Linux Audio

Check our new training course

Loading...
v4.10.11
  1/*
  2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 *
  8 * vineetg: May 2011
  9 *  -Refactored get_new_mmu_context( ) to only handle live-mm.
 10 *   retiring-mm handled in other hooks
 11 *
 12 * Vineetg: March 25th, 2008: Bug #92690
 13 *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
 14 *
 15 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
 16 */
 17
 18#ifndef _ASM_ARC_MMU_CONTEXT_H
 19#define _ASM_ARC_MMU_CONTEXT_H
 20
 21#include <asm/arcregs.h>
 22#include <asm/tlb.h>
 
 23
 24#include <asm-generic/mm_hooks.h>
 25
 26/*		ARC700 ASID Management
 27 *
 28 * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
 29 * with same vaddr (different tasks) to co-exit. This provides for
 30 * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
 31 *
 32 * Linux assigns each task a unique ASID. A simple round-robin allocation
 33 * of H/w ASID is done using software tracker @asid_cpu.
 34 * When it reaches max 255, the allocation cycle starts afresh by flushing
 35 * the entire TLB and wrapping ASID back to zero.
 36 *
 37 * A new allocation cycle, post rollover, could potentially reassign an ASID
 38 * to a different task. Thus the rule is to refresh the ASID in a new cycle.
 39 * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
 40 * serve as cycle/generation indicator and natural 32 bit unsigned math
 41 * automagically increments the generation when lower 8 bits rollover.
 42 */
 43
 44#define MM_CTXT_ASID_MASK	0x000000ff /* MMU PID reg :8 bit PID */
 45#define MM_CTXT_CYCLE_MASK	(~MM_CTXT_ASID_MASK)
 46
 47#define MM_CTXT_FIRST_CYCLE	(MM_CTXT_ASID_MASK + 1)
 48#define MM_CTXT_NO_ASID		0UL
 49
 50#define asid_mm(mm, cpu)	mm->context.asid[cpu]
 51#define hw_pid(mm, cpu)		(asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
 52
 53DECLARE_PER_CPU(unsigned int, asid_cache);
 54#define asid_cpu(cpu)		per_cpu(asid_cache, cpu)
 55
 56/*
 57 * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
 58 * Also set the MMU PID register to existing/updated ASID
 59 */
 60static inline void get_new_mmu_context(struct mm_struct *mm)
 61{
 62	const unsigned int cpu = smp_processor_id();
 63	unsigned long flags;
 64
 65	local_irq_save(flags);
 66
 67	/*
 68	 * Move to new ASID if it was not from current alloc-cycle/generation.
 69	 * This is done by ensuring that the generation bits in both mm->ASID
 70	 * and cpu's ASID counter are exactly same.
 71	 *
 72	 * Note: Callers needing new ASID unconditionally, independent of
 73	 * 	 generation, e.g. local_flush_tlb_mm() for forking  parent,
 74	 * 	 first need to destroy the context, setting it to invalid
 75	 * 	 value.
 76	 */
 77	if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
 78		goto set_hw;
 79
 80	/* move to new ASID and handle rollover */
 81	if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
 82
 83		local_flush_tlb_all();
 84
 85		/*
 86		 * Above check for rollover of 8 bit ASID in 32 bit container.
 87		 * If the container itself wrapped around, set it to a non zero
 88		 * "generation" to distinguish from no context
 89		 */
 90		if (!asid_cpu(cpu))
 91			asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
 92	}
 93
 94	/* Assign new ASID to tsk */
 95	asid_mm(mm, cpu) = asid_cpu(cpu);
 96
 97set_hw:
 98	write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
 99
100	local_irq_restore(flags);
101}
102
103/*
104 * Initialize the context related info for a new mm_struct
105 * instance.
106 */
107static inline int
108init_new_context(struct task_struct *tsk, struct mm_struct *mm)
109{
110	int i;
111
112	for_each_possible_cpu(i)
113		asid_mm(mm, i) = MM_CTXT_NO_ASID;
114
115	return 0;
116}
117
118static inline void destroy_context(struct mm_struct *mm)
119{
120	unsigned long flags;
121
122	/* Needed to elide CONFIG_DEBUG_PREEMPT warning */
123	local_irq_save(flags);
124	asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
125	local_irq_restore(flags);
126}
127
128/* Prepare the MMU for task: setup PID reg with allocated ASID
129    If task doesn't have an ASID (never alloc or stolen, get a new ASID)
130*/
131static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
132			     struct task_struct *tsk)
133{
134	const int cpu = smp_processor_id();
135
136	/*
137	 * Note that the mm_cpumask is "aggregating" only, we don't clear it
138	 * for the switched-out task, unlike some other arches.
