
2252	unsigned argc;
2253	const char *arg;
2254	struct cache_features *cf = &ca->features;
2255
2256	init_features(cf);
2257
2258	r = dm_read_arg_group(_args, as, &argc, error);
2259	if (r)
2260		return -EINVAL;
2261
2262	while (argc--) {
2263		arg = dm_shift_arg(as);
2264
2265		if (!strcasecmp(arg, "writeback"))
2266			cf->io_mode = CM_IO_WRITEBACK;
2267
2268		else if (!strcasecmp(arg, "writethrough"))
2269			cf->io_mode = CM_IO_WRITETHROUGH;
2270
2271		else if (!strcasecmp(arg, "passthrough"))
2272			cf->io_mode = CM_IO_PASSTHROUGH;
2273
2274		else if (!strcasecmp(arg, "metadata2"))
2275			cf->metadata_version = 2;
2276
2277		else {
2278			*error = "Unrecognised cache feature requested";
2279			return -EINVAL;
2280		}
2281	}
2282
2283	return 0;
2284}
2285
2286static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2287			char **error)
2288{
2289	static const struct dm_arg _args[] = {
2290		{0, 1024, "Invalid number of policy arguments"},
2291	};
2292
2293	int r;
2294
2295	if (!at_least_one_arg(as, error))
2296		return -EINVAL;
2297
2298	ca->policy_name = dm_shift_arg(as);
2299
2300	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2301	if (r)
2302		return -EINVAL;
2303
2304	ca->policy_argv = (const char **)as->argv;
2305	dm_consume_args(as, ca->policy_argc);
2306
2307	return 0;
2308}
2309
2310static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2311			    char **error)
2312{
2313	int r;
2314	struct dm_arg_set as;
2315
2316	as.argc = argc;
2317	as.argv = argv;
2318
2319	r = parse_metadata_dev(ca, &as, error);
2320	if (r)
2321		return r;
2322
2323	r = parse_cache_dev(ca, &as, error);
2324	if (r)
2325		return r;
2326
2327	r = parse_origin_dev(ca, &as, error);
2328	if (r)
2329		return r;
2330
2331	r = parse_block_size(ca, &as, error);
2332	if (r)
2333		return r;
2334
2335	r = parse_features(ca, &as, error);
2336	if (r)
2337		return r;
2338
2339	r = parse_policy(ca, &as, error);
2340	if (r)
2341		return r;
2342
2343	return 0;
2344}
2345
2346/*----------------------------------------------------------------*/
2347
2348static struct kmem_cache *migration_cache;
2349
2350#define NOT_CORE_OPTION 1
2351
2352static int process_config_option(struct cache *cache, const char *key, const char *value)
2353{
2354	unsigned long tmp;
2355
2356	if (!strcasecmp(key, "migration_threshold")) {
2357		if (kstrtoul(value, 10, &tmp))
2358			return -EINVAL;
2359
2360		cache->migration_threshold = tmp;
2361		return 0;
2362	}
2363
2364	return NOT_CORE_OPTION;
2365}
2366
2367static int set_config_value(struct cache *cache, const char *key, const char *value)
2368{
2369	int r = process_config_option(cache, key, value);
2370
2371	if (r == NOT_CORE_OPTION)
2372		r = policy_set_config_value(cache->policy, key, value);
2373
2374	if (r)
2375		DMWARN("bad config value for %s: %s", key, value);
2376
2377	return r;
2378}
2379
2380static int set_config_values(struct cache *cache, int argc, const char **argv)
2381{
2382	int r = 0;
2383
2384	if (argc & 1) {
2385		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2386		return -EINVAL;
2387	}
2388
2389	while (argc) {
2390		r = set_config_value(cache, argv[0], argv[1]);
2391		if (r)
2392			break;
2393
2394		argc -= 2;
2395		argv += 2;
2396	}
2397
2398	return r;
2399}
2400
2401static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2402			       char **error)
2403{
2404	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2405							   cache->cache_size,
2406							   cache->origin_sectors,
2407							   cache->sectors_per_block);
2408	if (IS_ERR(p)) {
2409		*error = "Error creating cache's policy";
2410		return PTR_ERR(p);
2411	}
2412	cache->policy = p;
2413	BUG_ON(!cache->policy);
2414
2415	return 0;
2416}
2417
2418/*
2419 * We want the discard block size to be at least the size of the cache
2420 * block size and have no more than 2^14 discard blocks across the origin.
2421 */
2422#define MAX_DISCARD_BLOCKS (1 << 14)
2423
2424static bool too_many_discard_blocks(sector_t discard_block_size,
2425				    sector_t origin_size)
2426{
2427	(void) sector_div(origin_size, discard_block_size);
2428
2429	return origin_size > MAX_DISCARD_BLOCKS;
2430}
2431
2432static sector_t calculate_discard_block_size(sector_t cache_block_size,
2433					     sector_t origin_size)
2434{
2435	sector_t discard_block_size = cache_block_size;
2436
2437	if (origin_size)
2438		while (too_many_discard_blocks(discard_block_size, origin_size))
2439			discard_block_size *= 2;
2440
2441	return discard_block_size;
2442}
2443
2444static void set_cache_size(struct cache *cache, dm_cblock_t size)
2445{
2446	dm_block_t nr_blocks = from_cblock(size);
2447
2448	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2449		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2450			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2451			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2452			     (unsigned long long) nr_blocks);
2453
2454	cache->cache_size = size;
2455}
2456
2457static int is_congested(struct dm_dev *dev, int bdi_bits)
2458{
2459	struct request_queue *q = bdev_get_queue(dev->bdev);
2460	return bdi_congested(q->backing_dev_info, bdi_bits);
2461}
2462
2463static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2464{
2465	struct cache *cache = container_of(cb, struct cache, callbacks);
2466
2467	return is_congested(cache->origin_dev, bdi_bits) ||
2468		is_congested(cache->cache_dev, bdi_bits);
2469}
2470
2471#define DEFAULT_MIGRATION_THRESHOLD 2048
2472
2473static int cache_create(struct cache_args *ca, struct cache **result)
2474{
2475	int r = 0;
2476	char **error = &ca->ti->error;
2477	struct cache *cache;
2478	struct dm_target *ti = ca->ti;
2479	dm_block_t origin_blocks;
2480	struct dm_cache_metadata *cmd;
2481	bool may_format = ca->features.mode == CM_WRITE;
2482
2483	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2484	if (!cache)
2485		return -ENOMEM;
2486
2487	cache->ti = ca->ti;
2488	ti->private = cache;
2489	ti->num_flush_bios = 2;
2490	ti->flush_supported = true;
2491
2492	ti->num_discard_bios = 1;
2493	ti->discards_supported = true;
 
