Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * ARC Cache Management
   3 *
   4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/sched.h>
  15#include <linux/cache.h>
  16#include <linux/mmu_context.h>
  17#include <linux/syscalls.h>
  18#include <linux/uaccess.h>
  19#include <linux/pagemap.h>
  20#include <asm/cacheflush.h>
  21#include <asm/cachectl.h>
  22#include <asm/setup.h>
  23
 
 
 
 
  24static int l2_line_sz;
  25static int ioc_exists;
  26int slc_enable = 1, ioc_enable = 1;
  27unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
  28unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
  29
  30void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  31			       unsigned long sz, const int cacheop);
  32
  33void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  34void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  35void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  36
  37char *arc_cache_mumbojumbo(int c, char *buf, int len)
  38{
  39	int n = 0;
  40	struct cpuinfo_arc_cache *p;
  41
  42#define PR_CACHE(p, cfg, str)						\
  43	if (!(p)->line_len)						\
  44		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
  45	else								\
  46		n += scnprintf(buf + n, len - n,			\
  47			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
  48			(p)->sz_k, (p)->assoc, (p)->line_len,		\
  49			(p)->vipt ? "VIPT" : "PIPT",			\
  50			(p)->alias ? " aliasing" : "",			\
  51			IS_USED_CFG(cfg));
  52
  53	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
  54	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
  55
  56	p = &cpuinfo_arc700[c].slc;
  57	if (p->line_len)
  58		n += scnprintf(buf + n, len - n,
  59			       "SLC\t\t: %uK, %uB Line%s\n",
  60			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
  61
  62	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
  63		       perip_base,
  64		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency "));
  65
  66	return buf;
  67}
  68
  69/*
  70 * Read the Cache Build Confuration Registers, Decode them and save into
  71 * the cpuinfo structure for later use.
  72 * No Validation done here, simply read/convert the BCRs
  73 */
  74static void read_decode_cache_bcr_arcv2(int cpu)
  75{
  76	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
  77	struct bcr_generic sbcr;
  78
  79	struct bcr_slc_cfg {
  80#ifdef CONFIG_CPU_BIG_ENDIAN
  81		unsigned int pad:24, way:2, lsz:2, sz:4;
  82#else
  83		unsigned int sz:4, lsz:2, way:2, pad:24;
  84#endif
  85	} slc_cfg;
  86
  87	struct bcr_clust_cfg {
  88#ifdef CONFIG_CPU_BIG_ENDIAN
  89		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
  90#else
  91		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
  92#endif
  93	} cbcr;
  94
  95	struct bcr_volatile {
  96#ifdef CONFIG_CPU_BIG_ENDIAN
  97		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
  98#else
  99		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
 100#endif
 101	} vol;
 102
 103
 104	READ_BCR(ARC_REG_SLC_BCR, sbcr);
 105	if (sbcr.ver) {
 106		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
 107		p_slc->sz_k = 128 << slc_cfg.sz;
 108		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
 109	}
 110
 111	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
 112	if (cbcr.c)
 113		ioc_exists = 1;
 114	else
 115		ioc_enable = 0;
 116
 117	/* HS 2.0 didn't have AUX_VOL */
 118	if (cpuinfo_arc700[cpu].core.family > 0x51) {
 119		READ_BCR(AUX_VOL, vol);
 120		perip_base = vol.start << 28;
 121		/* HS 3.0 has limit and strict-ordering fields */
 122		if (cpuinfo_arc700[cpu].core.family > 0x52)
 123			perip_end = (vol.limit << 28) - 1;
 124	}
 125}
 126
 127void read_decode_cache_bcr(void)
 128{
 129	struct cpuinfo_arc_cache *p_ic, *p_dc;
 130	unsigned int cpu = smp_processor_id();
 131	struct bcr_cache {
 132#ifdef CONFIG_CPU_BIG_ENDIAN
 133		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
 134#else
 135		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
 136#endif
 137	} ibcr, dbcr;
 138
 139	p_ic = &cpuinfo_arc700[cpu].icache;
 140	READ_BCR(ARC_REG_IC_BCR, ibcr);
 141
 142	if (!ibcr.ver)
 143		goto dc_chk;
 144
 145	if (ibcr.ver <= 3) {
 146		BUG_ON(ibcr.config != 3);
 147		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
 148	} else if (ibcr.ver >= 4) {
 149		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 150	}
 151
 152	p_ic->line_len = 8 << ibcr.line_len;
 153	p_ic->sz_k = 1 << (ibcr.sz - 1);
 154	p_ic->vipt = 1;
 155	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
 156
 157dc_chk:
 158	p_dc = &cpuinfo_arc700[cpu].dcache;
 159	READ_BCR(ARC_REG_DC_BCR, dbcr);
 160
 161	if (!dbcr.ver)
 162		goto slc_chk;
 163
 164	if (dbcr.ver <= 3) {
 165		BUG_ON(dbcr.config != 2);
 166		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
 167		p_dc->vipt = 1;
 168		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
 169	} else if (dbcr.ver >= 4) {
 170		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 171		p_dc->vipt = 0;
 172		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
 173	}
 174
 175	p_dc->line_len = 16 << dbcr.line_len;
 176	p_dc->sz_k = 1 << (dbcr.sz - 1);
 177
 178slc_chk:
 179	if (is_isa_arcv2())
 180                read_decode_cache_bcr_arcv2(cpu);
 181}
 182
 183/*
 184 * Line Operation on {I,D}-Cache
 185 */
 186
 187#define OP_INV		0x1
 188#define OP_FLUSH	0x2
 189#define OP_FLUSH_N_INV	0x3
 190#define OP_INV_IC	0x4
 191
 192/*
 193 *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
 194 *
 195 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
 196 * The orig Cache Management Module "CDU" only required paddr to invalidate a
 197 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
 198 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
 199 * the exact same line.
 200 *
 201 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
 202 * paddr alone could not be used to correctly index the cache.
 203 *
 204 * ------------------
 205 * MMU v1/v2 (Fixed Page Size 8k)
 206 * ------------------
 207 * The solution was to provide CDU with these additonal vaddr bits. These
 208 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
 209 * standard page size of 8k.
 210 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
 211 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
 212 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
 213 * represent the offset within cache-line. The adv of using this "clumsy"
 214 * interface for additional info was no new reg was needed in CDU programming
 215 * model.
 216 *
 217 * 17:13 represented the max num of bits passable, actual bits needed were
 218 * fewer, based on the num-of-aliases possible.
 219 * -for 2 alias possibility, only bit 13 needed (32K cache)
 220 * -for 4 alias possibility, bits 14:13 needed (64K cache)
 221 *
 222 * ------------------
 223 * MMU v3
 224 * ------------------
 225 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
 226 * only support 8k (default), 16k and 4k.
 227 * However from hardware perspective, smaller page sizes aggravate aliasing
 228 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
 229 * the existing scheme of piggybacking won't work for certain configurations.
 230 * Two new registers IC_PTAG and DC_PTAG inttoduced.
 231 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
 232 */
 233
 234static inline
 235void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
 236			  unsigned long sz, const int op)
 237{
 238	unsigned int aux_cmd;
 239	int num_lines;
 240	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 241
 242	if (op == OP_INV_IC) {
 243		aux_cmd = ARC_REG_IC_IVIL;
 244	} else {
 245		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 246		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 247	}
 248
 249	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 250	 * and have @paddr - aligned to cache line and integral @num_lines.
 251	 * This however can be avoided for page sized since:
 252	 *  -@paddr will be cache-line aligned already (being page aligned)
 253	 *  -@sz will be integral multiple of line size (being page sized).
 254	 */
 255	if (!full_page) {
 256		sz += paddr & ~CACHE_LINE_MASK;
 257		paddr &= CACHE_LINE_MASK;
 258		vaddr &= CACHE_LINE_MASK;
 259	}
 260
 261	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 262
 263	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
 264	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
 265
 266	while (num_lines-- > 0) {
 267		write_aux_reg(aux_cmd, paddr);
 268		paddr += L1_CACHE_BYTES;
 269	}
 270}
 271
 272/*
 273 * For ARC700 MMUv3 I-cache and D-cache flushes
 274 *  - ARC700 programming model requires paddr and vaddr be passed in seperate
 275 *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
 276 *    caches actually alias or not.
 277 * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
 278 *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
 279 */
 280static inline
 281void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 282			  unsigned long sz, const int op)
 283{
 284	unsigned int aux_cmd, aux_tag;
 285	int num_lines;
 286	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 287
 288	if (op == OP_INV_IC) {
 289		aux_cmd = ARC_REG_IC_IVIL;
 290		aux_tag = ARC_REG_IC_PTAG;
 291	} else {
 292		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 293		aux_tag = ARC_REG_DC_PTAG;
 294	}
 295
 296	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 297	 * and have @paddr - aligned to cache line and integral @num_lines.
 298	 * This however can be avoided for page sized since:
 299	 *  -@paddr will be cache-line aligned already (being page aligned)
 300	 *  -@sz will be integral multiple of line size (being page sized).
 301	 */
 302	if (!full_page) {
 303		sz += paddr & ~CACHE_LINE_MASK;
 304		paddr &= CACHE_LINE_MASK;
 305		vaddr &= CACHE_LINE_MASK;
 306	}
 307	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 308
 309	/*
 310	 * MMUv3, cache ops require paddr in PTAG reg
 311	 * if V-P const for loop, PTAG can be written once outside loop
 312	 */
 313	if (full_page)
 314		write_aux_reg(aux_tag, paddr);
 315
 316	/*
 317	 * This is technically for MMU v4, using the MMU v3 programming model
 318	 * Special work for HS38 aliasing I-cache configuration with PAE40
 319	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 320	 *   - (and needs to be written before the lower 32 bits)
 321	 * Note that PTAG_HI is hoisted outside the line loop
 322	 */
 323	if (is_pae40_enabled() && op == OP_INV_IC)
 324		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 325
 326	while (num_lines-- > 0) {
 327		if (!full_page) {
 328			write_aux_reg(aux_tag, paddr);
 329			paddr += L1_CACHE_BYTES;
 330		}
 331
 332		write_aux_reg(aux_cmd, vaddr);
 333		vaddr += L1_CACHE_BYTES;
 334	}
 335}
 336
 