139	 * It is used to enlist cpus for sending TLB flush IPIs and not sending
140	 * it to CPUs where a task once ran-on, could cause stale TLB entry
141	 * re-use, specially for a multi-threaded task.
142	 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
143	 *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
144	 *      were to re-migrate to C1, it could access the unmapped region
145	 *      via any existing stale TLB entries.
146	 */
147	cpumask_set_cpu(cpu, mm_cpumask(next));
148
149#ifndef CONFIG_SMP
150	/* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
151	write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
152#endif
153
154	get_new_mmu_context(next);
155}
156
157/*
158 * Called at the time of execve() to get a new ASID
159 * Note the subtlety here: get_new_mmu_context() behaves differently here
160 * vs. in switch_mm(). Here it always returns a new ASID, because mm has
161 * an unallocated "initial" value, while in latter, it moves to a new ASID,
162 * only if it was unallocated
163 */
164#define activate_mm(prev, next)		switch_mm(prev, next, NULL)
165
166/* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
167 * for retiring-mm. However destroy_context( ) still needs to do that because
168 * between mm_release( ) = >deactive_mm( ) and
169 * mmput => .. => __mmdrop( ) => destroy_context( )
170 * there is a good chance that task gets sched-out/in, making it's ASID valid
171 * again (this teased me for a whole day).
172 */
173#define deactivate_mm(tsk, mm)   do { } while (0)
174
175#define enter_lazy_tlb(mm, tsk)
176
177#endif /* __ASM_ARC_MMU_CONTEXT_H */
v4.17
  1/*
  2 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  3 *
  4 * This program is free software; you can redistribute it and/or modify
  5 * it under the terms of the GNU General Public License version 2 as
  6 * published by the Free Software Foundation.
  7 *
  8 * vineetg: May 2011
  9 *  -Refactored get_new_mmu_context( ) to only handle live-mm.
 10 *   retiring-mm handled in other hooks
 11 *
 12 * Vineetg: March 25th, 2008: Bug #92690
 13 *  -Major rewrite of Core ASID allocation routine get_new_mmu_context
 14 *
 15 * Amit Bhor, Sameer Dhavale: Codito Technologies 2004
 16 */
 17
 18#ifndef _ASM_ARC_MMU_CONTEXT_H
 19#define _ASM_ARC_MMU_CONTEXT_H
 20
 21#include <asm/arcregs.h>
 22#include <asm/tlb.h>
 23#include <linux/sched/mm.h>
 24
 25#include <asm-generic/mm_hooks.h>
 26
 27/*		ARC700 ASID Management
 28 *
 29 * ARC MMU provides 8-bit ASID (0..255) to TAG TLB entries, allowing entries
 30 * with same vaddr (different tasks) to co-exit. This provides for
 31 * "Fast Context Switch" i.e. no TLB flush on ctxt-switch
 32 *
 33 * Linux assigns each task a unique ASID. A simple round-robin allocation
 34 * of H/w ASID is done using software tracker @asid_cpu.
 35 * When it reaches max 255, the allocation cycle starts afresh by flushing
 36 * the entire TLB and wrapping ASID back to zero.
 37 *
 38 * A new allocation cycle, post rollover, could potentially reassign an ASID
 39 * to a different task. Thus the rule is to refresh the ASID in a new cycle.
 40 * The 32 bit @asid_cpu (and mm->asid) have 8 bits MMU PID and rest 24 bits
 41 * serve as cycle/generation indicator and natural 32 bit unsigned math
 42 * automagically increments the generation when lower 8 bits rollover.
 43 */
 44
 45#define MM_CTXT_ASID_MASK	0x000000ff /* MMU PID reg :8 bit PID */
 46#define MM_CTXT_CYCLE_MASK	(~MM_CTXT_ASID_MASK)
 47
 48#define MM_CTXT_FIRST_CYCLE	(MM_CTXT_ASID_MASK + 1)
 49#define MM_CTXT_NO_ASID		0UL
 50
 51#define asid_mm(mm, cpu)	mm->context.asid[cpu]
 52#define hw_pid(mm, cpu)		(asid_mm(mm, cpu) & MM_CTXT_ASID_MASK)
 53
 54DECLARE_PER_CPU(unsigned int, asid_cache);
 55#define asid_cpu(cpu)		per_cpu(asid_cache, cpu)
 56
 57/*
 58 * Get a new ASID if task doesn't have a valid one (unalloc or from prev cycle)
 59 * Also set the MMU PID register to existing/updated ASID
 60 */
 61static inline void get_new_mmu_context(struct mm_struct *mm)
 62{
 63	const unsigned int cpu = smp_processor_id();
 64	unsigned long flags;
 65
 66	local_irq_save(flags);
 67
 68	/*
 69	 * Move to new ASID if it was not from current alloc-cycle/generation.