2494	ti->split_discard_bios = false;
2495
2496	ti->per_io_data_size = sizeof(struct per_bio_data);
2497
2498	cache->features = ca->features;
2499	if (writethrough_mode(cache)) {
2500		/* Create bioset for writethrough bios issued to origin */
2501		cache->bs = bioset_create(BIO_POOL_SIZE, 0, 0);
2502		if (!cache->bs)
2503			goto bad;
2504	}
2505
2506	cache->callbacks.congested_fn = cache_is_congested;
2507	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2508
2509	cache->metadata_dev = ca->metadata_dev;
2510	cache->origin_dev = ca->origin_dev;
2511	cache->cache_dev = ca->cache_dev;
2512
2513	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2514
 
2515	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2516	origin_blocks = block_div(origin_blocks, ca->block_size);
2517	cache->origin_blocks = to_oblock(origin_blocks);
2518
2519	cache->sectors_per_block = ca->block_size;
2520	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2521		r = -EINVAL;
2522		goto bad;
2523	}
2524
2525	if (ca->block_size & (ca->block_size - 1)) {
2526		dm_block_t cache_size = ca->cache_sectors;
2527
2528		cache->sectors_per_block_shift = -1;
2529		cache_size = block_div(cache_size, ca->block_size);
2530		set_cache_size(cache, to_cblock(cache_size));
2531	} else {
2532		cache->sectors_per_block_shift = __ffs(ca->block_size);
2533		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2534	}
2535
2536	r = create_cache_policy(cache, ca, error);
2537	if (r)
2538		goto bad;
2539
2540	cache->policy_nr_args = ca->policy_argc;
2541	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2542
2543	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2544	if (r) {
2545		*error = "Error setting cache policy's config values";
2546		goto bad;
2547	}
2548
2549	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2550				     ca->block_size, may_format,
2551				     dm_cache_policy_get_hint_size(cache->policy),
2552				     ca->features.metadata_version);
2553	if (IS_ERR(cmd)) {
2554		*error = "Error creating metadata object";
2555		r = PTR_ERR(cmd);
2556		goto bad;
2557	}
2558	cache->cmd = cmd;
2559	set_cache_mode(cache, CM_WRITE);
2560	if (get_cache_mode(cache) != CM_WRITE) {
2561		*error = "Unable to get write access to metadata, please check/repair metadata.";
2562		r = -EINVAL;
2563		goto bad;
2564	}
2565
2566	if (passthrough_mode(cache)) {
2567		bool all_clean;
2568
2569		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2570		if (r) {
2571			*error = "dm_cache_metadata_all_clean() failed";
2572			goto bad;
2573		}
2574
2575		if (!all_clean) {
2576			*error = "Cannot enter passthrough mode unless all blocks are clean";
2577			r = -EINVAL;
2578			goto bad;
2579		}
2580
2581		policy_allow_migrations(cache->policy, false);
2582	}
2583
2584	spin_lock_init(&cache->lock);
 