 
 337/*
 338 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
 339 * Here's how cache ops are implemented
 340 *
 341 *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
 342 *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
 343 *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
 344 *    respectively, similar to MMU v3 programming model, hence
 345 *    __cache_line_loop_v3() is used)
 346 *
 347 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
 348 * needs to be written into PTAG_HI
 349 */
 350static inline
 351void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 352			  unsigned long sz, const int cacheop)
 353{
 354	unsigned int aux_cmd;
 355	int num_lines;
 356	const int full_page_op = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 357
 358	if (cacheop == OP_INV_IC) {
 359		aux_cmd = ARC_REG_IC_IVIL;
 360	} else {
 361		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 362		aux_cmd = cacheop & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 363	}
 364
 365	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 366	 * and have @paddr - aligned to cache line and integral @num_lines.
 367	 * This however can be avoided for page sized since:
 368	 *  -@paddr will be cache-line aligned already (being page aligned)
 369	 *  -@sz will be integral multiple of line size (being page sized).
 370	 */
 371	if (!full_page_op) {
 372		sz += paddr & ~CACHE_LINE_MASK;
 373		paddr &= CACHE_LINE_MASK;
 374	}
 375
 376	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 377
 378	/*
 379	 * For HS38 PAE40 configuration
 380	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 381	 *   - (and needs to be written before the lower 32 bits)
 382	 */
 383	if (is_pae40_enabled()) {
 384		if (cacheop == OP_INV_IC)
 385			/*
 386			 * Non aliasing I-cache in HS38,
 387			 * aliasing I-cache handled in __cache_line_loop_v3()
 388			 */
 389			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 390		else
 391			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 392	}
 393
 394	while (num_lines-- > 0) {
 395		write_aux_reg(aux_cmd, paddr);
 396		paddr += L1_CACHE_BYTES;
 397	}
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400#if (CONFIG_ARC_MMU_VER < 3)
 401#define __cache_line_loop	__cache_line_loop_v2
 402#elif (CONFIG_ARC_MMU_VER == 3)
 403#define __cache_line_loop	__cache_line_loop_v3
 404#elif (CONFIG_ARC_MMU_VER > 3)
 405#define __cache_line_loop	__cache_line_loop_v4
 406#endif
 407
 408#ifdef CONFIG_ARC_HAS_DCACHE
 409
 410/***************************************************************
 411 * Machine specific helpers for Entire D-Cache or Per Line ops
 412 */
 413
 
 
 
 
 
 414static inline void __before_dc_op(const int op)
 415{
 416	if (op == OP_FLUSH_N_INV) {
 417		/* Dcache provides 2 cmd: FLUSH or INV
 418		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
 419		 * flush-n-inv is achieved by INV cmd but with IM=1
 420		 * So toggle INV sub-mode depending on op request and default
 421		 */
 422		const unsigned int ctl = ARC_REG_DC_CTRL;
 423		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 424	}
 425}
 426
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427static inline void __after_dc_op(const int op)
 428{
 429	if (op & OP_FLUSH) {
 430		const unsigned int ctl = ARC_REG_DC_CTRL;
 431		unsigned int reg;
 432
 433		/* flush / flush-n-inv both wait */
 434		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 435			;
 436
 437		/* Switch back to default Invalidate mode */
 438		if (op == OP_FLUSH_N_INV)
 439			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 440	}
 441}
 442
 443/*
 444 * Operation on Entire D-Cache
 445 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 446 * Note that constant propagation ensures all the checks are gone
 447 * in generated code
 448 */
 449static inline void __dc_entire_op(const int op)
 450{
 451	int aux;
 452
 453	__before_dc_op(op);
 454
 455	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 456		aux = ARC_REG_DC_IVDC;
 457	else
 458		aux = ARC_REG_DC_FLSH;
 459
 460	write_aux_reg(aux, 0x1);
 461
 462	__after_dc_op(op);
 463}
 464
 465static inline void __dc_disable(void)
 466{
 467	const int r = ARC_REG_DC_CTRL;
 468
 469	__dc_entire_op(OP_FLUSH_N_INV);
 470	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
 471}
 472
 473static void __dc_enable(void)
 474{
 475	const int r = ARC_REG_DC_CTRL;
 476
 477	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
 478}
 479
 480/* For kernel mappings cache operation: index is same as paddr */
 481#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 482
 483/*
 484 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 485 */
 486static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 487				unsigned long sz, const int op)
 488{
 
 489	unsigned long flags;
 490
 491	local_irq_save(flags);
 492
 493	__before_dc_op(op);
 494
 495	__cache_line_loop(paddr, vaddr, sz, op);
 496
 497	__after_dc_op(op);
 498
 499	local_irq_restore(flags);
 500}
 501
 502#else
 503
 504#define __dc_entire_op(op)
 505#define __dc_disable()
 506#define __dc_enable()
 507#define __dc_line_op(paddr, vaddr, sz, op)
 508#define __dc_line_op_k(paddr, sz, op)
 509
 510#endif /* CONFIG_ARC_HAS_DCACHE */
 511
 512#ifdef CONFIG_ARC_HAS_ICACHE
 513
 514static inline void __ic_entire_inv(void)
 515{
 516	write_aux_reg(ARC_REG_IC_IVIC, 1);
 517	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 518}
 519
 520static inline void
 521__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 522			  unsigned long sz)
 523{
 
 524	unsigned long flags;
 525
 526	local_irq_save(flags);
 527	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC);
 528	local_irq_restore(flags);
 529}
 530
 531#ifndef CONFIG_SMP
 532
 533#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 534
 535#else
 536
 537struct ic_inv_args {
 538	phys_addr_t paddr, vaddr;
 539	int sz;
 540};
 541
 542static void __ic_line_inv_vaddr_helper(void *info)
 543{
 544        struct ic_inv_args *ic_inv = info;
 545
 546        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 547}
 548
 549static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 550				unsigned long sz)
 551{
 552	struct ic_inv_args ic_inv = {
 553		.paddr = paddr,
 554		.vaddr = vaddr,
 555		.sz    = sz
 556	};
 557
 558	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 559}
 560
 561#endif	/* CONFIG_SMP */
 562
 563#else	/* !CONFIG_ARC_HAS_ICACHE */
 564
 565#define __ic_entire_inv()
 566#define __ic_line_inv_vaddr(pstart, vstart, sz)
 567
 568#endif /* CONFIG_ARC_HAS_ICACHE */
 569
 570noinline void slc_op(phys_addr_t paddr, unsigned long sz, const int op)
 571{
 572#ifdef CONFIG_ISA_ARCV2
 573	/*
 574	 * SLC is shared between all cores and concurrent aux operations from
 575	 * multiple cores need to be serialized using a spinlock
 576	 * A concurrent operation can be silently ignored and/or the old/new
 577	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 578	 * below)
 579	 */
 580	static DEFINE_SPINLOCK(lock);
 581	unsigned long flags;
 582	unsigned int ctrl;
 
 583
 584	spin_lock_irqsave(&lock, flags);
 585
 586	/*
 587	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 588	 *  - b'000 (default) is Flush,
 589	 *  - b'001 is Invalidate if CTRL.IM == 0
 590	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 591	 */
 592	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 593
 594	/* Don't rely on default value of IM bit */
 595	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 596		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 597	else
 598		ctrl |= SLC_CTRL_IM;
 599
 600	if (op & OP_INV)
 601		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 602	else
 603		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 604
 605	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 606
 607	/*
 608	 * Lower bits are ignored, no need to clip
 609	 * END needs to be setup before START (latter triggers the operation)
 610	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 611	 */
 612	write_aux_reg(ARC_REG_SLC_RGN_END, (paddr + sz + l2_line_sz - 1));
 613	write_aux_reg(ARC_REG_SLC_RGN_START, paddr);
 
 
 
 
 
 
 
 
 
 
 
 614
 615	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 616
 617	spin_unlock_irqrestore(&lock, flags);
 618#endif
 619}
 620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621noinline static void slc_entire_op(const int op)
 622{
 623	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
 624
 625	ctrl = read_aux_reg(r);
 626
 627	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 628		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 629	else
 630		ctrl |= SLC_CTRL_IM;
 631
 632	write_aux_reg(r, ctrl);
 633
 634	write_aux_reg(ARC_REG_SLC_INVALIDATE, 1);
 
 
 