 70	 * This is done by ensuring that the generation bits in both mm->ASID
 71	 * and cpu's ASID counter are exactly same.
 72	 *
 73	 * Note: Callers needing new ASID unconditionally, independent of
 74	 * 	 generation, e.g. local_flush_tlb_mm() for forking  parent,
 75	 * 	 first need to destroy the context, setting it to invalid
 76	 * 	 value.
 77	 */
 78	if (!((asid_mm(mm, cpu) ^ asid_cpu(cpu)) & MM_CTXT_CYCLE_MASK))
 79		goto set_hw;
 80
 81	/* move to new ASID and handle rollover */
 82	if (unlikely(!(++asid_cpu(cpu) & MM_CTXT_ASID_MASK))) {
 83
 84		local_flush_tlb_all();
 85
 86		/*
 87		 * Above check for rollover of 8 bit ASID in 32 bit container.
 88		 * If the container itself wrapped around, set it to a non zero
 89		 * "generation" to distinguish from no context
 90		 */
 91		if (!asid_cpu(cpu))
 92			asid_cpu(cpu) = MM_CTXT_FIRST_CYCLE;
 93	}
 94
 95	/* Assign new ASID to tsk */
 96	asid_mm(mm, cpu) = asid_cpu(cpu);
 97
 98set_hw:
 99	write_aux_reg(ARC_REG_PID, hw_pid(mm, cpu) | MMU_ENABLE);
100
101	local_irq_restore(flags);
102}
103
104/*
105 * Initialize the context related info for a new mm_struct
106 * instance.
107 */
108static inline int
109init_new_context(struct task_struct *tsk, struct mm_struct *mm)
110{
111	int i;
112
113	for_each_possible_cpu(i)
114		asid_mm(mm, i) = MM_CTXT_NO_ASID;
115
116	return 0;
117}
118
119static inline void destroy_context(struct mm_struct *mm)
120{
121	unsigned long flags;
122
123	/* Needed to elide CONFIG_DEBUG_PREEMPT warning */
124	local_irq_save(flags);
125	asid_mm(mm, smp_processor_id()) = MM_CTXT_NO_ASID;
126	local_irq_restore(flags);
127}
128
129/* Prepare the MMU for task: setup PID reg with allocated ASID
130    If task doesn't have an ASID (never alloc or stolen, get a new ASID)
131*/
132static inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
133			     struct task_struct *tsk)
134{
135	const int cpu = smp_processor_id();
136
137	/*
138	 * Note that the mm_cpumask is "aggregating" only, we don't clear it
139	 * for the switched-out task, unlike some other arches.
140	 * It is used to enlist cpus for sending TLB flush IPIs and not sending
141	 * it to CPUs where a task once ran-on, could cause stale TLB entry
142	 * re-use, specially for a multi-threaded task.
143	 * e.g. T1 runs on C1, migrates to C3. T2 running on C2 munmaps.
144	 *      For a non-aggregating mm_cpumask, IPI not sent C1, and if T1
145	 *      were to re-migrate to C1, it could access the unmapped region
146	 *      via any existing stale TLB entries.
147	 */
148	cpumask_set_cpu(cpu, mm_cpumask(next));
149
150#ifndef CONFIG_SMP
151	/* PGD cached in MMU reg to avoid 3 mem lookups: task->mm->pgd */
152	write_aux_reg(ARC_REG_SCRATCH_DATA0, next->pgd);
153#endif
154
155	get_new_mmu_context(next);
156}
157
158/*
159 * Called at the time of execve() to get a new ASID
160 * Note the subtlety here: get_new_mmu_context() behaves differently here
161 * vs. in switch_mm(). Here it always returns a new ASID, because mm has
162 * an unallocated "initial" value, while in latter, it moves to a new ASID,
163 * only if it was unallocated
164 */
165#define activate_mm(prev, next)		switch_mm(prev, next, NULL)
166
167/* it seemed that deactivate_mm( ) is a reasonable place to do book-keeping
168 * for retiring-mm. However destroy_context( ) still needs to do that because
169 * between mm_release( ) = >deactive_mm( ) and
170 * mmput => .. => __mmdrop( ) => destroy_context( )
171 * there is a good chance that task gets sched-out/in, making it's ASID valid
172 * again (this teased me for a whole day).
173 */
174#define deactivate_mm(tsk, mm)   do { } while (0)
175
176#define enter_lazy_tlb(mm, tsk)
177
178#endif /* __ASM_ARC_MMU_CONTEXT_H */