2585	bio_list_init(&cache->deferred_bios);
 
 
 
 
 
2586	atomic_set(&cache->nr_allocated_migrations, 0);
2587	atomic_set(&cache->nr_io_migrations, 0);
2588	init_waitqueue_head(&cache->migration_wait);
2589
 
 
 
 
2590	r = -ENOMEM;
2591	atomic_set(&cache->nr_dirty, 0);
2592	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2593	if (!cache->dirty_bitset) {
2594		*error = "could not allocate dirty bitset";
2595		goto bad;
2596	}
2597	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2598
2599	cache->discard_block_size =
2600		calculate_discard_block_size(cache->sectors_per_block,
2601					     cache->origin_sectors);
2602	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2603							      cache->discard_block_size));
2604	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2605	if (!cache->discard_bitset) {
2606		*error = "could not allocate discard bitset";
2607		goto bad;
2608	}
2609	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2610
2611	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2612	if (IS_ERR(cache->copier)) {
2613		*error = "could not create kcopyd client";
2614		r = PTR_ERR(cache->copier);
2615		goto bad;
2616	}
2617
2618	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2619	if (!cache->wq) {
2620		*error = "could not create workqueue for metadata object";
2621		goto bad;
2622	}
2623	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2624	INIT_WORK(&cache->migration_worker, check_migrations);
2625	INIT_DELAYED_WORK(&cache->waker, do_waker);
 
2626
2627	cache->prison = dm_bio_prison_create_v2(cache->wq);
2628	if (!cache->prison) {
2629		*error = "could not create bio prison";
2630		goto bad;
2631	}
2632
 
 
 
 
 
 
2633	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2634							 migration_cache);
2635	if (!cache->migration_pool) {
2636		*error = "Error creating cache's migration mempool";
2637		goto bad;
2638	}
2639
2640	cache->need_tick_bio = true;
2641	cache->sized = false;
2642	cache->invalidate = false;
2643	cache->commit_requested = false;
2644	cache->loaded_mappings = false;
2645	cache->loaded_discards = false;
2646
2647	load_stats(cache);
2648
2649	atomic_set(&cache->stats.demotion, 0);
2650	atomic_set(&cache->stats.promotion, 0);
2651	atomic_set(&cache->stats.copies_avoided, 0);
2652	atomic_set(&cache->stats.cache_cell_clash, 0);
2653	atomic_set(&cache->stats.commit_count, 0);
2654	atomic_set(&cache->stats.discard_count, 0);
2655
2656	spin_lock_init(&cache->invalidation_lock);
2657	INIT_LIST_HEAD(&cache->invalidation_requests);
2658
2659	batcher_init(&cache->committer, commit_op, cache,
2660		     issue_op, cache, cache->wq);
2661	iot_init(&cache->tracker);
2662
2663	init_rwsem(&cache->background_work_lock);
2664	prevent_background_work(cache);
2665
2666	*result = cache;
2667	return 0;
 
2668bad:
2669	destroy(cache);
2670	return r;
2671}
2672
2673static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2674{
2675	unsigned i;
2676	const char **copy;
2677
2678	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2679	if (!copy)
2680		return -ENOMEM;
2681	for (i = 0; i < argc; i++) {
2682		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2683		if (!copy[i]) {
2684			while (i--)
2685				kfree(copy[i]);
2686			kfree(copy);
2687			return -ENOMEM;
2688		}
2689	}
2690
2691	cache->nr_ctr_args = argc;
2692	cache->ctr_args = copy;
2693
2694	return 0;
2695}
2696
2697static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2698{
2699	int r = -EINVAL;
2700	struct cache_args *ca;
2701	struct cache *cache = NULL;
2702
2703	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2704	if (!ca) {
2705		ti->error = "Error allocating memory for cache";
2706		return -ENOMEM;
2707	}
2708	ca->ti = ti;
2709
2710	r = parse_cache_args(ca, argc, argv, &ti->error);
2711	if (r)
2712		goto out;
2713
2714	r = cache_create(ca, &cache);
2715	if (r)
2716		goto out;
2717
2718	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2719	if (r) {
2720		destroy(cache);
2721		goto out;
2722	}
2723
2724	ti->private = cache;
 