 635
 636	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 637	read_aux_reg(r);
 638
 639	/* Important to wait for flush to complete */
 640	while (read_aux_reg(r) & SLC_CTRL_BUSY);
 641}
 642
 643static inline void arc_slc_disable(void)
 644{
 645	const int r = ARC_REG_SLC_CTRL;
 646
 647	slc_entire_op(OP_FLUSH_N_INV);
 648	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
 649}
 650
 651static inline void arc_slc_enable(void)
 652{
 653	const int r = ARC_REG_SLC_CTRL;
 654
 655	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
 656}
 657
 658/***********************************************************
 659 * Exported APIs
 660 */
 661
 662/*
 663 * Handle cache congruency of kernel and userspace mappings of page when kernel
 664 * writes-to/reads-from
 665 *
 666 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
 667 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
 668 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
 669 *  -In SMP, if hardware caches are coherent
 670 *
 671 * There's a corollary case, where kernel READs from a userspace mapped page.
 672 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
 673 */
 674void flush_dcache_page(struct page *page)
 675{
 676	struct address_space *mapping;
 677
 678	if (!cache_is_vipt_aliasing()) {
 679		clear_bit(PG_dc_clean, &page->flags);
 680		return;
 681	}
 682
 683	/* don't handle anon pages here */
 684	mapping = page_mapping(page);
 685	if (!mapping)
 686		return;
 687
 688	/*
 689	 * pagecache page, file not yet mapped to userspace
 690	 * Make a note that K-mapping is dirty
 691	 */
 692	if (!mapping_mapped(mapping)) {
 693		clear_bit(PG_dc_clean, &page->flags);
 694	} else if (page_mapcount(page)) {
 695
 696		/* kernel reading from page with U-mapping */
 697		phys_addr_t paddr = (unsigned long)page_address(page);
 698		unsigned long vaddr = page->index << PAGE_SHIFT;
 699
 700		if (addr_not_cache_congruent(paddr, vaddr))
 701			__flush_dcache_page(paddr, vaddr);
 702	}
 703}
 704EXPORT_SYMBOL(flush_dcache_page);
 705
 706/*
 707 * DMA ops for systems with L1 cache only
 708 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 709 */
 710static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 711{
 712	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 713}
 714
 715static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 716{
 717	__dc_line_op_k(start, sz, OP_INV);
 718}
 719
 720static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 721{
 722	__dc_line_op_k(start, sz, OP_FLUSH);
 723}
 724
 725/*
 726 * DMA ops for systems with both L1 and L2 caches, but without IOC
 727 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 728 */
 729static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 730{
 731	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 732	slc_op(start, sz, OP_FLUSH_N_INV);
 733}
 734
 735static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 736{
 737	__dc_line_op_k(start, sz, OP_INV);
 738	slc_op(start, sz, OP_INV);
 739}
 740
 741static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 742{
 743	__dc_line_op_k(start, sz, OP_FLUSH);
 744	slc_op(start, sz, OP_FLUSH);
 745}
 746
 747/*
 748 * DMA ops for systems with IOC
 749 * IOC hardware snoops all DMA traffic keeping the caches consistent with
 750 * memory - eliding need for any explicit cache maintenance of DMA buffers
 751 */
 752static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
 753static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
 754static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
 755
 756/*
 757 * Exported DMA API
 758 */
 759void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 760{
 761	__dma_cache_wback_inv(start, sz);
 762}
 763EXPORT_SYMBOL(dma_cache_wback_inv);
 764
 765void dma_cache_inv(phys_addr_t start, unsigned long sz)
 766{
 767	__dma_cache_inv(start, sz);
 768}
 769EXPORT_SYMBOL(dma_cache_inv);
 770
 771void dma_cache_wback(phys_addr_t start, unsigned long sz)
 772{
 773	__dma_cache_wback(start, sz);
 774}
 775EXPORT_SYMBOL(dma_cache_wback);
 776
 777/*
 778 * This is API for making I/D Caches consistent when modifying
 779 * kernel code (loadable modules, kprobes, kgdb...)
 780 * This is called on insmod, with kernel virtual address for CODE of
 781 * the module. ARC cache maintenance ops require PHY address thus we
 782 * need to convert vmalloc addr to PHY addr
 783 */
 784void flush_icache_range(unsigned long kstart, unsigned long kend)
 785{
 786	unsigned int tot_sz;
 787
 788	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 789
 790	/* Shortcut for bigger flush ranges.
 791	 * Here we don't care if this was kernel virtual or phy addr
 792	 */
 793	tot_sz = kend - kstart;
 794	if (tot_sz > PAGE_SIZE) {
 795		flush_cache_all();
 796		return;
 797	}
 798
 799	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 800	if (likely(kstart > PAGE_OFFSET)) {
 801		/*
 802		 * The 2nd arg despite being paddr will be used to index icache
 803		 * This is OK since no alternate virtual mappings will exist
 804		 * given the callers for this case: kprobe/kgdb in built-in
 805		 * kernel code only.
 806		 */
 807		__sync_icache_dcache(kstart, kstart, kend - kstart);
 808		return;
 809	}
 810
 811	/*
 812	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 813	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 814	 *     handling of kernel vaddr.
 815	 *
 816	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 817	 *     it still needs to handle  a 2 page scenario, where the range
 818	 *     straddles across 2 virtual pages and hence need for loop
 819	 */
 820	while (tot_sz > 0) {
 821		unsigned int off, sz;
 822		unsigned long phy, pfn;
 823
 824		off = kstart % PAGE_SIZE;
 825		pfn = vmalloc_to_pfn((void *)kstart);
 826		phy = (pfn << PAGE_SHIFT) + off;
 827		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 828		__sync_icache_dcache(phy, kstart, sz);
 829		kstart += sz;
 830		tot_sz -= sz;
 831	}
 832}
 833EXPORT_SYMBOL(flush_icache_range);
 834
 835/*
 836 * General purpose helper to make I and D cache lines consistent.
 837 * @paddr is phy addr of region
 838 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 839 *    However in one instance, when called by kprobe (for a breakpt in
 840 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 841 *    use a paddr to index the cache (despite VIPT). This is fine since since a
 842 *    builtin kernel page will not have any virtual mappings.
 843 *    kprobe on loadable module will be kernel vaddr.
 844 */
 845void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
 846{
 847	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
 848	__ic_line_inv_vaddr(paddr, vaddr, len);
 849}
 850
 851/* wrapper to compile time eliminate alignment checks in flush loop */
 852void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
 853{
 854	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
 855}
 856
 857/*
 858 * wrapper to clearout kernel or userspace mappings of a page
 859 * For kernel mappings @vaddr == @paddr
 860 */
 861void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
 862{
 863	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
 864}
 865
 866noinline void flush_cache_all(void)
 867{
 868	unsigned long flags;
 869
 870	local_irq_save(flags);
 871
 872	__ic_entire_inv();
 873	__dc_entire_op(OP_FLUSH_N_INV);
 874
 875	local_irq_restore(flags);
 876
 877}
 878
 879#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
 880
 881void flush_cache_mm(struct mm_struct *mm)
 882{
 883	flush_cache_all();
 884}
 885
 886void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
 887		      unsigned long pfn)
 888{
 889	unsigned int paddr = pfn << PAGE_SHIFT;
 890
 891	u_vaddr &= PAGE_MASK;
 892
 893	__flush_dcache_page(paddr, u_vaddr);
 894
 895	if (vma->vm_flags & VM_EXEC)
 896		__inv_icache_page(paddr, u_vaddr);
 897}
 898
 899void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 900		       unsigned long end)
 901{
 902	flush_cache_all();
 903}
 904
 905void flush_anon_page(struct vm_area_struct *vma, struct page *page,
 906		     unsigned long u_vaddr)
 907{
 908	/* TBD: do we really need to clear the kernel mapping */
 909	__flush_dcache_page(page_address(page), u_vaddr);
 910	__flush_dcache_page(page_address(page), page_address(page));
 911
 912}
 913
 914#endif
 915
 916void copy_user_highpage(struct page *to, struct page *from,
 917	unsigned long u_vaddr, struct vm_area_struct *vma)
 918{
 919	void *kfrom = kmap_atomic(from);
 920	void *kto = kmap_atomic(to);
 921	int clean_src_k_mappings = 0;
 922
 923	/*
 924	 * If SRC page was already mapped in userspace AND it's U-mapping is
 925	 * not congruent with K-mapping, sync former to physical page so that
 926	 * K-mapping in memcpy below, sees the right data
 927	 *
 928	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
 929	 * equally valid for SRC page as well
 930	 *
 931	 * For !VIPT cache, all of this gets compiled out as
 932	 * addr_not_cache_congruent() is 0
 933	 */
 934	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
 935		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
 936		clean_src_k_mappings = 1;
 937	}
 938
 939	copy_page(kto, kfrom);
 940
 941	/*
 942	 * Mark DST page K-mapping as dirty for a later finalization by
 943	 * update_mmu_cache(). Although the finalization could have been done
 944	 * here as well (given that both vaddr/paddr are available).
 945	 * But update_mmu_cache() already has code to do that for other
 946	 * non copied user pages (e.g. read faults which wire in pagecache page
 947	 * directly).
 948	 */
 949	clear_bit(PG_dc_clean, &to->flags);
 950
 951	/*
 952	 * if SRC was already usermapped and non-congruent to kernel mapping
 953	 * sync the kernel mapping back to physical page
 954	 */
 955	if (clean_src_k_mappings) {
 956		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
 957		set_bit(PG_dc_clean, &from->flags);
 958	} else {
 959		clear_bit(PG_dc_clean, &from->flags);
 960	}
 961
 962	kunmap_atomic(kto);
 963	kunmap_atomic(kfrom);
 964}
 965
 966void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
 967{
 968	clear_page(to);
 969	clear_bit(PG_dc_clean, &page->flags);
 970}
 971
 972
 973/**********************************************************************
 974 * Explicit Cache flush request from user space via syscall
 975 * Needed for JITs which generate code on the fly
 976 */
 977SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
 978{
 979	/* TBD: optimize this */
 980	flush_cache_all();
 981	return 0;
 982}
 983
 984/*
 985 * IO-Coherency (IOC) setup rules:
 986 *
 987 * 1. Needs to be at system level, so only once by Master core
 988 *    Non-Masters need not be accessing caches at that time
 989 *    - They are either HALT_ON_RESET and kick started much later or
 990 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
 991 *      doesn't perturb caches or coherency unit
 992 *
 993 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
 994 *    otherwise any straggler data might behave strangely post IOC enabling
 995 *
 996 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
 997 *    Coherency transactions
 998 */
 999noinline void __init arc_ioc_setup(void)
1000{
1001	unsigned int ap_sz;
1002
1003	/* Flush + invalidate + disable L1 dcache */
1004	__dc_disable();
1005
1006	/* Flush + invalidate SLC */
1007	if (read_aux_reg(ARC_REG_SLC_BCR))
1008		slc_entire_op(OP_FLUSH_N_INV);
1009
1010	/* IOC Aperture start: TDB: handle non default CONFIG_LINUX_LINK_BASE */
1011	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, 0x80000);
1012
1013	/*
1014	 * IOC Aperture size:
1015	 *   decoded as 2 ^ (SIZE + 2) KB: so setting 0x11 implies 512M
1016	 * TBD: fix for PGU + 1GB of low mem
1017	 * TBD: fix for PAE
1018	 */
1019	ap_sz = order_base_2(arc_get_mem_sz()/1024) - 2;
1020	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, ap_sz);
 
 
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
1022	write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
1023	write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
1024
1025	/* Re-enable L1 dcache */
1026	__dc_enable();
1027}
1028
 
 
 
 
 
 
 