2725out:
2726	destroy_cache_args(ca);
2727	return r;
2728}
2729
2730/*----------------------------------------------------------------*/
2731
2732static int cache_map(struct dm_target *ti, struct bio *bio)
2733{
2734	struct cache *cache = ti->private;
2735
2736	int r;
2737	bool commit_needed;
2738	dm_oblock_t block = get_bio_block(cache, bio);
 
 
 
 
 
 
 
 
2739
2740	init_per_bio_data(bio);
2741	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2742		/*
2743		 * This can only occur if the io goes to a partial block at
2744		 * the end of the origin device.  We don't cache these.
2745		 * Just remap to the origin and carry on.
2746		 */
2747		remap_to_origin(cache, bio);
2748		accounted_begin(cache, bio);
2749		return DM_MAPIO_REMAPPED;
2750	}
2751
2752	if (discard_or_flush(bio)) {
2753		defer_bio(cache, bio);
2754		return DM_MAPIO_SUBMITTED;
2755	}
2756
2757	r = map_bio(cache, bio, block, &commit_needed);
2758	if (commit_needed)
2759		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2760
2761	return r;
2762}
2763
2764static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2765{
2766	struct cache *cache = ti->private;
2767	unsigned long flags;
2768	struct per_bio_data *pb = get_per_bio_data(bio);
 
2769
2770	if (pb->tick) {
2771		policy_tick(cache->policy, false);
2772
2773		spin_lock_irqsave(&cache->lock, flags);
2774		cache->need_tick_bio = true;
2775		spin_unlock_irqrestore(&cache->lock, flags);
2776	}
2777
2778	bio_drop_shared_lock(cache, bio);
2779	accounted_complete(cache, bio);
2780
2781	return DM_ENDIO_DONE;
2782}
2783
2784static int write_dirty_bitset(struct cache *cache)
2785{
2786	int r;
2787
2788	if (get_cache_mode(cache) >= CM_READ_ONLY)
2789		return -EINVAL;
2790
2791	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2792	if (r)
2793		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
 
 
 
 
 
2794
2795	return r;
2796}
2797
2798static int write_discard_bitset(struct cache *cache)
2799{
2800	unsigned i, r;
2801
2802	if (get_cache_mode(cache) >= CM_READ_ONLY)
2803		return -EINVAL;
2804
2805	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2806					   cache->discard_nr_blocks);
2807	if (r) {
2808		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2809		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2810		return r;
2811	}
2812
2813	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2814		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2815					 is_discarded(cache, to_dblock(i)));
2816		if (r) {
2817			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2818			return r;
2819		}
2820	}
2821
2822	return 0;
2823}
2824
2825static int write_hints(struct cache *cache)
2826{
2827	int r;
2828
2829	if (get_cache_mode(cache) >= CM_READ_ONLY)
2830		return -EINVAL;
2831
2832	r = dm_cache_write_hints(cache->cmd, cache->policy);
2833	if (r) {
2834		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2835		return r;
2836	}
2837
2838	return 0;
2839}
2840
2841/*
2842 * returns true on success
2843 */
2844static bool sync_metadata(struct cache *cache)
2845{
2846	int r1, r2, r3, r4;
2847
2848	r1 = write_dirty_bitset(cache);
2849	if (r1)
2850		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2851
2852	r2 = write_discard_bitset(cache);
2853	if (r2)
2854		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2855
2856	save_stats(cache);
2857
2858	r3 = write_hints(cache);
2859	if (r3)
2860		DMERR("%s: could not write hints", cache_device_name(cache));
2861
2862	/*
2863	 * If writing the above metadata failed, we still commit, but don't
2864	 * set the clean shutdown flag.  This will effectively force every
2865	 * dirty bit to be set on reload.
2866	 */
2867	r4 = commit(cache, !r1 && !r2 && !r3);
2868	if (r4)
2869		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2870
2871	return !r1 && !r2 && !r3 && !r4;
2872}
2873
2874static void cache_postsuspend(struct dm_target *ti)
2875{
2876	struct cache *cache = ti->private;
2877
2878	prevent_background_work(cache);
2879	BUG_ON(atomic_read(&cache->nr_io_migrations));
2880
2881	cancel_delayed_work(&cache->waker);
2882	flush_workqueue(cache->wq);
2883	WARN_ON(cache->tracker.in_flight);
2884
2885	/*
2886	 * If it's a flush suspend there won't be any deferred bios, so this
2887	 * call is harmless.
2888	 */
2889	requeue_deferred_bios(cache);
 
 
2890
2891	if (get_cache_mode(cache) == CM_WRITE)
2892		(void) sync_metadata(cache);
2893}
2894
2895static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2896			bool dirty, uint32_t hint, bool hint_valid)
2897{
2898	int r;
2899	struct cache *cache = context;
2900
2901	if (dirty) {
2902		set_bit(from_cblock(cblock), cache->dirty_bitset);
2903		atomic_inc(&cache->nr_dirty);
2904	} else
2905		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2906
2907	r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2908	if (r)
2909		return r;
2910
 
 
 
 
 
2911	return 0;
2912}
2913
2914/*
2915 * The discard block size in the on disk metadata is not
2916 * neccessarily the same as we're currently using.  So we have to
2917 * be careful to only set the discarded attribute if we know it
2918 * covers a complete block of the new size.
2919 */
2920struct discard_load_info {
2921	struct cache *cache;
2922
2923	/*
2924	 * These blocks are sized using the on disk dblock size, rather
2925	 * than the current one.
2926	 */
2927	dm_block_t block_size;
2928	dm_block_t discard_begin, discard_end;
2929};
2930
2931static void discard_load_info_init(struct cache *cache,
2932				   struct discard_load_info *li)
2933{
2934	li->cache = cache;
2935	li->discard_begin = li->discard_end = 0;
2936}
2937
2938static void set_discard_range(struct discard_load_info *li)
2939{
2940	sector_t b, e;
2941
2942	if (li->discard_begin == li->discard_end)
2943		return;
2944
2945	/*
2946	 * Convert to sectors.
2947	 */
2948	b = li->discard_begin * li->block_size;
2949	e = li->discard_end * li->block_size;
2950
2951	/*
2952	 * Then convert back to the current dblock size.
2953	 */
2954	b = dm_sector_div_up(b, li->cache->discard_block_size);
2955	sector_div(e, li->cache->discard_block_size);
2956
2957	/*
2958	 * The origin may have shrunk, so we need to check we're still in
2959	 * bounds.
2960	 */
2961	if (e > from_dblock(li->cache->discard_nr_blocks))
2962		e = from_dblock(li->cache->discard_nr_blocks);
2963
2964	for (; b < e; b++)
2965		set_discard(li->cache, to_dblock(b));
2966}
2967
2968static int load_discard(void *context, sector_t discard_block_size,
2969			dm_dblock_t dblock, bool discard)
2970{
2971	struct discard_load_info *li = context;
2972
2973	li->block_size = discard_block_size;
2974
2975	if (discard) {
2976		if (from_dblock(dblock) == li->discard_end)
2977			/*
2978			 * We're already in a discard range, just extend it.
2979			 */
2980			li->discard_end = li->discard_end + 1ULL;
2981
2982		else {
2983			/*
2984			 * Emit the old range and start a new one.
2985			 */
2986			set_discard_range(li);
2987			li->discard_begin = from_dblock(dblock);
2988			li->discard_end = li->discard_begin + 1ULL;
2989		}
2990	} else {
2991		set_discard_range(li);
2992		li->discard_begin = li->discard_end = 0;
2993	}
2994
2995	return 0;
2996}
2997
2998static dm_cblock_t get_cache_dev_size(struct cache *cache)
2999{
3000	sector_t size = get_dev_size(cache->cache_dev);
3001	(void) sector_div(size, cache->sectors_per_block);
3002	return to_cblock(size);
3003}
3004
3005static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3006{
3007	if (from_cblock(new_size) > from_cblock(cache->cache_size))
3008		return true;
3009
3010	/*
3011	 * We can't drop a dirty block when shrinking the cache.
3012	 */
3013	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3014		new_size = to_cblock(from_cblock(new_size) + 1);
3015		if (is_dirty(cache, new_size)) {
3016			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3017			      cache_device_name(cache),
3018			      (unsigned long long) from_cblock(new_size));
3019			return false;
3020		}
3021	}
3022
3023	return true;
3024}
3025
3026static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3027{
3028	int r;
3029
3030	r = dm_cache_resize(cache->cmd, new_size);
3031	if (r) {
3032		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3033		metadata_operation_failed(cache, "dm_cache_resize", r);
3034		return r;
3035	}
3036
3037	set_cache_size(cache, new_size);
3038
3039	return 0;
3040}
3041
3042static int cache_preresume(struct dm_target *ti)
3043{
3044	int r = 0;
3045	struct cache *cache = ti->private;
3046	dm_cblock_t csize = get_cache_dev_size(cache);
3047