1029void __init arc_cache_init_master(void)
1030{
1031	unsigned int __maybe_unused cpu = smp_processor_id();
1032
1033	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1034		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1035
1036		if (!ic->line_len)
1037			panic("cache support enabled but non-existent cache\n");
1038
1039		if (ic->line_len != L1_CACHE_BYTES)
1040			panic("ICache line [%d] != kernel Config [%d]",
1041			      ic->line_len, L1_CACHE_BYTES);
1042
1043		/*
1044		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1045		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1046		 */
1047		if (is_isa_arcv2() && ic->alias)
1048			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1049		else
1050			_cache_line_loop_ic_fn = __cache_line_loop;
1051	}
1052
1053	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1054		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1055
1056		if (!dc->line_len)
1057			panic("cache support enabled but non-existent cache\n");
1058
1059		if (dc->line_len != L1_CACHE_BYTES)
1060			panic("DCache line [%d] != kernel Config [%d]",
1061			      dc->line_len, L1_CACHE_BYTES);
1062
1063		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1064		if (is_isa_arcompact()) {
1065			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1066			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1067
1068			if (dc->alias) {
1069				if (!handled)
1070					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1071				if (CACHE_COLORS_NUM != num_colors)
1072					panic("CACHE_COLORS_NUM not optimized for config\n");
1073			} else if (!dc->alias && handled) {
1074				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1075			}
1076		}
1077	}
1078
1079	/* Note that SLC disable not formally supported till HS 3.0 */
1080	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1081		arc_slc_disable();
1082
1083	if (is_isa_arcv2() && ioc_enable)
1084		arc_ioc_setup();
1085
1086	if (is_isa_arcv2() && ioc_enable) {
1087		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
1088		__dma_cache_inv = __dma_cache_inv_ioc;
1089		__dma_cache_wback = __dma_cache_wback_ioc;
1090	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1091		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1092		__dma_cache_inv = __dma_cache_inv_slc;
1093		__dma_cache_wback = __dma_cache_wback_slc;
1094	} else {
1095		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1096		__dma_cache_inv = __dma_cache_inv_l1;
1097		__dma_cache_wback = __dma_cache_wback_l1;
1098	}
1099}
1100
1101void __ref arc_cache_init(void)
1102{
1103	unsigned int __maybe_unused cpu = smp_processor_id();
1104	char str[256];
1105
1106	printk(arc_cache_mumbojumbo(0, str, sizeof(str)));
1107
1108	/*
1109	 * Only master CPU needs to execute rest of function:
1110	 *  - Assume SMP so all cores will have same cache config so
1111	 *    any geomtry checks will be same for all
1112	 *  - IOC setup / dma callbacks only need to be setup once
1113	 */
1114	if (!cpu)
1115		arc_cache_init_master();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116}
v4.17
   1/*
   2 * ARC Cache Management
   3 *
   4 * Copyright (C) 2014-15 Synopsys, Inc. (www.synopsys.com)
   5 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/mm.h>
  14#include <linux/sched.h>
  15#include <linux/cache.h>
  16#include <linux/mmu_context.h>
  17#include <linux/syscalls.h>
  18#include <linux/uaccess.h>
  19#include <linux/pagemap.h>
  20#include <asm/cacheflush.h>
  21#include <asm/cachectl.h>
  22#include <asm/setup.h>
  23
  24#ifdef CONFIG_ISA_ARCV2
  25#define USE_RGN_FLSH	1
  26#endif
  27
  28static int l2_line_sz;
  29static int ioc_exists;
  30int slc_enable = 1, ioc_enable = 1;
  31unsigned long perip_base = ARC_UNCACHED_ADDR_SPACE; /* legacy value for boot */
  32unsigned long perip_end = 0xFFFFFFFF; /* legacy value */
  33
  34void (*_cache_line_loop_ic_fn)(phys_addr_t paddr, unsigned long vaddr,
  35			       unsigned long sz, const int op, const int full_page);
  36
  37void (*__dma_cache_wback_inv)(phys_addr_t start, unsigned long sz);
  38void (*__dma_cache_inv)(phys_addr_t start, unsigned long sz);
  39void (*__dma_cache_wback)(phys_addr_t start, unsigned long sz);
  40
  41char *arc_cache_mumbojumbo(int c, char *buf, int len)
  42{
  43	int n = 0;
  44	struct cpuinfo_arc_cache *p;
  45
  46#define PR_CACHE(p, cfg, str)						\
  47	if (!(p)->line_len)						\
  48		n += scnprintf(buf + n, len - n, str"\t\t: N/A\n");	\
  49	else								\
  50		n += scnprintf(buf + n, len - n,			\
  51			str"\t\t: %uK, %dway/set, %uB Line, %s%s%s\n",	\
  52			(p)->sz_k, (p)->assoc, (p)->line_len,		\
  53			(p)->vipt ? "VIPT" : "PIPT",			\
  54			(p)->alias ? " aliasing" : "",			\
  55			IS_USED_CFG(cfg));
  56
  57	PR_CACHE(&cpuinfo_arc700[c].icache, CONFIG_ARC_HAS_ICACHE, "I-Cache");
  58	PR_CACHE(&cpuinfo_arc700[c].dcache, CONFIG_ARC_HAS_DCACHE, "D-Cache");
  59
  60	p = &cpuinfo_arc700[c].slc;
  61	if (p->line_len)
  62		n += scnprintf(buf + n, len - n,
  63			       "SLC\t\t: %uK, %uB Line%s\n",
  64			       p->sz_k, p->line_len, IS_USED_RUN(slc_enable));
  65
  66	n += scnprintf(buf + n, len - n, "Peripherals\t: %#lx%s%s\n",
  67		       perip_base,
  68		       IS_AVAIL3(ioc_exists, ioc_enable, ", IO-Coherency "));
  69
  70	return buf;
  71}
  72
  73/*
  74 * Read the Cache Build Confuration Registers, Decode them and save into
  75 * the cpuinfo structure for later use.
  76 * No Validation done here, simply read/convert the BCRs
  77 */
  78static void read_decode_cache_bcr_arcv2(int cpu)
  79{
  80	struct cpuinfo_arc_cache *p_slc = &cpuinfo_arc700[cpu].slc;
  81	struct bcr_generic sbcr;
  82
  83	struct bcr_slc_cfg {
  84#ifdef CONFIG_CPU_BIG_ENDIAN
  85		unsigned int pad:24, way:2, lsz:2, sz:4;
  86#else
  87		unsigned int sz:4, lsz:2, way:2, pad:24;
  88#endif
  89	} slc_cfg;
  90
  91	struct bcr_clust_cfg {
  92#ifdef CONFIG_CPU_BIG_ENDIAN
  93		unsigned int pad:7, c:1, num_entries:8, num_cores:8, ver:8;
  94#else
  95		unsigned int ver:8, num_cores:8, num_entries:8, c:1, pad:7;
  96#endif
  97	} cbcr;
  98
  99	struct bcr_volatile {
 100#ifdef CONFIG_CPU_BIG_ENDIAN
 101		unsigned int start:4, limit:4, pad:22, order:1, disable:1;
 102#else
 103		unsigned int disable:1, order:1, pad:22, limit:4, start:4;
 104#endif
 105	} vol;
 106
 107
 108	READ_BCR(ARC_REG_SLC_BCR, sbcr);
 109	if (sbcr.ver) {
 110		READ_BCR(ARC_REG_SLC_CFG, slc_cfg);
 111		p_slc->sz_k = 128 << slc_cfg.sz;
 112		l2_line_sz = p_slc->line_len = (slc_cfg.lsz == 0) ? 128 : 64;
 113	}
 114
 115	READ_BCR(ARC_REG_CLUSTER_BCR, cbcr);
 116	if (cbcr.c)
 117		ioc_exists = 1;
 118	else
 119		ioc_enable = 0;
 120
 121	/* HS 2.0 didn't have AUX_VOL */
 122	if (cpuinfo_arc700[cpu].core.family > 0x51) {
 123		READ_BCR(AUX_VOL, vol);
 124		perip_base = vol.start << 28;
 125		/* HS 3.0 has limit and strict-ordering fields */
 126		if (cpuinfo_arc700[cpu].core.family > 0x52)
 127			perip_end = (vol.limit << 28) - 1;
 128	}
 129}
 130
 131void read_decode_cache_bcr(void)
 132{
 133	struct cpuinfo_arc_cache *p_ic, *p_dc;
 134	unsigned int cpu = smp_processor_id();
 135	struct bcr_cache {
 136#ifdef CONFIG_CPU_BIG_ENDIAN
 137		unsigned int pad:12, line_len:4, sz:4, config:4, ver:8;
 138#else
 139		unsigned int ver:8, config:4, sz:4, line_len:4, pad:12;
 140#endif
 141	} ibcr, dbcr;
 142
 143	p_ic = &cpuinfo_arc700[cpu].icache;
 144	READ_BCR(ARC_REG_IC_BCR, ibcr);
 145
 146	if (!ibcr.ver)
 147		goto dc_chk;
 148
 149	if (ibcr.ver <= 3) {
 150		BUG_ON(ibcr.config != 3);
 151		p_ic->assoc = 2;		/* Fixed to 2w set assoc */
 152	} else if (ibcr.ver >= 4) {
 153		p_ic->assoc = 1 << ibcr.config;	/* 1,2,4,8 */
 154	}
 155
 156	p_ic->line_len = 8 << ibcr.line_len;
 157	p_ic->sz_k = 1 << (ibcr.sz - 1);
 158	p_ic->vipt = 1;
 159	p_ic->alias = p_ic->sz_k/p_ic->assoc/TO_KB(PAGE_SIZE) > 1;
 160
 161dc_chk:
 162	p_dc = &cpuinfo_arc700[cpu].dcache;
 163	READ_BCR(ARC_REG_DC_BCR, dbcr);
 164
 165	if (!dbcr.ver)
 166		goto slc_chk;
 167
 168	if (dbcr.ver <= 3) {
 169		BUG_ON(dbcr.config != 2);
 170		p_dc->assoc = 4;		/* Fixed to 4w set assoc */
 171		p_dc->vipt = 1;
 172		p_dc->alias = p_dc->sz_k/p_dc->assoc/TO_KB(PAGE_SIZE) > 1;
 173	} else if (dbcr.ver >= 4) {
 174		p_dc->assoc = 1 << dbcr.config;	/* 1,2,4,8 */
 175		p_dc->vipt = 0;
 176		p_dc->alias = 0;		/* PIPT so can't VIPT alias */
 177	}
 178
 179	p_dc->line_len = 16 << dbcr.line_len;
 180	p_dc->sz_k = 1 << (dbcr.sz - 1);
 181
 182slc_chk:
 183	if (is_isa_arcv2())
 184                read_decode_cache_bcr_arcv2(cpu);
 185}
 186
 187/*
 188 * Line Operation on {I,D}-Cache
 189 */
 190
 191#define OP_INV		0x1
 192#define OP_FLUSH	0x2
 193#define OP_FLUSH_N_INV	0x3
 194#define OP_INV_IC	0x4
 195
 196/*
 197 *		I-Cache Aliasing in ARC700 VIPT caches (MMU v1-v3)
 198 *
 199 * ARC VIPT I-cache uses vaddr to index into cache and paddr to match the tag.
 200 * The orig Cache Management Module "CDU" only required paddr to invalidate a
 201 * certain line since it sufficed as index in Non-Aliasing VIPT cache-geometry.
 202 * Infact for distinct V1,V2,P: all of {V1-P},{V2-P},{P-P} would end up fetching
 203 * the exact same line.
 204 *
 205 * However for larger Caches (way-size > page-size) - i.e. in Aliasing config,
 206 * paddr alone could not be used to correctly index the cache.
 207 *
 208 * ------------------
 209 * MMU v1/v2 (Fixed Page Size 8k)
 210 * ------------------
 211 * The solution was to provide CDU with these additonal vaddr bits. These
 212 * would be bits [x:13], x would depend on cache-geometry, 13 comes from
 213 * standard page size of 8k.
 214 * H/w folks chose [17:13] to be a future safe range, and moreso these 5 bits
 215 * of vaddr could easily be "stuffed" in the paddr as bits [4:0] since the
 216 * orig 5 bits of paddr were anyways ignored by CDU line ops, as they
 217 * represent the offset within cache-line. The adv of using this "clumsy"
 218 * interface for additional info was no new reg was needed in CDU programming
 219 * model.
 220 *
 221 * 17:13 represented the max num of bits passable, actual bits needed were
 222 * fewer, based on the num-of-aliases possible.
 223 * -for 2 alias possibility, only bit 13 needed (32K cache)
 224 * -for 4 alias possibility, bits 14:13 needed (64K cache)
 225 *
 226 * ------------------
 227 * MMU v3
 228 * ------------------
 229 * This ver of MMU supports variable page sizes (1k-16k): although Linux will
 230 * only support 8k (default), 16k and 4k.
 231 * However from hardware perspective, smaller page sizes aggravate aliasing
 232 * meaning more vaddr bits needed to disambiguate the cache-line-op ;
 233 * the existing scheme of piggybacking won't work for certain configurations.
 234 * Two new registers IC_PTAG and DC_PTAG inttoduced.
 235 * "tag" bits are provided in PTAG, index bits in existing IVIL/IVDL/FLDL regs
 236 */
 237
 238static inline
 239void __cache_line_loop_v2(phys_addr_t paddr, unsigned long vaddr,
 240			  unsigned long sz, const int op, const int full_page)
 241{
 242	unsigned int aux_cmd;
 243	int num_lines;
 