3048	/*
3049	 * Check to see if the cache has resized.
3050	 */
3051	if (!cache->sized) {
3052		r = resize_cache_dev(cache, csize);
3053		if (r)
3054			return r;
3055
3056		cache->sized = true;
3057
3058	} else if (csize != cache->cache_size) {
3059		if (!can_resize(cache, csize))
3060			return -EINVAL;
3061
3062		r = resize_cache_dev(cache, csize);
3063		if (r)
3064			return r;
3065	}
3066
3067	if (!cache->loaded_mappings) {
3068		r = dm_cache_load_mappings(cache->cmd, cache->policy,
3069					   load_mapping, cache);
3070		if (r) {
3071			DMERR("%s: could not load cache mappings", cache_device_name(cache));
3072			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3073			return r;
3074		}
3075
3076		cache->loaded_mappings = true;
3077	}
3078
3079	if (!cache->loaded_discards) {
3080		struct discard_load_info li;
3081
3082		/*
3083		 * The discard bitset could have been resized, or the
3084		 * discard block size changed.  To be safe we start by
3085		 * setting every dblock to not discarded.
3086		 */
3087		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3088
3089		discard_load_info_init(cache, &li);
3090		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3091		if (r) {
3092			DMERR("%s: could not load origin discards", cache_device_name(cache));
3093			metadata_operation_failed(cache, "dm_cache_load_discards", r);
3094			return r;
3095		}
3096		set_discard_range(&li);
3097
3098		cache->loaded_discards = true;
3099	}
3100
3101	return r;
3102}
3103
3104static void cache_resume(struct dm_target *ti)
3105{
3106	struct cache *cache = ti->private;
3107
3108	cache->need_tick_bio = true;
3109	allow_background_work(cache);
3110	do_waker(&cache->waker.work);
3111}
3112
3113/*
3114 * Status format:
3115 *
3116 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3117 * <cache block size> <#used cache blocks>/<#total cache blocks>
3118 * <#read hits> <#read misses> <#write hits> <#write misses>
3119 * <#demotions> <#promotions> <#dirty>
3120 * <#features> <features>*
3121 * <#core args> <core args>
3122 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3123 */
3124static void cache_status(struct dm_target *ti, status_type_t type,
3125			 unsigned status_flags, char *result, unsigned maxlen)
3126{
3127	int r = 0;
3128	unsigned i;
3129	ssize_t sz = 0;
3130	dm_block_t nr_free_blocks_metadata = 0;
3131	dm_block_t nr_blocks_metadata = 0;
3132	char buf[BDEVNAME_SIZE];
3133	struct cache *cache = ti->private;
3134	dm_cblock_t residency;
3135	bool needs_check;
3136
3137	switch (type) {
3138	case STATUSTYPE_INFO:
3139		if (get_cache_mode(cache) == CM_FAIL) {
3140			DMEMIT("Fail");
3141			break;
3142		}
3143
3144		/* Commit to ensure statistics aren't out-of-date */
3145		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3146			(void) commit(cache, false);
3147
3148		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3149		if (r) {
3150			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3151			      cache_device_name(cache), r);
3152			goto err;
3153		}
3154
3155		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3156		if (r) {
3157			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3158			      cache_device_name(cache), r);
3159			goto err;
3160		}
3161
3162		residency = policy_residency(cache->policy);
3163
3164		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3165		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3166		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3167		       (unsigned long long)nr_blocks_metadata,
3168		       (unsigned long long)cache->sectors_per_block,
3169		       (unsigned long long) from_cblock(residency),
3170		       (unsigned long long) from_cblock(cache->cache_size),
3171		       (unsigned) atomic_read(&cache->stats.read_hit),
3172		       (unsigned) atomic_read(&cache->stats.read_miss),
3173		       (unsigned) atomic_read(&cache->stats.write_hit),
3174		       (unsigned) atomic_read(&cache->stats.write_miss),
3175		       (unsigned) atomic_read(&cache->stats.demotion),
3176		       (unsigned) atomic_read(&cache->stats.promotion),
3177		       (unsigned long) atomic_read(&cache->nr_dirty));
3178
3179		if (cache->features.metadata_version == 2)
3180			DMEMIT("2 metadata2 ");
3181		else
3182			DMEMIT("1 ");
3183
3184		if (writethrough_mode(cache))
3185			DMEMIT("writethrough ");
3186
3187		else if (passthrough_mode(cache))
3188			DMEMIT("passthrough ");
3189
3190		else if (writeback_mode(cache))
3191			DMEMIT("writeback ");
3192
3193		else {
3194			DMERR("%s: internal error: unknown io mode: %d",
3195			      cache_device_name(cache), (int) cache->features.io_mode);
3196			goto err;
3197		}
3198
3199		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3200
3201		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3202		if (sz < maxlen) {
3203			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3204			if (r)
3205				DMERR("%s: policy_emit_config_values returned %d",
3206				      cache_device_name(cache), r);
3207		}
3208
3209		if (get_cache_mode(cache) == CM_READ_ONLY)
3210			DMEMIT("ro ");
3211		else
3212			DMEMIT("rw ");
3213
3214		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3215
3216		if (r || needs_check)
3217			DMEMIT("needs_check ");
3218		else
3219			DMEMIT("- ");
3220
3221		break;
3222
3223	case STATUSTYPE_TABLE:
3224		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3225		DMEMIT("%s ", buf);
3226		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3227		DMEMIT("%s ", buf);
3228		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3229		DMEMIT("%s", buf);
3230
3231		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3232			DMEMIT(" %s", cache->ctr_args[i]);
3233		if (cache->nr_ctr_args)
3234			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3235	}
3236
3237	return;
3238
3239err:
3240	DMEMIT("Error");
3241}
3242
3243/*
3244 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3245 * the one-past-the-end value.
3246 */
3247struct cblock_range {
3248	dm_cblock_t begin;
3249	dm_cblock_t end;
3250};
3251
3252/*
3253 * A cache block range can take two forms:
3254 *
3255 * i) A single cblock, eg. '3456'
3256 * ii) A begin and end cblock with a dash between, eg. 123-234
3257 */
3258static int parse_cblock_range(struct cache *cache, const char *str,
3259			      struct cblock_range *result)
3260{
3261	char dummy;
3262	uint64_t b, e;
3263	int r;
3264
3265	/*
3266	 * Try and parse form (ii) first.
3267	 */
3268	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3269	if (r < 0)
3270		return r;
3271
3272	if (r == 2) {
3273		result->begin = to_cblock(b);
3274		result->end = to_cblock(e);
3275		return 0;
3276	}
3277
3278	/*
3279	 * That didn't work, try form (i).
3280	 */
3281	r = sscanf(str, "%llu%c", &b, &dummy);
3282	if (r < 0)
3283		return r;
3284
3285	if (r == 1) {
3286		result->begin = to_cblock(b);
3287		result->end = to_cblock(from_cblock(result->begin) + 1u);
3288		return 0;
3289	}
3290
3291	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3292	return -EINVAL;
3293}
3294
3295static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3296{
3297	uint64_t b = from_cblock(range->begin);
3298	uint64_t e = from_cblock(range->end);
3299	uint64_t n = from_cblock(cache->cache_size);
3300
3301	if (b >= n) {
3302		DMERR("%s: begin cblock out of range: %llu >= %llu",
3303		      cache_device_name(cache), b, n);
3304		return -EINVAL;
3305	}
3306
3307	if (e > n) {
3308		DMERR("%s: end cblock out of range: %llu > %llu",
3309		      cache_device_name(cache), e, n);
3310		return -EINVAL;
3311	}
3312
3313	if (b >= e) {
3314		DMERR("%s: invalid cblock range: %llu >= %llu",
3315		      cache_device_name(cache), b, e);
3316		return -EINVAL;
3317	}
3318
3319	return 0;
3320}
3321
3322static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3323{
3324	return to_cblock(from_cblock(b) + 1);
3325}
3326
3327static int request_invalidation(struct cache *cache, struct cblock_range *range)
3328{
3329	int r = 0;
3330
3331	/*
3332	 * We don't need to do any locking here because we know we're in
3333	 * passthrough mode.  There's is potential for a race between an
3334	 * invalidation triggered by an io and an invalidation message.  This
3335	 * is harmless, we must not worry if the policy call fails.
3336	 */
3337	while (range->begin != range->end) {
3338		r = invalidate_cblock(cache, range->begin);
3339		if (r)
3340			return r;
3341
3342		range->begin = cblock_succ(range->begin);
3343	}
3344
3345	cache->commit_requested = true;