 244
 245	if (op == OP_INV_IC) {
 246		aux_cmd = ARC_REG_IC_IVIL;
 247	} else {
 248		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 249		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 250	}
 251
 252	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 253	 * and have @paddr - aligned to cache line and integral @num_lines.
 254	 * This however can be avoided for page sized since:
 255	 *  -@paddr will be cache-line aligned already (being page aligned)
 256	 *  -@sz will be integral multiple of line size (being page sized).
 257	 */
 258	if (!full_page) {
 259		sz += paddr & ~CACHE_LINE_MASK;
 260		paddr &= CACHE_LINE_MASK;
 261		vaddr &= CACHE_LINE_MASK;
 262	}
 263
 264	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 265
 266	/* MMUv2 and before: paddr contains stuffed vaddrs bits */
 267	paddr |= (vaddr >> PAGE_SHIFT) & 0x1F;
 268
 269	while (num_lines-- > 0) {
 270		write_aux_reg(aux_cmd, paddr);
 271		paddr += L1_CACHE_BYTES;
 272	}
 273}
 274
 275/*
 276 * For ARC700 MMUv3 I-cache and D-cache flushes
 277 *  - ARC700 programming model requires paddr and vaddr be passed in seperate
 278 *    AUX registers (*_IV*L and *_PTAG respectively) irrespective of whether the
 279 *    caches actually alias or not.
 280 * -  For HS38, only the aliasing I-cache configuration uses the PTAG reg
 281 *    (non aliasing I-cache version doesn't; while D-cache can't possibly alias)
 282 */
 283static inline
 284void __cache_line_loop_v3(phys_addr_t paddr, unsigned long vaddr,
 285			  unsigned long sz, const int op, const int full_page)
 286{
 287	unsigned int aux_cmd, aux_tag;
 288	int num_lines;
 
 289
 290	if (op == OP_INV_IC) {
 291		aux_cmd = ARC_REG_IC_IVIL;
 292		aux_tag = ARC_REG_IC_PTAG;
 293	} else {
 294		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 295		aux_tag = ARC_REG_DC_PTAG;
 296	}
 297
 298	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 299	 * and have @paddr - aligned to cache line and integral @num_lines.
 300	 * This however can be avoided for page sized since:
 301	 *  -@paddr will be cache-line aligned already (being page aligned)
 302	 *  -@sz will be integral multiple of line size (being page sized).
 303	 */
 304	if (!full_page) {
 305		sz += paddr & ~CACHE_LINE_MASK;
 306		paddr &= CACHE_LINE_MASK;
 307		vaddr &= CACHE_LINE_MASK;
 308	}
 309	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 310
 311	/*
 312	 * MMUv3, cache ops require paddr in PTAG reg
 313	 * if V-P const for loop, PTAG can be written once outside loop
 314	 */
 315	if (full_page)
 316		write_aux_reg(aux_tag, paddr);
 317
 318	/*
 319	 * This is technically for MMU v4, using the MMU v3 programming model
 320	 * Special work for HS38 aliasing I-cache configuration with PAE40
 321	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 322	 *   - (and needs to be written before the lower 32 bits)
 323	 * Note that PTAG_HI is hoisted outside the line loop
 324	 */
 325	if (is_pae40_enabled() && op == OP_INV_IC)
 326		write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 327
 328	while (num_lines-- > 0) {
 329		if (!full_page) {
 330			write_aux_reg(aux_tag, paddr);
 331			paddr += L1_CACHE_BYTES;
 332		}
 333
 334		write_aux_reg(aux_cmd, vaddr);
 335		vaddr += L1_CACHE_BYTES;
 336	}
 337}
 338
 339#ifndef USE_RGN_FLSH
 340
 341/*
 342 * In HS38x (MMU v4), I-cache is VIPT (can alias), D-cache is PIPT
 343 * Here's how cache ops are implemented
 344 *
 345 *  - D-cache: only paddr needed (in DC_IVDL/DC_FLDL)
 346 *  - I-cache Non Aliasing: Despite VIPT, only paddr needed (in IC_IVIL)
 347 *  - I-cache Aliasing: Both vaddr and paddr needed (in IC_IVIL, IC_PTAG
 348 *    respectively, similar to MMU v3 programming model, hence
 349 *    __cache_line_loop_v3() is used)
 350 *
 351 * If PAE40 is enabled, independent of aliasing considerations, the higher bits
 352 * needs to be written into PTAG_HI
 353 */
 354static inline
 355void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 356			  unsigned long sz, const int op, const int full_page)
 357{
 358	unsigned int aux_cmd;
 359	int num_lines;
 
 360
 361	if (op == OP_INV_IC) {
 362		aux_cmd = ARC_REG_IC_IVIL;
 363	} else {
 364		/* d$ cmd: INV (discard or wback-n-discard) OR FLUSH (wback) */
 365		aux_cmd = op & OP_INV ? ARC_REG_DC_IVDL : ARC_REG_DC_FLDL;
 366	}
 367
 368	/* Ensure we properly floor/ceil the non-line aligned/sized requests
 369	 * and have @paddr - aligned to cache line and integral @num_lines.
 370	 * This however can be avoided for page sized since:
 371	 *  -@paddr will be cache-line aligned already (being page aligned)
 372	 *  -@sz will be integral multiple of line size (being page sized).
 373	 */
 374	if (!full_page) {
 375		sz += paddr & ~CACHE_LINE_MASK;
 376		paddr &= CACHE_LINE_MASK;
 377	}
 378
 379	num_lines = DIV_ROUND_UP(sz, L1_CACHE_BYTES);
 380
 381	/*
 382	 * For HS38 PAE40 configuration
 383	 *   - upper 8 bits of paddr need to be written into PTAG_HI
 384	 *   - (and needs to be written before the lower 32 bits)
 385	 */
 386	if (is_pae40_enabled()) {
 387		if (op == OP_INV_IC)
 388			/*
 389			 * Non aliasing I-cache in HS38,
 390			 * aliasing I-cache handled in __cache_line_loop_v3()
 391			 */
 392			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 393		else
 394			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 395	}
 396
 397	while (num_lines-- > 0) {
 398		write_aux_reg(aux_cmd, paddr);
 399		paddr += L1_CACHE_BYTES;
 400	}
 401}
 402
 403#else
 404
 405/*
 406 * optimized flush operation which takes a region as opposed to iterating per line
 407 */
 408static inline
 409void __cache_line_loop_v4(phys_addr_t paddr, unsigned long vaddr,
 410			  unsigned long sz, const int op, const int full_page)
 411{
 412	unsigned int s, e;
 413
 414	/* Only for Non aliasing I-cache in HS38 */
 415	if (op == OP_INV_IC) {
 416		s = ARC_REG_IC_IVIR;
 417		e = ARC_REG_IC_ENDR;
 418	} else {
 419		s = ARC_REG_DC_STARTR;
 420		e = ARC_REG_DC_ENDR;
 421	}
 422
 423	if (!full_page) {
 424		/* for any leading gap between @paddr and start of cache line */
 425		sz += paddr & ~CACHE_LINE_MASK;
 426		paddr &= CACHE_LINE_MASK;
 427
 428		/*
 429		 *  account for any trailing gap to end of cache line
 430		 *  this is equivalent to DIV_ROUND_UP() in line ops above
 431		 */
 432		sz += L1_CACHE_BYTES - 1;
 433	}
 434
 435	if (is_pae40_enabled()) {
 436		/* TBD: check if crossing 4TB boundary */
 437		if (op == OP_INV_IC)
 438			write_aux_reg(ARC_REG_IC_PTAG_HI, (u64)paddr >> 32);
 439		else
 440			write_aux_reg(ARC_REG_DC_PTAG_HI, (u64)paddr >> 32);
 441	}
 442
 443	/* ENDR needs to be set ahead of START */
 444	write_aux_reg(e, paddr + sz);	/* ENDR is exclusive */
 445	write_aux_reg(s, paddr);
 446
 447	/* caller waits on DC_CTRL.FS */
 448}
 449
 450#endif
 451
 452#if (CONFIG_ARC_MMU_VER < 3)
 453#define __cache_line_loop	__cache_line_loop_v2
 454#elif (CONFIG_ARC_MMU_VER == 3)
 455#define __cache_line_loop	__cache_line_loop_v3
 456#elif (CONFIG_ARC_MMU_VER > 3)
 457#define __cache_line_loop	__cache_line_loop_v4
 458#endif
 459
 460#ifdef CONFIG_ARC_HAS_DCACHE
 461
 462/***************************************************************
 463 * Machine specific helpers for Entire D-Cache or Per Line ops
 464 */
 465
 466#ifndef USE_RGN_FLSH
 467/*
 468 * this version avoids extra read/write of DC_CTRL for flush or invalid ops
 469 * in the non region flush regime (such as for ARCompact)
 470 */
 471static inline void __before_dc_op(const int op)
 472{
 473	if (op == OP_FLUSH_N_INV) {
 474		/* Dcache provides 2 cmd: FLUSH or INV
 475		 * INV inturn has sub-modes: DISCARD or FLUSH-BEFORE
 476		 * flush-n-inv is achieved by INV cmd but with IM=1
 477		 * So toggle INV sub-mode depending on op request and default
 478		 */
 479		const unsigned int ctl = ARC_REG_DC_CTRL;
 480		write_aux_reg(ctl, read_aux_reg(ctl) | DC_CTRL_INV_MODE_FLUSH);
 481	}
 482}
 483
 484#else
 485
 486static inline void __before_dc_op(const int op)
 487{
 488	const unsigned int ctl = ARC_REG_DC_CTRL;
 489	unsigned int val = read_aux_reg(ctl);
 490
 491	if (op == OP_FLUSH_N_INV) {
 492		val |= DC_CTRL_INV_MODE_FLUSH;
 493	}
 494
 495	if (op != OP_INV_IC) {
 496		/*
 497		 * Flush / Invalidate is provided by DC_CTRL.RNG_OP 0 or 1
 498		 * combined Flush-n-invalidate uses DC_CTRL.IM = 1 set above
 499		 */
 500		val &= ~DC_CTRL_RGN_OP_MSK;
 501		if (op & OP_INV)
 502			val |= DC_CTRL_RGN_OP_INV;
 503	}
 504	write_aux_reg(ctl, val);
 505}
 506
 507#endif
 508
 509
 510static inline void __after_dc_op(const int op)
 511{
 512	if (op & OP_FLUSH) {
 513		const unsigned int ctl = ARC_REG_DC_CTRL;
 514		unsigned int reg;
 515
 516		/* flush / flush-n-inv both wait */
 517		while ((reg = read_aux_reg(ctl)) & DC_CTRL_FLUSH_STATUS)
 518			;
 519
 520		/* Switch back to default Invalidate mode */
 521		if (op == OP_FLUSH_N_INV)
 522			write_aux_reg(ctl, reg & ~DC_CTRL_INV_MODE_FLUSH);
 523	}
 524}
 525
 526/*
 527 * Operation on Entire D-Cache
 528 * @op = {OP_INV, OP_FLUSH, OP_FLUSH_N_INV}
 529 * Note that constant propagation ensures all the checks are gone
 530 * in generated code
 531 */
 532static inline void __dc_entire_op(const int op)
 533{
 534	int aux;
 535
 536	__before_dc_op(op);
 537
 538	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 539		aux = ARC_REG_DC_IVDC;
 540	else
 541		aux = ARC_REG_DC_FLSH;
 542
 543	write_aux_reg(aux, 0x1);
 544
 545	__after_dc_op(op);
 546}
 547
 548static inline void __dc_disable(void)
 549{
 550	const int r = ARC_REG_DC_CTRL;
 551
 552	__dc_entire_op(OP_FLUSH_N_INV);
 553	write_aux_reg(r, read_aux_reg(r) | DC_CTRL_DIS);
 554}
 555
 556static void __dc_enable(void)
 557{
 558	const int r = ARC_REG_DC_CTRL;
 559
 560	write_aux_reg(r, read_aux_reg(r) & ~DC_CTRL_DIS);
 561}
 562
 563/* For kernel mappings cache operation: index is same as paddr */
 564#define __dc_line_op_k(p, sz, op)	__dc_line_op(p, p, sz, op)
 565
 566/*
 567 * D-Cache Line ops: Per Line INV (discard or wback+discard) or FLUSH (wback)
 568 */
 569static inline void __dc_line_op(phys_addr_t paddr, unsigned long vaddr,
 570				unsigned long sz, const int op)
 571{
 572	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 573	unsigned long flags;
 574
 575	local_irq_save(flags);
 576
 577	__before_dc_op(op);
 578
 579	__cache_line_loop(paddr, vaddr, sz, op, full_page);
 580
 581	__after_dc_op(op);
 582
 583	local_irq_restore(flags);
 584}
 585
 586#else
 587
 588#define __dc_entire_op(op)
 589#define __dc_disable()
 590#define __dc_enable()
 591#define __dc_line_op(paddr, vaddr, sz, op)
 592#define __dc_line_op_k(paddr, sz, op)
 593
 594#endif /* CONFIG_ARC_HAS_DCACHE */
 595
 596#ifdef CONFIG_ARC_HAS_ICACHE
 597
 598static inline void __ic_entire_inv(void)
 599{
 600	write_aux_reg(ARC_REG_IC_IVIC, 1);
 601	read_aux_reg(ARC_REG_IC_CTRL);	/* blocks */
 602}
 603
 604static inline void
 605__ic_line_inv_vaddr_local(phys_addr_t paddr, unsigned long vaddr,
 606			  unsigned long sz)
 607{
 608	const int full_page = __builtin_constant_p(sz) && sz == PAGE_SIZE;
 609	unsigned long flags;
 610
 611	local_irq_save(flags);
 612	(*_cache_line_loop_ic_fn)(paddr, vaddr, sz, OP_INV_IC, full_page);
 613	local_irq_restore(flags);
 614}
 615
 616#ifndef CONFIG_SMP
 617
 618#define __ic_line_inv_vaddr(p, v, s)	__ic_line_inv_vaddr_local(p, v, s)
 619
 620#else
 621
 622struct ic_inv_args {
 623	phys_addr_t paddr, vaddr;
 624	int sz;
 625};
 626
 627static void __ic_line_inv_vaddr_helper(void *info)
 628{
 629        struct ic_inv_args *ic_inv = info;
 630
 631        __ic_line_inv_vaddr_local(ic_inv->paddr, ic_inv->vaddr, ic_inv->sz);
 632}
 633
 634static void __ic_line_inv_vaddr(phys_addr_t paddr, unsigned long vaddr,
 635				unsigned long sz)
 636{
 637	struct ic_inv_args ic_inv = {
 638		.paddr = paddr,
 639		.vaddr = vaddr,
 640		.sz    = sz
 641	};
 642
 643	on_each_cpu(__ic_line_inv_vaddr_helper, &ic_inv, 1);
 644}
 645
 646#endif	/* CONFIG_SMP */
 647
 648#else	/* !CONFIG_ARC_HAS_ICACHE */
 649
 650#define __ic_entire_inv()
 651#define __ic_line_inv_vaddr(pstart, vstart, sz)
 652
 653#endif /* CONFIG_ARC_HAS_ICACHE */
 654
 655noinline void slc_op_rgn(phys_addr_t paddr, unsigned long sz, const int op)
 656{
 657#ifdef CONFIG_ISA_ARCV2
 658	/*
 659	 * SLC is shared between all cores and concurrent aux operations from
 660	 * multiple cores need to be serialized using a spinlock
 661	 * A concurrent operation can be silently ignored and/or the old/new
 662	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 663	 * below)
 664	 */
 665	static DEFINE_SPINLOCK(lock);
 666	unsigned long flags;
 667	unsigned int ctrl;
 668	phys_addr_t end;
 669
 670	spin_lock_irqsave(&lock, flags);
 671
 672	/*
 673	 * The Region Flush operation is specified by CTRL.RGN_OP[11..9]
 674	 *  - b'000 (default) is Flush,
 675	 *  - b'001 is Invalidate if CTRL.IM == 0
 676	 *  - b'001 is Flush-n-Invalidate if CTRL.IM == 1
 677	 */
 678	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 679
 680	/* Don't rely on default value of IM bit */
 681	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 682		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 683	else
 684		ctrl |= SLC_CTRL_IM;
 685
 686	if (op & OP_INV)
 687		ctrl |= SLC_CTRL_RGN_OP_INV;	/* Inv or flush-n-inv */
 688	else
 689		ctrl &= ~SLC_CTRL_RGN_OP_INV;
 690
 691	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 692
 693	/*
 694	 * Lower bits are ignored, no need to clip
 695	 * END needs to be setup before START (latter triggers the operation)
 696	 * END can't be same as START, so add (l2_line_sz - 1) to sz
 697	 */
 698	end = paddr + sz + l2_line_sz - 1;
 699	if (is_pae40_enabled())
 700		write_aux_reg(ARC_REG_SLC_RGN_END1, upper_32_bits(end));
 701
 702	write_aux_reg(ARC_REG_SLC_RGN_END, lower_32_bits(end));
 703
 704	if (is_pae40_enabled())
 705		write_aux_reg(ARC_REG_SLC_RGN_START1, upper_32_bits(paddr));
 706
 707	write_aux_reg(ARC_REG_SLC_RGN_START, lower_32_bits(paddr));
 708
 709	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 710	read_aux_reg(ARC_REG_SLC_CTRL);
 711
 712	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 713
 714	spin_unlock_irqrestore(&lock, flags);
 715#endif
 716}
 717
 718noinline void slc_op_line(phys_addr_t paddr, unsigned long sz, const int op)
 719{
 720#ifdef CONFIG_ISA_ARCV2
 721	/*
 722	 * SLC is shared between all cores and concurrent aux operations from
 723	 * multiple cores need to be serialized using a spinlock
 724	 * A concurrent operation can be silently ignored and/or the old/new
 725	 * operation can remain incomplete forever (lockup in SLC_CTRL_BUSY loop
 726	 * below)
 727	 */
 728	static DEFINE_SPINLOCK(lock);
 729
 730	const unsigned long SLC_LINE_MASK = ~(l2_line_sz - 1);
 731	unsigned int ctrl, cmd;
 732	unsigned long flags;
 733	int num_lines;
 734
 735	spin_lock_irqsave(&lock, flags);
 736
 737	ctrl = read_aux_reg(ARC_REG_SLC_CTRL);
 738
 739	/* Don't rely on default value of IM bit */
 740	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 741		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 742	else
 743		ctrl |= SLC_CTRL_IM;
 744
 745	write_aux_reg(ARC_REG_SLC_CTRL, ctrl);
 746
 747	cmd = op & OP_INV ? ARC_AUX_SLC_IVDL : ARC_AUX_SLC_FLDL;
 748
 749	sz += paddr & ~SLC_LINE_MASK;
 750	paddr &= SLC_LINE_MASK;
 751
 752	num_lines = DIV_ROUND_UP(sz, l2_line_sz);
 753
 754	while (num_lines-- > 0) {
 755		write_aux_reg(cmd, paddr);
 756		paddr += l2_line_sz;
 757	}
 758
 759	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 760	read_aux_reg(ARC_REG_SLC_CTRL);
 761
 762	while (read_aux_reg(ARC_REG_SLC_CTRL) & SLC_CTRL_BUSY);
 763
 764	spin_unlock_irqrestore(&lock, flags);
 765#endif
 766}
 767
 768#define slc_op(paddr, sz, op)	slc_op_rgn(paddr, sz, op)
 769
 770noinline static void slc_entire_op(const int op)
 771{
 772	unsigned int ctrl, r = ARC_REG_SLC_CTRL;
 773
 774	ctrl = read_aux_reg(r);
 775
 776	if (!(op & OP_FLUSH))		/* i.e. OP_INV */
 777		ctrl &= ~SLC_CTRL_IM;	/* clear IM: Disable flush before Inv */
 778	else
 779		ctrl |= SLC_CTRL_IM;
 780
 781	write_aux_reg(r, ctrl);
 782
 783	if (op & OP_INV)	/* Inv or flush-n-inv use same cmd reg */
 784		write_aux_reg(ARC_REG_SLC_INVALIDATE, 0x1);