3346	return r;
3347}
3348
3349static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3350					      const char **cblock_ranges)
3351{
3352	int r = 0;
3353	unsigned i;
3354	struct cblock_range range;
3355
3356	if (!passthrough_mode(cache)) {
3357		DMERR("%s: cache has to be in passthrough mode for invalidation",
3358		      cache_device_name(cache));
3359		return -EPERM;
3360	}
3361
3362	for (i = 0; i < count; i++) {
3363		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3364		if (r)
3365			break;
3366
3367		r = validate_cblock_range(cache, &range);
3368		if (r)
3369			break;
3370
3371		/*
3372		 * Pass begin and end origin blocks to the worker and wake it.
3373		 */
3374		r = request_invalidation(cache, &range);
3375		if (r)
3376			break;
3377	}
3378
3379	return r;
3380}
3381
3382/*
3383 * Supports
3384 *	"<key> <value>"
3385 * and
3386 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3387 *
3388 * The key migration_threshold is supported by the cache target core.
3389 */
3390static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3391			 char *result, unsigned maxlen)
3392{
3393	struct cache *cache = ti->private;
3394
3395	if (!argc)
3396		return -EINVAL;
3397
3398	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3399		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3400		      cache_device_name(cache));
3401		return -EOPNOTSUPP;
3402	}
3403
3404	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3405		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3406
3407	if (argc != 2)
3408		return -EINVAL;
3409
3410	return set_config_value(cache, argv[0], argv[1]);
3411}
3412
3413static int cache_iterate_devices(struct dm_target *ti,
3414				 iterate_devices_callout_fn fn, void *data)
3415{
3416	int r = 0;
3417	struct cache *cache = ti->private;
3418
3419	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3420	if (!r)
3421		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3422
3423	return r;
3424}
3425
3426static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3427{
3428	/*
3429	 * FIXME: these limits may be incompatible with the cache device
3430	 */
3431	limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3432					    cache->origin_sectors);
3433	limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3434}
3435
3436static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3437{
3438	struct cache *cache = ti->private;
3439	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3440
3441	/*
3442	 * If the system-determined stacked limits are compatible with the
3443	 * cache's blocksize (io_opt is a factor) do not override them.
3444	 */
3445	if (io_opt_sectors < cache->sectors_per_block ||
3446	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3447		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3448		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3449	}
3450	set_discard_limits(cache, limits);
3451}
3452
3453/*----------------------------------------------------------------*/
3454
3455static struct target_type cache_target = {
3456	.name = "cache",
3457	.version = {2, 0, 0},
3458	.module = THIS_MODULE,
3459	.ctr = cache_ctr,
3460	.dtr = cache_dtr,
3461	.map = cache_map,
3462	.end_io = cache_end_io,
3463	.postsuspend = cache_postsuspend,
3464	.preresume = cache_preresume,
3465	.resume = cache_resume,
3466	.status = cache_status,
3467	.message = cache_message,
3468	.iterate_devices = cache_iterate_devices,
3469	.io_hints = cache_io_hints,
3470};
3471
3472static int __init dm_cache_init(void)
3473{
3474	int r;
3475
 
 
 
 
 
 
3476	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3477	if (!migration_cache) {
3478		dm_unregister_target(&cache_target);
3479		return -ENOMEM;
3480	}
3481
3482	r = dm_register_target(&cache_target);
3483	if (r) {
3484		DMERR("cache target registration failed: %d", r);
3485		return r;
3486	}
3487
3488	return 0;
3489}
3490
3491static void __exit dm_cache_exit(void)
3492{
3493	dm_unregister_target(&cache_target);
3494	kmem_cache_destroy(migration_cache);
3495}
3496
3497module_init(dm_cache_init);
3498module_exit(dm_cache_exit);
3499
3500MODULE_DESCRIPTION(DM_NAME " cache target");
3501MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3502MODULE_LICENSE("GPL");