 785	else
 786		write_aux_reg(ARC_REG_SLC_FLUSH, 0x1);
 787
 788	/* Make sure "busy" bit reports correct stataus, see STAR 9001165532 */
 789	read_aux_reg(r);
 790
 791	/* Important to wait for flush to complete */
 792	while (read_aux_reg(r) & SLC_CTRL_BUSY);
 793}
 794
 795static inline void arc_slc_disable(void)
 796{
 797	const int r = ARC_REG_SLC_CTRL;
 798
 799	slc_entire_op(OP_FLUSH_N_INV);
 800	write_aux_reg(r, read_aux_reg(r) | SLC_CTRL_DIS);
 801}
 802
 803static inline void arc_slc_enable(void)
 804{
 805	const int r = ARC_REG_SLC_CTRL;
 806
 807	write_aux_reg(r, read_aux_reg(r) & ~SLC_CTRL_DIS);
 808}
 809
 810/***********************************************************
 811 * Exported APIs
 812 */
 813
 814/*
 815 * Handle cache congruency of kernel and userspace mappings of page when kernel
 816 * writes-to/reads-from
 817 *
 818 * The idea is to defer flushing of kernel mapping after a WRITE, possible if:
 819 *  -dcache is NOT aliasing, hence any U/K-mappings of page are congruent
 820 *  -U-mapping doesn't exist yet for page (finalised in update_mmu_cache)
 821 *  -In SMP, if hardware caches are coherent
 822 *
 823 * There's a corollary case, where kernel READs from a userspace mapped page.
 824 * If the U-mapping is not congruent to to K-mapping, former needs flushing.
 825 */
 826void flush_dcache_page(struct page *page)
 827{
 828	struct address_space *mapping;
 829
 830	if (!cache_is_vipt_aliasing()) {
 831		clear_bit(PG_dc_clean, &page->flags);
 832		return;
 833	}
 834
 835	/* don't handle anon pages here */
 836	mapping = page_mapping_file(page);
 837	if (!mapping)
 838		return;
 839
 840	/*
 841	 * pagecache page, file not yet mapped to userspace
 842	 * Make a note that K-mapping is dirty
 843	 */
 844	if (!mapping_mapped(mapping)) {
 845		clear_bit(PG_dc_clean, &page->flags);
 846	} else if (page_mapcount(page)) {
 847
 848		/* kernel reading from page with U-mapping */
 849		phys_addr_t paddr = (unsigned long)page_address(page);
 850		unsigned long vaddr = page->index << PAGE_SHIFT;
 851
 852		if (addr_not_cache_congruent(paddr, vaddr))
 853			__flush_dcache_page(paddr, vaddr);
 854	}
 855}
 856EXPORT_SYMBOL(flush_dcache_page);
 857
 858/*
 859 * DMA ops for systems with L1 cache only
 860 * Make memory coherent with L1 cache by flushing/invalidating L1 lines
 861 */
 862static void __dma_cache_wback_inv_l1(phys_addr_t start, unsigned long sz)
 863{
 864	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 865}
 866
 867static void __dma_cache_inv_l1(phys_addr_t start, unsigned long sz)
 868{
 869	__dc_line_op_k(start, sz, OP_INV);
 870}
 871
 872static void __dma_cache_wback_l1(phys_addr_t start, unsigned long sz)
 873{
 874	__dc_line_op_k(start, sz, OP_FLUSH);
 875}
 876
 877/*
 878 * DMA ops for systems with both L1 and L2 caches, but without IOC
 879 * Both L1 and L2 lines need to be explicitly flushed/invalidated
 880 */
 881static void __dma_cache_wback_inv_slc(phys_addr_t start, unsigned long sz)
 882{
 883	__dc_line_op_k(start, sz, OP_FLUSH_N_INV);
 884	slc_op(start, sz, OP_FLUSH_N_INV);
 885}
 886
 887static void __dma_cache_inv_slc(phys_addr_t start, unsigned long sz)
 888{
 889	__dc_line_op_k(start, sz, OP_INV);
 890	slc_op(start, sz, OP_INV);
 891}
 892
 893static void __dma_cache_wback_slc(phys_addr_t start, unsigned long sz)
 894{
 895	__dc_line_op_k(start, sz, OP_FLUSH);
 896	slc_op(start, sz, OP_FLUSH);
 897}
 898
 899/*
 900 * DMA ops for systems with IOC
 901 * IOC hardware snoops all DMA traffic keeping the caches consistent with
 902 * memory - eliding need for any explicit cache maintenance of DMA buffers
 903 */
 904static void __dma_cache_wback_inv_ioc(phys_addr_t start, unsigned long sz) {}
 905static void __dma_cache_inv_ioc(phys_addr_t start, unsigned long sz) {}
 906static void __dma_cache_wback_ioc(phys_addr_t start, unsigned long sz) {}
 907
 908/*
 909 * Exported DMA API
 910 */
 911void dma_cache_wback_inv(phys_addr_t start, unsigned long sz)
 912{
 913	__dma_cache_wback_inv(start, sz);
 914}
 915EXPORT_SYMBOL(dma_cache_wback_inv);
 916
 917void dma_cache_inv(phys_addr_t start, unsigned long sz)
 918{
 919	__dma_cache_inv(start, sz);
 920}
 921EXPORT_SYMBOL(dma_cache_inv);
 922
 923void dma_cache_wback(phys_addr_t start, unsigned long sz)
 924{
 925	__dma_cache_wback(start, sz);
 926}
 927EXPORT_SYMBOL(dma_cache_wback);
 928
 929/*
 930 * This is API for making I/D Caches consistent when modifying
 931 * kernel code (loadable modules, kprobes, kgdb...)
 932 * This is called on insmod, with kernel virtual address for CODE of
 933 * the module. ARC cache maintenance ops require PHY address thus we
 934 * need to convert vmalloc addr to PHY addr
 935 */
 936void flush_icache_range(unsigned long kstart, unsigned long kend)
 937{
 938	unsigned int tot_sz;
 939
 940	WARN(kstart < TASK_SIZE, "%s() can't handle user vaddr", __func__);
 941
 942	/* Shortcut for bigger flush ranges.
 943	 * Here we don't care if this was kernel virtual or phy addr
 944	 */
 945	tot_sz = kend - kstart;
 946	if (tot_sz > PAGE_SIZE) {
 947		flush_cache_all();
 948		return;
 949	}
 950
 951	/* Case: Kernel Phy addr (0x8000_0000 onwards) */
 952	if (likely(kstart > PAGE_OFFSET)) {
 953		/*
 954		 * The 2nd arg despite being paddr will be used to index icache
 955		 * This is OK since no alternate virtual mappings will exist
 956		 * given the callers for this case: kprobe/kgdb in built-in
 957		 * kernel code only.
 958		 */
 959		__sync_icache_dcache(kstart, kstart, kend - kstart);
 960		return;
 961	}
 962
 963	/*
 964	 * Case: Kernel Vaddr (0x7000_0000 to 0x7fff_ffff)
 965	 * (1) ARC Cache Maintenance ops only take Phy addr, hence special
 966	 *     handling of kernel vaddr.
 967	 *
 968	 * (2) Despite @tot_sz being < PAGE_SIZE (bigger cases handled already),
 969	 *     it still needs to handle  a 2 page scenario, where the range
 970	 *     straddles across 2 virtual pages and hence need for loop
 971	 */
 972	while (tot_sz > 0) {
 973		unsigned int off, sz;
 974		unsigned long phy, pfn;
 975
 976		off = kstart % PAGE_SIZE;
 977		pfn = vmalloc_to_pfn((void *)kstart);
 978		phy = (pfn << PAGE_SHIFT) + off;
 979		sz = min_t(unsigned int, tot_sz, PAGE_SIZE - off);
 980		__sync_icache_dcache(phy, kstart, sz);
 981		kstart += sz;
 982		tot_sz -= sz;
 983	}
 984}
 985EXPORT_SYMBOL(flush_icache_range);
 986
 987/*
 988 * General purpose helper to make I and D cache lines consistent.
 989 * @paddr is phy addr of region
 990 * @vaddr is typically user vaddr (breakpoint) or kernel vaddr (vmalloc)
 991 *    However in one instance, when called by kprobe (for a breakpt in
 992 *    builtin kernel code) @vaddr will be paddr only, meaning CDU operation will
 993 *    use a paddr to index the cache (despite VIPT). This is fine since since a
 994 *    builtin kernel page will not have any virtual mappings.
 995 *    kprobe on loadable module will be kernel vaddr.
 996 */
 997void __sync_icache_dcache(phys_addr_t paddr, unsigned long vaddr, int len)
 998{
 999	__dc_line_op(paddr, vaddr, len, OP_FLUSH_N_INV);
1000	__ic_line_inv_vaddr(paddr, vaddr, len);
1001}
1002
1003/* wrapper to compile time eliminate alignment checks in flush loop */
1004void __inv_icache_page(phys_addr_t paddr, unsigned long vaddr)
1005{
1006	__ic_line_inv_vaddr(paddr, vaddr, PAGE_SIZE);
1007}
1008
1009/*
1010 * wrapper to clearout kernel or userspace mappings of a page
1011 * For kernel mappings @vaddr == @paddr
1012 */
1013void __flush_dcache_page(phys_addr_t paddr, unsigned long vaddr)
1014{
1015	__dc_line_op(paddr, vaddr & PAGE_MASK, PAGE_SIZE, OP_FLUSH_N_INV);
1016}
1017
1018noinline void flush_cache_all(void)
1019{
1020	unsigned long flags;
1021
1022	local_irq_save(flags);
1023
1024	__ic_entire_inv();
1025	__dc_entire_op(OP_FLUSH_N_INV);
1026
1027	local_irq_restore(flags);
1028
1029}
1030
1031#ifdef CONFIG_ARC_CACHE_VIPT_ALIASING
1032
1033void flush_cache_mm(struct mm_struct *mm)
1034{
1035	flush_cache_all();
1036}
1037
1038void flush_cache_page(struct vm_area_struct *vma, unsigned long u_vaddr,
1039		      unsigned long pfn)
1040{
1041	unsigned int paddr = pfn << PAGE_SHIFT;
1042
1043	u_vaddr &= PAGE_MASK;
1044
1045	__flush_dcache_page(paddr, u_vaddr);
1046
1047	if (vma->vm_flags & VM_EXEC)
1048		__inv_icache_page(paddr, u_vaddr);
1049}
1050
1051void flush_cache_range(struct vm_area_struct *vma, unsigned long start,
1052		       unsigned long end)
1053{
1054	flush_cache_all();
1055}
1056
1057void flush_anon_page(struct vm_area_struct *vma, struct page *page,
1058		     unsigned long u_vaddr)
1059{
1060	/* TBD: do we really need to clear the kernel mapping */
1061	__flush_dcache_page(page_address(page), u_vaddr);
1062	__flush_dcache_page(page_address(page), page_address(page));
1063
1064}
1065
1066#endif
1067
1068void copy_user_highpage(struct page *to, struct page *from,
1069	unsigned long u_vaddr, struct vm_area_struct *vma)
1070{
1071	void *kfrom = kmap_atomic(from);
1072	void *kto = kmap_atomic(to);
1073	int clean_src_k_mappings = 0;
1074
1075	/*
1076	 * If SRC page was already mapped in userspace AND it's U-mapping is
1077	 * not congruent with K-mapping, sync former to physical page so that
1078	 * K-mapping in memcpy below, sees the right data
1079	 *
1080	 * Note that while @u_vaddr refers to DST page's userspace vaddr, it is
1081	 * equally valid for SRC page as well
1082	 *
1083	 * For !VIPT cache, all of this gets compiled out as
1084	 * addr_not_cache_congruent() is 0
1085	 */
1086	if (page_mapcount(from) && addr_not_cache_congruent(kfrom, u_vaddr)) {
1087		__flush_dcache_page((unsigned long)kfrom, u_vaddr);
1088		clean_src_k_mappings = 1;
1089	}
1090
1091	copy_page(kto, kfrom);
1092
1093	/*
1094	 * Mark DST page K-mapping as dirty for a later finalization by
1095	 * update_mmu_cache(). Although the finalization could have been done
1096	 * here as well (given that both vaddr/paddr are available).
1097	 * But update_mmu_cache() already has code to do that for other
1098	 * non copied user pages (e.g. read faults which wire in pagecache page
1099	 * directly).
1100	 */
1101	clear_bit(PG_dc_clean, &to->flags);
1102
1103	/*
1104	 * if SRC was already usermapped and non-congruent to kernel mapping
1105	 * sync the kernel mapping back to physical page
1106	 */
1107	if (clean_src_k_mappings) {
1108		__flush_dcache_page((unsigned long)kfrom, (unsigned long)kfrom);
1109		set_bit(PG_dc_clean, &from->flags);
1110	} else {
1111		clear_bit(PG_dc_clean, &from->flags);
1112	}
1113
1114	kunmap_atomic(kto);
1115	kunmap_atomic(kfrom);
1116}
1117
1118void clear_user_page(void *to, unsigned long u_vaddr, struct page *page)
1119{
1120	clear_page(to);
1121	clear_bit(PG_dc_clean, &page->flags);
1122}
1123
1124
1125/**********************************************************************
1126 * Explicit Cache flush request from user space via syscall
1127 * Needed for JITs which generate code on the fly
1128 */
1129SYSCALL_DEFINE3(cacheflush, uint32_t, start, uint32_t, sz, uint32_t, flags)
1130{
1131	/* TBD: optimize this */
1132	flush_cache_all();
1133	return 0;
1134}
1135
1136/*
1137 * IO-Coherency (IOC) setup rules:
1138 *
1139 * 1. Needs to be at system level, so only once by Master core
1140 *    Non-Masters need not be accessing caches at that time
1141 *    - They are either HALT_ON_RESET and kick started much later or
1142 *    - if run on reset, need to ensure that arc_platform_smp_wait_to_boot()
1143 *      doesn't perturb caches or coherency unit
1144 *
1145 * 2. caches (L1 and SLC) need to be purged (flush+inv) before setting up IOC,
1146 *    otherwise any straggler data might behave strangely post IOC enabling
1147 *
1148 * 3. All Caches need to be disabled when setting up IOC to elide any in-flight
1149 *    Coherency transactions
1150 */
1151noinline void __init arc_ioc_setup(void)
1152{
1153	unsigned int ioc_base, mem_sz;
1154
1155	/* Flush + invalidate + disable L1 dcache */
1156	__dc_disable();
1157
1158	/* Flush + invalidate SLC */
1159	if (read_aux_reg(ARC_REG_SLC_BCR))
1160		slc_entire_op(OP_FLUSH_N_INV);
1161
 
 
 
1162	/*
1163	 * currently IOC Aperture covers entire DDR
 
1164	 * TBD: fix for PGU + 1GB of low mem
1165	 * TBD: fix for PAE
1166	 */
1167	mem_sz = arc_get_mem_sz();
1168
1169	if (!is_power_of_2(mem_sz) || mem_sz < 4096)
1170		panic("IOC Aperture size must be power of 2 larger than 4KB");
1171
1172	/*
1173	 * IOC Aperture size decoded as 2 ^ (SIZE + 2) KB,
1174	 * so setting 0x11 implies 512MB, 0x12 implies 1GB...
1175	 */
1176	write_aux_reg(ARC_REG_IO_COH_AP0_SIZE, order_base_2(mem_sz >> 10) - 2);
1177
1178	/* for now assume kernel base is start of IOC aperture */
1179	ioc_base = CONFIG_LINUX_RAM_BASE;
1180
1181	if (ioc_base % mem_sz != 0)
1182		panic("IOC Aperture start must be aligned to the size of the aperture");
1183
1184	write_aux_reg(ARC_REG_IO_COH_AP0_BASE, ioc_base >> 12);
1185	write_aux_reg(ARC_REG_IO_COH_PARTIAL, 1);
1186	write_aux_reg(ARC_REG_IO_COH_ENABLE, 1);
1187
1188	/* Re-enable L1 dcache */
1189	__dc_enable();
1190}
1191
1192/*
1193 * Cache related boot time checks/setups only needed on master CPU:
1194 *  - Geometry checks (kernel build and hardware agree: e.g. L1_CACHE_BYTES)
1195 *    Assume SMP only, so all cores will have same cache config. A check on
1196 *    one core suffices for all
1197 *  - IOC setup / dma callbacks only need to be done once
1198 */
1199void __init arc_cache_init_master(void)
1200{
1201	unsigned int __maybe_unused cpu = smp_processor_id();
1202
1203	if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE)) {
1204		struct cpuinfo_arc_cache *ic = &cpuinfo_arc700[cpu].icache;
1205
1206		if (!ic->line_len)
1207			panic("cache support enabled but non-existent cache\n");
1208
1209		if (ic->line_len != L1_CACHE_BYTES)
1210			panic("ICache line [%d] != kernel Config [%d]",
1211			      ic->line_len, L1_CACHE_BYTES);
1212
1213		/*
1214		 * In MMU v4 (HS38x) the aliasing icache config uses IVIL/PTAG
1215		 * pair to provide vaddr/paddr respectively, just as in MMU v3
1216		 */
1217		if (is_isa_arcv2() && ic->alias)
1218			_cache_line_loop_ic_fn = __cache_line_loop_v3;
1219		else
1220			_cache_line_loop_ic_fn = __cache_line_loop;
1221	}
1222
1223	if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE)) {
1224		struct cpuinfo_arc_cache *dc = &cpuinfo_arc700[cpu].dcache;
1225
1226		if (!dc->line_len)
1227			panic("cache support enabled but non-existent cache\n");
1228
1229		if (dc->line_len != L1_CACHE_BYTES)
1230			panic("DCache line [%d] != kernel Config [%d]",
1231			      dc->line_len, L1_CACHE_BYTES);
1232
1233		/* check for D-Cache aliasing on ARCompact: ARCv2 has PIPT */
1234		if (is_isa_arcompact()) {
1235			int handled = IS_ENABLED(CONFIG_ARC_CACHE_VIPT_ALIASING);
1236			int num_colors = dc->sz_k/dc->assoc/TO_KB(PAGE_SIZE);
1237
1238			if (dc->alias) {
1239				if (!handled)
1240					panic("Enable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1241				if (CACHE_COLORS_NUM != num_colors)
1242					panic("CACHE_COLORS_NUM not optimized for config\n");
1243			} else if (!dc->alias && handled) {
1244				panic("Disable CONFIG_ARC_CACHE_VIPT_ALIASING\n");
1245			}
1246		}
1247	}
1248
1249	/* Note that SLC disable not formally supported till HS 3.0 */
1250	if (is_isa_arcv2() && l2_line_sz && !slc_enable)
1251		arc_slc_disable();
1252
1253	if (is_isa_arcv2() && ioc_enable)
1254		arc_ioc_setup();
1255
1256	if (is_isa_arcv2() && ioc_enable) {
1257		__dma_cache_wback_inv = __dma_cache_wback_inv_ioc;
1258		__dma_cache_inv = __dma_cache_inv_ioc;
1259		__dma_cache_wback = __dma_cache_wback_ioc;
1260	} else if (is_isa_arcv2() && l2_line_sz && slc_enable) {
1261		__dma_cache_wback_inv = __dma_cache_wback_inv_slc;
1262		__dma_cache_inv = __dma_cache_inv_slc;
1263		__dma_cache_wback = __dma_cache_wback_slc;
1264	} else {
1265		__dma_cache_wback_inv = __dma_cache_wback_inv_l1;
1266		__dma_cache_inv = __dma_cache_inv_l1;
1267		__dma_cache_wback = __dma_cache_wback_l1;
1268	}
1269}
1270
1271void __ref arc_cache_init(void)
1272{
1273	unsigned int __maybe_unused cpu = smp_processor_id();
1274	char str[256];
1275
1276	pr_info("%s", arc_cache_mumbojumbo(0, str, sizeof(str)));
1277
 
 
 
 
 
 
1278	if (!cpu)
1279		arc_cache_init_master();
1280
1281	/*
1282	 * In PAE regime, TLB and cache maintenance ops take wider addresses
1283	 * And even if PAE is not enabled in kernel, the upper 32-bits still need
1284	 * to be zeroed to keep the ops sane.
1285	 * As an optimization for more common !PAE enabled case, zero them out
1286	 * once at init, rather than checking/setting to 0 for every runtime op
1287	 */
1288	if (is_isa_arcv2() && pae40_exist_but_not_enab()) {
1289
1290		if (IS_ENABLED(CONFIG_ARC_HAS_ICACHE))
1291			write_aux_reg(ARC_REG_IC_PTAG_HI, 0);
1292
1293		if (IS_ENABLED(CONFIG_ARC_HAS_DCACHE))
1294			write_aux_reg(ARC_REG_DC_PTAG_HI, 0);
1295
1296		if (l2_line_sz) {
1297			write_aux_reg(ARC_REG_SLC_RGN_END1, 0);
1298			write_aux_reg(ARC_REG_SLC_RGN_START1, 0);
1299		}
1300	}
1301}